
Precise Runtime Analysis for Plateaus

Denis Antipov1(B) and Benjamin Doerr2

1 ITMO University, 49 Kronverkskiy prosp., 197101 Saint-Petersburg, Russia
antipovden@yandex.ru

2 École Polytechnique, CNRS, Laboratoire d’Informatique (LIX), Palaiseau, France
doerr@lix.polytechnique.fr

Abstract. To gain a better theoretical understanding of how evolution-
ary algorithms cope with plateaus of constant fitness, we analyze how
the (1 + 1) EA optimizes the n-dimensional Plateauk function. This
function has a plateau of second-best fitness in a radius of k around the
optimum. As optimization algorithm, we regard the (1 + 1) EA using
an arbitrary unbiased mutation operator. Denoting by α the random
number of bits flipped in an application of this operator and assuming
Pr[α = 1] = Ω(1), we show the surprising result that for k ≥ 2 the
expected optimization time of this algorithm is

nk

k! Pr[1 ≤ α ≤ k]
(1 + o(1)),

that is, the size of the plateau times the expected waiting time for an
iteration flipping between 1 and k bits. Our result implies that the opti-
mal mutation rate for this function is approximately k/en. Our main
analysis tool is a combined analysis of the Markov chains on the search
point space and on the Hamming level space, an approach that promises
to be useful also for other plateau problems.

Keywords: Runtime analysis · Theory · Markov chains · Mutation

1 Introduction

This work aims at making progress on several related subjects—we aim at under-
standing how evolutionary algorithms optimize non-unimodal1 fitness functions,
what mutation operators to use in such settings, how to analyze the behavior of
evolutionary algorithms on large plateaus of constant fitness, and in particular,
how to obtain runtime bounds that are precise including the leading constant.

The recent work [14] observed that a large proportion of the theoretical work
in the past concentrates on analyzing of how evolutionary algorithms optimize
unimodal fitness functions and that this can lead to misleading recommenda-
tions how to design evolutionary algorithms. Based on a precise analysis of how
1 As common in optimization, we reserve the notion unimodal for objective functions

such that each non-optimal search point has a strictly better neighbor.

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 117–128, 2018.
https://doi.org/10.1007/978-3-319-99259-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_10&domain=pdf

118 D. Antipov and B. Doerr

the (1 + 1) EA optimizes jump functions, it was observed that the classic rec-
ommendation to use standard bit mutation with mutation rate 1

n is far from
optimal for this function class. For jump size k, a speed-up of order kΘ(k) can
be obtained from using a mutation rate of k

n .
Jump functions are difficult to optimize, because the optimum is surrounded

by a large set of search points of very low fitness (all search points in Hamming
distance 1 to k − 1 from the optimum). However, this is not the only reason for
fitness functions being difficult. Another challenge for most evolutionary algo-
rithms are large plateaus of constant fitness. On such plateaus, the evolutionary
algorithm learns little from evaluating search points and consequently performs
an unguided random walk. To understand this phenomenon in more detail, we
propose a class of fitness function very similar to jump functions. A plateau
function with plateau parameter k is identical to a jump function with jump
size k except that the k − 1 Hamming levels around the optimum do not have a
small fitness, but have the same second-best fitness as the k-th Hamming level.
Consequently, these functions do not have true local optima (in which an evolu-
tionary algorithm could get stuck for longer time), but only a plateau of constant
fitness. Our hope is that this generic fitness function with a plateau of scalable
size may aid the understanding of plateaus in evolutionary computation in a
similar manner as the jump functions have led to many useful results about the
optimization of functions with true local optima, e.g., [4–6,8,15,18].

When trying to analyze how evolutionary algorithms optimize plateau func-
tions, we observe that the active area of theoretical analyses of evolutionary
algorithms has produced many strong tools suitable to analyze how evolu-
tionary algorithms make true progress (e.g., various form of the fitness level
method [7,24,25] or drift analysis [13,17,20]), but much less is known on how
to analyze plateaus. This is not to mean that plateaus have not been analyzed
previously, see, e.g., [3,10,16], but these results appear to be more ad hoc and
less suitable to derive generic methods for the analysis of plateaus. In particular,
with the exception of [16], we are not aware of any results that determine the run-
time of an evolutionary algorithm on a fitness function with non-trivial plateaus
precise including the leading constant (whereas a decent number of very precise
results have recently appeared for unimodal fitness functions, e.g., [2,9,21,26]).

Such precise results are necessary for our further goal of understanding the
influence of the mutation operator on the efficiency of the optimization process.
Mutation is one of the most basic building blocks in evolutionary computation
and has, consequently, received significant attention also in the runtime analysis
literature. We refer to the discussion in [14] for a more extensive treatment of this
topic and note here only already small changes of the mutation operator or its
parameters can lead to a drastic change of the efficiency of the algorithm [11,12]

Our Results: Our main result is a very general analysis of how the sim-
plest mutation-based evolutionary algorithm, the (1 + 1) EA, optimizes the
n-dimensional plateau function with plateau parameter k ∈ N. We allow the
algorithm to use any unbiased mutation operator (including, e.g., 1-bit flips,
standard-bit mutation with an arbitrary mutation rate, or the fast mutation

Precise Runtime Analysis for Plateaus 119

operator of [14]) as long as the operator flips exactly one bit with probability at
least some positive constant. This assumption is natural, but also necessary to
ensure that the algorithm can reach all points on the plateau. Denoting the num-
ber of bits flipped in an application of this operator by the random variable α, we
prove that the expected optimization time (number of fitness evaluations until
the optimum is visited) is

nk

k! Pr[1 ≤ α ≤ k]
(1 + o(1)).

This result, tight apart from lower order terms only, is remarkable in several
respects. It shows that the performance depends very little on the particular
mutation operator, only the probability to flip between 1 and k bits has an
influence. The absolute runtime is also surprising—it is the size of the plateau
times the waiting time for a one-to-k bit flip.

A similar-looking result was obtained in [16], namely that the expected run-
time of the (1+1) EA with 1-bit mutation and with standard-bit mutation with
rate 1

n on the needle function is (apart from lower order terms) the size of the
plateau times the probability to flip a positive number of bits (which is 1 for 1-bit
mutation and (1 − o(1))(1 − 1

e) for standard bit mutation with rate 1/n). Our
result thus complements this result (valid for two specific mutation operators
and for the plateau of radius n around the unique optimum) with an analogous
result for constrained plateaus of arbitrary (constant) radius k ≥ 2 around the
optimum and for arbitrary unbiased mutation operators.

We note that there is a substantial difference between the case k = n and
k constant. Since the needle function consists of a plateau containing the whole
search space apart from the optimum, the optimization time in this case is
just the hitting time of a particular search point when doing an undirected
random walk (via repeated mutation) on the hypercube {0, 1}n. For the function
considered in this paper, the plateau has a large boundary. More precisely, almost
all2 search points of the plateau lie on its outer boundary and furthermore, all
these search points have almost all their neighbors outside the plateau. Hence
a large number of iterations (namely almost all) are lost in the sense that the
mutation operator generates a search point outside the plateau (and different
from the optimum), which is not accepted. Interestingly, as our result shows,
the optimization of such restricted plateaus is not necessarily significantly more
difficult (relative to the plateau size) than the optimization of the unrestricted
needle plateau.

Our precise runtime analysis allows to deduce a number of particular results.
For example, when using standard bit mutation, the optimal3 mutation rate is
k
en . This is by a constant factor less than the optimal rate of k

n for the jump
function with jump size k, but again a factor of Θ(k) larger than the classic
recommendation of 1

n , which is optimal for many unimodal fitness functions.

2 In the usual asymptotic sense, that is, meaning all but a lower order fraction.
3 We call a mutation rate optimal when it differs from the truly optimal rate at most

by lower order terms, that is, e.g. a factor of (1 ± o(1)).

120 D. Antipov and B. Doerr

Hence our result confirms that the optimal mutation rates can be significantly
higher for non-unimodal fitness functions. While the optimal mutation rates
for jump and plateau functions are similar, the effect of using the optimal rate
is very different. For jump functions, an kΘ(k) factor speed-up (compared to
the standard recommendation of 1

n) was observed, here the influence of the
mutation operator is much smaller, namely the factor Pr[1 ≤ α ≤ k], which is
trivially at most 1, but which was assumed to be at least some positive constant.
Interestingly, our results imply that the fast mutation operator described in [14]
is not more effective than other unbiased mutation operators, even though it was
proven to be significantly more effective for jump functions and it has shown good
results in some practical problems [23].

So one structural finding, which we believe to be true for larger classes of
problems and which fits to the result [16] for needle functions, is that the muta-
tion rate, and more generally, the particular mutation operator which is used,
is less important while the evolutionary algorithm is traversing a plateau of
constant fitness.

The main technical novelty in this work is that we model the optimiza-
tion process via two different Markov chains describing the random walk on the
plateau, namely the chain defined on the Θ(nk) elements of the plateau (plus
the optimum) and the chain obtained from aggregating these into the total mass
on the Hamming levels. Due to the symmetry of the process, one could believe
that it suffices to regard only the level chain. The chain defined on the elements,
however, has some nice features which the level chain is missing, among others,
a symmetric transition matrix (because for any two search points x and y on
the plateau, the probability of going from x to y is the same as the probabil-
ity of going from y to x). For this reason, we find it fruitful to switch between
the two chains. Exploiting the interplay between the two chains and using clas-
sic methods from linear algebra, we find the exact expression for the expected
runtime.

The abstract idea of switching between the chain of all the elements of the
plateau and an aggregated chain exploiting symmetries of the process as well as
the linear algebra arguments we use are not specific to our particular problem.
For this reason, we are optimistic that our techniques may be applied as well to
other optimization processes involving plateaus4.

2 Problem Statement

We consider the maximization of a function that resembles the OneMax func-
tion, but has a plateau of second-highest fitness of radius k around the optimum.
We call this function Plateauk and define it as follows.

4 For reasons of space, not all mathematical proofs could fit into this extended abstract.
The proofs can be found in [1].

Precise Runtime Analysis for Plateaus 121

Plateauk(x) :=

⎧
⎪⎨

⎪⎩

OneMax(x), if OneMax(x) ≤ n − k,

n − k, if n − k < OneMax(x) < n,

n, if OneMax(x) = n,

where OneMax(x) is the number of one-bits in x.
Notice that the plateau of the function Plateauk(x) consists of all bit-strings

that have at least n − k one-bits, except the optimal bit-string x∗ = (1, . . . , 1).
See Fig. 1 for an illustration of Plateauk. Since a reviewer asked for it, we note
that the unary unbiased black-box complexity (see [19] for the definition) of
Plateauk is Θ(n log n). Here the lower bound follows from the Ω(n log n) lower
bound for the unary unbiased black-box complexity of OneMax, see again [19],
and the fact that Plateauk = f ◦OneMax for a suitable function f , hence any
algorithm solving Plateauk can also solve OneMax. The upper bound follows
along the same lines as the O(n log n) upper bound for the unary unbiased black-
box complexity of Jumpk, see [8].

Plateau(x)

OneMax(x)

n

n− k

0 n− k n

Fig. 1. Graph of the Plateau function. As a function of unitation, the function value
of a search point x depends only on the value ‖x‖1 of the OneMax function.

As the optimization algorithm we consider the (1 + 1) EA, shown in Algo-
rithm1, using an unbiased mutation operator. A mutation operator Mutate
for bit-string representations is called unbiased if it is symmetric in the bit-
positions [1..n] and in the bit-values 0 and 1. This is equivalent to saying that
for all x ∈ {0, 1}n and all automorphisms σ of the hypercube {0, 1}n (respecting
Hamming neighbors) we have σ−1(Mutate(σ(x)) = Mutate(x) (and this is an
equality of distributions). The notation of unbiasedness was introduced (also for
higher-arity operators) in the seminal paper [19].

For our purposes, it suffices to know that the set of unbiased mutation oper-
ators consists of all operators which can be described as follows. First, we choose
a number α ∈ [0..n] according to some probability distribution and then we flip
exactly α bits chosen uniformly at random. Examples for unbiased operators are
the operator of Random Local Search, which flips a random bit, or standard bit
mutation, which flips each bit independently with probability 1

n . Note that in
the first case α is always equal to one, whereas in the latter α follows a binomial
distribution with parameters n and 1

n .

122 D. Antipov and B. Doerr

Algorithm 1. The (1+1) EA with unary unbiased mutation operator Mutate
maximizing the function f

1: x ← random bit string of length n
2: repeat
3: y ← Mutate(x)
4: if f(y) ≥ f(x) then
5: x ← y
6: end if
7: until forever.

Additional Assumptions: The class of unbiased mutation operators contains a
few operators which are unable to solve even very simple problems. For example,
operators that always flips exactly two bits never finds the optimum of any
function with unique optimum if the initial individual has an odd Hamming
distance from the optimum. To avoid such difficulties, we only consider unbiased
operators that have at least a constant (positive) probability to flip exactly one
bit.

As usual in runtime analysis, we are interested in the optimization behavior
for large problem size n. Formally, this means that we view the runtime T = T (n)
as a function of n and aim at understanding its asymptotic behavior for n tending
to infinity. We aim at sharp results (including finding the leading constant), that
is, we try to find a simple function τ : N → N such that T (n) = (1 + o(1))τ(n),
which is equivalent to saying that limn→∞ T (n)/τ(n) = 1. In this limit sense,
however, we treat k as a constant, that is, k is a given positive integer and not
also a function of n. Since the case k = 1 is well-understood (Plateau1 is the
well-known OneMax function), we always assume k ≥ 2.

3 Preliminaries and Notation

As long as the unbiased operator with constant probability flips exactly one bit,
the expected time to reach the plateau is O(n log n). Since the time for leaving
the plateau (as shown in this paper) is Ω(nk), we only consider the runtime of
the algorithm after it has reached the plateau.

For our precise runtime analysis on the plateau we consider the plateau in
two different ways. The first way is to regard a Markov chain that contains
N =

∑k−1
i=0

(
n

k−i

)
states, where each state represents one element of the plateau.

Note that N = nk

k! + o(nk), since
(
n
j

)
= nj

j! (1 + o(1)) for all j ∈ [1..k]. Since
we only regard unbiased mutation operators, the transition probability between
two elements depends only on the Hamming distance between these elements.
The transition matrix Pind for this chain is large and inconvenient to work with.
However this matrix is symmetric due to unbiasedness of the operator that
implies for mutating from individual x to individual y we need to flip exactly
the same set of bits as for mutating from individual y to individual x. The
symmetry of this matrix will give us some simplifications in our analysis. For

Precise Runtime Analysis for Plateaus 123

example we will use the fact that the eigenvectors of this matrix are orthogonal.
We intentionally do not include optimum into this chain to understand, how the
algorithm behaves before escaping the plateau. As a result, the sum of each row
in Pind may be less than one. We call this chain the individual chain and call the
space of real vectors of dimension N the individual space, since it is the space of
all possible current individuals, when the algorithm is on the plateau.

To define the second Markov chain we shall use, let us first define the i-th
level as the set of all the search points that have exactly n−k + i one-bits. Then
the plateau is the union of levels 0 to k − 1 and the optimum is level k. Notice
that the i-th level contains exactly

(
n

k−i

)
elements. For every i and j ∈ [0..k] and

any element of the i-th level the probability to mutate to the j-th level is the
same due to the unbiasedness of the operator. Therefore we can regard a Markov
chain of k states, where i-th state represents all the elements of the i-th level.
We call the transition matrix of this chain P . This matrix has a size of k × k.
Matrix P (unlike Pind) is not symmetric. Like in the individual chain, since the
optimum is not represented by any state, the sum of all the outgoing transition
probabilities for each state may be less than one. We call this chain the level
chain and we call the space of real vectors of length k the level space. The level
chain is illustrated in Fig. 2.

0 1 k − 1
p10

p01

pk−1
1

p1k−1

pkk−1

pk0

pk−1
0

p0k−1

pk1

p00 p11 pk−1
k−1

Fig. 2. Illustration of the level chain. The black circle represents the optimum that is
not considered as a part of the chain, states [0..k−1] represent the levels of the plateau
surrounding the optimum.

There is a natural mapping from the level space to the individual space. Every
vector x = (x0, . . . , xk−1) can be mapped to vector φ(x) = (y0, . . . , yN−1), where
yi = xj/

(
n

k−j

)
, if i-th element belongs to the j-th level. If x is a distribution over

the levels, that is, x ∈ [0, 1]k and ‖x‖1 = 1, then φ(x) is the distribution over
the elements of the plateau which is uniform on the levels and which has the
same total mass on each level as x.

This mapping has several useful properties.

1. This mapping is linear, that is, we have φ(αx + βy) = αφ(x) + βφ(y) for all
x, y ∈ R

k and all α, β ∈ R. This property follows right from the definition
of φ.

124 D. Antipov and B. Doerr

2. For all x ∈ R
k we have φ(xP) = φ(x)Pind. To justify this property, let

us notice two facts. First, if some mass vector y from the individual space
has a uniform distribution of the mass inside each level, then after applying
matrix Pind to this vector, this property will remain true due to symmetry.
Second, the transition of mass between levels in the level chain is the same
as in the individual chain. Therefore, if we regard φ(xP) as the mass x that
firstly was transferred over the level chain by matrix P and then distributed
uniformly inside each level and we regard φ(x)Pind as the mass x that firstly
was distributed inside each level and then transferred between levels by matrix
Pind, then we see that it is the same vector.

3. From the previous properties we see that if x is an eigenvector of P , then φ(x)
is an eigenvector of Pind with the same eigenvalue. Therefore, the spectrum
σ(P) of the matrix P is a subset of the spectrum σ(Pind) of matrix Pind.

4. For all x ∈ R
k, the Manhattan norm is invariant under φ, that is, ‖x‖1 =

‖φ(x)‖1. This follows from the fact that all components of φ(x) that are from
the same level have the same sign. Notice that an analogous property does
not hold for the Euclidean norm ‖·‖2.

4 The Spectrum of the Transition Matrix

Let pk
i be the probability to find the optimum in one iteration if the current

individual is in level i and let pj
i for all i, j ∈ [0..k−1] be the elements of P , that

is, the transition matrix for the level chain. For all i ∈ [0..k − 1] and j ∈ [0..k]
we have

pj
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

k−j∑

m=0

(
k−i

j−i+m

)(
n−k+i

m

)(
n

j−i+2m

)−1 Pr[α = j − i + 2m], if j > i,

k−i∑

m=0

(
k−i
m

)(
n−k+i
i−j+m

)(
n

i−j+2m

)−1 Pr[α = i − j + 2m], if j < i,

1 −
k∑

m=0,m �=i

pm
i , if j = i.

The main result of this section is the following Lemma.

Lemma 1. All the eigenvalues of matrix P are real. The largest eigenvalue of
P is λ0 = 1 − o(1). If we have Pr[α = 1] > c, where c is some constant, then
there exists a constant ε > 0 such that any other eigenvalue λ′ of P satisfies
|λ′| < 1 − ε.

The fact that all the eigenvalues are real follows from the third property of
φ and the fact that all the eigenvalues of the symmetric matrix Pind are real.
λ0, that is, largest eigenvalue of P , is bounded by the minimal and the maximal
row sum of P (see Perron-Frobenius Theorem [22]), which are both 1 − o(1).
However the fact that all other eigenvalues are less than 1 − ε for some constant
ε requires a precise analysis of the characteristic polynomial of P . The details
are omitted for reasons of space.

Precise Runtime Analysis for Plateaus 125

5 Runtime Analysis

The Perron-Frobenius Theorem [22] states that for positive matrices the largest
eigenvalue has a one-dimensional eigenspace. Also this theorem asserts that both
left and right eigenvectors that correspond to the largest eigenvalue have all
components with the same sign and they do not have any zero component.
Let π∗ be such a left eigenvector with positive components for P and let it be
normalized in such way that ‖π∗‖1 = 1. We view π∗ as distribution over the
levels of the plateau and call it the conditional stationary distribution of P since
it does not change in one iteration under the condition that the algorithm does
not find the optimum. Also let u = (u0, . . . , uk−1) be the probability distribution
in the level space that is uniform on the whole plateau, that is,

ui =
(

n

k − i

)

/
k−1∑

j=0

(
n

k − j

)

=
(

n

k − i

)

N−1.

In the remainder, we need the following basis of the level space.

Lemma 2. There exists a basis of the level space {ei}k−1
i=0 with the following

properties.

1. π∗ = e0;
2. ei is an eigenvector of P for all i ∈ [0..k − 1];
3. all φ(ei) are orthogonal in the individual space.

The first two statements are satisfied by any basis of eigenvectors of P .
The third statement is not automatically satisfied if some eigenvalues have an
eigenspace of dimension greater than one, however the orthogonality can be
ensured via standard means from linear algebra. The details are omitted for
reasons of space.

Having the basis from Lemma 2 we can prove the following relation between
the vectors π∗ and u.

Lemma 3. For all j ∈ [0..k − 1], we have π∗
j = uj(1 ± O(1/

√
n)).

The proof is again omitted for reasons of space. From Lemmas 2 and 3, we
obtain our main result (with again the proof omitted for reasons of space).

Theorem 1. The expected runtime of the (1+1) EA using any unbiased muta-
tion operator with constant probability to flip exactly one bit on the plateau of
Plateauk function is N (Pr[1 ≤ α ≤ k])−1 (1 + o(1)).

6 Corollaries

We now exploit Theorem 1 to see how the choice of the mutation operator
influences the runtime. Since, by Theorem 1 the expected runtime depends only
on the probability to flip between 1 and k bits, this is an easy task. The proofs

126 D. Antipov and B. Doerr

of the theorems formulated in this section are omitted, since they trivially follow
from Theorem 1.

We first observe that for all the unbiased operators with constant probability
to flip exactly one bit, the expected optimization time is Θ(N). Hence all these
mutation operators lead to asymptotically the same runtime.

The best runtime, obviously, is obtained from mutation operators which flip
only between 1 and k bits. It implies that the uniformly most effective algorithm
for every plateau function is Random Local Search (RLS), as for this algorithm
Pr[1 ≤ α ≤ k] = Pr[α = 1] = 1.

We now analyze the runtime resulting from using standard-bit mutation as
in the classic (1 + 1) EA and from using the fast genetic algorithm, that is, the
(1 + 1) EA with a heavy-tailed mutation operator.

Recall that in standard-bit mutation, each bit is flipped independently with
probability γ/n, where γ usually is a constant. Recall further that the size of
the plateau is N =

∑k−1
i=0

(
n

n−k+i

)
= (1 ± o(1))nk/k!.

Theorem 2. Let γ be some arbitrary positive constant and k ≥ 2. Then the
(1 + 1) EA with mutation rate γ/n optimizes Plateauk in an expected number
of N/(e−γ

∑k
i=1

γi

i!)(1+o(1)) iterations. This time is asymptotically minimal for
γ = k

√
k! ≈ k/e.

The fast genetic algorithm recently proposed in [14] is simply a (1+1) EA that
uses the unbiased mutation operator such that Pr[α = i] = 0 for every i > n/2
and i = 0 and Pr[α = i] = i−β/Hn/2,β otherwise, where β is a parameter of
the algorithm that is greater than one and Hn/2,β :=

∑n/2
i=1 i−β is a generalized

harmonic number. The parameter β is considered to be a constant over the
problem size.

Theorem 3. The expected runtime of the fast genetic algorithm on Plateauk

is CknN , where Ckn can be bounded by constants, namely Ckn ∈[1
β−1−o(1)

Hk,β
,

1
β−1+1

Hk,β

]
.

7 Conclusion

In this paper we introduced a new method to analyze the runtime of evolutionary
algorithms on plateaus. This method does not depend on the particular mutation
operator used by the EA as long as there is a constant positive probability to flip
a single random bit. We performed a very precise analysis on the particular class
of plateau functions, but we are optimistic that similar methods can be applied
for the analysis of other plateaus. For example, Lemmas 1, 2 and 3 remain true
for those plateaus of the function XdivK (that is defined as
OneMax(x)/k� for
some parameter k) that are in a constant Hamming distance from the optimum
(and these are the plateaus which contribute most to the runtime). That said,
the proof of Lemma 1 would need to be adapted to these plateaus different from
the one of our plateau function. We are optimistic that this can be done, but
leave it as an open problem for now.

Precise Runtime Analysis for Plateaus 127

The inspiration for our analysis method comes from the observation that the
algorithm spends a relatively long time on the plateau. So regardless of the initial
distribution on the plateau, the distribution of the individual converges to the
conditional stationary distribution long before the algorithm leaves the plateau.
This indicates that our method is less suitable to analyze how evolutionary
algorithms leave plateaus which are easy to leave, but such plateaus usually
present not bigger problems in optimization.

On the positive side, our analysis method can also be used to give runtime
estimates for functions having less symmetric plateaus than our Plateau func-
tions. For example, assume that f : {0, 1}n → R is a function that agrees with
Plateauk on all search points x with Plateau(x) = OneMax(x), but has
only the restriction n−k ≤ f(x) ≤ n for the other search points. Such functions
can have plateaus of arbitrary shape inside the plateau of second-best fitness of
Plateauk. It is easy to see that the runtime T of the (1 + 1) EA with arbi-
trary unbiased mutation operator satisfies the same asymptotic upper bound
N/ Pr[α ∈ [1..k]](1 + o(1)) that we have proven for the Plateauk function.

Overall, we are optimistic that our main analysis method, switching between
the level chain and the individual chain, which might be the first attempt to
devise a general analysis method for EAs on plateaus, finds further applications.

References

1. Antipov, D., Doerr, B.: Precise runtime analysis for plateaus (2018). http://arxiv.
org/abs/1806.01331

2. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates
for the LeadingOnes problem. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 1–10. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15844-5 1

3. Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler,
E.: On the effects of adding objectives to plateau functions. IEEE Trans. Evol.
Comput. 13(3), 591–603 (2009)

4. Buzdalov, M., Doerr, B., Kever, M.: The unrestricted black-box complexity of jump
functions. Evol. Comput. 24(4), 719–744 (2016)

5. Dang, D.-C., et al.: Emergence of diversity and its benefits for crossover in genetic
algorithms. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G.,
Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 890–900. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45823-6 83

6. Dang, D.C., et al.: Escaping local optima with diversity mechanisms and crossover.
In: Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2016, pp. 645–652. ACM (2016)

7. Dang, D., Lehre, P.K.: Runtime analysis of non-elitist populations: from classical
optimisation to partial information. Algorithmica 75(3), 428–461 (2016)

8. Doerr, B., Doerr, C., Kötzing, T.: Unbiased black-box complexities of jump func-
tions. Evol. Comput. 23(4), 641–670 (2015)

9. Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating functions
and variable drift. In: Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2011, pp. 2083–2090. ACM (2011)

http://arxiv.org/abs/1806.01331
http://arxiv.org/abs/1806.01331
https://doi.org/10.1007/978-3-642-15844-5_1
https://doi.org/10.1007/978-3-319-45823-6_83

128 D. Antipov and B. Doerr

10. Doerr, B., Hebbinghaus, N., Neumann, F.: Speeding up evolutionary algorithms
through asymmetric mutation operators. Evol. Comput. 15, 401–410 (2007)

11. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters
even when optimizing monotonic functions. Evol. Comput. 21(1), 1–27 (2013)

12. Doerr, B., Jansen, T., Klein, C.: Comparing global and local mutations on bit
strings. In: Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2008, pp. 929–936. ACM (2008)

13. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica
64(4), 673–697 (2012)

14. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2017, pp. 777–784. ACM (2017). http://arxiv.org/abs/1703.03334

15. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

16. Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary mutations.
Evol. Comput. 7(2), 173–203 (1999)

17. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Artif. Intell. 127, 51–81 (2001)

18. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms–a proof that
crossover really can help. Algorithmica 34(1), 47–66 (2002)

19. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64(4),
623–642 (2012)

20. Lehre, P.K., Witt, C.: Concentrated hitting times of randomized search heuris-
tics with variable drift. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS,
vol. 8889, pp. 686–697. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13075-0 54

21. Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the runtime analysis of generalised
selection hyper-heuristics for pseudo-boolean optimisation. In: Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 849–856.
ACM (2017)

22. Meyer, C.D. (ed.): Matrix Analysis and Applied Linear Algebra. Society for Indus-
trial and Applied Mathematics, Philadelphia (2000)

23. Mironovich, V., Buzdalov, M.: Hard test generation for maximum flow algo-
rithms with the fast crossover-based evolutionary algorithm. In: Proceedings of the
Genetic and Evolutionary Computation Conference Companion, GECCO 2015, pp.
1229–1232. ACM (2015)

24. Sudholt, D.: A new method for lower bounds on the running time of evolutionary
algorithms. IEEE Trans. Evol. Comput. 17, 418–435 (2013)

25. Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Orejas, F., Spirakis,
P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 64–78. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5 6

26. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Comb. Probab. Comput. 22(2), 294–318 (2013)

http://arxiv.org/abs/1703.03334
https://doi.org/10.1007/978-3-319-13075-0_54
https://doi.org/10.1007/978-3-319-13075-0_54
https://doi.org/10.1007/3-540-48224-5_6

	Precise Runtime Analysis for Plateaus
	1 Introduction
	2 Problem Statement
	3 Preliminaries and Notation
	4 The Spectrum of the Transition Matrix
	5 Runtime Analysis
	6 Corollaries
	7 Conclusion
	References

