
Anne Auger · Carlos M. Fonseca
Nuno Lourenço · Penousal Machado
Luís Paquete · Darrell Whitley (Eds.)

 123

LN
CS

 1
11

02

15th International Conference
Coimbra, Portugal, September 8–12, 2018
Proceedings, Part II

Parallel Problem Solving
from Nature – PPSN XV

Lecture Notes in Computer Science 11102

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Anne Auger • Carlos M. Fonseca
Nuno Lourenço • Penousal Machado
Luís Paquete • Darrell Whitley (Eds.)

Parallel Problem Solving
from Nature – PPSN XV
15th International Conference
Coimbra, Portugal, September 8–12, 2018
Proceedings, Part II

123

Editors
Anne Auger
Inria Saclay
Palaiseau
France

Carlos M. Fonseca
University of Coimbra
Coimbra
Portugal

Nuno Lourenço
University of Coimbra
Coimbra
Portugal

Penousal Machado
University of Coimbra
Coimbra
Portugal

Luís Paquete
University of Coimbra
Coimbra
Portugal

Darrell Whitley
Colorado State University
Fort Collins, CO
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-99258-7 ISBN 978-3-319-99259-4 (eBook)
https://doi.org/10.1007/978-3-319-99259-4

Library of Congress Control Number: 2018951432

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

During September 8–12, 2018, researchers from all over the world gathered in
Coimbra, Portugal, for the 15th International Conference on Parallel Problem Solving
from Nature (PPSN XV). Far more than a European event, this biennial meeting has
established itself among the most important and highly respected international con-
ferences in nature-inspired computation worldwide since its first edition in Dortmund
in 1990. These two LNCS volumes contain the proceedings of the conference.

We received 205 submissions from 44 countries. An extensive review process
involved over 200 reviewers, who evaluated and reported on the manuscripts. All
papers were assigned to at least three Program Committee members for review. A total
of 745 review reports were received, or over 3.6 reviews on average per manuscript.
All review reports were analyzed in detail by the Program Chairs. Where there was
disagreement among reviewers, the Program Chairs also evaluated the papers them-
selves. In some cases, discussion among reviewers with conflicting reviews was pro-
moted with the aim of making as accurate and fair a decision as possible. Overall, 79
manuscripts were selected for presentation and inclusion in the proceedings, which
represents an acceptance rate just below 38.6%. This makes PPSN 2018 the most
selective PPSN conference of the past 12 years, and reinforces its position as a major,
high-quality evolutionary computation scientific event.

The meeting began with an extensive program of 23 tutorials and six workshops
covering a wide range of topics in evolutionary computation and related areas,
including machine learning, statistics, and mathematical programming. Tutorials
offered participants the opportunity to learn more about well-established, as well as
more recent, research, while workshops provided a friendly environment where new
ideas could be presented and discussed by participants with similar interests.

In addition, three distinguished invited speakers delivered keynote addresses at the
conference. Ahmed Elgammal (Rutgers University, USA), Francis Heylighen (Vrije
Universiteit Brussel, Belgium), and Kurt Mehlhorn (Max Planck Institute for Infor-
matics, Saarbrücken, Germany) spoke on advances in the area of artificial intelligence
and art, foundational concepts and mechanisms that underlie parallel problem solving
in nature, and models of computation by living organisms, respectively.

We thank the authors of all submitted manuscripts, and express our appreciation to
all the members of the Program Committee and external reviewers who provided
thorough evaluations of those submissions. We thank the keynote speakers, tutorial
speakers, and workshop organizers for significantly enriching the scientific program
with their participation. To all members of the Organizing Committee and local
organizers, we extend our deep gratitude for their dedication in preparing and running
the conference. Special thanks are due to the University of Coimbra for hosting the
conference and, in particular, to INESC Coimbra, CISUC, the Department of Infor-
matics Engineering, the Department of Mathematics, and the International Relations
Unit, for their invaluable contribution to the organization of this event, and to the

sponsoring institutions for their generosity. Finally, we wish to personally thank Carlos
Henggeler Antunes for his unconditional support.

September 2018 Anne Auger
Carlos M. Fonseca

Nuno Lourenço
Penousal Machado

Luís Paquete
Darrell Whitley

VI Preface

Organization

PPSN 2018 was organized by INESC Coimbra and CISUC, and was hosted by the
University of Coimbra, Portugal. Established in 1290, the University of Coimbra is the
oldest university in the country and among the oldest in the world. It is a UNESCO
World Heritage site since 2013.

Organizing Committee

General Chairs

Carlos M. Fonseca University of Coimbra, Portugal
Penousal Machado University of Coimbra, Portugal

Honorary Chair

Hans-Paul Schwefel TU Dortmund University, Germany

Program Chairs

Anne Auger Inria Saclay, France
Luís Paquete University of Coimbra, Portugal
Darrell Whitley Colorado State University, USA

Workshop Chairs

Robin C. Purshouse University of Sheffield, UK
Christine Zarges Aberystwyth University, UK

Tutorial Chairs

Michael T. M. Emmerich Leiden University, The Netherlands
Gisele L. Pappa Federal University of Minas Gerais, Brazil

Publications Chair

Nuno Lourenço University of Coimbra, Portugal

Local Organization Chair

Pedro Martins University of Coimbra, Portugal

Webmasters

Catarina Maçãs University of Coimbra, Portugal
Evgheni Polisciuc University of Coimbra, Portugal

Steering Committee

David W. Corne Heriot-Watt University Edinburgh, UK
Carlos Cotta Universidad de Malaga, Spain
Kenneth De Jong George Mason University, USA
Agoston E. Eiben Vrije Universiteit Amsterdam, The Netherlands
Bogdan Filipič Jožef Stefan Institute, Slovenia
Emma Hart Edinburgh Napier University, UK
Juan Julián Merelo Guervós Universidad de Granada, Spain
Günter Rudolph TU Dortmund University, Germany
Thomas P. Runarsson University of Iceland, Iceland
Robert Schaefer University of Krakow, Poland
Marc Schoenauer Inria, France
Xin Yao University of Birmingham, UK

Keynote Speakers

Ahmed Elgammal Rutgers University, USA
Francis Heylighen Vrije Universiteit Brussel, Belgium
Kurt Mehlhorn Max Planck Institute for Informatics, Germany

Program Committee

Youhei Akimoto Shinshu University, Japan
Richard Allmendinger University of Manchester, UK
Dirk Arnold Dalhousie University, Canada
Asma Atamna Inria, France
Anne Auger Inria, France
Dogan Aydin Dumlupinar University, Turkey
Jaume Bacardit Newcastle University, UK
Helio Barbosa Laboratório Nacional de Computação Científica, Brasil
Thomas Bartz-Beielstein Cologne University of Applied Sciences, Germany
Heder Bernardino Universidade Federal de Juiz de Fora, Brasil
Hans-Georg Beyer Vorarlberg University of Applied Sciences, Austria
Mauro Birattari Université Libre de Bruxelles, Belgium
Christian Blum Spanish National Research Council, Spain
Peter Bosman Centrum Wiskunde & Informatica, The Netherlands
Pascal Bouvry University of Luxembourg, Luxembourg
Juergen Branke University of Warwick, UK
Dimo Brockhoff Inria and Ecole Polytechnique, France
Will Browne Victoria University of Wellington, New Zealand
Alexander Brownlee University of Stirling, Scotland
Larry Bull University of the West of England, England
Arina Buzdalova ITMO University, Russia
Maxim Buzdalov ITMO University, Russia
Stefano Cagnoni University of Parma, Italy
David Cairns University of Stirling, Scotland

VIII Organization

Mauro Castelli Universidade Nova de Lisboa, Portugal
Wenxiang Chen Colorado State University, USA
Ying-Ping Chen National Chiao Tung University, Taiwan
Marco Chiarandini University of Southern Denmark, Denmark
Francisco Chicano University of Málaga, Spain
Miroslav Chlebik University of Sussex, UK
Sung-Bae Cho Yonsei University, South Korea
Alexandre Chotard Inria, France
Carlos Coello Coello CINVESTAV-IPN, Mexico
Dogan Corus University of Nottingham, UK
Ernesto Costa University of Coimbra, Portugal
Carlos Cotta University of Málaga, Spain
Kenneth De Jong George Mason University, USA
Antonio Della Cioppa University of Salerno, Italy
Bilel Derbel University of Lille, France
Benjamin Doerr École Polytechnique, France
Carola Doerr Sorbonne University, Paris, France
Marco Dorigo Université Libre de Bruxelles, Belgium
Johann Dréo Thales Research & Technology, France
Rafal Drezewski AGH University of Science and Technology, Poland
Michael Emmerich Leiden University, The Netherlands
Andries Engelbrecht University of Pretoria, South Africa
Anton Eremeev Omsk Branch of Sobolev Institute of Mathematics,

Russia
Katti Faceli Universidade Federal de São Carlos, Brasil
João Paulo Fernandes University of Coimbra, Portugal
Pedro Ferreira University of Lisbon, Portugal
José Rui Figueira University of Lisbon, Portugal
Bogdan Filipic Jožef Stefan Institute, Slovenia
Steffen Finck Vorarlberg University of Applied Sciences, Austria
Andreas Fischbach Cologne University of Applied Sciences, Germany
Peter Fleming University of Sheffield, UK
Carlos M. Fonseca University of Coimbra, Portugal
Martina Friese Cologne University of Applied Sciences, Germany
Marcus Gallagher University of Queensland, Australia
José García-Nieto University of Málaga, Spain
Antonio Gaspar-Cunha University of Minho, Portugal
Mario Giacobini University of Torino, Italy
Tobias Glasmachers Institut für Neuroinformatik, Germany
Roderich Gross University of Sheffield, UK
Andreia Guerreiro University of Coimbra, Portugal
Jussi Hakanen University of Jyväskylä, Finland
Hisashi Handa Kindai University, Japan
Julia Handl University of Manchester, UK
Jin-Kao Hao University of Angers, France
Emma Hart Napier University, UK
Nikolaus Hansen Inria, France

Organization IX

Verena Heidrich-Meisner Christian-Albrechts-Universität zu Kiel, Germany
Carlos Henggeler Antunes University of Coimbra, Portugal
Hisao Ishibuchi Southern University of Science and Technology, China
Christian Jacob University of Calgary, Canada
Domagoj Jakobovic University of Zagreb, Croatia
Thomas Jansen Aberystwyth University, Wales
Yaochu Jin University of Surrey, England
Laetitia Jourdan University of Lille, France
Bryant Julstrom St. Cloud State University, USA
George Karakostas McMaster University, Canada
Graham Kendall University of Nottingham, UK
Timo Kötzing Hasso-Plattner-Institut, Germany
Krzysztof Krawiec Poznan University of Technology, Poland
Martin Krejca Hasso-Plattner-Institut, Germany
Algirdas Lančinskas Vilnius University, Lithuania
William Langdon University College London, England
Frederic Lardeux University of Angers, France
Jörg Lässig University of Applied Sciences Zittau/Görlitz,

Germany
Per Kristian Lehre University of Birmingham, UK
Johannes Lengler ETH Zurich, Switzerland
Arnaud Liefooghe University of Lille, France
Andrei Lissovoi University of Sheffield, UK
Giosuè Lo Bosco Università di Palermo, Italy
Fernando Lobo University of Algarve, Portugal
Daniele Loiacono Politecnico di Milano, Italy
Manuel López-Ibáñez University of Manchester, UK
Nuno Lourenço University of Coimbra, Portugal
Jose A. Lozano University of the Basque Country, Spain
Gabriel Luque University of Málaga, Spain
Thibaut Lust Sorbonne University, France
Penousal Machado University of Coimbra, Portugal
Jacek Mańdziuk Warsaw University of Technology, Poland
Vittorio Maniezzo University of Bologna, Italy
Elena Marchiori Radboud University, The Netherlands
Giancarlo Mauri University of Milano-Bicocca, Italy
James McDermott University College Dublin, Republic of Ireland
Alexander Melkozerov Tomsk State University of Control Systems and

Radioelectronics, Russia
J. J. Merelo University of Granada, Spain
Marjan Mernik University of Maribor, Slovenia
Silja Meyer-Nieberg Universität der Bundeswehr München, Germany
Martin Middendorf University of Leipzig, Germany
Kaisa Miettinen University of Jyväskylä, Finland
Edmondo Minisci University of Strathclyde, Scotland
Gara Miranda University of La Laguna, Spain
Marco A. Montes De Oca “clypd, Inc.”, USA

X Organization

Sanaz Mostaghim Otto von Guericke University Magdeburg, Germany
Boris Naujoks Cologne University of Applied Sciences, Germany
Antonio J. Nebro University of Málaga, Spain
Ferrante Neri De Montfort University, England
Frank Neumann University of Adelaide, Australia
Phan Nguyen University of Birmingham, UK
Miguel Nicolau University College Dublin, Republic of Ireland
Kouhei Nishida Shinshu University, Japan
Michael O’ Neill University College Dublin, Republic of Ireland
Gabriela Ochoa University of Stirling, Scotland
Pietro S Oliveto University of Sheffield, UK
José Carlos Ortiz-Bayliss Tecnológico de Monterrey, Mexico
Ben Paechter Napier University, UK
Gregor Papa Jožef Stefan Institute, Slovenia
Gisele Pappa Universidade Federal de Minas Gerais, Brasil
Luis Paquete University of Coimbra, Portugal
Andrew J. Parkes University of Nottingham, UK
Margarida Pato Universidade de Lisboa, Portugal
Mario Pavone University of Catania, Italy
David Pelta University of Granada, Spain
Martin Pilat Charles University in Prague, Czech Republic
Petr Pošík Czech Technical University in Prague, Czech Republic
Mike Preuss University of Münster, Germany
Robin Purshouse University of Sheffield, UK
Günther Raidl Vienna University of Technology, Austria
William Rand North Carolina State University, USA
Khaled Rasheed University of Georgia, USA
Tapabrata Ray University of New South Wales, Australia
Eduardo Rodriguez-Tello CINVESTAV-Tamaulipas, Mexico
Günter Rudolph TU Dortmund University, Germany
Andrea Roli University of Bologna, Italy
Agostinho Rosa University of Lisbon, Portugal
Jonathan Rowe University of Birmingham, UK
Thomas Runarsson University of Iceland, Iceland
Thomas A. Runkler Siemens Corporate Technology, Germany
Conor Ryan University of Limerick, Republic of Ireland
Frédéric Saubion University of Angers, France
Robert Schaefer AGH University of Science and Technology, Poland
Andrea Schaerf University of Udine, Italy
Manuel Schmitt ALYN Woldenberg Family Hospital, Israel
Marc Schoenauer Inria, France
Oliver Schuetze CINVESTAV-IPN, Mexico
Eduardo Segredo Napier University, UK
Martin Serpell University of the West of England, England
Roberto Serra University of Modena and Reggio Emilia, Italy
Marc Sevaux Université de Bretagne-Sud, France
Shinichi Shirakawa Yokohama National University, Japan

Organization XI

Kevin Sim Napier University, UK
Moshe Sipper Ben-Gurion University of the Negev, Israel
Jim Smith University of the West of England, England
Christine Solnon Institut National des Sciences Appliquées de Lyon,

France
Sebastian Stich EPFL, Switzerland
Catalin Stoean University of Craiova, Romania
Jörg Stork Cologne University of Applied Sciences, Germany
Thomas Stützle Université Libre de Bruxelles, Belgium
Dirk Sudholt University of Sheffield, UK
Andrew Sutton University of Minnesota Duluth, USA
Jerry Swan University of York, UK
Ricardo H. C. Takahashi Universidade Federal de Minas Gerais, Brasil
El-Ghazali Talbi University of Lille, France
Daniel Tauritz Missouri University of Science and Technology, USA
Jorge Tavares Microsoft, Germany
Hugo Terashima Tecnológico de Monterrey, Mexico
German Terrazas Angulo University of Nottingham, UK
Andrea Tettamanzi University Nice Sophia Antipolis, France
Lothar Thiele ETH Zurich, Switzerland
Dirk Thierens Utrecht University, The Netherlands
Renato Tinós University of São Paulo, Brasil
Alberto Tonda Institut National de la Recherche Agronomique, France
Heike Trautmann University of Münster, Germany
Leonardo Trujillo Instituto Tecnológico de TIjuana, Mexico
Tea Tusar Jožef Stefan Institute, Slovenia
Nadarajen Veerapen University of Stirling, UK
Sébastien Verel Université du Littoral Côte d’Opale, France
Markus Wagner University of Adelaide, Australia
Elizabeth Wanner Aston University, UK
Carsten Witt Technical University of Denmark, Denmark
Man Leung Wong Lingnan University, Hong Kong
John Woodward Queen Mary University of London, UK
Ning Xiong Mälardalen University, Sweden
Shengxiang Yang De Montfort University, UK
Gary Yen Oklahoma State University, USA
Martin Zaefferer Cologne University of Applied Sciences, Germany
Ales Zamuda University of Maribor, Slovenia
Christine Zarges Aberystwyth University, UK

Additional Reviewers

Matthew Doyle
Yue Gu
Stefano Mauceri
Aníl Özdemir
Isaac Vandermuelen

XII Organization

Contents – Part II

Runtime Analysis and Approximation Results

A General Dichotomy of Evolutionary Algorithms on Monotone Functions . . . 3
Johannes Lengler

Artificial Immune Systems Can Find Arbitrarily Good Approximations
for the NP-Hard Partition Problem . 16

Dogan Corus, Pietro S. Oliveto, and Donya Yazdani

A Simple Proof for the Usefulness of Crossover in Black-Box Optimization. . . 29
Eduardo Carvalho Pinto and Carola Doerr

Destructiveness of Lexicographic Parsimony Pressure and Alleviation
by a Concatenation Crossover in Genetic Programming 42

Timo Kötzing, J. A. Gregor Lagodzinski, Johannes Lengler,
and Anna Melnichenko

Exploration and Exploitation Without Mutation: Solving the Jump
Function in HðnÞ Time . 55

Darrell Whitley, Swetha Varadarajan, Rachel Hirsch,
and Anirban Mukhopadhyay

Fast Artificial Immune Systems . 67
Dogan Corus, Pietro S. Oliveto, and Donya Yazdani

First-Hitting Times for Finite State Spaces . 79
Timo Kötzing and Martin S. Krejca

First-Hitting Times Under Additive Drift . 92
Timo Kötzing and Martin S. Krejca

Level-Based Analysis of the Population-Based Incremental
Learning Algorithm . 105

Per Kristian Lehre and Phan Trung Hai Nguyen

Precise Runtime Analysis for Plateaus . 117
Denis Antipov and Benjamin Doerr

Ring Migration Topology Helps Bypassing Local Optima 129
Clemens Frahnow and Timo Kötzing

Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem
with Favorably Correlated Weights . 141

Frank Neumann and Andrew M. Sutton

Theoretical Analysis of Lexicase Selection in Multi-objective Optimization. . . . 153
Thomas Jansen and Christine Zarges

Towards a Running Time Analysis of the (1+1)-EA for OneMax and
LeadingOnes Under General Bit-Wise Noise . 165

Chao Bian, Chao Qian, and Ke Tang

Fitness Landscape Modeling and Analysis

A Surrogate Model Based on Walsh Decomposition
for Pseudo-Boolean Functions . 181

Sébastien Verel, Bilel Derbel, Arnaud Liefooghe, Hernán Aguirre,
and Kiyoshi Tanaka

Bridging Elementary Landscapes and a Geometric Theory
of Evolutionary Algorithms: First Steps . 194

Marcos Diez García and Alberto Moraglio

Empirical Analysis of Diversity-Preserving Mechanisms on Example
Landscapes for Multimodal Optimisation . 207

Edgar Covantes Osuna and Dirk Sudholt

Linear Combination of Distance Measures for Surrogate Models
in Genetic Programming . 220

Martin Zaefferer, Jörg Stork, Oliver Flasch,
and Thomas Bartz-Beielstein

On Pareto Local Optimal Solutions Networks . 232
Arnaud Liefooghe, Bilel Derbel, Sébastien Verel, Manuel López-Ibáñez,
Hernán Aguirre, and Kiyoshi Tanaka

Perturbation Strength and the Global Structure of QAP Fitness Landscapes . . . 245
Gabriela Ochoa and Sebastian Herrmann

Sampling Local Optima Networks of Large Combinatorial Search Spaces:
The QAP Case . 257

Sébastien Verel, Fabio Daolio, Gabriela Ochoa, and Marco Tomassini

Algorithm Configuration, Selection, and Benchmarking

Algorithm Configuration Landscapes: More Benign Than Expected? 271
Yasha Pushak and Holger Hoos

XIV Contents – Part II

A Model-Based Framework for Black-Box Problem Comparison
Using Gaussian Processes . 284

Sobia Saleem, Marcus Gallagher, and Ian Wood

A Suite of Computationally Expensive Shape Optimisation Problems
Using Computational Fluid Dynamics . 296

Steven J. Daniels, Alma A. M. Rahat, Richard M. Everson,
Gavin R. Tabor, and Jonathan E. Fieldsend

Automated Selection and Configuration of Multi-Label Classification
Algorithms with Grammar-Based Genetic Programming. 308

Alex G. C. de Sá, Alex A. Freitas, and Gisele L. Pappa

Performance Assessment of Recursive Probability Matching
for Adaptive Operator Selection in Differential Evolution. 321

Mudita Sharma, Manuel López-Ibáñez, and Dimitar Kazakov

Program Trace Optimization . 334
Alberto Moraglio and James McDermott

Sampling Heuristics for Multi-objective Dynamic Job Shop Scheduling
Using Island Based Parallel Genetic Programming 347

Deepak Karunakaran, Yi Mei, Gang Chen, and Mengjie Zhang

Sensitivity of Parameter Control Mechanisms with Respect
to Their Initialization . 360

Carola Doerr and Markus Wagner

Tailoring Instances of the 1D Bin Packing Problem for Assessing
Strengths and Weaknesses of Its Solvers . 373

Ivan Amaya, José Carlos Ortiz-Bayliss,
Santiago Enrique Conant-Pablos, Hugo Terashima-Marín,
and Carlos A. Coello Coello

Machine Learning and Evolutionary Algorithms

Adaptive Advantage of Learning Strategies: A Study Through
Dynamic Landscape . 387

Nam Le, Michael O’Neill, and Anthony Brabazon

A First Analysis of Kernels for Kriging-Based Optimization
in Hierarchical Search Spaces . 399

Martin Zaefferer and Daniel Horn

Challenges in High-Dimensional Reinforcement Learning
with Evolution Strategies . 411

Nils Müller and Tobias Glasmachers

Contents – Part II XV

Lamarckian Evolution of Convolutional Neural Networks 424
Jonas Prellberg and Oliver Kramer

Learning Bayesian Networks with Algebraic Differential Evolution 436
Marco Baioletti, Alfredo Milani, and Valentino Santucci

Optimal Neuron Selection and Generalization: NK Ensemble
Neural Networks . 449

Darrell Whitley, Renato Tinós, and Francisco Chicano

What Are the Limits of Evolutionary Induction of Decision Trees? 461
Krzysztof Jurczuk, Daniel Reska, and Marek Kretowski

Tutorials and Workshops at PPSN 2018

Tutorials at PPSN 2018 . 477
Gisele Lobo Pappa, Michael T. M. Emmerich, Ana Bazzan,
Will Browne, Kalyanmoy Deb, Carola Doerr, Marko Ðurasević,
Michael G. Epitropakis, Saemundur O. Haraldsson,
Domagoj Jakobovic, Pascal Kerschke, Krzysztof Krawiec,
Per Kristian Lehre, Xiaodong Li, Andrei Lissovoi, Pekka Malo,
Luis Martí, Yi Mei, Juan J. Merelo, Julian F. Miller, Alberto Moraglio,
Antonio J. Nebro, Su Nguyen, Gabriela Ochoa, Pietro Oliveto,
Stjepan Picek, Nelishia Pillay, Mike Preuss, Marc Schoenauer,
Roman Senkerik, Ankur Sinha, Ofer Shir, Dirk Sudholt, Darrell Whitley,
Mark Wineberg, John Woodward, and Mengjie Zhang

Workshops at PPSN 2018 . 490
Robin Purshouse, Christine Zarges, Sylvain Cussat-Blanc,
Michael G. Epitropakis, Marcus Gallagher, Thomas Jansen,
Pascal Kerschke, Xiaodong Li, Fernando G. Lobo, Julian Miller,
Pietro S. Oliveto, Mike Preuss, Giovanni Squillero, Alberto Tonda,
Markus Wagner, Thomas Weise, Dennis Wilson, Borys Wróbel,
and Aleš Zamuda

Author Index . 499

XVI Contents – Part II

Contents – Part I

Numerical Optimization

A Comparative Study of Large-Scale Variants of CMA-ES 3
Konstantinos Varelas, Anne Auger, Dimo Brockhoff, Nikolaus Hansen,
Ouassim Ait ElHara, Yann Semet, Rami Kassab,
and Frédéric Barbaresco

Design of a Surrogate Model Assisted (1 + 1)-ES . 16
Arash Kayhani and Dirk V. Arnold

Generalized Self-adapting Particle Swarm Optimization Algorithm 29
Mateusz Uliński, Adam Żychowski, Michał Okulewicz,
Mateusz Zaborski, and Hubert Kordulewski

PSO-Based Search Rules for Aerial Swarms Against Unexplored Vector
Fields via Genetic Programming . 41

Palina Bartashevich, Illya Bakurov, Sanaz Mostaghim,
and Leonardo Vanneschi

Towards an Adaptive CMA-ES Configurator . 54
Sander van Rijn, Carola Doerr, and Thomas Bäck

Combinatorial Optimization

A Probabilistic Tree-Based Representation for Non-convex Minimum
Cost Flow Problems . 69

Behrooz Ghasemishabankareh, Melih Ozlen, Frank Neumann,
and Xiaodong Li

Comparative Study of Different Memetic Algorithm Configurations
for the Cyclic Bandwidth Sum Problem . 82

Eduardo Rodriguez-Tello, Valentina Narvaez-Teran,
and Fréderic Lardeux

Efficient Recombination in the Lin-Kernighan-Helsgaun Traveling
Salesman Heuristic . 95

Renato Tinós, Keld Helsgaun, and Darrell Whitley

Escherization with a Distance Function Focusing on the Similarity
of Local Structure . 108

Yuichi Nagata

Evolutionary Search of Binary Orthogonal Arrays . 121
Luca Mariot, Stjepan Picek, Domagoj Jakobovic, and Alberto Leporati

Heavy-Tailed Mutation Operators in Single-Objective
Combinatorial Optimization . 134

Tobias Friedrich, Andreas Göbel, Francesco Quinzan,
and Markus Wagner

Heuristics in Permutation GOMEA for Solving the Permutation Flowshop
Scheduling Problem. 146

G. H. Aalvanger, N. H. Luong, P. A. N. Bosman, and D. Thierens

On the Performance of Baseline Evolutionary Algorithms on the Dynamic
Knapsack Problem . 158

Vahid Roostapour, Aneta Neumann, and Frank Neumann

On the Synthesis of Perturbative Heuristics for Multiple Combinatorial
Optimisation Domains . 170

Christopher Stone, Emma Hart, and Ben Paechter

Genetic Programming

EDDA-V2 – An Improvement of the Evolutionary Demes
Despeciation Algorithm . 185

Illya Bakurov, Leonardo Vanneschi, Mauro Castelli,
and Francesco Fontanella

Extending Program Synthesis Grammars for Grammar-Guided
Genetic Programming . 197

Stefan Forstenlechner, David Fagan, Miguel Nicolau,
and Michael O’Neill

Filtering Outliers in One Step with Genetic Programming 209
Uriel López, Leonardo Trujillo, and Pierrick Legrand

GOMGE: Gene-Pool Optimal Mixing on Grammatical Evolution 223
Eric Medvet, Alberto Bartoli, Andrea De Lorenzo, and Fabiano Tarlao

Self-adaptive Crossover in Genetic Programming:
The Case of the Tartarus Problem . 236

Thomas D. Griffiths and Anikó Ekárt

XVIII Contents – Part I

Multi-objective Optimization

A Decomposition-Based Evolutionary Algorithm for Multi-modal
Multi-objective Optimization . 249

Ryoji Tanabe and Hisao Ishibuchi

A Double-Niched Evolutionary Algorithm and Its Behavior
on Polygon-Based Problems . 262

Yiping Liu, Hisao Ishibuchi, Yusuke Nojima, Naoki Masuyama,
and Ke Shang

Artificial Decision Maker Driven by PSO: An Approach for Testing
Reference Point Based Interactive Methods . 274

Cristóbal Barba-González, Vesa Ojalehto, José García-Nieto,
Antonio J. Nebro, Kaisa Miettinen, and José F. Aldana-Montes

A Simple Indicator Based Evolutionary Algorithm for Set-Based
Minmax Robustness . 286

Yue Zhou-Kangas and Kaisa Miettinen

Extending the Speed-Constrained Multi-objective PSO (SMPSO)
with Reference Point Based Preference Articulation. 298

Antonio J. Nebro, Juan J. Durillo, José García-Nieto,
Cristóbal Barba-Gonzaléz, Javier Del Ser, Carlos A. Coello Coello,
Antonio Benítez-Hidalgo, and José F. Aldana-Montes

Improving 1by1EA to Handle Various Shapes of Pareto Fronts. 311
Yiping Liu, Hisao Ishibuchi, Yusuke Nojima, Naoki Masuyama,
and Ke Shang

New Initialisation Techniques for Multi-objective Local Search:
Application to the Bi-objective Permutation Flowshop 323

Aymeric Blot, Manuel López-Ibáñez, Marie-Éléonore Kessaci,
and Laetitia Jourdan

Towards a More General Many-objective Evolutionary Optimizer 335
Jesús Guillermo Falcón-Cardona and Carlos A. Coello Coello

Towards Large-Scale Multiobjective Optimisation with a Hybrid
Algorithm for Non-dominated Sorting . 347

Margarita Markina and Maxim Buzdalov

Tree-Structured Decomposition and Adaptation in MOEA/D 359
Hanwei Zhang and Aimin Zhou

Use of Reference Point Sets in a Decomposition-Based Multi-Objective
Evolutionary Algorithm . 372

Edgar Manoatl Lopez and Carlos A. Coello Coello

Contents – Part I XIX

Use of Two Reference Points in Hypervolume-Based Evolutionary
Multiobjective Optimization Algorithms. 384

Hisao Ishibuchi, Ryo Imada, Naoki Masuyama, and Yusuke Nojima

Parallel and Distributed Frameworks

Introducing an Event-Based Architecture for Concurrent and Distributed
Evolutionary Algorithms . 399

Juan J. Merelo Guervós and J. Mario García-Valdez

Analyzing Resilience to Computational Glitches in Island-Based
Evolutionary Algorithms . 411

Rafael Nogueras and Carlos Cotta

Spark Clustering Computing Platform Based Parallel Particle Swarm
Optimizers for Computationally Expensive Global Optimization 424

Qiqi Duan, Lijun Sun, and Yuhui Shi

Weaving of Metaheuristics with Cooperative Parallelism 436
Jheisson López, Danny Múnera, Daniel Diaz, and Salvador Abreu

Applications

Conditional Preference Learning for Personalized and Context-Aware
Journey Planning . 451

Mohammad Haqqani, Homayoon Ashrafzadeh, Xiaodong Li,
and Xinghuo Yu

Critical Fractile Optimization Method Using Truncated Halton Sequence
with Application to SAW Filter Design . 464

Kiyoharu Tagawa

Directed Locomotion for Modular Robots with Evolvable Morphologies 476
Gongjin Lan, Milan Jelisavcic, Diederik M. Roijers, Evert Haasdijk,
and A. E. Eiben

Optimisation and Illumination of a Real-World Workforce Scheduling
and Routing Application (WSRP) via Map-Elites . 488

Neil Urquhart and Emma Hart

Prototype Discovery Using Quality-Diversity . 500
Alexander Hagg, Alexander Asteroth, and Thomas Bäck

Sparse Incomplete LU-Decomposition for Wave Farm Designs Under
Realistic Conditions. 512

Dídac Rodríguez Arbonès, Nataliia Y. Sergiienko, Boyin Ding,
Oswin Krause, Christian Igel, and Markus Wagner

XX Contents – Part I

Understanding Climate-Vegetation Interactions in Global Rainforests
Through a GP-Tree Analysis . 525

Anuradha Kodali, Marcin Szubert, Kamalika Das, Sangram Ganguly,
and Joshua Bongard

Author Index . 537

Contents – Part I XXI

Runtime Analysis and Approximation
Results

A General Dichotomy of Evolutionary
Algorithms on Monotone Functions

Johannes Lengler(B)

Department of Computer Science, ETH Zürich, Zürich, Switzerland
johannes.lengler@inf.ethz.ch

Abstract. It is known that the (1 + 1)-EA with mutation rate c/n
optimises every monotone function efficiently if c < 1, and needs expo-
nential time on some monotone functions (HotTopic functions) if
c > c0 = 2.13692... We study the same question for a large variety
of algorithms, particularly for (1 + λ)-EA, (μ + 1)-EA, (μ + 1)-GA,
their fast counterparts like fast (1 + 1)-EA, and for (1 + (λ, λ))-GA.
We prove that all considered mutation-based algorithms show a similar
dichotomy for HotTopic functions, or even for all monotone functions.
For the (1 + (λ, λ))-GA, this dichotomy is in the parameter cγ, which
is the expected number of bit flips in an individual after mutation and
crossover, neglecting selection. For the fast algorithms, the dichotomy is
in m2/m1, where m1 and m2 are the first and second falling moment of
the number of bit flips. Surprisingly, the range of efficient parameters is
not affected by either population size μ nor by the offspring population
size λ.

The picture changes completely if crossover is allowed. The genetic
algorithms (μ + 1)-GA and (μ + 1)-fGA are efficient for arbitrary muta-
tions strengths if μ is large enough.

1 Introduction

For evolutionary algorithms (EAs), choosing a good mutation strength is a deli-
cate matter that is subject to conflicting goals. For example, consider a pseudo-
Boolean fitness function f : {0, 1}n → R and standard bit mutation, i.e., all bits
are flipped independently. On the one hand, if the mutation strength is too low,
then progress is also slow, and the algorithm will be susceptible to local optima.
On the other hand, if the mutation rate is too high and the parent is already close
to a global optimum, then typically the offspring, even if it has a “good” muta-
tion in it, will also have a large number of detrimental mutations. A well-known
example of this tradeoff are linear functions (e.g., OneMax), for which there is
an optimal mutation rate 1/n [16]. This rate minimises the expected runtime,
i.e., the expected number of function evaluations before the optimum is hit. Any
deviation from this mutation rate to either direction decreases performance.

Extended Abstract. All proofs and further details are available on arxiv [12].

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 3–15, 2018.
https://doi.org/10.1007/978-3-319-99259-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_1&domain=pdf

4 J. Lengler

A different, more extreme example are strictly monotone pseudo-Boolean
functions.1 A function f : {0, 1}n → R is (strictly) monotone if for every x, y ∈
{0, 1}n with x �= y and such that xi ≥ yi for all 1 ≤ i ≤ n it holds f(x) > f(y).
In particular, every monotone function has a unique global optimum at (1 . . . 1).
Moreover, every such function is efficiently optimised by random local search
(RLS), which is the (1+1) algorithm that flips in each round exactly one random
bit. From any starting point, RLS finds the optimum after at most n improving
steps, and by a coupon collector argument it will optimise any monotone function
in time O(n log n). Thus, monotone functions might be regarded as trivial to
optimise, and we might expect every standard EA to solve them efficiently.

However, this is not so. Doerr et al. showed [7,8] that even the (1 + 1)-EA,
which flips each bit independently with mutation rate c/n, may have problems.
More precisely, for small mutation rate, c < 1, the (1 + 1)-EA has expected
runtime O(n log n), as desired, but for large mutation rate, c > 16, there are
monotone functions for which the (1+1)-EA needs exponential time. Lengler and
Steger [13] gave a simpler construction of such “hard” monotone functions, which
we call HotTopic (they didn’t provide a name), and which yield exponential
runtime for c > c0 := 2.13692... The basic idea of this construction is that at
every point in time there is some subset of bits which form a“hot topic”, i.e.,
the algorithm considers them much more important than the other bits. An
algorithm with a large mutation rate that focuses too much on the current hot
topic tends to deteriorate the quality of the remaining bits. If the hot topic
changes often, then the algorithm stagnates.

Since both low and high mutation rates have their disadvantages, many dif-
ferent strategies have been developed to gain the best of two worlds. In this paper
we pick a collection of either traditional or particularly promising methods, and
analyse whether they can overcome the detrimental effect of the HotTopic
functions for larger mutation rates. In particular, we consider (for constant μ, λ)
the classical (1 + λ)-EA, (μ + 1)-EA, and (μ + 1)-GA, the (1 + (λ, λ))-GA by
Doerr et al. [6], and the recently proposed fast (1 + λ)-EA, fast (μ + 1)-EA,
and fast (μ + 1)-GA [9], which we abbreviate by (1 + 1)-fEA, (1 + λ)-fEA and
(μ + 1)-fGA, respectively. Surprisingly, for mutation-based algorithms neither μ
nor λ have any effect on the results. While we do obtain a fine-grained landscape
of results (see below), one major trend is prevailing: crossover helps!

Results. In this section we collect our results for the different algorithms. Note
that, unless explicitly otherwise stated, we always assume that the parameters
μ, λ, c, γ of the algorithms are constant.

Classical EAs. For the classical evolutionary algorithm (1 + λ)-EA, we show
a dichotomy: if the mutation parameter c is sufficiently small, then the algo-
rithms optimise all monotone functions in time O(n log n), while for large c the
algorithm needs exponential time on some HotTopic functions. The interesting
question is: how does the threshold for c depend on the parameters λ? It may

1 We will be sloppy and drop the term “strictly” outside of theorems, but throughout
the paper we always mean strictly monotone functions.

A General Dichotomy of Evolutionary Algorithms on Monotone Functions 5

seem that a large λ bears some similarity with an increased mutation rate. After
all, the total number of mutations in each generation is increased by a factor
of λ. Thus, we might expect that the (1 + λ)-EA has difficulties with monotone
functions for even smaller values of c. However, this is not so. The bounds on the
mutation rate, c < 1 and c > c0, do not depend on λ. In fact, for the HotTopic
functions we can show that this is tight: if c < c0, then the (1 + λ)-EA and
the (μ + 1)-GA optimise all HotTopic functions in time O(n log n), while for
c > c0 it is exponentially slow on some HotTopic instances. The same result
on HotTopic holds for the (μ + 1)-EA. In particular, the threshold on c is
also independent of μ. For the (μ + 1)-EA, we could not show an upper runtime
bound for all monotone functions in the case c < 1, so currently we can not
exclude that the situation might get even worse for larger μ, as there may still
be other monotone functions which are hard for the (μ + 1)-EA with c < 1.

(μ + 1)-GA. It has been observed before that some algorithms may be sped
up by crossover. In particular, Sudholt [15] showed that the (μ + 1)-GA is by a
constant factor faster than the (μ+1)-EA on OneMax. For monotone functions
we also observe a change, but in extremis. We show that for the HotTopic
functions crossover extends the range of mutation rate arbitrarily. For every
c > 0, if μ is a sufficiently large constant, then the (μ+1)-GA finds the optimum
of HotTopic in time O(n log n). At present, there are no monotone functions
known on which the (μ + 1)-GA with arbitrary c and large μ = μ(c) is slow.
Thus it remains an intriguing open question whether the (μ + 1)-GA with large
μ is fast on every monotone function.

(1+(λ, λ))-GA. This algorithm creates λ offspring, and uses the best of them
to perform λ biased crossovers with the parent, see Sect. 2. The best crossover
offspring is then compared with the parent. This algorithm has been derived by
Doerr et al. [5,6] from a theoretical understanding of so-called black-box complex-
ity, and has been intensively studied thereafter [1–4]. Most remarkably, it gives
an asymptotic improvement on the runtime of the most intensively studied test
function OneMax, on which it has runtime roughly n

√
log n for static settings

(up to log log n terms), and linear runtime O(n) for dynamic parameter settings.
These runtimes are achieved with a non-constant λ = λ(n). The (1+ (λ, λ))-GA
is arguably the only known natural unbiased evolutionary algorithm that can
optimise OneMax faster than Θ(n log n).

The algorithm comes with three parameters, the offspring population size λ,
the mutation rate c/n by which the offspring are created, and a crossover bias
γ, which is the probability to take the offspring’s genes in the crossover. Again
we find a dichotomy between weak and strong mutation, but this time not in c,
but rather in the product cγ. In [4] it is suggested to choose c, γ in such a way that
cγ = 1. Note that this makes sense, because cγ is (neglecting possible biases by the
selection process) the expected number of mutations in the crossover child. Thus
it is plausible that it plays a similar role as the parameter c in classical algorithms.
Indeed we find that for cγ < 1 the runtime is small for every monotone function,
while for cγ > c0 it is exponential on HotTopic functions. As before, the bound

6 J. Lengler

is tight for HotTopic, i.e. for cγ < c0 the (1 + (λ, λ))-GA needs time O(n log n)
to optimise HotTopic.

Notably, the runtime benefits on OneMax carry over, at least to the Hot-
Topic function. Since the benefits on OneMax in previous work have been
achieved for non-constant parameter choices, we relax our assumption on constant
parameters for the (1 + (λ, λ))-GA. In particular, we show that for the optimal
static parameter and adaptive parameter settings in [9], the algorithm achieves
the same asymptotic runtime on HotTopic as on OneMax, in particular run-
time O(n) in the adaptive setup.

Unfortunately, it seems unlikely that the runtimes of o(n log n) for One-
Max carry over to arbitrary monotone functions, because they are achieved by
increasing c and λ with n (although cγ is left constant). For OneMax, if there
is a zero-bit that is flipped in one of the mutations, then this mutation is always
selected for crossovers. In the most relevant regime, where the expected number
of flipped zero-bits in any mutation is small (say, at most one), the probability
of being selected increases by a factor of Θ(λ) (from 1/λ to Θ(1)) if a zero-bit
is flipped. For monotone functions the probability to be selected does increase
with the number of flipped zero-bits. However, there is no apparent reason that
it should increase by a factor of Θ(λ), or by any significant factor at all.

Fast (1+1)-EA, Fast (1+λ)-EA, Fast (μ+1)-EA. These algorithms, which
we abbreviate by (1 + 1)-fEA, (1 + λ)-fEA, and (μ + 1)-fEA have recently been
proposed by Doerr et al. [9], and they have immediately attracted considerable
attention (e.g, [14]). The idea is to replace the standard bit mutation, in which
each bit is flipped independently, by a heavy-tailed distribution D. That is, in
each round we draw a number s from some heavy-tailed distribution (for exam-
ple, a power-law distribution with Pr[s = k] ∼ k−κ for some κ > 1, also called
Zipf distribution). Then the mutation is generated from the parent by flipping
exactly s bits. In this way, most mutations are generated by flipping only a small
number of bits, but there is a substantially increased probability to flip many
bits. This approach has given some hope to unify the best of the two worlds: of
small mutation rate and of large mutation rate.

For monotone functions, our results are rather discouraging. This is not com-
pletely unexpected since the algorithms build on the very idea of increasing the
probability of large mutation rates. We show a dichotomy for the (1 + 1)-fEA
with respect to m2/m1, where m1 := E[s] and m2 := E[s(s−1)] are the first and
second falling moment of the distribution D, although the results are subject
to some technical conditions.2 As before, if m2/m1 < 1, then the runtime is
O(n log n) for all monotone functions. On the other hand, if m2/m1 > c0 and
additionally p1 := Pr[D = 1] is sufficiently small, then the runtime on some
HotTopic instances is exponential. As for the other functions, we get a sharp
threshold for the parameter regime that is efficient on HotTopic, so we can
decide for each distribution whether it leads to fast or to exponential runtimes
on HotTopic. Due to a correction term related to p1 (Eq. (5) on page 9), it
2 Note that a heavy tail generally increases m2 much stronger than m1, so it increases

the quotient m2/m1.

A General Dichotomy of Evolutionary Algorithms on Monotone Functions 7

is possible to construct heavy-tail distributions which are efficient on all Hot-
Topic functions, but they must be chosen with great care. For example, no
power-law distribution with exponent κ ∈ (1, 2) is efficient, which includes the
choice κ = 1.5 that is used for experiments in [9,14]. Also, no distribution with
p1 < 4

9 Pr[D = 3] is efficient on HotTopic. In general, our findings contrast the
results in [9], where larger tails (smaller κ) lead to faster runtimes.

As before, without crossover larger values of λ and μ do not seem to have any
effect. For the (1 + λ)-fEA and (μ + 1)-fEA, we show exactly the same results
as for the (1 + 1)-fEA, except that we could not show runtime bounds for all
monotone functions if m2/m1 < 1. Rather, we only show them for HotTopic.
Thus it is still possible that larger values of λ, μ make things even worse.

Fast (μ + 1)-GA. As for the classical algorithms, crossover tremendously
improves the situation. For every distribution D with Pr[D = 1] = Ω(1), if
μ is a sufficiently large constant, then the (μ + 1)-fGA optimises HotTopic in
time O(n log n). As for the (μ + 1)-GA, it is an open question whether the same
result carries over to all monotone functions.

Further Results. For all algorithms, the regime of exponential runtime does not
just mean that it is hard to find the optimum, but rather the algorithms do not
even come close. More precisely, in all these cases there is an ε > 0 (depending
only on c or on the other dichotomy parameters) such that the probability that
any of the EAs or GAs finds a search point with at least (1 − ε)n correct bits
within a subexponential time is exponentially small as n → ∞. The size of ε can
be quite considerable if the parameter c is much larger than c0. For example,
simulations suggest for the (1 + 1)-EA that ε ≈ 0.15 for c = 4. On the other
hand, starting close to the optimum does not help either: for every ε > 0 there
are monotone function such that if the EAs or GAs are initialised with random
search points with εn incorrect bits, then still the runtime is exponential.

Summary. It appears that increasing the number of offspring λ or the popu-
lation size μ does not help at all to overcome the detrimental effects of large
mutation rate in evolutionary algorithms. All EAs are highly vulnerable even to
a very moderate increase of the mutation rate. Using heavy tails as in the fEAs
seems to make things even worse, although the picture gets more complicated.
On the other hand, using crossover can remedy the effect of large mutation rates,
and can extend the range of good mutation rates arbitrarily.

Intuition onHotTopic.We conclude the introduction with an intuition why the
HotTopic functions are hard to optimise for large mutation rates. Note that a
monotone function, by its very definition, has a local “gradient” that always points
into the same corner of the hypercube, in the sense that for each bit individually,
in all situations we prefer a one-bit over a zero-bit. The construction by Lengler
and Steger [13] distorts the gradient by assigning different positive weights to the
components. Such a distortion cannot alter the direction of the gradient by too
much. In particular, following the gradient will always decrease the distance from
the optimum. This is why algorithms with small mutation rate may find the opti-
mum; they follow the gradient relatively closely. However, the weights in [13] are

8 J. Lengler

chosen such that there is always a“hot topic”, i.e., a subdirection of the gradient
which is highly preferred over all other directions. Focusing too much on this hot
topic will lead to a behaviour that is very good at optimising this particular aspect
– but all other aspects will deteriorate a little because they are out of focus. Thus
if the hot topic is rather narrow and changes often, then advances in this aspect
will be overcompensated by a decline in the neglected parts, which leads overall
to stagnation.

This last sentence is not just a pessimistic allegory on scientific progress, but
it also describes evolutionary algorithms with large mutation rates. They rank
the currently preferred direction above everything else, and accept any mutation
that makes progress in that direction, regardless of the harm that such a muta-
tion may cause on other bits. This may lead to a drift away from the optimum,
since random walk steps naturally tend to increase the distance from the opti-
mum. For the fEAs or fGAs, this effect is amplified if the algorithm is close to the
optimum. In this case, the probability to find any improvement at all is small,
and improvements often occur in aggressive steps in which many bits are flipped.
Then the same step may cause many errors among the low-priority bits. For the
same reason, an adaptive choice of the mutation strength c may be harmful if it
increases the mutation parameter in phases of stagnation: close to the optimum,
most steps are stagnating, so an adaptive algorithm might react by increasing
the mutation parameter. This indeed increases the probability to find a better
search point in the hot topic direction (though not the probability to make any
improvement), and may thus lead fatally to a large mutation parameter.

2 Preliminaries and Definitions

Notation. Throughout the paper we will assume that f : {0, 1}n → R is a mono-
tone function, i.e., for every x, y ∈ {0, 1}n with x �= y and such that xi ≥ yi for
all 1 ≤ i ≤ n it holds f(x) > f(y).3 We will consider maximisation algorithms,
and we will mostly focus on the runtime of an algorithm, i.e., the number of
function evaluations before the algorithm evaluates the global maximum of f
for the first time. We say that an EA or GA is elitist [10] if the selection opera-
tor greedily chooses the fittest individuals to form the next generation. We call
an EA or GA unbiased [11] if the mutation and crossover are invariant under
the isomorphisms of {0, 1}n, i.e., if mutation and crossover are symmetric with
respect to the ordering of the bits, and with respect to exchange of the values 0
and 1. All algorithms considered in this paper are unbiased.

For n ∈ N, we denote [n] := {1, . . . , n}. We will use n for the dimension of
the search space, μ for the population size, λ for the offspring population size, c
for the mutation parameter, γ for the crossover parameter of the (1+(λ, λ))-GA,
and D,m1,m2 for the bit flip distribution of the fast EAs and GAs and its first
3 Note that this property might more correctly be called strictly monotone, but in

this paper we will stick with the shorter, slightly less precise term monotone. In all
other cases we use the standard terminology, e.g. the term increasing sequence has
the same meaning as non-decreasing sequence.

A General Dichotomy of Evolutionary Algorithms on Monotone Functions 9

and second falling moment E[s | s ∼ D] and E[s(s − 1) | s ∼ D], respectively.
Unless otherwise stated, we will assume that μ, λ, c, γ = Θ(1) and m1 = Ω(1).

Algorithms. Most algorithms that we consider fall into the class of (μ + λ)
evolutionary algorithms, (μ + λ)-EAs, or (μ + λ) genetic algorithms, (μ + λ)-
GAs. They can be described as follows. They maintain a population of size μ.
In each generation, λ additional offspring are created by mutation and possibly
crossover, and the μ search points of highest fitness among the μ+λ individuals
form the next generation. Thus we use an elitist selection scheme. In EAs, the
offspring are only created by mutation, in GAs they are either created by muta-
tion or by crossover. For mutation we use standard bit mutation as a default,
in which each bit is independently flipped with probability c/n, where c is the
mutation parameter. The only exception are the fast EAs and GAs, in which
first the number s of bit mutations is drawn from some distribution D = D(n),
and then exactly s bits are flipped, chosen uniformly at random. We will always
assume that μ, λ, c = Θ(1).

An exception to the above scheme is the (1 + (λ, λ))-GA [5]. Here the
population consists of a single search point x. Then in each round, we pick
s ∼ Bin(n, c/n), and create λ offspring from x by flipping exactly s bits in x
uniformly at random. Then we select the fittest offspring y among them, and we
perform λ independent biased crossover between x and y, where for each bit we
take the parent gene from y with probability γ, and the gene from x otherwise.
If the best of these crossover offspring is at least as fit as x, then it replaces x.
We will usually assume that λ, c, γ = Θ(1), unless otherwise mentioned.

Hard Monotone Functions: HotTopic. In this section we give the construc-
tion of hard monotone functions by Lengler and Steger [13], following closely
their exposition. The functions come with four parameters α, β, ρ, ε, and they
are given by a randomised construction. We call the corresponding function
HotTopicα,β,ρ,ε = HTα,β,ρ,ε = HT. The hard regime of the parameters is

1 > α � ε � β � ρ > 0, (1)

by which we mean that α ∈ (0, 1) is a constant, ε = ε(α) is a sufficiently small
constant, β = β(α, ε) is a sufficiently small constant, and ρ = ρ(α, ε, β) is a
sufficiently small constant.

Now we come to the construction. For 1 ≤ i ≤ eρn we choose sets Ai ⊆ [n]
of size αn independently and uniformly at random, and we choose subsets Bi ⊆
Ai of size βn uniformly at random. We define the level �(x) of a search point
x ∈ {0, 1}n by �(x) := max{�′ ∈ [eρn] : |{j ∈ B�′ : xj = 0}| ≤ εβn}, where we
set �(x) = 0, if no such �′ exists). Then we define f : {0, 1}n → R as follows:

HT(x) := �(x) · n2 +
∑

i∈A�(x)+1
xi · n +

∑
i�∈A�(x)+1

xi, (2)

where for � = eρn we set A�+1 := B�+1 := ∅.

10 J. Lengler

So the set A�+1 defines the hot topic while the algorithm is at level �, where
the level is determined by the sets Bi. It was shown in [13] that whp4 the (1 + 1)-
EA with c > c0 needs exponential time to find the optimum. One easily checks
that this function is monotone: the (monotone) term �(x)n2 dominates the rest,
and for constant values of � the remaining terms just give a linear function.

3 Results

We first give a generic result for strong dichotomies, i.e., we specify circumstances
under which an algorithm optimises every monotone function in time O(n log n).

Theorem 1 (Generic Easiness Proof). Consider an elitist algorithm A with
population size one that in each round generates an offspring by an arbitrary
method, and replaces the parent if and only if the offspring has at least the same
fitness. Let s01 denote the number of zero-bits in the parent that are one-bits in
the offspring, and vice versa for s10. Assume that there is a constant δ > 0 such
that for all x ∈ {0, 1}n,

E[s10 | parent = x and s01 > 0] ≤ 1 − δ, (3)

and

Pr[s01 > 0 | parent = x] = Ω(1
n (n − OneMax(x))). (4)

Then whp the runtime of A on any (strictly) monotone functions is O(n log n).

The (1 + λ)-EA, the (1 + 1)-fEA, and the (1 + (λ, λ))-GA all fit the generic
description in Theorem1, modulo Condition (3). For the (1+(λ, λ))-GA, the pro-
cedure to generate the offspring is rather complicated, and involves several inter-
mediate mutation and crossover steps. Nevertheless, the procedure ultimately
produces a single offspring (the fittest of the crossover offspring) which com-
petes with the parent. The crucial step is in all cases to show that these settings
satisfy (3). For the (1 + (λ, λ))-GA with cγ < 1 and non-constant parameters
we cannot apply Theorem 1 directly. However, the proof is similar, and the con-
ditional expectation in (3) is still the crucial object to study.

Theorem 2. Let δ > 0. The following algorithms need whp O(n log n) genera-
tions on any (strictly) monotone function.

– The (1 + λ)-EA with c ≤ 1 − δ, c = Ω(1) and λ = O(1);
– the (1 + 1)-fEA with m2/m1 ≤ 1 − δ and m1 = Ω(1);
– the (1 + (λ, λ))-GA with cγ ≤ 1 − δ and cγ = Ω(1).

4 With high probability, i.e. with probability tending to one as n → ∞.

A General Dichotomy of Evolutionary Algorithms on Monotone Functions 11

Moreover, if the (1 + (λ, λ))-GA with cγ < 1 − δ uses the optimal static or
adaptive parameter choice from [4]5, then whp the runtime on HotTopic is
up to a factor Θ(1) the same as the runtime for OneMax.

We remark that the optimal runtime of the (1 + (λ, λ))-GA on OneMax is
O(n

√
log(n) log log log(n)/ log log n) for static parameters, and O(n) for adap-

tive parameter choices [4,6].
Our next theorem gives upper bounds on the runtime of the (1 + λ)-fEA on

any monotone function, provided that m2/m1 < 1, where m1 and m2 are the
first and second falling moments of the distribution D. We need to make the
assumption that the algorithm starts at most in distance εn to the optimum. It
is unclear whether this assumption is necessary, or an artefact of our proof.

Theorem 3. Let δ > 0 be a constant, let λ = O(1), and consider the (1 + λ)-
fEA with distribution D = D(n), whose falling moments m1,m2 satisfy m2/m1 ≤
1−δ and m1 = Ω(1). Then there is ε > 0 such that the (1+λ)-fEA starting with
any search point with at most εn zero-bits finds the optimum of every (strictly)
monotone functions in time O(n log n) whp.

Next we analyse the behaviour of a generic algorithm on HotTopic, which
will later serve as basis for all of our results on HotTopic for concrete algo-
rithms. The generic algorithm uses population size one, but we will show that,
surprisingly, (μ + 1) algorithm can be described by the same framework.

Theorem 4 (HotTopic, Generic Runtime). Let 0 < α < 1. Consider an
elitist, unbiased optimisation algorithm A with population size one that starts
with a random search point x and in each round generates an offspring y by an
arbitrary (unbiased) method, and replaces the parent x by y if HT(y) > HT(x).
For equal fitness, it may decide arbitrarily whether it replaces the parent. Let s
be the random variable that denotes the total number of bits in which parent and
offspring differ, and note that the distribution of s may depend on the parent.
For parent x, we define

Φ(x) :=
E[s(s − 1)(1 − α)s−1]

E[s(1 − α)s−1]
− ((1 − α)/α) · Pr[s = 1]

E[s(1 − α)s−1]
. (5)

(a) If there are constants ζ, ζ ′ > 0 such that

Φ(x) ≥ 1 + ζ ′ (6)

holds for all x ∈ {0, 1}n with at most ζn zero-bits, then whp A has exponen-
tial runtime on HotTopicα,β,ρ,ε with parameters β, ρ, ε as in (1).

5 In fact, the suggested parameter choice in [4,6] satisfies cγ = 1 instead of cγ < 1.
However, the runtime analysis in [6] only changes by constant factors if γ is decreased
by a constant factor. Thus Theorem 2 applies to the parameter choices from [4,6],
except that γ is decreased by a constant factor.

12 J. Lengler

(b) If there are constants ζ, ζ ′ > 0 such that

Φ(x) ≤ 1 − ζ ′ (7)

holds for all x ∈ {0, 1}n with at most ζn zero-bits, and if moreover Pr[s =
1] ≥ ζ and E[s(s − 1)] ≤ 1/ζ for all parents x, then whp A has runtime
O(n log n) on HotTopicα,β,ρ,ε with parameters β, ρ, ε as in (1).

(c) The statements in (a) and (b) remain true for algorithms that are
only unbiased conditioned on an improving step, if in (b) we have
Pr[improving step] ≥ ζ · d([n], x) as well. Moreover, (b) remains true for
algorithms that are only unbiased if x has more than ζn zero-bits, and pos-
sibly biased for at most ζn zero bits, if we replace (7) by the condition
E[s | HT(y) > HT(x)] ≤ 2 − ζ.

Finally, there is a constant η = η(ζ ′, α) > 0 independent of ζ such that (a), (b),
and (c) remain true in the presence of the following adversary A. Whenever an
offspring x′ is created from x that satisfies f(x′) > f(x), then A flips a coin.
With probability 1 − η, she does nothing. Otherwise, she draws an integer τ ∈ N

with expectation O(1) and she may change up to τ bits in the current search
point. For (a) we additionally require Pr[τ ≥ τ ′] = e−Ω(τ ′), while for (b) and (c)
we only require Pr[τ ≥ n1−η] = o(1/(n log n)).

We remark that (b) and (c) require parameters as in (1), and thus do not exclude
a large runtime on HotTopic for atypical parameters, e.g., for large ε.

It turns out that Theorem 4 suffices to classify the behaviour on HotTopic
for all algorithms that we study. On the first glance, this may seem surprising,
since some of them are population-based, while Theorem 4 explicitly requires
population size one. However, for small ε the populations typically collapse to μ
identical copies of the same search point, and the other cases can be attributed
to the adversary. In this way Theorem4 implies the following theorem.

Theorem 5 (HotTopic, Concrete Results). Let δ > 0. We assume that
μ, λ, c = Θ(1) and Pr[D = 1] = Ω(1), except for the (1 + (λ, λ))-GA, for which
we replace the condition on c by cγ = Θ(1). Let c0 = 2.13692.. be the smallest
constant for which the function c0x − e−c0(1−x) − x/(1 − x) has a solution α ∈
[0, 1]. For all α ∈ (0, 1), whp each of the following algorithms optimises the
function HotTopicα,β,ρ,ε with parameters β, ρ, ε as in (1) in time O(n log n).

– The (1 + λ)-EA with c ≤ c0 − δ.
– The (μ + 1)-EA with c ≤ c0 − δ.
– The (μ + 1)-GA with arbitrary c = Θ(1) if μ = μ(c) is sufficiently large.
– The (1 + (λ, λ))-GA with cγ ≤ c0 − δ.
– The (1 + λ)-fEA with m2/m1 ≤ 1 − δ; more generally, the (1 + λ)-fEA with

any distribution that satisfies (7) for s ∼ D, as well as Pr[D = 1] = Ω(1).6

6 Note that this is not a trivial consequence of Theorem 4, since (6), (7) are conditions
on the distribution for the best of λ offspring, while the condition here is on the
distribution D for generating a single offspring.

A General Dichotomy of Evolutionary Algorithms on Monotone Functions 13

– The (μ + 1)-fEA in the preceding case, if additionally Pr[D = 0] = Ω(1).
– The (μ + 1)-fGA with arbitrary D with Pr[D = 0] = Ω(1), if μ = μ(D) is

sufficiently large.

On the other hand, for α0 = 0.237134.., whp each of the following algorithms
needs exponential time to optimise the function HotTopicα0,β,ρ,ε with parame-
ters β, ρ, ε as in (1).

– The (1 + λ)-EA with c ≥ c0 + δ.
– The (μ + 1)-EA with c ≥ c0 + δ.
– The (μ + 1)-GA with c ≥ c0 + δ if μ = μ(c) is sufficiently small.7

– The (1 + (λ, λ))-GA with cγ ≥ c0 + δ.
– The (1+λ)-fEA with any distribution satisfying (6) for s ∼ D.6 In particular,

this includes the following cases.
• The (1+λ)-fEA with m2/m1 ≥ 1+δ, if Pr[D = 1] ≥ C/s0 for a sufficiently

large constant C > 0, where s0 := min{σ ∈ N | m2,≤σ ≥ (1 + δ/2)m1},
with m2,≤σ :=

∑σ
i=1 Pr[D = i]i(i − 1).

• The (1+λ)-fEA with any power law distribution with exponent κ ∈ (1, 2),
i.e. Pr[D ≥ σ] = Ω(σ−κ).

• The (1 + λ)-fEA with Pr[D = 1] ≤ 4
9 · Pr[D ≥ 3] − δ.

– The (μ + 1)-fEA in all preceding cases for (1 + λ)-fEA, if Pr[D = 0] = Ω(1).
– The (μ + 1)-fGA in all preceding cases for (1 + λ)-fEA if μ = μ(D) is suffi-

ciently small.7

Remark 1. For the fEAs we remark that the interesting regime κ ∈ [2, 3) is not
excluded by the negative results in Theorem 5, if Pr[D] is sufficiently large. In
particular, a calculation with MathematicaTM shows that the Zipf distribution8

with exponent κ ≥ 2 satisfies (7) for all α ∈ (0, 1). However, note that this holds
only if the distribution is exactly the Zipf distribution; changing any probability
even by a constant factor may lead to exponential runtimes.

4 Conclusions

We have studied a large set of algorithms, and we have shown that in all cases
without crossover, there is a dichotomy with respect to a parameter (c, cγ, or Φ,
where the latter one is related to m2/m1) for optimising the monotone function
family HotTopic. If the parameter is small, then the algorithms need time
O(n log n); if the parameter is large, then they need exponential time on some
instances. In the cases of (1 + λ)-EA, (1 + 1)-fEA (1 + (λ, λ))-GA, and for good
start points also of (1 + λ)-fEA, if the parameter is small, then we could show
that the algorithms are actually fast on all monotone functions. However, there
are many open problems left, and we conclude the paper by a selection of those.

7 This statement follows trivially from the other results by setting μ = 1, and it is
listed only for completeness.

8 i.e., Pr[D = k] = k−κ/ζ(κ), where ζ is the Riemann ζ function.

14 J. Lengler

– We have analysed the algorithms theoretically for the case n → ∞. Experi-
ments are sorely needed to understand the effects for small finite n.

– In some cases our runtime bounds for small parameter values hold only for
HotTopic, but the general status of monotone functions remains unclear
((μ + 1)-EA, (μ + 1)-fEA). So does a small mutation parameter guarantee a
small runtime on all monotone functions?

– We could show that genetic algorithms are superior to evolutionary algo-
rithms on the HotTopic functions. However, is the same true in general for
monotone functions? Is it true that the (μ + 1)-GA and the (μ + 1)-fGA are
fast for all monotone functions if μ is large enough?

– It seems important to understand more precisely how large μ should be in
GAs to cope with larger mutation parameters. For example, for the (μ + 1)-
GA with mutation parameter c, how large does m need to be so that it is still
fast on all HotTopic instances?

– By now a classical question is: are there monotone functions which are hard
for the parameter range [1, c0)? Most intriguingly: are there hard monotone
instances for the (1 + 1)-EA for every c > 1? For c = 1 it is known that the
runtime is polynomial, but is it always O(n log n)?

– Our proofs for population sizes μ > 1 rely on the fact that in all considered
algorithms diversity tends to be lost close to the optimum. Do the results
stay the same if diversity is actively maintained, for example by duplication
avoidance or by genotypical or phenotypical niching?

– How is the performance of algorithms that change the mutation strength
dynamically, e.g., with the 1/5-th rule? The introduction gives an intuition
why this might be bad, but intuition has failed before on monotone functions.

– While HotTopic is defined in a discrete setting, the underlying intuition is
related to continuous optimisation. Is there a continuous analogue of Hot-
Topic, and what is the performance of optimisation algorithms like the CMA-
ES or particle swarm optimisation?

References

1. Doerr, B.: Optimal parameter settings for the (1 + λ, λ) genetic algorithm. In:
GECCO (2016)

2. Doerr, B., Doerr, C.: Optimal parameter choices through self-adjustment: applying
the 1/5-th rule in discrete settings. In: GECCO (2015)

3. Doerr, B., Doerr, C.: A tight runtime analysis of the (1 + (λ, λ)) genetic algorithm
on OneMax. In: GECCO (2015)

4. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the
(1+(λ, λ)) genetic algorithm. Algorithmica 80, 1–52 (2017)

5. Doerr, B., Doerr, C., Ebel, F.: Lessons from the black-box: fast crossover-based
genetic algorithms. In: GECCO (2013)

6. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theor. Comput. Sci. 567, 87–104 (2015)

7. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Optimizing mono-
tone functions can be difficult. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 42–51. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15844-5 5

https://doi.org/10.1007/978-3-642-15844-5_5

A General Dichotomy of Evolutionary Algorithms on Monotone Functions 15

8. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters
even when optimizing monotonic functions. Evol. Comput. 21(1), 1–27 (2013)

9. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
GECCO (2017)

10. Doerr, C., Lengler, J.: Introducing elitist black-box models: when does elitist
behavior weaken the performance of evolutionary algorithms? Evol. Comput.
25(4), 587–606 (2017)

11. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64,
623–642 (2012)

12. Lengler, J.: A general dichotomy of evolutionary algorithms on monotone functions.
arXiv e-prints (2018)

13. Lengler, J., Steger, A.: Drift analysis and evolutionary algorithms revisited. arXiv
e-prints (2016)

14. Mironovich, V., Buzdalov, M.: Evaluation of heavy-tailed mutation operator on
maximum flow test generation problem. In: GECCO (2017)

15. Sudholt, D.: How crossover speeds up building block assembly in genetic algo-
rithms. Evol. Comput. 25(2), 237–274 (2017)

16. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Comb. Probab. Comput. 22(2), 294–318 (2013)

Artificial Immune Systems Can Find
Arbitrarily Good Approximations for the

NP-Hard Partition Problem

Dogan Corus(B), Pietro S. Oliveto, and Donya Yazdani

Rigorous Research, University of Sheffield, Sheffield, UK
{d.corus,p.oliveto,dyazdani1}@sheffield.ac.uk

Abstract. Typical Artificial Immune System (AIS) operators such as
hypermutations with mutation potential and ageing allow to efficiently
overcome local optima from which Evolutionary Algorithms (EAs) strug-
gle to escape. Such behaviour has been shown for artificial example func-
tions such as Jump, Cliff or Trap constructed especially to show dif-
ficulties that EAs may encounter during the optimisation process. How-
ever, no evidence is available indicating that similar effects may also
occur in more realistic problems. In this paper we perform an analysis
for the standard NP-Hard Partition problem from combinatorial opti-
misation and rigorously show that hypermutations and ageing allow AISs
to efficiently escape from local optima where standard EAs require expo-
nential time. As a result we prove that while EAs and Random Local
Search may get trapped on 4/3 approximations, AISs find arbitrarily
good approximate solutions of ratio (1 + ε) for any constant ε within a
time that is polynomial in the problem size and exponential only in 1/ε.

1 Introduction

Artificial Immune Systems (AIS) take inspiration from the immune system of
vertebrates to solve complex computational problems. Given the role of the nat-
ural immune system to recognise and protect the organism from viruses and
bacteria, natural applications of AIS have been pattern recognition, computer
security, virus detection and anomaly detection [1–3]. Various AIS, inspired by
Burnet’s clonal selection principle, have been devised for solving optimisation
problems. Amongst these, the most popular are Clonalg [4], the B-Cell algo-
rithm [5] and Opt-IA [6].

AIS for optimisation are very similar to evolutionary algorithms (EAs) since
they essentially use the same Darwinian evolutionary principles to evolve pop-
ulations of solutions (here called antibodies). In particular, they use the same
natural selection principles to gradually evolve high quality solutions. The main
distinguishing feature of AIS to more classical EAs is their use of variation oper-
ators that typically have higher mutation rates compared to the standard bit
mutations (SBM) of EAs (such as the contiguous somatic mutations of the B-
Cell algorithm and the hypermutations with mutation potential of Opt-IA) and
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 16–28, 2018.
https://doi.org/10.1007/978-3-319-99259-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_2&domain=pdf

AIS Can Find Arbitrarily Good Approximations for Partition 17

their use of ageing operators that remove old solutions i.e., that have spent a
long time without improving (local optima). Despite their popularity it is still
largely unclear on what problems an AIS will have better performance to that
of EAs. Also very little guidance is available on when a class of AIS should
be applied rather than another. Amongst the few available results, it has been
proven that there exist instance classes of both vertex cover [7] and the longest
common subsequence [8] NP-Hard problems that are hard for EAs equipped
with SBM and crossover for which the B-Cell algorithm is efficient The superior
performance is due to the ability of the contiguous somatic mutations of the
B-Cell algorithm to efficiently escape the local optima of these instances while
SBM require exponential expected time in the size of the instance.

Apart from these results, the theoretical understanding of AIS relies on anal-
yses of their behaviour for artificially constructed toy problems. Recently it has
been shown how both the hypermutations with mutation potential and the age-
ing operator of Opt-IA can lead to considerable speed-ups compared to the
performance of well-studied EAs using SBM for standard benchmark functions
used in evolutionary computation such as Jump, Cliff or Trap [9]. While the
performance of hypermutation operators to escape the local optima of these
functions is comparable to that of the EAs with high mutation rates that have
been increasingly gaining popularity since 2009 [10–14], ageing allows the opti-
misation of hard instances of Cliff in O(n log n), a runtime that is required
by the SBM of typical EAs to optimise any function with unique optimum i.e.,
SBM require Θ(n log n) to optimise its easiest function with unique optimum -
OneMax [15]. Although some of these speed-ups over standard EA performance
are particularly impressive, no similar evidence of superior performance of these
operators is available for more realistic problems.

In this paper we perform an analysis for Partition, a classical NP-Hard
combinatorial optimisation problem for which the performance of Random Local
Search (RLS) and of the (1 + 1) EA is understood [16–18]. Since Partition is
essentially a makespan scheduling problem with two machines, its relevance to
practical applications can be easily seen. It is well understood that both RLS and
the (1+1) EA may get stuck on local optima which lead to a worst case approx-
imation ratio of 4/3. In order to achieve a (1 + ε) approximation for arbitrary ε
a clever restart strategy has to be put in place. Herein, we first show the power
of hypermutations and ageing by proving that each of them solve to optimal-
ity instances that are hard for RLS and SBM EAs, by efficiently escaping local
optima for which the EAs struggle. Afterwards we prove that AIS using hypermu-
tations with mutation potential guarantee arbitrarily good solutions of approxi-
mation ratio (1 + ε) in expected time n(ε−(2/ε)−1)(1− ε)−2e322/ε + n322/ε +n3,
which reduces to O(n3) for any constant ε without requiring any restarts. On the
other hand, we prove that an AIS with SBM and ageing can efficiently achieve
the same approximation ratio in O(n2), automatically restarting the optimisa-
tion process by implicitly detecting when it is stuck on a local optimum. To the
best of our knowledge this is the first time either hypermutations or ageing have
been theoretically analysed for a standard problem from combinatorial optimi-

18 D. Corus et al.

Algorithm 1. (1+1) IAhyp [9] for minimisation
1: Set each bit in x to 1 with probability 1/2 and to 0 otherwise, then evaluate f(x).
2: while termination condition not satisfied do
3: y := x; Flip := {1, . . . , n};
4: while Flip �= ∅ and f(y) ≥ f(x) do
5: i := Sample Flip u. a. r.; Flip := Flip \ i; flip yi; evaluate f(y);
6: end while
7: If f(y) ≤ f(x), then x := y.
8: end while

sation and the first time performance guarantees of any AIS are proven in such
a setting.

Due to space limitations some proofs are omitted for this extended abstract1.

2 Preliminaries

Hypermutation with mutation potential operators are inspired by the high muta-
tion rates occurring in the natural immune system [6]. For the purpose of optimi-
sation, these high mutation rates may allow the algorithm to escape local optima
by identifying promising search areas far away from the current ones.

In this paper we will analyse the static hypermutation operator considered
in [9] for benchmark functions, where the maximum number of bits to be flipped
is fixed to M = cn throughout the optimisation process. Two variants of static
hypermutations have been proposed in the literature. A straightforward version,
where in each mutation exactly cn bits are flipped, and another one called stop at
first constructive mutation (FCM) where the solution quality is evaluated after
each of the cn bit-flips and the operator is halted once a constructive mutation
occurs. Since Corus et al. [9] proved that the straightforward version requires
exponential time to optimise any function with a polynomial number of optima,
we will consider the version with FCM. We define a mutation to be constructive
if the solution is strictly better than the original parent and we set c = 1 such
that all bits will flip if no constructive mutation is found before. For the sake of
understanding the potentiality of the operator, we embed it into a minimal AIS
framework that uses only one antibody (or individual) and creates a new one
in each iteration via hypermutation as done previously in the literature [9]. The
algorithm is essentially a (1 + 1) EA [20,21] that uses hypermutations instead
of SBM. The simple AIS for the minimisation of objective functions, called (1 +
1) IAhyp for consistency with the literature, is formally described in Algorithm1.

Another popular operator used in AIS is Ageing. The idea behind the oper-
ator is to remove antibodies which have not improved for a long time. Intu-
itively, these antibodies are not improving because they are trapped on some
local optimum, and they may be obstructing the algorithm from progressing in
more promising areas of the search space (i.e., the population of antibodies may

1 A complete version of the paper including all the proofs is available on arXiv [19].

AIS Can Find Arbitrarily Good Approximations for Partition 19

Algorithm 2. (μ + 1) EAageing [22] for minimisation
1: Create population P := {x1, · · · , xµ} with each bit in xi set to 1 with probability

1/2 and to 0 otherwise;
2: For all x ∈ P evaluate f(x) and set x[age] := 0.
3: while termination condition not satisfied do
4: For all x ∈ P set x[age] := x[age] + 1.
5: Select x ∈ P uniformly at random;
6: y := x and flip each bit in y with probability 1/n. Add y to P .
7: If f(y) < f(x), then y[age] := 0. Else, y[age] := x[age];
8: For all x ∈ P if x[age] ≥ τ then remove x from P ;
9: If |P | > μ then remove the individual from P with the highest f(x);

10: If |P | < μ then add enough number of randomly created individuals to P until
|P | = μ;

11: end while

quickly be taken over by a high quality antibody on a local optimum). The anti-
bodies that have been removed by the ageing operator are replaced by new ones
initialised at random.

Ageing operators have been proven to be very effective at automatically
restarting the AIS, without having to set up a restart strategy in advance, once
it has converged on a local optimum [23]. Stochastic versions have been shown to
also allow antibodies to escape from local optima [9,22]. As in previous analyses
we incorporate the ageing operator in a simple (μ+1) EA algorithmic framework
and for simplicity consider the static variant where antibodies are removed from
the population with probability 1 if they have not improved for τ generations.
The algorithm is formally defined in Algorithm2. We will compare the perfor-
mance of the AIS with the standard (1 + 1) EA [21,24] and RLS for which the
performance for Partition is known. The former uses standard bit mutation
i.e., it flips each bit of the parent with probability 1/n in each iteration, while
the latter flips exactly one bit.

Given n jobs with processing times p1, . . . , pn and pi > 0, the Partition
problem is that of scheduling the jobs on two identical machines, M1 and M2,
in a way that the overall completion time (i.e., the makespan) is minimised.
This simple to define scheduling problem is well studied in theoretical computer
science and is known to be NP-Hard [25]. Hence, it cannot be expected that any
algorithm finds exact solutions to all instances in polynomial time. However,
there exist efficient problem specific algorithms which guarantee solutions with
approximation ratio (1 + ε) in time O(n3/ε), in classical complexity measures,
which is polynomial both in n and 1/ε [26]. Let fA be the solution quality
guaranteed by algorithm A and fopt be the value of the optimal solution. Then
the approximation ratio for a minimisation problem is defined as fA/fopt.

For the application of randomised search heuristics a solution may eas-
ily be represented with a bitstring x ∈ {0, 1}n where each bit i represents
job i and if the bit is set to 0 it is assigned to the first machine (M1)
and otherwise to the second machine (M2). Hence, the goal is to minimise

20 D. Corus et al.

f(x) := max
{ ∑n

i=1 pixi,
∑n

i=1 pi(1 − xi)
}
, i.e., the processing time of the last

machine to terminate. Both RLS and the (1 + 1) EA have 4/3 worst case
expected approximation ratios for the problem (i.e. there exist instances where
they can get stuck on solutions by a factor of 4/3 worse than the optimal one)
[16,17]. However if an appropriate restart strategy is setup in advance, both
algorithms may be made into polynomial randomised approximation schemes
(PRAS, i.e., algorithms that compute a (1 + ε) approximation in polynomial
time in the problem size with probability at least 3/4) with a runtime bounded
by O(n ln(1/ε)) · 2(e log e+e)�2/ε� ln(4/ε)+O(1/ε) [16,17]. Hence, as long as ε does
not depend on the problem size, the algorithms can achieve arbitrarily good
approximations with an appropriate restart strategy.

In this paper we will show that AIS can achieve stronger results. Firstly, we
will show that both ageing and hypermutations can efficiently solve to optimality
the worst-case instances for RLS and the (1 + 1) EA. More importantly, we
will prove that ageing automatically achieves the necessary restart strategy to
guarantee the (1 + ε) approximation while hypermutations guarantee it in a
single run in polynomial expected runtime and with overwhelming probability.

3 Generalised Worst-Case Instance

The instance from the literature P ∗
ε leading to a 4/3 worst-case expected approx-

imation ratio for RLS and the (1 + 1) EA consists of two large jobs with long
processing times p1 := p2 := 1/3 − ε/4 and the remaining n − 2 jobs with short
processing times pi := (1/3 + ε/2)/(n − 2) for 3 ≤ i ≤ n (the sum of the pro-
cessing times are normalised to 1 for cosmetic reasons) [16]. Any partition where
one large job and half of the small jobs are placed on each machine is natu-
rally a global optimum of the instance (i.e., the makespan is 1/2). Note that
the sum of all the processing times of the small jobs is slightly larger than the
processing time of a large job. The local optimum leading to the 4/3 expected
approximation consists of the two large jobs on one machine and all the small
jobs on the other. The makespan of the local optimum is p1 + p2 = 2/3 − ε/2
and, in order to decrease it, a large job has to be moved to the fuller machine
and at the same time at least Ω(n) small jobs have to be moved to the emptier
machine. Since this requires to flip Ω(n) bits, which cannot happen with RLS
and only happens with exponentially small probability n−Ω(n) with the SBM
of EAs, their expected runtime to escape from such a configuration is at least
exponential.

In this section, to highlight the power of the AIS to overcome hard local
optima for EAs, we generalise the instance P ∗

ε to contain an arbitrary number
s = Θ(1) of large jobs and show how the considered AIS efficiently solve the
instance class to optimality by escaping from local optima efficiently while RLS
and the (1 + 1) EA cannot. Hence, hypermutations and ageing are efficient
on a vast number of instances where SBM and local mutations alone fail. The
generalised instance class G∗

ε is defined as follows.

AIS Can Find Arbitrarily Good Approximations for Partition 21

Definition 1. The class of Partition instances G∗
ε are characterised by an

even number of jobs n, an even number of large jobs s = Θ(1) and the following

processing times: pi =

{
1

2s−1 − ε
2s if i ≤ s

s−1
n−s · (1

2s−1 + ε
2(s−1)) otherwise

where 0 < ε < 1/(2s − 1) is an arbitrarily small constant.

The instance class has the same property as the instance P ∗
ε . If all the large

jobs are placed on one machine and all the small jobs on the other, then at
least Ω(n) small jobs need to be moved in exchange for a large job to decrease
the discrepancy (the difference between the loads of the machines). Such a local
optimum allows to derive a lower bound on the worst-case expected approxima-
tion ratio of algorithms that get stuck there. Obviously the greater the number
of large jobs, the smaller the bound on the approximation ratio will be. We now
prove that the (1 + 1) EA has exponential expected runtime on G∗

ε . The proof
is similar to that of the 4/3 approximation [16]. It essentially shows that with
constant probability the algorithm gets trapped on the local optimum. Then the
statement will follow by showing that exponential expected time is required to
escape from there. That RLS also fails is essentially a corollary.

Theorem 1. The (1 + 1) EA needs at least nΩ(n) fitness function evaluations
in expectation to optimise any instance of G∗

ε .

In the following subsection we will show that hypermutations are efficient.
Afterwards we will do the same for ageing.

3.1 Hypermutations

We will start this subsection by proving some general statements about hypermu-
tations. The hypermutation operator flips all the bits in a bitstring successively
and evaluates the fitness after each step. Unless an improvement is found first,
each hypermutation operation results in a sequence of n solutions sampled in the
search space. This sequence of solutions contains exactly one bitstring for each
Hamming distance d ∈ [n] to the initial bitstring. Moreover, the string which
will be sampled at distance d is uniformly distributed among all the bitstrings of
distance d to the input solution. Thus, as we approach the middle, the number of
possible outcomes grows exponentially large but the first and the last few strings
sampled are picked among a polynomially large subset of the search space. We
will now provide two lemmata regarding the probability of particular outcomes
in the first and the last m bitstrings of the sequence.

Lemma 1. Given that no improvement is found, the probability that k specific
bit positions are flipped by the hypermutation operator in the first (or last) m ≥ k

mutation steps is at least
(

m−k+1
n−k+1

)k

.

Lemma 2. Let xi be the ith bitstring sampled by the hypermutation and si the
substring of xi which consists of bit positions S ⊂ [n]. For any given target

22 D. Corus et al.

substring s∗ and integer m > |S|, the probability that ∀i ∈ {m,m + 1, . . . , n −
m − 1, n − m}, si = s∗ is at least

(
m−|S|+1
n−|S|+1

)|S|
.

We can observe that the probability bounds we get from these lemmata are
polynomial if k (or |S|) is a constant. Moreover, if both k = Θ(1) and m = Ω(n)
we obtain probabilities in the order of Ω(1).

For G∗
ε , we would like to distribute two kinds of jobs evenly among machines.

While one type of job is constant in number, the other is in the order of Θ(n). So
the previous lemmata would provide reasonable probability bounds only for the
large jobs. For the small jobs we will make use of the fact that the configuration
we want is not any configuration, but an exact half and half split. Intuitively,
it is obvious that if all the jobs start on one machine, at exactly the n/2th bit
flip, the split will be half and half. However, as the starting distribution gets
further away from the extremes, it becomes less clear when the split will exactly
happen. Fortunately, the fact that the number of small jobs is large, will work
in our favor to predict the time of the split more precisely. Whilst the previous
lemmata provide bounds for the first and last bitflips of hypermutation, we will
use Serfling’s concentration bound [27] on hypergeometric distributions to prove
the following theorem about the bitflips in the middle.

Theorem 2. If the input bitstring of hypermutation has
(
1
2 + a

)
n 1-bits for

some constant a > 0, then the probability that any solution sampled after the
n a

2a−c th mutation step for any a > c > 0 to have more than n/2 1-bits is in the
order of e−Ω(nc2).

Corollary 1. If the input bitstring of hypermutation has
(
1
2 + a

)
n 1-bits for

some constant a > 0, then with probability 1 − e−Ω(nc2), there exists a k ∈
{n a−c

2a−c , . . . , n a
2a−c} for any positive a > c = ω(1/

√
n), such that the number of

1-bits in the kth solution sampled by hypermutation has exactly n/2 1-bits.

Now we have all the necessary tools to prove that the (1 + 1) IAhyp can
solve G∗

ε efficiently. The heart of the proof of the following theorem is to show
that from any local optimum, hypermutations identify the global optimum with
constant probability unless an improvement is found first. The proof then follows
because there are at most O(n) different fitness levels.

Theorem 3. The (1 + 1) IAhyp optimises the G∗
ε class of instances in O(n2)

expected function evaluations.

Since the worst case instance for the (1+1) EA [16] is an instance of G∗
ε with

s = 2, the following corollary holds.

Corollary 2. The (1 + 1) IAhyp optimises P ∗
ε in O(n2) expected function eval-

uations.

AIS Can Find Arbitrarily Good Approximations for Partition 23

3.2 Ageing

In this section we will show that the (μ + 1) EAageing can optimise the G∗
ε

instances efficiently. Our approach to prove the following theorem is to first
show that if a solution where the large jobs are equally distributed is sampled
in the initialisation, then it takes over the population and the (μ + 1) EAageing

quickly finds the optimum. The contribution of ageing is considered afterwards
to handle the case when no such initial solution is sampled. Then, we will show
that whenever the algorithm gets stuck at a local optima, it will reinitialise the
whole population after τ iterations and sample a new population.

Theorem 4. The (μ + 1) EAageing optimises the G∗
ε class of instances in

O(μn2 + τ) steps in expectation for τ = Ω(n2) and μ = O(log n).

Clearly the following corollary holds as P ∗
ε is an instance of G∗

ε .

Corollary 3. The (μ+1) EAageing optimises P ∗
ε in O(μn2 + τ) steps in expec-

tation for τ = Ω(n2) and μ = O(log n).

4 (1 + ε) Approximation Ratios

4.1 Hypermutations

In the next theorem we will show that the (1 + 1) IAhyp can efficiently find
arbitrarily good constant approximations to any Partition instance. Before we
state our main theorem, we will require the following helper lemma.

Lemma 3. Let xi be the ith bitstring sampled by the hypermutation, si the sub-
string of xi which consists of bit positions S ⊂ [n], and, f(x) :=

∑
j∈S xjwj a

linear function defined on the substring for some non-negative weights wj. Given
that the input bitstring of the hypermutation is 0n, the expected value of f(xi) is
i
n

∑
j∈S wj.

In the proof of the following theorem we first divide the search space into 22/ε

subspaces according to the distribution of the largest 2/ε jobs and then further
divide each subspace into the same n fitness levels used for the proof of the
(1 + 1) EA in [16]. However, we show that in each fitness level, hypermutations
have a good probability of either finding a (1 + ε) approximation or leaving the
fitness level for good. The statement then follows by summing over the n22/ε

fitness levels.

Theorem 5. The (1+1) IAhyp finds a (1+ ε) approximation to any instance of
Partition in at most n(ε−(2/ε)−1)(1 − ε)−2e322/ε + n322/ε + n3 fitness function
evaluations in expectation for any ε = ω(n−1/2).

24 D. Corus et al.

Proof. In order to prove our upper bound on the runtime, we will divide the run
of the algorithm into at most 22/ε phases and find a bound on the expected time
that is valid for all phases.

Following the proof of Theorem 3 in [16], we refer to the s := �2/ε	−1 ≤ n/2
jobs with the largest processing times as large jobs and to the rest as the small
jobs. Let P be the sum of the processing times of all jobs. Since p1 ≥ p2 ≥ . . . ≥
pn w.l.o.g., we know that pi ≤ εP/2 for all i > s because otherwise the sum of
the first s + 1 jobs would be larger than P .

Consider the 2s partitions of only the large objects. We sort these 2s parti-
tions according to non-increasing makespan and denote the ith partition in the
sequence as yi. Now, we can divide the solution space of the original problem
into subspaces Ai for i ∈ [2s], where Ai consists of all the solutions where the
large jobs are distributed as in yi. Let x∗

i denote the solution with the best fitness
value in Ai.

Let d(x) denotes the discrepancy of solution x. We define k as the smallest
index i that satisfies d(yi) ≤ ∑n

j=s+1 pj . Thus, for any large jobs configuration
yj for j < k, if all the small jobs are assigned to the emptier machine of yj , then
the load of the obtained solution is the same as the load of yj itself because the
discrepancy is larger than the sum of the processing times of the small jobs by
definition. Since the makespan of yj is a lower bound on the makespan of any
solution x ∈ Aj , the solution where all small jobs are assigned to the emptier
machine of yi is the best solution in Ai for all i < k. Again for i < k, we can
say that once the (1 + 1) IAhyp finds a solution with better fitness value than
x∗

i , any solution that belongs to any set Aj for j ≤ i will be rejected by the
algorithm due to its inferior fitness value. This allows us to divide the time until
a solution better than x∗

k−1 is found for the first time into k − 1 distinct phases
where during phase i the fitness of the current solution is between f(x∗

i−1) and
f(x∗

i) (we define f(x∗
0) := P for completeness). We will now further divide the

expected length of phase i, into the expected time until x∗
i is found given an

arbitrary solution x that satisfies f(x∗
i−1) > f(x) > f(x∗

i), and the expected
time until an improvement is found given that the current solution is f(x∗

i).
We start with the expected time until x∗

i is found given an initial solu-
tion x such that f(x∗

i−1) > f(x) > f(x∗
i) holds. Since f(x∗

i−1) > f(x), the
makespan of the underlying large job configuration of x is at least as good
as the makespan of yi and thus the makespan of x can be upper bounded
by the load obtained when all small jobs are assigned to the fuller machine
of yi. Since i < k we also know that the fuller machine of x∗

i has no small
jobs on it. Thus, during phase i we can bound the fitness in the interval
[f(yi), f(yi) +

∑n
j=s+1 pj]. We further divide this interval into the following

levels, L� :=
{

x | f(yi) +
∑n

j=s+� pj ≥ f(x) > f(yi) +
∑n

j=s+�+1 pj

}
, implying

that for any solution at level L� there is at least one job with processing time
at least ps+� which can be moved to the emptier machine with probability 1/n
as the first bit-flip and yield a solution at level L�+1. Since there are at most n
levels for the phase i, the expected number of iterations until the level Ln−s+1,
which contains the solution x∗

i is discovered is at most n2.

AIS Can Find Arbitrarily Good Approximations for Partition 25

Secondly, we will bound the expected time until an improvement is found
given that the current solution is f(x∗

i). In order to do this we will bound the
probability that a (1 + ε) approximation is obtained in a single iteration given
that no other improvements are found in the previous mutation steps of the
hypermutation operator by some value p≈. This will allow us to claim that in
expected p−1

≈ generations we will either find the approximation we sought or at
least leave the subspace Ai for good.

Consider the optimal configuration of large jobs y2s and denote its makespan
as L. Since both y2s and its complementary bitstring have the same makespan,
w.l.o.g., we will assume the fuller machines of yi and y2s are both M1. According
to Lemma 2, the s ≤ 2/ε large jobs are assigned identically to y2s between the
n(ε − ε2)th and n − n(ε − ε2)th bit-flips with probability at least

(
ε − ε2

)2/ε
e−1

Since the initial solution x∗
i does not assign any small jobs to M1 and the sum

of the processing times of the small jobs is less than P/2, by the n(ε − ε2)th
bit-flip the expected total processing time of small jobs moved from M2 to M1

is at most (ε − ε2)P/2 according to Lemma 3. Due to Markov’s inequality, with
probability at least 1 − ((ε − ε2)P/(ε)P) = ε the moved sum is less than εP/2
and the makespan of the solution is at most L + εP/2. In general, OPT ≥ L
with OPT indicating the optimal makespan, since introducing the small jobs
cannot improve the makespan and also OPT ≥ P/2 since a perfect split is the
best possible partition. Thus (L + εP/2)/OPT is less than (1 + ε). This implies
that with probability

p≈ ≥ (ε − ε2)2/ε

e
ε =

ε(2/ε)+1

e(1 − ε)−2/ε
=

ε(2/ε)+1(1 − ε)2

e(1 − ε)−((1/ε)−1)2
≥ ε(2/ε)+1(1 − ε)2

e3

a (1 + ε) approximation is found unless an improvement is obtained before. The
total expected waiting time to observe either an approximation or an improve-
ment in all local optima yi for i < k is at most (1/ε(2/ε)+1)(1 − ε)−2e322/ε, since
k ≤ 2s ≤ 22/ε. If we add the time spent in between local optima, n222/ε, we
obtain the bound on the expected number of iterations until subspace Ak is
reached for the first time.

Once subspace Ak is reached, by definition the underlying large job config-
uration has a discrepancy which is not large enough to fit all small jobs. This
means that when the next local optimum is found, the discrepancy is less than
half of the processing time of a small job. Thus, the locally optimal solution is
a (1 + ε) approximation since the processing time of small jobs is at most εP/2.
Such a solution is found in n2 expected time after the first solution in Ak is sam-
pled. Summing up all the expected times bounded above, the expected runtime
we obtain is: (ε−(2/ε)−1)(1 − ε)−2e322/ε + n222/ε + n2.
�

4.2 Ageing

The following theorem shows that the (1+ 1) EAageing can find (1 + ε) approx-
imations. The proof follows the same ideas used to prove that RLS and the
(1 + 1) EA achieve a (1 + ε) approximation if an appropriate restart strategy

26 D. Corus et al.

is put in place [16,17]. In particular, the main proof idea is to use the suc-
cess probability of the simple (1 + 1) EA and show that ageing automatically
causes restarts whenever the (1 + 1) EA fails to find the approximation. Hence,
a restart strategy is not necessary for the (1+1) EAageing to achieve the desired
approximation.

Theorem 6. Let τ = Ω(n1+c) where c = Ω(1). The (1 + 1) EAageing finds a
(1 + ε) approximation to any instance of Partition in at most
(en2 + τ)2(e log e+e)�2/ε� ln(4/ε)+�4/ε�−1 fitness function evaluations in expectation
for any ε ≥ 4/n.

5 Conclusion

To the best of our knowledge this is the first time that polynomial expected
runtime guarantees of solution quality have been provided concerning AIS for a
classical combinatorial optimisation problem. We presented a class of instances of
Partition to illustrate how hypermutations and ageing can efficiently escape
from local optima where the standard bit mutations used by EAs get stuck
for exponential time. Then we showed how this capability allows the AIS to
achieve arbitrarily good (1 + ε) approximations to any instance of Partition
in polynomial time for any constant ε. In contrast to standard EAs and RLS,
that require parallel runs or restart schemes to achieve such approximations,
the AIS find them in a single run. The result is achieved in different ways. The
ageing operator locates more promising basins of attraction by restarting the
optimisation process after implicitly detecting it has found a local optimum.
Hypermutations find improved approximate solutions efficiently by performing
large jumps in the search space. Naturally, the proof would also apply to the
complete Opt-IA [6,9] if the ageing parameter is set large enough, i.e., τ =
ω(nε−2/ε).

References

1. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in
a computer. In: Proceedings of 1994 IEEE Symposium on Security and Privacy,
pp. 202–212 (1994)

2. Hedberg, S.: Combating computer viruses: IBM’s new computer immune system.
IEEE Par. Dist. Tech.: Syst. Appl. 4(2), 9–11 (1996)

3. Dasgupta, D., Majumdar, N.S.: Anomaly detection in multidimensional data using
negative selection algorithm. In: Proceedings of CEC 2002, pp. 1039–1044 (2002)

4. de Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal
selection principle. IEEE Trans. Evol. Comp. 6(3), 239–251 (2002)

5. Kelsey, J., Timmis, J.: Immune inspired somatic contiguous hypermutation for
function optimisation. In: Cantú-Paz, E. (ed.) GECCO 2003. LNCS, vol. 2723, pp.
207–218. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6 26

6. Cutello, V., Nicosia, G., Pavone, M., Timmis, J.: An immune algorithm for protein
structure prediction on lattice models. IEEE Trans. Evol. Comp. 11(1), 101–117
(2007)

https://doi.org/10.1007/3-540-45105-6_26

AIS Can Find Arbitrarily Good Approximations for Partition 27

7. Jansen, T., Oliveto, P.S., Zarges, C.: On the analysis of the immune-inspired B-cell
algorithm for the vertex cover problem. In: Liò, P., Nicosia, G., Stibor, T. (eds.)
ICARIS 2011. LNCS, vol. 6825, pp. 117–131. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22371-6 13

8. Jansen, T., Zarges, C.: Computing longest common subsequences with the B-cell
algorithm. In: Coello Coello, C.A., Greensmith, J., Krasnogor, N., Liò, P., Nicosia,
G., Pavone, M. (eds.) ICARIS 2012. LNCS, vol. 7597, pp. 111–124. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-33757-4 9

9. Corus, D., Oliveto, P.S., Yazdani, D.: On the runtime analysis of the Opt-IA arti-
ficial immune system. In: Proceedings of GECCO 2017, pp. 83–90 (2017)

10. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Proceedings of GECCO 2017, pp. 777–784 (2017)

11. Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-based
mutation-combining exploration and exploitation. In: Proceedings of CEC 2009,
pp. 1455–1462 (2009)

12. Corus, D., Oliveto, P.S.: Standard steady state genetic algorithms can hillclimb
faster than mutation-only evolutionary algorithms. IEEE Trans. Evol. Comp.
(2017)

13. Dang, D.-C., et al.: Emergence of diversity and its benefits for crossover in genetic
algorithms. IEEE Trans. Evol. Comp. (2017, to appear)

14. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theor. Comp. Sci. 567, 87–104 (2015)

15. Corus, D., He, J., Jansen, T., Oliveto, P.S., Sudholt, D., Zarges, C.: On easiest
functions for mutation operators in bio-inspired optimisation. Algorithmica 78(2),
714–740 (2016)

16. Witt, C.: Worst-case and average-case approximations by simple randomized search
heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp.
44–56. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31856-9 4

17. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16544-3

18. Neumann, F., Witt, C.: On the runtime of randomized local search and simple
evolutionary algorithms for dynamic makespan scheduling. In: Proceedings of the
24th International Conference on Artificial Intelligence, pp. 3742–3748. AAAI Press
(2015)

19. Corus, D., Oliveto, P.S., Yazdani, D.: Artificial immune systems can find arbitrarily
good approximations for the NP-Hard partition problem. arXiv e-prints (2018).
http://arxiv.org/abs/1806.00300

20. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1 + 1) evolutionary
algorithm. Theor. Comp. Sci. 276(1–2), 51–81 (2002)

21. Oliveto, P.S., Yao, X.: Runtime analysis of evolutionary algorithms for discrete
optimisation. In: Auger, A., Doerr, B. (eds.) Theory of Randomized Search Heuris-
tics: Foundations and Recent Developments, chap. 2, pp. 21–52. World Scientific
(2011)

22. Oliveto, P.S., Sudholt, D.: On the runtime analysis of stochastic ageing mecha-
nisms. In: Proceedings of GECCO 2014, pp. 113–120 (2014)

23. Jansen, T., Zarges, C.: On the role of age diversity for effective aging operators.
Evol. Intell. 4(2), 99–125 (2011)

24. Lehre, P.K., Oliveto, P.S.: Theoretical analysis of stochastic search algorithms.
In: Marti, R., Pardalos, P., Resende, M. (eds.) Handbook of Heuristics, pp. 1–36.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-07153-4 35-1

https://doi.org/10.1007/978-3-642-22371-6_13
https://doi.org/10.1007/978-3-642-22371-6_13
https://doi.org/10.1007/978-3-642-33757-4_9
https://doi.org/10.1007/978-3-540-31856-9_4
https://doi.org/10.1007/978-3-642-16544-3
http://arxiv.org/abs/1806.00300
https://doi.org/10.1007/978-3-319-07153-4_35-1

28 D. Corus et al.

25. Graham, R.: Bounds on multiprocessing timing anomalies. SIAM J. App. Maths
17, 263–269 (1969)

26. Hochbaum, D.: Appromixation Algorithms for NP-Hard Problems. PWS Publish-
ing Company, Boston (1997)

27. Serfling, R.J.: Probability inequalities for the sum in sampling without replacement.
Ann. Stat. 39–48 (1974)

A Simple Proof for the Usefulness
of Crossover in Black-Box Optimization

Eduardo Carvalho Pinto1 and Carola Doerr2(B)

1 DreamQuark, Paris, France
2 Sorbonne Université, CNRS, LIP6, Paris, France

Carola.Doerr@lip6.fr

Abstract. The idea to recombine two or more search points into a new
solution is one of the main design principles of evolutionary computa-
tion (EC). Its usefulness in the combinatorial optimization context, how-
ever, is subject to a highly controversial discussion between EC practi-
tioners and the broader Computer Science research community. While
the former, naturally, report significant speedups procured by crossover,
the belief that sexual reproduction cannot advance the search for high-
quality solutions seems common, for example, amongst theoretical com-
puter scientists. Examples that help understand the role of crossover in
combinatorial optimization are needed to promote an intensified discus-
sion on this subject.

We contribute with this work an example of a crossover-based genetic
algorithm (GA) that provably outperforms any mutation-based black-
box heuristic on a classic benchmark problem. The appeal of our exam-
ples lies in its simplicity: the proof of the result uses standard mathe-
matical techniques and can be taught in a basic algorithms lecture.

Our theoretical result is complemented by an empirical evaluation,
which demonstrates that the superiority of the GA holds already for
quite small problem instances.

Keywords: Evolutionary computation · Crossover · Recombination
Runtime analysis

1 Introduction

Evolutionary Computation (EC) borrows inspiration from phenomena observed
in biological evolution processes. One of the fundamental design principles of EC
is crossover; i.e., the recombination of two or more candidate solutions into one
or several offspring. EC practitioners frequently report that crossover (which is
also referred to as sexual reproduction) brings significant performance gains. This
belief, however, is often challenged in the broader Computer Science (CS) com-
munity, and in particular in the subarea of Theoretical CS, yielding to very gen-
erally formulated statements that crossover cannot be beneficial in combinatorial
optimization. As an example we mention a quote by Christos Papadimitriou and

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 29–41, 2018.
https://doi.org/10.1007/978-3-319-99259-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_3&domain=pdf

30 E. C. Pinto and C. Doerr

colleagues, who formulated the claim that “Simulated annealing tends to work
quite well, but genetic algorithms do not”.1

In light of this discrepancy, it has been one of the main focus question in the
theory of EC community to contribute to a better understanding of when and
why crossover-based algorithms can perform better than purely mutation-based
ones. It seems quite notable that only very few examples exist where such an
effect can be rigorously proven.

1.1 Selected Theoretical Results on the Benefits of Crossover

We summarize a few selected results that prove an advantage of crossover in the
discrete black-box optimization context, and refer the interested reader to [16]
for an extended discussion. The first work observing a benefit of crossover-based
GAs over a standard evolutionary algorithm (EA) dates back to [11], where so-
called Jump functions are considered, in which algorithms are required to “jump”
a gap between local and global optima. As discussed in [3,16], several follow-
up works introduced similarly artificial problems to demonstrate an advantage
of crossover. The first classical combinatorial example for which recombination
could be shown to be beneficial was presented in [8]. In this work, a problem-
tailored crossover operation was shown to be advantageous for the all-pairs-
shortest-path problem.

These theoretical results, albeit being very appealing, do not answer the ques-
tion of how beneficial the use of crossover is in standard EAs, or for standard
benchmark problems. Starting with the work [14], the quest to prove advan-
tages of crossover for simple hill-climbing tasks has recently taken considerable
momentum. Sudholt proved that a greedy (μ + 1) GA with a diversity mech-
anism that avoids duplicates needs (1 + o(1)) e

2n ln n ≈ 1.359n ln n + o(n ln n)
function evaluations, on average, to optimize OneMax; the combinatorial opti-
mization problem asking to minimize the Hamming distance to an unknown bit
string z ∈ {0, 1}n. This runtime is better by a factor of two than the expected
(1 + o(1))en ln n optimization time of any evolutionary algorithm using only
standard bit mutation [15,17]. Sudholt also proved that the expected runtime of
the algorithm can be further reduced to approximately 1.19n ln n + o(n ln n) by
increasing the mutation rate from 1/n to (1 +

√
5)/(2n).

The results of [14] were generalized to less greedy (μ + 1) GAs in [16] and to
GAs avoiding the diversity mechanism in [3]. All these works show an advantage
of crossover-based (μ + 1) GAs over evolutionary algorithms using standard bit
mutation. They do not, however, beat the average performance of another very
common randomized optimization heuristic, Randomized Local Search (RLS).
The expected optimization time of RLS on OneMax is n ln(n/2) + γ n ± o(1),
with γ ≈ 0.5772156649 being the EulerMascheroni constant [4]. For a more
convincing argument in favor of crossover, one would like to have an example
for a crossover-based heuristic that outperforms not only mutation-based EAs
but also RLS as well as any other so-called unary unbiased black-box algorithm.

1 See, for example, here: https://www.simonsfoundation.org/2010/05/18/why-sex/.

https://www.simonsfoundation.org/2010/05/18/why-sex/

A Simple Proof for the Usefulness of Crossover 31

The notion of a unary unbiased black-box algorithm was introduced in [13] as a
model for purely mutation-based algorithms. While it was already proven in [13]
that any unary unbiased black-box algorithm has an expected optimization time
on OneMax of order at least n log n, a precise lower bound, which is n ln(n) −
cn ± o(n) for a constant c between 0.2539 and 0.2665, could be shown only
recently [7]. The expected optimization times proven in [3,14,16] are all by a
multiplicative factor of at least 1.19 larger than this bound.

In [9] it was shown that binary unbiased black-box algorithms exist that
achieve a linear expected optimization time on OneMax. While this can be seen
as a proof in favor of recombination, the algorithm is highly problem-tailored.
A more appealing example rigorously proving an advantage of crossover over
any unary unbiased black-box algorithm has been presented in [6]. The (1 +
(λ, λ)) GA uses only well-known and widely applied building blocks from the
EC literature (standard bit mutation, (biased) uniform crossover, and elitist
selection), but recombines them in a new way: by first mutating a best so-far
solution through standard bit mutation, the crossover operator becomes a “repair
mechanism”. For suitable parameter settings, the (1 + (λ, λ)) GA can achieve
linear expected optimization time on OneMax [5,6], and, by the lower bounds
of [7,13], therefore scales much more favorably with the problem dimension than
any unary unbiased black-box algorithm.

1.2 Our Results

In this work, we revisit the analysis of the greedy (μ + 1) GA with diversity
mechanism presented in [14]. Following the suggestion made in [1] we take a
more implementation-aware perspective on this algorithm, in that we do not
charge function evaluations for search points that are identical to one of their
direct ancestors. Put differently, we try to avoid creating such offspring, as they
do not provide any new information about the problem instance at hand. In the
absence of noise, this is how one would implement the (μ+λ) GA for all practical
purposes, cf. [1] for a discussion. We note that for the two variation operators
employed by the (μ + λ) GA, standard bit mutation and uniform crossover,
tracking whether or not an offspring equals one of its parents is very simple and
comes at almost no cost.

Quite surprisingly, we show that this simple modification yields performance
bounds that are strictly better than the above-mentioned n ln(n) − cn ± o(n)
lower bound valid for all unary unbiased black-box algorithms. More precisely,
we show that, for a suitably chosen mutation rate p, the modified greedy (μ +
1) GA with diversity mechanism achieves an 0.851..n ln(n) + o(n log n) expected
optimization time on OneMax. The proof of this result is surprisingly simple,
and can be taught in an undergraduate course.

2 The Greedy (µ + 1) GA

We present the crossover-based genetic algorithm (GA) for which we will prove
in Sect. 3 that it outperforms any mutation-based algorithm on the Hamming

32 E. C. Pinto and C. Doerr

distance problem OneMax. The algorithm is a (mild) modification of an algo-
rithmpreviously suggested for the studyof the effectiveness of crossover: the greedy
(μ + 1) GA presented in [14]. We present the original algorithm in Sect. 2.1, moti-
vate our modifications in Sect. 2.2, and describe the modified greedy (μ + 1) GA
in Sect. 2.3.

2.1 The Original Greedy (µ + 1) GA

The greedy (μ + 1) GA proposed by Sudholt in [14] is Algorithm 1 with lines
5 to 8 replaced by “Sample � from Bin(n, p)”. It maintains a population P of
μ individuals. P is initialized by sampling μ search points independently and
uniformly at random. Each iteration consists of two steps; a crossover step and
a mutation step. In the crossover step two parents x and y are selected uni-
formly at random (with replacement) from those individuals u ∈ P for which
f(u) = maxv∈P f(v) holds. From these two search points an offspring z′ is cre-
ated by uniform crossover cross(x, y), which samples a new search point by
choosing, independently for every position i ∈ [n] and uniformly at random,
whether to copy the entry of the first or the second argument. In the mutation
phase this offspring z′ is modified by standard bit mutation, which flips each
bit independently with some probability p ∈ (0, 1). The so-created offspring z is
evaluated. If z /∈ P and its fitness is at least as good as minv∈P f(v), it replaces
the worst individual in the population, ties broken uniformly at random. The
requirement z /∈ P is a so-called diversity mechanism.

From this description, we easily observe that from the whole population only
those with a best-so-far fitness value are relevant, the others are never selected for
reproduction, hence the attribute “greedy” in the name of this algorithm. When
there is only one search point of best-so-far function value, the crossover simply
creates a copy of this search point, and progress has to be made by mutation,
while in the case that at least two different search points with best-so-far fitness
exist, there is positive probability that crossover recombines these into a strictly
better solution. Sudholt proved that this probability is large enough for the
greedy (μ+1) GA to outperform its mutation-only analog, the (1+1) EA. More
precisely, it is shown in [14] that, for μ ≥ 2 and n ≥ 2, the expected optimization
time of the greedy (μ+1) GA on OneMax, i.e., the expected number of function
evaluations that the algorithm performs until it evaluates for the first time an
optimal solution, is at most

ln(n2p + n) + 1 + p

p(1 − p)n−1(1 + np)
+

8n

(1 − p)n
. (1)

As mentioned in the introduction, this bound was later generalized to a less
greedy variant of the (μ + 1) GA in [16] and to one avoiding the diversity mech-
anism in [3]. These generalizations are not relevant to this present work.

The bound in (1) is by a multiplicative factor of about 1/(1 + np) smaller
than the expected optimization time of the (1 + 1) EA. For p = 1/n this factor
evaluates to 1/2, showing that for this choice of p the greedy (μ+1) GA is about

A Simple Proof for the Usefulness of Crossover 33

a factor of two faster than the (1 + 1) EA. This advantage can be boosted by
choosing larger mutation rates. In fact, the expression in (1) is minimized for
p = (1 +

√
5)/(2n). With this mutation rate, the expected optimization time of

the greedy (μ + 1) GA on OneMax is at most 1.19n ln n + 35n. This is better
than the expected optimization time of the (1 + 1) EA, but worse than the
nHn/2 − 1/2 ≈ n ln(n) − 0.1159n + O(1) expected optimization time of RLS [4].

2.2 Standard Bit Mutation: Theory vs. Practice

When the offspring created in the crossover phase of the greedy (μ + 1) GA
equals one of its parents, the only source for a successful iteration is the standard
bit mutation operator applied in the mutation step. Standard bit mutation is
probably the most frequently used variation operator in evolutionary approaches
for the optimization of pseudo-Boolean problems f : {0, 1}n → R. We discuss
in this section that most EA practitioners do not take the literal definition of
standard bit mutation provided above too seriously, and implement a slightly
different variation operator instead.

We start our discussion by observing that for every mutation rate p ∈ (0, 1)
the probability that standard bit mutation merely creates a copy of the par-
ent individual is strictly positive. More precisely, the number � of bits that are
flipped by the standard bit mutation operator follows the binomial distribution
Bin(n, p). That is, for all k ∈ [0..n] := {0, 1, . . . , n} the probability to flip exactly
k bits equals

(
n
k

)
pk(1 − p)n−k. For k = 0 this expression evaluates to (1 − p)n.

The evaluation of copies, however, does not provide any new information about
the problem instance f , unless f is a dynamic function or its evaluation is noisy.

The question how to deal with these offspring disunites theoretical and empir-
ical research in evolutionary computation. While almost all theoretical runtime
results for evolutionary algorithms charge the algorithms for evaluating such
copies, the practitioner would typically not call the function evaluation for such
offspring. Two strategies are commonly used in practice. The first one, which is
the most common one for +-selection strategies, avoids to generate copies in the
first place, by sampling from a conditional distribution that assigns probability 0
to sampling the parent individual. An alternative strategy, that is more reason-
able for comma-selection, does include sampled copies of the parent individual
in the offspring population, but does not evaluate these as their function values
are already known. When the performance measure is based on counting func-
tion evaluations, both aforementioned strategies coincide for the (μ + 1)-type
algorithms considered in this work.

We now describe how the creation of copies can be avoided. To this end, we
first observe that a reasonable implementation of standard bit mutation would
first sample the number � of bits to flip, and then apply the mut� variation oper-
ator that flips � pairwise different, uniformly selected bits. As discussed above,
in the literal interpretation of standard bit mutation the number � is distributed
according to Bin(n, p). If we do not want to create copies, we only need to
change the distribution that we sample from. The most common implementa-
tion of standard bit mutation uses a resampling strategy in which � is sampled

34 E. C. Pinto and C. Doerr

Algorithm 1. The greedy (μ + 1) GAmod with mutation probability p for
the maximization of a given function f : {0, 1}n → R.

1 Choose x(1), . . . , x(μ) from {0, 1}n independently and u.a.r. and evaluate them;
2 for t = 1, 2, 3, . . . do
3 Choose x, y ∈ arg maxw∈P f(w) u.a.r. (with replacement);
4 if x �= y then z′ ← cross(x, y); else z′ ← x;
5 if z′ /∈ {x, y} then
6 Sample � from Bin(n, p);
7 else
8 Sample � from Bin>0(n, p);

9 Sample z ← mut�(z
′) and evaluate f(z);

10 if
(
z /∈ P and f(z) ≥ minw∈P f(w)

)
then

11 Choose v ∈ arg minw∈P f(w) u.a.r. and replace v by z;

from Bin(n, p) until a strictly positive value is sampled for the first time. Thus,
effectively, in this resampling approach, the mutation strength � is sampled from
the conditional binomial distribution Bin>0(n, p), which assigns to every k ∈ [n]
a probability of Bin(n, p)(k)/

∑∞
i=1 Bin(n, p)(i) =

(
n
k

)
pk(1−p)n−k/(1−(1−p)n).

2.3 The Modified Greedy (µ + 1) GA

We apply the resampling idea to the greedy (μ + 1) GA. To motivate this,
we briefly discuss the circumstances under which the solution created in the
crossover phase is identical to one of its parents. Note that only in this case we
need to enforce that at least one bit is flipped by the standard bit mutation, since
in the other case, the crossover may have successfully created a new solution that
is at least as good as its parents. When the population contains only one search
point of current-best function value, this one is (deterministically) selected twice
for the crossover step, so that the crossover operator cannot create diversity.
However, even in the presence of k > 1 different search points of best-so far
fitness, the probability to choose the same one twice equals 1/k.2 Furthermore,
it can happen that the parents are not identical, but the offspring copies one of
them. This event is also not unlikely: if we denote by d the Hamming distance
of the two selected parents x and y, the probability that the offspring created
by the uniform crossover cross equals either x or y is 1/2d−1. The situation
d = H(x, y) = 2 occurs quite frequently, resulting in a 1/2 probability that the
crossover reproduces one of the two parents. In all these cases, the chances to
make progress rely exclusively on the mutation phase.

2 See Sect. 3 for a discussion of the fact that sampling the parent without replacement
improves the expected optimization time of this algorithm on OneMax. We do not
apply this modified parent selection rule in the greedy (μ + 1) GAmod to highlight
that the main improvement stems from the modified mutation step.

A Simple Proof for the Usefulness of Crossover 35

Tracking whether or not the offspring created by crossover equals one of its
parents is very simple, and can be done efficiently while creating it. As argued
above, in such an event we would like to avoid that the mutation operator chooses
mutation strength � = 0. In line with common implementations of standard bit
mutation, we use the re-sampling strategy described in Sect. 2.2. With this re-
sampling strategy, the greedy (μ + 1) GA becomes Algorithm 1, which we refer
to as the greedy (μ + 1) GAmod.

3 Theoretical Investigation

Following very closely the proof of Theorem 2 in [14], it is not difficult to obtain
the following runtime statement, which is the main result of this paper.

Theorem 1. For n ≥ 2 and μ ≥ 2, the expected optimization time of the greedy
(μ+1) GAmod with mutation rate p on any OneMax function Omu : {0, 1}n →
[0..n], x �→ |{i ∈ [n] | xi = ui}| is at most

(1 − (1 − p)n)(ln(n2p + n) + 1 + p)
p(1 − p)n−1(1 + np)

+
8n

(1 − p)n
. (2)

Before presenting the proof for Theorem1, we first discuss its consequences,
and why it shows that the greedy (μ + 1) GAmod can hillclimb faster than any
unary unbiased black-box algorithm.

For mutation rate p = c/n, the upper bound (2) evaluates to

1 − (1 − c/n)n

c(1 − c/n)n−1(1 + c)
n ln(n) + Θ(n).

For large n, we can approximate the factor B(c, n) := 1−(1−c/n)n

c(1−c/n)n−1(1+c) in this

expression by A(c) := 1−exp(−c)
c exp(−c)(1+c) . Evaluating B(1, n) and minimizing A(c)

with respect to c gives the following result.

Corollary 1. For μ ≥ 2 the expected optimization time of the greedy (μ +
1) GAmod with mutation rate p = 1/n on OneMax is at most (1 +
o(1)) e−1

2 n ln(n) ≈ 0.859140914n ln(n) + o(n ln n) and for p = 0.773581/n it
is at most (1 + o(1))0.850953n ln(n).

By the result of [7], these two bounds are about 14 to 15% smaller than the
expected optimization time of any unary unbiased black-box algorithm. As far
as we know this is the first time that a “classic” GA is shown to outperform RLS
on OneMax—the only other evolutionary algorithm that we are aware of is the
(1 + (λ, λ)) GA with fitness-based [6] and self-adjusting [5] population size.

To study the convergence towards the mutation rate used in Corollary 1,
we summarize in the following table how the value of c that minimizes B(c, n)
changes with the problem dimension n. We also provide a numerical evaluation
of the factor B(1, n), the multiplicative factor of the n ln n term for the greedy
(μ + 1) GAmod with mutation rate p = 1/n.

36 E. C. Pinto and C. Doerr

n 10 100 500 1 000 5 000

c 0.783953 0.774577 0.773778 0.773679 0.773599

B(c, n) 0.831839 0.859091 0.850581 0.850766 0.850915

B(1, n) 0.840587 0.857340 0.858782 0.858961 0.859105

Proof (of Theorem 1). Following [14], we say that the algorithm is on fitness level
i if the best individual in the population has function value i. Like Sudholt, for
each i, we distinguish two cases.

Case i.1: there is exactly one search point x ∈ P with f(x) = i and for
all y ∈ P \ {x} it holds that f(y) < i. In this situation, the offspring z is the
outcome of standard bit mutation on x. The algorithm leaves this situation when
(a) f(z) > i or (b) f(z) = f(x) and z �= x. The probability for (a) to happen is
at least (n−i)p(1−p)n−1/(1−(1−p)n), since this is the probability that exactly
one of the zero bits is flipped in the mutation phase. Likewise, the probability of
event (b) is i(n−i)p2(1−p)n−2/(1−(1−p)n) ≥ i(n−i)p2(1−p)n−1/(1−(1−p)n).
Once the algorithm has left case i.1 it never returns to it. This is ensured by the
diversity mechanism, which allows to include z in the population only if it isn’t
there yet (line 10 of Algorithm 1). The total expected time spent in the cases
i.1, i = 0, . . . , n − 1 is therefore at most

1 − (1 − p)n

p(1 − p)n−1

n−1∑

i=0

1
(n − i)(1 + ip)

.

The same algebraic computations as in [14] show that this expression can be
bounded from above by

(1 − (1 − p)n)(ln(pn2 + n) + 1 + p)
p(1 − p)n−1(1 + np)

.

Case i.2: there are at least two different search points x and y with
f(x) = f(y) = i and, for all w ∈ P, f(w) ≤ i holds. For this case we can use
exactly the same arguments as Sudholt does for the original greedy (μ + 1) GA:
the probability to sample two different parents x �= y in the crossover step is
at least 1/2. Assuming that we are in this situation, it is not difficult to show
that the probability that the intermediate offspring z′ satisfies f(z′) > i is at
least 1/4, cf. [14] for an explicit proof. Conditioning on this event, we certainly
have z′ /∈ {x, y} so that the mutation strength � is therefore sampled from the
unconditional binomial distribution Bin(n, p). The probability to sample � = 0
equals (1−p)n. Putting everything together, we see that, starting in case i.2, the
total probability to leave fitness level i is at least (1 − p)n/8, so that the total
expected time spent in the cases i.2, i = 0, . . . , n − 1 is at most 8n/(1 − p)n.
�

The reader familiar with the notion of k-ary unbiased black-box algorithms
may wonder if the greedy (μ + 1) GAmod is unbiased, and of which arity it is.

A Simple Proof for the Usefulness of Crossover 37

We note without proof that it is unbiased, but that care has to be taken when
computing the arity of this algorithm. Line 10 of Algorithm1 seems to suggest
that the arity of this algorithm is μ + 1. Note however, that in particular for
the case μ = 2, only a mild modification of Algorithm1 is needed to obtain a
binary unbiased algorithm whose expected optimization time on OneMax also
satisfies the bound stated in Theorem 1. This not being the main focus of the
present work (rather are we interested in a simple example of a “classic” GA
that can be proven to outperform any unary unbiased black-box optimization
algorithm), we defer the details of this alternative to an extended journal version
of this work.

Additional Performance Gains. It is beyond the scope of this work to ana-
lyze the tightness of the upper bounds proven in Theorem1, and additional gains
may be possible by choosing different values for p. We also remark that RLSopt

(described below), the RLS-variant from [7] achieving the (up to lower order
term) optimal runtime among all unary unbiased black-box algorithms on One-
Max, uses fitness-dependent mutation rates. It is possible (and likely) that the
greedy (μ + 1) GAmod, as well, could profit further from choosing its mutation
rate in such an adaptive way. We have to leave this question for future work.

One may wonder why we have not abbreviated line 4 as “z′ ← cross(x, y)”,
regardless of whether or not x = y. This would of course give the same algorithm.
Our variant, however, makes it more explicit that it may happen that x = y is
sampled in line 3. As discussed above, when k := | arg maxw∈P f(w)| = 1, this
is always the case. But also for k > 1 this situation can occur, because the
sampling in line 3 uses replacement. If we focus, for a moment on the situation
μ = 2, then one might argue that it is more “natural” to do a crossover of
both parents in line 4, provided that they have the same function value. More
generally, one would want to enforce x �= y whenever k > 1. This modification
does not affect the cases i.1 in the proof of Theorem1, but it does increase the
success probability of the cases i.2 by a multiplicative factor of 2. With this
observation, we easily see that the additive 8n

(1−p)n term in the runtime bounds
for the (μ + 1) GA and the greedy (μ + 1) GAmod with mutation rate p can be
replaced by 4n

(1−p)n .

4 Empirical Evaluation

Complementing the theoretical results above, we now investigate the performance
of the greedy (2 + 1) GAmod on OneMax by empirical means, to shed light on its
behavior for small dimensions. As we shall see, our experiments confirm a consid-
erable advantage of the greedy (2+1) GAmod over RLS already for small problem
dimensions. We use this section also to compare the greedy (2 + 1) GAmod with
another crossover-based genetic algorithm, the self-adjusting (1+ (λ, λ)) GA sug-
gested in [6]. For a fair comparison, we modify the (1 + (λ, λ)) GA in the same
spirit in which we have modified the greedy (μ + 1) GA. Finally, we also provide
a comparison with RLSopt, the RLS variant that in each iteration chooses the

38 E. C. Pinto and C. Doerr

drift-maximizing mutation strength. We briefly describe these two algorithms
before we present our empirical findings.

Modifying the (1 + (λ, λ)) GA. It was shown in [5] that the (1 + (λ, λ)) GA
achieves a linear optimization time on OneMax when equipped with a self-
adjusting choice of the offspring population size. No static parameter choice can
achieve this performance [5] and experimental results presented in [6] suggest
that already for n ≥ 1 500 the self-adjusting choice of the population size out-
performs any static one.

For reasons of space, we cannot discuss the algorithm in great detail and
refer the reader to [5] for a discussion of the self-adjusting (1 + (λ, λ)) GA. In
line with our modifications of the greedy (μ+1) GA, we change the original (1+
(λ, λ)) GA by choosing the mutation strength � from the conditional Bin>0(n, p)
distribution (instead of sampling from Bin(n, p)) and by not evaluating those
offspring created in the crossover phase that are identical to one of their two
direct parents.

As in the original self-adjusting (1 + (λ, λ)) GA we use a mutation rate of
p = λ/n, a crossover bias c = 1/λ, and update strength F = 3/2. With this
parametrization, the probability of the original (1 + (λ, λ)) GA to sample a
mutation strength � = 0 equals (1 − λ/n)n ≈ exp(−λ). A choice of � = 0 results
in an entirely useless iteration that costs 2λ function evaluations. Note further
that particularly in the beginning (λ is close to one) but also in the last steps of
the optimization process (λ approaches

√
n), the probability that an offspring

created from cross1/λ(x, y) equals x or y is fairly large. It is therefore not surpris-
ing that our modified (1+(λ, λ)) GAmod indeed corresponds to how practitioners
have implemented the (1 + (λ, λ)) GA for an empirical evaluation [10].

None of our modifications can influence the asymptotic order of the opti-
mization time, since the linear performance of the original (1 + (λ, λ)) GA is
already asymptotically optimal [5]. What we do observe, however, is that our
modifications have a non-trivial impact on the leading constant.

RLS with Fitness-Dependent Mutation Strengths. RLSopt is the (1+1)-
type heuristic which in every iteration creates one offspring y from the parent x
by flipping a number of bits that is chosen to maximize the expected progress
towards the optimum. y replaces x if it is at least good; i.e., if f(y) ≥ f(x) holds.

It was proven in [7] that this drift maximizer is (almost) optimal among all
unary unbiased black-box algorithms. More precisely, it is shown that the per-
formance of any unary unbiased algorithm can be better by at most an additive
o(n) term.

To run RLSopt in our experiments, we have computed, for every tested dimen-
sion n and every fitness value v ∈ [0..n − 1] the value �∗

n,v that maximizes the
expected drift

B(n, v, �) := E[max{Om(y) − Om(x), 0} | Om(x) = v, y = mut�(x)]

=
�∑

i=��/2�

(
n−v

i

)(
v

�−i

)
(2i − �)

(
n
�

) , (3)

A Simple Proof for the Usefulness of Crossover 39

i.e., we do not work with the approximation proposed in [7] but the original drift
maximizer.

Experimental Results. Figure 1 shows experimental data for the performance
of the aforementioned algorithms on OneMax, for n ranging from 500 to 5 000.
The (1 + (λ, λ)) GA and the (1 + (λ, λ)) GAmod use self-adjusting λ values,
and for the greedy (2 + 1) GAmod we use mutation rate 0.773581/n and the
variant that recombines both parents if their function values are identical. In
the reported ranges, the expected performance of the original greedy (2+1) GA
from [14] with mutation rate p = (1 +

√
5)/(2n) is very similar to that of the

self-adjusting (1 + (λ, λ)) GA (cf. Fig. 8 in [6]); we do not plot these data points
to avoid an overloaded plot. Detailed statistical information for Fig. 1 can be
found in [2]. We observe that both the (1 + (λ, λ)) GAmod as well as the greedy
(2 + 1) GAmod are better than RLSopt already for quite small problem sizes.
We also observe that, in line with the theoretical bounds, the advantage of the
(1 + (λ, λ)) GAmod over the greedy (2 + 1) GAmod and over RLSopt increases
with the problem size.

Fig. 1. Average runtimes for 100 independent runs of the respective algorithms on
OneMax for different problem sizes n.

5 Conclusions

We have presented a simple example of a crossover-based heuristic that performs
better than any unary unbiased black-box algorithm on the OneMax benchmark
function. The mathematical proof is surprisingly easy, and raises the question
why the result has been previously overlooked, despite the considerable attention
that the usefulness of crossover question has received in the runtime analysis
community.

40 E. C. Pinto and C. Doerr

The main idea behind our proof is a more careful performance evaluation. We
therefore believe that the discussion how to measure the efficiency of an evolu-
tionary algorithm, which had previously been suggested in [12], should be taken
more seriously, in particular in light of the significant increase in the precision
of state-of-the-art runtime results. We believe this question to be particularly
relevant for the comparison of evolutionary algorithms with other standard opti-
mization approaches like local search.

The proof of Theorem1 does not invoke any involved mathematical machin-
ery, and can be taught to undergraduate students. We hope that this makes it
an appealing example for the discussion on the role of sexual reproduction in
combinatorial optimization.

Acknowlegement. We thank the anonymous reviewers of this paper for their con-
structive feedback, which has helped us to improve the presentation of our main result.
This research benefited from the support of the FMJH Program Gaspard Monge in
optimization and operation research, and from the support to this program from EDF.

References

1. Pinto, E.C., Doerr, C.: Discussion of a more practice-aware runtime analysis for
evolutionary algorithms. In: EA 2017, pp. 298–305 (2017)

2. http://www-desir.lip6.fr/∼doerr/CarvalhoDoerr-PPSN18-Crossover.pdf
3. Corus, D., Oliveto, P.S.: Standard steady state genetic algorithms can hillclimb

faster than mutation-only evolutionary algorithms. IEEE Trans. Evol. Comput.
(2018, to appear)

4. Doerr, B., Doerr, C.: The impact of random initialization on the runtime of ran-
domized search heuristics. Algorithmica 75, 529–553 (2016)

5. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the
(1 + (λ, λ)) genetic algorithm. Algorithmica 80, 1658–1709 (2018)

6. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theor. Comput. Sci. 567, 87–104 (2015)

7. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box
analysis. In: GECCO 2016, pp. 1123–1130. ACM (2016)

8. Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolutionary
computation. Theor. Comput. Sci. 425, 17–33 (2012)

9. Doerr, B., Johannsen, D., Kötzing, T., Lehre, P.K., Wagner, M., Winzen, C.: Faster
black-box algorithms through higher arity operators. In: FOGA 2011, pp. 163–172.
ACM (2011)

10. Goldman, B.W., Punch, W.F.: Fast and efficient black box optimization using
the parameter-less population pyramid. Evol. Comput. 23, 451–479 (2015).
https://github.com/brianwgoldman?tab=repositories

11. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms - a proof that
crossover really can help. Algorithmica 34, 47–66 (2002)

12. Jansen, T., Zarges, C.: Analysis of evolutionary algorithms: from computational
complexity analysis to algorithm engineering. In: FOGA 2011, pp. 1–14. ACM
(2011)

13. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64,
623–642 (2012)

http://www-desir.lip6.fr/~doerr/CarvalhoDoerr-PPSN18-Crossover.pdf
https://github.com/brianwgoldman?tab=repositories

A Simple Proof for the Usefulness of Crossover 41

14. Sudholt, D.: Crossover speeds up building-block assembly. In: GECCO 2012, pp.
689–702. ACM (2012)

15. Sudholt, D.: A new method for lower bounds on the running time of evolutionary
algorithms. IEEE Trans. Evol. Comput. 17, 418–435 (2013)

16. Sudholt, D.: How crossover speeds up building block assembly in genetic algo-
rithms. Evol. Comput. 25, 237–274 (2017)

17. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Comb. Probab. Comput. 22, 294–318 (2013)

Destructiveness of Lexicographic
Parsimony Pressure and Alleviation

by a Concatenation Crossover in Genetic
Programming

Timo Kötzing1, J. A. Gregor Lagodzinski1, Johannes Lengler2,
and Anna Melnichenko1(B)

1 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
2 ETH Zürich, Zürich, Switzerland

anna.melnichenko@hpi.de

Abstract. For theoretical analyses there are two specifics distinguish-
ing GP from many other areas of evolutionary computation. First, the
variable size representations, in particular yielding a possible bloat (i.e.
the growth of individuals with redundant parts). Second, the role and
realization of crossover, which is particularly central in GP due to the
tree-based representation. Whereas some theoretical work on GP has
studied the effects of bloat, crossover had a surprisingly little share in
this work.

We analyze a simple crossover operator in combination with local
search, where a preference for small solutions minimizes bloat (lexico-
graphic parsimony pressure); the resulting algorithm is denoted Con-
catenation Crossover GP. For this purpose three variants of the well-
studied Majority test function with large plateaus are considered. We
show that the Concatenation Crossover GP can efficiently optimize these
test functions, while local search cannot be efficient for all three variants
independent of employing bloat control.

1 Introduction

Genetic Programming (GP) is a field of Evolutionary Computing (EC) where
the evolved objects encode programs. Usually a tree-based representation of
a program is iteratively improved by applying variation operators (mutation
and crossover) and selection of suitable offspring according to their quality (fit-
ness). Most other areas of EC deal with fixed-length representations, whereas
the tree-based representation distinguishes GP. This representation of variable
size leads to one of the main problems when applying GP: bloat, which describes
an unnecessary growth of representations. Solutions may have many redundant
parts, which could be removed without afflicting the quality, and search is slowed
down, wasted on uninteresting areas of the search space.

In this paper we study GP from the point of view of run time analy-
sis. While many previous theoretical works analyzed mutational GP with the
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 42–54, 2018.
https://doi.org/10.1007/978-3-319-99259-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_4&domain=pdf

Destructiveness of Lexicographic Parsimony Pressure 43

offspring produced by varying a single parent, we analyze a GP algorithm
employing a simple crossover with the offspring produced from two parents.
Although our crossover is far from practical applications of GP (it merely con-
catenates the two parent trees), this simple setting aims at understanding the
interplay between (our variant of) crossover, the problem of bloat and lexico-
graphic parsimony pressure, a method for bloat control introduced in [14]. Other
theoretical work in GP has analyzed different problems and phenomena, in par-
ticular for the Probably Approximately Correct (PAC) learning framework [10],
the Max-Problem [5,11,13] as well as Boolean functions [15,16,18].

For the effects of bloat in the sense of redundant parts in the tree, we draw
on previous theoretical works that analyzed this phenomenon, especially [2,19].
In these, the fitness function Majority as introduced in [6] was analyzed. Indi-
viduals for Majority are binary trees, where each inner node is labeled J
(short for join, but without any associated semantics) and leaves are labeled
with variable symbols; we call such trees GP-trees. The set of variable sym-
bols is {x1, . . . , xn} ∪ {x1, . . . , xn}, for some n. In particular, variable symbols
are paired: xi is paired with xi. For Majority, we call a variable symbol xi

expressed if there is a leaf labeled xi and there are at least as many leaves
labeled xi as there are leaves labeled xi; the positive instances are in the major-
ity. The fitness of a GP-tree is the number of its expressed variable symbols
xi. This setting captures two important aspects of GP: variable length repre-
sentations and that any given functionality can be achieved by many different
representations. However, the tree-structure, typically crucial in GP problems,
is completely unimportant for the Majority function.

Table 1. Overview of the results of the paper. A check mark denotes optimization in
polynomial time with high probability, a cross denotes superpolynomial optimization
time. A check mark with a subscript e denotes the results obtained experimentally.

Problem class Local search Crossover

w/bloat control w/o bloat control w/bloat control

+c-Majority × Theorem 1 e Figure 2 Theorem 10

2/3-Majority Theorem 2 e Figure 2 Theorem 10

2/3-SuperMajority Theorem 5 × Theorem 6 Theorem 13

We know that Majority can be efficiently optimized by a mutational GP
called (1 + 1) GP (see Algorithm 1 for details, basically performing a random-
ized local search). This holds in the case preferring shorter representations by
lexicographic parsimony pressure, as shown in [19], as well as in the case without
such preference [2]. Similar to recent literature on theory of GP, we will consider
lexicographic parsimony pressure as our method of bloat control and henceforth
only speak of bloat control to denote this method. We note, however, that the
GP literature knows many more methods for controlling bloat which is beyond
the scope of our theoretical analysis.

44 T. Kötzing et al.

In addition to weighted versions of Majority, another, similar fitness func-
tion Order (see also [3,20]) has been considered, but neither of these provide
us with a strong differences in the optimization behavior of different GP algo-
rithms. Thus, we propose three variants of Majority, called +c-Majority,
2/3-Majority and 2/3-SuperMajority, which negatively affect the optimiza-
tion of certain GP algorithms.

For +c-Majority a variable is expressed if its positive literals are not only
in the majority, but also there has to be at least c more positive than negative
literals. On the one hand, we show that a random GP-tree with a linear number
of leaves expresses any given variable with constant probability . On the other
hand, with constant probability such a tree has a majority of negative literals
of any given variable (indeed, there is a constant probability that the variable
has neither positive nor negative literals in the GP-tree). This yields a plateau
of equal fitness which can only be overcome by adding c positive literals, i.e.,
we need a rich set of neutral mutations that allow genetic drift to happen.
Bloat control suppresses this genetic drift by biasing the search towards smaller
solutions. Specifically, it may not allow to add positive literals one by one, which
results in an infinite run time (see Lemma 1). Note that allowing the local search
to add c leaves at the same time still results only in a small chance of O(n−c)
of jumping the plateau. Hence, the +c-Majority fitness function serves as an
example where bloat control explicitly harms the search.

For 2/3-Majority, a variable is expressed if its positive literals hold a 2/3
majority, i.e., if 2/3 of all its literals are positive. The fitness associated with 2/3-
Majority is the number of expressed variables while for 2/3-SuperMajority
each expressed variable contributes a score between 1 and 2, where larger majori-
ties give larger scores (see Sect. 2 for details). The variant 2/3-SuperMajority
is utilized to aggravate the effect of bloat since it rewards large numbers of (pos-
itive) literals. We show that local search with bloat control is efficient for these
two problems (Theorems 2 and 5). However, without bloat control local search
fails on 2/3-SuperMajority due to bloat (see Theorem 6).

Regarding optimization without bloat control, we obtain experimental results
as depicted in Fig. 2. They provide a strong indicator that, when no bloat con-
trol is applied, optimization of +c-Majority is efficient, in contrast to the case
of bloat control. The trend for 2/3-Majority indicates that optimization pro-
ceeds significantly more slowly without bloat control than with bloat control.
Nevertheless, optimization seems to be feasible in contrast to the case of 2/3-
SuperMajority.

Subsequently, we study a simple crossover which works as follows. The algo-
rithm maintains a population of λ individuals, which are initialized randomly
before a local search with bloat control is performed for a number of iterations.
As a local search we employ the (1 + 1) GP, a simple mutation-only GP which
iteratively either adds, deletes, or substitutes a vertex of the tree. We employ this
algorithm for a number of rounds large enough to ensure that each vertex of the
tree has been considered for deletion at least once with high probability, which
aims at controlling bloat. Afterwards, the optimization proceeds in rounds; in

Destructiveness of Lexicographic Parsimony Pressure 45

each round, each individual t0 is mated with a random other individual t1 by
joining t0 and t1 to obtain a tree t′ which contains both t0 and t1; then local
search is performed on t′ as before yielding a tree t′′. If t′′ is at least as fit as
t0, we replace t0 in the population by t′′. The algorithm is called Concatenation
since it joins two individuals, which is basically a concatenation. It is different
from other approaches for memetic crossover GP as found, for example, in [4].
Note that this crossover is very different from GP crossovers found in the lit-
erature because of its almost complete disregard for the tree structure of the
individuals. However, this crossover already highlights some benefits which can
be obtained with crossover, and it has the great advantage of being analyzable.

We show that the Concatenation Crossover GP with bloat control efficiently
optimizes all three test functions +c-Majority, 2/3-Majority as well as 2/3-
SuperMajority, due to its ability to combine good solutions (see Theorem10).
We summarize our findings in Table 1.

In Sect. 2 we state the formal definitions of algorithms and problems, as well
as the mathematical tools we use. Section 3 gives the results for local search with
bloat control, Sect. 4 for local search without bloat control and Sect. 5 for the
Concatenation Crossover GP. In Sect. 6 we show and discuss our experimental
results, before Sect. 7 concludes the paper.

Due to space restrictions, we only provide sketches for the proofs. A full
version of the paper can be found at https://arxiv.org/abs/1805.10169.

2 Preliminaries

For a given n we let [n] = {1, . . . , n} be the set of variables. The only non-
terminal (function symbol) is J of arity 2; the terminal set X consists of 2n
literals, where xi is the complement of xi:

F := {J}, J has arity 2, X := {x1, x1, . . . , xn, xn}.

For a GP-tree t, we denote by S(t) the set of leaves in t. By S+
i (t) and S−

i (t)
we denote the set of leaves that are xi-literals and xi-literals, respectively, and by
Si(t) := S+

i (t)∪S−
i (t) we denote the set of all i-literals. By S+(t) :=

⋃n
i=1 S+

i (t)
and S−(t) :=

⋃n
i=1 S−

i (t) we denote the set of all positive and negative leaves,
respectively. We denote the sizes of all these sets by the corresponding lower case
letters, i.e., s(t) := |S(t)|, si(t) := |Si(t)|, etc. In particular, we refer to s(t) as
the size of t.

On the syntax trees, we analyze the problems +c-Majority, 2/3-Majority,
and 2/3-SuperMajority, which are defined as

+c-Majority := |{i ∈ [n] | s+i ≥ s−
i + c}| ;

2/3-Majority := |{i ∈ [n] | si ≥ 1 and s+i ≥ 2
3si}| ;

2/3-SuperMajority :=
n∑

i=1

fi, where fi :=

{
0 , if si = 0 or s+i < 2

3si,

2 − 2s−
i −s+

i , otherwise.

https://arxiv.org/abs/1805.10169

46 T. Kötzing et al.

We call a variable contributing to the fitness expressed. Since both +c-
Majority and 2/3-Majority count the number of expressed variables, they
take values between 0 and n. The function 2/3-SuperMajority is similar to
2/3-Majority, but if a 2/3 majority is reached 2/3-SuperMajority awards a
bonus for larger majorities: the term fi grows with the difference s+i − s−

i . Since
fi ≤ 2, the function 2/3-SuperMajority takes values in [0, 2n]. Note that the
value 2n can never actually be reached, but can be arbitrarily well approximated.

In this paper we consider simple mutation-based genetic programming algo-
rithms which use a modified version of the Hierarchical Variable Length (HVL)
operator [21,22] called HVL-Prime as discussed in [3]. HVL-Prime allows trees
of variable length to be produced by applying three different operations: insert,
delete and substitute (see Fig. 1). Each application of HVL-Prime chooses one
of these three operations uniformly at random. We note that the literature also
contains variants of the mutation operator that apply several such operations
simultaneously (see [3,20]).

Given a GP-tree t, mutate t by applying HVL-Prime. For each application, choose
uniformly at random one of the following three options.

substitute Choose a leaf uniformly at random and substitute it with a leaf in X
selected uniformly at random.

insert Choose a node v ∈ X and a leaf u ∈ t uniformly at random. Substitute
u with a join node J , whose children are u and v, with the order of the
children chosen uniformly at random.

delete Choose a leaf u ∈ t uniformly at random. Let v be the sibling of u. Delete
u and v and substitute their parent J by v.

Fig. 1. Mutation operator HVL-Prime.

The first algorithm we study is the (1 + 1) GP. The algorithm is initialized
with a tree generated by sinit random insertions. Afterwards, it maintains the
best-so-far individual t. In each round, it creates an offspring of t by mutation.
This offspring is discarded if its fitness is worse than t, otherwise it replaces t.
We recall that the fitness in the case with bloat control contains the size as a
second order term. Algorithm 1 states the (1 + 1) GP more formally.

Algorithm 1. (1 + 1) GP with mutations according to Figure 1
1 Let t be a random initial tree of size sinit;
2 while optimum not reached do
3 t′ ← mutate(t);
4 if f(t′) ≥ f(t) then t ← t′;

Destructiveness of Lexicographic Parsimony Pressure 47

2.1 Crossover

The second algorithm we consider is population-based. When introduced by
Koza [12], Genetic Programming used fitness-proportionate selection and a
genetic crossover, however mutation was hardly considered. In subsequent works
many different setups for the crossover operator were introduced and studied. For
instance, in [21] combinations of GP with local search in the form of mutation
operators were studied and yielded better performance than GP.

Usually, two parents (a current solution and a mate) are used to generate
a number of offspring. These offspring are a recombination of the alleles from
both parents derived in a probabilistic manner. By modeling each individual as
a GP-tree, a crossover-point in both parents is decided upon due to a heuristic
and the subtrees attached to these points are exchanged creating new GP-trees.

In the Crossover hill climbing algorithm first described by Jones [7,8] only one
GP-tree is created from the current solution and a random mate. This offspring
is evaluated and replaces the current solution if the fitness is not worse.

We consider the following simple crossover: the Concatenation Crossover GP
working as follows (see also Algorithm 2). For a fixed population of GP-trees,
each GP-tree is chosen to be the parent once. For each parent we choose a mate
uniformly at random from the population and create one offspring by joining
the two trees using a new join-node. Before evaluating the offspring, we employ
a local search in the form of the (1 + 1) GP with bloat control. This local search
is performed for a fixed amount of iterations before we discard the GP-tree with
worse fitness. The fixed amount depends on the size of the tree and ensures the
absence of redundant leaves with high probability (see Lemma11). We note that
the amount of redundant leaves depends on the function to be optimized. The
functions we studied are variants of Majority, for other functions the amount
of iterations ensuring the absence of redundant leaves might be different.

The initial population is generated by creating λ random trees of size sinit
and employing the local search on each of them. We then proceed in rounds of
crossover as described above. We note that we assume all crossover operations
to be performed in parallel. Hence, the new population is based entirely on the
old population and not partially on previously generated individuals of the new
generation.

2.2 Terminology

For the analysis, it will be helpful to partition the set of leaves into three classes
as follows. The set C+(t) ⊆ S+(t) of positive critical leaves is the set of leaves
u, whose deletion from the tree results in a decreased fitness. Similarly, the set
C−(t) ⊆ S−(t) of negative critical leaves is the set of leaves u, whose deletion
from t results in an increased fitness. Finally, the set R(t) := [n]\(C+(t) ∪ C−(t))
of redundant leaves is the set of all leaves u, whose deletion from t does not affect
the fitness. Similar as before, we denote c−(t) = |C−(t)|, c+(t) = |C−(t)|, and
r(t) = |R(t)|.

48 T. Kötzing et al.

Algorithm 2. Concatenation Crossover-GP
1 Let LS(t) denote local search by the (1 + 1) GP with bloat control on tree t for

90s log s steps, where s is the number of leaves in t;
2 for i = 1 to λ do
3 Let ti be a random initial tree of size sinit;
4 ti ← LS(ti);

5 while optimum not reached do
6 for i = 1 to λ do
7 Choose m ∈ {1, . . . , λ} \ {i};
8 t′

i ← join(ti, tm);
9 t′′

i ← LS(t′
i);

10 if f(t′′
i) ≥ f(ti) then ti ← t′′

i ;

Given a time τ ≥ 0, we denote by tτ the GP-tree after τ iterations of
the algorithm. Additionally, we use S(τ), s(τ), Si(τ), . . . in order to denote
S(tτ), s(tτ), Si(tτ), Moreover, we apply the standard Landau notation O(·),
o(·), Ω(·), ω(·), Θ(·) as detailed in [1].

3 (1+1) GP with Bloat Control

In this section we study how local search with bloat control performs on the given
fitness functions. Theorem 1 shows that for small initial trees +c-Majority
cannot be efficiently optimized, while Theorem 2 shows that this is possible for
2/3-Majority. Finally, Theorem 5 considers 2/3-SuperMajority.

Theorem 1. Consider the (1+ 1) GP on +c-Majority with bloat control on
the initial tree with size sinit < n. If c > 1, with probability equal to 1, the
algorithm will never reach the optimum.

The proof is based on an optimal GP-tree for +c-Majority needing cn
leaves, but bloat control does not allow to add leaves without fitness gain.

Next we state the upper bound for the performance on 2/3-Majority. The
proof of Theorem2 is almost identical to the one of Theorem 4.1 in [2], the
bounds stated in Lemma 4.2 and Lemma 4.1 in [2] need to be suitably adjusted,
since these do not hold for 2/3-Majority.

Theorem 2. Consider the (1+ 1) GP on 2/3-Majority with bloat control on
the initial tree with size sinit. The expected time until the algorithm computes the
optimum is in O(n log n + sinit).

Corollary 3. Consider the (1+ 1) GP on 2/3-Majority with bloat control on
the initial tree with size sinit < n. The expected time until the algorithm computes
the optimum is in O(n log n).

Destructiveness of Lexicographic Parsimony Pressure 49

We turn to 2/3-SuperMajority with Theorem 5. The proof is based on the
following lemma showing that redundant leaves will be removed with sufficient
probability. Hence, insertions of positive literals can increase fitness.

Lemma 4. Consider the (1+ 1) GP on 2/3-SuperMajority with bloat control
with n ≥ 55 on the initial tree with size sinit < n. With probability at least
1 − (τ/(n log2 n))−1/(1+4/

√
log n) the algorithm will delete any given negative leaf

of the initial tree within τ ≥ n log2 n rounds. For a positive redundant leaf, with
the same probability it will either be deleted or turned into a positive critical leaf.

Theorem 5. Consider the (1+ 1) GP on 2/3-SuperMajority with bloat con-
trol on an initial tree with size sinit < n, and let ε > 0. Then, the algorithm will
express every literal after n2+ε iterations with probability 1 − o(1).

4 (1+1) GP Without Bloat Control

In this section we study the fitness function 2/3-SuperMajority, which facil-
itates bloat of the string.

Theorem 6. For any constant ν > 0, consider the (1+ 1) GP without bloat
control on 2/3-SuperMajority on the initial tree with size sinit = νn. There
is ε = ε(ν) > 0 such that, with probability 1 − o(1), an ε−fraction of the indices
will never be expressed. In particular, the algorithm will never reach a fitness
larger than (2 − 2ε)n.

We commence with some preparatory lemmas before proving the theorem.
First, we analyze how the size of the GP-tree evolves over time. We recall that
s(τ) is the number of leaves of the GP-tree at time τ .

Lemma 7. There is a constant 0 < η ≤ 1 such that, with probability 1 − o(1),
for all τ ≥ 0 we have s(τ) ≥ ητ .

In order to continue we need some more terminology. For an index i ∈ [n],
we recall that s+i (τ) and s−

i (τ) denote the number of xi- and xi-literals at time
τ , respectively, and si(τ) := s+i (τ) + s−

i (τ). We call index i touched in round τ ,
if a literal xi or xi is deleted, inserted or substituted, or if a literal is substituted
by xi or xi. We call the touch increasing if it is either an insertion or if a literal
is substituted by xi or xi. We call the touch decreasing if it is a deletion or
substitution of a xi or xi literal. We note that in exceptional cases a substitution
may be both increasing and decreasing. Let ρi(τ) be the number of increasing
touches of i up to time τ . We call a decreasing step critical if it happens at time
τ with si(τ) ≤ ητ/(4n), and we call γi(τ) the number of critical steps up to time
τ . Finally, we call a round accepting if the offspring is accepted in this round.

The approach for the remainder of the proof is as follows. First, we will show
that in the regime, where critical steps may happen (i.e, si(τ) ≤ ητ/(4n)), it is
more likely to observe increasing than decreasing steps. The reason is that a step
is only critical if there are relatively few i-literals, in which case it is unlikely to

50 T. Kötzing et al.

delete or substitute one of them, whereas the probability to insert an i-literal
is not affected. It will follow that si(τ) grows with τ , since otherwise we would
need many critical steps. Finally, if si(τ) keeps growing it becomes increasingly
unlikely to obtain a 2/3 majority. In order to state the first points more precisely
we fix a j0 ∈ N and call an index i bad (or more precisely, j0-bad) if the following
conditions hold: for all τ ≥ j0n and τ0 := j0n

(A) s+i (τ0) ≤ s−
i (τ0) ≤ j0 (B) τ/(2n) ≤ ρi(τ) ≤ 2τ/n

(C) γi(τ) ≤ 2τ/n (D) si(τ) ≥ ητ/(8n).

In particular, in (A) xi is not expressed at time τ0.

Lemma 8. For every fixed i0 > 0, with probability 1 − o(1) there are Ω(n) bad
indices.

Lemma 9. Every bad index has probability Ω(1) that it is never expressed, inde-
pendent of the other bad indices.

We note that Lemmas 8 and 9 imply Theorem 6 by a straightforward application
of the Chernoff bound.

5 Concatenation Crossover GP

In the following we will study the performance of the Concatenation Crossover
GP (Algorithm 2) on +c-Majority and 2/3-Majority with bloat control. As
observed in Theorem 1 the (1 + 1) GP with bloat control may never reach the
optimum when optimizing an initial tree of size sinit < n. We will deduce that
crossover solves this issue and the algorithm reaches the optimum fast. We com-
mence this section by stating the exact formulation of the mentioned result in
Theorem 10 followed by an outline of its proof. Finally, we show the correspond-
ing result for 2/3-SuperMajority in Theorem 13.

Theorem 10. Consider the Concatenation Crossover GP on +c-Majority or
2/3-Majority with bloat control on the initial tree with size 2 ≤ n/2 ≤ sinit ≤
b n (for constant b > 0). Then there is a constant cλ > 0 such that for all
cλ log n ≤ λ ≤ n2, with probability in (1 − O(n−1)), the algorithm reaches the
optimum after at most O(n log3(n)) steps.

The following two auxiliary lemmas are used to proof the theorem. Here,
they serve towards an outline of the proof. First, Lemma11 states the absence
of redundant leaves in a GP-tree t after the local search with a probability of
1 − n−5. This will be applied after every local search. We observe for two GP-
trees t1 and t2 without redundant leaves: if t′ is the tree resulting from joining
t1 and t2, then a variable i ∈ [n] is expressed in t′ if and only if it is expressed
in t1 or t2.

Second, Lemma 12 states that, with a probability of 1−n−5, each variable i ∈
[n] is expressed in at least one of λ/2 trees before the first crossover. Combining
both lemmas, for a fixed GP-tree t it will suffice to observe the time until t has
been joined with at least λ/2 different trees.

Destructiveness of Lexicographic Parsimony Pressure 51

Lemma 11. Consider the (1+ 1) GP with bloat control on either +c-Majority
or 2/3-Majority. For an initial tree with size 2 ≤ n/2 ≤ sinit ≤ bn (for
constant b > 0) after 90sinit log(sinit) iterations, with probability at least 1−n−5,
the current solution will have no redundant leaves.

Lemma 12. Consider the Concatenation Crossover GP on +c-Majority or
2/3-Majority with bloat control on initial trees with size 2 ≤ n/2 ≤ sinit ≤ b n
(for constant b > 0). Then there is a constant cλ > 0 such that for all λ ≥
cλ log n, with probability at least 1 − n−5, each variable will be expressed in at
least one of λ/2 trees before the first crossover.

Finally, we turn to 2/3-SuperMajority. For the proof we use a result from
the area of rumor spreading relating to the pull protocol [9,17] in order to study
the time until every individual of the population has every variable expressed.
The idea here is similar to previous proofs with crossover: expressed variables
can be collected with crossover. For this purpose we show that the number of xi

in individuals, which have a variable i expressed, is asymptotically larger than
the number of xi in individuals, which do not have i expressed.

Theorem 13. Consider the Concatenation Crossover GP without substitutions
with bloat control with initial tree size sinit = n/2 on 2/3-SuperMajority.
Then there is a constant cλ > 0 such that, for λ = cλ log n, each GP-tree in
the population has all variables expressed after at most O(n1+o(1)) steps with
probability at least 1 − O(n−4).

6 Experiments

This section is dedicated to complementing our theoretical results with experi-
mental justification for the otherwise open cells of Table 1, i.e. for the (1 + 1) GP
without bloat control on +c-Majority and 2/3-Majority.

All experimental results shown in Fig. 2 are box-and-whiskers plots, where
lower and upper whiskers are the minimal and maximal number of fitness eval-
uations the algorithm required over 100 runs until all variables are expressed or
the time limit of 1000000 evaluations is reached. The middle lines in each box
are the median values (the second quartile), the bottom and top of the boxes
are the first and third quartiles. Note that all experiments are platform indepen-
dent since we count number of fitness evaluations independently of real time.
The solid lines in the plots allow to estimate the asymptotic run time of the
(1 + 1) GP.

The left hand side of Fig. 2 concerns +c-Majority and shows that the
(1 + 1) GP with bloat control always fails (corresponding to Theorem1). We
used the (1 + 1) GP with sinit = 10n, c = 2 and n as indicated along the
x-axis. It is easy to see that bloat control leads the algorithm to local optima
and does not allow to leave it, whereas the (1 + 1) GP without bloat control finds
an optimum in a reasonable number of evaluations. Due to time and computa-
tional restrictions the constant c was chosen equal to 2. For larger c the run time
of the algorithm goes up significantly, but a similar pattern is visible.

52 T. Kötzing et al.

100 200 300 400 500 600 700 800 9001000

0

0.2

0.4

0.6

0.8

1

·106

n, number of variables

(1+1) GP with bloat control
(1+1) GP without bloat control

100 200 300 400 500 600 700 800 9001000

0

1

2

3

·105

n, number of variables

nu
m
be

r
of

ev
al
ua

ti
on

s

nu
m
be

r
of

ev
al
ua

ti
on

s

(1+1) GP without bloat control
(1+1) GP with bloat control

Fig. 2. Number of evaluations required by the (1+ 1) GP over 100 runs for each n
with the initial tree size sinit = 10n until all variables are expressed or the time limit,
equal to 1000000 evaluations, is reached. The left figure shows the experimental results
for +c − Majority with c = 2; the solid line is 28n log n. On the right figure is shown
2/3 − Majority; the blue solid line is 9n log n, the green solid line is 32n log n. (Color
figure online)

The right hand side of Fig. 2 shows the results of (1 + 1) GP on 2/3-
Majority, using sinit = 10n. One can see that bloat control is more efficient
in comparison with the (1 + 1) GP without bloat control. The set of median
values is well-approximated by w · n log n for a constant w, which leads us to
the conjecture that the algorithm’s run time is O(n log n). We did not analyze
the influence of sinit, but it might be significant especially for 2/3-Majority
without bloat control.

7 Conclusion

We defined three variants of the Majority problem in order to introduce some
fitness plateaus that are difficult to cross. The +c-Majority allows for progress
at the end of the plateau with large representation; in this sense, bloat is nec-
essary for progress. On the other hand, for 2/3-Majority, progress can be
made at the end of the plateau with small representation, so that bloat control
guides the search to the fruitful part of the search space. We also considered
2/3-SuperMajority which exemplifies fitness functions where bloat is inher-
ent due to the possibility of small improvements by adding an increasing amount
of nodes to the GP-tree. In this case we showed that not employing bloat control
leads to inefficient optimization.

In order to obtain results somewhat closer to practically relevant GP we
turned to crossover and showed how a Concatenation Crossover GP can effi-
ciently optimize all three considered test functions.

For future work it might be interesting to analyze the effect of other crossover
operators. In order to obtain a better understanding of such other operators,

Destructiveness of Lexicographic Parsimony Pressure 53

other test functions might be necessary making essential use of the tree structure
(all our test functions might as well use lists or even multisets of the leaves as
representations). Such test functions should not be too complex, which would
hinder a theoretical analysis, but still embody a structure frequently found in
GP, so as to inform about relevant application areas. The search for such test
functions remains a central open problem of the theory of GP.

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

2. Doerr, B., Kötzing, T., Lagodzinski, J.A.G., Lengler, J.: Bounding bloat in genetic
programming. In: Proceedings of GECCO 2017, pp. 921–928. ACM (2017)

3. Durrett, G., Neumann, F., O’Reilly, U.M.: Computational complexity analysis of
simple genetic programming on two problems modeling isolated program semantics.
In: Proceedings of FOGA 2011, pp. 69–80 (2011)

4. Eskridge, B.E., Hougen, D.F.: Memetic crossover for genetic programming: evo-
lution through imitation. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3103, pp.
459–470. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24855-
2 57

5. Gathercole, C., Ross, P.: An adverse interaction between the crossover operator
and a restriction on tree depth. In: Proceedings of GP 1996, pp. 291–296 (1996)

6. Goldberg, D.E., O’Reilly, U.-M.: Where does the good stuff go, and why? How
contextual semantics influences program structure in simple genetic programming.
In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998.
LNCS, vol. 1391, pp. 16–36. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055925

7. Jones, T.: Crossover, macromutation, and population-based search. In: Proceedings
of ICGA 1995, pp. 73–80. Morgan Kaufmann Publishers Inc. (1995)

8. Jones, T.: Evolutionary algorithms, fitness landscape and search. Ph.D. thesis,
University of New Mexico (1995)

9. Karp, R.M., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor
spreading. In: Proceedings of FOCS 2000, pp. 565–574 (2000)

10. Kötzing, T., Neumann, F., Spöhel, R.: PAC learning and genetic programming. In:
Proceedings of GECCO 2011, pp. 2091–2096 (2011)

11. Kötzing, T., Sutton, A.M., Neumann, F., O’Reilly, U.M.: The max problem revis-
ited: the importance of mutation in genetic programming. In: Proceedings of
GECCO 2012, pp. 1333–1340 (2012)

12. Koza, J.R.: Genetic programming: a paradigm for genetically breeding populations
of computer programs to solve problems. Technical report, Stanford, CA, USA
(1990)

13. Langdon, W.B., Poli, R.: An analysis of the MAX problem in genetic programming.
In: Proceedings of GP 1997, pp. 222–230 (1997)

14. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of GECCO
2002, pp. 829–836 (2002)

15. Mambrini, A., Manzoni, L.: A comparison between geometric semantic GP and
cartesian GP for Boolean functions learning. In: Proceedings of GECCO 2014, pp.
143–144 (2014)

https://doi.org/10.1007/978-3-540-24855-2_57
https://doi.org/10.1007/978-3-540-24855-2_57
https://doi.org/10.1007/BFb0055925
https://doi.org/10.1007/BFb0055925

54 T. Kötzing et al.

16. Mambrini, A., Oliveto, P.S.: On the analysis of simple genetic programming for
evolving Boolean functions. In: Proceedings of EuroGP 2016, pp. 99–114 (2016)

17. Mercier, H., Hayez, L., Matos, M.: Optimal epidemic dissemination. CoRR
abs/1709.00198 (2017). http://arxiv.org/abs/1709.00198

18. Moraglio, A., Mambrini, A., Manzoni, L.: Runtime analysis of mutation-based
geometric semantic genetic programming on Boolean functions. In: Proceedings of
FOGA 2013, pp. 119–132 (2013)

19. Neumann, F.: Computational complexity analysis of multi-objective genetic pro-
gramming. In: Proceedings of GECCO 2012, pp. 799–806 (2012)

20. Nguyen, A., Urli, T., Wagner, M.: Single- and multi-objective genetic program-
ming: new bounds for weighted ORDER and MAJORITY. In: Proceedings of
FOGA 2013, pp. 161–172 (2013)

21. O’Reilly, U.M.: An analysis of genetic programming. Ph.D. thesis, Carleton Uni-
versity, Ottawa, Canada (1995)

22. O’Reilly, U.-M., Oppacher, F.: Program search with a hierarchical variable length
representation: genetic programming, simulated annealing and hill climbing. In:
Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp.
397–406. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6 283

http://arxiv.org/abs/1709.00198
https://doi.org/10.1007/3-540-58484-6_283

Exploration and Exploitation Without
Mutation: Solving the Jump Function

in Θ(n) Time

Darrell Whitley1(B), Swetha Varadarajan1, Rachel Hirsch1,
and Anirban Mukhopadhyay2

1 Colorado State University, Fort Collins, CO 80523, USA
{whitley,swetha.varadarajan,rachel.hirsch}@colostate.edu

2 University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
anirban@klyuniv.ac.in

Abstract. A number of modern hybrid genetic algorithms do not use
mutation. Instead, these algorithms use local search to improve inter-
mediate solutions. This same strategy of combining local search and
crossover is also used by stochastic local algorithms, such the LKH heuris-
tic for the Traveling Salesman Problem. We prove that a simple hybrid
genetic algorithm that uses only local search and a form of deterministic
“voting crossover” can solve the well known Jump Function in Θ(n) time
where the jump distance is log(n).

1 Introduction

The Jump function is a function of unitation that uses the OneMax(x) function
as an intermediate form in the construction of the evaluation function. Functions
of unitation [15,16] are pseudo-Boolean functions where all bit string inputs that
have the same number of 1 bits have exactly the same evaluation. The Jump
evaluation function first computes OneMax(x), the number of 1 bits in string
x. A “gap” or“moat” is then created that the search must jump across to reach
the global optimum, where the global optimum is the string of all 1 bits [1].

This paper proposes a novel approach to solving the Jump function. A hybrid
genetic algorithm is used that improves the population using local search. The
hybrid genetic algorithm also uses a form of multi-parent recombination. This
hybrid genetic algorithm easily solves instances of the Jump function in Θ(n)
time when the jump distance is log(n). The use of a hybrid genetic algorithm
is, in fact, common practice in that part of the evolutionary computation com-
munity concerned with real world applications. Furthermore, if local search can
provide diversity, there is no need for mutation. Many highly effective evolution-
ary algorithms do not use mutation. Thus, a meta-level goal of this work is to
make theory more relevant to the community as a whole by focusing on hybrid
genetic algorithms, the aggressive use of recombination, and the role of diversity
in genetic algorithms.

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 55–66, 2018.
https://doi.org/10.1007/978-3-319-99259-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_5&domain=pdf

56 D. Whitley et al.

2 Background and Basics

Let x denote a bit string, let n denote string length, and let m be width of the
gap that must be jumped to reach the global optimum. The Jump function is
then defined as follows.

Jumpm,n(x) =

⎧
⎨

⎩

m + OneMax(x) if OneMax(x) ≤ (n − m)
or OneMax(x) = n

n − OneMax(x) otherwise

where OneMax(x) denotes the number of 1 bits in string x. The Jumpm,n

function is illustrated in the left side of Fig. 1. Another way to think about
the Jump function is also shown in the right side of Fig. 1. The Jump function
represents a worst case situation in as much as the global optimum is located on a
single point surrounded by a moat (the “gap” that must be jumped). Otherwise,
the entire landscape is a symmetric hill. We can think of the edge of the “moat”
as being a ridge encircling the global optimum, since all points at the edge of
the moat have the same evaluation. There are Choose(n,m) points in the search
space at the edge of the moat. The local optima at the edge of the moat are not
a connected plateau under 1 bit flip, since flipping 1 bit increases or decreases
the number of 1 bits in the string. Thus all of the Choose(n,m) points at the
edge of the “moat” are distinct local optima. But the same level set of points
are a single connected plateau under a 2 bit flip neighborhood operator.

Under “Black Box Complexity” the number of calls to the evaluation function
is typically used in place of the true runtime cost. In this paper we consider the
true runtime cost. Under normal black box optimization, each execution of the
Jump evaluation function takes Θ(n) time, since one must count all of the 1
bits in string x in order to compute OneMax(x). However, we can also create
an incremental, partial evaluation function that will execute in Θ(1) time.

We create an auxillary function Jumpm,n(x) = Jump1m,n(x′
i, eval(x′))

where string x is created by flipping the bit x′
i in string x′ to generate string x,

and eval(x′) = Jumpm,n(x′) stores the evaluation of string x′.
This will allow us to create alternative implementations of OneMax where

we invert the eval(x′) = Jumpm,n(x′) function to calculate OneMax(x’).

OneMax(x′) =
{

Jumpm,n(x′) − m if Jumpm,n(x′) > m
n − Jumpm,n(x′) otherwise

We can then create an incremental update to calculate OneMax(x).

OneMax(x) =
{

OneMax(x′) + 1 if x′
i = 0

OneMax(x′) − 0 otherwise

Lemma 1. An incremental implementation of the Jump evaluation function can
be executed in Θ(1) time when evaluating Jumpm,n(x) = Jump1m,n(x′

i, eval(x′))
assuming eval(xi) is given, and x and x′

i are Hamming distance 1 apart.

Solving the Jump Function Without Mutation 57

Fig. 1. An instance of the Jumpm,n(x) function, with m = 10 and n = 50 is shown on
the left. Another way of visualizing the Jump function is shown on the right. The global
optimum is at the center of a hill, surrounded by a “moat”. At the edge of the moat
(shown in red) are Choose(n, m) local optima under a single bit-flip neighborhood with
exactly the same evaluation. For crossover to be effective, there must be a diverse set
of solutions distributed along the edge of the moat. (Color figure online)

Proof. Assuming eval(x′
i) is given, then the Jumpm,n(x′) function can be

inverted in order to compute OneMax(x′) in Θ(1) time. OneMax(x) can be
computed in Θ(1) time given x′

i and the OneMax(x′) evaluation. The original
Jump function now executes in Θ(1) time given the OneMax(x) evaluation. �

2.1 Jansen’s and Wegener’s Classic Result

The Jump function suggests two very simple questions: given a multi-modal,
nonlinear function, can an evolutionary algorithm jump across short barriers in
the search space? Second, can crossover be useful in solving this class of functions,
or any other class of functions?

Jansen and Wegener [1] prove that a (1 + 1)ES using a mutation rate of
1/n and a gap of m bits has an expected running time of Θ(nm + n log n).
They then consider a relatively standard steady state genetic algorithm, with
two restrictions. First, they disallow duplicate strings, meaning that the same
string cannot occur in the population more than once. Second, the crossover
probabilities were unusually small.

When a genetic algorithm moves along a trajectory from a randomly gener-
ated population to a location on the edge of the moat, it tends to converge to a
small localized region on the edge of the moat because the population has lost
diversity. But for crossover to jump across the moat, the population must be
diverse. In effect, the population needs to surround the moat.

After the population reaches the edge of the moat, mutation must be high
enough to scatter and spread the population around the edge of the moat. At
the same time, crossover and selection must be low enough to allow this increase
in diversity. Thus, as stated by Jansen and Wegener, only in the final phase of

58 D. Whitley et al.

search is crossover critical. They provide the following expected running time
for their genetic algorithm:

Θ(μn(m(n)2 + log(μn)) + 22m(n)/pc)

where μ is the population size, and pc is the probability of crossover.

3 Hybrid Genetic Algorithms

The work of Jansen and Wegener was groundbreaking. However, there is still a
tendency in the theory community to overly focus on the (1+1)ES, or Holland’s
Simple Genetic Algorithm.

We consider instead a “hybrid genetic algorithm” or“memetic algorithm”
[11] where the population is improved by applying local search to all of the
individuals in the population every generation. We will use the “next ascent bit
climber” introduced by Dave Davis [4] to the genetic algorithm community. The
next ascent bit climber generates a random permutation, then flips the bits in the
order indicated by the permutation. The “next ascent bit climber” accepts each
improvement as it is found. After every bit has been flipped once, the process is
repeated with a new permutation until a local optimum is reached.

In the case of the Jump function, the initial population that is improved by
local search will either (1) include the global optimum by chance, or (2) reaches
the global optimum by improving a randomly sampled string adjacent to the
global optimum, or (3) all of the strings are at the edge of the “moat”. Sampling
the global optimum by chance occurs with probability 1/2n per sample. Sampling
a point adjacent to the global optimum occurs with probability n/2n; however,
the probability that “next ascent” will select exactly the right bit to improve
first is only 1/n. Thus, we will conservatively assume the global optimum is not
found without recombination.

Lemma 2. Assume a random initial population has been generated that is then
improved by the “next ascent bit climber” local search. Assuming the global opti-
mum is not generated randomly, or discovered by local search, then any constant
size population improved by using the “next ascent bit climber” will be uniformly
distributed around the edge of the “moat” in Θ(n) time.

Proof. It requires Θ(n) time to evaluate each member of the initial population
using a standard (not incremental) form of the Jumpm,n(x) function. Assuming
the population size is bounded by a constant, the initial population is evaluated
in Θ(n) time. Next, a Θ(1) implementation of the Jump function can be used to
implement local search. Because “next ascent bit climber” tries every bit in the
string once before flipping any bit a second time, the bit climber must reach the
edge of the moat in at most n evaluations for every string in the population. We
can confirm the point is a local optimum by attempting another n bit flips. Since
each initial string was randomly selected, and the order of improving moves is
randomized as well, local search is equally likely to yield any point on the edge
of the moat. This work requires Θ(n) time. �

Solving the Jump Function Without Mutation 59

3.1 Deterministic Crossover: 3-Parent Voting Crossover

A number of simple test problems can be solved by exploiting low level hyper-
plane information. This is also true for the Jump function; it is trivial to compute
the averages of the first order hyperplane subspaces for functions of unitation,
and it is trivial to prove that any order-1 hyperplane with a single 1 bit in any
position is better on average than any order-1 hyperplane with a single 0 bit in
any position for the Jump function. Any crossover operator that can effectively
exploit first order hyperplane averages has a clear advantage.

Recently, a number of deterministic crossover operators have been proven to
be highly effective on classic NP-Hard problems. The partition crossover operator
has produced excellent results on large, one million variable NK-Landscapes
[2,17] without using mutation. The LKH search algorithm for the TSP also uses
Iterative Partial Transcription (IPT) [9,10,12]. In the area of scheduling, Deb
and Myburgh [5] used a deterministic form of block crossover and deterministic
repair operators (which they call “mutation” operators) to generate near optimal
solutions to one billion variable cast scheduling problems. All of these algorithms
use deterministic crossover operators to solve classic NP-Hard problems but none
of these very modern evolutionary algorithms uses random mutation operators.

Perhaps the best operator for exploiting low level hyperplane information
is “Voting Crossover.” Voting crossover uses an odd number of parents (e.g., 3
parents), and then each parent “votes” for a 1 bit or a 0 bit in every bit posi-
tion, where the majority wins. Thus, the result is deterministic. This operator
was first introduced at the PPSN conference in a highly cited paper by Eiben et
al. in 1994 [6]. It was given the name “Occurrence Based Scanning” crossover,
and in its most general form it could use any number of parents. (We argue
that the name “Voting Crossover” is more intuitive, more descriptive and eas-
ier to remember.) A randomized version of this crossover was also introduced
called “Uniform Scanning” crossover [6]. Under “Uniform Scanning” crossover,
the “vote” is interpreted probabilistically. For example, given 3 parents, if 2 par-
ents have a 1 bit and 1 parent has a 0 bit, then the 1 bit is inherited with 2/3
probability.

Eiben et al. [6] reported that multi-parent crossover operators yields superior
results on the classical DeJong test suite. On other benchmarks they considered,
the results were more mixed, but overall, multi-parent crossover operators were
competitive with classical operators such as 2 parent uniform crossover. A follow
up study also suggested that multi-parent crossover operators are more effective
on NK-Landscapes with low-epistasis [7]. This should not be surprising. One of
the problems with classical uniform crossover is that all bits that are shared are
inherited from the parents, but when the 2 parents differ, the bit assignment is
completely random. This means that uniform crossover just randomly picks a
string drawn from the largest hyperplane subspace that contains both parents.

We use 3 Parent Voting Crossover for two reasons. First, is very easy to math-
ematically characterize the outcome of using just 3 parents because crossover is
deterministic. Second, using just 3 parents allows for some diversity to remain in
the search process and the population; using 5 parents or 7 parents would create

60 D. Whitley et al.

more selection toward the bit pattern that (already) most commonly occurs in
the population in that particular position. This does not matter for the Jump
function, but could be important for other objective functions.

3.2 The Probability of Success (POS) for 3-Parent Voting Crossover

Lemma 3. Given 3 random parent strings with m 0 bits and (n − m) 1 bits
(strings on the edge of the gap), Voting Crossover yields the global optimum
with probability POS(n,m) for the Jump function, where:

POS(n,m) =
(n − m)!/(n − 3m)!

(n!/(n − m)!)2

Proof. Assume you have n buckets, and have m red marbles, m green marbles
and m blue marbles. We can use the red marbles to construct a bit string with
m bits of 0, and n − m 1 bits. Place each red marble in a random bucket that
does not already contain a red marble. This yields a bit string: a bucket without
a red marble is assigned a 1 bit, and a bucket with a red marble is assigned a 0
bit. A second string is constructed using the green marbles, and a third string
is constructed using the blue marbles.

After 3 strings are generated, if every bucket contains at most 1 marble then
3-parent voting crossover will jump to the global optimum: in every bit position
there is at most 1 vote (1 marble) for 0, and therefore 2 or more votes for 1.

Place the 1st red marble and 1st green marble and 1st blue marble randomly
into a bucket. The probability of zero conflicts for these 3 events is n/n · (n −
1)/n · (n − 2)/n because the marbles can go anywhere.

Place the 2nd red marble and 2nd green marble and 2nd blue marble ran-
domly into a bucket. The probability of zero conflicts for these 3 events is:

((n − 3)/(n − 1)) · ((n − 4)/(n − 1)) · ((n − 5)/(n − 1))

Generalizing, as each marble is placed, the enumerator is decreases by 1. But
the denominator is decreasing by 1 only after 1 marble of each color has been
placed, every 3 steps. This yields the following general result:

n!/(n − 3m)!
n!/(n − m)! · n!/(n − m)! · n!/(n − m)!

=
(n − m)!/(n − 3m)!

n!/(n − m)! · n!/(n − m)!

�

3.3 A Lower Bound on the Probabilities

An alternative way to calculate POS (equivalent by simple algebra) is as follows:

POS(n,m) =
(n − m)!/(n − 2m)!

n!/(n − m)!
· (n − 2m)!/(n − 3m)!

n!/(n − m)!

Solving the Jump Function Without Mutation 61

We will use this form to compute a simple but sufficient bound on the prob-
ability POS(n,m). Since there are m integers in the following sequence, we
automatically obtain the following result by taking the smallest number in the
enumerator and the largest number in the denominator.

(n − (2m − 1))m

nm
<

(n − m)!/(n − 2m)!
n!/(n − m)!

By identical logic:

(n − (3m − 1))m

nm
<

(n − 2m)!/(n − 3m)!
n!/(n − m)!

This yield a bound

(n − (2m − 1))m

nm
· (n − (3m − 1))m

nm
<

(n − m)!/(n − 2m)!
n!/(n − m)!

· (n − 2m)!/(n − 3m)!
n!/(n − m)!

See Fig. 2. From this bound, and we can obtain the following theorem:

Lemma 4. Assume m = Floor(log2(n)). Then for all positive integers:

Bound(POS(n, log2(n)) =
(n − (2m − 1))m

nm
· (n − (3m − 1))m

nm

is a non-decreasing function that converges in the limit to probability 1 for large
n. This function is a lower bound on POS(n, log2(n)).

Proof. When n is a power of 2, the following inequalities hold by simple algebra:

(n − (2m − 1))m

nm
<

(2n − (2(m + 1) − 1))(m+1)

(2n)(m+1)

and
(n − (3m − 1))m

nm
<

(2n − (2(m + 1) − 1))(m+1)

(2n)(m+1)

This is sufficient to prove the Bound function is non-decreasing.
Again assume that n is a power of 2. Now consider any integer n + x such

n < n + x < 2n where m is given by m = Floor(log2(n)). Then, by simple
algebra:

(n − (2m − 1))m

nm
<

((n + x) − (2m − 1))m

(n + 1)m

and
(n − (3m − 1))m

nm
<

((n + x) − (3m − 1))m

(n + 1)m

�

62 D. Whitley et al.

Fig. 2. The Probability of Success (POS) for Voting Crossover and the Lower Bound
on the Probability of Success. The true probability is not monotonic, but the Lower
Bound on the POS is a non-decreasing function that asymptotically converges to 1.0.

4 Probabilities and Populations

For Voting Crossover, even a single crossover yields a high probability of reaching
the global optimum (e.g., >50%) for n > 512. We can use the population to boost
that probability. But we will apply crossover more frequently than is normally the
case in a simple genetic algorithm. Because we are using 3-parent crossover, we
will allow each parent to be involved in up to 3 crossover events. This is related
to the concept of “Brood Selection”, where 2 parents can generate multiple
offspring. “Brood Selection” is critical to the highly successful EAX algorithm
for the Traveling Salesman Problem, where the number of offspring generated
each generation is typically 30 times the population size [13,14]. This allows
crossover to be utilized as an exploration operator.

We will assume each crossover event must be independent. For example, if
we recombine the three parents P1, P2, P3, we will then not allow the crossover
of parents P1, P2, P4, since P1 and P2 have already been paired in the previ-
ous crossover. For example, with a population size of 6, an independent set of
recombination events might include the following subsets of parents:

{{P1, P2, P3}, {P1, P4, P5}, {P2, P4, P6}, {P3, P5, P6}}
where each parent is involved in 2 recombination events, but no pair of parents
occurs in more than 1 recombination event. Let μ denote the population size and
let λ denote the number of offspring generated in one generation. Table 1 calcu-
lates the probabilities of discovering the global optimum in the first generation
of our hybrid genetic algorithm.

We next show both the theoretical results and empirical results based on
1000 runs of our hybrid genetic algorithm with Voting Crossover. Because our

Solving the Jump Function Without Mutation 63

Table 1. Theoretical probability analysis that the algorithm will converge to the global
maximum using 3 Parent Voting Crossover. A probability of “1” in this case means
that the probability is greater than 0.999999999. “μ” denoted population size, and λ
denoted the number of independent offspring generated.

N Bound Probability
(λ = 1)

μ = 7
(λ = 7)

μ = 11
(λ = 13)

μ = 13
(λ = 22)

μ = 15
(λ = 35)

μ = 25
(λ = 75)

32 0.011 0.05242 0.31402 0.57747 0.69412 0.84810 0.98237

64 0.051 0.14659 0.67031 0.87263 0.96941 0.99610 0.99999

128 0.143 0.29076 0.90972 0.98851 0.99947 0.99999 1

256 0.290 0.45779 0.98622 0.99964 0.99999 1 1

512 0.461 0.61534 0.99875 0.99999 1 1 1

1024 0.622 0.74326 0.99992 0.99999 1 1 1

211 0.750 0.83653 0.99999 1 1 1 1

212 0.843 0.89954 0.99999 1 1 1 1

213 0.910 0.94830 1 1 1 1 1

214 0.943 0.96470 1 1 1 1 1

215 0.967 0.97959 1 1 1 1 1

216 0.981 0.98834 1 1 1 1 1

217 0.989 0.99340 1 1 1 1 1

218 0.993 0.99629 1 1 1 1 1

219 0.996 0.99793 1 1 1 1 1

220 0.998 0.99984 1 1 1 1 1

calculations are precise and because Voting Crossover operator is deterministic,
the theoretical results and empirical results match more or less perfectly. This
can be seen in Fig. 3. We can now state the overall result.

Theorem 1. Let the gap used by the Jump function be m = Floor(log2(n)).
For sufficiently large n, a hybrid genetic algorithm which uses (1) a Θ(1) time
incremental evaluation function, (2) a population size bounded by a constant, (3)
“next ascent bit climber” local search and (4) Voting Crossover using 3 parents
converges to the global optimum of the Jumpm,n function in Θ(n) time with
probability approaching 1 in one generation using no mutation, assuming each
parent is allowed to be involved in up to 3 recombinations.

Proof. Lemma 1 establishes that local search can evaluate potential solutions
in Θ(1) time after the initial population has been evaluated. Lemma2 demon-
strates that the population will be uniformly distributed along the edge of the
“moat” in Θ(n) time after the first generation is improved by next ascent bit
climbing. By Lemma 3, the probability of generating the global optimum by a
single 3 parent Voting Crossover is at least POS(n, log2(n)) = (n−m)!/(n−3m)!

(n!/(n−m)!)2

and by Lemma 4 this probability is bounded by a nondecreasing function that

64 D. Whitley et al.

Fig. 3. The probability of finding the global optimum (jumping across the gap) in
one generation for a hybrid genetic algorithm using Voting Crossover as a function of
population size. The experimental data and the theoretical data match almost perfectly.

in the limit converges to 1 for large n. For smaller values of n we can use the
population and multiple recombinations to boost the probability of finding the
global optimum. Let p = POS(n, log2(n)) and let λ ≤ 3μ denote the number
of offspring generated by independent recombinations, where the parents are
located on the edge of the “moat” on the Jump function. Then the probability
of finding the global optimum in the first generation is given by: 1 − (1 − p)λ.
For all n ≥ 64 and all μ = 25, the probability of finding the global optimum is
greater than 0.99999. This probability also converges to 1 in the limit for large
n. The time to find a set of independent crossovers is bounded by a constant
when the population is of constant size. Each crossover takes Θ(n) time. But
the total number of applications of crossover is a constant when the population
size is bounded by a constant. �

5 Other Crossover Operators

While multi-parent crossover and voting crossover are in literature and have been
shown to be effective on some benchmarks and on low epistasis NK Landscapes,
one might ask what happens when a more conventional crossover operator is
used. The first answer is that the probability of successful crossover depends on
m but is independent of n when m is also independent of n. Thus, if we fix m
at some value such as m = 8, the ability of crossover to find the global optimum
in O(n) time can be preserved. But the “constant” involved (or more precisely,
the cost depending on m) can still vary dramatically.

“Uniform Crossover” is perhaps the worst possible choice of crossover oper-
ators. Assuming maximally different parents (that are still local optima), there
are 22m possible offspring, only one of which is the global optimum.

A better choice would be the HUX (Half Uniform Crossover) operator of
CHC [8]. HUX determines which bits are different in two parents, then selects
exactly one half of the non-shared bits from one parent and the remaining non-
shared bits from the other parent. If the two parents are maximally distant from
each other on the edge of the moat, then they have 2m bits that differ, and HUX

Solving the Jump Function Without Mutation 65

will select m bits from each parent. Thus, there are Choose(2m,m) possible off-
spring (compared to 22m possible offspring under Uniform crossover). The CHC
algorithm also boosts the probability that parents are maximally different by
“incest prevention.” Thus, when recombining parents, it prefers to pair parents
that are maximally different. When the populations used by CHC are improved
using next ascent bit climbing, CHC also finds the global optimum for JUMP
functions as long as the rate of crossover and the population size is sufficient
to allow on the order of Choose(2m,m) recombinations of maximally different
parents. For m = 8, Choose(16, 8) = 12, 870 recombinations with an associated
probability of success of 0.000077, while 216 = 65, 536 recombinations is needed
for Uniform crossover, with an associated probability of success of 0.000015.

6 Conclusions

We have shown that a hybrid genetic algorithm which improves the initial popu-
lation using next ascent bit climbing, and which uses 3 parent Voting Crossover
can solve the Jumpm,n function when m = log2(n) with probability asymptotic
to 1 for sufficiently large n in Θ(n) time. We would argue that this is not at
all surprising. Theoretically, it is easy to prove that the Jumpm,n is also solved
in Θ(n) time by calculating the averages of all of the order-1 hyperplanes. Any
combination of crossover and local search that actively exploits this property of
the Jump function should also arrive at the global optimum.

It is also the case that the Jump function becomes easier to solve for recom-
bination operators as n increases, because Choose(n,m) becomes larger and the
probability that two parents are different enough to have a successful recom-
bination increases. On the other hand, for mutation to make a jump of length
m becomes harder as n increases. Assuming that m mutations happen at once,
there are still Choose(n,m) ways to select m bits. To make the jump from a
local optima, exactly the right m bits must be selected.

The work presented here highlights the advantages of using crossover to
enhance exploration. There is no reason that two parents should have only 1
or 2 offspring (as is normally the case for genetic algorithms); there are many
biological species where two parents might have dozens of offspring at a time.
This idea, while common in the mutation driven (μ + λ)ES, has probably not
received the attention it deserves in a crossover driven genetic algorithm.

This work also emphasizes the critical role that diversity places in genetic
algorithms. We also want to acknowledge the work by Dang et al. [3] looking
at how diversity mechanisms, such as fitness sharing, and the use of an Island
model, can also make crossover more effective when solving the Jump function
when using a (μ + 1) genetic algorithm. These are all very simple ideas, and
common strategies in genetic algorithm applications.

Acknowledgements. This work was supported by a grant from the US National
Science Foundation CISE/ACE, SSI-SI2. Dr. Mukhopadhyay was supported by a
Fulbright-Nehru Academic and Professional Excellence Fellowship.

66 D. Whitley et al.

References

1. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms-a proof that
crossover really can help. Algorithmica 34, 47–66 (2002)

2. Chicano, F., Whitley, D., Ochoa, G., Tinos, R.: Optimizing one million variable
NK landscapes by hybridizing deterministic recombination and local search. In:
Genetic and Evolutionary Computation Conference (GECCO), pp. 753–760. ACM
(2017)

3. Dang, D., et al.: Escaping local optima with diversity mechanisms and crossover.
In: Genetic and Evolutionary Computation Conference (GECCO), pp. 645–652.
ACM (2016)

4. Davis, L.: Bit-climbing, representational bias, and test suit design. In: Booker,
L., Belew, R. (eds.) International Conference on Genetic Algorithms, pp. 18–23.
Springer, Heidelberg (1991)

5. Deb, K., Myburgh, C.: Breaking the billion variable barrier in real world opti-
mization. In: Genetic and Evolutionary Computation Conference (GECCO), pp.
653–660. ACM (2016)

6. Eiben, A.E., Raué, P.-E., Ruttkay, Z.: Genetic algorithms with multi-parent recom-
bination. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN III 1994. LNCS,
vol. 866, pp. 78–87. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58484-6 252

7. Eiben, A.E., Schippers, C.A.: Multi-parent’s niche: N-ary crossovers on NK-
landscapes. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.)
PPSN IV 1996. LNCS, vol. 1141, pp. 319–328. Springer, Heidelberg (1996). https://
doi.org/10.1007/3-540-61723-X 996

8. Eshelman, L.: The CHC adaptive search algorithm: how to have safe search when
engaging in nontraditional genetic recombination. In: Foundations of Genetic Algo-
rithms (FOGA), vol. 1, pp. 265–283. Morgan Kauffman (1991)

9. Helsgaun, K.: General k-opt submoves for the Lin-Kernighan TSP heuristic. Math.
Program. Comput. 1(2–3), 119–163 (2009)

10. Helsgaun, K.: DIMACS TSP challenge results: current best tours found by LKH
(2013). http://www.akira.ruc.dk/keld/research/LKH/DIMACSresults.html

11. Moscato, P.: Memetic algorithms: a short introduction. In: Corne, D., Dorigo, M.,
Glover, F. (eds.) New Ideas in Optimization, pp. 219–234 (1999)

12. Möbius, A., Freisleben, B., Merz, P., Schreiber, M.: Combinatorial optimization by
iterative partial transcription. Phys. Rev. E 59(4), 4667–4674 (1999)

13. Nagata, Y., Kobayashi, S.: Edge assembly crossover: a high-power genetic algo-
rithm for the traveling salesman problem. In: International Conference on Genetic
Algorithms (ICGA), pp. 450–457. Morgan Kaufmann (1997)

14. Nagata, Y., Kobayashi, S.: A powerful genetic algorithms using edge assemble
crossover the traveling salesman problem. INFORMS J. Comput. 25(2), 346–363
(2013)

15. Rowe, J.: Population fixed-points for functions of unitation. In: Foundations of
Genetic Algorithms (FOGA), vol. 5, pp. 69–84. Morgan Kauffman (1998)

16. Srinivas, M., Patnaik, L.M.: On modeling genetic algorithms for functions of uni-
tation. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 26(6), 809–821 (1996)

17. Tinós, R., Whitley, D., Chicano, F.: Partition crossover for pseudo-boolean opti-
mization. In: Foundations of Genetic Algorithms, pp. 137–149 (2015)

https://doi.org/10.1007/3-540-58484-6_252
https://doi.org/10.1007/3-540-58484-6_252
https://doi.org/10.1007/3-540-61723-X_996
https://doi.org/10.1007/3-540-61723-X_996
http://www.akira.ruc.dk/keld/research/LKH/DIMACS results.html

Fast Artificial Immune Systems

Dogan Corus(B), Pietro S. Oliveto, and Donya Yazdani

Rigorous Research, University of Sheffield, Sheffield, UK
{d.corus,p.oliveto,dyazdani1}@sheffield.ac.uk

Abstract. Various studies have shown that characteristic Artificial
Immune System (AIS) operators such as hypermutations and ageing can
be very efficient at escaping local optima of multimodal optimisation
problems. However, this efficiency comes at the expense of consider-
ably slower runtimes during the exploitation phase compared to stan-
dard evolutionary algorithms. We propose modifications to the tradi-
tional ‘hypermutations with mutation potential’ (HMP) that allow them
to be efficient at exploitation as well as maintaining their effective explo-
rative characteristics. Rather than deterministically evaluating fitness
after each bit-flip of a hypermutation, we sample the fitness function
stochastically with a ‘parabolic’ distribution which allows the ‘stop at
first constructive mutation’ (FCM) variant of HMP to reduce the linear
amount of wasted function evaluations when no improvement is found
to a constant. By returning the best sampled solution during the hyper-
mutation, rather than the first constructive mutation, we then turn the
extremely inefficient HMP operator without FCM, into a very effective
operator for the standard Opt-IA AIS using hypermutation, cloning and
ageing. We rigorously prove the effectiveness of the two proposed opera-
tors by analysing them on all problems where the performance of HPM
is rigorously understood in the literature.

Keywords: Artificial immune systems · Runtime analysis

1 Introduction

Several Artificial Immune Systems (AIS) inspired by Burnet’s clonal selection
principle [1] have been developed to solve optimisation problems. Amongst these,
Clonalg [2], the B-Cell algorithm [3] and Opt-IA [4,5] are the most popular. A
common feature of these algorithms is their particularly high mutation rates
compared to more traditional evolutionary algorithms (EAs). For instance, the
contiguous somatic hypermutations (CHM) used by the B-Cell algorithm, choose
two random positions in the genotype of a candidate solution and flip all the bits
in between1. This operation results in a linear number of bits being flipped in an

1 A parameter may be used to define the probability that each bit in the region actually
flips. However, advantages of CHM over EAs have only been shown when all bits in
the region flip.

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 67–78, 2018.
https://doi.org/10.1007/978-3-319-99259-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_6&domain=pdf

68 D. Corus et al.

average mutation. The hypermutations with mutation potential (HMP) used by
Opt-IA tend to flip a linear number of bits unless an improving solution is found
first (i.e., if no stop at first constructive mutation mechanism (FCM) is used,
then the operator fails to optimise efficiently any function with a polynomial
number of optima [6]).

Various studies have shown how these high mutation rates allow AIS to escape
from local optima for which more traditional randomised search heuristics strug-
gle. Jansen and Zarges proved for a benchmark function called Concatenated
Leading Ones Blocks (CLOB) an expected runtime of O(n2 log n) using CHM
versus the exponential time required by EAs relying on standard bit mutations
(SBM) since many bits need to be flipped simultaneously to make progress [7].
Similar effects have also been shown on the NP-Hard longest common subse-
quence [8] and vertex cover [9] standard combinatorial optimisation problems
with practical applications where CHM efficiently escapes local optima where
EAs (with and without crossover) are trapped for exponential time.

This efficiency on multimodal problems comes at the expense of being con-
siderably slower in the final exploitation phase of the optimisation process when
few bits have to be flipped. For instance CHM requires Θ(n2 log n) expected
function evaluations to optimise the easy OneMax and LeadingOnes bench-
mark functions. Indeed it has recently been shown to require at least Ω(n2)
function evaluations to optimise any function since its expected runtime for its
easiest function is Θ(n2) [10]. A disadvantage of CHM is that it is biased, in the
sense that it behaves differently according to the order in which the information
is encoded in the bitstring. In this sense the unbiased HMP used by Opt-IA are
easier to apply. Also these hypermutations have been proven to be considerably
efficient at escaping local optima such as those of the multimodal Jump, Cliff,
and Trap benchmark functions that standard EAs find very difficult [6]. This
performance also comes at the expense of being slower in the exploitation phase
requiring, for instance, Θ(n2 log n) expected fitness evaluations for OneMax
and Θ(n3) for LeadingOnes.

In this paper we propose a modification to the HMP operator to allow it
to be very efficient in the exploitation phases while maintaining its essential
characteristics for escaping from local optima. Rather than evaluating the fitness
after each bit flip of a hypermutation as the traditional FCM requires, we propose
to evaluate it based on the probability that the mutation will be successful. The
probability of hitting a specific point at Hamming distance i from the current
point,

(
n
i

)−1, decreases exponentially with the Hamming distance for i < n/2
and then it increases again in the same fashion. Based on this observation we
evaluate each bit following a ‘parabolic’ distribution such that the probability
of evaluating the ith bit flip decreases as i approaches n/2 and then increases
again. We rigorously prove that the resulting hypermutation operator, which we
call P-hypeFCM , locates local optima asymptotically as fast as Random Local
Search (RLS) for any function where the expected runtime of RLS can be proven
with the standard artificial fitness levels method. At the same time the operator
is still exponentially faster than EAs for the standard multimodal Jump, Cliff,
and Trap benchmark functions.

Fast Artificial Immune Systems 69

Hypermutations with mutation potential are usually applied in conjunction
with ageing operators in the standard Opt-IA AIS. The power of ageing at
escaping local optima has recently been enhanced by showing how it makes the
difference between polynomial and exponential runtimes for the Balance func-
tion from dynamic optimisation [11]. For very difficult instances of Cliff, ageing
even makes RLS asymptotically as fast as any unbiased mutation based algo-
rithm can be on any function [12] by running in O(n ln n) expected time [6].
However, the power of ageing at escaping local optima is lost when it is used
in combination with hypermutations with mutation potential. In particular, the
FCM mechanism does not allow the operator to accept solutions of lower quality,
thus cancelling the advantages of ageing. Furthermore, the high mutation rates
combined with FCM make the algorithm return to the previous local optimum
with very high probability. While the latter problem is naturally solved by our
newly proposed P-hypeFCM that does not evaluate all bit flips in a hypermuta-
tion, the former problem requires a further modification to the HMP. The simple
modification that we propose is for the operator, which we call P-hypeBM , to
return the best solution it has found if no constructive mutation is encountered.
We rigorously prove that Opt-IA then benefits from both operators for all prob-
lems where it was previously analysed in the literature, as desired. Due to space
limitations some proofs are omitted for this extended abstract2.

2 Preliminaries

Static hypermutations with mutation potential using FCM (i.e., stop at the first
constructive mutation) mutate M = cn distinct bits for a constant 0 < c ≤ 1
and evaluate the fitness after each bit-flip [6]. If an improvement over the original
solution is found before the Mth bit-flip, then the operator stops and returns
the improved solution. This behaviour prevents the hypermutation operator to
waste further fitness function evaluations if an improvement has already been
found. However, for any realistic objective function the number of iterations
where there is an improvement constitutes an asymptotically small fraction of
the total runtime. Hence, the fitness function evaluations saved due to the FCM
stopping the hypermutation have a very small impact on the global perfor-
mance of the algorithm. Our proposed modified hypermutation operator, called
P-hype, instead only evaluates the fitness after each bit-flip with a probability
that depends on how many bits have already been flipped in the current hyper-
mutation operation. Since previous theoretical analyses have considered c = 1
(i.e., M = n) [6], we also use this value throughout this paper. Let pi be the
probability that the solution is evaluated after the ith bit has been flipped. The
‘parabolic’ probability distribution is defined as follows, where the parameter γ
should be between 0 < γ ≤ 2 (Fig. 1):

2 A complete version of the paper including all the proofs is available on arXiv [13].

70 D. Corus et al.

1 2 n − 2 nn
2

2
n log n

2
en

1
e

1
2e

1
2 log n

1
log n

Mutation step

E
va
lu
at
io
n
pr
ob

ab
ili
ty

Fig. 1. The parabolic evaluation probabilities (1) for γ = 1/ log n and γ = 1/e.

pi =

⎧
⎪⎨

⎪⎩

1/e for i = 1 and i = n

γ/i for 1 < i ≤ n/2
γ/(n − i) for n/2 < i < n

(1)

The lower the value of γ, the fewer the expected fitness function evaluations
that occur in each hypermutation. On the other hand, with a small enough
parameter γ value, the number of wasted evaluations can be dropped to the
order of O(1) per iteration instead of the linear amount wasted by the tradi-
tional operator when improvements are not found. The resulting hypermutation
operator is formally defined as follows.

Definition 1 (P-hypeFCM). P-hypeFCM flips at most n distinct bits selected
uniformly at random. It evaluates the fitness after the ith bit-flip with probabil-
ity pi (as defined in (1)) and remembers the last evaluation. P-hypeFCM stops
flipping bits when it finds an improvement; if no improvement is found, it will
return the last evaluated solution. If no evaluations are made, the parent will be
returned.

In the next section we will prove its benefits over the standard static HMP
with FCM, when incorporated into a (1 + 1) framework (Algorithm1). However,
in order for the operator to work effectively in conjunction with ageing, a fur-
ther modification is required. Instead of stopping the hypermutation at the first
constructive mutation, we will execute all n mutation steps, evaluate each bit-
string with the probabilities in (1) and as the offspring, return the best solution
evaluated during the hypermutation or the parent itself if no other bitstrings
are evaluated. We will prove that such a modification, which we call P-hypeBM ,
may allow the complete Opt-IA to escape local optima more efficiently by P-
hypeBM producing solutions of lower quality than the local optimum on which
the algorithm was stuck while individuals on the local optimum die due to ageing.
P-hypeBM is formally defined as follows.

Fast Artificial Immune Systems 71

Algorithm 1. (1 + 1) Fast-IA
1: Initialise x uniformly at random.
2: while a global optimum is not found do
3: Create y = x, then y = P-hype(y);
4: If f(y) ≥ f(x), then x = y.
5: end while

Definition 2 (P-hypeBM). P-hypeBM flips n distinct bits selected uniformly at
random. It evaluates the fitness after the ith bit-flip with probability pi (as defined
in (1)) and remembers the best evaluation found so far. P-hypeBM returns the
mutated solution with the best evaluation found. If no evaluations are made, the
parent will be returned.

For sufficiently small values of the parameter γ only one function evaluation
per hypermutation is performed in expectation (although all bits will be flipped).
Since it returns the best found one, this solution will be returned by P-hypeBM

as it is the only one it has encountered. Interestingly, this behaviour is similar to
that of the HMP without FCM that also evaluates one point per hypermutation
and returns it. However, while HMP without FCM has exponential expected
runtime for any function with a polynomial number of optima [6], we will show
in the following sections that P-hypeBM can be very efficient. From this point
of view, P-hypeBM is as a very effective way to perform hypermutations with
mutation potential without FCM.

In Sect. 4, we consider P-hypeBM in the complete Opt-IA framework [4–6]
hence analyse its performance combined with cloning and ageing. The algorithm
which we call Fast Opt-IA, is depicted in Algorithm 2. We will use the hybrid age-
ing operator as in [6,11], which allows us to escape local optima. Hybrid ageing
removes candidate solutions (i.e. b-cells) with probability pdie = 1 − (1/(μ + 1))
once they have passed an age threshold τ . After initialising a population of μ
b-cells with age = 0, at each iteration the algorithm creates dup copies of each
b-cell. These copies are mutated by the P-hype operator, creating a population
of mutants called Phyp which inherit the age of their parents if they do not
improve the fitness; otherwise their age will be set to zero. At the next step, all
b-cells with age ≥ τ will be removed from both populations with probability
pdie. If less than μ individuals have survived ageing, then the population is filled
up with new randomly generated individuals. At the selection phase, the best μ
b-cells are chosen to form the population for the next generation.

3 Fast Hypermutations

We start our analysis by relating the expected number of fitness function evalu-
ations to the expected number of P-hype operations until the optimum is found.
The following result holds for both P-hype operators. The lemma quantifies the
number of expected fitness function evaluations which are wasted by a hyper-
mutation operation.

72 D. Corus et al.

Algorithm 2. Fast Opt-IA
1: Initialise a population of μ b-cells, P , created uniformly at random;
2: for each x ∈ P set xage = 0.
3: while a global optimum is not found do
4: for each x ∈ P set xage = xage + 1;
5: for dup times for each x ∈ P do
6: y = P-hype(x);
7: if f(y) > f(x) then yage = 0 else yage = xage;
8: Add y to Phyp.
9: end for

10: Add Phyp to P , set Phyp = ∅;
11: for each x ∈ P if xage ≥ τ then remove x with probability pdie;
12: if |P | < μ then add μ − |P | solutions to P with age zero generated uniformly

at random;
13: if |P | > μ then remove |P |−μ solutions with the lowest fitness from P breaking

ties uniformly at random.
14: end while

Lemma 1. Let T be the random variable denoting the number of P-hype oper-
ations applied until the optimum is found. Then, the expected number of total
function evaluations is at most: E[T] · O(1 + γ log n).

Proof. Let the random variable Xi for i ∈ [T] denote the number of fitness
function evaluations during the ith execution of P-hype. Additionally, let the
random variable X ′

i denote the number of fitness function evaluations at the ith
operation assuming that no improvements are found. For all i it holds that Xi �
X ′

i since finding an improvement can only decrease the number of evaluations.
Thus, the total number of function evaluations E[

∑T
i=1 Xi] can be bounded

above by E[
∑T

i=1 X ′
i] which is equal to E[T] · E[X ′] due to Wald’s equation [14]

since X ′
i are identically distributed and independent from T .

We now write the expected number of fitness function evaluations in each
operation as the sum of n indicator variables Yi for i ∈ [n] denoting whether
an evaluation occurs after the ith bit mutation. Referring to the probabilities

in (1), we get, E[X] = E

[
n∑

i=1

Yi

]
=

n∑

i=1

Pr{Yi = 1} = 1
e + 1

e + 2
n/2∑

i=2

γ 1
i ≤

2
e + 2γ (lnn/2 − 1). ��

In Lemma 1, γ appears as a multiplicative factor in the expected runtime
measured in fitness function evaluations. An intuitive lower bound of Ω(1/ log n)
for γ can be inferred since smaller mutation rates will not decrease the runtime.
While a smaller γ does not decrease the asymptotic order of expected evaluations
per operation, in Sect. 4 we will provide an example where a smaller choice of
γ reduces E[T] directly. For the rest of our results though, we will rely on E[T]
being the same as for the traditional static hypermutations with FCM while the
number of wasted fitness function evaluations decreases from n to O(1+γ log n).

Fast Artificial Immune Systems 73

Table 1. Expected runtimes of the standard (1 + 1) EA and (1 + 1) IAhyp versus the
expected runtime of the (1+ 1) Fast-IA. For γ = O(1/ log n), the (1 + 1) Fast-IA is
asymptotically at least as fast as the (1 + 1) EA and faster by a linear factor compared
to the (1 + 1) IAhyp for the unimodal and trap functions. For not too large jump and
cliff sizes (i.e., o(n/ log n)), the (1 + 1) Fast-IA has an asymptotic speed up compared
to the (1+ 1) IAhyp for the same parameter setting. For not too small jump and cliff
sizes both AISs are much faster than the (1 + 1) EA.

Function (1 + 1) EA (1+ 1) IAhyp (1+ 1) Fast-IA

OneMax Θ(n log n) [15] Θ(n2 log n) [6] Θ (n log n (1 + γ log n))

LeadingOnes Θ(n2) [15] Θ(n3) [6] Θ
(
n2 (1 + γ log n)

)

Trap Θ(nn) [15] Θ(n2 log n) [6] Θ (n log n (1 + γ log n))

Jumpd>1 Θ(nd) [15] O(n
(
n
d

)
) [6] O

(
(d/γ) · (1 + γ log n) · (

n
d

))

Cliffd>1 Θ(nd) [16] O(n
(
n
d

)
) [6] O

(
(d/γ) · (1 + γ log n) · (

n
d

))

We will now analyse the simplest setting where we can implement P-hype.
The (1 + 1) Fast-IA keeps a single individual in the population and uses P-hype
to perturb it at every iteration. The performance of the (1 + 1) IAhyp, a sim-
ilar barebones algorithm using the classical static hypermutation operator has
recently been related to the performance of the well-studied Randomised Local
Search algorithm (RLS) [6]. RLSk flips exactly k bits of the current solution to
sample a new search point, compares it with the current solution and continues
with the new one unless it is worse. According to Theorems 3.3 and 3.4 of [6],
any runtime upper bound for RLS obtained via Artificial Fitness Levels (AFL)
method also holds for the (1 + 1) IAhyp with an additional factor of n (e.g., an
upper bound of O(n) for RLS derived via AFL translates into an upper bound of
O(n2) for the (1 + 1) IAhyp). The following theorem establishes a similar relation-
ship between RLS and the (1 + 1) Fast-IA with a factor of O(1+γ log n) instead
of n. In the context of the following theorem, (1 + 1) Fast-IA≥ denotes the vari-
ant of (1 + 1) Fast-IA which considers an equally good solution as constructive
while (1 + 1) Fast-IA> stops the hypermutation only if a solution strictly better
than the parent is sampled.

Theorem 1. Let E
(
TAFL

A

)
be any upper bound on the expected runtime

of algorithm A established by the artificial fitness levels method. Then
E

(
TAFL
(1+ 1) Fast-IA>

)
≤ E

(
TAFL
(1+1) RLSk

)
· k/γ ·O(1+ γ log n). Moreover, for the

special case of k = 1, E
(
TAFL
(1+ 1) Fast-IA≥

)
≤ E

(
TAFL
(1+1) RLS1

)
· O(1 + γ log n)

also holds.

Apart from showing the efficiency of the (1 + 1) Fast-IA, the theorem also
allows easy achievements of upper bounds on the runtime of the algorithm,
by just analysing the simple RLS. For γ = O(1/ log n), Theorem 1 implies
the upper bounds of O(n log n) and O(n2) for classical benchmark functions
OneMax and LeadingOnes respectively (see Table 1). Both of these bounds are

74 D. Corus et al.

asymptotically tight since each function’s unary unbiased black-box complexity
is in the same order as the presented upper bound [12].

Corollary 1. The expected runtimes of the (1+ 1) Fast-IA to optimise
OneMax(x) :=

∑n
i=1 xi and LeadingOnes :=

∑n
i=1

∏i
j=1 xj are respec-

tively O (n log n (1 + γ log n)) and O(n2 (1 + γ log n)). For γ = O(1/ log n) these
bounds reduce to Θ(n log n) and Θ(n2).

P-hype samples the complementary bit-string with probability one if it can-
not find any improvements. This behaviour allows an efficient optimisation of
the deceptive Trap function which is identical to OneMax except that the opti-
mum is in 0n. Since n bits have to be flipped to reach the global optimum from
the local optimum, EAs based on SBM require exponential runtime with over-
whelming probability [17]. By evaluating the sampled bitstrings stochastically,
the (1 + 1) Fast-IA provides up to a linear speed-up for small enough γ compared
to the (1 + 1) IAhyp on Trap as well.

Theorem 2. The expected runtime of the (1+ 1) Fast-IA to optimise Trap is
Θ(n log n (1 + γ log n)).

The results for the (1 + 1) IAhyp on Jump and Cliff functions [6] can also
be adapted to the (1 + 1) Fast-IA in a straightforward manner, even though
they fall out of the scope of Theorem1. Both Jumpd and Cliffd have the same
output as OneMax for bitstrings with up to n − d 1-bits and the same opti-
mum 1n. For solutions with the number of 1-bits between n − d and n, Jump
has a reversed OneMax slope creating a gradient towards n − d while Cliff
has a slope heading toward 1n even though the fitness values are penalised by
an additive factor d. Being designed to accomplish larger mutations, the perfor-
mance of hypermutations on Jump and Cliff functions is superior to standard
bit mutation [6]. This advantage is preserved for the (1 + 1) Fast-IA as seen in
the following theorem.

Theorem 3. The expected runtime of the (1+ 1) Fast-IA to optimise Jumpd

and Cliffd is O
(
(d/γ) · (1 + γ log n) · (

n
d

))
.

For Jump and Cliff, the superiority of the (1 + 1) Fast-IA in comparison
to the deterministic evaluations scheme depends on the function parameter d.
If γ = Ω(1/ log n), the (1 + 1) Fast-IA performs better for d = o(n/ log n) while
the deterministic scheme (i.e., (1 + 1) IAhyp) is preferable for larger d. However,
for small d the difference between the runtimes can be as large as a factor of n
in favor of the (1 + 1) Fast-IA while, even for the largest d, the difference is less
than a factor of log n in favor of the deterministic scheme. Here we should also
note that for d = Ω(n/ log n) the expected time is exponentially large for both
algorithms (albeit considerably smaller than that of standard EAs) and the log n
factor has no realistic effect on the applicability of the algorithm.

Fast Artificial Immune Systems 75

4 Fast Opt-IA

In this section we will consider the effect of our proposed evaluation scheme on
the complete Opt-IA algorithm. The distinguishing characteristic of the Opt-IA
algorithm is its use of the ageing and hypermutation operators. In [6] a fit-
ness function called HiddenPath (Fig. 2) was presented where the use of both
operators is necessary to find the optimum in polynomial time. The function
HiddenPath provides a gradient to a local optimum, which allows the hyper-
mutation operator to find another gradient which leads to the global optimum
but situated on the opposite side of the search space (i.e., nearby the complemen-
tary bitstrings of the local optima). However, the ageing operator is necessary
for the algorithm to accept a worsening; otherwise the second gradient is not
accessible. To prove our upper bound, we can follow the same proof strategy
in [18], which established an upper bound of O(τμn + μn7/2) for the expected
runtime of the traditional Opt-IA on HiddenPath. We will see that Opt-IA
benefits from an n/ log n speed-up due to P-hype.

Fig. 2. HiddenPath [6]

Theorem 4. The Fast Opt-IA needs O(τμ + μn5/2 log n) fitness function eval-
uations in expectation to optimise HiddenPath with μ = O(log n), dup = 1,
1/(4 ln n) ≥ γ = Ω(1/ log n) and τ = Ω(n log2 n).

HiddenPath was artificially constructed to fit the behaviour of the Opt-IA
to illustrate its strengths. One of those strengths was the ageing mechanism’s
ability to escape local optima in two different ways. First, it allows the algorithm
to restart with a new random population after it gets stuck at a local optimum.
Second, ageing allows individuals with worse fitness than the current best to
stay in the population when all the current best individuals are removed by the
ageing operator in the same iteration. If an improvement is found soon after the
worsening is accepted, then this temporary non-elitist behaviour allows the algo-
rithm to follow other gradients which are accessible by variation from the local
optima but leads away from them. On the other hand, even though it is cou-
pled with ageing in the Opt-IA, the FCM mechanism does not allow worsenings.

76 D. Corus et al.

More precisely, for the hypermutation with FCM, the complementary bit-string
of the local optimum is sampled with probability 1 if no other improvements
are found. Indeed, HiddenPath was designed to exploit this high probability.
However, by only stopping on improving mutations, the traditional hypermu-
tations with FCM do not allow, in general, to take advantage of the power of
ageing at escaping local optima. For instance, for the classical benchmark func-
tion Cliffd with parameter d = Θ(n), hypermutation with FCM turned out to
be a worse choice of variation operator to couple with ageing than both local
search and standard-bit-mutation [18]. Ageing coupled with RLS and SBM can
reach the optimum by local moves, which respectively yields upper bounds of
O(n log n) and O(n1+ε log n) for arbitrarily small positive constant ε on their
runtimes. However, hypermutations with FCM require to increase the number
of 1-bits in the current solution by d at least once before the hypermutation
stops. This requirement implies the following exponential lower bound on the
runtime regardless of the evaluation scheme (as long as the hypermutation only
stops on a constructive mutation).

Theorem 5. Fast Opt-IA using P-hypeFCM requires at least 2Ω(n) fitness func-
tion evaluations in expectation to find the optimum of Cliffd for d = (1−c)n/4,
where c is a constant 1 > c > 0.

The following theorem will demonstrate how P-hypeFCM , that, instead of
stopping the hypermutation at the first constructive mutation, will execute all n
mutation steps, evaluate each bitstring with the probabilities in (1) and return
the best found solution, allows ageing and hypermutation to work in harmony
in Opt-IA.

Theorem 6. Fast Opt-IA using P-hypeBM with μ = 1, dup = 1, γ = 1/(n
log2 n) and τ = Θ(n log n) needs O(n log n) fitness function evaluations in expec-
tation to optimise Cliff with any linear d ≤ n/4 − ε for an small constant ε.

Note that the above result requires a γ in the order of Θ(1/(n log2 n)), while
Lemma 1 implies that any γ = ω(1/ log n) would not decrease the expected num-
ber of fitness function evaluations below the asymptotic order of Θ(1). However,
having γ = 1/(n log2 n) allows Opt-IA, with constant probability, to complete its
local search before any solution with larger Hamming distance is ever evaluated.
In Theorem 6, we observe that this opportunity allows the Opt-IA to hillclimb
the second slope before jumping back to the local optima. The following theorem
rigorously proves that a very small choice for γ in this case is necessary (i.e.,
γ = Ω(1/ log n) leads to exponential expected runtime).

Theorem 7. At least 2Ω(n) fitness function evaluations in expectation are exe-
cuted before the Fast Opt-IA using P-hypeBM with γ = Ω(1/ log n) finds the
optimum of Cliffd for d = (1 − c)n/4, where c is a constant 1 > c > 0.

5 Conclusion

Due to recent analyses of increasingly realistic evolutionary algorithms, higher
mutation rates, naturally present in artificial immune systems, than previously

Fast Artificial Immune Systems 77

recommended or used as a rule of thumb, are gaining significant interest in the
evolutionary computation community [19–22].

We have presented two alternative ‘hypermutations with mutation poten-
tial’ operators, P-hypeFCM and P-hypeBM and have rigorously proved, for sev-
eral significant benchmark problems from the literature, that they maintain the
exploration characteristics of the traditional operators while outperforming them
up to linear factor speed-ups in the exploitation phase.

The main modification that allows to achieve the presented improvements
is to sample the solution after the ith bit-flip stochastically with probability
roughly pi = γ/i, rather than deterministically with probability one. The anal-
ysis shows that the parameter γ can be set easily. Concerning P-hypeFCM , that
returns the first sampled constructive mutation and is suggested to be used in
isolation, any γ = O(1/ log(n)) allows optimal asymptotical exploitation time
(based on the unary unbiased black box complexity of OneMax and Leadin-
gOnes) while maintaining the traditional exploration capabilities. Concerning
P-hypeBM , which does not use FCM and is designed to work harmonically with
ageing as in the standard Opt-IA, considerably lower values of the parameter
(i.e., γ = 1/(n log2 n)) are required to escape from difficult local optima effi-
ciently (e.g., Cliff) such that the hypermutations do not return to the local
optima with high probability. While these low values for γ still allow optimal
asymptotic exploitation in the unbiased unary black box sense, they consider-
ably reduce the capability of the operator to perform the large jumps required
to escape the local optima of functions with characteristics similar to Jump, i.e.,
where ageing is ineffective due to the second slope of decreasing fitness. Future
work may consider an adaptation of the parameter γ to allow it to automatically
increase and decrease throughout the run [23,24]. Furthermore, the performance
of the proposed operators should be evaluated for classical combinatorial opti-
misation problems and real-world applications.

References

1. Burnet, F.M.: The Clonal Selection Theory of Acquired Immunity. Cambridge
University Press, Cambridge (1959)

2. de Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal
selection principle. IEEE Trans. Evol. Comput. 6(3), 239–251 (2002)

3. Kelsey, J., Timmis, J.: Immune inspired somatic contiguous hypermutation for
function optimisation. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol.
2723, pp. 207–218. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
45105-6 26

4. Cutello, V., Nicosia, G., Pavone, M., Timmis, J.: An immune algorithm for protein
structure prediction on lattice models. IEEE Trans. Evol. Comput. 11(1), 101–117
(2007)

5. Cutello, V., Nicosia, G., Pavone, M.: A hybrid immune algorithm with information
gain for the graph coloring problem. In: Cantú-Paz, E. (ed.) GECCO 2003. LNCS,
vol. 2723, pp. 171–182. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-45105-6 23

https://doi.org/10.1007/3-540-45105-6_26
https://doi.org/10.1007/3-540-45105-6_26
https://doi.org/10.1007/3-540-45105-6_23
https://doi.org/10.1007/3-540-45105-6_23

78 D. Corus et al.

6. Corus, D., Oliveto, P.S., Yazdani, D.: On the runtime analysis of the Opt-IA arti-
ficial immune system. In: Proceedings of the GECCO 2017, pp. 83–90 (2017)

7. Jansen, T., Zarges, C.: Analyzing different variants of immune inspired somatic
contiguous hypermutations. Theor. Comput. Sci. 412(6), 517–533 (2011)

8. Jansen, T., Zarges, C.: Computing longest common subsequences with the B-Cell
algorithm. In: Coello Coello, C.A., Greensmith, J., Krasnogor, N., Liò, P., Nicosia,
G., Pavone, M. (eds.) ICARIS 2012. LNCS, vol. 7597, pp. 111–124. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-33757-4 9

9. Jansen, T., Oliveto, P.S., Zarges, C.: On the analysis of the immune-inspired B-Cell
algorithm for the vertex cover problem. In: Liò, P., Nicosia, G., Stibor, T. (eds.)
ICARIS 2011. LNCS, vol. 6825, pp. 117–131. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22371-6 13

10. Corus, D., He, J., Jansen, T., Oliveto, P.S., Sudholt, D., Zarges, C.: On easiest
functions for mutation operators in bio-inspired optimisation. Algorithmica 78(2),
714–740 (2016)

11. Oliveto, P.S., Sudholt, D.: On the runtime analysis of stochastic ageing mecha-
nisms. In: Proceedings of the GECCO 2014, pp. 113–120 (2014)

12. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64(4),
623–642 (2012)

13. Corus, D., Oliveto, P.S., Yazdani, D.: Fast artificial immune systems. ArXiv e-
prints (2018). http://arxiv.org/abs/1806.00299

14. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

15. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1 + 1) evolutionary
algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

16. Paixão, T., Heredia, J.P., Sudholt, D., Trubenová, B.: Towards a runtime compar-
ison of natural and artificial evolution. Algorithmica 78(2), 681–713 (2017)

17. Oliveto, P.S., Yao, X.: Runtime analysis of evolutionary algorithms for discrete
optimization. In: Auger, A., Doerr, B. (eds.) Theory of Randomized Search Heuris-
tics, pp. 21–52. World Scientific (2011)

18. Corus, D., Oliveto, P.S., Yazdani, D.: When hypermutations and ageing enable
artificial immune systems to outperform evolutionary algorithms. ArXiv e-prints
(2018). http://arxiv.org/abs/1804.01314

19. Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-based
mutation-combining exploration and exploitation. In: Proceedings of the CEC
2009, pp. 1455–1462 (2009)

20. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Proceedings of the GECCO 2017, pp. 777–784 (2017)

21. Corus, D., Oliveto, P.S.: Standard steady state genetic algorithms can hillclimb
faster than mutation-only evolutionary algorithms. IEEE Trans. Evol. Comput.
(2017)

22. Dang, D.-C., et al.: Emergence of diversity and its benefits for crossover in genetic
algorithms. IEEE Trans. Evol. Comput. (2017, to appear)

23. Doerr, B., Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the runtime analysis of
selection hyper-heuristics with adaptive learning periods. In: Proceedings of the
GECCO 2018. ACM (2018, to appear)

24. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the
(1 + (λ, λ)) genetic algorithm. Algorithmica 80, 1658–1709 (2018)

https://doi.org/10.1007/978-3-642-33757-4_9
https://doi.org/10.1007/978-3-642-22371-6_13
https://doi.org/10.1007/978-3-642-22371-6_13
http://arxiv.org/abs/1806.00299
http://arxiv.org/abs/1804.01314

First-Hitting Times for Finite State
Spaces

Timo Kötzing and Martin S. Krejca(B)

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
martin@krejca.de

Abstract. One of the most important aspects of a randomized algo-
rithm is bounding its expected run time on various problems. Formally
speaking, this means bounding the expected first-hitting time of a ran-
dom process. The two arguably most popular tools to do so are the
fitness level method and drift theory. The fitness level method considers
arbitrary transition probabilities but only allows the process to move
toward the goal. On the other hand, drift theory allows the process to
move into any direction as long as it move closer to the goal in expecta-
tion; however, this tendency has to be monotone and, thus, the transition
probabilities cannot be arbitrary.

We provide a result that combines the benefit of these two approaches:
our result gives a lower and an upper bound for the expected first-hitting
time of a random process over {0, . . . , n} that is allowed to move forward
and backward by 1 and can use arbitrary transition probabilities. In case
that the transition probabilities are known, our bounds coincide and yield
the exact value of the expected first-hitting time. Further, we also state
the stationary distribution as well as the mixing time of a special case
of our scenario.

1 Introduction

A very important part of recent research on the theoretical analysis of evolution-
ary algorithms (EAs) is concerned with run time analysis, and over the years,
different tools have been proposed in order to derive run time results more eas-
ily. The approaches used for run time analysis all follow the same very broad
outline: the algorithm is viewed as a random process whose progress over time
is measured. The aim is to bound the expected first-hitting time of the process
reaching a certain state, usually finding an optimum. Depending on how much
progress can be achieved in different phases of the algorithm, a bound on the
expected first-hitting time – the run time – can then be derived. The approaches
differ in what phases they consider and how restricted the random process needs
to be. We discuss the two arguably most well-known approaches: the fitness level
method and drift theory.

The fitness level method is historically older than drift and was first for-
mally defined by Wegener [13] in the context of EAs; a nice overview of this
tool including tail bounds was provided by Witt [14]. The method considers a
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 79–91, 2018.
https://doi.org/10.1007/978-3-319-99259-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_7&domain=pdf

80 T. Kötzing and M. S. Krejca

partition of the optimization domain into levels. The progress of an EA is then
measured by the expected time it takes to get from one level to another. This
means that the expected first-hitting time can be bounded by the sum of the
waiting times per level. The major drawback of this tool is that it assumes that
there are no cycles among the levels, that is, once the EA advances to a next
level, it cannot return to any older level. Hence, this approach basically bounds
the first-hitting time of a random walk on a directed path. However, the limita-
tion of having no cycles among the levels results in a very concise theorem that
is able to yield exact bounds when the actual transition probabilities are known.

Dang and Lehre [1] provide theorems similar to the fitness level method but
allow for cycles among the levels. While this approach can yield good upper
bounds easily, especially for non-elitist EAs, it assumes that the algorithm of
interest makes use of a population. Thus, the theorems cannot be applied to all
random processes. Further, without a lower bound, it is not clear how tight a
result actually is.

Drift theory is an entirely different approach to deriving expected first-
hitting times; see the informative article of Lengler [9] for a general introduction
to this topic. Different from the fitness level method, drift theory does not esti-
mate the progress of a random process via waiting times in different levels but
instead looks at the expected change of the process after a single step – the drift.
In this setting, arbitrary steps closer to the goal or away from it may be permit-
ted. The expected first-hitting time then follows from a bound on the drift of
the process. Similar to the fitness level method, drift theory can provide upper
and lower bounds that are exact if the actual transition probabilities are known.

In its most restrictive setting – the additive drift theorem (see Theorem 1), the
bound on the drift has to be the same for all states of the random process con-
sidered. This means that the bounds on the transition probabilities have to be
the same, which limits applicability. In a case where this is overly confining, more
advanced theorems like the variable drift theorem (see Theorem 2) can be used,
which allows to bound the drift dependent on the current state of the process.
However, all of these theorems have in common that the the drift needs to be
bounded in a monotone way. This means that the drift has to decrease as the goal
is approached – a restriction that the fitness level method does not have.

In this paper, we combine the benefits of the fitness level method and of drift
theory. Our main result, Theorem3, considers a random process that is allowed to
move toward the goal or away from it in any (not necessarily monotone) fashion.
Our setting assumes, in its simplest form, a random walk on an undirected path
with the nodes 0 through n. For this setting, we get the exact expected first-
hitting time. Our result also provides upper bounds when the process makes
larger steps toward the goal and lower bounds when it makes larger steps away
from it. We show that our result is a generalization of the fitness level method
(Corollary 6) and that it yields bounds that cannot be derived with the variable
drift theorem (see Example 4) – the most general drift theorem available. Hence,
our result sheds new light on the behavior of random processes over finite state
spaces when the progress of the process is not monotone or if the drift is 0.

First-Hitting Times for Finite State Spaces 81

Further, we also analyze our setting in the context of Markov chains. We
give the stationary distribution when the process is a random walk on a path
(Theorem 7), again, allowing for arbitrary transition probabilities, and we state
an upper bound on the mixing time of the process (Corollary 9). This allows
to estimate the probability of the process being in a certain state at a specific
point in time – a concept strongly connected to the any-time analysis introduced
by Jansen and Zarges [6] and similar to occupation probabilities as discussed by
Lissovoi and Witt [11] and Kötzing et al. [8].

Our paper is structured as follows: Sect. 2 introduces the setting we consider
as well as the tools we need in order to derive our results. Section 3 contains our
main result, Theorem 3, as well as examples of how the bounds following from
it cannot be achieved via any known drift theorem. Last, in Sect. 4, we consider
the stationary distribution and the mixing time of the processes we consider.

Note that a special case of Theorem 3 has already been proven by
Droste et al. [2] when the Markov chain is a path. Our result extends theirs
by providing an upper and a lower bound for scenarios where more transition
probabilities are allowed. Further, our result is proven using drift theory, a mod-
ern tool that was not available to Droste et al. back then.

2 Setting

We consider random processes (Xt)t∈N over the finite set {0, . . . , n}, for an n ∈ N.
In its simplest form, the process is only allowed to move from state s to s − 1,
s, and s + 1 (if they exist). However, our main result (Theorem 3) generalizes to
settings where the process can additionally either make arbitrary long jumps to
the front (that is, from state s to any state s′ < s) or to the back. Our process
can be thought of as a random walk as seen in Fig. 1. In the most-restricted
scenario, where the process can only move to neighboring states, it performs a
random walk on a path.

. . .0 1 n

Fig. 1. An exemplary setting we consider. Each node represents a state, and each edge
represents a possible transition. Here, the process can move from a state s to any state
s′ < s when moving to the left but can only move to state s + 1 when moving to the
right.

We are interested in the expected first-hitting time of such a process reaching
the state 0. More formally, let T = min{t | Xt = 0}; we want to bound E[T].

82 T. Kötzing and M. S. Krejca

In our results, we give bounds for E[T | X0] instead, which is a random variable,
as X0 is a random variable. Bounds on E[T] can then be derived by the law of
total expectation, that is, E[T] = E

[
E[T | X0]

]
.

In order to be able to actually reach our goal state 0, we assume that the
probability of the random process Xt to move left is positive for any state s > 0,
that is, Pr[Xt − Xt+1 ≥ 1|Xt = s] > 0.

2.1 Stochastic Tools

Our results make use of drift theory – a tool that allows to estimate the first-
hitting time of a random process when given only estimates of local changes of
that process.

The main theorem we use is the following additive drift theorem by He and
Yao [3,4]. It yields bounds on the first-hitting time of a random process reach-
ing 0 when the expected local change – the drift – can be bounded by a value
independent of the current state. We use this theorem in order to prove our main
result.

Theorem 1 (Additive Drift [3,5]). Let (Xt)t∈N be nonnegative random vari-
ables over a finite space S ⊂ R≥0 containing 0, and let T = min{t | Xt = 0}.

If there is a constant δ > 0 such that, for all s ∈ S and all t < T ,

E[Xt − Xt+1 | Xt = s] ≥ δ, then E[T | X0] ≤ X0

δ
.

And if there is a δ > 0 such that, for all s ∈ S and all t < T ,

E[Xt − Xt+1 | Xt = s] ≤ δ, then E[T | X0] ≥ X0

δ
.

A more flexible drift theorem is the following variable drift theorem. It allows
to upper-bound the expected first-hitting time of a random process reaching 0
when the drift can depend in any monotone fashion on the current state. We use
this theorem to compare our main result against.

Theorem 2 (Variable Drift [7,12]). Let (Xt)t∈N be nonnegative random vari-
ables over {0} ∪ S, where S ⊂ R≥1 is a finite state space containing 1, and let
T = min{t | Xt < 1}.

If there exists a monotonically increasing function h : R+ → R≥0 such that
1/h is integrable and, for all s ∈ S and all t < T ,

E[Xt − Xt+1 | Xt = s] ≥ h(s), then E[T | X0] ≤ 1
h(1)

+
∫ X0

1

1
h(x)

dx.

3 General First-Hitting Times

We start by stating and discussing our main result, Theorem3, which provides
an upper and a lower bound of the first-hitting time of a random process in the
setting described in Sect. 2. Those bounds make use of bounds on the transition
probabilities of the process.

First-Hitting Times for Finite State Spaces 83

Theorem 3. Let (Xt)t∈N be a random process over {0, . . . , n} and let T denote
the first point in time t such that Xt = 0.

1. Suppose there are two functions p← : {1, . . . , n} → [0, 1] and p→ : {0, . . . , n −
1} → [0, 1] such that, for all t < T and all s ∈ {1, . . . , n},

• p←(s) > 0,
• Pr[Xt − Xt+1 ≥ 1|Xt = s] ≥ p←(s),
• Pr[Xt − Xt+1 = −1|Xt = s] ≤ p→(s) (for s �= n), and
• Pr[Xt − Xt+1 < −1|Xt = s] = 0 (for s �= n).

Then

E[T | X0] ≤
X0∑

s=1

n∑

i=s

1
p←(i)

i−1∏

j=s

p→(j)
p←(j)

.

2. Suppose there are two functions p← : {1, . . . , n} → [0, 1] and p→ : {0, . . . , n −
1} → [0, 1] such that, for all t < T and all s ∈ {1, . . . , n},

• p←(s) > 0,
• Pr[Xt − Xt+1 = 1|Xt = s] ≤ p←(s),
• Pr[Xt − Xt+1 > 1|Xt = s] = 0, and
• Pr[Xt − Xt+1 ≤ −1|Xt = s] ≥ p→(s) (for s �= n).

Then

E[T | X0] ≥
X0∑

s=1

n∑

i=s

1
p←(i)

i−1∏

j=s

p→(j)
p←(j)

.

The bounds on the expected first-hitting time given in Theorem3 can be
thought of as the sum of waiting times. Each waiting time is weighted with the
ratio of how likely it is to go away from the goal 0 (p→) versus going toward it
(p←). Note that the inner sum adds all waiting times up to n. This is where we
need that the state space is bounded.

For case 1, note that it does not matter how far left the process moves. In
fact, in the proof, we assume the worst case of the process only moving one step
closer to the goal. However, we need to guarantee that we can move at most
one step away from the goal. The converse is true for case 2: here, we need to
guarantee that the process can only move a single step closer to the goal but is
allowed to go arbitrarily far away (given its finite state space). Consequently, if
the exact transition probabilities are known and, when in state s, the process
can only move to the states s − 1, s, and s + 1 (if possible), both cases coincide
and Theorem 3 yields the exact first-hitting time of the process.

The proof of Theorem3 is an application of Theorem1 with a scaled process
(a potential) such that the drift can be bounded by 1. The expected first-hitting
time is then bounded by the potential of the starting state.

Proof (of Theorem 3). For both cases, we define a potential function
φ : {0, . . . , n} → R≥0, for s ∈ {0, . . . , n}, as follows, using the respective defi-
nitions of p← and p→:

φ(s) =
s∑

i=1

g(i), where g(s) =
n∑

i=s

1
p←(i)

i−1∏

j=s

p→(j)
p←(j)

for s �= 0.

84 T. Kötzing and M. S. Krejca

Note that φ is monotonically increasing and that, for all t < T , φ(Xt) = 0 if and
only if Xt = 0. Thus, the first point in time t such that φ(Xt) = 0 is T .

We prove that the following recursion holds via downward induction over
s ∈ {1, . . . , n}:

g(n) =
1

p←(n)
and g(s) =

1
p←(s)

+
p→(s)
p←(s)

g(s + 1) for s �= n.

For the base case s = n, we get g(n) =
∑n

i=n
1

p←(i)

∏i−1
j=n

p→(j)
p←(j) = 1

p←(n) , which
is true. As for the inductive step, for s �= n, we get

1
p←(s)

+
p→(s)
p←(s)

g(s + 1) =
1

p←(s)
+

p→(s)
p←(s)

n∑

i=s+1

1
p←(i)

i−1∏

j=s+1

p→(j)
p←(j)

=
1

p←(s)
+

n∑

i=s+1

1
p←(i)

i−1∏

j=s

p→(j)
p←(j)

=
n∑

i=s

1
p←(i)

i−1∏

j=s

p→(j)
p←(j)

= g(s).

Consider case 1. We first compute the drift for t < T and for Xt = n:

E[φ(Xt) − φ(Xt+1) | Xt = n] ≥ Pr Xt − Xt+1 ≥ 1[Xt = n] · (
φ(n) − φ(n − 1)

)

≥ p←(n) · (
φ(n) − φ(n − 1)

)
= p←(n) · g(n) = 1,

where the first inequality follows from the monotonicity of φ.
For s ∈ {1, . . . , n − 1} and t < T , we get

E[φ(Xt) − φ(Xt+1) | Xt = s] ≥ Pr[Xt − Xt+1 ≥ 1|Xt = s] · (
φ(s) − φ(s − 1)

)

+ Pr[Xt − Xt+1 = −1|Xt = s] · (
φ(s) − φ(s + 1)

)

= Pr[Xt − Xt+1 ≥ 1|Xt = s] · g(s) − Pr[Xt − Xt+1 = −1|Xt = s] · g(s + 1)
≥ p←(s) · g(s) − p→(s) · g(s + 1)

= p←(s) ·
(

1
p←(s)

+
p→(s)
p←(s)

g(s + 1)
)

− p→(s) · g(s + 1) = 1,

using our recursion scheme for g. Again, the first inequality follows from the
monotonicity of φ.

Since we have a drift of at least 1 in all cases and a bounded step size, we
can apply Theorem 1 and get the desired result.

For case 2, we can perform analogous estimations for the drift but into the
other direction, making use that −φ(s + 1) is an upper bound for −φ(s′) for all
s′ ≥ s + 1. This way, we can upper-bound the drift by 1, yielding the respective
lower bound when using Theorem1. 	

Note that the recursion of function g given in the proof is defined as an
upward recursion. This actually follows from reconstructing how g has to look
in order for the drift to be 1. This approach cannot be done in this fashion with
a downward recursion, using state 1 as base case, as it is not clear what the

First-Hitting Times for Finite State Spaces 85

potential for that state has to be, since it has two neighboring states. Thus, it
is very important for the search space to be bounded, leading to a well defined
base case of g(n) = 1/p←(n).

We highlight the importance of the upper bound on the state space (that is,
its finiteness) in the following example, where we show that Theorem2 cannot
be easily extended such that it works in a scenario where its drift function h is
not monotone.

Example 4. Consider two functions p← : {1, . . . , n} → [0, 1] and p→ : {0, . . . , n −
1} → [0, 1] such that, for all s ∈ {1, . . . , n},

• p←(s) = 1
2s (for s �= 0) and • p→(s) = 1

2(s+1) (for s �= n).

Note that, for all s ∈ {1, . . . , n − 1}, p←(s) + p→(s) ≤ 1.
Let (Xt)t∈N be a random process over {0, . . . , n} and let T denote the first

point in time t such that Xt = 0. Suppose that, for all s ∈ {1, . . . , n},

• Pr[Xt − Xt+1 = 1|Xt = s] = p←(s) (for s �= 0),
• Pr[Xt − Xt+1 = −1|Xt = s] = p→(s) (for s �= n), and
• Pr[Xt − Xt+1 = 0|Xt = s] = 1 − p←(s) − p→(s).

First, we consider the drift of this process. For all s ∈ {1, . . . , n − 1}, we get

E[Xt − Xt+1 | Xt = s] =
1
2s

− 1
2(s + 1)

=
s + 1

2s(s + 1)
− s

2s(s + 1)
=

1
2s(s + 1)

,

and for s = n, we get E[Xt − Xt+1 | Xt = n] = 1
2n ≥ 1

2n(n+1) . Thus, the drift is
dependent on the current state of the process. Note that this dependency is not
monotonically increasing. However, we ignore this and apply Theorem2 anyway.
Hence, defining h(s) = 1/

(
2s(s + 1)

)
, we get

E[T | X0] ≤ 1
h(1)

+
∫ X0

1

1
h(x)

dx = 2 · 2 +
∫ X0

1

2x(x + 1)dx

= 4 +
2
3
x3

∣
∣
∣
∣

X0

1

+ x2|X0
1 = 4 +

2
3
X3

0 − 2
3

+ X2
0 − 1 = O

(
X3

0

)
.

We now contrast this result with the result following from Theorem3. Note
that our functions p← and p→ are equal to the transition probabilities of our
random process. Thus, Theorem 3 yields an exact result, as the upper and lower
bound coincide:

E[T | X0] =
X0∑

s=1

n∑

i=s

1
p←(i)

i−1∏

j=s

p→(j)
p←(j)

.

First, we calculate the product in the expected first-hitting time:

i−1∏

j=s

p→(j)
p←(j)

=
i−1∏

j=s

1
2(j+1)

1
2j

=
i−1∏

j=s

j

j + 1
=

s

i
,

86 T. Kötzing and M. S. Krejca

as this is a telescope product and the numerator and denominator of neighboring
factors cancel out.

As for the inner sum, we now get
∑n

i=s
1

p←(i)

∏i−1
j=s

p→(j)
p←(j) =

∑n
i=s 2i s

i =
∑n

i=s 2s = 2s(n − s + 1), since the sum is independent of its summation index i.
Last, for the outer sum, we get

X0∑

s=1

n∑

i=s

1
p←(i)

i−1∏

j=s

p→(j)
p←(j)

=
X0∑

s=1

2s(n − s + 1) = 2

(

(n + 1)
X0∑

s=1

s −
X0∑

s=1

s2

)

= 2
(

(n + 1)
X0(X0 + 1)

2
− X0(X0 + 1)(2X0 + 1)

6

)
= Θ

(
nX2

0

)
,

because 0 ≤ X0 ≤ n, which means that the minuend dominates the difference in
the second-to-last line. Overall, Theorem3 yields E[T | X0] = Θ

(
nX2

0

)
.

If we compare this result against the expected first-hitting time due to The-
orem 2 of E[T | X0] = O

(
X3

0

)
, we see that these results contradict one another

if X0 = o(n). In fact, if we choose X0 = 1, that is, we are almost at our goal
of 0 and have a constant probability of reaching it, the (erroneous) result of The-
orem 2 yields a constant first-hitting time, whereas the truth is a first-hitting
time linear in n.

Intuitively, this drastic difference comes from the high probability of the
process going away from the goal instead of toward it. Thus, if our process
does not go toward 0, it may take some time until it returns to 1. Even more
important: this waiting time until returning to 1 is dependent on the size of the
search space, namely n, as evident by the factor of n in the first-hitting time.
Thus, if our search space were unbounded, the expected first-hitting time would
be unbounded too, as the probability of returning to 1 would be too small.

This has an even bigger impact on Theorem 2: its result does not include the
size of the search space.1 This means that the theorem is inherently not capable
of yielding the correct expected first-hitting time in the form given.

When choosing X0 = Θ(n), the results of both theorems coincide. In this
case, the process starts so far away from the goal 0 that the return time to
X0 is negligible. However, note that this is again due to the search space being
bounded. As we start close to the upper bound n, it either takes a short time to
return to X0 (if going away from 0) or we approach the goal. �

Since Example 4 does not give different results when X0 = Θ(n), we provide
another example, where the difference in the bounds from Theorems 2 and 3 is
tremendous.

Example 5. Consider two functions p← : {1, . . . , n} → [0, 1] and p→ : {0, . . . , n −
1} → [0, 1] such that, for all s ∈ {1, . . . , n},

• p←(s) = 1
2

(
1 + 1

es

)
(for s �= 0) and • p→(s) = 1

2

(
1 − 1

es

)
(for s �= n).

1 The theorem itself assumes the search space to be bounded. However, the actual size
of the search space does not matter for the expected first-hitting time.

First-Hitting Times for Finite State Spaces 87

Note that, for all s ∈ {1, . . . , n − 1}, p←(s) + p→(s) = 1.
Let (Xt)t∈N be a random process over {0, . . . , n} and let T denote the first

point in time t such that Xt = 0. Suppose that, for all s ∈ {1, . . . , n},

• Pr[Xt − Xt+1 = 1|Xt = s] = p←(s) (for s �= 0),
• Pr[Xt − Xt+1 = −1|Xt = s] = p→(s) (for s �= n), and
• Pr[Xt − Xt+1 = 0|Xt = n] = 1 − p←(n).

Thus, Xt is almost an unbiased random walk on a path. Further, we assume that
X0 = n.

First, we consider the drift of this process. For all s ∈ {1, . . . , n − 1}, we
get E[Xt − Xt+1 | Xt = s] = 1

2

(
1 + 1

es

) − 1
2

(
1 − 1

es

)
= 1

es , and for s = n, we get
E[Xt − Xt+1 | Xt = n] = 1

2

(
1 + 1

en

) ≥ 1
en .

By wrongly applying Theorem2 with h(s) = 1/es, we get E[T |X0] ≤ 1
h(1) +

∫ X0

1
1

h(x)dx = e + en − e = en.
We now consider the application of Theorem 3. First, we estimate the product∏i−1

j=s
p→(j)
p←(j) ≤ 1. Hence, for the inner sum, we get

∑n
i=s

1
p←(i)

∏i−1
j=s

p→(j)
p←(j) ≤

∑n
i=s

2ei

ei+1 ≤ ∑n
i=s 2 = 2(n − s + 1).

Last, for the outer sum, we get

X0∑

s=1

n∑

i=s

1
p←(i)

i−1∏

j=s

p→(j)
p←(j)

≤
X0∑

s=1

2(n − s + 1) = 2

(

(n + 1)
n∑

s=1

1 −
n∑

s=1

s

)

= O
(
n2

)
.

Overall, Theorem 3 yields E[T | X0] = O
(
n2

)
.

Comparing this with the bound of O(en) when (wrongly) applying Theorem2,
we see that there is an exponential gap between both results. The result from
Theorem 2 is not wrong but nonetheless very much off from the truth. Due to
the exponentially declining drift, the bound is exponential. However, the actual
first-hitting time of Xt is dominated by the first-hitting time of an unbiased
random walk, which hits 0, starting from n, within Θ

(
n2

)
steps in expectation.

The result from Theorem 3 conforms to this argument. �

Theorem 3 allows for arbitrary transition probabilities, as long as the state 0
can be reached. If we now restrict the transition probabilities such that the pro-
cess cannot move to the right, we end up in a scenario where the process can
either move closer to the target or stay at its current position. Thus, the expected
first-hitting time is the sum of geometrically distributed random variables denot-
ing the number of steps until each state is left. This way, we reconstruct the
fitness level method.

Corollary 6 (Fitness Level Method [13]). Let (Xt)t∈N be a random process
over {0, . . . , n} and let T denote the first point in time t such that Xt = 0.
Suppose, for all t < T , Xt − Xt+1 ≥ 0.

1. Suppose there exists a function p← : {1, . . . , n} → [0, 1] such that, for all t < T
and all s ∈ {1, . . . , n},

88 T. Kötzing and M. S. Krejca

• p←(s) > 0 and • Pr[Xt − Xt+1 ≥ 1|Xt = s] ≥ p←(s).
Then E[T | X0] ≤ ∑X0

s=1
1

p←(s) .
2. Suppose there exists a function p← : {1, . . . , n} → [0, 1] such that, for all t < T

and all s ∈ {1, . . . , n},
• p←(s) > 0, • Pr[Xt − Xt+1 = 1|Xt = s] ≤ p←(s), and
• Pr[Xt − Xt+1 > 1|Xt = s] = 0.

Then E[T | X0] ≥ ∑X0
s=1

1
p←(s) .

Proof. Both inequalities directly follow from Theorem3 by noting that the prod-
uct

∏i−1
j=s

p→(j)
p←(j) is 0 for each i ≥ s + 1, and 1 for i = s. 	

Note how case 2 assumes that the process can only move one step closer to
the goal. If this were not the case, the process could reach the goal 0 earlier (for
example, directly from X0) and we had not to sum over all states between 0
and X0.

4 Limit Distributions and Mixing Times

Our setting described in Sect. 2 can be interpreted as a Markov chain as depicted
in Fig. 1. In this section, we are going to analyze our random process with respect
to tools from the theory of Markov chains. We assume that the reader is familiar
with the standard terminology in this topic and point to Markov Chains and
Mixing Times [10] for a nice reference.

In Sect. 3, we determined the expected first-hitting time of a random process
on a finite state space. Now we focus on the probability of being in a certain
state after a certain time. More specifically, we are interested in a stationary
distribution of our process as well as its mixing time. We start with determining
a stationary distribution.

In this section, we assume that the process can only move to neighboring
states. That is, when in state s, the process can only move to s − 1, s, and s + 1
(if possible).

According to Corollary 1.17 from [10], a stationary distribution of a Markov
chain is unique if the chain is irreducible, that is, every state can be reached from
any other state with positive probability. As we are interested in unique station-
ary distributions, our following theorem assumes that all transition probabilities
to neighboring states are positive.

Theorem 7. Let (Xt)t∈N be a random process over {0, . . . , n}. Suppose, for
all t ∈ N, (Xt − Xt+1) ∈ {−1, 0, 1}. Suppose there are two functions
p← : {1, . . . , n} → [0, 1] and p→ : {0, . . . , n − 1} → [0, 1] such that, for all
s ∈ {0, . . . , n},
• Pr[Xt − Xt+1 = 1|Xt = s] = p←(s) > 0 (for s �= 0) and
• Pr[Xt − Xt+1 = −1|Xt = s] = p→(s) > 0 (for s �= n).

First-Hitting Times for Finite State Spaces 89

Further, let π denote the stationary distribution of Xt. Then, for all s ∈
{0, . . . , n},

π(s) =

∏s−1
i=0

p→(i)
p←(i+1)

∑n
i=0

∏i−1
j=0

p→(j)
p←(j+1)

.

Similar to Theorem 3, the ratio of the transition probabilities are very impor-
tant for our result. However, different from Theorem3, we now need the values
p→(s)/p←(s + 1) instead of p→(s)/p←(s). This difference makes sense: in Sect. 3,
we were interested in reaching the state 0. Thus, it was important how likely the
process moves toward or from the goal. Now, there is no special state that we
want to reach. We are interested in the probability of being in a certain state.
Hence, it is important with which probability to get to a state and with which
probability to leave it again.

If the ratio p→(s)/p←(s + 1) is the same for all states s, we can simplify the
stationary distribution as follows.

Corollary 8. Let (Xt)t∈N be a random process over {0, . . . , n}. Suppose, for
all t ∈ N, (Xt − Xt+1) ∈ {−1, 0, 1}. Further, suppose there are two functions
p← : {1, . . . , n} → [0, 1] and p→ : {0, . . . , n − 1} → [0, 1] and a value c > 0 such
that, for all s ∈ {0, . . . , n},
• Pr[Xt − Xt+1 = 1|Xt = s] = p←(s) > 0 (for s �= 0),
• Pr[Xt − Xt+1 = −1|Xt = s] = p→(s) > 0 (for s �= n), and
• p→(s)/p←(s + 1) = c.

Further, let π denote the stationary distribution of Xt. If c �= 1, then, for all
s ∈ {0, . . . , n}, it holds that π(s) = (c − 1) cs

cn+1−c .
And if c = 1, for all s ∈ {0, . . . , n}, it holds that π(s) = 1

n+1 .

Proof. We use the definition of π from Theorem 7 and use that
∏i−1

j=0
p→(j)

p←(j+1) =
∏i−1

j=0 c = ci. Hence, we get π(s) =
∏s−1

i=0
p→(i)

p←(i+1)
∑n

i=0
∏i−1

j=0
p→(j)

p←(j+1)

= cs∑n
i=0 ci , where the result

follows by noting that the denominator is a geometric sum (when c �= 1). For
c = 1, the result is trivial. 	

When we have c < 1, that is, the probability to move to the right is less than
the probability to move to the left, Corollary 8 yields that the probability to be
in state s declines exponentially in s. Conversely, if c > 1, the probability grows
exponentially in s. Last, if c = 1, we end up with the uniform distribution.

Given the stationary distribution, it is a natural question to ask whether
this distribution will be reached in the limit of the number of steps going to
infinity. This is the case if the Markov chain is also aperiodic (besides irreducible;
Theorem 4.9 from [10]), which is the case if there is at least one state that has
a self loop (that is, it has a positive probability of reaching itself in one step).

90 T. Kötzing and M. S. Krejca

Assuming that our Markov chain is also aperiodic, we now determine its
mixing time, that is, the time until the probability to be in state s is only at
most ε different from the probability stated by the stationary distribution.

The following corollary is a direct consequence of Corollary 14.7 from [10].
The idea behind the corollary is to consider a coupling of two independent copies
of the process that start maximally far apart. The goal is that both processes
meet. If they arrive in neighboring states and at least one of those states has a
self loop, this is possible by one process staying where it is and the other process
moving to said state. In order for this argument to translate into a mixing time,
it is necessary that the expected distance of two such neighboring processes is
less than 1 after one step. That is, in expectation, they move close to one another
once they are next to each other. This is formalized in the following corollary.

Corollary 9. Let (Xt)t∈N be a random process over {0, . . . , n}. Suppose, for
all t ∈ N, (Xt − Xt+1) ∈ {−1, 0, 1}. Further, suppose there are two functions
p← : {1, . . . , n} → [0, 1] and p→ : {0, . . . , n − 1} → [0, 1] such that, for all s ∈
{0, . . . , n},
• Pr[Xt − Xt+1 = 1|Xt = s] = p←(s) > 0 (for s �= 0) and
• Pr[Xt − Xt+1 = −1|Xt = s] = p→(s) > 0 (for s �= n).

Let (Yt)t∈N be an independent copy of Xt. Assume that there is an α > 0 such
that, for all s ∈ {0, . . . , n − 1},

E
[|Xt+1 − Yt+1|

∣
∣ Xt = s, Yt = s + 1

] ≤ e−α. (1)

Let tmix denote the mixing time of Xt. Then, for each ε ∈ (0, 1/2),

tmix(ε) ≤
⌈

ln n
ε

α

⌉
.

Proof. The statement is an application of Corollary 14.7 from [10]. Inequality (1)
is a special case of the situation considered in Theorem 14.6 in [10]. 	

Note that if we consider a state s such that both s and s + 1 have no self
loop, E

[|Xt+1 − Yt+1|
∣
∣ X = s, Yt = s + 1

]
is at least 1, as Xt+1 and Yt+1 cannot

be in the same state. Thus, Corollary 9 is not applicable in this scenario.

References

1. Dang, D.C., Lehre, P.K.: Runtime analysis of non-elitist populations: from classical
optimisation to partial information. Algorithmica 75(3), 428–461 (2016)

2. Droste, S., Jansen, T., Wegener, I.: Dynamic parameter control in simple evolu-
tionary algorithms. In: Proceedings of the FOGA 2000, pp. 275–294 (2000)

3. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Artif. Intell. 127(1), 57–85 (2001)

4. He, J., Yao, X.: Erratum to: drift analysis and average time complexity of evolu-
tionary algorithms. Artif. Intell. 140(1), 245–248 (2002)

First-Hitting Times for Finite State Spaces 91

5. He, J., Yao, X.: A study of drift analysis for estimating computation time of evo-
lutionary algorithms. Nat. Comput. 3(1), 21–35 (2004)

6. Jansen, T., Zarges, C.: Evolutionary algorithms and artificial immune systems on
a bi-stable dynamic optimisation problem. In: Proceedings of the GECCO 2014,
pp. 975–982 (2014)

7. Johannsen, D.: Random combinatorial structures and randomized search heuristics.
Ph.D. thesis, Universität des Saarlandes (2010). http://scidok.sulb.uni-saarland.
de/volltexte/2011/3529/pdf/Dissertation3166JohaDani2010.pdf

8. Kötzing, T., Lissovoi, A., Witt, C.: (1 + 1) EA on generalized dynamic OneMax.
In: Proceedings of the FOGA XIII, pp. 40–51 (2015)

9. Lengler, J.: Drift analysis. CoRR abs/1712.00964 (2017). http://arxiv.org/abs/
1712.00964

10. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American
Mathematical Society, Providence (2006)

11. Lissovoi, A., Witt, C.: MMAS versus population-based EA on a family of dynamic
fitness functions. Algorithmica 75(3), 554–576 (2016)

12. Mitavskiy, B., Rowe, J.E., Cannings, C.: Theoretical analysis of local search strate-
gies to optimize network communication subject to preserving the total number of
links. Int. J. Intell. Comput. Cybern. 2(2), 243–284 (2009)

13. Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Orejas, F., Spirakis,
P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 64–78. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5 6

14. Witt, C.: Fitness levels with tail bounds for the analysis of randomized search
heuristics. Inf. Process. Lett. 114(1–2), 38–41 (2014)

http://scidok.sulb.uni-saarland.de/volltexte/2011/3529/pdf/Dissertation3166JohaDani2010.pdf
http://scidok.sulb.uni-saarland.de/volltexte/2011/3529/pdf/Dissertation3166JohaDani2010.pdf
http://arxiv.org/abs/1712.00964
http://arxiv.org/abs/1712.00964
https://doi.org/10.1007/3-540-48224-5_6

First-Hitting Times Under Additive Drift

Timo Kötzing and Martin S. Krejca(B)

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
martin@krejca.de

Abstract. For the last ten years, almost every theoretical result con-
cerning the expected run time of a randomized search heuristic used drift
theory, making it the arguably most important tool in this domain. Its
success is due to its ease of use and its powerful result: drift theory allows
the user to derive bounds on the expected first-hitting time of a random
process by bounding expected local changes of the process – the drift.
This is usually far easier than bounding the expected first-hitting time
directly.

Due to the widespread use of drift theory, it is of utmost importance
to have the best drift theorems possible. We improve the fundamental
additive, multiplicative, and variable drift theorems by stating them in
a form as general as possible and providing examples of why the restric-
tions we keep are still necessary. Our additive drift theorem for upper
bounds only requires the process to be nonnegative, that is, we remove
unnecessary restrictions like a finite, discrete, or bounded search space.
As corollaries, the same is true for our upper bounds in the case of vari-
able and multiplicative drift.

1 Drift Theory

In the theory of randomized algorithms, the first and most important part of
algorithm analysis is to compute the expected run time. A finite run time guaran-
tees that the algorithm terminates almost surely, and, due to Markov’s inequality,
the probability of the run time being far larger than the expected value can be
bounded, too. Thus, it is important to have strong and easy to handle tools in
order to derive expected run times. The de facto standard for this purpose in
the theory of randomized search heuristics is drift theory.

Drift theory is a general term for a collection of theorems that consider
random processes and bound the expected time it takes the process to reach a
certain value – the first-hitting time. The beauty and appeal of these theorems
lie in them usually having few restrictions but yielding strong results. Intuitively
speaking, in order to use a drift theorem, one only needs to estimate the expected
change of a random process – the drift – at any given point in time. Hence, a
drift theorem turns expected local changes of a process into expected first-hitting
times. In other words, local information of the process is transformed into global
information.

Drift theory gained traction in the theory of randomized search heuristics
when it was introduced to the community by He and Yao [7,8] via the additive
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 92–104, 2018.
https://doi.org/10.1007/978-3-319-99259-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_8&domain=pdf

First-Hitting Times Under Additive Drift 93

drift theorem. However, they were not the first to prove it. The result dates back
to Hajek [6], who stated the theorem in a fashion quite different from how it is
phrased nowadays. According to Lengler [13], the theorem has been proven even
prior to that various times. Since then, many different versions of drift theorems
have been proven, the most common ones being the variable drift theorem [9]
and the multiplicative drift theorem [3]. The different names refer to how the
drift is bounded other than independent of time: additive means that the drift
is bounded by the same value for all states; in a multiplicative scenario, the drift
is bounded by a multiple of the current state of the process; and in the setting
of variable drift, the drift is bounded by any monotone function with respect to
the current state of the process.

At first, the theorems were only stated over finite or discrete search spaces.
However, these restrictions are seldom used in the proofs and thus not necessary,
as pointed out, for example, by Lehre and Witt [12], who prove a general drift
theorem without these restrictions. Nonetheless, up to date, all drift theorems
require a bounded search space;1 Semenov and Terkel [19] state a Theorem
very much like an additive drift theorem for unbounded search spaces, but they
require the process to have a bounded variance, as they also prove concentration
for their result.

The area of randomized search heuristics is, in fact, in strong need of extended
drift theorems and a careful discussion of what happens when restrictions are not
met. While most search spaces are finite and, thus, the existing drift theorems
sufficient, progress will be inhibited whenever search spaces are not naturally
finite. Worse yet, the existing drift theorems might be applied where they are
not applicable, as happened when in [4, Sect. 4] the additive drift theorem was
applied on an unbounded search space.

While previously new drift theorems were proven on a need-to-have basis
using whatever restrictions where present in the concrete application, we aim at
providing the best possible theorem for any applications to come. For the restric-
tions that remain, we give examples that show that these restrictions are, in some
sense, necessary. In this way, we want to further the understanding of random
processes in general and not just for a concrete application; thus, this work
should benefit a lot of future work in the area of randomized search heuristics.

Our most important results are the upper and lower bound of the classical
additive drift theorem (Theorems 5 and 7, respectively), which we prove for
unbounded2 search spaces. These theorems are used as a foundation for all of
our other drift theorems in other settings. Overall, our results can be summarized
as follows:

1 Lengler [13] briefly mentions infinite search spaces and also gives a proof for a
restricted version of the additive drift theorem in the setting of an unbounded dis-
crete search space.

2 For the upper bound, we require the search space to be lower-bounded but not
upper-bounded. We still refer to such a setting as unbounded.

94 T. Kötzing and M. S. Krejca

For additive drift, we prove an upper bound for any nonnegative process
(Theorem 5), and a lower bound for processes with bounded expected step size
(Theorem 7).

For multiplicative drift and variable drift, we prove upper bounds for
any nonnegative process (Corollaries 11 and 12; and Theorems 9 and 10, respec-
tively).

The intention of this paper is to provide a fully-packed reference for very
general yet easy-to-apply drift theorems. That is, we try to keep the requirements
of the theorems as easy as possible but still state the theorems in the most general
way, given the restrictions. Further, we discuss the ideas behind the different
theorems and some of the proofs in order to provide insights into how and why
drift works, we provide examples, and we discuss prior work at the beginning of
each section.

We only consider bounds on the expected first-hitting time, as this is already
a vast field to explore. However, we want to mention that drift theory has also
brought forth other results than expected first-hitting times, namely, concentra-
tion bounds and negative drift, which are related. Both areas bound the proba-
bility of the first-hitting time taking certain values. Concentration bounds show
how unlikely it is for a process to take much longer than the expected first-
hitting time [2,10]. On the other hand, negative drift bounds how likely it is for
the process to reach the goal although the drift is going the opposite direction
[10,16,17]. These results are also very helpful but out of the scope of this paper.

Our paper is structured as follows: in Sect. 2, we start by introducing impor-
tant notation and terms, which we use throughout the entire paper. Further, we
also discuss Theorem 1, which our proofs of the additive drift theorems rely on.
In Sect. 3, we discuss additive drift and prove our main results. We then continue
with variable drift in Sect. 4 as a generalization of additive drift. In this section,
we introduce two different versions of first-hitting time that our results are based
on. Last, we consider the scenario of multiplicative drift in Sect. 5.

Due to space limitations, many proofs are omitted in this paper. A version
containing all of the proofs can be found on arXiv [11].

2 Preliminaries

We consider the expected first-hitting time T of a process (Xt)t∈N over R, which
we call Xt for short. That is, we are interested in the expected time it takes the
process to reach a certain value for the first time, which we will refer to as the
target. Usually, our target is the value 0, that is, we will define the random
variable T = inf{t | Xt ≤ 0} (where we define that inf ∅ := ∞).

We provide bounds on E[T |X0] with respect to the drift of Xt, which is
defined as

Xt − E[Xt+1 |X0, . . . , Xt].

Note that E[T |X0] as well as E[Xt+1 |X0, . . . , Xt] are both random vari-
ables. Because of the latter, the drift is a random variable, too. Further note
that, if the drift is positive, Xt decreases its value in expectation over time when

First-Hitting Times Under Additive Drift 95

considering positive starting values. This is why 0 will be our target most of the
time.

We are only interested in the process Xt until the time point T . That is,
all of our requirements only need to hold for all t < T (since we also consider
t+1). While this phrasing is intuitive, it is formally inaccurate, as T is a random
variable. We will continue to use it; however, formally, each of our inequalities
in each of our requirements should be multiplied with the characteristic function
of the event {t < T}. In this way, the inequalities trivially hold once t ≥ T and,
otherwise, are the inequalities we state. This is similar to conditioning on the
event {t < T} but has the benefit of being valid even if Pr[t < T] = 0 holds.

We want to mention that all of our results actually hold for a random process
(Xt)t∈N adapted to a filtration (Ft)t∈N, where T is a stopping time defined with
respect to Ft.3 Since this detail is frequently ignored in drift theory, we phrase
all of our results with respect to the natural filtration, making them look more
familiar to usual drift results. For any time point t ≤ T , we call X0, . . . , Xt−1

the history of the process.
Last, we state all of our results conditional on X0, that is, we bound E[T |X0].

However, by the law of total expectation, one can easily derive a bound for
E[T] = E

[
E[T |X0]

]
.

2.1 Martingale Theorems

In this section, we state two theorems that we will use in order to prove our
results in the next sections. Both theorems make use of martingales, a funda-
mental concept in the field of probability theory. A martingale is a random
process with a drift of 0, that is, in expectation, it does not change over time.
Further, a supermartingale has a drift of at least 0, that is, it decreases over time
in expectation, and a submartingale has a drift of at most 0, that is, it increases
over time in expectation.

The arguably most important theorem for martingales is the Optional Stop-
ping Theorem (Theorem 1). We use a version given by Grimmett and Stirzaker [5,
Chap. 12.5, Theorem 9] that can be extended to super- and submartingales.

Theorem 1 (Optional Stopping). Let (Xt)t∈N be a random process over R,
and let T be a stopping time4 for Xt. Suppose that

(a) E[T] < ∞ and that
(b) there is some value c ≥ 0 such that, for all t < T , it holds that

E
[|Xt+1 − Xt|

∣
∣ X0, . . . , Xt

] ≤ c.

Then:

1. If, for all t < T , Xt − E[Xt+1 |X0, . . . , Xt] ≥ 0, then E[XT] ≤ E[X0].
2. If, for all t < T , Xt − E[Xt+1 |X0, . . . , Xt] ≤ 0, then E[XT] ≥ E[X0].
3 More information on filtrations can be found, for example, in Randomized Algo-
rithms [15] in the section on martingales.

4 Intuitively, for the natural filtration, a stopping time T is a random variable over N

such that, for all t ∈ N, the event {t ≤ T} is only dependent on X0, . . . , Xt.

96 T. Kötzing and M. S. Krejca

Theorem 1 allows us to bound E[XT] independently of its history, which is
why our drift results are independent of the history of XT as well.

Note that case (1) refers to supermartingales, whereas case (2) refers to
submartingales. Intuitively, case (1) says that a supermartingale will have, in
expectation, a lower value than it started with, which makes sense, as a super-
martingale decreases over time in expectation. Case (2) is analogous for sub-
martingales. For martingales, both cases can be combined in order to yield an
equality.

Martingales are essential in the proofs of our theorems. We will frequently
transform our process such that it results in a supermartingale or a submartin-
gale in order to apply Theorem 1.

Another useful theorem for martingales is the following Azuma–Hoeffding
Inequality [1]. This inequality basically is for martingales what a Chernoff bound
is for binomial distributions.

Theorem 2 (Azuma-Hoeffding Inequality). Let (Xt)t∈N be a random pro-
cess over R. Suppose that

(a) there is some value c > 0 such that, for all t ∈ N, it holds that |Xt −Xt+1| <
c.

If, for all t ∈ N,Xt −E[Xt+1 |X0, . . . , Xt] ≥ 0, then, for all t ∈ N and all r > 0,

Pr[Xt − X0 ≥ r] ≤ e− r2

2tc2 .

3 Additive Drift

We speak of additive drift when the drift can be bounded by a value independent
of the process itself. That is, the bound is independent of time and state.

When considering the first-hitting time T of a random process (Xt)t∈N whose
drift is lower -bounded by a value δ > 0, then E[T |X0] is upper -bounded by
X0/δ. Interestingly, if the drift of Xt is upper -bounded by δ, E[T |X0] is lower -
bounded by X0/δ. Thus, if the drift of Xt is exactly δ, that is, we know how
much expected progress Xt makes in each step, our expected first-hitting time
is equal to X0/δ. This result is remarkable, as it can be understood intuitively
as follows: since we stop once Xt reaches 0, the distance from our start (X0) to
our goal (0) is exactly X0, and we make an expected progress of δ each step.
Thus, in expectation, we are done after X0/δ steps.

3.1 Upper Bounds

We give a proof for the Additive Drift Theorem, originally published (in a more
restricted version) by He and Yao [7,8]. We start by reproving the original the-
orem (which requires a bounded search space) but in a simpler, more elegant
and educational manner. We then greatly extend this result by generalizing it
to processes with a bounded step width. Finally, we lift also this restriction.

First-Hitting Times Under Additive Drift 97

In all of these cases, we require our random process to only take nonnegative
values. The intuitive reason for this is the following: when estimating an upper
bound for the expected first-hitting time, we need a lower bound of the drift. This
means the larger our bound of the drift, the better our bound for the first-hitting
time. Since our process is nonnegative, the drift for values close to 0 provides a
natural bound for the drift (which is uniform over the entire search space, since
we look at additive drift). If our process could take values less than 0, we could
artificially increase our lower bound of the drift for values that are now bounded
by 0 and, thus, improve our first-hitting time. At the end of this section, we also
give an example (Example 6), which shows how our most general drift theorem
(Theorem 5) fails if the process can take negative values.

The proof of the following theorem transforms the process into a supermartin-
gale and then uses Theorem 1. However, in order to apply Theorem1, we have
to make sure to fulfill its condition (a), which is the hardest part.

Theorem 3 (Upper Additive Drift, Bounded). Let (Xt)t∈N be a random
process over R, and let T = inf{t | Xt ≤ 0}. Furthermore, suppose that,

(a) for all t ≤ T , it holds that Xt ≥ 0, that
(b) there is some value δ > 0 such that, for all t < T , it holds that Xt −

E[Xt+1 |X0, . . . , Xt] ≥ δ, and that
(c) there is some value c ≥ 0 such that, for all t < T , it holds that Xt ≤ c.

Then E[T |X0] ≤ X0
δ .

Note that condition (a) means that T can be rewritten as inf{t | Xt = 0},
that is, we have to hit 0 exactly in order to stop. We show in Example 6 why
this condition is crucial.

Condition (b) bounds the expected progress we make each time step. The
larger δ, the lower the expected first-hitting time. However, due to condition (a),
note that small values of Xt create a natural upper bound for δ, as the progress
for such values can be at most |Xt − 0| = Xt.

Condition (c) means that we are considering random variables over the inter-
val [0, c]. It is a restriction that all previous additive drift theorems have but that
is actually not necessary, as we show with Theorem 5. In the following proof, we
use this condition in order to show that E[T] < ∞, which is necessary when
applying Theorem1.

Proof (Proof of Theorem 3). We want to use case (1) of the Optional Stopping
Theorem in the version of Theorem 1. Thus, we define, for all t < T , Yt = Xt+δt,
which is a supermartingale, since

Yt − E[Yt+1 |Y0, . . . , Yt] = Xt + δt − E[Xt+1 + δ(t + 1) | X0, . . . , Xt]
= Xt − E[Xt+1 |X0, . . . , Xt] − δ ≥ 0,

as we assume that Xt −E[Xt+1 |X0, . . . , Xt] ≥ δ for all t < T . Note that we can
change the condition Y0, . . . , Yt to X0, . . . , Xt because the transformation from
Xt to Yt is injective.

98 T. Kötzing and M. S. Krejca

We now show that E[T |X0] < ∞ holds in order to apply Theorem1. Let
r > 0, and let a be any value such that Pr[X0 ≤ a] > 0. We condition on
the event {X0 ≤ a}, and we consider a time point t′ = (a + r)/δ and want
to bound the probability that Xt′ has not reached 0 yet, that is, the event
{Xt′ > 0}. We rewrite this event as {Xt′ − a > −a}, which is equivalent to
{Yt′ − a > −a + δt′ = r}, by definition of Y and t′.

Note that, for all t < T , |Yt − Yt+1| < c + δ + 1, as we assume that Xt ≤ c.
Thus, the differences of Yt are bounded and we can apply Theorem2 as follows,
noting that Y0 = X0 ≤ a, due to our condition on {X0 ≤ a}:

Pr[Yt′ − a > r |X0 ≤ a] ≤ Pr[Yt′ − Y0 ≥ r |X0 ≤ a] ≤ e− r2

2t′(c+δ+1)2 .

If we choose r ≥ a, we get t′ ≤ 2r/δ and, thus,

Pr[Yt′ − Y0 > r |X0 ≤ a] ≤ e− rδ
4(c+δ+1)2 .

This means that the probability that Xt′ has not reached 0 goes exponentially
fast toward 0 as t′ (and, hence, r) goes toward ∞. Thus, the expected value of T
is finite.

Now we can use case (1) of Theorem 1 in order to get E[YT |X0] ≤ E[Y0 |X0].
In particular, noting that XT = 0 by definition,

X0 = E[X0 |X0] = E[Y0 |X0]
≥ E[YT |X0] = E[XT + δT |X0] = E[XT |X0] + δE[T |X0] = δE[T |X0].

Thus, we get the desired bound by dividing by δ. ��
Note that the arguments in this proof only need the property of bounded

differences in order to apply Theorem 2. Thus, we can relax the condition of a
bounded state space into bounded step size, which can be seen in the following
theorem.

Theorem 4 (Upper Additive Drift, Bounded Step Size). Let (Xt)t∈N

be a random process over R, and let T = inf{t | Xt ≤ 0}. Furthermore, suppose
that,

(a) for all t ≤ T , it holds that Xt ≥ 0, that
(b) there is some value δ > 0 such that, for all t < T , it holds that Xt −

E[Xt+1 |X0, . . . , Xt] ≥ δ, and that
(c) there is some value c ≥ 0 such that, for all t < T , it holds that |Xt+1 −

Xt| ≤ c.

Then E[T |X0] ≤ X0
δ .

Although the proof of Theorem3 can be used for Theorem 4 as well, we
provide a different proof strategy in the appendix, which we then generalize for
our next theorem. This alternative strategy defines a process similar to Xt that
behaves like Xt in the limit.

First-Hitting Times Under Additive Drift 99

The proof of Theorem4 makes use of Theorem 3 by artificially bounding the
search space for a time that is sufficient in order to bound the expected first-
hitting time. This approach can be used in order to let the restriction of the
bounded step size fall entirely. Since we cannot make many assumptions about
the process in this case anymore, we rely on Markov’s inequality in order to show
that our process will not leave, with sufficiently high probability, an interval large
enough to properly bound the expected first-hitting time.

Theorem 5 (Upper Additive Drift, Unbounded). Let (Xt)t∈N be a ran-
dom process over R, and let T = inf{t | Xt ≤ 0}. Furthermore, suppose that,

(a) for all t ≤ T , it holds that Xt ≥ 0, and that
(b) there is some value δ > 0 such that, for all t < T , it holds that Xt −

E[Xt+1 |X0, . . . , Xt] ≥ δ.

Then E[T |X0] ≤ X0
δ .

As we already mentioned before, note that the condition of the process not
being negative is important in order to get correct results. The following example
highlights this fact.

Example 6. Let n > 1, and let (Xt)t∈N be a random process with X0 = 1 and,
for all t ∈ N, Xt+1 = Xt with probability 1−1/n, and Xt+1 = −n+1 otherwise.
Let T denote the first point in time t such that the event Xt ≤ 0 occurs. We
have, for all t < T , that Xt − E[Xt+1 |X0, . . . , Xt] = 1 and, thus, E[T |X0] ≤ 1
if we could apply any of the additive drift theorems. However, since T follows a
geometric distribution with success probability 1/n, we have E[T |X0] = n.

3.2 Lower Bound

In this section, we provide a lower bound for the expected first-hitting time
under additive drift. In order to do so, we need an upper bound for the drift.
Since we now lower-bound the first-hitting time, a large upper bound of the drift
makes the result bad. Thus, we can allow the process to take negative values,
as these could only increase the drift’s upper bound. However, we need to have
some restriction on the step size in order to make sure not to move away from
the target. Again, we provide an example (Example 8) showing this necessity at
the end of this section.

Theorem 7 (Lower Additive Drift, Expected Bounded Step Size). Let
(Xt)t∈N be a random process over R, and let T = inf{t | Xt ≤ 0}. Furthermore,
suppose that

(a) there is some value δ > 0 such that, for all t < T , it holds that Xt −
E[Xt+1 |X0, . . . , Xt] ≤ δ, and that

(b) there is some value c ≥ 0 such that, for all t < T , it holds that
E

[|Xt+1 − Xt|
∣
∣ X0, . . . , Xt

] ≤ c.

100 T. Kötzing and M. S. Krejca

Then E[T |X0] ≥ X0
δ .

Proof. We make a case distinction with respect to E[T |X0] being finite. If
E[T |X0] is infinite, then the theorem trivially holds. Thus, we now assume
that E[T |X0] < ∞.

Similar to the proof of Theorem3, we define, for all t < T , Yt = Xt + δt,
which is a submartingale, since

Yt − E[Yt+1 |Y0, . . . , Yt] = Xt − δt − E[Xt+1 − δ(t + 1) | X0, . . . , Xt]
= Xt − E[Xt+1 |X0, . . . , Xt] − δ ≤ 0,

as we assume that Xt − E[Xt+1 |X0, . . . , Xt] ≤ δ for all t < T and because,
again, the transformation of Xt to Yt is injective.

Since we now assume that both E[T |X0] < ∞ and, further, that
E

[|Xt+1 − Xt|
∣
∣ X0, . . . , Xt

] ≤ c for all t < T , we can directly apply case (2)
of Theorem 1 and get that E[YT |X0] ≥ E[Y0 |X0]. This yields, noting that
XT ≤ 0,

X0 = E[X0 |X0] = E[Y0 |X0]
≤ E[YT |X0] = E[XT + δT |X0] = E[XT |X0] + δE[T |X0] ≤ δE[T |X0].

Thus, we get the desired bound by dividing by δ. ��
Note that the step size has to be bounded in some way for a lower bound, as

the following example shows.

Example 8. Let δ ∈ (0, 1), and let (Xt)t∈N be a random process with X0 = 2
and, for all t ∈ N, Xt+1 = 0 with probability 1/2 and Xt+1 = 2Xt−2δ otherwise.
Further, let T denote the first point in time t such that Xt = 0. Then T follows
a geometric distribution with success probability 1/2, which yields E[T] = 2.
However, we have that Xt − E[Xt+1 |X0, . . . , Xt] = δ. If Theorem 7 could be
applied to this process (by neglecting the condition of the bounded step size),
the theorem would yield that E[T] ≥ 2/δ, which is not true.

4 Variable Drift

In contrast to additive drift, variable drift means that the drift can depend on
the current state of the process (while still being bounded independently of the
time). Interestingly, these more flexible drift theorems can be derived by using
additive drift. Intuitively, the reasoning behind this approach is to scale the
search space such that the information relevant to the process’s history cancels
out.

It is important to note that variable drift theorems are commonly phrased
such that the first-hitting time T denotes the first point in time such that the
random process drops below a certain value (our target) – it is not enough to
hit that value. However, this restriction is not always necessary. Thus, we also

First-Hitting Times Under Additive Drift 101

consider the setting from Sect. 3, where T denotes the first point in time such
that we hit our target. In this section, our target is no longer 0 but a value xmin.

In all of our theorems in this section, we make use of a set D. This set
contains (at least) all possible values that our process can take while not having
reached the target yet. It is a formal necessity in order to calculate the bound
of the first-hitting time (via an integral). However, when applying the theorem,
it is usually sufficient to choose D = R or D = R≥0.

The first variable drift theorem was proven by Johannsen [9] and, indepen-
dently in a different version, by Mitavskiy et al. [14]. It was later refined by Rowe
and Sudholt [18]. In all of these versions, bounded search spaces were used. Due
to Theorem 5, we can drop this restriction.

Going Below the Target. The following version of the theorem assumes that
the process has to drop below the target, denoted by xmin. We provide the other
version afterward.

Theorem 9 (Upper Variable Drift, Unbounded, Below Target). Let
(Xt)t∈N be a random process over R, xmin > 0, and let T = inf{t | Xt < xmin}.
Additionally, let D denote the smallest real interval that contains at least all
values x ≥ xmin that, for all t ≤ T , any Xt can take. Furthermore, suppose that

(a) X0 ≥ xmin and, for all t ≤ T , it holds that Xt ≥ 0 and that
(b) there is a monotonically increasing function h : D → R+ such that, for all

t < T , we have Xt − E[Xt+1 |X0, . . . , Xt] ≥ h(Xt).

Then

E[T |X0] ≤ xmin

h(xmin)
+

∫ X0

xmin

1
h(z)

dz.

Hitting the Target. As mentioned before, it is not always necessary to drop
below the target. For the additive drift, for example, we are interested in the
first time reaching the target. Interestingly, the proof for the following theorem
is straightforward, as it is almost the same as the proof of Theorem 9. Intuitively,
the waiting time for getting below the target, once it is reached, is eliminated
from the expected first-hitting time. However, it is important to note that it is
now not allowed to get below the target.

Theorem 10 (Upper Variable Drift, Unbounded, Hitting Target). Let
(Xt)t∈N be a random process over R, xmin ≥ 0, and let T = inf{t | Xt ≤ xmin}.
Additionally, let D denote the smallest real interval that contains at least all
values x ≥ xmin that, for all t ≤ T , any Xt can take. Furthermore, suppose that,

(a) for all t ≤ T , it holds that Xt ≥ xmin and that
(b) there is a monotonically increasing function h : D → R+ such that, for all

t < T , we have Xt − E[Xt+1 |X0, . . . , Xt] ≥ h(Xt).

Then

E[T |X0] ≤
∫ X0

xmin

1
h(z)

dz.

102 T. Kötzing and M. S. Krejca

5 Multiplicative Drift

A special case of variable drift is multiplicative drift, where the drift can be
bounded by a multiple of the most recent value in the history of the process. As
before, we provide upper bounds in the two versions of either dropping below the
target or hitting it. In this setting, it can be intuitively argued why the version of
dropping below the target is useful: consider a sequence of nonnegative numbers
that halves its current value each time step. This process will never reach 0
within finite time. However, it drops below any value greater than 0.

Both upper bounds we state are simple applications of the corresponding
variable drift theorems from Sect. 4.

Going Below the Target. Corollary 11 has first been stated by Doerr et al. [3]
using finite state spaces. However, a closer look at the proof shows that this
restriction is not necessary.

Corollary 11 (Upper Multiplicative Drift, Unbounded, Below Tar-
get). Let (Xt)t∈N be a random process over R, xmin > 0, and let T = inf{t |
Xt < xmin}. Furthermore, suppose that

(a) X0 ≥ xmin and, for all t ≤ T , it holds that Xt ≥ 0, and that
(b) there is some value δ > 0 such that, for all t < T , it holds that Xt −

E
[
Xt+1

∣
∣ X0, . . . , Xt

] ≥ δXt.

Then

E[T |X0] ≤
1 + ln

(
X0

xmin

)

δ
.

Hitting the Target. By applying Theorem10 instead of Theorem 9, we get
the following theorem. As in the case of Theorem 10, the process now has to be
lower-bounded by xmin.

Corollary 12 (Upper Multiplicative Drift, Unbounded, Hitting Tar-
get). Let (Xt)t∈N be a random process over R, xmin > 0, and let T = inf{t |
Xt ≤ xmin}. Furthermore, suppose that,

(a) for all t ≤ T , it holds that Xt ≥ xmin, and that
(b) there is some value δ > 0 such that, for all t < T , it holds that Xt −

E
[
Xt+1

∣
∣ X0, . . . , Xt

] ≥ δXt.

Then

E[T |X0] ≤
ln

(
X0

xmin

)

δ
.

Again, we provide an example that shows that the bounds above are as tight
as possible, up to constant factors, for the range of processes we consider. The
example describes a process that decreases deterministically, that is, it has a
variance of 0.

First-Hitting Times Under Additive Drift 103

Example 13. Let δ ∈ (0, 1) be a value bounded away from 1. Consider the pro-
cess (Xt)t∈N, with X0 > 1, that decreases each step deterministically such that
Xt+1 = (1−δ)Xt holds. Let T denote the first point in time such that the process
drops below 1. Thus, we get T = Θ(− log(1−δ) X0) = Θ

(− ln(X0)/ ln(1 − δ)
)

=
Θ

(
ln(X0)/δ

)
, where the last equation makes use of the Taylor expansion of

ln(1 − δ) = Θ(−δ), as 1 − δ does not converge to 0, by assumption.

References

1. Azuma, K.: Weighted sums of certain dependent random variables. Tohoku Math.
J. 19(3), 357–367 (1967)

2. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65(1), 224–250
(2013)

3. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica
64(4), 673–697 (2012)

4. Doerr, B., Kötzing, T., Lagodzinski, J.A.G., Lengler, J.: Bounding bloat in genetic
programming. In: Proceedings of the GECCO 2017, pp. 921–928 (2017)

5. Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes. Oxford Uni-
versity Press, Oxford (2001)

6. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with
applications. Adv. Appl. Probab. 14(3), 502–525 (1982)

7. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Artif. Intell. 127(1), 57–85 (2001)

8. He, J., Yao, X.: A study of drift analysis for estimating computation time of evo-
lutionary algorithms. Nat. Comput. 3(1), 21–35 (2004)

9. Johannsen, D.: Random combinatorial structures and randomized search heuris-
tics. Ph.D. thesis, Universität des Saarlandes (2010). http://scidok.sulb.uni-
saarland.de/volltexte/2011/3529/pdf/Dissertation 3166 Joha Dani 2010.pdf

10. Kötzing, T.: Concentration of first hitting times under additive drift. Algorithmica
75(3), 490–506 (2016)

11. Kötzing, T., Krejca, M.S.: First-hitting times under additive drift. CoRR
abs/1805.09415 (2018). https://arxiv.org/abs/1805.09415

12. Lehre, P.K., Witt, C.: Concentrated hitting times of randomized search heuris-
tics with variable drift. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS,
vol. 8889, pp. 686–697. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13075-0 54

13. Lengler, J.: Drift analysis. CoRR abs/1712.00964 (2017). http://arxiv.org/abs/
1712.00964

14. Mitavskiy, B., Rowe, J.E., Cannings, C.: Theoretical analysis of local search strate-
gies to optimize network communication subject to preserving the total number of
links. Int. J. Intell. Comput. Cybern. 2(2), 243–284 (2009)

15. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

16. Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evo-
lutionary computation. Algorithmica 59(3), 369–386 (2011)

17. Oliveto, P.S., Witt, C.: Erratum: simplified drift analysis for proving lower bounds
in evolutionary computation. CoRR abs/1211.7184 (2012). http://arxiv.org/abs/
1211.7184

http://scidok.sulb.uni-saarland.de/volltexte/2011/3529/pdf/Dissertation_3166_Joha_Dani_2010.pdf
http://scidok.sulb.uni-saarland.de/volltexte/2011/3529/pdf/Dissertation_3166_Joha_Dani_2010.pdf
https://arxiv.org/abs/1805.09415
https://doi.org/10.1007/978-3-319-13075-0_54
https://doi.org/10.1007/978-3-319-13075-0_54
http://arxiv.org/abs/1712.00964
http://arxiv.org/abs/1712.00964
http://arxiv.org/abs/1211.7184
http://arxiv.org/abs/1211.7184

104 T. Kötzing and M. S. Krejca

18. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, λ)
evolutionary algorithm. Theor. Comput. Sci. 545, 20–38 (2014)

19. Semenov, M.A., Terkel, D.A.: Analysis of convergence of an evolutionary algorithm
with self-adaptation using a Stochastic Lyapunov function. Evol. Comput. 11(4),
363–379 (2003)

Level-Based Analysis
of the Population-Based Incremental

Learning Algorithm

Per Kristian Lehre(B) and Phan Trung Hai Nguyen(B)

University of Birmingham, Birmingham, UK
{p.k.lehre,p.nguyen}@cs.bham.ac.uk

Abstract. The Population-Based Incremental Learning (PBIL) algo-
rithm uses a convex combination of the current model and the empirical
model to construct the next model, which is then sampled to generate
offspring. The Univariate Marginal Distribution Algorithm (UMDA) is a
special case of the PBIL, where the current model is ignored. Dang and
Lehre (GECCO 2015) showed that UMDA can optimise LeadingOnes
efficiently. The question still remained open if the PBIL performs equally
well. Here, by applying the level-based theorem in addition to Dvoretzky–
Kiefer–Wolfowitz inequality, we show that the PBIL optimises function
LeadingOnes in expected time O (

nλ log λ + n2
)

for a population size
λ = Ω(logn), which matches the bound of the UMDA. Finally, we show
that the result carries over to BinVal, giving the fist runtime result for
the PBIL on the BinVal problem.

Keywords: Population-based incremental learning · LeadingOnes
BinVal · Running time analysis · Level-based analysis · Theory

1 Introduction

Estimation of distribution algorithms (EDAs) are a class of randomised search
heuristics that optimise objective functions by constructing probabilistic mod-
els and then sample the models to generate offspring for the next generation.
Various variants of EDA have been proposed over the last decades; they dif-
fer from each other in the way their models are represented, updated as well
as sampled over generations. In general, EDAs are usually categorised into two
main classes: univariate and multivariate. Univariate EDAs take advantage of
first-order statistics (i.e. mean) to build a univariate model, whereas multivari-
ate EDAs apply higher-order statistics to model the correlations between the
decision variables.

There are only a few runtime results available for EDAs. Recently, there
has been a growing interest in the optimisation time of the UMDA, introduced
by Mühlenbein and Paaß [11], on standard benchmark functions [4,7,8,13,14].
Recall that the optimisation time of an algorithm is the number of fitness evalu-
ations the algorithm needs before a global optimum is sampled for the first time.
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 105–116, 2018.
https://doi.org/10.1007/978-3-319-99259-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_9&domain=pdf

106 P. K. Lehre and P. T. H. Nguyen

Dang and Lehre [4] analysed a variant of the UMDA using truncation selection
and derived the first upper bounds of O (nλ log λ) and O (

nλ log λ + n2
)

on the
expected optimisation times of the UMDA on OneMax and LeadingOnes,
respectively, where the population size is λ = Ω(log n). These results were
obtained using a relatively new technique called level-based analysis [3]. Very
recently, Witt [13] proved that the UMDA optimises OneMax within O (μn)
and O (μ

√
n) when μ ≥ c log n and μ ≥ c′√n log n for some constants c, c′ > 0,

respectively. However, these bounds only hold when λ = (1 +Θ(1))μ. This con-
straint on λ and μ was relaxed by Lehre and Nguyen [8], where the upper bound
O (λn) holds for λ = Ω(μ) and c log n ≤ μ = O (

√
n) for some constant c > 0.

The first rigorous runtime analysis of the PBIL [1], was presented very
recently by Wu et al. [14]. In this work, the PBIL was referred to as a cross
entropy algorithm. The study proved an upper bound O (

n2+ε
)

of the PBIL
with margins [1/n, 1 − 1/n] on LeadingOnes, where λ = n1+ε, μ = O(nε/2),
η ∈ Ω (1) and ε ∈ (0, 1). Until now, the known runtime bounds for the PBIL
were significantly higher than those for the UMDA. Thus, it is of interest to
determine whether the PBIL is less efficient than the UMDA, or whether the
bounds derived in the early works were too loose.

This paper makes two contributions. First, we address the question above by
deriving a tighter bound O (

nλ log λ + n2
)

on the expected optimisation time of
the PBIL on LeadingOnes. The bound holds for population sizes λ = Ω (log n),
which is a much weaker assumption than λ = ω(n) as required in [14]. Our proof
is more straightforward than that in [14] because much of the complexities of
the analysis are already handled by the level-based method [3].

The second contribution is the first runtime bound of the PBIL on BinVal.
This function was shown to be the hardest among all linear functions for the cGA
[5]. The result carries easily over from the level-based analysis of LeadingOnes
using an identical partitioning of the search space. This observation further shows
that runtime bounds, derived by the level-based method using the canonical
partition, of the PBIL or other non-elitist population-based algorithms using
truncation selection, on LeadingOnes also hold for BinVal.

The paper is structured as follows. Section 2 introduces the PBIL with mar-
gins as well as the level-based theorem, which is the main method employed in
the paper. Given all necessary tools, the next two sections then provide upper
bounds on the expected optimisation time of the PBIL on LeadingOnes and
BinVal. Finally, our concluding remarks are given in Sect. 5.

2 Preliminaries

We first introduce the notations used throughout the paper. Let X := {0, 1}n be
a finite binary search space with dimension n. The univariate model in generation
t ∈ N is represented by a vector p(t) := (p(t)1 , . . . , p

(t)
n) ∈ [0, 1]n, where each p

(t)
i

is called a marginal. Let X
(t)
1 , . . . , X

(t)
n be n independent Bernoulli random vari-

ables with success probabilities p
(t)
1 , . . . , p

(t)
n . Furthermore, let X

(t)
i:j :=

∑j
k=i X

(t)
k

Level-Based Analysis of PBIL 107

be the number of ones sampled from p
(t)
i:j := (p(t)i , . . . , p

(t)
j) for all 1 ≤ i ≤ j ≤ n.

Each individual (or bitstring) is denoted as x = (x1, . . . , xn) ∈ X . We aim at
maximising an objective function f : X → R. We are primarily interested in
the optimisation time of these algorithms, so tools to analyse runtime are of
importance. We will make use of the level-based theorem [3].

2.1 Two Problems

We consider the two pseudo-Boolean functions: LeadingOnes and BinVal,
which are widely used theoretical benchmark problems in runtime analyses of
EDAs [4,5,14]. The former aims at maximising the number of leading ones, while
the latter tries to maximise the binary value of the bitstring. The global optimum
for both functions are the all-ones bitstring. Furthermore, BinVal is an extreme
linear function, where the fitness-contribution of the bits decreases exponentially
with the bit-position. Droste [5] showed that among all linear functions, BinVal
is difficult for the cGA. Given a bitstring x = (x1, . . . , xn) ∈ X , the two functions
are formally defined as follows:

Definition 1. LeadingOnes(x) :=
∑n

i=1

∏i
j=1 xj .

Definition 2. BinVal(x) :=
∑n

i=1 2
n−ixi.

2.2 Population-Based Incremental Learning

The PBIL algorithm maintains a univariate model over generations. The prob-
ability of a bitstring x = (x1, . . . , xn) sampled from the current model p(t) is
given by

Pr
(
x | p(t)

)
=

n∏

i=1

(
p
(t)
i

)xi
(
1 − p

(t)
i

)1−xi

. (1)

Let p(0) := (1/2, . . . , 1/2) be the initial model. The algorithm in generation t
samples a population of λ individuals, denoted as P (t) := {x(1), x(2), . . . , x(λ)},
which are sorted in descending order according to fitness. The μ fittest individ-
uals are then selected to derive the next model p(t+1) using the component-wise
formula p

(t+1)
i := (1 − η) p

(t)
i + (η/μ)

∑μ
j=1 x

(j)
i for all i ∈ {1, 2, . . . , n}, where

x
(j)
i is the i-th bit of the j-th individual in the sorted population, and η ∈ (0, 1]

is the smoothing parameter (sometimes known as the learning rate). The ratio
γ0 := μ/λ ∈ (0, 1) is called the selective pressure of the algorithm. Univari-
ate EDAs often employ margins to avoid the marginals to fix at either 0 or 1.
In particular, the marginals are usually restricted to the interval [1/n, 1 − 1/n]
after being updated, where the quantities 1/n and 1 − 1/n are called the lower
and upper borders, respectively. The algorithm is called the PBIL with margins.
Algorithm 1 gives a full description of the PBIL (with margins).

108 P. K. Lehre and P. T. H. Nguyen

Algorithm 1. PBIL with margins
t ← 0; p(t) ← (1/2, 1/2, . . . , 1/2)
repeat

for j = 1, 2, . . . , λ do
sample an offspring x(j) ∼ Pr(· | p(t)) as defined in (1)
evaluate the fitness f(x(j))

sort P (t) ← {x(1), x(2), . . . , x(λ)} such that f(x(1)) ≥ f(x(2)) ≥ . . . ≥ f(x(λ))
for i = 1, 2, . . . , n do

p
(t+1)
i ← max

{
1/n,min

{
1 − 1/n, (1 − η) p

(t)
i + (η/μ)

∑μ
j=1 x

(j)
i

}}

t ← t + 1

until termination condition is fulfilled

Algorithm 2. Non-elitist population-based algorithm
t ← 0; create initial population P (t)

repeat
for i = 1, . . . , λ do

sample P
(t+1)
i ∼ D(P (t))

t ← t + 1

until termination condition is fulfilled

2.3 Level-Based Analysis

Introduced in [3], the level-based theorem is a general tool that provides upper
bounds on the expected optimisation time of many non-elitist population-based
algorithms on a wide range of optimisation problems [3,4,8]. The theorem
assumes that the algorithm to be analysed can be described in the form of
Algorithm 2, which maintains a population P (t) ∈ X λ, where X λ is the space of
all populations with size λ. The theorem is general since it never assumes specific
fitness functions, selection mechanisms, or generic operators like mutation and
crossover. Furthermore, the theorem assumes that the search space X can be
partitioned into m disjoint subsets A1, . . . , Am, which we call levels, and the last
level Am consists of all global optima of the objective function. The theorem is
formally stated in Theorem 1 [3]. We will use the notation [n] := {1, 2, . . . , n}
and A≥j := ∪m

k=jAk.

Theorem 1 (Level-Based Theorem). Given a partition (Ai)i∈[m] of X ,
define T := min{tλ | |P (t) ∩ Am| > 0}, where for all t ∈ N, P (t) ∈ X λ is
the population of Algorithm2 in generation t. Denote y ∼ D(P (t)). If there exist
z1, . . . , zm−1, δ ∈ (0, 1], and γ0 ∈ (0, 1) such that for any population P (t) ∈ X λ,

(G1) for each level j ∈ [m−1], if |P (t) ∩A≥j | ≥ γ0λ then Pr (y ∈ A≥j+1) ≥ zj .
(G2) for each level j ∈ [m − 2] and all γ ∈ (0, γ0], if |P (t) ∩ A≥j | ≥ γ0λ and

|P (t) ∩ A≥j+1| ≥ γλ then Pr (y ∈ A≥j+1) ≥ (1 + δ) γ.

Level-Based Analysis of PBIL 109

(G3) and the population size λ ∈ N satisfies λ ≥
(

4
γ0δ2

)
ln

(
128m
z∗δ2

)
where z∗ :=

minj∈[m−1]{zj}, then

E [T] ≤
(

8
δ2

) m−1∑

j=1

[
λ ln

(
6δλ

4 + zjδλ

)
+

1
zj

]
.

Algorithm2 assumes a mapping D from the space of populations X λ to the
space of probability distributions over the search space. The mapping D is often
said to depend on the current population only [3]; however, it is unnecessarily
always the case, especially for the PBIL with a sufficiently large offspring pop-
ulation size λ. The rationale behind this is that in each generation the PBIL
draws λ samples from the current model p(t), that correspond to λ individuals
in the current population, and if the number of samples λ is sufficiently large, it
is highly likely that the empirical distributions for all positions among the entire
population cannot deviate too far from the true distributions, i.e. marginals p

(t)
i .

Moreover, the theorem relies on three conditions (G1), (G2) and (G3); thus, as
long as these three can be fully verified, the PBIL, whose model is constructed
from the current population P (t) in addition to the current model p(t), is still
eligible to the level-based analysis.

2.4 Other Tools

In addition to the level-based theorem, we also make use of some other math-
ematical results. First of all is the Dvoretzky–Kiefer–Wolfowitz inequality [9],
which provides an estimate on how close an empirical distribution function will
be to the true distribution from which the samples are drawn. The following
theorem follows by replacing ε = ε′√λ into [9, Corollary 1].

Theorem 2 (DKW Inequality). Let X1, . . . , Xλ be λ i.i.d. real-valued ran-
dom variables with cumulative distribution function F . Let F̂λ be the empirical
distribution function which is defined by F̂λ(x) := (1/λ)

∑λ
i=1 1{Xi ≤ x}. For

any λ ∈ N and ε > 0, we always have

Pr
(
sup
x∈R

∣
∣F̂λ(x) − F (x)

∣
∣ > ε

)
≤ 2e−2λε2

.

Furthermore, properties of majorisation between two vectors are also
exploited. The concept is formally defined in Definition 3 [6], followed by its
important property (in Lemma1) that we use intensively throughout the paper.

Definition 3. Given vectors p(1) := (p(1)1 , . . . , p
(1)
n) and p(2) := (p(2)1 , . . . , p

(2)
n),

where p
(1)
1 ≥ p

(1)
2 ≥ . . . ≥ p

(1)
n and similarly for the p

(2)
i s. Vector p(1) is said

to majorise vector p(2), in symbols p(1)
 p(2), if p
(1)
1 ≥ p

(2)
1 , . . . ,

∑n−1
i=1 p

(1)
i ≥

∑n−1
i=1 p

(2)
i and

∑n
i=1 p

(1)
i =

∑n
i=1 p

(2)
i .

110 P. K. Lehre and P. T. H. Nguyen

Lemma 1 ([2]). Let X1, . . . , Xn be n independent Bernoulli random variables
with success probabilities p1, . . . , pn, respectively. Denote p := (p1, p2, . . . , pn); let
S(p) :=

∑n
i=1 Xi and Dλ := {p : pi ∈ [0, 1], i ∈ [n],

∑n
i=1 pi = λ}. For two

vectors p(1), p(2) ∈ Dλ, if p(1) ≺ p(2) then Pr
(
S(p(1)) = n

) ≥ Pr
(
S(p(2)) = n

)
.

Lemma 2 (Main lemma). Let p(1) and p(2) ∈ Dλ be two vectors as defined
in Lemma1, where all components in p(·) are arranged in descending order.
Let z(1) := (z(1)1 , . . . , z

(1)
n) where each z

(1)
i := (1 − η) p

(1)
i + η, and z(2) :=

(z(2)1 , . . . , z
(2)
n), where each z

(2)
i := (1 − η) p

(2)
i + η for any constant η ∈ (0, 1]. If

p(2)
 p(1), then z(2)
 z(1).

Proof. For all j ∈ [n − 1], it holds that
∑j

i=1 z
(2)
i ≥ ∑j

i=1 z
(1)
i since

∑j
i=1 p

(2)
i ≥

∑j
i=1 p

(1)
i . Furthermore, if j = n, then

∑n
i=1 z

(2)
i =

∑n
i=1 z

(1)
i due to

∑n
i=1 p

(2)
i =

∑n
i=1 p

(1)
i . By Definition 3, z(2)
 z(1). �

3 Runtime Analysis of the PBIL on LeadingOnes

We now show how to apply the level-based theorem to analyse the runtime of
the PBIL. We use a canonical partition of the search space, where each subset
Aj contains bitstrings with exactly j leading ones.

Aj := {x ∈ {0, 1}n | LeadingOnes(x) = j}. (2)

Conditions (G1) and (G2) of Theorem 1 assume that there are at least γ0λ indi-
viduals in levels A≥j in generation t. Recall γ0 := μ/λ. This implies that the first
j bits among the μ fittest individuals are all ones. Denote p̂

(t)
i := (1/λ)

∑λ
j=1 x

(j)
i

as the frequencies of ones at position i in the current population. We first show
that under the assumption of the two conditions of Theorem 1 and with a pop-
ulation size λ = Ω (log n), the first j marginals cannot be too close to the lower
border 1/n with probability at least 1 − n−Ω(1).

Lemma 3. If |P (t) ∩ A≥j | ≥ γ0λ and λ ≥ c((1 + 1/ε)/γ0)2 ln(n) for any con-
stants c, ε > 0 and γ0 ∈ (0, 1), then it holds with probability at least 1 − 2n−2c

that p
(t)
i ≥ γ0/(1 + ε) for all i ∈ [j].

Proof. Consider an arbitrary bit i ∈ [j]. Let Qi be the number of ones sampled at
position i in the current population, and the corresponding empirical distribution
function of the number of zeros is Fλ(0) = (1/λ)

∑λ
j=1 1{x

(j)
i ≤0} = (λ−Qi)/λ =

1−p̂
(t)
i , and the true distribution function is F (0) = 1−p

(t)
i . The DKW inequality

(see Theorem 2) yields that Pr(p̂(t)i − p
(t)
i > φ) ≤ Pr(|p̂(t)i − p

(t)
i | > φ) ≤ 2e−2λφ2

for all φ > 0. Therefore, with probability at least 1 − 2e−2λφ2
we have p̂

(t)
i −

p
(t)
i ≤ φ and, thus, p

(t)
i ≥ p̂

(t)
i − φ ≥ γ0 − φ since p̂

(t)
i ≥ γ0λ/λ = γ0 due

to |P (t) ∩ A≥j | ≥ γ0λ. We then choose φ ≤ εγ0/(1 + ε) for some constant
ε > 0 and λ ≥ c((1 + 1/ε)/γ0)2 ln(n). Putting everything together, it holds that
p
(t)
i ≥ γ0(1 − ε/(1 + ε)) = γ0/(1 + ε) with probability at least 1 − 2n−2c. �

Level-Based Analysis of PBIL 111

Given the μ top individuals having at least j leading ones, we now estimate
the probability of sampling j leading ones from the current model p(t).

Lemma 4. For any non-empty subset I ⊆ [n], define CI :=
{
x ∈ {0, 1}n |∏

i∈I xi = 1
}
. If |P (t) ∩ CI | ≥ γ0λ and λ ≥ c((1 + 1/ε)/γ0)2 ln(n) for any

constants ε > 0, γ0 ∈ (0, 1), then it holds with probability at least 1− 2n−2c that
q(t) :=

∏
i∈I p

(t)
i ≥ γ0/(1 + ε).

Proof. We prove the statement using the DKW inequality (see Theorem 2). Let
m = |I|. Given an offspring sample Y ∼ p(t) from the current model, let YI :=∑

i∈I Yi be the number of one-bits in bit-positions I. By the assumption |P (t) ∩
CI | ≥ γ0λ on the current population, the empirical distribution function of YI

must satisfy F̂λ(m − 1) = 1
λ

∑λ
i=1 1{YI,i≤m−1} ≤ 1 − q̂(t), where q̂(t) ≥ γ0 is the

fraction of individuals in the current population with j leading ones, and the
true distribution function satisfies F (m − 1) = 1 − q(t). The DKW inequality
yields that Pr(q̂(t) − q(t) > φ) ≤ Pr(|q̂(t) − q(t)| > φ) ≤ 2e−2λφ2

for all φ > 0.
Therefore, with probability at least 1−2e−2λφ2

it holds q̂(t) −q(t) ≤ φ and, thus,
q(t) ≥ q̂(t)−φ ≥ γ0−φ. Choosing φ := εγ0/(1+ε), we get q(t) ≥ γ0(1−ε/(1+ε)) =
γ0/(1 + ε) with probability at least 1 − 2e−2φ2λ ≥ 1 − 2n−2c. �

Given the current level is j, we speak of a success if the first j marginals
never drop below γ0/(1 + ε); otherwise, we speak of a failure. If there are no
failures at all, let us assume that O (

n log λ + n2/λ
)

is an upper bound on the
expected number of generations of the PBIL on LeadingOnes. The following
lemma shows that this is also the expected optimisation time of the PBIL on
LeadingOnes.

Lemma 5. If the expected number of generations required by the PBIL to opti-
mise LeadingOnes in case of no failure is at most t∗ ∈ O (

n log λ + n2/λ
)

regardless of the initial probability vector of the PBIL, the expected number of
generations of the PBIL on LeadingOnes is at most 4(1 + o(1))t∗.

Proof. From the point when the algorithm starts, we divide the time into
identical phases, each lasting t∗ generations. Let Ei denote the event that
the i-th interval is a failure for i ∈ N. According to Lemma3, Pr (Ei) ≤
2n−2c O(n log λ + n2/λ) = O(n−c′+2) by union bound for another constant
c′ > 0 when the population is of at most exponential size, that is λ ≤ 2αn where
α > 0 is a constant with respect to n, and the constant c large enough such that
c′ > 2, and Pr

(E1 ∧ E2

) ≥ 1−Pr (E1)−Pr (E2) ≥ 1−O(n−c′+2) by union bound.
Let T be the number of generations performed by the algorithm until a global
optimum is found for the first time. We know that E

[
T | ∧i∈N E i

] ≤ t∗, and
Pr

(
T ≤ 2t∗ | ∧i∈N E i

) ≥ 1/2 since Pr
(
T ≥ 2t∗ | ∧i∈N E i

) ≤ 1/2 by Markov’s
inequality [10]. We now consider each pair of two consecutive phases. If there
is a failure in a pair of phases, we wait until that pair has passed by and then

112 P. K. Lehre and P. T. H. Nguyen

repeat the arguments above as if no failure has ever happened. It holds that

E
[
T |E1 ∧ E2

] ≤ 2t∗ Pr
(
T ≤ 2t∗ | E1 ∧ E2

)
+ (2t∗ + E [T]) Pr

(
T ≥ 2t∗ | E1 ∧ E2

)

= 2t∗ + Pr
(
T ≥ 2t∗ | E1 ∧ E2

)
E [T]

≤ 2t∗ + (1/2)E [T]

since Pr
(
T ≤ 2t∗ | E1 ∧ E2

) ≥ Pr
(
T ≤ 2t∗ | ∧i∈N E i

) ≥ 1/2. Substituting the
result into the following yields

E [T] = Pr
(E1 ∧ E2

)
E

[
T | E1 ∧ E2

]
+ Pr (E1 ∨ E2) (2t∗ + E [T])

≤ Pr
(E1 ∧ E2

)
(2t∗ + (1/2)E [T]) + Pr (E1 ∨ E2) (2t∗ + E [T])

= 2t∗ + ((1/2)Pr
(E1 ∧ E2

)
+ Pr (E1 ∨ E2))E [T]

= 2t∗ + E [T] − (1/2)Pr
(E1 ∧ E2

)
E [T] .

Thus, E [T] ≤ 4t∗/Pr
(E1 ∧ E2

)
= 4t∗ (1 + o(1)) = 4(1 + o(1))t∗. �

By the result of Lemma 5, the phase-based analysis that is exploited until
there is a pair with no failure only leads to a multiplicative constant in the
expectation. We need to calculate the value of t∗ that will also asymptotically
be the overall expected number of generations of the PBIL on LeadingOnes.
We now give our runtime bound for the PBIL on LeadingOnes with sufficiently
large population λ. The proof is very straightforward compared to that in [14].
The floor and ceiling functions of x ∈ R are �x� and �x�, respectively.

Theorem 3. The PBIL with margins and offspring population size λ ≥ c log n
for a sufficiently large constant c > 0, parent population size μ = γ0λ for any
constant γ0 satisfying γ0 ≤ η�ξ	+1/((1+δ)e) where ξ = ln(p0)/(p0−1) and p0 :=
γ0/(1 + ε) for any positive constants δ, ε and smoothing parameter η ∈ (0, 1],
has expected optimisation time O (

nλ log λ + n2
)

on LeadingOnes.

Proof. We strictly follow the procedure recommended in [3].
Step 1: Recall that we use the canonical partition, defined in (2), in which each
subset Aj contains individuals with exactly j leading ones. There are a total of
m = n + 1 levels ranging from A0 to An.
Step 2: Given |P (t) ∩ A≥j | ≥ γ0λ = μ and |P (t) ∩ A≥j+1| ≥ γλ, we prove that
the probability of sampling an offspring in A≥j+1 in generation t + 1 is lower
bounded by (1 + δ)γ for some constant δ > 0.

Lemma 1 asserts that if we can find a vector z(t) = (z(t)1 , . . . , z
(t)
j) that

majorises p
(t)
1:j , then the probability of obtaining j successes from a Poisson-

binomial distribution with parameters j and p
(t)
1:j is lower bounded by the

same distribution with parameters j and z(t). Following [14], we compare
X

(t)
1 , . . . , X

(t)
j with another sequence of independent Bernoulli random vari-

ables Z
(t)
1 , . . . , Z

(t)
j with success probabilities z

(t)
1 , . . . , z

(t)
j . Note that Z(t) :=

∑j
k=1 Z

(t)
k . Define m := �(∑j

i=1 p
(t)
i − jp0)/(1 − 1

n − p0)� where p0 := γ0
1+ε ,

Level-Based Analysis of PBIL 113

and let Z
(t)
1 , . . . , Z

(t)
m all have success probability z

(t)
1 = . . . = z

(t)
m = 1 − 1

n ,
Z

(t)
m+2, . . . , Z

(t)
j get p0 and possibly a random variable Z

(t)
m+1 takes intermediate

value [p0, 1 − 1
n] to guarantee

∑j
i=1 p

(t)
i =

∑j
i=1 z

(t)
i .

Since
∑j

i=1 p
(t)
i ≥ j · (∏j

i=1 p
(t)
i)1/j ≥ j · p

1/j
0 by the Arithmetic Mean-

Geometric Mean inequality (see Lemma 7 in the Appendix) and Lemma 4, we
get m ≥ �j(p1/j

0 − p0)/
(
1 − 1

n − p0
) �. Let us consider the following function:

g(j) = j · p
1/j
0 − p0
1 − p0

− j = j · p
1/j
0 − 1
1 − p0

.

This function has a horizontal asymptote at y = −ξ, where ξ := ln p0
p0−1 (see

calculation in the Appendix). Thus, m ≥ j − �ξ� for all j ≥ 0.
Note that we have just performed all calculations on the current model in

generation t. The PBIL then updates the current model p(t) to obtain p(t+1)

using the component-wise formula p
(t+1)
i = (1 − η)p(t)i + η

μ

∑μ
k=1 x

(k)
i . For all

i ∈ [j], we know that
∑μ

k=1 x
(k)
i = μ due to the assumption of condition (G2).

After the model is updated, we obtain

– z
(t+1)
i = 1 − 1

n for all i ≤ j − �ξ�,
– z

(t+1)
i ≥ (1 − η) p0 + η ≥ η for all j − �ξ� < i ≤ j, and

– p
(t+1)
j+1 ≥ (1 − η) p

(t)
j+1 + η γ

γ0
≥ η γ

γ0
due to

∑μ
k=1 x

(k)
j+1 = γλ.

Let us denote z
(t+1)
i = (1−η)z(t)i +η. Lemmas 1 and 2 assert that z(t+1) majorises

p
(t+1)
i:j , and Pr(X(t+1)

1:j = j) ≥ Pr(Z(t+1) = j). In words, the probability of sam-
pling an offspring in A≥j in generation t+1 is lower bounded by the probability
of obtaining j successes from a Poisson-binomial distribution with parameters j
and z(t+1). More precisely, at generation t + 1,

Pr(X(t+1)
1:j+1 = j + 1) ≥ Pr(X(t+1)

1:j = j) · Pr(X(t+1)
j+1 = 1)

≥ Pr(Z(t+1) = j) · p
(t+1)
j+1 ≥ (1 − 1/n)j−�ξ	η�ξ	+1γ/γ0 ≥ (1 + δ)γ,

where
(
1 − 1

n

)j−�ξ	 ≥ 1
e and γ0 ≤ η�ξ�+1

e(1+δ) for any constant δ > 0. Thus, condition
(G2) of Theorem 1 is verified.
Step 3: Given that |P (t)∩A≥j | ≥ γ0λ, we aim at showing that the probability of
sampling an offspring in A≥j+1 in generation t+1 is at least zj . Note in particular
that Lemma 4 yields Pr(X(t+1)

1:j = j) ≥ γ0
1+ε . The probability of sampling an

offspring in A≥j+1 in generation t + 1 is lower bounded by

Pr(X(t+1)
1:j = j) · Pr(X(t+1)

j+1 = 1) ≥ γ0
1 + ε

· 1
n
=: zj .

where Pr(X(t+1)
j+1 = 1) = p

(t+1)
j+1 ≥ 1

n . Therefore, condition (G1) of Theorem 1 is
satisfied with zj = z∗ = γ0

(1+ε)n .

114 P. K. Lehre and P. T. H. Nguyen

Step 4: Condition (G3) of Theorem 1 requires a population size λ = Ω (log n).
This bound matches with the condition on λ ≥ c log n for some sufficiently large
constant c > 0 from the previous lemmas. Overall, λ = Ω (log n).
Step 5: When zj = γ0

(1+ε)n where γ0 ≤ η�ξ�+1

(1+δ)e and λ ≥ c log n for some constants
ε > 0, η ∈ (0, 1] and sufficiently large c > 0, all conditions of Theorem 1 are
verified. Using that ln

(
6δλ

4+δλzj

)
< ln

(
3δλ
2

)
an upper bound on the expected

optimisation time of the PBIL on LeadingOnes is guaranteed as follows.

(
8
δ2

) n−1∑

j=0

[
λ ln

(
3δλ
2

)
+

1
zj

]

<
8
δ2

nλ log λ +
8(1 + ε)

δ2γ0
n2 + o

(
n2

) ∈ O (
nλ log λ + n2

)
.

Hence, the expected number of generations t∗ is O
(
n log λ + n2

λ

)
for a suffi-

ciently large λ in the case of no failure and, thus, meets the assumption in
Lemma 5. The expected optimisation time of the PBIL on LeadingOnes is still
asymptotically O (

nλ log λ + n2
)
. This completes the proof. �

Our improved upper bound of O (
n2

)
on the optimisation time of the PBIL

with population size λ = Θ (log n) on LeadingOnes is significantly better than
the previous bound O (

n2+ε
)

from [14]. Our result is not only stronger, but the
proof is much simpler as most of the complexities of the population dynamics
of the algorithm is handled by Theorem 1 [3]. Furthermore, we also provide
specific values for the multiplicative constants, i.e. 32

δ2 and 32(1+ε)
δ2γ0

for the terms
nλ log λ and n2, respectively (see Step 5 in Theorem 3). Moreover, the result
also matches the runtime bound of the UMDA on LeadingOnes for a small
population λ = Θ (log n) [4].

Note that Theorem 3 requires some condition on the selective pressure, that
is γ0 ≤ η�ξ�+1

(1+δ)e where ξ = ln p0
p0−1 and p0 := γ0

1+ε for any positive constants δ, ε and
smoothing parameter η ∈ (0, 1]. Although for practical applications, we have to
address these constraints to find a suitable set of values for γ0, this result here
tells us that there exists some settings for the PBIL such that it can optimise
LeadingOnes within O (

nλ log λ + n2
)

time in expectation.

4 Runtime Analysis of the PBIL on BinVal

We first partition the search space into non-empty disjoint subsets A0, . . . , An.

Lemma 6. Let us define the levels as Aj := {x ∈ {0, 1}n | ∑j
i=1 2

n−i ≤
BinVal(x) <

∑j+1
i=1 2

n−i}, for j ∈ [n] ∪ {0}, where
∑0

i=1 2
n−i = 0. If a bit-

string x has exactly j leading ones, i.e. LeadingOnes(x) = j, then x ∈ Aj.

Level-Based Analysis of PBIL 115

Proof. Consider a bitstring x = 1j0{0, 1}n−j−1. The fitness contribution of
the first j leading ones to BinVal(x) is

∑j
i=1 2

n−i. The (j + 1)-th bit has
no contribution, while that of the last n − j − 1 bits ranges from zero to∑n

i=j+2 2
n−i =

∑n−j−2
i=0 2i = 2n−j−1 − 1. So overall,

∑j
i=1 2

n−i ≤ BinVal(x) ≤
∑j+1

i=1 2
n−i − 1 <

∑j+1
i=1 2

n−i. Hence, the bitstring x belongs to level Aj . �

In both problems, all that matters to determine the level of a bitstring is the
position of the first 0-bit when scanning from the most significant to the least
significant bits. Now consider two bitstrings in the same level for BinVal, their
rankings after the population is sorted are also determined by some other less sig-
nificant bits; however, the proof of Theorem 3 never takes these bits into account.
Thus, the following corollary yields the first upper bound on the expected opti-
misation time of the PBIL and the UMDA (when η = 1) for BinVal.

Corollary 1. The PBIL with margins and offspring population size λ ≥ c log n
for a sufficiently large constant c > 0, parent population size μ = γ0λ for any
constant γ0 satisfying γ0 ≤ η�ξ	+1/((1+δ)e) where ξ = ln(p0)/(p0−1) and p0 :=
γ0/(1 + ε) for any positive constants δ, ε and smoothing parameter η ∈ (0, 1],
has expected optimisation time O (

nλ log λ + n2
)

on BinVal.

5 Conclusions

Runtime analyses of EDAs are scarce. Motivated by this, we have derived an
upper bound of O (

nλ log λ + n2
)

on the expected optimisation time of the
PBIL on both LeadingOnes and BinVal for a population size λ = Ω (log n).
The result improves upon the previously best-known bound O (

n2+ε
)

from [14],
and requires a much smaller population size λ = Ω (log n), and uses rela-
tively straightforward arguments. We also presents the first upper bound on
the expected optimisation time of the PBIL on BinVal.

Furthermore, our analysis demonstrates that the level-based theorem can
yield runtime bounds for EDAs whose models are updated using information
gathered from the current and previous generations. An additional aspect of our
analysis is the use of the DKW inequality to bound the true distribution by the
empirical population sample when the number of samples is large enough. We
expect these arguments will lead to new results in runtime analysis of evolution-
ary algorithms.

Appendix

Lemma 7 (AM-GM Inequality [12]). Let x1, . . . , xn be n non-negative real
numbers. It always holds that

x1 + x2 + · · · + xn

n
≥ n

√
x1 · x2 · · · xn,

and equality holds if and only if x1 = x2 = · · · = xn.

116 P. K. Lehre and P. T. H. Nguyen

Proof (of horizontal asymptote). The function can be rewritten as g(j) = 1
1−p0

·
p
1/j
0 −1
1/j . Denote t := 1/j, we obtain g(t) = 1

1−p0
· pt

0−1
t . Applying L’Hôpital’s rule

yields:

lim
j→+∞

g(j) = lim
t→0+

g(t) =
limt→0+ (pt

0 ln p0)
1 − p0

=
ln p0
1 − p0

= − ln p0
p0 − 1

.

�

References

1. Baluja, S.: Population-based incremental learning: a method for integrating genetic
search based function optimization and competitive learning. Technical report,
Carnegie Mellon University (1994)

2. Boland, P.J., Proschan, F.: The reliability of k out of n systems. Ann. Probab.
11(3), 760–764 (1983)

3. Corus, D., Dang, D.C., Eremeev, A.V., Lehre, P.K.: Level-based analysis of genetic
algorithms and other search processes. IEEE Trans. Evol. Comput. PP(99), 1
(2017)

4. Dang, D.C., Lehre, P.K.: Simplified runtime analysis of estimation of distribution
algorithms. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, GECCO 2015, pp. 513–518 (2015)

5. Droste, S.: A rigorous analysis of the compact genetic algorithm for linear functions.
Nat. Comput. 5(3), 257–283 (2006)

6. Gleser, L.J.: On the distribution of the number of successes in independent trials.
Ann. Probab. 3(1), 182–188 (1975)

7. Krejca, M.S., Witt, C.: Lower bounds on the run time of the univariate marginal
distribution algorithm on OneMax. In: Proceedings of the Foundation of Genetic
Algorithms, FOGA 2017, pp. 65–79 (2017)

8. Lehre, P.K., Nguyen, P.T.H.: Improved runtime bounds for the univariate marginal
distribution algorithm via anti-concentration. In: Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2017, pp. 1383–1390 (2017)

9. Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann.
Probab. 18(3), 1269–1283 (1990)

10. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

11. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of dis-
tributions I. Binary parameters. In: Voigt, H.-M., Ebeling, W., Rechenberg, I.,
Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidel-
berg (1996). https://doi.org/10.1007/3-540-61723-X_982

12. Steele, J.M.: The Cauchy-Schwarz Master Class: An Introduction to the Art of
Mathematical Inequalities. Cambridge University Press, Cambridge (2004)

13. Witt, C.: Upper bounds on the runtime of the univariate marginal distribution
algorithm on onemax. In: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, GECCO 2017, pp. 1415–1422 (2017)

14. Wu, Z., Kolonko, M., Möhring, R.H.: Stochastic runtime analysis of the cross-
entropy algorithm. IEEE Trans. Evol. Comput. 21(4), 616–628 (2017)

https://doi.org/10.1007/3-540-61723-X_982

Precise Runtime Analysis for Plateaus

Denis Antipov1(B) and Benjamin Doerr2

1 ITMO University, 49 Kronverkskiy prosp., 197101 Saint-Petersburg, Russia
antipovden@yandex.ru

2 École Polytechnique, CNRS, Laboratoire d’Informatique (LIX), Palaiseau, France
doerr@lix.polytechnique.fr

Abstract. To gain a better theoretical understanding of how evolution-
ary algorithms cope with plateaus of constant fitness, we analyze how
the (1 + 1) EA optimizes the n-dimensional Plateauk function. This
function has a plateau of second-best fitness in a radius of k around the
optimum. As optimization algorithm, we regard the (1 + 1) EA using
an arbitrary unbiased mutation operator. Denoting by α the random
number of bits flipped in an application of this operator and assuming
Pr[α = 1] = Ω(1), we show the surprising result that for k ≥ 2 the
expected optimization time of this algorithm is

nk

k! Pr[1 ≤ α ≤ k]
(1 + o(1)),

that is, the size of the plateau times the expected waiting time for an
iteration flipping between 1 and k bits. Our result implies that the opti-
mal mutation rate for this function is approximately k/en. Our main
analysis tool is a combined analysis of the Markov chains on the search
point space and on the Hamming level space, an approach that promises
to be useful also for other plateau problems.

Keywords: Runtime analysis · Theory · Markov chains · Mutation

1 Introduction

This work aims at making progress on several related subjects—we aim at under-
standing how evolutionary algorithms optimize non-unimodal1 fitness functions,
what mutation operators to use in such settings, how to analyze the behavior of
evolutionary algorithms on large plateaus of constant fitness, and in particular,
how to obtain runtime bounds that are precise including the leading constant.

The recent work [14] observed that a large proportion of the theoretical work
in the past concentrates on analyzing of how evolutionary algorithms optimize
unimodal fitness functions and that this can lead to misleading recommenda-
tions how to design evolutionary algorithms. Based on a precise analysis of how
1 As common in optimization, we reserve the notion unimodal for objective functions

such that each non-optimal search point has a strictly better neighbor.

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 117–128, 2018.
https://doi.org/10.1007/978-3-319-99259-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_10&domain=pdf

118 D. Antipov and B. Doerr

the (1 + 1) EA optimizes jump functions, it was observed that the classic rec-
ommendation to use standard bit mutation with mutation rate 1

n is far from
optimal for this function class. For jump size k, a speed-up of order kΘ(k) can
be obtained from using a mutation rate of k

n .
Jump functions are difficult to optimize, because the optimum is surrounded

by a large set of search points of very low fitness (all search points in Hamming
distance 1 to k − 1 from the optimum). However, this is not the only reason for
fitness functions being difficult. Another challenge for most evolutionary algo-
rithms are large plateaus of constant fitness. On such plateaus, the evolutionary
algorithm learns little from evaluating search points and consequently performs
an unguided random walk. To understand this phenomenon in more detail, we
propose a class of fitness function very similar to jump functions. A plateau
function with plateau parameter k is identical to a jump function with jump
size k except that the k − 1 Hamming levels around the optimum do not have a
small fitness, but have the same second-best fitness as the k-th Hamming level.
Consequently, these functions do not have true local optima (in which an evolu-
tionary algorithm could get stuck for longer time), but only a plateau of constant
fitness. Our hope is that this generic fitness function with a plateau of scalable
size may aid the understanding of plateaus in evolutionary computation in a
similar manner as the jump functions have led to many useful results about the
optimization of functions with true local optima, e.g., [4–6,8,15,18].

When trying to analyze how evolutionary algorithms optimize plateau func-
tions, we observe that the active area of theoretical analyses of evolutionary
algorithms has produced many strong tools suitable to analyze how evolu-
tionary algorithms make true progress (e.g., various form of the fitness level
method [7,24,25] or drift analysis [13,17,20]), but much less is known on how
to analyze plateaus. This is not to mean that plateaus have not been analyzed
previously, see, e.g., [3,10,16], but these results appear to be more ad hoc and
less suitable to derive generic methods for the analysis of plateaus. In particular,
with the exception of [16], we are not aware of any results that determine the run-
time of an evolutionary algorithm on a fitness function with non-trivial plateaus
precise including the leading constant (whereas a decent number of very precise
results have recently appeared for unimodal fitness functions, e.g., [2,9,21,26]).

Such precise results are necessary for our further goal of understanding the
influence of the mutation operator on the efficiency of the optimization process.
Mutation is one of the most basic building blocks in evolutionary computation
and has, consequently, received significant attention also in the runtime analysis
literature. We refer to the discussion in [14] for a more extensive treatment of this
topic and note here only already small changes of the mutation operator or its
parameters can lead to a drastic change of the efficiency of the algorithm [11,12]

Our Results: Our main result is a very general analysis of how the sim-
plest mutation-based evolutionary algorithm, the (1 + 1) EA, optimizes the
n-dimensional plateau function with plateau parameter k ∈ N. We allow the
algorithm to use any unbiased mutation operator (including, e.g., 1-bit flips,
standard-bit mutation with an arbitrary mutation rate, or the fast mutation

Precise Runtime Analysis for Plateaus 119

operator of [14]) as long as the operator flips exactly one bit with probability at
least some positive constant. This assumption is natural, but also necessary to
ensure that the algorithm can reach all points on the plateau. Denoting the num-
ber of bits flipped in an application of this operator by the random variable α, we
prove that the expected optimization time (number of fitness evaluations until
the optimum is visited) is

nk

k! Pr[1 ≤ α ≤ k]
(1 + o(1)).

This result, tight apart from lower order terms only, is remarkable in several
respects. It shows that the performance depends very little on the particular
mutation operator, only the probability to flip between 1 and k bits has an
influence. The absolute runtime is also surprising—it is the size of the plateau
times the waiting time for a one-to-k bit flip.

A similar-looking result was obtained in [16], namely that the expected run-
time of the (1+1) EA with 1-bit mutation and with standard-bit mutation with
rate 1

n on the needle function is (apart from lower order terms) the size of the
plateau times the probability to flip a positive number of bits (which is 1 for 1-bit
mutation and (1 − o(1))(1 − 1

e) for standard bit mutation with rate 1/n). Our
result thus complements this result (valid for two specific mutation operators
and for the plateau of radius n around the unique optimum) with an analogous
result for constrained plateaus of arbitrary (constant) radius k ≥ 2 around the
optimum and for arbitrary unbiased mutation operators.

We note that there is a substantial difference between the case k = n and
k constant. Since the needle function consists of a plateau containing the whole
search space apart from the optimum, the optimization time in this case is
just the hitting time of a particular search point when doing an undirected
random walk (via repeated mutation) on the hypercube {0, 1}n. For the function
considered in this paper, the plateau has a large boundary. More precisely, almost
all2 search points of the plateau lie on its outer boundary and furthermore, all
these search points have almost all their neighbors outside the plateau. Hence
a large number of iterations (namely almost all) are lost in the sense that the
mutation operator generates a search point outside the plateau (and different
from the optimum), which is not accepted. Interestingly, as our result shows,
the optimization of such restricted plateaus is not necessarily significantly more
difficult (relative to the plateau size) than the optimization of the unrestricted
needle plateau.

Our precise runtime analysis allows to deduce a number of particular results.
For example, when using standard bit mutation, the optimal3 mutation rate is
k
en . This is by a constant factor less than the optimal rate of k

n for the jump
function with jump size k, but again a factor of Θ(k) larger than the classic
recommendation of 1

n , which is optimal for many unimodal fitness functions.

2 In the usual asymptotic sense, that is, meaning all but a lower order fraction.
3 We call a mutation rate optimal when it differs from the truly optimal rate at most

by lower order terms, that is, e.g. a factor of (1 ± o(1)).

120 D. Antipov and B. Doerr

Hence our result confirms that the optimal mutation rates can be significantly
higher for non-unimodal fitness functions. While the optimal mutation rates
for jump and plateau functions are similar, the effect of using the optimal rate
is very different. For jump functions, an kΘ(k) factor speed-up (compared to
the standard recommendation of 1

n) was observed, here the influence of the
mutation operator is much smaller, namely the factor Pr[1 ≤ α ≤ k], which is
trivially at most 1, but which was assumed to be at least some positive constant.
Interestingly, our results imply that the fast mutation operator described in [14]
is not more effective than other unbiased mutation operators, even though it was
proven to be significantly more effective for jump functions and it has shown good
results in some practical problems [23].

So one structural finding, which we believe to be true for larger classes of
problems and which fits to the result [16] for needle functions, is that the muta-
tion rate, and more generally, the particular mutation operator which is used,
is less important while the evolutionary algorithm is traversing a plateau of
constant fitness.

The main technical novelty in this work is that we model the optimiza-
tion process via two different Markov chains describing the random walk on the
plateau, namely the chain defined on the Θ(nk) elements of the plateau (plus
the optimum) and the chain obtained from aggregating these into the total mass
on the Hamming levels. Due to the symmetry of the process, one could believe
that it suffices to regard only the level chain. The chain defined on the elements,
however, has some nice features which the level chain is missing, among others,
a symmetric transition matrix (because for any two search points x and y on
the plateau, the probability of going from x to y is the same as the probabil-
ity of going from y to x). For this reason, we find it fruitful to switch between
the two chains. Exploiting the interplay between the two chains and using clas-
sic methods from linear algebra, we find the exact expression for the expected
runtime.

The abstract idea of switching between the chain of all the elements of the
plateau and an aggregated chain exploiting symmetries of the process as well as
the linear algebra arguments we use are not specific to our particular problem.
For this reason, we are optimistic that our techniques may be applied as well to
other optimization processes involving plateaus4.

2 Problem Statement

We consider the maximization of a function that resembles the OneMax func-
tion, but has a plateau of second-highest fitness of radius k around the optimum.
We call this function Plateauk and define it as follows.

4 For reasons of space, not all mathematical proofs could fit into this extended abstract.
The proofs can be found in [1].

Precise Runtime Analysis for Plateaus 121

Plateauk(x) :=

⎧
⎪⎨

⎪⎩

OneMax(x), if OneMax(x) ≤ n − k,

n − k, if n − k < OneMax(x) < n,

n, if OneMax(x) = n,

where OneMax(x) is the number of one-bits in x.
Notice that the plateau of the function Plateauk(x) consists of all bit-strings

that have at least n − k one-bits, except the optimal bit-string x∗ = (1, . . . , 1).
See Fig. 1 for an illustration of Plateauk. Since a reviewer asked for it, we note
that the unary unbiased black-box complexity (see [19] for the definition) of
Plateauk is Θ(n log n). Here the lower bound follows from the Ω(n log n) lower
bound for the unary unbiased black-box complexity of OneMax, see again [19],
and the fact that Plateauk = f ◦OneMax for a suitable function f , hence any
algorithm solving Plateauk can also solve OneMax. The upper bound follows
along the same lines as the O(n log n) upper bound for the unary unbiased black-
box complexity of Jumpk, see [8].

Plateau(x)

OneMax(x)

n

n− k

0 n− k n

Fig. 1. Graph of the Plateau function. As a function of unitation, the function value
of a search point x depends only on the value ‖x‖1 of the OneMax function.

As the optimization algorithm we consider the (1 + 1) EA, shown in Algo-
rithm1, using an unbiased mutation operator. A mutation operator Mutate
for bit-string representations is called unbiased if it is symmetric in the bit-
positions [1..n] and in the bit-values 0 and 1. This is equivalent to saying that
for all x ∈ {0, 1}n and all automorphisms σ of the hypercube {0, 1}n (respecting
Hamming neighbors) we have σ−1(Mutate(σ(x)) = Mutate(x) (and this is an
equality of distributions). The notation of unbiasedness was introduced (also for
higher-arity operators) in the seminal paper [19].

For our purposes, it suffices to know that the set of unbiased mutation oper-
ators consists of all operators which can be described as follows. First, we choose
a number α ∈ [0..n] according to some probability distribution and then we flip
exactly α bits chosen uniformly at random. Examples for unbiased operators are
the operator of Random Local Search, which flips a random bit, or standard bit
mutation, which flips each bit independently with probability 1

n . Note that in
the first case α is always equal to one, whereas in the latter α follows a binomial
distribution with parameters n and 1

n .

122 D. Antipov and B. Doerr

Algorithm 1. The (1+1) EA with unary unbiased mutation operator Mutate
maximizing the function f

1: x ← random bit string of length n
2: repeat
3: y ← Mutate(x)
4: if f(y) ≥ f(x) then
5: x ← y
6: end if
7: until forever.

Additional Assumptions: The class of unbiased mutation operators contains a
few operators which are unable to solve even very simple problems. For example,
operators that always flips exactly two bits never finds the optimum of any
function with unique optimum if the initial individual has an odd Hamming
distance from the optimum. To avoid such difficulties, we only consider unbiased
operators that have at least a constant (positive) probability to flip exactly one
bit.

As usual in runtime analysis, we are interested in the optimization behavior
for large problem size n. Formally, this means that we view the runtime T = T (n)
as a function of n and aim at understanding its asymptotic behavior for n tending
to infinity. We aim at sharp results (including finding the leading constant), that
is, we try to find a simple function τ : N → N such that T (n) = (1 + o(1))τ(n),
which is equivalent to saying that limn→∞ T (n)/τ(n) = 1. In this limit sense,
however, we treat k as a constant, that is, k is a given positive integer and not
also a function of n. Since the case k = 1 is well-understood (Plateau1 is the
well-known OneMax function), we always assume k ≥ 2.

3 Preliminaries and Notation

As long as the unbiased operator with constant probability flips exactly one bit,
the expected time to reach the plateau is O(n log n). Since the time for leaving
the plateau (as shown in this paper) is Ω(nk), we only consider the runtime of
the algorithm after it has reached the plateau.

For our precise runtime analysis on the plateau we consider the plateau in
two different ways. The first way is to regard a Markov chain that contains
N =

∑k−1
i=0

(
n

k−i

)
states, where each state represents one element of the plateau.

Note that N = nk

k! + o(nk), since
(
n
j

)
= nj

j! (1 + o(1)) for all j ∈ [1..k]. Since
we only regard unbiased mutation operators, the transition probability between
two elements depends only on the Hamming distance between these elements.
The transition matrix Pind for this chain is large and inconvenient to work with.
However this matrix is symmetric due to unbiasedness of the operator that
implies for mutating from individual x to individual y we need to flip exactly
the same set of bits as for mutating from individual y to individual x. The
symmetry of this matrix will give us some simplifications in our analysis. For

Precise Runtime Analysis for Plateaus 123

example we will use the fact that the eigenvectors of this matrix are orthogonal.
We intentionally do not include optimum into this chain to understand, how the
algorithm behaves before escaping the plateau. As a result, the sum of each row
in Pind may be less than one. We call this chain the individual chain and call the
space of real vectors of dimension N the individual space, since it is the space of
all possible current individuals, when the algorithm is on the plateau.

To define the second Markov chain we shall use, let us first define the i-th
level as the set of all the search points that have exactly n−k + i one-bits. Then
the plateau is the union of levels 0 to k − 1 and the optimum is level k. Notice
that the i-th level contains exactly

(
n

k−i

)
elements. For every i and j ∈ [0..k] and

any element of the i-th level the probability to mutate to the j-th level is the
same due to the unbiasedness of the operator. Therefore we can regard a Markov
chain of k states, where i-th state represents all the elements of the i-th level.
We call the transition matrix of this chain P . This matrix has a size of k × k.
Matrix P (unlike Pind) is not symmetric. Like in the individual chain, since the
optimum is not represented by any state, the sum of all the outgoing transition
probabilities for each state may be less than one. We call this chain the level
chain and we call the space of real vectors of length k the level space. The level
chain is illustrated in Fig. 2.

0 1 k − 1
p10

p01

pk−1
1

p1k−1

pkk−1

pk0

pk−1
0

p0k−1

pk1

p00 p11 pk−1
k−1

Fig. 2. Illustration of the level chain. The black circle represents the optimum that is
not considered as a part of the chain, states [0..k−1] represent the levels of the plateau
surrounding the optimum.

There is a natural mapping from the level space to the individual space. Every
vector x = (x0, . . . , xk−1) can be mapped to vector φ(x) = (y0, . . . , yN−1), where
yi = xj/

(
n

k−j

)
, if i-th element belongs to the j-th level. If x is a distribution over

the levels, that is, x ∈ [0, 1]k and ‖x‖1 = 1, then φ(x) is the distribution over
the elements of the plateau which is uniform on the levels and which has the
same total mass on each level as x.

This mapping has several useful properties.

1. This mapping is linear, that is, we have φ(αx + βy) = αφ(x) + βφ(y) for all
x, y ∈ R

k and all α, β ∈ R. This property follows right from the definition
of φ.

124 D. Antipov and B. Doerr

2. For all x ∈ R
k we have φ(xP) = φ(x)Pind. To justify this property, let

us notice two facts. First, if some mass vector y from the individual space
has a uniform distribution of the mass inside each level, then after applying
matrix Pind to this vector, this property will remain true due to symmetry.
Second, the transition of mass between levels in the level chain is the same
as in the individual chain. Therefore, if we regard φ(xP) as the mass x that
firstly was transferred over the level chain by matrix P and then distributed
uniformly inside each level and we regard φ(x)Pind as the mass x that firstly
was distributed inside each level and then transferred between levels by matrix
Pind, then we see that it is the same vector.

3. From the previous properties we see that if x is an eigenvector of P , then φ(x)
is an eigenvector of Pind with the same eigenvalue. Therefore, the spectrum
σ(P) of the matrix P is a subset of the spectrum σ(Pind) of matrix Pind.

4. For all x ∈ R
k, the Manhattan norm is invariant under φ, that is, ‖x‖1 =

‖φ(x)‖1. This follows from the fact that all components of φ(x) that are from
the same level have the same sign. Notice that an analogous property does
not hold for the Euclidean norm ‖·‖2.

4 The Spectrum of the Transition Matrix

Let pk
i be the probability to find the optimum in one iteration if the current

individual is in level i and let pj
i for all i, j ∈ [0..k−1] be the elements of P , that

is, the transition matrix for the level chain. For all i ∈ [0..k − 1] and j ∈ [0..k]
we have

pj
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

k−j∑

m=0

(
k−i

j−i+m

)(
n−k+i

m

)(
n

j−i+2m

)−1 Pr[α = j − i + 2m], if j > i,

k−i∑

m=0

(
k−i
m

)(
n−k+i
i−j+m

)(
n

i−j+2m

)−1 Pr[α = i − j + 2m], if j < i,

1 −
k∑

m=0,m �=i

pm
i , if j = i.

The main result of this section is the following Lemma.

Lemma 1. All the eigenvalues of matrix P are real. The largest eigenvalue of
P is λ0 = 1 − o(1). If we have Pr[α = 1] > c, where c is some constant, then
there exists a constant ε > 0 such that any other eigenvalue λ′ of P satisfies
|λ′| < 1 − ε.

The fact that all the eigenvalues are real follows from the third property of
φ and the fact that all the eigenvalues of the symmetric matrix Pind are real.
λ0, that is, largest eigenvalue of P , is bounded by the minimal and the maximal
row sum of P (see Perron-Frobenius Theorem [22]), which are both 1 − o(1).
However the fact that all other eigenvalues are less than 1 − ε for some constant
ε requires a precise analysis of the characteristic polynomial of P . The details
are omitted for reasons of space.

Precise Runtime Analysis for Plateaus 125

5 Runtime Analysis

The Perron-Frobenius Theorem [22] states that for positive matrices the largest
eigenvalue has a one-dimensional eigenspace. Also this theorem asserts that both
left and right eigenvectors that correspond to the largest eigenvalue have all
components with the same sign and they do not have any zero component.
Let π∗ be such a left eigenvector with positive components for P and let it be
normalized in such way that ‖π∗‖1 = 1. We view π∗ as distribution over the
levels of the plateau and call it the conditional stationary distribution of P since
it does not change in one iteration under the condition that the algorithm does
not find the optimum. Also let u = (u0, . . . , uk−1) be the probability distribution
in the level space that is uniform on the whole plateau, that is,

ui =
(

n

k − i

)

/
k−1∑

j=0

(
n

k − j

)

=
(

n

k − i

)

N−1.

In the remainder, we need the following basis of the level space.

Lemma 2. There exists a basis of the level space {ei}k−1
i=0 with the following

properties.

1. π∗ = e0;
2. ei is an eigenvector of P for all i ∈ [0..k − 1];
3. all φ(ei) are orthogonal in the individual space.

The first two statements are satisfied by any basis of eigenvectors of P .
The third statement is not automatically satisfied if some eigenvalues have an
eigenspace of dimension greater than one, however the orthogonality can be
ensured via standard means from linear algebra. The details are omitted for
reasons of space.

Having the basis from Lemma 2 we can prove the following relation between
the vectors π∗ and u.

Lemma 3. For all j ∈ [0..k − 1], we have π∗
j = uj(1 ± O(1/

√
n)).

The proof is again omitted for reasons of space. From Lemmas 2 and 3, we
obtain our main result (with again the proof omitted for reasons of space).

Theorem 1. The expected runtime of the (1+1) EA using any unbiased muta-
tion operator with constant probability to flip exactly one bit on the plateau of
Plateauk function is N (Pr[1 ≤ α ≤ k])−1 (1 + o(1)).

6 Corollaries

We now exploit Theorem 1 to see how the choice of the mutation operator
influences the runtime. Since, by Theorem 1 the expected runtime depends only
on the probability to flip between 1 and k bits, this is an easy task. The proofs

126 D. Antipov and B. Doerr

of the theorems formulated in this section are omitted, since they trivially follow
from Theorem 1.

We first observe that for all the unbiased operators with constant probability
to flip exactly one bit, the expected optimization time is Θ(N). Hence all these
mutation operators lead to asymptotically the same runtime.

The best runtime, obviously, is obtained from mutation operators which flip
only between 1 and k bits. It implies that the uniformly most effective algorithm
for every plateau function is Random Local Search (RLS), as for this algorithm
Pr[1 ≤ α ≤ k] = Pr[α = 1] = 1.

We now analyze the runtime resulting from using standard-bit mutation as
in the classic (1 + 1) EA and from using the fast genetic algorithm, that is, the
(1 + 1) EA with a heavy-tailed mutation operator.

Recall that in standard-bit mutation, each bit is flipped independently with
probability γ/n, where γ usually is a constant. Recall further that the size of
the plateau is N =

∑k−1
i=0

(
n

n−k+i

)
= (1 ± o(1))nk/k!.

Theorem 2. Let γ be some arbitrary positive constant and k ≥ 2. Then the
(1 + 1) EA with mutation rate γ/n optimizes Plateauk in an expected number
of N/(e−γ

∑k
i=1

γi

i!)(1+o(1)) iterations. This time is asymptotically minimal for
γ = k

√
k! ≈ k/e.

The fast genetic algorithm recently proposed in [14] is simply a (1+1) EA that
uses the unbiased mutation operator such that Pr[α = i] = 0 for every i > n/2
and i = 0 and Pr[α = i] = i−β/Hn/2,β otherwise, where β is a parameter of
the algorithm that is greater than one and Hn/2,β :=

∑n/2
i=1 i−β is a generalized

harmonic number. The parameter β is considered to be a constant over the
problem size.

Theorem 3. The expected runtime of the fast genetic algorithm on Plateauk

is CknN , where Ckn can be bounded by constants, namely Ckn ∈[1
β−1−o(1)

Hk,β
,

1
β−1+1

Hk,β

]
.

7 Conclusion

In this paper we introduced a new method to analyze the runtime of evolutionary
algorithms on plateaus. This method does not depend on the particular mutation
operator used by the EA as long as there is a constant positive probability to flip
a single random bit. We performed a very precise analysis on the particular class
of plateau functions, but we are optimistic that similar methods can be applied
for the analysis of other plateaus. For example, Lemmas 1, 2 and 3 remain true
for those plateaus of the function XdivK (that is defined as
OneMax(x)/k� for
some parameter k) that are in a constant Hamming distance from the optimum
(and these are the plateaus which contribute most to the runtime). That said,
the proof of Lemma 1 would need to be adapted to these plateaus different from
the one of our plateau function. We are optimistic that this can be done, but
leave it as an open problem for now.

Precise Runtime Analysis for Plateaus 127

The inspiration for our analysis method comes from the observation that the
algorithm spends a relatively long time on the plateau. So regardless of the initial
distribution on the plateau, the distribution of the individual converges to the
conditional stationary distribution long before the algorithm leaves the plateau.
This indicates that our method is less suitable to analyze how evolutionary
algorithms leave plateaus which are easy to leave, but such plateaus usually
present not bigger problems in optimization.

On the positive side, our analysis method can also be used to give runtime
estimates for functions having less symmetric plateaus than our Plateau func-
tions. For example, assume that f : {0, 1}n → R is a function that agrees with
Plateauk on all search points x with Plateau(x) = OneMax(x), but has
only the restriction n−k ≤ f(x) ≤ n for the other search points. Such functions
can have plateaus of arbitrary shape inside the plateau of second-best fitness of
Plateauk. It is easy to see that the runtime T of the (1 + 1) EA with arbi-
trary unbiased mutation operator satisfies the same asymptotic upper bound
N/ Pr[α ∈ [1..k]](1 + o(1)) that we have proven for the Plateauk function.

Overall, we are optimistic that our main analysis method, switching between
the level chain and the individual chain, which might be the first attempt to
devise a general analysis method for EAs on plateaus, finds further applications.

References

1. Antipov, D., Doerr, B.: Precise runtime analysis for plateaus (2018). http://arxiv.
org/abs/1806.01331

2. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates
for the LeadingOnes problem. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 1–10. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15844-5 1

3. Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler,
E.: On the effects of adding objectives to plateau functions. IEEE Trans. Evol.
Comput. 13(3), 591–603 (2009)

4. Buzdalov, M., Doerr, B., Kever, M.: The unrestricted black-box complexity of jump
functions. Evol. Comput. 24(4), 719–744 (2016)

5. Dang, D.-C., et al.: Emergence of diversity and its benefits for crossover in genetic
algorithms. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G.,
Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 890–900. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45823-6 83

6. Dang, D.C., et al.: Escaping local optima with diversity mechanisms and crossover.
In: Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2016, pp. 645–652. ACM (2016)

7. Dang, D., Lehre, P.K.: Runtime analysis of non-elitist populations: from classical
optimisation to partial information. Algorithmica 75(3), 428–461 (2016)

8. Doerr, B., Doerr, C., Kötzing, T.: Unbiased black-box complexities of jump func-
tions. Evol. Comput. 23(4), 641–670 (2015)

9. Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating functions
and variable drift. In: Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2011, pp. 2083–2090. ACM (2011)

http://arxiv.org/abs/1806.01331
http://arxiv.org/abs/1806.01331
https://doi.org/10.1007/978-3-642-15844-5_1
https://doi.org/10.1007/978-3-319-45823-6_83

128 D. Antipov and B. Doerr

10. Doerr, B., Hebbinghaus, N., Neumann, F.: Speeding up evolutionary algorithms
through asymmetric mutation operators. Evol. Comput. 15, 401–410 (2007)

11. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters
even when optimizing monotonic functions. Evol. Comput. 21(1), 1–27 (2013)

12. Doerr, B., Jansen, T., Klein, C.: Comparing global and local mutations on bit
strings. In: Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2008, pp. 929–936. ACM (2008)

13. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica
64(4), 673–697 (2012)

14. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2017, pp. 777–784. ACM (2017). http://arxiv.org/abs/1703.03334

15. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

16. Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary mutations.
Evol. Comput. 7(2), 173–203 (1999)

17. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Artif. Intell. 127, 51–81 (2001)

18. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms–a proof that
crossover really can help. Algorithmica 34(1), 47–66 (2002)

19. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64(4),
623–642 (2012)

20. Lehre, P.K., Witt, C.: Concentrated hitting times of randomized search heuris-
tics with variable drift. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS,
vol. 8889, pp. 686–697. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13075-0 54

21. Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the runtime analysis of generalised
selection hyper-heuristics for pseudo-boolean optimisation. In: Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 849–856.
ACM (2017)

22. Meyer, C.D. (ed.): Matrix Analysis and Applied Linear Algebra. Society for Indus-
trial and Applied Mathematics, Philadelphia (2000)

23. Mironovich, V., Buzdalov, M.: Hard test generation for maximum flow algo-
rithms with the fast crossover-based evolutionary algorithm. In: Proceedings of the
Genetic and Evolutionary Computation Conference Companion, GECCO 2015, pp.
1229–1232. ACM (2015)

24. Sudholt, D.: A new method for lower bounds on the running time of evolutionary
algorithms. IEEE Trans. Evol. Comput. 17, 418–435 (2013)

25. Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Orejas, F., Spirakis,
P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 64–78. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5 6

26. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Comb. Probab. Comput. 22(2), 294–318 (2013)

http://arxiv.org/abs/1703.03334
https://doi.org/10.1007/978-3-319-13075-0_54
https://doi.org/10.1007/978-3-319-13075-0_54
https://doi.org/10.1007/3-540-48224-5_6

Ring Migration Topology Helps
Bypassing Local Optima

Clemens Frahnow(B) and Timo Kötzing

Hasso Plattner Institute, Prof.-Dr.-Helmert-Straße 2-3, Potsdam 14482, Germany
hpi-info@hpi.de

https://hpi.de/friedrich

Abstract. Running several evolutionary algorithms in parallel and
occasionally exchanging good solutions is referred to as island models.
The idea is that the independence of the different islands leads to diver-
sity, thus possibly exploring the search space better. Many theoretical
analyses so far have found a complete (or sufficiently quickly expanding)
topology as underlying migration graph most efficient for optimization,
even though a quick dissemination of individuals leads to a loss of diver-
sity.

We suggest a simple fitness function Fork with two local optima
parametrized by r ≥ 2 and a scheme for composite fitness functions. We
show that, while the (1 + 1) EA gets stuck in a bad local optimum and
incurs a run time of Θ(n2r) fitness evaluations on Fork, island models
with a complete topology can achieve a run time of Θ(n1.5r) by making
use of rare migrations in order to explore the search space more effec-
tively. Finally, the ring topology, making use of rare migrations and a
large diameter, can achieve a run time of Θ̃(nr), the black box complex-
ity of Fork. This shows that the ring topology can be preferable over
the complete topology in order to maintain diversity.

Keywords: Evolutionary computation · Island models
Ring topology · Run time analysis

1 Introduction

In heuristic optimization, evolutionary algorithms are a technique that is capable
of finding good solutions by employing strategies inspired by evolution [2]. One
way to understand why some optimization algorithms are more successful than
others is to prove rigorous run time bounds on test functions which embody
a typical challenge occurring in realistic optimization problems. For example,
the famous OneMax function, which assigns the number of 1s of a bit string
x as the fitness of x, embodies the challenge of solving independent problems
concurrently. The LeadingOnes function, counting the number of leading 1s
of a bit string, embodies the problem of solving otherwise independent prob-
lems sequentially (where the order is typically unknown). Thus, OneMax and
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 129–140, 2018.
https://doi.org/10.1007/978-3-319-99259-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_11&domain=pdf

130 C. Frahnow and T. Kötzing

LeadingOnes are fruitful test functions to analyze search heuristics on, they
simulate important properties of realistic search spaces in an analyzable way.

We introduce a new representative fitness function Fork which poses a choice
of two possible directions, the fork. One of the directions is a dead end, a local
and not global optimum; we call this the valley. The other is the global optimum.
We use a parameter r > 1 and formalize Fork by using OneMax, but assigning
two elements with (disjoint) sets of r 0s to be the global optimum and the valley.
Thus, once trapped in the valley, it is hard to find the global optimum. Since the
probability of finding the global optimum before the valley is exactly 1/2 due to
the symmetry of the search space (see also Lemma 4), making random restarts
with the well-known (1+1) EA (or about log n independent runs) can efficiently
find the global optimum.

However, for realistic optimization problems, forks can happen not just as
the last step of the search, but over and over again. The probability that a
run will succeed and choose the right path each time decreases exponentially
with the number of fork decisions to be made. We formalize this with composite
fitness functions. We give a general scheme for building fitness functions out of
base functions by dividing the bit string into blocks. As an example for solving
k successive Fork functions, we can divide the bit string of length n into k
equal parts. Each part contributes to the total fitness with its Fork-value, but
only if all previous blocks are already optimized; this scheme was already used
in essence by [11]. Intuitively, the resulting composite fitness function is like
LeadingOnes, where each bit is a Fork function on bit strings of length n/k.
Clearly, the (1+1) EA as well as independent runs on such a succession of Fork
functions are unlikely to succeed.

Exactly to deal with such fitness landscapes, different techniques have been
introduced. One possible way in evolutionary computation is to employ island
models, meaning multiple computing agents (so called islands) that run the same
algorithm in parallel and which can share information. Various analyses of island
models have been made that show its usefulness: Alba used parallel evolutionary
algorithms to achieve super-linear speedups [1]. Lässig and Sudholt gave a formal
analysis of island models for many different migration topologies in [12] showing
how one can gain a speedup from parallelism; Badkobeh, Lehre and Sudholt
could even show where the cut-off points are from which on linear speedup is
no longer possible and discovered some bounds on different topologies [3]. In
2017, Lissovoi and Witt explored the performance of a parallel approach on
dynamic optimization problems [13]. In all these works, the idea is to exploit
the computing power that comes along with multiple islands, gaining a speedup
from parallelism. Intuitively, a set up where each islands sends its best solution
to all islands (called a complete migration topology) as often as possible leads
to the smallest run times, since all islands can share the progress of all others.
Doerr et al. showed that if one considers the communication between islands
also as time consuming, Rumor Spreading or Binary Trees perform even better
on OneMax and LeadingOnes [4], but still the emphasis is on informing all
islands as efficiently as possible about every improvement found.

Ring Migration Topology Helps Bypassing Local Optima 131

An essentially different work was given by Lässig and Sudholt in [11]. They
used a composite fitness function where each component tries to trick the algo-
rithm to walk up a path leading to a local optimum, which is hard to escape
(similar to Fork introduced above, but here we have paths that lead to the
local optima). They give an island setting that can efficiently optimize this com-
posite function, while simple hill climbers get stuck with high probability. Note
that the complete topology also performs well in this setting, even though such
high connectivity typically implies the loss of diversity, which was found impor-
tant in many areas of heuristic optimization. Here the diversity was maintained
by focusing on rare migration and making sure that migration only occurs at
opportune times.

In this paper we want to show that a high connectivity in a topology, for any
frequency of migration, can lead to a loss of diversity and therefore to worse run
times on Fork. In contrast to this we will show that the ring topology allows to
maintain diversity. We choose the ring on λ vertices, since it is the unique graph
with maximal diameter among all vertex transitive graphs with λ vertices, in
contrast to the complete graph, which has minimal diameter, thus highlighting
the role of a large diameter (which implies a slow spread of migrants).

First, in Sect. 2, we introduce the algorithms we deal with. Section 3 intro-
duces the fitness functions more formally, especially Fork and our scheme for
composite fitness functions; here we also give a general result for the (1+1) EA
applied to such composite fitness functions which is of independent interest.

In Sect. 4 we show that the (1+1) EA fails to optimize Fork efficiently,
with an expected run time of Θ(n2r) (see Theorem 5). Independent runs of the
(1+1) EA similarly fail for compositions of Fork-functions.

Regarding island models, while it is typical to consider as optimization time
the time until just one island has found the optimum, we consider the time until
all islands have found the optimum: consider the case of optimizing k successive
Fork functions as introduced above. In order to be able to continue optimization
after the first Fork function has been optimized, we need a sufficient number of
islands which have passed this first phase; if we were to lose a constant fraction for
each Fork function, then quickly all islands would be used up and the algorithm
will get stuck in a local optimum. If all islands make it to the next stage, then the
optimization can proceed as in the first stage. We leave the rigorous argument
to future work and contend ourselves with finding the time until all islands find
the optimum of Fork, showing in what way the ring topology can be beneficial
and, in fact, preferable to the complete topology.

In Sect. 5 we consider an island model with the complete topology, that is, the
different islands run a (1+1) EA, but they occasionally share their best individual
with all other islands. In particular, we use a parameter τ such that each round
with probability 1/τ each island sends its best (and only current) individual to all
other islands, continuing the search with the best individual among all incoming
and own individuals.1 For optimal choice of τ and the number of islands λ, the

1 Note that in some papers migration is considered to happen deterministically every
τ rounds.

132 C. Frahnow and T. Kötzing

time until all islands have found the optimum here is Θ(n1.5r) fitness evaluations
(see Corollary 17).

Next, in Sect. 6, we show that the ring topology requires only O(nr(log n)2)
fitness evaluations until all islands have found the optimum (see Corollary 24),
which equals, up to polylogarithmic factors, the black-box complexity of Fork,
which is Θ(nr) (see Proposition 1). In this sense the ring topology achieves the
best possible optimization time over all black-box algorithms (up to the factor
of (log n)2).

Finally, in Sect. 7, we conclude the paper with some final remarks. Almost
all proofs are omitted due to space constraints, but they can be found in “Ring
Migration Topology Helps Bypassing Local Optima” on https://arxiv.org.

2 Algorithms

The island model makes use of the (1+1) Evolutionary Algorithm ((1+1) EA for
brevity). The goal of that algorithm is to maximize a given fitness function by
trying different search points and remembering the one that gave the best result
so far. The fitness function is defined on bit strings of a specific length n. The
algorithm starts with a bit string chosen uniformly at random. A new individual
for the input is generated each step by taking the best known input and flipping
every bit independently with a probability of 1

n (standard bit mutation). If the
fitness function yields a value that is not smaller than the best known so far, it
becomes the new best individual. Algorithm1 makes this more formal.

Algorithm 1. (1+1) EA optimizing f .
1 t ← 0;
2 x ← solution drawn u.a.r. from {0, 1}n;
3 while termination criterion not met do
4 t ← t + 1;
5 y ← flip each bit of x independently w/ prob. 1/n;
6 if f(y) ≥ f(x) then x ← y ;

Usually the termination criterion is met when the optimum is found. In later
chapters we let this algorithm run in parallel multiple times until the optimum is
found everywhere. In this case we change the termination criterion accordingly.
The run time of the (1+1) EA is determined by the value of t after the algo-
rithm terminates. For our research we use the island model as an approach on
parallel evolutionary computation, cf. [12,14,15]. The topology is defined by an
undirected graph G = (V,E), where λ = |V |. Every vertex, called island, repre-
sents an independent agent running the (1+1) EA using standard bit mutation.
Like in the (1+1) EA, the initial bit string is chosen uniformly at random. This
happens independently on every island. All islands run in lockstep, meaning

https://arxiv.org

Ring Migration Topology Helps Bypassing Local Optima 133

they all make the same amount of fitness evaluations in the same time. Copies
of the best found individual so far are shared along the edges of G whenever a
migration step happens. An island overwrites its best solution when a received
individual has a fitness that is not smaller than the resident best individual.
Ties among incoming migrants (with maximum fitness) are broken uniformly at
random. With a probability of 1

τ , every island sends its best individual to all of
its neighbors. Algorithm 2 makes this more formal, where x(j) denotes the best
individual on island j. Again, t determines the run time (optimization time) we
are mainly interested in, as it counts the number of fitness evaluations of a single
island. If multiplied by λ, one gains the total number of fitness evaluations.

Algorithm 2. Island model with migration topology G = (V,E) on λ
islands and migration probability 1/τ .
1 t ← 0;
2 for 1 ≤ j ≤ λ in parallel do

3 x(j) ← solution drawn u.a.r. from {0, 1}n;

4 while termination criterion not met do
5 t ← t + 1;
6 m ← true with probability 1/τ else false;
7 for 1 ≤ j ≤ λ in parallel do

8 y(j) ← flip each bit of x(j) independently w/ prob. 1/n;

9 if f(y(j)) ≥ f(x(j)) then x(j) ← y(j) ;
10 if m then

11 Send x(j) to all islands k with {j, k} ∈ E;

12 N = {x(i) | {i, j} ∈ E};

13 M = {x(i) ∈ N | f(x(i)) = maxx∈N f(x)};

14 y(j) ← solution drawn u.a.r. from M ;

15 if f(y(j)) ≥ f(x(j)) then x(j) ← y(j) ;

Observe that the final value of t is a random variable; in this paper whenever
we use T we refer to this random variable.

All bounds in this work will be in terms of n, λ, τ and r simultaneously.
We consider λ = λ(n) and τ = τ(n) as positive, non-decreasing, integer-valued
functions whereas r is a fixed but arbitrary constant that has to be at least 2. The
bounds we give describe the univariate asymptotics of the expected optimization
times with respect to n for any choices of λ and τ within the given boundaries.

3 Fitness Functions

In this paper we investigate the maximization of pseudo-Boolean functions
f : {0, 1}n → R≥0 on bit strings x = x0x1 . . .xn−1 of length n. When we talk
about the fitness of a bit string x it refers to f(x).

134 C. Frahnow and T. Kötzing

We want to create composites of fitness functions by nesting them into each
other. To start, we will examine the run times of the two functions below. Let
|x|1 denote the number of bits set to 1 within x. For r ≥ 2 and n ≥ 2r we define

LeadingOnes(x) =
n−1∑

i=0

i∏

j=0

xj Forkn
r (x) =

⎧
⎪⎨

⎪⎩

n + 1, if x = {0}r{1}n−r;
n + 2, if x = {1}n−r{0}r;
|x|1 , otherwise.

In our work when we talk about the Forkn
r fitness function we will call the bit

strings of fitness n + 1 valley, as getting to the optimum from there is harder
than it is from any other fitness. This definition of Fork is not related to the
one in the work of Gießen [9].

We start by considering the general difficulty of optimizing Forkn
r as for-

malized by the unrestricted black-box complexity [7], for which we consider the
class of Forkn

r composed with any automorphism of the hypercube.

Proposition 1. For constant r, the unrestricted black-box complexity of the
Forkn

r function class is Θ(nr).

Proof. The lower bound comes from having to find at least one out of two search
points among all search points with Hamming distance r to the third-best indi-
vidual, of which there are Θ(nr) many. The upper bound comes from being able
to find the third-best individual efficiently, for example with a (1+1) EA, and
then testing in a fixed order all search points with Hamming distance r to this
point. ��

3.1 Composite Fitness Function

Here we define composite fitness functions formally. Let f = (fn)n∈N be a family
of fitness functions such that, for all n ∈ N, fn : {0, 1}n → R≥0. For this
construction, we suppose that 1n is the unique optimum (if a different bit string
is the unique optimum, we apply a corresponding bit mask to make 1n the unique
optimum, but will not mention it any further). With LeadingOnes with k-block
f we denote the fitness function which divides the input x into bit strings of
length k ((x0x1 . . .xk−1), (xkxk+1 . . .x2k−1), . . .). The blocks contribute to the
total fitness using fitness function fk, but only if all previous blocks have reached
the unique optimum 1k. More formally,

LOf
k (x) =

n
k −1∑

i=0

fk(xikxik+1 . . .xik+k−1) ·
ik−1∏

j=0

xj .

Similarly, OneMax with k-block f is defined as

OMf
k (x) =

n
k −1∑

i=0

fk(xikxik+1 . . .xik+k−1).

Ring Migration Topology Helps Bypassing Local Optima 135

In this paper we only analyze the run times around the LeadingOnes version.
Note that it equals the LOBb function in the work of Jansen and Wiegand [10].
In general, also other fitness functions can be used as the outer function of that
nesting method, as exemplified in our definition of OneMax with k-block.

3.2 Run Time of LeadingOnes with k-block f

In the following we develop a general approach for proving run times on
LeadingOnes with k-block f . We make use of the observation that there is
always exactly one block that contributes to the overall fitness except all previ-
ous blocks that are already optimal.

Theorem 2. Let T be the run time of a (1+1) EA Algorithm on LOf
k to opti-

mize a bit string of length n. We have

E(T) = E (Tn
k)

(
n

n−1

)n

− 1
(

n
n−1

)k

− 1
∈ Θ

(
E (Tn

k)
n

k

)

where Tn
k is the run time to optimize fk with bit flip probability 1

n .

With this Theorem as a tool we can now derive exact bounds on functions
like LeadingOnes. The following equation was already shown by Sudholt [16,
Corollary 1]. Here we use the approach of composite functions, which generalizes
to many other fitness functions, but note that the underlying proof idea is the
same.

Corollary 3. The expected run time of a (1+1) EA on LeadingOnes is exactly

E(TLO(n)) =

(
n

n−1

)n−1

+ 1
n − 1

2
n2.

4 No Migration

In the next sections we will frequently use that m islands have to make a jump
from the same fitness level to another one, where for each bit string in the current
level the probability to do the jump is the same. When we call Ej the expected
run time for a single island to do the jump, we can bound the expected run time
E(T) until one of them succeeds by

Ej

2m
≤ E(T) ≤ Ej

m
+ 1. (1)

This holds due to the fact that E(T) is distributed geometrically with success
probability p = 1

E(T) and because pm
1+pm ≤ 1 − (1 − p)m ≤ 2pm

1+pm as shown by
Badkobeh et al. [3]. We already gave an intuition of the following lemma that
will be used in several proofs.

Lemma 4. For any run of the (1+1) EA on Forkn
r let V denote the event that

the valley string occurs as a best solution before the optimum. Then, Pr (V) = 1
2 .

136 C. Frahnow and T. Kötzing

4.1 The (1+1) EA

For the (1+1) EA we can use Lemma 4 to see that it will be trapped with
probability 1/2, which leads to the following two theorems.

Theorem 5. The expected optimization time of the (1+1) EA on Forkk
r with

bit flip probability 1
n and n ≥ k is E (T (k)) ∈ Θ

(
n2r

)
.

Theorem 6. The expected optimization time of the (1+1) EA on Leading-
Ones with k-block Forkn

r is E(T) ∈ Θ
(
1
kn2r+1

)
.

4.2 Independent Runs

In this section we examine the performance of λ islands in isolation, all running
the (1+1) EA on Forkn

r or LeadingOnes with k-block Forkn
r . Isolation of the

islands means there is no migration between them at all. The next lemma will
help us to get to the final bounds.
Lemma 7. Let λ be the number of islands running the (1+1) EA optimizing
Forkn

r . Let Tλ
all denote the run time for all islands to get to the optimum, valley

or 1n as their best solution respectively, regardless of the migration topology and
policy. If λ is polynomial in n, E

(
Tλ

all

) ∈ O (n log n).

Theorem 8. For λ ≤ nr isolated islands the expected time to optimize Forkn
r

is E (T) ∈ O
(
n log(n) + n2r

λ2λ + nr

λ

)
.

Corollary 9. If we use r log n ≤ λ ≤ nr islands, E (T) ∈ O
(
n log(n) + nr

λ

)
.

Corollary 10. The expected number of evaluations until all λ ≤ nr islands get
the optimum is in Ω

(
λn2r log λ

)
.

Proof. To achieve this, all islands have to find the optimum. Observe that we
expect half of the islands to get trapped. The probability that there are more
than half as much is - by using Chernoff bounds - asymptotically more than
a constant. Therefore we expect to need at least Ω

(
n2r log λ

)
rounds, which

results in the given number of evaluations. ��
Theorem 11. For k ≤ n

log λ , the expected run time of λ islands optimizing
LeadingOnes with k-block Forkn

r by running the (1+1) EA can be bound by
E(T) ∈ Ω

(
n2r

λ

)
.

Proof. Let V denote the event that every island gets trapped in a valley at least

once during a run. From Lemma 4 one can derive that Pr (V) =
(
1 − 1

2
n
k

)λ

.

Again we apply the law of total expectation and use the lower bound E
2λ on

the expected run time of λ islands until one of them makes a jump where E is
the expected number of steps for a single island (Eq. (1)).

E(T) = E (T | V) Pr (V) + E
(
T

∣∣ V
)
Pr (V) ≥ n2r

2λ
Pr (V) =

n2r

2λ

(
1 − 1

2
n
k

)λ

Using that k ≤ n
log(λ) finally gives E(T) ≥ n2r

2λ

(
1 − 1

λ

)λ ∈ Ω
(

n2r

λ

)
. ��

Ring Migration Topology Helps Bypassing Local Optima 137

5 Complete Topology

The disadvantage of the complete topology when optimizing Forkn
r is that if

at least one island gets the chance to migrate the valley, all islands get trapped.
To get to the bounds, we first investigate the worst run time that could appear.
Second, we calculate a bound on the probability for one island to find the opti-
mum or the valley during the time it takes all islands to get to 1n, the valley or
the optimum.

In this and the following sections we frequently use the worst case run time
that can occur if we do not find the optimum early enough.

Lemma 12. For λ ∈ O
(

n2r−1

log n

)
islands being polynomial in n and any migra-

tion topology and/or policy, the expected run time to optimize Forkn
r can be

bounded by E(T) ∈ O
(

n2r

λ

)
.

To get a lower bound on the run time we want to concentrate on the case
that all islands come to a state where every island has 1n as its solution. That is
why in the next lemma we show how likely it is that the optimum or the valley
is generated before that state is reached.

Lemma 13. The probability pov for a single island to generate the optimum or
the valley during its way to 1n while optimizing Forkk

r with (1+1) EA 1/n is
pov ∈ O

(
1

kr−1

)
for k ≤ n.

Next we give a lemma that we use for the upper and the lower bound, which
considers the event that and islands finds the valley and broadcasts it, thus
drowning diversity.

Lemma 14. Under the condition of at least one of λ ∈ O
(
nr−1

)
island having

1n and all others the valley as solution, the probability for the event Q that one
island will find the valley and a migration will be made before the optimum is
found by any island is c

2
nr

nr+τλ ≤ Pr (Q) ≤ nr+λ
2

2nr+τλ for a constant 0 < c < 1.

We continue with the lower bound for the complete topology, followed by the
upper bound. The restriction for λ to be in O

(
nr−1

log n

)
in the next theorems is

useful since the expected number of derived optima during the first O(n log n)
steps is constant if we chose λ ∈ Θ

(
nr−1

)
. This follows from Lemmas 7 and 13.

Theorem 15. The expected run time of 2r log n ≤ λ ∈ O
(

nr−1

log n

)
islands opti-

mizing Forkn
r on a complete graph is E(T) ∈ Ω

(
n3r+τλnr

λnr+τλ2

)
.

Theorem 16. The expected run time of 2 log n ≤ λ ∈ O
(

nr−1

log n

)
islands opti-

mizing Forkn
r on a complete graph is in E(T) ∈ O

(
n3r+τλnr

λnr+τλ2 + n2r+1 log n
τλ

)
.

138 C. Frahnow and T. Kötzing

Corollary 17. If we choose τ ∈ Ω(n log n) and 2r log n ≤ λ ∈ O(nr−1−ε) for
ε > 0 constant, then the optimization time for Forkn

r on a complete graph is
E(T) ∈ Θ

(
n3r+τλnr

λnr+τλ2

)
.

Proof. We already have shown the lower bound in Theorem15. The second term
of the upper bound in Theorem16 is dominated by the rest if τ ∈ Ω(n log n).
Therefore it matches the lower bound. ��
Corollary 18. The number of fitness evaluations to spread the optimum to all
islands is in Θ

(
n1.5r

)
for the best choice of parameters λ and τ .

Proof. This can be shown by recalling that the number of evaluations to get there
is in Ω

(
n3r+τλnr

nr+τλ + τλ
)

and in O
(

n3r+τλnr

nr+τλ + n2r+1 log n
τ + τλ

)
(Theorems 15

and 16). There is no way to choose τλ to get below Θ
(
n1.5r

)
. ��

6 Ring Topology

We expect the ring topology to perform better than the complete graph due to
the fact that even if one island finds the valley, there is enough time for the others
to come up with the optimum before they would get informed of the valley by a
neighbor. In this section we want to prove this assumption.

First we show that we expect just a small number of islands to find the
valley before all other islands get to 1n. After that we prove that we can choose
a migration probability so that valleys are unlikely to be shared too often. As
final step we show that all other islands have enough time to find the optimum
so that we get an upper bound of the expected run time.

For those steps we define two events that can occur.

Definition 19. Let Vb be the event that the valley was generated on at most b
islands during the time until all other islands have 1n, the valley or the optimum
as their solution.

Definition 20. Let Bc be the event that after the time until all islands have
1n, the valley or the optimum as their solution, there is a maximum of c log n
valleys.

Lemma 21. If b ≥ 1 + r
ε is constant and λ ∈ O

(
nr−1−ε

)
, where ε > 0 is a

constant, it holds that the expected run time of to optimize Forkn
r on any island

is E(T) ≤ E(T | Vb) + O (n).

Another event that could possibly lead to a high run time is when one of the
found valleys is shared too fast to all other islands. Like before we will show that
this case is unlikely enough to not dominate the run time.

Lemma 22. Let ε > 0, b ≥ 1+ r
ε and c ≥ 7rb be constants and λ ∈ O

(
nr−1−ε

)
.

When 1
τ denotes the migration probability and τ ∈ Ω (n log n), the expected run

time to optimize Forkn
r on any island is E(T) ≤ E(T | Vb ∩ Bc) + O

(
nr

λ

)
.

Ring Migration Topology Helps Bypassing Local Optima 139

From the previous lemmas we can derive that if we choose τ large enough
and λ small enough, we get an upper bound on the expected run time by just
looking at the case of Bc ∩ Vb and adding O

(
nr

λ

)
.

Theorem 23. For τ ∈ Ω(n log n), 12r log n ≤ λ ∈ O
(
nr−1−ε

)
and λ2τ ≥

17r2nr log2 n, the expected optimization time for Forkn
r on a Ring topology is

E(T) ∈ O
(

nr

λ

)
.

The next corollary sums up our findings and shows performance for the
optimal choice of parameters.

Corollary 24. The expected number of fitness evaluations to have all islands at
the optimum is in O

(
nr log2 n

)
if τ and λ are set appropriately.

Proof. If we use the results from Theorem 23, we see that there are O
(
nr + τλ2

)

evaluations until all islands are informed. If we consider that τλ2 ∈ O
(
nr log2 n

)

we get the bound. ��

7 Conclusion

The results we obtained regarding the expected number of fitness evaluations of
Fork by different algorithms (until all islands have the optimum, in case of an
island model) and on optimal parameter settings are

– (1+1) EA– Θ
(
n2r

)
;

– Independent runs – Ω
(
λn2r log λ

)
;

– Complete – Θ
(
n1.5r

)
;

– Ring – O
(
nr log2 n

)
.

To show this we exploited that less diversity can mean to be trapped, but it
also gives advantages if there is migration between the islands. Note that a ring
delays migration, since in every migration step an individual can only proceed
by one island along the ring, so the total time to inform all islands is highly
concentrated around the expectation. This is different in the complete topology
with a high value of τ : the expected time to inform all individuals might be the
same, but the concentration is weaker.

We showed when a ring topology outperforms a topology with faster dissem-
ination of individuals due to the increase in diversity. It would be interesting to
see what other properties of the search space can also gain from a ring topol-
ogy. Furthermore, one could wonder whether always one of the two extremes,
complete and ring, is the best choice. There may be effects that can benefit for
example a two-dimensional torus over both the ring and the complete graph.

We also discussed the method of composing different fitness functions, based
on nesting one fitness function in another. We focused on the case that the outer
fitness function is LeadingOnes and all inner fitness functions are Fork of
the same length, but in principle one can consider inner fitness function that

140 C. Frahnow and T. Kötzing

differ from each other, possibly also in their length and also other options for
out fitness functions such as OneMax. We gave a general but precise tool to
calculate run times on LeadingOnes-composite fitness functions when using
the (1+1) EA.

References

1. Alba, E.: Parallel evolutionary algorithms can achieve super-linear performance.
Inf. Process. Lett. 82, 7–13 (2002)

2. Bäck, T., Fogel, D.B., Michalewicz, Z.: Handbook of evolutionary computation.
Release 97(1), B1 (1997)

3. Badkobeh, G., Lehre, P.K., Sudholt, D.: Black-box complexity of parallel search
with distributed populations. In: Proceedings of the 2015 FOGA XIII. pp. 3–15.
ACM (2015)

4. Doerr, B., Fischbeck, P., Frahnow, C., Friedrich, T., Kötzing, T., Schirneck, M.:
Island models meet rumor spreading. In: Proceedings of the GECCO 2017, pp.
1359–1366. ACM (2017)

5. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65(1), 224–250
(2013)

6. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica
64, 673–697 (2012)

7. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search
heuristics in black-box optimization. Theory Comput. Syst. 39(4), 525–544 (2006)

8. Eisenberg, B.: On the expectation of the maximum of IID geometric random vari-
ables. Stat. Probab. Lett. 78(2), 135–143 (2008)

9. Gießen, C.: Hybridizing evolutionary algorithms with opportunistic local search.
In: Proceedings of the GECCO 2013, pp. 797–804. ACM (2013)

10. Jansen, T., Wiegand, R.P.: Exploring the explorative advantage of the cooperative
coevolutionary (1+1) EA. In: Cantú-Paz, E. (ed.) GECCO 2003. LNCS, vol. 2723,
pp. 310–321. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-
6 37

11. Lässig, J., Sudholt, D.: Design and analysis of migration in parallel evolutionary
algorithms. Soft Comput. 17(7), 1121–1144 (2013)

12. Lässig, J., Sudholt, D.: General upper bounds on the runtime of parallel evolution-
ary algorithms. Evol. Comput. 22, 405–437 (2014)

13. Lissovoi, A., Witt, C.: A runtime analysis of parallel evolutionary algorithms in
dynamic optimization. Algorithmica 78(2), 641–659 (2017)

14. Neumann, F., Oliveto, P.S., Rudolph, G., Sudholt, D.: On the effectiveness of
crossover for migration in parallel evolutionary algorithms. In: Proceedings of the
GECCO 2011, pp. 1587–1594 (2011)

15. Ruciński, M., Izzo, D., Biscani, F.: On the impact of the migration topology on
the Island model. Parallel Comput. 36, 555–571 (2010)

16. Sudholt, D.: General lower bounds for the running time of evolutionary algorithms.
In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS,
vol. 6238, pp. 124–133. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15844-5 13

https://doi.org/10.1007/3-540-45105-6_37
https://doi.org/10.1007/3-540-45105-6_37
https://doi.org/10.1007/978-3-642-15844-5_13
https://doi.org/10.1007/978-3-642-15844-5_13

Runtime Analysis of Evolutionary
Algorithms for the Knapsack Problem
with Favorably Correlated Weights

Frank Neumann1(B) and Andrew M. Sutton2

1 Optimisation and Logistics, School of Computer Science,
The University of Adelaide, Adelaide, Australia

frank.neumann@adelaide.edu.au
2 Department of Computer Science, University of Minnesota Duluth, Duluth, USA

Abstract. We rigorously analyze the runtime of evolutionary algo-
rithms for the classical knapsack problem where the weights are favor-
ably correlated with the profits. Our result for the (1+1) EA generalizes
the one obtained in [1] for uniform constraints and shows that an opti-
mal solution in the single-objective setting is obtained in expected time
O(n2(logn + log pmax)), where pmax is the largest profit of the given
input. Considering the multi-objective formulation where the goal is to
maximize the profit and minimize the weight of the chosen item set at
the same time, we show that the Pareto front has size n+1 whereas there
are sets of solutions of exponential size where all solutions are incompa-
rable to each other. Analyzing a variant of GSEMO with a size-based
parent selection mechanism motivated by these insights, we show that
the whole Pareto front is computed in expected time O(n3).

1 Introduction

Evolutionary algorithms [2] and other bio-inspired algorithms have been applied
to a wide range of combinatorial optimization and engineering problems. They
imitate the evolution process in nature in order to generate good solutions for
a given optimization or design problem. The advantage of evolutionary compu-
tation methods lies in their easy applicability to new problems and they often
provide satisfying solutions to new problems at hand.

Evolutionary algorithms make uses of random decisions in their main oper-
ators such as mutation and selection and the area of runtime analysis considers
bio-inspired computing methods as a special class of randomized algorithms.
Substantial progress has been made over the last twenty years regarding the
theoretical understanding of bio-inspired computing techniques (see [3–5] for
comprehensive presentations). One of the classical problems studied quite early
in the literature are linear pseudo-Boolean functions. Although linear functions
are easy to optimize, the first proof that showed that a simple (1 + 1) EA opti-
mizes any pseudo-Boolean linear function in expected time O(n log n) was quite

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 141–152, 2018.
https://doi.org/10.1007/978-3-319-99259-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_12&domain=pdf

142 F. Neumann and A. M. Sutton

involved [6]. Later on, the result was considerably improved and simplified by
using drift analysis [7–9].

Considering linear functions with a linear constraint leads to the classical NP-
hard knapsack problem which in general can be solved in pseudo-polynomial time
by dynamic programming (see for example [10]). Although some early studies
on the runtime behavior of evolutionary algorithms have been carried out for
constrained combinatorial optimization problems including the knapsack prob-
lem [11], the area has been somehow neglected in the area of runtime analysis
until quite recently. The mentioned results mainly concentrated on special iso-
lated problem instances such as trap like problems. Considering general knapsack
instances it was shown in [12] that a multi-objective approach is able to achieve
a 1/2-approximation for the knapsack problem when using helper objectives.
Furthermore, the approximation ability of a specific multi-objective approach in
terms of the structure of knapsack instances was investigated in [13].

Recently, linear functions with a uniform constraint were studied in [1]. This
is equivalent to the knapsack problem where all items have unit weight. We
extend these studies to the class of knapsack problem with favorably correlated
weights, i.e. for any two items i and j and with profits pi ≥ pj implies wi ≤ wj .
We study the single-objective setting where the profit of the knapsack should be
maximized subject to the weights of the items meeting a given capacity bound
W . Furthermore, we investigate the multi-objective setting where the goal is to
maximize the profit and minimize the weight of the chosen items simultaneously.
For the single-objective setting, we generalize the result on uniform weights given
in [1] to knapsack instances with favorably correlated weights.

We subsequently investigate the multi-objective problem of maximizing profit
and minimizing weight for the knapsack problem with favorably correlated
weights. We study a variant of Global SEMO (GSEMO) [14,15] which is a base-
line algorithm frequently investigated in the area of runtime analysis for evo-
lutionary multi-objective optimization [16–19]. Investigating the multi-objective
setting, we show that even favorably correlated weights can lead to an exponen-
tially large set of search points that are all incomparable to each other. This can
potentially lead to a large population in evolutionary multi-objective algorithms
such as GSEMO that store at each time step all incomparable search points
found so far. Based on this, we introduce size-based parent selection mechanism
and show that GSEMO using this parent selection method computes the whole
Pareto front for the multi-objective setting in expected time O(n3).

The outline of the paper is as follows. In Sect. 2, we introduce the knapsack
problem with favorably correlated weights and the single- and multi-objective
formulations studied in this paper. We investigate the structure of the objective
space for the multi-objective setting and characterize optimal solutions for the
single-objective problem in Sect. 3. In Sect. 4, we analyze the (1 + 1) EA with
respect to its runtime behavior and analyze the runtime of a multi-objective
approach to compute the whole Pareto front in Sect. 5. Finally, we finish with
some conclusions.

Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem 143

Algorithm 1. (1 + 1) EA
1 Choose x ∈ {0, 1}n uniformly at random.;
2 repeat
3 Obtain x′ from x by flipping each bit with probability 1/n.;
4 If f(x′) ≥ f(x), set x := x′;
5 until stop;

2 Algorithms and Problems

We consider the classical knapsack problem. The input is given by n items. Each
item i has an integer profit pi ≥ 1 and an integer weight wi ≥ 1, 1 ≤ i ≤ n. For
our investigations, we consider the special class of instances where the weights
are favorably correlated to the profits, i.e. for two items i and j, pi ≥ pj implies
wi ≤ wj . W.l.o.g, we assume p1 ≥ p2 ≥ . . . ≥ pn ≥ 1 and 1 ≤ w1 ≤ w2 . . . ≤ wn.
This means that item i dominates each item j with j > i. We consider the
search space {0, 1}n and for a search point x ∈ {0, 1}n, we have xi = 1 if item
i is selected and xi = 0 if it is not selected. We denote by p(x) =

∑n
i=1 pixi

the profit and by w(x) =
∑n

i=1 wixi the weight of x. Furthermore, we denote by
pmax = p1 the largest profit and by wmax = wn the largest weight of the given
input.

The knapsack problem with favorably correlated weights is a generalization
of the problem of optimizing a linear function with a uniform constraint inves-
tigated in [1] where we have wi = 1, 1 ≤ i ≤ n. As for the case of a uniform
constraint, the knapsack problem with favorably correlated weights can be easily
solved by a greedy algorithm which includes the items as they appear in the bit
string. However, analyzing the behavior of evolutionary algorithms is interesting
for this problem as it clarifies the working behavior of this type of algorithm for
the problem.

2.1 Single-Objective Optimization

In the single-objective case, we have given a weight bound W in addition to
the given weights and profits. The goal is to compute a solution x with weight
w(x) ≤ W and whose profit p(x) is maximal among all solution meeting this
weight constraint.

We investigate the classical (1+1) EA shown in Algorithm 1. It starts with a
solution x ∈ {0, 1}n chosen uniformly at random. In each iteration an offspring
x′ is produced by flipping each bit of the current solution x with probability
1/n. The offspring replaces the current solution if it is not worth with respect
to fitness. For the (1 + 1) EA, we consider the single-objective fitness function

f(x) = (c(x), p(x))

where c(x) = min{W − w(x), 0}. Note, that c(x) is strictly negative if x is
infeasible and that the absolute value of c(x) denotes the amount of constraint
violation. We maximize f with respect to the lexicographic order, i.e. we have

144 F. Neumann and A. M. Sutton

f(x) ≥ f(y) ⇔ (c(x) > c(y)) ∨ ((c(x) = c(y)) ∧ (p(x) ≥ p(y))).

This implies that for infeasible solutions the weight is reduced until a feasible
solution is obtained. Furthermore, each feasible solution has a better fitness than
any infeasible solution.

Analyzing the runtime of the (1+1) EA, we consider the expected number of
fitness evaluations until an optimal search point has been obtained for the first
time. This is called the expected optimization time of the algorithm.

2.2 Multi-objective Optimization

In the multi-objective setting, we aim to maximize the profit and minimize the
weight at the same time. We consider the multi-objective fitness function f ′(x) =
(w(x), p(x)) which gives the profit and weight of a given solution x. A solution
y (weakly) dominates a solution x (y � x) iff p(y) ≥ p(x) and w(y) ≤ w(x).
A solution y strongly dominates x if y � x and f ′(x) 	= f ′(y). The notion of
dominance translates to the objective vector.

The classical goal in multi-objective optimization is to compute for each
non-dominated objective vector v a solution x with f ′(x) = v. The set of all
non-dominated objective vectors is called the Pareto front of the given problem.

We consider the algorithm called GSEMO given in Algorithm2. The algo-
rithm has been frequently investigated in the area of runtime analysis of evolu-
tionary multi-objective optimization [15,16]. It can be seen as a generalization
of the (1 + 1) EA to the multi-objective case. It starts with a solution x chosen
uniformly at random from the considered search space and stores in its popu-
lation P for each non-dominated objective vector found so far a corresponding
solution. In each iteration an individual x ∈ P is chosen uniformly at random for
mutation and x produces then an offspring x′ by flipping each bit with probabil-
ity 1/n. In the selection step, x′ is added to the population if it is not strongly
dominated by any other individual in P . If x′ is added to the population all
individuals that are (weakly) dominated by x′ are removed from P .

For many multi-objective optimization problems the number of non-
dominated objective vectors can grow exponentially in the problem size n (these
problems are often referred to as intractable multi-objective optimization prob-
lems [20]). We will show that the Pareto front for the knapsack problem with
favorably correlated weights has size at most n + 1. However, we will show in
Sect. 3 that there are sets of solutions with size exponential in n that are all
incomparable to each other.

These exponentially many trade-offs motivate the following parent selection
mechanism to focus the search of GSEMO. We call the size of a solution x the
number of items it contains, i.e. the size is given by the number of its 1-bits |x|1.
In our size-based parent selection (see Algorithm 3), we determine the number of
1-bits j that a parent should have by choosing it uniformly at random from the
available sizes. Afterwards, we choose the solution with maximum profit from
the solutions in P having exactly j 1-bits. GSEMO with size-based parent selec-
tion differs from GSEMO by using Algorithm3 instead of line 5 in Algorithm2.

Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem 145

Algorithm 2. GSEMO Algorithm
1 Choose x ∈ {0, 1}n uniformly at random;
2 Determine f ′(x);
3 P ← {x};
4 repeat
5 Choose x ∈ P uniformly at random;
6 Create x′ by flipping each bit xi of x with probability 1/n;
7 Determine f ′(x′);
8 if x′ is not strongly dominated by any other search point in P then
9 Include x′ into P ;

10 Delete all other solutions z ∈ P with f ′(z) � f ′(x′) from P

11 until stop;

Algorithm 3. Size-based Parent Selection
1 Let Pi = {x ∈ P | |x|1 = i}, 0 ≤ i ≤ n and I = {i | Pi �= ∅}.;
2 Choose j ∈ I uniformly at random and choose parent

x = argmax{p(y) | y ∈ Pj} with the largest profit.

Note that the population of the algorithm may still grow exponentially with the
problem size as the survival selection is not changed.

Analyzing the runtime of GSEMO with size-based parent selection, we con-
sider the expected number of iterations until for each Pareto optimal objective
vector a corresponding solution has been obtained. This is called the expected
optimization time of the multi-objective algorithm.

3 Structure of the Objective Space

We now examine our class of problems in terms of the structure of solutions
in the multi-objective space. Our investigations will also point out how optimal
solutions look like in the single-objective setting.

We first show that the Pareto front for any choice of the profit and weights
of our class of instances of the knapsack problem has a Pareto front of size n+1.
We define the set X∗ = {x | x = 1k0n−k, 0 ≤ k ≤ n} of size n + 1, containing all
strings that start with some (or no) 1-bits and have all remaining bits set to 0.

Theorem 1. The Pareto front consists of the set of objective vectors F =
{f(x) | x ∈ X∗}.
Proof. Let x be any search point with |x|1 = k which is not of the form 1k0n−k.
We have p(x) ≤ p(1k0n−k) and w(x) ≥ w(1k0n−k) as p1 ≥ . . . ≥ pn and w1 ≤
. . . ≤ wn which implies that x is (weakly) dominated by 1k0n−k. As every search
point x with |x|1 = k is (weakly) dominated by 1k0n−k, 0 ≤ k ≤ n, and all
solutions in X∗ are incomparable to each other due to strictly positive weights
and profits, the Pareto optimal objective vectors are given by the set F .
�

146 F. Neumann and A. M. Sutton

Let x∗ = arg max{p(x) | x ∈ X∗ ∧ w(x) ≤ W} be the feasible search point
with the largest profit in X∗. This search point has the property that it is the
feasible search point with the largest number of 1-bits in X∗. The following
corollary shows that x∗ is an optimal solution of the constrained single-objective
problem.

Corollary 1. Let x∗ ∈ X∗ be the feasible solution with the largest number of
1-bits that is feasible. Then x∗ is an optimal solution to the constrained single-
objective knapsack problem with favorably correlated weights.

Proof. From the proof of Theorem 1, we know that any search point is (weakly)
dominated by a search point in X∗. x∗ is the feasible solution with the largest
profit in X∗. This implies that x∗ has the maximum profit among all feasible
solutions as no feasible dominated solution can have a larger profit than x∗.
�

The previous observations show that all Pareto optimal objective vectors as
well as the maximum profit for the constrained single-objective problem have
corresponding solutions that all start with some (or no) 1-bits and have all
remaining bits set to 0.

An important questions that arises when considering evolutionary multi-
objective optimization is whether there can be many incomparable solutions
even if the Pareto front is small. This might cause difficulties to the search of
an evolutionary multi-objective algorithm. We now construct an exponentially
large set of solutions and corresponding objective vectors that are incomparable
to each other. We set pi = 2n−i and wi = 2i−1, 1 ≤ i ≤ n. Let n = 4k, k ≥ 1 a
positive integer. We define

S(k) = {0110, 1001}, if k = 1,

and
S(k) = {01x10, 10x01 | x ∈ S(k − 1)}, if k ≥ 2.

This recursively defines sets of solutions for a fixed value of k based on sets
for k−1. Sets for the k are obtained from sets for k−1 by adding two bits to the
left and two bits to the right of each string. The values of these bits are chosen in
the way that the strings obtained do not dominate each other. This can be done
as profits are exponentially decreasing and weights are exponentially increasing
according to their position in the string. An illustration of the (incomparable)
objective vectors for S(4) with |S(4)| = 24 = 16 and the corresponding Pareto
front for n = 16 is given in Fig. 1.

We now prove that the size of S(k) grows exponentially in n = 4k and that
all solutions in the set are incomparable to each other.

Theorem 2. Let n = 4k, k ≥ 1 a positive integer. Then S(k) contains 2k = 2n/4

search points which are all incomparable among each other.

Proof. The proof is by induction on k. For k = 1, we have two strings 0110 and
1001. We have p(0110) = 6 < p(1001) = 9 and w(0110) = 6 < w(1001) = 9

Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem 147

0 1 2 3 4 5 6 7

weight 104

0

1

2

3

4

5

6

7

pr
of
it

104

Fig. 1. Illustration of Pareto front (blue) and incomparable objective vectors of S(4)
(red) for pi = 2n−i and wi = 2i−1, 1 ≤ i ≤ n when n = 16. (Color figure online)

which implies that the two strings are incomparable. For the induction step we
assume that the set S(k) consists only of incomparable solutions and show that
S(k + 1) also only includes incomparable solutions. For each string of S(k) we
add 2 digits to the left and 2 digits to the right and produce two new strings in
S(k+1) for each string in S(k). Hence, we have |S(k+1)| = 2 ·S(k)| = 2(n/4)+1.
Based on the assumption that all solution of S(k) are incomparable, we show
that all solutions in S(k + 1) are incomparable.

Assuming that the added bits all take on a value of 0, the profit and the
weight of each solution in S(k) increases by a factor of 4 where both values have
been less than 2n − 1 and are therefore less than 4 · (2n − 1) = 2n+2 − 4 after
the four 0-bits have been added. We now have to take into account the effect
of the 1-bits added in the two cases (01x10 and 10x01). Adding 01 to the left
and 10 to the right furthermore increases the profit by 2n+2 + 2 and the weight
by 2 + 2n+2. Adding 10 to the left and 01 to the right increases the profit by
2n+3 + 1 and the weight by 1 + 2n+3. All solutions of S(k + 1) where the same
pattern has been added are again incomparable after the addition as the profit
and weight increased by at least 2n+2 + 2 which is greater than the profit and
weight of any solution in S(n).

For the pattern 01x10 all solutions have profit at most 2n+3−1 and weight at
most 2n+3 − 1. For the pattern 10x01 all solutions have profit at least 2n+3 + 1
and weight at least 2n+3 + 1. Hence, solutions belonging to different patterns
are incomparable. This implies that all solutions of S(k + 1) are incomparable
which completes the proof.
�

Although the number of trade-offs that might occur is exponential, each non
Pareto optimal solution can be improved towards the Pareto front. The reason
for this is that any solution that is not Pareto optimal can be improved by
a certain number of 2-bit flips. Let x with |x|1 = k be a non Pareto optima
solution. We can transfer it into the Pareto optimal solution 1k0n−k by a set of
2-bit flips where the first bit that is flipped consists of an arbitrary 0-bit among
the first k bits and the second bit that is flipped consists of an arbitrary 1-bit

148 F. Neumann and A. M. Sutton

among the last n − k bits in x. Clearly each of these 2-bit flips is accepted as
they produce an offspring that dominates x. This means that any evolutionary
algorithm flipping two randomly chosen bits can obtain a some progress towards
the Pareto front even if it has to work with a large population.

4 Runtime Analysis of (1 + 1) EA

We first investigate the runtime behavior of the classical (1+1) EA and study the
time to obtain an optimal solution. The proof considers two phases. In the first
phase a feasible solution is obtained. After having obtained a feasible solution,
the expected time until for the first time an optimal solution has been obtained
is analyzed.

Theorem 3. The expected optimization time of the (1+ 1) EA on the knapsack
problem with favorably correlated weights is O(n2(log n + log pmax)).

Proof. We first show that the expected time until the (1 + 1) EA has produced
a feasible solution is O(n2) by adapting the O(n2) bound for optimizing linear
functions. Let x be an infeasible solution and consider the function

g(x) =

(
n∑

i=1

wi

)

− w(x)

giving the weight of the bits set to 0 in x. A feasible solution has value

W − w(x) = W −
n∑

i=1

wi + g(x) ≥ 0.

For technical reasons, set wn+1 = 0. We define fitness layer

Ai =

⎧
⎨

⎩
x

∣
∣
∣
∣
∣
∣

n+1∑

j=(n+1)−i

wj ≤ g(x) <

n+1∑

j=(n+1)−(i+1)

wj

⎫
⎬

⎭
, 0 ≤ i ≤ n − 1,

dependent on the value of g(x). Having an infeasible solution of layer x ∈ Ai,
one of the last n − i − 1 bits of x is currently set to 1. Flipping this bit produces
an offspring x′ ∈ Aj with j > i as it increases g(x) by at least wn−i−1. The
probability for such a mutation step is at least 1/(en). There are at most n
improvements until a feasible solution with W −w(x) = W −∑n

i=1 wi+g(x) ≥ 0
has been obtained which implies that a feasible solution is obtained after an
expected number of O(n2) steps.

Having reached a feasible solution, we consider the difference

Δ(x) = p(1k0n−k) − p(x),

where 1k0n−k is an optimal solution according to Corollary 1. We consider the
drift on Δ(x). As done in [1] for the case of uniform weights, we define

Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem 149

loss(x) =
k∑

i=1

pix̄i, and surplus(x) =
n∑

i=k+1

pixi.

Note that Δ(x) = loss(x) − surplus(x). Let r be the number of zeros among
the first k bits in x (contributing to the loss) and s be the number of ones among
the last n − k bits in x (contributing to the surplus). Have have pi ≥ pj and
wi ≤ wj iff i ≤ j. This implies that each item belonging to the first k bits has a
profit at least as high as any profit of the last n − k bits and a weight at most
as high as any of the last n − k bits.

We consider different situations depending on the values of r and s. Our
analysis has similarities to the analysis of the (1 + 1) EA for the minimum
spanning tree problem carried out in [21].

If r > s, then any of the r missing bits among the first k bits can be flipped
and will be accepted. The sum of these gains is surplus(x) ≥ Δ(x) and the
expected progress in this situation is at least r

en · Δ(x) ≥ 1
en · Δ(x). If r = s,

then any of the missing r bits among the first k bits and any of the 1-bits among
the last n − k bits can be flipped to achieve an accepted solution. The sum of
the progress obtainable by these 2-bit flips is at least Δ(x) and the expected
progress in this situation is at least r2

en2 · Δ(x) ≥ 1
en2 · Δ(x). The situation r < s

is not possible for a feasible solution x as otherwise the search point 1k+10n−k−1

would be a feasible solution contradicting that 1k0n−k is an optimal solution.
Overall, we have at each time step t where the (1 + 1) EA has obtained a

feasible but non-optimal solution x of value Δt(x)

E[Δt+1(x) | Δt(x)] ≤
(

1 − 1
en2

)

Δt(x).

Using the multiplicative drift theorem [8] and the upper bound npmax and lower
bound 1 on Δ(x) for any non-optimal solution x, we get the upper bound of
O(n2(log n + log pmax)) on the expected time until the (1 + 1) EA has obtained
an optimal solution.
�

It should be noted that Ω(n2) is a lower bound for the (1 + 1) EA for knap-
sack instances with favorably correlated weights as this bounds already holds for
special instances where the weights are all 1 [1]. The reason for this lower bound
are special 2-bit flips that are necessary in the case that a current non-optimal
solution has a maximal number of 1-bits.

5 Runtime Analysis of GSEMO

We now analyze the expected runtime until GSEMO with size-based parent
selection has computed the whole Pareto front. The proof works by considering
a first phase in which a Pareto optimal solution is obtained. Afterwards missing
Pareto optimal solutions can be produced by flipping a specific bit to obtain a
still missing Pareto optimal objective vector.

150 F. Neumann and A. M. Sutton

Theorem 4. The expected optimization GSEMO with size-based parent selec-
tion on the knapsack problem with favorably correlated weights is O(n3).

Proof. We first upper bound the time until the algorithm has produced the
search point 1n. This solution is Pareto optimal as it has the largest possible
profit and once obtained will not be removed from the population. We follow
the proof for the O(n2) bound of optimizing linear pseudo-Boolean functions
and use fitness-based partitions weight respect to the profit of the solutions and
define fitness layer

Ai =

⎧
⎨

⎩
x

∣
∣
∣
∣
∣
∣

i∑

j=1

pj ≤ p(x) ≤
n∑

j=i+1

pj

⎫
⎬

⎭
, 0 ≤ i ≤ n − 1,

as the set of all search points whose profit is at least as high as the profit of
the first i profits and whose profit is less than the profits of the first i + 1
profits. Furthermore, the search point 1n constitute the optimal layer An of
profit p(1n) =

∑n
i=1 pi.

Consider the solution with the largest profit in the population. The prob-
ability to choose this solution x for mutation is at least 1/(n + 1) as the set
I contains at most n + 1 values and once it has been determined how many
1-bits the parent should have the individual with that number of 1-bits having
the largest profit is selected. Assume that the solution of largest profit currently
belongs to layer Ai, 0 ≤ i ≤ n − 1. In order to obtain a solution belonging to
layer Aj , j > i, one of the leading i + 1 bits is not set to 1 and can be flipped
to obtain a profit increase of at least pi+1. As x ∈ Ai before the mutation, this
leads to an offspring whose profit is increased by at least pi+1 and therefore
belonging to layer Aj with j > i. The probability to select the individual with
the largest profit in the population for mutation is 1/(n + 1) and flipping the
bit leading to an improvement in terms of fitness levels has probability at least
1/(en). There are n + 1 different fitness layers which implies that the search
point 1n is produced after an expected number of O(n3) steps.

In the following, we work under the assumption that the search point 1n has
already been included in the population. The search point 1n is Pareto optimal
as it has the largest possible profit and will stay in the population once it has
been obtained. Furthermore, for each Pareto optimal solution there does not
exist any other solution in the population that has the same number of ones.
As long as not all Pareto optimal objective vectors have been obtained, a new
Pareto optimal objective vector can be obtained by selecting a Pareto optimal
solution x with |x| = i for which Pareto optimal objective vector with solution
size i + 1 or i − 1 does not exist yet in the population. Flipping the 0-bit of
x corresponding to a largest profit not yet included in the solution leads to a
Pareto optimal solution y with |y| = i + 1 for 0 ≤ i ≤ n − 1. Similarly, flipping
the 1-bit of x corresponding to a largest profit selected in the solution leads to
a Pareto optimal solution y with |y| = i − 1 for 1 ≤ i ≤ n. Choosing such an
individual x for mutation has probability at least 1/(n + 1) and flipping the bit
necessary to increase the number of Pareto optimal objective vectors obtained

Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem 151

has probability at least 1/(en). Hence a new Pareto optimal objective vector is
produced after an expected number of O(n2) steps. There are at most n Pareto
optimal objective vectors that have not been obtained after the search point 1n

has been included in the population. Hence, after an expected number of O(n3)
steps the population consists of n + 1 solutions, one for each Pareto optimal
objective vector.
�

It should be noted that using size-based parent selection where in each step
the solution with the smallest weight (instead of the largest profit) is selected
would lead to the same result. Here one would show that the search point 0n is
included in the population after an expected number of O(n3) steps (maximizing
(
∑n

i=1 wi) − w(x) and considering always the solution with the smallest weight
in the population) and show that the other Pareto optimal objective vectors are
included after an additional phase of an expected number of O(n3) steps.

6 Conclusions

Constrained combinatorial optimization problems play a crucial role in real-
world applications and evolutionary algorithms have been widely applied to
constrained problems. With this paper, we have contributed to the theoretical
understanding of evolutionary algorithms for constrained optimization problems
by means of rigorous runtime analysis. We generalized the result for the (1 + 1)
EA obtained for uniform weights given in [1] to favorably correlated weights.
Furthermore, we investigated the multi-objective formulation of the knapsack
problem. Our results show that although the Pareto front has size n + 1, there
can be exponentially large sets of non Pareto optimal objective vectors that are
all incomparable. Motivated by these insights, we introduced a size-based parent
selection mechanism and have shown that GSEMO using this parent selection
method is able to compute the whole Pareto front in expected time O(n3).

For future work, it would be interesting to analyze GSEMO with its standard
uniform parent selection. We conjecture that this algorithm would also be able
to obtain the whole Pareto front in expected polynomial time as each non Pareto
optimal solution can always make good progress towards the Pareto front.

Acknowledgment. This work has been supported through Australian Research
Council (ARC) grant DP160102401.

References

1. Friedrich, T., Kötzing, T., Lagodzinski, G., Neumann, F., Schirneck, M.: Analysis
of the (1+1) EA on subclasses of linear functions under uniform and linear con-
straints. In: Proceedings of the Fourteenth Conference on Foundations of Genetic
Algorithms (FOGA), pp. 45–54. ACM (2017)

2. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Com-
puting Series. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
44874-8

https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/978-3-662-44874-8

152 F. Neumann and A. M. Sutton

3. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and
Recent Developments, vol. 1. World Scientific, Singapore (2011)

4. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization:
Algorithms and Their Computational Complexity. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16544-3

5. Jansen, T.: Computational complexity of evolutionary algorithms. In: Rozenberg,
G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 815–845.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-92910-9 26

6. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

7. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Artif. Intell. 127(1), 57–85 (2001)

8. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica
64, 673–697 (2012)

9. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Comb. Probab. Comput. 22, 294–318 (2013)

10. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24777-7

11. Zhou, Y., He, J.: A runtime analysis of evolutionary algorithms for constrained
optimization problems. IEEE Trans. Evol. Comput. 11(5), 608–619 (2007)

12. He, J., Mitavskiy, B., Zhou, Y.: A theoretical assessment of solution quality in
evolutionary algorithms for the knapsack problem. In: Proceedings of the IEEE
Congress on Evolutionary Computation (CEC), pp. 141–148. IEEE (2014)

13. Kumar, R., Banerjee, N.: Running time analysis of a multiobjective evolutionary
algorithm on simple and hard problems. In: Wright, A.H., Vose, M.D., De Jong,
K.A., Schmitt, L.M. (eds.) FOGA 2005. LNCS, vol. 3469, pp. 112–131. Springer,
Heidelberg (2005). https://doi.org/10.1007/11513575 7

14. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective
evolutionary algorithms on pseudo-Boolean functions. IEEE Trans. Evol. Comput.
8(2), 170–182 (2004)

15. Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm.
In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp.
1918–1925. IEEE (2003)

16. Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective
optimization. Nat. Comput. 5(3), 305–319 (2006)

17. Friedrich, T., Neumann, F.: Maximizing submodular functions under matroid con-
straints by evolutionary algorithms. Evol. Comput. 23(4), 543–558 (2015)

18. Kratsch, S., Neumann, F.: Fixed-parameter evolutionary algorithms and the vertex
cover problem. Algorithmica 65(4), 754–771 (2013)

19. Qian, C., Yu, Y., Tang, K., Yao, X., Zhou, Z.: Maximizing non-monotone/non-
submodular functions by multi-objective evolutionary algorithms. CoRR
abs/1711.07214 (2017)

20. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-27659-9

21. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and
the minimum spanning tree problem. Theor. Comput. Sci. 378(1), 32–40 (2007)

https://doi.org/10.1007/978-3-642-16544-3
https://doi.org/10.1007/978-3-540-92910-9_26
https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.1007/11513575_7
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9

Theoretical Analysis of Lexicase Selection
in Multi-objective Optimization

Thomas Jansen and Christine Zarges(B)

Department of Computer Science, Aberystwyth University,
Aberystwyth SY23 3DB, UK

{t.jansen,c.zarges}@aber.ac.uk

Abstract. Lexicase selection is a parent selection mechanism originally
introduced for genetic programming that has also been considered in
the context of multi-objective optimization. This is the first theoretical
runtime analysis of lexicase selection showing results for the bi-objective
leading ones trailing zeroes benchmark problem. The lexicase selection
operator is embedded into a simple hillclimbing algorithm and compared
with different selection operators from the literature that are based on
the classical dominance relationship. Strengths and weaknesses of the
operators are demonstrated providing insights into their working prin-
ciples. Results of experiments accompany the theoretical findings and
point towards interesting questions for future research.

Keywords: Runtime analysis · Multi-objective optimisation
Selection operators

1 Introduction

The choice of appropriate selection operators is a crucial step in the design
of evolutionary algorithms. Selection occurs twice in the typical evolutionary
cycle—as selection for reproduction when selecting search points as parents and
as selection for survival when deciding which search points will form the next
population. In principle, the same mechanisms can be used for both scenar-
ios and thus, it makes sense to consider common operators for both settings.
Classical examples for selection operators include uniform, fitness-proportional,
tournament and truncation selection (see [13] for an overview). A more recent
proposal in the context of genetic programming is lexicase selection [22], where
fitness evaluation is based on a number of test cases. However, it has been noted
that lexicase selection lends itself naturally to multi-objective optimisation [15].

We consider lexicase selection in the context of a pseudo-Boolean bi-objective
optimisation problem and compare it with three other multi-objective selection
mechanisms based on the classical dominance relationship. Lexicase selection has
a performance that is comparable to the best of three simple dominance-based
selection mechanisms and clearly outperforms two of them.

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 153–164, 2018.
https://doi.org/10.1007/978-3-319-99259-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_13&domain=pdf

154 T. Jansen and C. Zarges

We discuss motivation and background of this study in more detail in the
next section. We introduce the concrete algorithms and problems we study in
a more formal way in Sect. 3. Section 4 is devoted to the theoretical analysis
and contains our main results. We present results of empirical analysis in Sect. 5
that confirm the theoretical results and lead to open questions by considering
a modified version of the algorithm. We summarise our findings and discuss
directions for possible future research in Sect. 6.

2 Background

Our main goal is to perform a theoretical analysis of lexicase selection in the
context of discrete multi-objective optimization. Lexicase selection is a parent
selection mechanism that was introduced by Spector [22] to improve the perfor-
mance of genetic programming in situations where fitness evaluation is based on
(potentially a large number of) test cases. It is designed in a way that allows it
to be used in place of tournament selection (or any other parent selection mecha-
nism) without any other changes to the overall genetic programming algorithm.
It has since been used in applications [9,11] and analysed in some detail. This
includes comparing its performance to other selection mechanisms [7,10,12,18],
studying its impact on population diversity [6,8], and considering its effects and
performance in detail for a specific problem [19] (see also [5]). Since it can be
less effective for problems in the continuous domain a variant called ε-lexicase
selection for such continuous-valued problems has been introduced [15] and also
analysed [14]. To the best of our knowledge the work by La Cava et al. [14] is
the first theoretical analysis of a lexicase selection variant and it applies to the
special version for continuous domains. We present the first theoretical analy-
sis of the original lexicase selection method for discrete-valued problem and its
impact on the expected optimization time.

Despite its origin in genetic programming lexicase selection is a general par-
ent selection mechanism that can be employed in any kind of search algorithm
that performs a step that is essentially parent selection. This includes for exam-
ple evolutionary algorithms [1] and artificial immune systems [23]. We consider
a simple hillclimber and compare lexicase selection with other selection mecha-
nisms that have been used in this context. We will discuss details of all algorithms
and selection operators we consider in the next section.

We consider a well known benchmark problem for multi-objective optimisa-
tion, the leading ones trailing zeros problem (formally defined as LOTZ in the
following). It was introduced by Laumanns et al. [16] and was the first problem
to be used for a theoretical runtime analysis. This motivates its use in this study
which is a much more specific first in theoretical runtime analysis. LOTZ has
been analysed for a number of simple evolutionary algorithms for multi-objective
optimization (e. g., see [3,17]) and has also motivated the introduction of other,
similar benchmark problems (e. g., see [4,17]). We will formally introduce the
problem in the next section.

Theoretical Analysis of Lexicase Selection in Multi-objective Optimization 155

3 Algorithms, Problems, and Definitions

Our analysis focuses on lexicase selection, a parent selection method that was
introduced by Spector [22]. It aims at genetic programming where the fitness of
an individual is defined by its performance on a number of test cases. We consider
it here as a general parent selection method for multi-objective optimization and
formulate it in this context. We consider a multi-objective function f with c
components so that for all x we have f(x) = (f1(x), f2(x), . . . , fc(x)). Without
loss of generality we assume that the optimisation goal is to maximise each of
the c different components. For such a multi-objective function f we describe
lexicase selection as a method that selects one out of a pool P of parents. It goes
through the c different objectives in random order (selecting the order randomly
for each new selection operation) and eliminates for the current objective all
search points that are inferior to other search points in the parent pool P . When
this reduces the number of remaining potential parents to one the remaining
parent is returned as selected. If at the end there is more than one potential
parent left one is selected uniformly at random. We give a formal description as
Algorithm 1.

Algorithm 1. Lexicase Selection
1 for i ∈ {1, 2, . . . , c} in random order do
2 Remove from P all x with fi(x) < max

y∈P
{fi(y)}.

3 if |P | = 1 then
4 return remaining x ∈ P as selected

5 Select x ∈ P uniformly at random and return x.

Evolutionary algorithms make use of selection in two different places in the
evolutionary cycle: they use parent selection and selection for survival (e.g., see
[13] for a general description). In some sense selection for survival is the opposite
to parent selection since normally we select a worst individual to be removed from
the population. We can do the same with lexicase selection simply by replacing
the maximum by the minimum in line 2 of Algorithm 1. This follows in spirit the
use of negative tournament selection in a well-known standard GP algorithm,
called TinyGP, in the field guide to GP [21]. We refer to this version as negative
lexicase selection and would use it whenever we need to decide which member
of a population should be discarded. In the context of this work, we will not be
needing this.

In multi-objective optimisation one usually considers Pareto optimality in
some form as optimisation goal. For a multi-objective function f : {0, 1}n → R

c

with f = (f1, f2, . . . , fc) we say that x weakly dominates y (x � y) if fi(x) ≥
fi(y) for all i ∈ {1, 2, . . . , c}. Note that we do not distinguish between dominance
between x and y and f(x) and f(y) here. Clearly, the same terminology can be
applied to both. We say that x dominates y (x � y) if x � y and there exists

156 T. Jansen and C. Zarges

some i ∈ {1, 2, . . . , c} with fi(x) > fi(y). If neither x � y nor y � x we say that
x and y are non-comparable. We say that x ∈ {0, 1}n is non-dominated if there
is no y ∈ {0, 1}n such that y � x. The Pareto set is the set of all non-dominated
search points in {0, 1}n. Its image under f is called the Pareto front.

When using an optimization heuristic for a multi-objective function one is
usually interested in not only finding some solution that belongs to the Pareto
set but a set of solutions such that the image of this set equals (or approximates)
the Pareto front.

We analyse two different points of time. Let x1, x2, . . . be the sequence of
search points that a multi-objective heuristic optimization algorithm generates.
First, we consider the first point of time when a search point that belongs to the
Pareto set is discovered (i.e., the smallest T1 such that xT1 belongs to the Pareto
set and all xi with i < T1 do not belong to the Pareto set). Second, we consider
the first point of time when the whole Pareto front is discovered (i.e., the smallest
T2 such that {f(x1), f(x2), . . . , f(xT2)} is the Pareto front and for all i < T2 we
have that {f(x1), f(x2), . . . , f(xi)} is not the Pareto front. Clearly, T1 and T2

are random variables if the optimization algorithm makes random choices. We
will analyze their expectation in the following. Note that the definitions of T1

and T2 do not impose any requirements on the algorithm. It is not necessary that
the algorithm knows that T1 or T2 have been reached. For T2, it is not necessary
that the algorithm keeps a representative for each point of the Pareto front
somewhere. This allows us not to discuss the use of populations and archives
and still analyse the performance of any multi-objective optimisation algorithm.
If in an application it is desirable to output the Pareto front once it is found an
archive that stores a representative for each non-dominated solution could easily
be used.

Since this is a first theoretical run time analysis of lexicase selection it makes
sense to start with an algorithm that is as simple as possible. In the context
of evolutionary algorithms this is often the so-called (1 + 1) EA. It is similar to
local search because it has a population of size only 1 and creates one offspring
in each round, selecting the better of parent and offspring for survival. Different
from local search it uses standard bit mutations, a global mutation operator that
flips each bit independently with probability 1/n (where n is the number of bits).
While in expectation only 1 bit flips (the same number as for local search) any
number of bits can flip so that a single mutation can reach any point in the search
space with positive probability. While local search and the (1 + 1) EA are often
similar it is known that the global mutation can be the cause of very different
behaviour [2]. In particular in the context of multi-objective optimization it is
known that global mutations make the analysis considerably more difficult. This
is the reason why usually results for SEMO, a simple evolutionary optimizer
employing the same local steps as local search, are much easier to obtain than
for GEMO, the same optimizer but with the same global mutations as used in
the (1 + 1) EA [17]. This is the reason why we consider random local search here.
For the sake of completeness we give a formal description as Algorithm 2.

Theoretical Analysis of Lexicase Selection in Multi-objective Optimization 157

Algorithm 2. Random Local Search (RLS)
1 Select x ∈ {0, 1} uniformly at random.
2 while termination criterion not met do
3 y := x
4 Select one bit in y uniformly at random and flip this bit.
5 Use a selection mechanism to determine which of {x, y} replaces x.

When considering RLS and analysing T1 and T2 it is important to note that
we analyse the sequence of search points x that RLS generates. We do not take
into account any search points y that do not replace x as new current search
point.

Clearly, lexicase selection is not the only possibility to turn an evolutionary
algorithm (or other heuristic optimiser like RLS) into an algorithm that can be
used for multi-objective optimisation. Giel and Lehre [4] consider four different
operators, three very simple and straightforward ones and one slightly more com-
plicated on a different benchmark function. We adopt the three simple selection
mechanisms to have a baseline for comparison here.

Definition 1. The strong selection operator prefers a new search point y over x
if y dominates x. The weak selection operator prefers a new search point y over
x if y weakly dominates x. The weakest selection operator prefers a new search
point y over x if y weakly dominates x or x and y are not comparable.

We see that all three selection operators are different from lexicase selection
and we will see how this influences the performance of RLS in the next section.
We will refer to the four different algorithms as RLS with lexicase selection, RLS
with strong selection, RLS with weak selection, and RLS with weakest selection
in the following.

As mentioned earlier we use LOTZ as our benchmark function. The function
LOTZ was introduced by Laumanns et al. [16] to facilitate theoretical analysis
and it was important in the development of a theory-grounded understanding
of evolutionary multi-objective optimization. This is the reason why we use the
same function here. Our results will be specific to LOTZ, of course. We hope
they will serve as a useful first step.

LOTZ is a bi-objective function and similar in structure to the well-known
leading ones problem (e. g., see [13] for some background on this example prob-
lem). It asks to maximize the number of leading 1-bits and trailing 0-bits at the
same time.

Definition 2. The function LOTZ : {0, 1}n → N
2 is defined as

(
n∑

i=1

i∏
j=1

x[j],

n∑
i=1

n∏
j=i

(1 − x[j])
)

.

It is well known and not difficult to see that the Pareto front of LOTZ equals
{(0, n), (1, n − 1), (2, n − 2), . . . , (n − 1, 1), (n, 0)} and that the Pareto set equals

158 T. Jansen and C. Zarges

{000 · · · 000, 100 · · · 000, 110 · · · 000, . . . , 111 · · · 110, 111 · · · 111}. The function is
extreme in the sense that Pareto set and Pareto front have equal size. Each
member of the Pareto front has only one representative in the search space.

4 Analysis

We analyse the performance of RLS with all four different selection operators
(lexicase selection, strong selection, weak selection, weakest selection) on LOTZ.
We consider both points of time that we defined in the previous section, the first
point of time when a point on the Pareto front is found and also the first point
of time when all points on the Pareto front have been found at least once.

Lemma 1. The expected time until RLS with any of the four different selection
operators (lexicase selection, strong selection, weak selection, weakest selection)
finds a point on the Pareto front of LOTZ is O

(
n2

)
.

Proof. We consider the current search point x. Let l ∈ {0, 1, . . . , n−2} denote the
number of leading 1-bits in x (i.e., x[1] = x[2] = · · · = x[l] = 1 and x[l + 1] = 0),
let r ∈ {0, 1, . . . , n − 2} denote the number of trailing 0-bits in x (i.e., x[n] =
x[n − 1] = · · · = x[n − r + 1] = 0 and x[n − r] = 1). Note that l > n − 2 or
r > n − 2 imply that x is already at the Pareto front (where r + l = n holds).

Let l′ and r′ denote the corresponding numbers in the new search point y.
The probability to increase either l or r by 1 in a mutation equals 2/n because
it suffices to flip either x[l + 1] or x[n − r]. In this case we have either l′ = l and
r′ = r + 1 or l′ = l + 1 and r′ = r.

In both cases each of the four selection mechanisms will prefer y over x
because y is not inferior in any criterion and strictly better in one.

After at most n such steps we have r+ l = n and the Pareto front is reached.
The expected waiting for each event equals n/2, thus the total expected waiting
time is bounded by n2/2 = O

(
n2

)
. ��

It is not hard to make Lemma 1 more precise and prove that the expected
time is actually Θ

(
n2

)
, i.e., the bound O

(
n2

)
is asymptotically tight. However,

since we are more interested in the time it takes to explore the Pareto front
there is no point in making this more precise. The next results will prove that
the time to find the first point of the Pareto front is insignificant in comparison
to the time it takes to explore the whole Pareto front.

Theorem 1. RLS with strong selection and RLS with weak selection never find
more than a single point of the Pareto front of LOTZ.

Proof. We consider the situation after the first point of the Pareto front of
LOTZ has been found. By definition of the Pareto front, no other search point
can dominate this search point. This implies that RLS with strong selection
is stuck at this search point and will never go to a second search point on the
Pareto front. By definition of LOTZ, no other search point can weakly dominate
this search point because each point of the Pareto front of LOTZ has only

Theoretical Analysis of Lexicase Selection in Multi-objective Optimization 159

one representative point in the search point. This implies that RLS with weak
selection is stuck at this search point and will never go to a second search point
on the Pareto front. ��

We see that RLS with strong and weak selection fail to optimise LOTZ
in the sense that both are not able to find the whole Pareto front, even when
given infinite time. The following result shows that RLS with lexicase selection
is efficient in finding the complete Pareto front on LOTZ.

Theorem 2. The expected time until RLS with lexicase selection finds each
point of the Pareto front of LOTZ is Θ

(
n3

)
.

Proof. We first prove an upper bound of O
(
n3

)
for the time to find the whole

Pareto front of LOTZ. We start at a point of time when the current search point
x is at the Pareto front. In the same way as in the proof of Lemma1 let l denote
the number of leading 1-bits in x and r denote the number of trailing 0-bits in
x. Note that l + r = n since x is at the Pareto front. Let l′ and r′ denote the
corresponding numbers in the new search point y that is created as a mutant of
x.

There are at least one and at most two positions such that either l′ = l − 1
and r′ = r + 1 or l′ = l + 1 and r′ = r − 1. For all other positions we have either
l′ < l and r′ = r or l′ = l and r′ < r. In this latter case the lexicase selection
will prefer x over y.

We now consider the other case, the one that happens with probability at
least 1/n and at most 2/n. In both cases it depends on the order of selection
criteria if x or y is preferred. In both cases there is one order where x is preferred
over y and one order where y is preferred over x. Thus, we see that y replaces x
with probability 1/2 in this case and in total with probability at least 1/(2n) and
at most 1/n. Since the situation is completely symmetric x is replaced with a y
that has a smaller or greater number of 1-bits with equal probability (except for
the fringe cases l = n and r = n). This implies that we can identify the changes
of l (or, equivalently r) as an unbiased random work on {0, 1, . . . , n} where each
step is taken with equal probability (except for the fringe cases l = n and r = n)
and the expected waiting time between two steps is between n and 2n. It is well
known (e.g., see [20, Chap. 6.5]) that the time to have visited each state (also
know as cover time) is at most 2n · 2n2 = 4n3. This implies the upper bound of
O

(
n3

)
.

For the lower bound it suffices to notice that for the chain graph that cor-
responds to the unbiased random work on {0, 1, . . . , n} the cover time is Θ

(
n2

)
and all the probabilities we considered were tight. Thus, the expected time is
Θ

(
n3

)
. ��

While strong and weak selection are both unsuccessful on LOTZ lexicase
is not the only selection mechanism that is successful. The weakest selection
mechanism has the same asymptotic run time as the next theorem shows.

Theorem 3. The expected time until RLS with weakest selection finds each
point of the Pareto front of LOTZ is Θ

(
n3

)
.

160 T. Jansen and C. Zarges

Proof. If we consider two different points on the Pareto front they are always
not comparable. Thus, in the situation where the current search point x is on the
Pareto front and the new search point y is also on the Pareto front employing
the weakest selection mechanism implies that y will replace x because it will
prefer the new search point (see Definition 1). If the new search point is not the
Pareto front it will be dominated by the old search point. Thus, RLS with the
weakest selection performs the same kind of random walk on the Pareto front as
RLS with lexicase selection and the same runtime bounds apply. ��

It is worth noting that with lexicase selection a new search point at the
Pareto front will only be accepted with probability 1/2 while with the weakest
selection it will certainly be accepted. We therefore expect RLS with weakest
selection to be twice as fast as RLS with lexicase selection. We remark that the
same asymptotic runtime for LOTZ has been proven for the simple evolutionary
multi-objective optimizer (SEMO) [17].

5 Experimental Supplements

We present the results of experiments to accompany our theoretical findings. We
perform 100 runs for RLS (Algorithm2) with lexicase selection (Algorithm 1)
and with weakest selection (Definition 1) for n = 10, 20, . . . , 300. We visualise
the results using boxplots1 in Figs. 1 and 2. For both algorithms we consider the
time to reach the Pareto front (T1) and the time until all points on the Pareto
front have been sampled at least once (cover time T2). Recall that both algo-
rithms reach the Pareto front in time O

(
n2

)
(Lemma 1). Once the Pareto front

is reached, only points on the Pareto front will be accepted and the random
walk on the Pareto front has a cover time of Θ

(
n3

)
for both algorithms (The-

orems 2 and 3). The observed runtimes in our experiments nicely match these
theoretical bounds as can be seen in Fig. 3 where we plot the mean observed
number of function evaluations against a fitted polynomial based on our theo-
retical bounds. As expected, RLS with weakest selection is about twice as fast
as RLS with lexicase selection when considering cover time. It should be noted
that both algorithms exhibit a large variance when considering the cover time
for the Pareto front. Thus, we observe a considerable number of outliers in our
experiments. All statistical operations have been performed with R2.

Our theoretical results only consider mutations that flip exactly one bit. As
discussed previously, moving to global mutations such as standard bit mutations
in the (1 + 1) EA can have dramatic consequences. From our experiments, we can
indeed see that using standard bit mutations instead of one bit mutations has
a significant influence on the performance of the algorithm. We visualise results
for n = 10, 20, . . . , 70 using boxplots in Fig. 4. While the increase in time needed

1 Boxplots depict the minimum, maximum, median and first and third quartiles of
the observed runtimes. Circles indicate outliers, which are observations outside 1.5
times the interquartile range above the upper quartile and below the lower quartile.

2 http://www.r-project.org

http://www.r-project.org

Theoretical Analysis of Lexicase Selection in Multi-objective Optimization 161

10 30 50 70 90 120 150 180 210 240 270 300

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

n

F
itn

es
s

E
va

lu
at

io
ns

10 30 50 70 90 120 150 180 210 240 270 300

0.
0e

+
00

4.
0e

+
07

8.
0e

+
07

1.
2e

+
08

n

F
itn

es
s

E
va

lu
at

io
ns

Fig. 1. Experimental results for RLS with lexicase selection over 100 runs. Boxplots
show the number of fitness function evaluations until the Pareto front is reached (left)
and until the whole Pareto front has been sampled (right).

10 30 50 70 90 120 150 180 210 240 270 300

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

n

F
itn

es
s

E
va

lu
at

io
ns

10 30 50 70 90 120 150 180 210 240 270 300

0e
+

00
2e

+
07

4e
+

07
6e

+
07

8e
+

07
1e

+
08

n

F
itn

es
s

E
va

lu
at

io
ns

Fig. 2. Experimental results for RLS with weakest selection over 100 runs. Boxplots
show the number of fitness function evaluations until the Pareto front is reached (left)
and until the whole Pareto front has been sampled (right).

0 50 100 150 200 250 300

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

n

fit
ne

ss
 e

va
lu

at
io

ns

Time to reach Pareto front

observed means
fitted curve

0 50 100 150 200 250 300

0.
0e

+
00

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

2.
0e

+
07

2.
5e

+
07

3.
0e

+
07

n

fit
ne

ss
 e

va
lu

at
io

ns

Cover time

observed means
fitted curve

(a) RLS with lexicase selection:

0 50 100 150 200 250 300

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

n

fit
ne

ss
 e

va
lu

at
io

ns

Time to reach Pareto front

observed means
fitted curve

0 50 100 150 200 250 300

0.
0e

+
00

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

2.
0e

+
07

2.
5e

+
07

3.
0e

+
07

n

fit
ne

ss
 e

va
lu

at
io

ns

Cover time

observed means
fitted curve

(b) RLS with weakest selection

Fig. 3. The average number fitness function evaluations observed in our experiments
together with the fitted polynomials matching our theoretical results. For RLS with
lexicase selection we obtain 0.2476x2 − 11.41 (T1) and 1.285x3 − 21 190 (T2). For RLS
with weakest selection we obtain 0.2481x2 − 20.3 (T1) and 0.6479x3 − 50 520 (T2).

162 T. Jansen and C. Zarges

10 20 30 40 50 60 70

0
10

00
0

20
00

0
30

00
0

40
00

0

n

F
itn

es
s

E
va

lu
at

io
ns

10 20 30 40 50 60 70

0e
+

00
2e

+
08

4e
+

08
6e

+
08

8e
+

08
1e

+
09

n

F
itn

es
s

E
va

lu
at

io
ns

Fig. 4. Experimental results for the (1 + 1) EA with lexicase selection over 100 runs.
Boxplots show the number of fitness function evaluations until the Pareto front is
reached (left) and until the whole Pareto front has been sampled (right).

to find the Pareto front seems not too different (but with larger outliers), we
see that already for n = 70 the average number of fitness function evaluations
needed to sample the entire Pareto front is significant larger than the largest
outlier for the two algorithms using local mutations. We will examine this case
further in the conclusions when discussing questions for future work.

6 Conclusions

We have presented a first theoretical analysis of lexicase selection in the con-
text of discrete multi-objective optimisation. Considering a simple hillclimbing
algorithm we show that lexicase selection can be used to efficiently sample the
entire Pareto front of the well-known bi-objective benchmark function leading
ones trailing zeros (LOTZ). We compare lexicase selection with three multi-
objective selection mechanisms from the literature. We obtain asymptotically the
same optimisation times when using the mechanism with the weakest selection
pressure while classical selection mechanisms based on the (weak) dominance
relationship get stuck on the first search point sampled on the Pareto front.

Our study hints towards several interesting questions for future research. We
give some insights into these questions in the following, but leave the formal
analyses for future research. A comparison with indicator-based selection [24] or
considering problems with more than two objectives would also be interesting.

As discussed in the previous section, experiments indicate that moving from
local mutations to global mutations significantly increases the runtime of the
algorithm. We conjecture that the (1 + 1) EA with lexicase selection is not able
to find the entire Pareto front efficiently. One reason for this is that standard bit
mutations may hinder the algorithm to perform a random walk on the Pareto
front by preferring a non Pareto optimal search point over a Pareto optimal one.

Theoretical Analysis of Lexicase Selection in Multi-objective Optimization 163

Consider for example, the search points x = 150 050 (50 1-bits followed by 50 0-
bits) with fitness (50, 50) and y = 130 0 117 1 051 with fitness (30, 51) for n = 100,
where y is the result of a 2-bit mutation of x (flipping the bits at positions 31 and
49). With probability 1/2, lexicase selection chooses the second objective over
the first objective and thus, will accept y over x. After that any mutation only
effecting the 1-bits at positions 32–48 will be accepted. Note that the (1 + 1) EA
with weakest selection would also accept the new search point as x and y are
incomparable.

Since lexicase selection is a parent selection mechanism it would make sense
to consider populations, e.g., a (μ + 1) RLS or (μ + 1) EA. We conjecture that
simply using lexicase selection for parent selection and negative lexicase selection
for replacement will not be efficient. Again, the main reason is that search points
that have made some progress on the Pareto front can be lost and replaced by
search points that are not Pareto optimal. Consider for example a population
that contains x = 1n−1 0 and y = 10n−1 and assume that we have not found the
two extreme points on the Pareto front, yet. Moreover, we assume that x and y
are the two points with fewest trailing zeros and leading ones, respectively. That
means that the remaining search points points can be arbitrary points with less
than n− 1 but more than 1 leading ones and trailing zeros. In this case, lexicase
selection will select either x or y as parent (depending on the random order of
objectives). Assume w. l. o. g. that x was selected and z = 1n−3 0 1 0 was created
(flipping only the bit at position n − 2). If negative lexicase selection uses the
same objective for replacement, the offspring (that is not on the Pareto front)
will replace y. The latter happens with probably 1/2 and thus, we expect to
frequently lose points on the (extreme ends of the) Pareto front.

References

1. De Jong, K.A.: Evolutionary Computation. A Unified Approach. MIT Press, Cam-
bridge (2016)

2. Doerr, B., Jansen, T., Klein, C.: Comparing global and local mutations on bit
strings. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2008), pp. 929–936. ACM Press (2008)

3. Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm.
In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003),
pp. 1918–1925 (2003)

4. Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective
optimisation. Evol. Comput. 18(3), 335–356 (2010)

5. Helmuth, T.: General program synthesis from examples using genetic programming
with parent selection based on random lexicographic orderings of test cases. Ph.D.
thesis, University of Massachusetts Amherst (2015)

6. Helmuth, T., McPhee, N.F., Spector, L.: Effects of lexicase and tournament selec-
tion on diversity recovery and maintenance. In: Genetic and Evolutionary Compu-
tation Conference (GECCO 2016), Companion, pp. 983–990 (2016)

7. Helmuth, T., McPhee, N.F., Spector, L.: The impact of hyperselection on lexicase
selection. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO 2016), pp. 717–724 (2016)

164 T. Jansen and C. Zarges

8. Helmuth, T., McPhee, N.F., Spector, L.: Lexicase selection for program synthesis:
a diversity analysis. In: Riolo, R., Worzel, B., Kotanchek, M., Kordon, A. (eds.)
Genetic Programming Theory and Practice XIII. GEC, pp. 151–167. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-34223-8 9

9. Helmuth, T., Spector, L.: Evolving a digital multiplier with the PushGP genetic
programming system. In: Genetic and Evolutionary Computation Conference
(GECCO 2013), Companion, pp. 1627–1634 (2013)

10. Helmuth, T., Spector, L.: Word count as a traditional programming benchmark
problem for genetic programming. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2014), pp. 919–926 (2014)

11. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO 2015), pp.
1039–1046 (2015)

12. Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with
lexicase selection. IEEE Trans. Evol. Comput. 19(5), 630–643 (2015)

13. Jansen, T.: Analyzing Evolutionary Algorithms. The Computer Science Perspec-
tive. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-17339-4

14. La Cava, W., Helmuth, T., Spector, L., Moore, J.H.: A probabilistic and multi-
objective analysis of lexicase selection and epsilon-lexicase selection. Evol. Comput.
(2018, to appear). http://doi.org/10.1162/evco a 00224

15. La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. In:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2016), pp. 741–748 (2016)

16. Laumanns, M., Thiele, L., Zitzler, E., Welzl, E., Deb, K.: Running time analysis
of multi-objective evolutionary algorithms on a simple discrete optimization prob-
lem. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-
Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 44–53. Springer, Heidel-
berg (2002). https://doi.org/10.1007/3-540-45712-7 5

17. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective
evolutionary algorithms on pseudo-boolean functions. IEEE Trans. Evol. Comput.
8(2), 170–182 (2004)

18. Liskowski, P., Krawiec, K., Helmuth, T., Spector, L.: Comparison of semantic-
aware selection methods in genetic programming. In: Genetic and Evolutionary
Computation Conference (GECCO 2015), Companion, pp. 1301–1307 (2015)

19. McPhee, N.F., Donatucci, D., Helmuth, T.: Using graph databases to explore the
dynamics of genetic programming runs. In: Riolo, R., Worzel, B., Kotanchek, M.,
Kordon, A. (eds.) Genetic Programming Theory and Practice XIII. GEC, pp. 185–
201. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34223-8 11

20. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

21. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming
(2008). http://lulu.com, http://www.gp-field-guide.org.uk

22. Spector, L.: Assessment of problem modality by differential performance of lexicase
selection in genetic programming: a preliminary report. In: Genetic and Evolution-
ary Computation Conference (GECCO 2012), Companion, pp. 401–408 (2012)

23. Timmis, J.: Artificial immune systems. In: Sammut, C., Webb, G.I. (eds.) Ency-
clopedia of Machine Learning and Data Mining, pp. 61–65. Springer, New York
(2017)

24. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In:
Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9 84

https://doi.org/10.1007/978-3-319-34223-8_9
https://doi.org/10.1007/978-3-642-17339-4
http://doi.org/10.1162/evco_a_00224
https://doi.org/10.1007/3-540-45712-7_5
https://doi.org/10.1007/978-3-319-34223-8_11
http://lulu.com
http://www.gp-field-guide.org.uk
https://doi.org/10.1007/978-3-540-30217-9_84

Towards a Running Time Analysis of the
(1+1)-EA for OneMax and LeadingOnes

Under General Bit-Wise Noise

Chao Bian1, Chao Qian1(B), and Ke Tang2

1 Anhui Province Key Lab of Big Data Analysis and Application,
University of Science and Technology of China, Hefei 230027, China

biancht@mail.ustc.edu.cn, chaoqian@ustc.edu.cn
2 Shenzhen Key Lab of Computational Intelligence,

Southern University of Science and Technology, Shenzhen 518055, China
tangk3@sustc.edu.cn

Abstract. Running time analysis of evolutionary algorithms (EAs)
under noisy environments has recently received much attention, which
can help us understand the behavior of EAs in practice where the fitness
evaluation is often subject to noise. One of the mainly investigated noise
models is bit-wise noise, which is characterized by a pair (p, q) of param-
eters. However, previous analyses usually fix p or q, which makes our
understanding on bit-wise noise incomplete. In this paper, we analyze
the running time of the (1+1)-EA solving OneMax and LeadingOnes
under general bit-wise noise. Our results largely extend the known ones
in specific cases of bit-wise noise, and disclose that p and pq together
decide the running time to be polynomial or super-polynomial.

1 Introduction

Evolutionary algorithms (EAs) have been widely applied to solve real-world opti-
mization problems, where the fitness evaluation of a solution is often disturbed by
noise. Although they have shown good empirical performances in noisy optimiza-
tion [8], it is also important to understand the impact of noise from a theoretical
viewpoint. As an essential theoretical aspect of EAs, the running time analysis
has received much attention in the last two decades, and has achieved many
promising results [1,9]. However, most of them focus on noise-free optimization,
where the fitness evaluation is exact. The theoretical understanding of EAs is
still largely incomplete for the noisy case.

Previous running time analyses in noisy evolutionary optimization mainly
considered two kinds of noise models, posterior and prior. The posterior noise

This work was supported by the Ministry of Science and Technology of China
(2017YFC0804003), the NSFC (61603367, 61672478), the YESS (2016QNRC001),
the Science and Technology Innovation Committee Foundation of Shenzhen
(ZDSYS201703031748284), and the Royal Society Newton Advanced Fellowship
(NA150123).

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 165–177, 2018.
https://doi.org/10.1007/978-3-319-99259-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_14&domain=pdf

166 C. Bian et al.

comes from the variation on the fitness of a solution, e.g., additive noise adds
a value randomly drawn from some distribution. There was a sequence of
papers [2,4,5,10] mainly showing that some specific EAs (e.g., compact genetic
algorithm and ant colony optimization) can well handle additive noise, and using
populations can bring robustness to additive noise.

For the prior noise coming from the variation on a solution, Droste [3] first
considered a specific model, one-bit noise, which flips a randomly chosen bit of a
binary solution before evaluation with probability p. He analyzed the (1+1)-
EA solving the OneMax problem under one-bit noise, and proved that the
maximal value of p allowing a polynomial running time is O(log n/n). Gießen
and Kötzing [6] considered another problem LeadingOnes, and proved that the
expected running time is polynomial if p ≤ 1/(6en2) and exponential if p = 1/2.
For these two problems, Qian et al. [11,12,14] theoretically studied the effective-
ness of two noise-handling strategies, threshold selection and resampling, and
proved that under some large values of p, both of them can reduce the running
time of the (1+1)-EA from exponential to polynomial.

Gießen and Kötzing [6] also studied another prior noise model, which flips
each bit of a solution independently with probability q before evaluation. They
proved that for the (1+1)-EA on OneMax, the maximal q allowing a polyno-
mial running time is O(log n/n2). By combining this model with one-bit noise,
Qian et al. [13] studied a general prior noise model, bit-wise noise, which is
characterized by a pair (p, q) of parameters. It happens with probability p, and
independently flips each bit of a solution with probability q before evaluation.
Their derived results for the (1+1)-EA on OneMax and LeadingOnes are shown
in the middle two columns of Table 1, which give the ranges of p and q for a poly-
nomial running time upper bound as well as a super-polynomial lower bound.

Table 1. For the expected running time of the (1+1)-EA on OneMax and LeadingOnes
under bit-wise noise (p, q), the ranges of p, q for a polynomial upper bound (the first line
in each cell) and a super-polynomial lower bound (the second line) are shown below.

(1+1)-EA (p, 1/n) (1, q) (p, q)

OneMax
O(log n/n)

ω(log n/n)
[13]

O(logn/n2)

ω(logn/n2)
[6] p = O(logn/n) ∨ pq = O(log n/n2)

p = ω(logn/n) ∧ pq = ω(log n/n2)

LeadingOnes
O(log n/n2)

ω(log n/n)
[13]

O(logn/n3)

ω(logn/n2)
[13] p = O(logn/n2) ∨ pq = O(log n/n3)

p = ω(logn/n) ∧ pq = ω(log n/n2)

However, the analysis for bit-wise noise [13] only considered two specific cases:
(p, 1/n) (i.e., q is fixed to 1/n) and (1, q) (i.e., p is fixed to 1). Some fundamental
theoretical issues are thus not addressed. For example, what is the deciding factor
for the running time of the (1+1)-EA under bit-wise noise? Will the (1+1)-EA
perform similarly for two scenarios (p, q) and (p′, q′) with pq = p′q′? In this paper,
we analyze the running time of the (1+1)-EA solving OneMax and LeadingOnes

Towards a Running Time Analysis of the (1+1)-EA 167

under general bit-wise noise, i.e., without fixing p or q. We derive the ranges
of p and q for a polynomial upper bound and a super-polynomial lower bound,
which are summarized in the last column of Table 1. It is easy to verify that our
results cover previously known ones [6,13], as shown in the middle two columns
of Table 1. The results show that p and pq together decide the running time to be
polynomial or super-polynomial. We can also observe that the expected running
time for two scenarios (p, q) and (p′, q′) with pq = p′q′ may be significantly
different, e.g., for the (1+1)-EA on OneMax, the running time is polynomial if
p = q = log n/n, but super-polynomial if p′ = 1, q′ = (log n/n)2.

The rest of this paper is organized as follows. Section 2 introduces some
preliminaries. Sections 3 and 4 present the running time analysis on OneMax
and LeadingOnes, respectively. Section 5 concludes the paper.

2 Preliminaries

In this section, we first introduce the optimization problems, noise models and
EAs studied in this paper, respectively, then present the analysis tools that we
use throughout this paper.

2.1 OneMax and LeadingOnes

In this paper, we consider two pseudo-Boolean problems OneMax and Leadin-
gOnes, which are widely used in EAs’ theoretical analyses [1,9]. The former
aims to maximize the number of 1-bits of a solution, and the latter aims to
maximize the number of consecutive 1-bits counting from the left of a solution.
Their optimal solutions are both 11 . . . 1 (briefly denoted as 1n).

Definition 1 (OneMax). The OneMax Problem of size n is to find an n bits
binary string x∗ that maximizes f(x) =

∑n
i=1 xi.

Definition 2 (LeadingOnes). The LeadingOnes Problem of size n is to find
an n bits binary string x∗ that maximizes f(x) =

∑n
i=1

∏i
j=1 xj .

2.2 Bit-Wise Noise

There are mainly two kinds of noise models: prior and posterior [6,8]. The prior
noise comes from the variation on a solution, while the posterior noise comes from
the variation on the fitness of a solution. Previous theoretical analyses involving
prior noise [2,3,6,11,12] often focused on one-bit noise, which flips a random
bit of a solution before evaluation with probability p. Qian et al. [13] recently
considered a natural extension of one-bit noise, i.e., the bit-wise noise model. As
presented in Definition 3, it happens with probability p, and independently flips
each bit of a solution with probability q before evaluation. However, the analyses
in [13] considered bit-wise noise with one parameter fixed, i.e., p = 1 or q = 1/n.
In this paper, we will analyze the general bit-wise noise model.

168 C. Bian et al.

Definition 3 (Bit-wise Noise [13]). Given p, q ∈ [0, 1], let fn(x) and f(x)
denote the noisy and true fitness of a solution x ∈ {0, 1}n, respectively, then

fn(x) =

{
f(x) with probability 1 − p,

f(x′) with probability p,

where x′ is generated by independently flipping each bit of x with probability q.

Algorithm 1. (1+1)-EA
Given a function f over {0, 1}n to be maximized, it consists of the following steps:

1: x := uniformly randomly selected from {0, 1}n.
2: Repeat until some termination condition is met
3: x′ := flip each bit of x with probability 1/n.
4: if fn(x′) ≥ fn(x) then x := x′.

2.3 (1+1)-EA

This paper considers the (1+1)-EA, which is a benchmark EA widely used in
theoretical analyses. For noisy optimization, only a noisy fitness value fn(x)
instead of the exact one f(x) can be accessed, and thus the condition in line 4
of Algorithm 1 is “if fn(x′) ≥ fn(x)” instead of “if f(x′) ≥ f(x)”. Note that the
reevaluation strategy is used as in [3,6,11,12]. That is, besides evaluating fn(x′),
fn(x) will be reevaluated in each iteration of the (1+1)-EA. The running time
is usually defined as the number of fitness evaluations needed to find an optimal
solution w.r.t. the true fitness function f for the first time [3,6,11,12].

2.4 Analysis Tools

The process of the (1+1)-EA solving OneMax or LeadingOnes under noise can
be modeled as a Markov chain {ξt}+∞

t=0 . We only need to take the solution space
{0, 1}n as the chain’s state space (i.e., ξt ∈ X = {0, 1}n), and take the optimal
solution 1n as the chain’s target state (i.e., X ∗ = {1n}). Given a Markov chain
{ξt}+∞

t=0 and ξt̂ = x, we define its first hitting time as τ = min{t | ξt̂+t ∈ X ∗, t ≥
0}. The mathematical expectation of τ , E[[τ | ξt̂ = x]] =

∑+∞
i=0 i · P(τ = i | ξt̂ =

x), is called the expected first hitting time (EFHT) starting from ξt̂ = x. If ξ0
is drawn from a distribution π0, E[[τ | ξ0 ∼ π0]] =

∑
x∈X π0(x)E[[τ | ξ0 = x]] is

called the EFHT of the chain over the initial distribution π0. Thus, the expected
running time of the (1+1)-EA starting from ξ0 ∼ π0 is 1 + 2 · E[[τ | ξ0 ∼ π0]],
where the term 1 corresponds to evaluating the initial solution, and the factor 2
corresponds to evaluating the offspring solution x′ and reevaluating the parent
solution x in each iteration. Note that we consider the expected running time of
the (1+1)-EA starting from a uniform initial distribution in this paper.

In the following, we give two drift theorems that will be used to derive upper
and lower bounds on the EFHT of Markov chains in the paper.

Towards a Running Time Analysis of the (1+1)-EA 169

Theorem 1 (Additive Drift [7]). Given a Markov chain {ξt}+∞
t=0 and a dis-

tance function V (x) with V (x ∈ X ∗) = 0 and V (x /∈ X ∗) > 0, if for any
t ≥ 0 and any ξt with V (ξt) > 0, there exists a real number c > 0 such that
E[[V (ξt) − V (ξt+1) | ξt]] ≥ c, then the EFHT satisfies that E[[τ | ξ0]] ≤ V (ξ0)/c.

Theorem 2 (Negative Drift with Self-loops [15]). Let Xt, t ≥ 0, be real-
valued random variables describing a stochastic process. Suppose there exists an
interval [a, b] ⊆ R, two constants δ, ε > 0 and, possibly depending on l := b − a,
a function r(l) satisfying 1 ≤ r(l) = o(l/ log(l)) such that for all t ≥ 0:

(1) ∀a < i < b : E[[Xt − Xt+1 | Xt = i]] ≤ −ε · P(Xt+1 �= i | Xt = i),

(2) ∀i>a, j ∈N
+ : P(|Xt+1−Xt|≥j | Xt = i) ≤ r(l)

(1+δ)j
· P(Xt+1 �= i | Xt = i).

Then there is a constant c > 0 such that for T := min{t ≥ 0 : Xt ≤ a | X0 ≥ b}
it holds P(T ≤ 2cl/r(l)) = 2−Ω(l/r(l)).

3 The OneMax Problem

In this section, we analyze the expected running time of the (1+1)-EA on One-
Max under bit-wise noise (p, q). We prove in Theorems 3 and 4 that the expected
running time is polynomial when p = O(log n/n) ∨ pq = O(log n/n2); otherwise,
it is super-polynomial. The results generalize that in [6,13], which only consid-
ered the case where p = 1 or q = 1/n.

Theorem 3 is proved by applying Lemma1, which gives an upper bound on
the running time of the (1+1)-EA solving noisy OneMax. Let xk denote any
solution with k 1-bits, and fn(xk) denote its noisy objective value, which is a
random variable. Lemma 1 intuitively means that if the probability of recognizing
the true better solution by noisy evaluation is large enough (i.e., Eq. (1)), the
running time can be upper bounded. Note that in their original theorem (i.e.,
Theorem 5 in [6]), it requires that Eq. (1) holds with only j = k, but their proof
actually also requires the property, i.e., ∀j < k < n, P(fn(xk) < fn(xk+1)) ≤
P(fn(xj) < fn(xk+1)). We have combined these two conditions in Lemma 1 by
requiring Eq. (1) to hold with any j ≤ k instead of only j = k.

Lemma 1 ([6]). If there is a constant 0<c≤ 1
15 and some 2<l≤ n

2 such that

∀j ≤ k < n : P(fn(xj) < fn(xk+1)) ≥ 1 − l/n;

∀j ≤ k < n − l : P(fn(xj) < fn(xk+1)) ≥ 1 − c(n − k)/n,
(1)

then the (1+1)-EA optimizes f in expectation in O(n log n) + n2O(l) iterations.

Theorem 3. For the (1+1)-EA on OneMax under bit-wise noise (p, q), the
expected running time is polynomial if p = O(log n/n) ∨ pq = O(log n/n2).

Proof. We use Lemma 1 to prove it. We analyze the probability P(fn(xj) ≥
fn(xk+1)) for any j ≤ k < n. We consider two cases.

170 C. Bian et al.

(1) p = O(log n/n). For some positive constant c1, assume that p ≤ c1 log n/n.
It is easy to see that fn(xj) ≥ fn(xk+1) implies that the fitness evaluation
of xj or xk+1 is affected by noise, whose probability is at most 2p. Thus, we
have P(fn(xj) ≥ fn(xk+1)) ≤ 2p ≤ 2c1 log n/n.

(2) pq=O(log n/n2). For some positive constant c2, assume that pq≤c2 log n/n2.
Note that fn(xj) ≥ fn(xk+1) implies that at least one bit of xj or xk+1 is
flipped by noise, whose probability is at most 2p(1 − (1 − q)n) ≤ 2pqn ≤
2c2 log n/n.

Combining the above two cases leads to P(fn(xj)≥fn(xk+1)) ≤ 2max{c1,c2} log n
n .

Let l = 30max{c1, c2} log n and c = 1/15. Then, P(fn(xj) ≥ fn(xk+1)) ≤ c · l
n ,

and it is easy to verify that the condition of Lemma1 holds. Thus, by Lemma 1,
the expected number of iterations is O(n log n) + n2O(log n), which implies that
the expected running time is polynomial.
�

Theorem 4 is proved by applying Lemma2, which gives a lower bound on the
running time of the (1+1)-EA solving noisy OneMax when the probability of
making a right comparison due to noise is not large enough (i.e., Eq. (2)).

Lemma 2 ([6]). If there is a constant c≥16 and some l≤n/4 such that

∀n − l ≤ k < n : P(fn(xk) < fn(xk+1)) ≤ 1 − c(n − k)/n, (2)

then the (1+1)-EA optimizes f in 2Ω(l) iterations with a high probability.

Theorem 4. For the (1+1)-EA on OneMax under bit-wise noise (p, q), the
expected running time is super-polynomial if p = ω(log n/n) ∧ pq = ω(log n/n2).

Proof. We use Lemma 2 to prove it. We are to show that ∀ 3n/4 ≤ k < n,
P(fn(xk) ≥ fn(xk+1))=ω(log n/n) by considering two cases of p.

(1) p = ω(log n/n) ∩ o(1). To make fn(xk) ≥ fn(xk+1), it is sufficient that
fn(xk) = k and fn(xk+1) ≤ k. The former event happens with probability at
least 1 − p, since it is sufficient that the noise doesn’t happen. Thus, we have

P(fn(xk) ≥ fn(xk+1)) ≥ (1 − p) · P(fn(xk+1) ≤ k). (3)

Then, we analyze P(fn(xk+1) ≤ k) by further considering two subcases.
(1a) q ≤ 1/n. To make fn(xk+1) ≤ k, it is sufficient that exactly one 1-bit is

flipped by noise. Thus,

P(fn(xk+1) ≤ k) ≥ p · (k + 1)q(1 − q)n−1 ≥ ω(log n/n) · (1/e) = ω(log n/n),

where the second inequality is by pq = ω(log n/n2), k ≥ 3n/4 and q ≤ 1/n.
(1b) q > 1/n. Let Y denote a random variable such that P(Y = 0) = 1−q and

P(Y = 1) = q. Let Y1, Y2, ..., Yn denote random variables which are independent
and have the same distribution as Y . Then, under the condition that the noise
happens in evaluating xk+1, we have

fn(xk+1) =
k+1∑

j=1

(1 − Yj) +
n∑

j=k+2

Yj = k + 1 −
2k−n+2∑

j=1

Yj −
k+1∑

j=2k−n+3

Yj +
n∑

j=k+2

Yj .

Towards a Running Time Analysis of the (1+1)-EA 171

Note that
∑n

j=k+2 Yj − ∑k+1
j=2k−n+3 Yj is the difference between the sum of the

same number of Yj , thus P(
∑n

j=k+2 Yj − ∑k+1
j=2k−n+3 Yj ≤ 0) ≥ 1/2 due to

symmetry. Then, we have

P(fn(xk+1) ≤ k) ≥ P(the noise happens) · P
(
k + 1 − ∑2k−n+2

j=1 Yj ≤ k
)

· 1
2

=
p

2
· (1−(1−q)2k+2−n) ≥ p

2
· (1−(1−q)n/2) ≥ p

2
· (1−(1/e)1/2) = ω(log n/n),

where the second inequality is by k ≥ 3n/4 and the last is by q > 1/n.
Combining subcases (1a) and (1b) leads to P(fn(xk+1) ≤ k) = ω(log n/n).

Thus, according to Eq. (3) and p = o(1), it holds that for 3n/4 ≤ k < n,
P(fn(xk) ≥ fn(xk+1)) = ω(log n/n).

(2) p = Ω(1). Since pq = ω(log n/n2), it must hold that q = ω(log n/n2). We
consider three subcases.

(2a) q = ω(log n/n2) ∩ O(1/n). We have P(fn(xk) ≥ fn(xk+1)) ≥
P(fn(xk) = k) · P(fn(xk+1) = k). To make fn(xk) = k, it is sufficient that
the noise happens but no bit is flipped by noise. To make fn(xk+1) = k, it is
sufficient that exactly one 1-bit is flipped by noise. Thus,

P(fn(xk) ≥ fn(xk+1)) ≥ p(1 − q)n · p(k + 1)q(1 − q)n−1 = ω(log n/n),

where the equality holds since p = Ω(1), q = ω(log n/n2) ∩ O(1/n) and k ≥
3n/4.

(2b) q = ω(1/n) ∩ O(log n/n). We conduct the following analysis under the
condition that both noise happens in evaluating xk and xk+1, whose probability
is p2 = Ω(1). We divide xk into two parts: yk and zk, where yk is a string with
(log n − 1) 1-bits and one 0-bit, and zk is a string with (k − log n + 1) 1-bits and
(n − k − 1) 0-bits. We also divide xk+1 into two parts: yk+1 and zk+1, where
yk+1 is a string with (log n) 1-bits, and zk+1 is a string with (k + 1 − log n)
1-bits and (n− k − 1) 0-bits. Let mut(x) denote the string generated by flipping
each bit of x with probability q, and let |x|1 denote the number of 1-bits of
a string x. Thus, we have fn(xk) = |mut(yk)|1 + |mut(zk)|1 and fn(xk+1) =
|mut(yk+1)|1 + |mut(zk+1)|1. To make fn(xk) ≥ fn(xk+1), it is sufficient that
|mut(yk)|1 ≥ log n−1, |mut(yk+1)|1 = log n−1 and |mut(zk)|1 ≥ |mut(zk+1)|1.
Note that P(|mut(yk)|1 ≥ log n − 1) ≥ (1 − q)log n−1 since it is sufficient that
all the 1-bits of yk are not flipped; P(|mut(yk+1)|1 = log n − 1) = log n · q(1 −
q)log n−1 since exactly one 1-bit needs to be flipped. For zk and zk+1, they are
two strings with the same number of 1-bits and 0-bits, and thus P(|mut(zk)|1 ≥
|mut(zk+1)|1) ≥ 1/2 due to symmetry. Then, we get

P(fn(xk) ≥ fn(xk+1)) ≥ p2 · (1 − q)log n−1 · log n · q(1 − q)log n−1 · (1/2)
≥ ω(log n/n) · (1 − 2 log n · q) ≥ ω(log n/n),

where the second inequality is by q = ω(1/n) and Bernoulli’s inequality, and the
last is by q = O(log n/n).

(2c) q = ω(log n/n). The analysis is similar to that of case (2b), except the
division of xk and xk+1. Here, yk is just a 0-bit, yk+1 is just a 1-bit, and zk, zk+1

are two strings with k 1-bits and (n − k − 1) 0-bits. We similarly get

172 C. Bian et al.

P(fn(xk) ≥ fn(xk+1)) ≥ p2 · q · (1/2) = ω(log n/n).

Combining cases (1) and (2) shows that ∀ 3n/4 ≤ k < n, P(fn(xk) ≥
fn(xk+1)) = ω(log n/n). We set the parameters in Lemma 2 as c = 16 and
l = b log n, where b is any positive constant. Thus, for any n − l ≤ k < n,
P(fn(xk) < fn(xk+1)) = 1 − ω(log n/n) ≤ 1 − c(n − k)/n. By Lemma 2, the
expected number of iterations is 2Ω(l) = nΩ(b). Since b can be any positive
constant, the expected running time is super-polynomial.
�

4 The LeadingOnes Problem

In this section, we consider the (1+1)-EA solving LeadingOnes under bit-wise
noise (p, q). We prove in Theorems 5 and 6 that the expected running time is
polynomial if p = O(log n/n2) ∨ pq = O(log n/n3), and super-polynomial if
p = ω(log n/n) ∧ pq = ω(log n/n2). The results generalize that in [13], where p
is fixed to 1 or q is fixed to 1/n.

Theorem 5 is proved by applying the additive drift theorem (i.e., Theorem1).
We will use LO(x) to denote the number of leading 1-bits of a solution x.

Theorem 5. For the (1+1)-EA on LeadingOnes under bit-wise noise (p, q), the
expected running time is polynomial if p = O(log n/n2) ∨ pq = O(log n/n3).

Proof. We use Theorem 1 to prove it. For some positive constant b, suppose that
p ≤ b log n/n2 or pq ≤ b log n/n3. We construct a distance function as follows:

V (x) = (1 + c/n)n − (1 + c/n)LO(x)
,

where c = 12b log n + 1. It is easy to verify that V (x) = 0 iff x ∈ X ∗ = {1n}.
Then, we investigate E[[V (ξt) − V (ξt+1) | ξt = x]] for any x with LO(x) =

i < n. Let Pmut(x, x′) denote the probability that x′ is generated from x by
mutation, and let Pacc(x, x′) denote the probability that the offspring solution
x′ is accepted by comparing with x, i.e., Pacc(x, x′) = P(fn(x′) ≥ fn(x)). We
divide the drift into two parts: positive E+ and negative E−. That is,

E[[V (ξt) − V (ξt+1) | ξt = x]] = E+ − E−,

where

E+ =
∑

x′:LO(x′)>iPmut(x, x′) · Pacc(x, x′) · (V (x) − V (x′)),

E− =
∑

x′:LO(x′)<iPmut(x, x′) · Pacc(x, x′) · (V (x′) − V (x)).

Note that V (x) > V (x′) iff LO(x′) > LO(x) = i, since the distance function V
decreases with the number of leading 1-bits.

We first analyze the positive drift E+. For any x′ with LO(x′) > i,

V (x) − V (x′) = (1 + c/n)LO(x′) − (1 + c/n)i ≥ (1 + c/n)i · c/n. (4)

Towards a Running Time Analysis of the (1+1)-EA 173

To generate x′ with LO(x′) > i by mutating x, it needs to flip the (i + 1)-th bit
(which must be 0) of x and keep the i leading 1-bits unchanged. Thus, we have

∑
x′:LO(x′)>iPmut(x, x′) = P(LO(x′) > i) = (1 − 1/n)i (1/n) ≥ 1/en. (5)

To analyze Pacc(x, x′) for any x′ with LO(x′) > i, we consider the opposite
event that x′ is rejected, i.e., fn(x) > fn(x′), which implies that fn(x) ≥ i + 1
or fn(x′) ≤ i − 1. By the union bound, P(fn(x) > fn(x′)) ≤ P(fn(x) ≥ i + 1) +
P(fn(x′) ≤ i− 1) = pq(1− q)i + p(1− (1− q)i) = p− p(1− q)i+1, where the first
equality is because fn(x) ≥ i + 1 iff the (i + 1)-th bit of x is flipped by noise
while the i leading 1-bits are not flipped; fn(x′) ≤ i − 1 iff at least one of the i
leading 1-bits of x′ is flipped by noise. Then, we get

Pacc(x, x′) = 1 − P(fn(x) > fn(x′)) ≥ 1 − p + p(1 − q)i+1

≥ max{1 − p, 1 − pq(i + 1)} ≥ 1 − b log n/n2 ≥ 1/2,
(6)

where the second inequality is by Bernoulli’s inequality, the third inequality is
by p ≤ b log n/n2 or pq ≤ b log n/n3, and the last holds with sufficiently large n.
By applying Eqs. (4), (5) and (6) to E+, we get

E+ ≥ (1/en) · (1/2) · (1 + c/n)i · (c/n) ≥ (1 + c/n)i · (c/6n2).

We then analyze the negative drift E−. For any x′ with LO(x′) < i, we have

V (x′) − V (x) = (1 + c/n)i − (1 + c/n)LO(x′) ≤ (1 + c/n)i − 1. (7)

To analyze Pacc(x, x′) for any x′ with LO(x′) < i, we consider fn(x) ≤ fn(x′),
which implies that at least one bit of x or x′ is flipped by noise. By the union
bound, we have Pacc(x, x′) ≤ 2p (1−(1−q)n). Note that 1−(1−q)n ≤ min{qn, 1}
and p ≤ b log n/n2 or pq ≤ b log n/n3, we have

Pacc(x, x′) ≤ 2p · min{nq, 1} = min{2npq, 2p} ≤ 2b log n/n2. (8)

By applying Eqs. (7) and (8) to E−, we get

E− ≤∑
x′:LO(x′)<iPmut(x, x′) · (2b log n/n2) · (1+c/n)i ≤(1+c/n)i (2b log n/n2).

By subtracting E− from E+, we get

E[[V (ξt) − V (ξt+1) | ξt = x]] ≥ (1 + c/n)i (
c/6n2 − 2b log n/n2

) ≥ 1/6n2,

where the last inequality is by c = 12b log n + 1. Note that V (x) ≤ (1 + c
n)n ≤

ec = en12b. By Theorem 1, we have E[[τ | ξ0]] ≤ 6n2 · en12b = O
(
n12b+2

)
, thus

the expected running time is polynomial.
�
Next, we use the negative drift with self-loops theorem (i.e., Theorem 2) to

prove a super-polynomial lower bound for p = ω(log n/n) ∧ pq = ω(log n/n2).

174 C. Bian et al.

Theorem 6. For the (1+1)-EA on LeadingOnes under bit-wise noise (p, q), the
expected running time is super-polynomial if p = ω(log n/n) ∧ pq = ω(log n/n2).

Proof. We use Theorem 2 to prove it. Let Xt = |x|0 be the number of 0-bits of
the solution x after t iterations of the (1+1)-EA. Let c by any positive constant.
We consider the interval [0, c log n], i.e., a = 0 and b = c log n in Theorem 2.

Then, we analyze E[[Xt − Xt+1 | Xt = i]] for 1 ≤ i < c log n. As in the proof
of Theorem 5, we also divide the drift into positive E+ and negative E−:

E[[Xt − Xt+1 | Xt = i]] = E+ − E−,

where
E+ =

∑
x′:|x′|0<iPmut(x, x′) · Pacc(x, x′) · (i − |x′|0),

E− =
∑

x′:|x′|0>iPmut(x, x′) · Pacc(x, x′) · (|x′|0 − i).

Note that we still use Pmut(x, x′) and Pacc(x, x′) to denote the probability that
the offspring solution x′ is generated and accepted, respectively.

To analyze E+, we use a trivial upper bound 1 for Pacc(x, x′). Then, we have

E+ ≤ ∑
x′:|x′|0<iPmut(x, x′)(i − |x′|0) ≤ i/n,

where the second inequality is directly from the proof of Theorem 4.2 in [13].
For the negative drift E−, we need to consider the increase of the number of 0-

bits. We analyze the n−i cases where only one 1-bit is flipped (i.e., |x′|0 = i+1),
which happens with probability 1

n (1 − 1
n)n−1. Assume that LO(x) = k ≤ n − i.

To analyze Pacc(x, x′) = P(fn(x′) ≥ fn(x)), we consider two cases.
(1) The j-th (where 1 ≤ j ≤ k) leading 1-bit is flipped. To make fn(x′) ≥ fn(x),
we consider the j cases where fn(x) = l and fn(x′) ≥ l for 0 ≤ l ≤ j − 1. Note
that P(fn(x) = l) = p(1 − q)lq and P(fn(x′) ≥ l) = 1 − p + p(1 − q)l. Thus,

Pacc(x, x′) ≥ ∑j−1
l=0 p(1 − q)lq · (

1 − p + p(1 − q)l
)
.

If p = o(1), 1−p+p(1−q)l ≥Ω(1); otherwise, 1−p+p(1−q)l ≥Ω(1) · (1−q)l. Thus,

Pacc(x, x′) ≥ Ω(1) · pq
∑j−1

l=0 (1 − q)2l ≥ Ω(1) · p · (
1 − (1 − q)2j

)
.

(2) One of the (n− i−k) non-leading 1-bits is flipped, i.e., LO(x′) = LO(x) = k.
To make fn(x′) ≥ fn(x), we consider the k + 1 cases where fn(x) = l and
fn(x′) ≥ l for 0 ≤ l ≤ k. Thus, we have

Pacc(x, x′) ≥∑k−1
l=0 p(1 − q)lq · (

1 − p + p(1 − q)l
)

+
(
1 − p + p(1 − q)k+1

) · (
1 − p + p(1 − q)k

)
.

If p = o(1), obviously Pacc(x, x′) = Ω(1). If p = Ω(1), we can derive that
Pacc(x, x′)≥Ω(1) · (

1−(1−q)2k
)
+

(
Ω(1)(1−q)k+1

)2, and then further consider

Towards a Running Time Analysis of the (1+1)-EA 175

two cases for q. If q=Ω(1), Pacc(x, x′)≥Ω(1) · (1−(1−q)2k)≥Ω(1) · (1−(1−q))=
Ω(1). If q=o(1), Pacc(x, x′)≥Ω(1)(1−(1−q)2k)+Ω(1)(1−q)2k =Ω(1). Thus,

Pacc(x, x′) = Ω(1).

Combining cases (1) and (2), we get

E− ≥ (1/n) (1−1/n)n−1 ·
(
Ω(1) · p

∑k
j=1(1−(1−q)2j) + (n − i − k) · Ω(1)

)
.

If (1 − q)2j < 1/2, 1 − (1 − q)2j > 1/2; otherwise, 1 − (1 − q)2j = (1 − q)2j((1 +
q

1−q)2j − 1) ≥ (1 − q)2j 2qj
1−q ≥ (1 − q)2j · 2qj ≥ qj . Thus,

E− ≥ Ω(1/n) ·
(
p

∑k
j=1 min{1/2, qj} + n − i − k

)
.

By subtracting E− from E+, we get

E[[Xt−Xt+1 | Xt = i]]≤ i/n−Ω(1/n) ·
(
p
∑k

j=1 min{1/2, qj}+n−i−k
)

.

To investigate condition (1) of Theorem 2, we need to derive an upper bound
on P(Xt+1 �= i | Xt = i). To make Xt+1 �= i, it is necessary that at least one bit
of x is flipped and x′ is accepted. We consider two cases: (1) at least one of the k
leading 1-bits of x is flipped; (2) the k leading 1-bits of x are not flipped and at
least one of the last n−k bits is flipped. For case (1), Pacc(x, x′) ≤ min{2npq, 2p}
by Eq. (8). For case (2),

∑
x′ Pmut(x, x′) ≤ n−k

n . Thus, we get

P(Xt+1 �= i | Xt = i) ≤ min{2npq, 2p} + (n − k)/n.

Now we compare E[[Xt − Xt+1 | Xt = i]] with P(Xt+1 �= i | Xt = i).
(1) k < n/2. We have

E[[Xt − Xt+1 | Xt = i]] ≤ i/n − Ω(1/n) · (n − i − k)
= −Ω(1) ≤ −Ω(1) · P(Xt+1 �= i | Xt = i),

where the equality is by i < c log n and k < n/2.
(2) k ≥ n/2. We first investigate

∑k
j=1 min{1/2, qj}. If q = o(1/n), we have

∑k
j=1 min{1/2, qj} ≥ qk2/2 = Ω(qn2). If q = Ω(1/n),

∑k
j=1 min{1/2, qj} =

Ω(n). Thus, we have
∑k

j=1 min{1/2, qj} ≥ Ω(1) · min{qn2, n}. Then we get

E[[Xt − Xt+1 | Xt = i]] ≤ i/n − Ω(1/n) · (
p · min{qn2, n} + n − i − k

)

= i/n − Ω(1) · (min{pqn, p} − i/n + (n − k)/n) .

Note that pq = ω(log n/n2) and p = ω(log n/n), thus min{pqn, p} = ω(log n/n).
Furthermore, i < c log n. Thus, we get

E[[Xt − Xt+1 | Xt = i]] ≤ −Ω(1) · (min{pqn, p} + (n − k)/n)
≤ −Ω(1) · P(Xt+1 �= i | Xt = i).

176 C. Bian et al.

Combining the above two cases implies that condition (1) of Theorem2 holds.
To investigate condition (2) of Theorem 2, we need to derive a lower bound

on P(Xt+1 �= i | Xt = i). We consider the n cases where only one bit is flipped.
We can directly follow the analysis for E− to derive that

P(Xt+1 �= i | Xt = i) ≥ Ω(1/n) · (
p
∑k

j=1 min{1/2, qj} + n − k
)
.

The only difference is that we also consider flipping only one 0-bit, whose analysis
is the same as that for flipping only one non-leading 1-bit. To make |Xt+1−Xt|≥j,
it is necessary that at least j bits of x are flipped and x′ is accepted. We consider
two cases: (1) at least one of the k leading 1-bits of x is flipped; (2) the k leading 1-
bits are not flipped. For case (1),

∑
x′ Pmut(x, x′)≤ k

n

(
n−1
j−1

)
1

nj−1 and Pacc(x, x′)≤
min{2npq, 2p} by Eq. (8). For case (2),

∑
x′ Pmut(x, x′)≤(1− 1

n)k
(
n−k

j

)
1

nj . Thus,

P(|Xt+1 − Xt| ≥ j | Xt = i) ≤ k

n

(
n−1
j−1

)
min{2npq, 2p}

nj−1
+

(

1− 1
n

)k (
n−k

j

)
1
nj

≤ (k/n) · min{2npq, 2p} · (4/2j) + ((n − k)/n) · (2/2j).

By following the way of comparing E[[Xt − Xt+1 | Xt = i]] with P(Xt+1 �= i |
Xt = i) in the above analysis, we can derive that

P(|Xt+1 − Xt| ≥ j | Xt = i) ≤ (O(1)/2j) · P(Xt+1 �= i | Xt = i),

i.e., condition (2) of Theorem 2 holds with δ = 1 and r(l) = O(1).
The parameter l in Theorem 2 is b−a= c log n. Thus, the expected running

time is 2Ω(c log n) (where c > 0 can be any constant), i.e., super-polynomial.
�

5 Conclusion

In this paper, we analyze the running time of the (1+1)-EA solving OneMax
and LeadingOnes under bit-wise noise (p, q). We derive the ranges of p, q for the
running time being polynomial and super-polynomial, respectively. Our results
complement previous analyses, which fix p = 1 or q = 1/n. Note that our analysis
on LeadingOnes does not cover all the ranges of p, q. That is, the running time
is not known for p = ω(log n/n2) ∩ O(log n/n) ∧ pq = ω(log n/n3) and p =
ω(log n/n) ∧ pq = ω(log n/n3) ∩ O(log n/n2). This question has been partially
addressed in the recent work [16]. We leave the full analysis as our future work.

References

1. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and
Recent Developments. World Scientific, Singapore (2011)

2. Dang, D.C., Lehre, P.K.: Efficient optimisation of noisy fitness functions with
population-based evolutionary algorithms. In: FOGA 2015, Aberystwyth, UK, pp.
62–68 (2015)

Towards a Running Time Analysis of the (1+1)-EA 177

3. Droste, S.: Analysis of the (1+1) EA for a noisy OneMax. In: Deb, K. (ed.)
GECCO 2004. LNCS, vol. 3102, pp. 1088–1099. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24854-5 107

4. Friedrich, T., Kötzing, T., Krejca, M., Sutton, A.: Robustness of ant colony opti-
mization to noise. Evol. Comput. 24(2), 237–254 (2016)

5. Friedrich, T., Kötzing, T., Krejca, M., Sutton, A.: The compact genetic algorithm is
efficient under extreme gaussian noise. IEEE Trans. Evol. Comput. 21(3), 477–490
(2017)

6. Gießen, C., Kötzing, T.: Robustness of populations in stochastic environments.
Algorithmica 75(3), 462–489 (2016)

7. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Artif. Intell. 127(1), 57–85 (2001)

8. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey.
IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)

9. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization:
Algorithms and Their Computational Complexity. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16544-3

10. Prügel-Bennett, A., Rowe, J., Shapiro, J.: Run-time analysis of population-based
evolutionary algorithm in noisy environments. In: FOGA 2015, Aberystwyth, UK,
pp. 69–75 (2015)

11. Qian, C., Yu, Y., Tang, K., Jin, Y., Yao, X., Zhou, Z.H.: On the effectiveness
of sampling for evolutionary optimization in noisy environments. Evol. Comput.
26(2), 237–267 (2018)

12. Qian, C., Yu, Y., Zhou, Z.H.: Analyzing evolutionary optimization in noisy envi-
ronments. Evol. Comput. 26(1), 1–41 (2018)

13. Qian, C., Bian, C., Jiang, W., Tang, K.: Running time analysis of the (1+1)-
EA for OneMax and LeadingOnes under bit-wise noise. In: GECCO 2017, Berlin,
Germany, pp. 1399–1406 (2017)

14. Qian, C., Bian, C., Yu, Y., Tang, K., Yao, X.: Analysis of noisy evolutionary
optimization when sampling fails. In: GECCO 2018, Kyoto, Japan, pp. 1507–1514
(2018)

15. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1,λ)
evolutionary algorithm. Theor. Comput. Sci. 545, 20–38 (2014)

16. Sudholt, D.: On the robustness of evolutionary algorithms to noise: Refined results
and an example where noise helps. In: GECCO 2018, Kyoto, Japan, pp. 1523–1530
(2018)

https://doi.org/10.1007/978-3-540-24854-5_107
https://doi.org/10.1007/978-3-642-16544-3

Fitness Landscape Modeling and
Analysis

A Surrogate Model Based on Walsh
Decomposition for Pseudo-Boolean

Functions

Sébastien Verel1(B), Bilel Derbel2,3, Arnaud Liefooghe2,3, Hernán Aguirre4,
and Kiyoshi Tanaka4

1 Univ. Littoral Côte d’Opale, LISIC, 62100 Calais, France
verel@univ-littoral.fr

2 Univ. Lille, CNRS, Centrale Lille, UMR 9189 – CRIStAL, 59000 Lille, France
3 Inria Lille – Nord Europe, 59650 Villeneuve d’Ascq, France
4 Faculty of Engineering, Shinshu University, Nagano, Japan

Abstract. Extensive efforts so far have been devoted to the design of
effective surrogate models aiming at reducing the computational cost
for solving expensive black-box continuous optimization problems. There
are, however, relatively few investigations on the development of method-
ologies for combinatorial domains. In this work, we rely on the mathe-
matical foundations of discrete Walsh functions in order to derive a sur-
rogate model for pseudo-boolean optimization functions. Specifically, we
model such functions by means of Walsh expansion. By conducting a
comprehensive set of experiments on nk-landscapes, we provide empir-
ical evidence on the accuracy of the proposed model. In particular, we
show that a Walsh-based surrogate model can outperform the recently-
proposed discrete model based on Kriging.

1 Introduction

Context. Black-box optimization refers to the situation where no specific prop-
erties nor hypothesis are known about the problem to be solved. Nothing but
the objective value associated to a given (candidate) solution can be used by
the optimization process. For example, black-box optimization problems can be
found in engineering and multi-disciplinary design fields, and more broadly when
the problem formulation involves some numerical simulations [1]. Hence, solving
a black-box optimization problem consists in exploring a number of candidate
solutions, based solely on the evaluation of their fitness value. When the cost
of computing fitness values is time consuming, traditional black-box optimiza-
tion techniques, such as evolutionary algorithms and metaheuristics can have a
prohibitive computational cost. In this context, surrogate-assisted approaches,
such as Kriging and the Efficient Global Optimization (EGO) approach [11], are
methods of choice to ‘predict’ the quality of solutions without systematically
computing their objective values.

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 181–193, 2018.
https://doi.org/10.1007/978-3-319-99259-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_15&domain=pdf

182 S. Verel et al.

Motivation. Surrogates models, also called meta-models, have well-established
foundations at the crossroad of optimization and machine learning [10]. Roughly
speaking, a surrogate model can be viewed as an estimate of the function being
optimized based solely of the points (learning data) sampled by the optimization
process so far. This (cheap) estimate is then used to sample and evaluate new
points that are hopefully beneficial for the optimization process, while signifi-
cantly reducing the overall computational cost. Except in few recent works [1,13],
most existing investigations from the literature on surrogates are with respect
to the continuous domain. When turning to the combinatorial setting, that is
when the decision variables are discrete, we can safely claim that the adaptation
of existing techniques is relatively scarce [1], and the development of dedicated
surrogate models is in its very infancy beginning. It is worth noticing that expen-
sive combinatorial optimization problems are a natural outcome for real-world
applications from complex scheduling or neural networks, among others [10].

Contribution. In this paper, we are interested in pushing a step toward the estab-
lishment of novel surrogate models for combinatorial optimization. We focus on
the class of pseudo-boolean functions for which the solution space is the set of
binary strings. Our work is based on the application of Walsh functions [16],
which form a complete orthogonal set of functions, and share common mathe-
matical properties with the trigonometric functions used in Fourier analysis. As
such, we propose to represent a pseudo-boolean function as a finite decomposi-
tion of Walsh functions, which enables us to derive a new surrogate model for this
class of optimization problems. Having the model established, we approximate its
coefficients (hyper-parameters) using different optimization and machine learn-
ing techniques for linear regression, namely conjugate gradient (CG) and Least-
Angle Regression (LARS). Using a comprehensive set of nk-landscapes [12], we
first evaluate the accuracy of the model. We then conduct a comparative study
with the recently-proposed Kriging surrogate model for combinatorial problems.
Our experimental results allows us to show that the designed Walsh-based surro-
gate model is able to provide a highly accurate approximation of the considered
instances, outperforming Kriging in a number of scenarios.

Outline. In Sect. 2, we provide an overview of the mathematical foundation
of Walsh functions and related works. In Sect. 3, we describe the proposed
Walsh-based model. In Sect. 4, we evaluate the accuracy of the model using
nk-landscapes. In Sect. 5, we conclude the paper and discuss further research.

2 Walsh Functions: Background and Related Work

2.1 Walsh Functions Basics and Evolutionary Computation

Continuous Walsh Decomposition. Walsh functions [16] constitute an enumer-
able set of functions ϕk : [0, 1] → {−1, 1} which composes a normal and orthog-
onal basis of the Hilbert space L2([0, 1]). Like other basis of functions such

A Surrogate Model Based on Walsh Decomposition 183

as trigonometric functions of the Fourrier basis, and although the Walsh func-
tions are not continuous since their values is either −1 or 1, they can be used
to decompose any function of the Hilbert space; see [16] for the mathematical
conditions. More formally, for any integer k ∈ IN with the binary representa-
tion k =

∑∞
j=0 kj2j and kj ∈ {0, 1}, the Walsh function ϕk is defined for any

(real-valued) x ∈ [0, 1] with a natural binary representation x =
∑∞

j=1 xj2−j

and xj ∈ {0, 1}, by ϕk(x) = (−1)
∑∞

j=0 kjxj+1 . Over the interval [0, 1], the
graphical representation of the Walsh functions can be viewed in a similar way
than the cosine functions. Indeed, for all x ∈ [0, 1], ϕ0(x) = 1 is the con-
stant function, the values taken by ϕ1 change from 1 to −1 at x = 0.5, and
so on. The orthogonality of Walsh functions means that for any positive inte-
gers j and k ∈ IN,

∫ 1

0
ϕj(x)ϕk(x)dx = δjk where δjk is the Kronecker delta.

Thus, for any function f from L2([0, 1]), and for any x ∈ [0, 1], we have that
f(x) =

∑∞
k=0 wkϕk(x), where wk ∈ IR are the coefficients given by the projec-

tion of f on ϕk: wk =
∫ 1

0
f(t)ϕk(t)dt. The order of a Walsh function ϕk, denoted

by o(ϕk), is defined by the number of binary digit equals to 1 in the binary rep-
resentation of k. For example, the function of order 0 is ϕ0, the functions of
order 1 are ϕ2p for all integers p � 0, the functions of order 2 are ϕ2p+2p′ for
all pairs of integers p �= p′ � 0, and so on. While the previous discussion is with
respect to a continuous function, similar considerations can be discussed for the
discrete case of pseudo-boolean functions.

Discrete Walsh Decomposition and EAs. Tightly related to evolutionary algo-
rithms (EA), discrete Walsh functions were considered by Bethke [2], a PhD
student of J. Holland in the late seventies. This was further extended by Gold-
berg [8], Forrest and Mitchell [6] to offer a relevant theoretical framework on the
properties of fitness functions related to the schemata theorem, and on deceptive
functions in EAs. In this context, the Walsh functions are defined for any pseudo-
boolean function as follows. For any integer k ∈ [0, 2n − 1] with the binary rep-
resentation k =

∑∞
j=0 kj2j and kj ∈ {0, 1}, the Walsh function ϕk : {0, 1}n →

{−1, 1} is defined for any binary string x = (x1, . . . , xj , . . . , xn) ∈ {0, 1}n as:
ϕk(x) = (−1)

∑n−1
j=0 kjxj . The so-defined (finite) set of discrete functions is a nor-

mal orthogonal basis for the space of pseudo-boolean functions. For any integer
j, and k ∈ [0, 2n − 1], 1

2n

∑
x∈{0,1}n ϕj(x)ϕk(x) = δjk

1. Therefore, any pseudo-
boolean function f : {0, 1}n → R can be written as a unique finite weighted sum
of Walsh functions.

∀x ∈ {0, 1}n, f(x) =
2n−1∑

k=0

wk.ϕk(x) s.t. wk =
1
2n

∑

x∈{0,1}n

f(x).ϕk(x) (1)

Schemata Theory. The average of fitness values over a schemata of order p can
be computed with a subset of Walsh functions of lower orders [8]. In fact, let us

1 Indeed, the matrix (ϕk(xj))jk of dimension 2n × 2n is a Hadamard matrix.

184 S. Verel et al.

recall that a schemata is a hypercube of the binary space. Usually, a schemata
is written with the alphabet {∗, 0, 1} where 0, and 1 give the fixed position bits
of the hyperplane. The order of the schemata is the number of 0/1 in the string.
For instance, the schemata h = ∗01∗∗∗0 is a schemata of length 7, and of order
3. The average fitness of a schemata h is then f(h) =

∑
k⊂h wk.ϕk(x) where

k ⊂ h means that the 1 in the binary representation of k corresponds to 0 or 1
of the schemata. Hence, it is possible to design deceptive functions to challenge
EAs [8].

Walsh Decomposition in Combinatorial Optimization. Besides their initial the-
oretical interest, there was recently a renewed interest to Walsh decomposition,
which remains the subject of active research in the optimization community [9].
In particular, in the so-called grey-box optimization setting [3], standard prob-
lems such as nk-landscapes, or max-SAT are regarded as a decomposition of
Walsh functions. Within such a perspective, the fitness value, the fitness dis-
tribution, or the best solution at a given Hamming distance is computationally
fast to compute, hence enabling the design of effective and efficient optimiza-
tion techniques. Additionally, the Walsh decomposition can be used to detect
accurate crossover points, and to identify independent sub-space problems that
lead to the solving of very large combinatorial optimization problems with an
impressively reduced cost [4].

2.2 Surrogate Models for Combinatorial Optimization

Surrogate Models. A standard surrogate-assisted optimization framework con-
sists in an iterative process, where at each iteration: (i) build a model on the
basis of the solutions (learning data) evaluated so far at previous iterations, (ii)
compute best (believed, predicted) solution(s) on the basis of the so-constructed
(cheap) model, (iii) evaluate the so-chosen solution(s) using the real (expensive)
black-box function f . Each of these three steps comes with different challenges
and different techniques and tools to address and implement. In our work, we are
interested in designing a surrogate model dedicated to pseudo-boolean functions.
We thereby focus very specifically on the very first step of the aforementioned
framework, that is, the definition and the building of a highly accurate model
that can eventually be used as a substitute of the real function. It is worth notic-
ing that this is of crucial importance towards the design of effective and efficient
surrogate-assisted optimization techniques.

Discrete Surrogates. As summarized in [17], when looking at the previous works
on surrogate models for discrete problems, a number of approaches can be found
from basic to more specialized ones. In straightforward approaches, the discrete
nature of variables is simply ignored, and standard machine learning techniques
is applied on the vector data. In most sophisticated approaches, either the model
is inherently discrete or a distance ‘measure’ between discrete solutions is used
to leverage existing continuous models. The work presented in this paper falls in
this last category, encompassing a number of noticeable techniques [1]. To cite

A Surrogate Model Based on Walsh Decomposition 185

a few, in [13], it is shown how to leverage existing distance-based surrogates,
by considering more general (not necessarily continuous) metric spaces. This
idea is then illustrated using Radial Basis Function Networks (RBFN). Later
in [18,19], a seemingly similar principle is adopted in order to derive a Kriging
(Gaussian Process) like surrogate model. Kriging has the interesting feature of
providing a measure of uncertainty when determining predictions. This can be
used to calculate the Expected Improvement (EI) of a solution, which is then
used as the main criteria to balance exploitation and exploration when sam-
pling candidate solutions in the so-called Efficient Global Optimization (EGO)
approach [11]. Such an EGO approach [19] is shown to outperform Kriging and
RBFN [13] on a number of nk-landscapes [12] considered as difficult adversarial
pseudo-boolean benchmark functions. In our work, we also validate empirically
our model using nk-landscapes as a case study, while comparing to the Kriging
approach considered as a baseline competitor. Notice that using the proposed
Walsh model to sample promising points (as performed in EGO) is left for future
work since our main goal is to investigate the accuracy of the Walsh model in
correctly rendering the original expensive function.

3 Surrogate Model Based on Walsh Functions

The Walsh-Based Surrogate Model. Given a pseudo-boolean function f :
{0, 1}n → R, we have a closed form decomposition of f using the set of Walsh
functions ϕk, as given in Eq. (1). It is worth noticing that the functions ϕk are
problem independent, and hence uniquely defined irrespective to f . The values
of the coefficients wk depend however on function f , as given in Eq. (1). They
are here assumed to be unknown and black-box. Moreover, although the num-
ber of coefficients is in general exponential in n, there might exist a significantly
large number of zero coefficients, namely, 2n. For instance, for nk-landscapes,
the number of non-zero coefficients is bounded by n×2k+1 [9] and the maximum
order is k + 1. Hence, our idea is to consider an approximation of f using solely
the Walsh functions of a constant order d � n and using an estimate ŵk of
the (unknown) coefficient wk. More formally, we shall assume that the pseudo-
boolean function f can be approximated by the following model constituting the
core of our proposed surrogate model:

∀x ∈ {0, 1}n, f̂(x) =
∑

k : o(ϕk)�d

ŵk.ϕk(x) (2)

Obviously, the previous equation is similar to standard (finite) Taylor series for
continuous function expansion. The larger the order d, the better the approxima-
tion; and the better the quality of the estimate coefficients ŵk, the more accurate
the expansion. In the following, we shall focus on how to provide a good estimate
of the Walsh coefficients, assuming that d is fixed to some constant. For clarity,
the choice of the setting of the order d is discussed later on.

186 S. Verel et al.

Model Approximation. Given the black-box nature of the pseudo-boolean func-
tion f , one idea would be to consider a sample of solutions for which we know
the true f values. Let us assume given such a set, denoted S. For now, we
do not make any further assumption on S. Then, the question is: find an esti-
mate ŵk of the coefficients wk using the data set {(x, f(x)) | x ∈ S}. One
answer to this question could be to simply use the mean as estimator by set-
ting ŵk = 1

|S|
∑

x∈S f(x)ϕk(x). By a routine verification, we can show that the
bias of the estimate is ŵk − wk =

∑
j �=k wj

1
|S|

∑
x∈S ϕj(x)ϕk(x), which is to be

interpreted as the degree of ‘non-orthogonality’ of the Walsh functions on S.
While being informative, such an estimate might be misleading, since it might
be challenging to design a sample data set S verifying such properties w.r.t.
Walsh functions. In the following, we discuss two techniques to estimate the
Walsh coefficients required by the proposed surrogate.

Mean Squared Error Estimation Using Conjugate Gradient (CG). The Walsh
decomposition of a pseudo-boolean function is a linear model where the predic-
tors are the Walsh functions’ values. As a consequence, classical methods for
non-sparse and sparse approximation can be used to estimate the coefficients
of the regression. Our first technique is based on a standard approach which
consists in minimizing the mean squared error of the surrogate (linear) model
with respect to data set S. More formally,

mse(ŵ) =
∑

x∈S

⎛

⎝
∑

k : o(ϕk)�d

ŵk.ϕk(x) − f(x)

⎞

⎠

2

(3)

We then find the coefficients ŵ∗ minimizing Eq. (3), that is: ŵ∗ =
argminwmse(w). To solve this equation, we propose to use a non-sparse method,
namely the conjugate gradient (CG) approach [14].

Least-Angle Regression (LARS) Coefficients Estimate. When the number of pre-
dictors in a linear regression is large, sparse techniques can be used to minimize
the number of non-zero coefficients. Among others, lasso is one classical technique
for sparse approximation [15]. In this work, we propose to use the least-angle
regression (LARS) algorithm [5]. The LARS algorithm is in the same family of
regularization/sparse methods and follows a forward stepwise selection regres-
sion mechanism. It has the major advantage of being computationally fast and
effective when fitting high-dimensional data of relatively small size. Hence, it is
a method of choice in our context since the number of Walsh functions of order d
might be greater than the number of samples in the training data set S.

A Surrogate Model Based on Walsh Decomposition 187

Table 1. Number of Walsh coeffi-
cients according to problem dimen-
sion n (columns), and order d (rows).

10 15 20 25

0 1 1 1 1

1 11 16 21 26

2 46 121 211 326

3 176 576 1351 2626

Order Setting. Finally, we need to specify
a value for the maximum order d to be set
in the estimate. Intuitively, the larger the
order, the larger the number of Walsh coef-
ficients to be estimated, and hence the bet-
ter the approximation. However, the larger
the number of coefficients, the more difficult
and time consuming their estimation using
the previously-described techniques. Let nd be the number of Walsh coefficients
of order d. Then, we have that: n0 = 1 and nd = nd−1 +

(
n
d

)
for d > 0. This

makes the choice of large d values problematic. Nonetheless, we argue that the
number of non-zero coefficients is typically much less than nd and a value of d of
at most 3, for which nd = O(n3), should be sufficient for an accurate approxima-
tion of difficult functions, as supported by our empirical results. Table 1 shows
the values of nd for different values of n and d.

4 Experimental Analysis

4.1 Experimental Setup and Methodology

Test Functions. As in previous studies [13,19], we consider nk-landscapes [12]
as benchmark pseudo-boolean functions. For every binary string x of size n,
f(x) is defined as the average value of the contributions associated with each
variable xi. For every i ∈ {1, . . . , n}, a component function fi : {0, 1}k+1 	→
[0, 1] assigns a real-valued contribution for every combination of xi and its
k epistatic interactions (xi1 , . . . , xik). In other words, the individual contri-
bution of a variable xi to f(x) depends on its value and on the values of
k < n other variables (xi1 , . . . , xik). The function f is hence defined as fol-
lows: f(x) = 1

n

∑n
i=1 fi(xi, xi1 , . . . , xik). The k epistatic interactions w.r.t. a

variable xi are set uniformly at random among the (n − 1) variables other
than xi [12]. The fi values are uniformly distributed in [0, 1]. It is important to
remark that by increasing the number of epistatic interactions k from 0 to (n−1),
problem instances can be gradually tuned from smooth to rugged, which make
nk-landscapes an abstract adversarial optimization benchmark that can even-
tually cover a wide range of (real-world) pseudo-boolean function classes, as
commented further in the following.

Experimental Setup. We consider a comprehensive set of nk-landscapes with
n ∈ {10, 15, 20, 25}, and k ∈ {0, 1, 2}. Notice that for k = 0, the function is linear
which makes it easy to optimize. For k = 1, the function is quadratic which, infor-
mally speaking, falls in the same class than the widely studied Unconstrained
Binary Quadratic Problem. For k = 2, every variable is in interaction with two
other ones which, informally speaking, recalls the max-3-SAT problem. For every
parameter combination (4 × 3 = 12), we generate 5 instances for which every
competing model/algorithm is run for 5 independent runs. The reported results
are over the 5 × 5 = 25 independent runs. All algorithms and experiments are
implemented in R using standard machine learning and optimization packages.

188 S. Verel et al.

Algorithm 1. Experimental procedure
Input: A test set Q

1 S0 ← ∅;
2 for t = 1, 2, . . . , Max Budget do
3 xt ← a solution generated uniformly at random;
4 St ← St−1 ∪ {(xt, f(xt))};

5 ̂ft ← build a surrogate model for f on the basis of (the training set) St;

6 εt ← a measure of the quality of the accuracy of ̂ft using the test set Q;

7 end

Validation Methodology. In our work, we focus on studying the accuracy of
the Walsh expansion surrogate in providing a high fidelity approximation. Con-
sequently, we follow the experimental procedure depicted in the template of
Algorithm 1. First, we generate a (test) set Q of N = 1000 solutions gener-
ated uniformly at random (i.e., each bit is set to 0 or 1 with equal probability)
which is used as input of our experimental procedure. For each instance, and for
every iteration t > 0 of Algorithm 1, we generate uniformly at random a new
solution xt and evaluate its true fitness value f(xt). Next, we build a surrogate
model f̂t using the (training) data set St = St−1 ∪ {xt}. We then record an
error measure (denoted εt) rendering the quality of the fit (f̂t, St) with respect
to the (test) data set Q. This shall allow us to study the ability of the surrogate
model to fit the real function as the size of the available sample data grows, that
is, as the available budget in terms of (expensive) function evaluations is given.
The maximum allowed budget is actually variable in the size of the considered
nk-landscape.

As a baseline, we use Kriging [7] as a state-of-the-art discrete surrogate
model, and the implementation provided in the R package CEGO2. The hyper-
parameters of the Kriging model are set following [19]. The R package lars6 is
used for the implementation of LARS with default hyper-parameters: lasso tech-
nique for the cross-validation, and a fraction set to s = 1. As an error measure,
we compute the mean absolute error (mae) and the mean squared error (mse)
of f̂ w.r.t Q. When the proposed Walsh model is experimented, we additionally
record the Walsh coefficients estimate (ŵk), and compute their R2 coefficient.

4.2 Training with CG Versus LARS

First, we consider the accuracy of the model when using the two fitting tech-
niques (CG and LARS) for estimating the Walsh coefficients (see Sect. 3). In
Fig. 1, we show the evolution of the mean absolute error as a function of the size
of the training set St, using nk-landscapes with n = 20 and k = 1. Notice that
similar results holds for the mean squared error and are omitted due to lack of
space.

2 Packages CEGO and LARS on CRAN: https://cran.r-project.org.

https://cran.r-project.org

A Surrogate Model Based on Walsh Decomposition 189

Fig. 1. Mean Absolute Error of fitness values using CG and Gradient techniques as a
function of the training set size for n = 20, and k = 1 (left). Scatter plot (right) of the
regression using LARS for n = 15, k = 1, and a random sample of size 60.

Figure 1 (left) shows that the Walsh model computed with LARS leads to a
significantly better fit than the CG based technique, while requiring a sample
of significantly lower size. Actually, the error of both methods converges to 0,
with LARS being significantly faster. This means that it requires much fewer
function evaluations to converge to a high fidelity Walsh approximate. In Fig. 1
(right), we show a scatter plot rendering the relative distribution of f̂(x) and
f(x) using the LARS for nk-landscapes with n = 15, and k = 1 trained on a
random sample set of size 60, and tested on the whole search space. The quality
of the regression visually approximates the original function for all fitness values.
Indeed, the residues can be bounded by a constant independent of the fitness
value: for any x ∈ {0, 1}n, |f̂(x) − f(x)| = |∑k(ŵk − wk)ϕk(x)|. Given that
|ϕk(x)| = 1, we obtain the upper bound |f̂(x) − f(x)| �

∑
k |ŵk − wk| which

interestingly does not depend on x.

4.3 Walsh Versus Kriging

In Fig. 2, we show results comparing the proposed Walsh model to Kriging.
Two main tightly related observations can be extracted. On the one hand, for
k = 0, both surrogates consistently provide similar accuracy. However, as the
test function is no more linear (k = 1 and k = 2), the difference is substantial
in favor of the proposed Walsh surrogate. From a fitness landscape analysis
perspective, higher values of k lead to more rugged (non-smooth) multi-modal
functions. In this case, and although Kriging has a better accuracy with very
few samples (very few function evaluations), the Walsh model is able to converge
much faster to a high quality fit. On the other hand, the difference becomes even
more substantial when scaling the dimension of the pseudo-boolean function. In
fact, for the highest values of k and n, it is clear that the performance of Kriging
drops very significantly, since it is not able anymore to provide a high accuracy
within a reasonable budget. This is to contrast with the Walsh model, which
converges to a zero absolute error within a few hundreds of function evaluations.
The high quality of the Walsh surrogate can be explained by the fact that it

190 S. Verel et al.

n = 10, k=0 n = 10, k=1 n = 10, k=2

n = 15, k=0 n = 15, k=1 n = 15, k=2

n = 20, k=0 n = 20, k=1 n = 20, k=2

n = 25, k=0 n = 25, k=1 n = 25, k=2

0.00

0.02

0.04

0.06

0.00

0.03

0.06

0.09

0.000

0.025

0.050

0.075

0.100

0.0e+00

5.0e−06

1.0e−05

1.5e−05

2.0e−05

0.00

0.02

0.04

0.00

0.02

0.04

0.06

0.000

0.005

0.010

0.015

0.020

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.02

0.04

0.06

0.00

0.01

0.02

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.02

0.04

0 100 200 300 0 100 200 300 0 100 200 300

100 200 300 100 200 300 100 200 300 400

100 200 300 100 200 300 100 200 300 400

100 200 300 0 100 200 300 400 500 0 200 400 600
function evaluations (sample size)

M
ea

n
ab

so
lu

te
 e

rro
r

Surrogate Model kriging walsh

Fig. 2. Mean Absolute Error of fitness values on test set (1000 solutions) as a function
of the size of the training set. n ∈ {10, 15, 20, 25} (rows), k ∈ {0, 1, 2} (columns), and
the order of the Walsh expansion is k + 1.

is a deterministic model (for noise-free function) which provides a quasi-exact
modeling of the pseudo-boolean function once the coefficient value estimates are
close enough to their true values. This claim can be supported by a more focused
analysis on the quality of the coefficients estimates, which is discussed in the next
section while commenting on the impact of the Walsh expansion order.

4.4 Impact of the Walsh Expansion Order

In the previous results, the order of the Walsh decomposition was fixed to
d = k + 1 where k is the number of the epistatic interaction in the consid-
ered nk-landscape. However, one might ask what happens if the order is fixed
to a different value. This is what is depicted in Fig. 3, showing the coefficient
of determination (R2) to render the relative quality of the approximated coef-
ficients. Notice that the exact values of the Walsh coefficients at any order are
computed by the sum of Walsh decomposition of the component functions [9].

First, we can see that the R2 converges relatively quickly to 1 when the order
of the expansion is k+1. Hence, one can reasonably suggest that for other highly

A Surrogate Model Based on Walsh Decomposition 191

n=10, k=0 n=10, k=1 n=10, k=2

n=15, k=0 n=15, k=1 n=15, k=2

n=20, k=0 n=20, k=1 n=20, k=2

n=25, k=0 n=25, k=1 n=25, k=2

0.98

0.99

1.00

0.92

0.96

1.00

0.80

0.85

0.90

0.95

1.00

0.985

0.990

0.995

1.000

0.980

0.985

0.990

0.995

1.000

0.80

0.85

0.90

0.95

1.00

0.9900

0.9925

0.9950

0.9975

1.0000

0.925

0.950

0.975

1.000

0.6

0.7

0.8

0.9

1.0

0.992

0.994

0.996

0.998

1.000

0.95

0.96

0.97

0.98

0.99

1.00

0.900

0.925

0.950

0.975

1.000

0 100 200 300 0 100 200 300 0 100 200 300

100 200 300 100 200 300 100 200 300 400

100 200 300 100 200 300 100 200 300 400

100 200 300 0 100 200 300 400 500 0 200 400 600
function evaluations (sample size)

M
ea

n
sq

ua
re

d
er

ro
r (

R
2)

 o
f w

al
sh

 c
oe

ffi
ci

en
t e

st
im

at
e

Walsh order 1 2 3

Fig. 3. R2 of Walsh coefficients as a function of the size of the training set. n ∈
{10, 15, 20, 25} (rows), k ∈ {0, 1, 2} (columns), and the order of the expansion (color).

multi-modal functions, it might hold that only a restricted number of (low)
order coefficients have non-zero values. In this case, only a restricted number of
coefficient might impact the accuracy of the Walsh surrogate model, which would
make it easier to build. Moreover, Fig. 3 shows that the coefficients of lower orders
can still be accurately estimated although the value of the order chosen for the
fit does not match with the maximum order of non-zero coefficients in the exact
Walsh expansion. This suggests that for other highly multi-modal functions, it
might hold that a small value of the order considered when fitting the Walsh
surrogate is still sufficient to provide a high fidelity rendering of the original
function. This property is of special interest since the lower the considered order,
the lower the number of coefficient to be estimated, and the lower the cost of
building the Walsh model. The cost of computing the surrogate model can in
fact constitute a critical issue, especially if it comes to dominate the cost of the
(expensive) function evaluation. In this respect, our LARS implementation of
the Walsh surrogate was found to have a better CPU runtime compared against
the Kriging implementation, by several orders of magnitude.

192 S. Verel et al.

5 Conclusions

In this paper, we introduced a framework allowing to apply the Walsh func-
tions basis in order to construct a novel discrete surrogate model for expen-
sive pseudo-boolean functions, which is shown to be highly accurate on a set
of nk-landscapes. Unlike previous distance/similarity based discrete surrogates,
the proposed model is based on a deterministic pseudo-exact approximation.
As such, it has some advantages and some shortcomings that, hopefully, will
provide new scientific challenges. Besides, embedding the Walsh-based model
within a conventional surrogate-assisted optimization framework would provide
a highly effective approach to expensive (real-world) pseudo-boolean problems.
In fact, not only building the Walsh surrogate is extremely fast compared against
Kriging, but its solving to optimality using the recently-proposed grey-box opti-
mization techniques [4] is fully plausible even for large-scale problems. This can
for instance be a relevant alternative to the use of EGO-like selection criteria
at a reduced cost. Additionally, generalizing the model to other non-necessarily
pseudo-boolean functions, like permutation problems, would be a major advance.
Finally, we believe that accommodating the deterministic nature of the model,
for instance by taking into account the error in the coefficients approximation
based on a probabilistic modeling might increase its potential in tackling a wide
range of large optimization problems.

Acknowledgments. This research was partially conducted in the scope of the MODŌ
International Associated Laboratory, and was partially supported by the French
National Research Agency (BigMO project, ANR-16-CE23-0013-01).

References

1. Bartz-Beielstein, T., Zaefferer, M.: Model-based methods for continuous and dis-
crete global optimization. Appl. Soft Comput. 55, 154–167 (2017)

2. Bethke, A.D.: Genetic algorithms as function optimizers. Ph.D. thesis, University
of Michigan (1980)

3. Chicano, F., Whitley, D., Alba, E.: Exact computation of the expectation surfaces
for uniform crossover along with bit-flip mutation. Theor. Comput. Sci. 545, 76–93
(2014)

4. Chicano, F., Whitley, D., Ochoa, G., Tinós, R.: Optimizing one million variable
NK landscapes by hybridizing deterministic recombination and local search. In:
GECCO, pp. 753–760 (2017)

5. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann.
Stat. 32(2), 407–499 (2004)

6. Forrest, S., Mitchell, M.: What makes a problem hard for a genetic algorithm?
Some anomalous results and their explanation. Mach. Learn. 13(2–3), 285–319
(1993)

7. Forrester, A., Keane, A.: Engineering Design via Surrogate Modelling: A Practical
Guide. Wiley, Hoboken (2008)

8. Goldberg, D.E.: Genetic algorithms and walsh functions: Part I, a gentle introduc-
tion. Complex Syst. 3(2), 129–152 (1989)

A Surrogate Model Based on Walsh Decomposition 193

9. Heckendorn, R.B.: Embedded landscapes. Evol. Comput. 10(4), 345–369 (2002)
10. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future

challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)
11. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive

black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)
12. Kauffman, S.A.: The Origins of Order. Oxford University Press, Oxford (1993)
13. Moraglio, A., Kattan, A.: Geometric generalisation of surrogate model based opti-

misation to combinatorial spaces. In: Merz, P., Hao, J.-K. (eds.) EvoCOP 2011.
LNCS, vol. 6622, pp. 142–154. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20364-0 13

14. Shewchuk, J.R., et al.: An introduction to the conjugate gradient method without
the agonizing pain (1994)

15. Tibshirani, R., Wainwright, M., Hastie, T.: Statistical Learning with Sparsity: The
Lasso and Generalizations. Chapman and Hall/CRC, Boca Raton (2015)

16. Walsh, J.L.: A closed set of normal orthogonal functions. Am. J. Math. 45(1), 5–24
(1923)

17. Zaefferer, M., Bartz-Beielstein, T.: Tabular survey: surrogate models in combina-
torial optimization - version 5. Technical report, May 2017

18. Zaefferer, M., Stork, J., Bartz-Beielstein, T.: Distance measures for permutations
in combinatorial efficient global optimization. In: Bartz-Beielstein, T., Branke, J.,
Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 373–383. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10762-2 37

19. Zaefferer, M., Stork, J., Friese, M., Fischbach, A., Naujoks, B., Bartz-Beielstein,
T.: Efficient global optimization for combinatorial problems. In: GECCO (2014)

https://doi.org/10.1007/978-3-642-20364-0_13
https://doi.org/10.1007/978-3-642-20364-0_13
https://doi.org/10.1007/978-3-319-10762-2_37

Bridging Elementary Landscapes and
a Geometric Theory of Evolutionary

Algorithms: First Steps

Marcos Diez Garćıa(B) and Alberto Moraglio

Department of Computer Science, University of Exeter, Exeter EX4 4QF, UK
{md518,a.moraglio}@exeter.ac.uk

Abstract. Based on a geometric theory of evolutionary algorithms, it
was shown that all evolutionary algorithms equipped with a geometric
crossover and no mutation operator do the same kind of convex search
across representations, and that they are well-matched with generalised
forms of concave fitness landscapes for which they provably find the opti-
mum in polynomial time [13]. Analysing the landscape structure is essen-
tial to understand the relationship between problems and evolutionary
algorithms. This paper continues such investigations by considering the
following challenge: develop an analytical method to recognise that the
fitness landscape for a given problem provably belongs to a class of con-
cave fitness landscapes. Elementary landscapes theory provides analytic
algebraic means to study the landscape structure [15]. This work begins
linking both theories to better understand how such method could be
devised using elementary landscapes. Examples on the well known One
Max, Leading Ones, Not-All-Equal Satisfiability and Weight Partition
problems illustrate the fundamental concepts supporting this approach.

Keywords: Discrete nodal domain · Elementary landscape
Geometric crossover · Global concavity · Laplacian · P-structure

1 Introduction

Context and Challenge. Since its early days, evolutionary computing (EC)
grew rapidly and diversely, but lacking a fundamental and coherent theory [9].
Despite recent progress, still much work needs to be done regarding unification
[2,14]. Fitness landscapes have been helpful in that task since they define the
search space structure by the fitness function of the problem and the search
operators (i.e. the neighbourhood structure), thus linking three key elements
of evolutionary algorithms (EAs): problems, algorithms and performance [14].
Particularly, EAs with geometric crossover but no mutation were proved to do an
abstract form of convex search [11]. Moreover, this class of EAs is well-matched
with globally concave (or convex, if minimising) landscapes, for which runtime
exponentially better than pure random search can provably be guaranteed [13].

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 194–206, 2018.
https://doi.org/10.1007/978-3-319-99259-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_16&domain=pdf
http://orcid.org/0000-0003-2802-1287

Bridging Elementary Landscapes and a Geometric Theory 195

This paper focuses on fitness landscapes, and extends [13], aiming at devel-
oping an analytical method to recognise if a given fitness landscape of some com-
binatorial problem provably matches a concave (or convex) class of landscapes
in general metric spaces. This method would provide insight to determine for
which classes of problems and EAs good performance can be guaranteed. We
propose elementary landscapes theory [15] as a fruitful choice to develop such
method, because the following reasons suggest that certain classes of elementary
landscapes relate to classes of (globally) concave landscapes and that elementary
landscapes theory is at our disposal to analyse recombination spaces:

– Certain elementary landscapes have all local optima clustered in a single
region of the search space. For instance, the landscape of the Linear Assign-
ment problem. Moreover, for Boolean spaces with Hamming distance, it was
shown that these elementary landscapes have a unique local optimum, thus
coinciding with unimodal landscapes [7,15,18].

– Many combinatorial problems (such as Graph Coloring, Symmetric Travel-
ling Salesman and Graph Bipartitioning) have elementary landscapes with
local optima grouped only in a few clusters in the search space, suggesting
an approximately globally concave (or convex) structure [8,18].

– Certain recombination spaces (e.g. induced by uniform recombination) are
homomorphic to mutation spaces, meaning that their associated landscapes
can be compared with each other and that elementary landscapes theory
extends to recombination spaces [5,18].

Scope and Contributions. This paper begins linking elementary landscapes
and the geometric framework to establish firm grounds to tackle the previous
challenge. The major contributions of this work are:

1. Show that from both theories it is possible to restate recombination in terms
of the other, that is enabling dual geometric and algebraic views, to justify
that is not futile to propose elementary landscapes as an analytic tool.

2. Examples on four well-known combinatorial problems to clarify the connec-
tion between the structure of elementary landscapes and the globally concave
classes of the geometric framework.

Although these contributions may appear only loosely connected, they com-
plement each other as we will see in the following sections, and their connection
will be further developed in future work.

Organisation. Section 2 introduces basic concepts about fitness landscapes.
Sections 3 and 4 present key ideas of the geometric framework and elementary
landscapes theory, respectively. Section 5 presents the main result of this study.
Section 6 illustrates with examples the utility of elementary landscapes to analyse
concave landscapes. Section 7 summarises this work and suggests future research.

196 M. D. Garćıa and A. Moraglio

2 Fitness Landscapes

In combinatorial problems, it is natural to formalise the search space with con-
figuration set X in terms of a move operator m : Xn → Xk mapping a vector of
n parents into a vector of k offspring [16]. Mutation, acting on a single parent,
is naturally connected with a neighbourhood relation that can be described as
a connected graph, which can be undirected or directed depending on whether
the neighbourhood is symmetric or not. Recombination, acting on pairs of indi-
viduals, is non-trivial with different possible formalisations (e.g. using hyper-
graphs [5]). Besides neighbourhoods, graphs can also be described naturally using
graphic distances (e.g. length of shortest paths), which directly relate to metric
spaces and more generally fitness landscapes [16].

Definition 1. A metric space M is defined as the pair (X, d), where X is a set
of configurations and d : X ×X → R is a metric; such that ∀x, y, z ∈ X: (I) non-
negativity: d(x, y) ≥ 0; (II) identity: d(x, y) = 0 ⇐⇒ x = y; (III) symmetry:
d(x, y) = d(y, x) and (IV) triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

Definition 2. A fitness landscape F can be defined as the pair (M , f), where
M is a metric space, and f : X → R is a real-valued fitness function that
indicates the fitness of each configuration in X, the set of configurations in M .

3 Geometric Framework

Moraglio proposed a general theory of EAs, independent of the problem and rep-
resentation of solutions, solely based on an axiomatic definition of distance across
metric spaces [10]. This allows to formalise mutation and crossover operators in
terms of metric balls and geodesic intervals, respectively [20].

Definition 3. Let (X, d) be a metric space with configuration set X and metric
d. Then, a closed ball centred at point x ∈ X with radius r ∈ R≥0 is defined
as Bd[x; r] := {y ∈ X | d(x, y) ≤ r} and a geodesic interval or metric segment
as [x; y]d := {z ∈ X | d(x, z) + d(z, y) = d(x, y)}, where x, y ∈ X are called the
extremes of the segment and d(x, y) its length.

Normally, implementations of heuristic search methods define probabilistic
search operators, thus a probability distribution over the configuration set. In
other words, move operators that return a subset of the possible neighbours. The
geometric framework takes this into account when defining geometric operators
[10].

Definition 4. Let (X, d) be a metric space and Im[�(·)] denote the set of off-
spring produced with non-zero probability by an operator �. Then, a unary oper-
ator με : X → X is a geometric ε-mutation if ∀x ∈ X

(
Im[με(x)] ⊆ Bd[x; ε]

)
,

where ε ∈ R≥0 is the smallest non-negative real number for which this condi-
tion holds. When ε is not specified, ε = 1 is assumed. And, a binary operator
χ : X × X → X is a geometric crossover if ∀x, y ∈ X

(
Im[χ(x, y)] ⊆ [x; y]d

)
.

Bridging Elementary Landscapes and a Geometric Theory 197

Apart from its benefits regarding unification and formal design of EAs across
representations, a geometric definition provides insight on the landscape prop-
erties that cause EAs to perform possibly much better than pure random search
[10]. Abstract convexity in general metric spaces is one such property [20], which
describes the structure induced by geometric crossovers and admits well-behaved
generalisations from traditional (Euclidean) concave functions [10,11].

Definition 5. Let a metric space M := (X, d), with configuration set X and
metric d, and a fitness function f define a fitness landscape F := (M , f). Then,
∀x, y, z ∈ X, F is quasi-concave if z ∈ [x; y]d and f(z) >= min

(
f(x), f(y)

)
; and

average-concave if z ∼ U(
[x; y]d

)
and E [f(z)] >=

(
f(x) + f(y)/2

)
. Where U

denotes the uniform probability distribution and E the expectation.

4 Elementary Landscapes Theory

Based on Grover's work [6], Stadler developed an algebraic theory of fitness
landscapes known as elementary landscapes (ELs) [15]. Here, regular undirected1

graphs induced by mutation neighbourhoods are formalised using the graph or
mutation Laplacian matrix Lμ defined by the graph's diagonal D and adjacency
A matrices (Fig. 1):

−Lμ := D − A. (1)

Fig. 1. Star graph S4 (left) and its graph Laplacian matrix (right).

To formalise recombination neighbourhoods in terms of hypergraphs [5], a
new concept called ‘P-structure’ given by (X,R) was introduced [18], where X
is a finite set with power set P(X) and R : X×X → P(X) maps a pair of parents
into the set of possible offspring. By a hypergraph we mean a graph with ver-
tex set X and hyperedge set E := {R(x, y) ∈ P(X) | R(x, y) �= ∅ ∧ x, y ∈ X}.
Furthermore, the following subclass of P-structures is defined to capture some
desirable properties of recombination operators.

1 Extensions for non-regular and non-symmetric neighbourhoods are possible, but
regular and symmetric ones will be assumed here.

198 M. D. Garćıa and A. Moraglio

Definition 6. A P-structure (X,R) is a recombination structure if ∀x, y, z ∈
X: (I) fix-point: R(x, x) = {x}; (II) symmetry: R(x, y) = R(y, x); (III) null-
recombination: {x, y} ⊆ R(x, y); and (IV) size-monotonicity: if z ∈ R(x, y),
then |R(x, z)| <= |R(x, y)|.

Laplacians LR for recombination P-structures can also be defined based on
the identity matrix I and a generalised adjacency matrix S for hypergraphs [18]:

−LR := 2 |X| I − S , (2)

where the square matrix S has entries Szx := 2
∑

y∈X Hz,(x,y) |R(x, y)|−1, and
the non-square binary incidence matrix H with entries Hz,(x,y) tells whether z
is offspring of x and y under R.

To better grasp the generalised adjacency matrix S in (2), one may consider
its associated stochastic matrix Tzx describing the transition probabilities of a
recombination-based random walk on a graph, where a father x is mated with a
randomly chosen mother y to produce an offspring z that will be the father in
the next recombination [18]. It is defined as Tzx :=

∑
y∈X tzxy py, where py is the

probability of choosing y from X, and tzxy is the probability of z given x and y.

Tzx, S and LR relate as: Tzx =
∑

y∈X tzxy py =
∑

y∈X Hz,(x,y) |R(x, y)|−1∗ 1
|X| =

1
2|X|Szx = 1

2|X|LR + I. Although this assumes a uniform population and that all
offspring occur with equal probability, it is possible to define weights for S to
formalise more realistic population recombination-based search algorithms [17].

In the light of Grover’s work and the characterisations above, Stadler defines
a non-flat fitness landscape as elementary if its zero-averaged fitness function
(as a column vector) f̃ := f − f̄ =

[
f(x1) − f̄ , f(x2) − f̄ , . . . , f(xn) − f̄

]T, with
finite discrete domain X = {x1, x2, . . . , xn} representing the vertex set of an
underlying connected graph, is an eigenfunction of a (generalised) Laplacian
matrix L of the graph: Lf̃ = λf̃ ; where λ > 0 is the eigenvalue and the constant
f̄ := 1

|X|
∑

x∈X f(x) is the average fitness of a configuration in X [8,15]. If
a landscape f is not elementary, it can always be decomposed into a linear
combination of ELs fk called its Fourier expansion: f = a0 +

∑|X|−1
k>0 akfk,

where scalars ak are the Fourier coefficients, a0 is the average fitness and the
eigenfunctions fk have corresponding eigenvalues λk (in increasing order and
counting multiplicities, 0 = λ0 < λ1

<= λ2
<= · · · <= λ|X|−1) such that Lfk = λkfk.

ELs have interesting geometric properties. One of them, proved by Grover [6],
is that all local maxima (minima) have fitness higher (lower) than or equal to the
average fitness: f(xmin) <= f̄ <= f(xmax). This property is closely related to the
idea of monotonic sequences of local optima (i.e. sequences of ever non-decreasing
or non-increasing fitness) used, for instance, in the local optima networks model
[19] to formalise the funnel structure of landscapes.

Another important aspect of ELs is their global structure. There are two
major classes depending on the index p (ignoring multiplicities) of the eigenvalue:
Fujiyama or single-peaked [7], and non-Fujiyama. Fujiyama are those ELs with
the smallest non-zero eigenvalue (λ1), that is Lf̃ = λp=1f̃ ; characterised for

Bridging Elementary Landscapes and a Geometric Theory 199

having all local optima clustered in a single region of the space [18]. In particular,
for Boolean spaces with Hamming distance they have a unique global optimum
[15]. Non-Fujiyama are those ELs for p > 1 with local optima clustered in more
than one region; indeed, many combinatorial problems fall here with p = 2
(e.g. Max Cut) [8]. More formally, by clusters we mean discrete nodal domains
[1] (Fig. 2). These are the maximally connected subgraphs induced by the vertex
subsets V+ := {x ∈ V | f(x) >= 0} and V− := {x ∈ V | f(x) <= 0}, denoting the
weak positive and negative nodal sets respectively, for a given graph with vertex
set V and eigenfunction f (i.e. the fitness function) on V . Similarly, strong
nodal sets are defined using a strict inequality instead. Note that, for a zero-
averaged function, V+ and V− induce subgraphs separating precisely above and
below average configurations. Interestingly, the number of discrete nodal domains
can be upper-bounded a priori, provided that we know p, using Proposition 1,
generally, and the more sharp Proposition 2 specifically for Boolean spaces; which
were proved in [1,4].

Fig. 2. An eigenfunction defined on the star graph S4 (right), with eigenvalue λ1 = 1 of
the graph Laplacian, and its induced discrete nodal domains (left): two weak and four
strong. Positive nodes in ‘black’, negative nodes in ‘white’ and zero nodes in ‘grey’.

Proposition 1. Given a generalised Laplacian of a connected graph, any eigen-
function fk corresponding to the k-th eigenvalue λk with multiplicity r has at
most k weak and k + r − 1 strong nodal domains.

Proposition 2. For an eigenfunction f with eigenvalue 2p, where p is its index
ignoring multiplicities and N the number of vertices of the Boolean hypercube,
the number W (f) of weak nodal domains is upper-bounded as:

W (f) <= wN,p =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p + 1 if p = 0 or p = 1,

2

⎛

⎝1 +
p/2−1∑

k=0

(
N

2k

)
⎞

⎠ if p is even,

2

⎛

⎝1 +
�p/2�−1∑

k=0

(
N

2k + 1

)
⎞

⎠ if p is odd.

(3)

200 M. D. Garćıa and A. Moraglio

5 Main Results

To analyse the landscapes induced by geometric crossovers (Definition 4) using
ELs theory, it is necessary to prove that geometric crossovers belong to the class
of recombination P-structures (Definition 6). Connecting both theories (Sects. 3
and 4) can help to develop dual geometric and algebraic views with which tackle
the challenge of identifying generalised concave landscape classes using ELs the-
ory, and give insight on explaining the good performance behind convex search
(Sect. 1). Next, we prove that all geometric crossovers, regardless of the metric,
are recombination P-structures.

Lemma 1. Let (X, d) be any metric space. Then, ∀x, y ∈ X and any metric d,
(X, [x, y]d) is a recombination P-structure.

Proof. We need to prove that metric segments fulfil the axioms of recombination
P-structures.

(I) Fix-point. The only possible z in [x;x]d = {z ∈ X | d(x, z) + d(z, x) =
d(x, x)} is exactly x. Therefore, [x;x]d = {x}.

(II) Symmetry. [x; y]d = [y;x]d follows immediately from the symmetry axiom
of metric segments.

(III) Null-recombination. {x, y} ⊆ [x; y]d holds by definition, since the extremes
x and y of the segment are always included in the segment.

(IV) Size-monotonicity. To prove that if z ∈ [x; y]d, then
∣
∣ [x; z]d

∣
∣ <=

∣
∣ [x; y]d

∣
∣, we

can recall that all metric segments fulfil monotonicity [20]: ∀x, y, z ∈ X if
z ∈ [x; y]d then [x; z]d ⊆ [x; y]d. Therefore, it follows

∣
∣ [x; z]d

∣
∣ <=

∣
∣ [x; y]d

∣
∣. ��

Unfortunately, to prove equivalence in the other direction it is necessary
to restrict recombination P-structures to those that precisely produce offspring
z ∈ R(x, y) lying in the geodesic interval between parents x and y, since in
general not all recombination P-structures fulfil this property [3].

Example 1. Consider R� returning offspring lying on longest paths between
parents. This can generate offspring beyond the geodesic interval between parents
(i.e. in the extension ray [20]), e.g. [000; 011]dH �� 111 ∈ R�(000, 011) where dH
is the Hamming distance. Indeed, extended line recombination, which generates
offspring in the extension ray, is not a geometric crossover for any metric [12].

Definition 7. A recombination P-structure (X,R), for a connected graph G
with vertex set X, that ∀x, y ∈ X fulfils the axiom R(x, y) ⊆ I(x, y), where
I(x, y) is the set of all shortest paths between x and y in G, is a geometric
recombination P-structure denoted by Rg.

Theorem 1. Let (X, d) be any graphic metric space. Then, all geometric recom-
bination P-structures Rg are equivalent to all geometric crossovers χ defined on
(X, d). That is, ∀x, y ∈ X

(Rg(x, y) = χ(x, y)
)
.

Bridging Elementary Landscapes and a Geometric Theory 201

Proof. The proof follows immediately from Lemma1, and Definitions 4 and 7 of
geometric crossovers and geometric recombination P-structures respectively. ��

Interestingly, all recombination P-structures fulfil the inbreeding properties
(Theorem 2), that is breeding between close relatives, common to all geometric
crossovers and independent of the metric used, which were proposed as a test
for non-geometricity of crossovers: if any of them fails, then a crossover is not
geometric [12].

Theorem 2. Let (X,R) be any recombination P-structure. Then, R satisfies all
inbreeding properties of geometric operators: purity, convergence and partition.

Proof. Purity: The recombination of one parent with itself can only produce the
parent itself. Follows immediately from the fix-point axiom of recombination
P-structures: ∀x ∈ X, R(x, x) = {x}.

Convergence: The recombination of one parent with one offspring cannot produce
the other parent of that offspring, unless the offspring and the second parent
coincide. We want to prove that ∀x, y, z, s ∈ X if z ∈ R(x, y) and s ∈ R(x, z),
then s = y =⇒ z = y. Let z ∈ R(x, y) such that z �= y, and s ∈ R(x, z). We
want to show that actually s �= y too. From the size-monotonicity axiom of
recombination structures we know:

|R(x, z)| < |R(x, y)| , (4)

since y �= z ∈ R(x, z). Besides, either s = z or s �= z. If s = z, then we know
automatically that s �= y, since s = z �= y. If on the other hand s �= z, then:

|R(x, s)| < |R(x, z)| . (5)

If s was allowed to be y, then |R(x, s)| = |R(x, y)|, however by (5):

|R(x, s)| = |R(x, y)| < |R(x, z)| (6)

thus contradicting (4). Therefore, s �= y for the s �= z case. Consequently, the
only possibility left for s = y is that z = y.

Partition: If z is a child of x and y, then the recombination of x and z, and
the recombination of y and z, cannot produce a common grandchild s other
than z. Another way to phrase it is that both recombinations must produce
two different grandchildren when they are not z. That is, we want to prove
that ∀x, y, z, s1, s2 ∈ X if z ∈ R(x, y), s1 ∈ R(x, z) and s2 ∈ R(z, y), then
s1 �= s2. Without loss of generality, let z ∈ R(x, y) such that z �= y, and
assume the opposite: s1 = s2. Then, we know by the convergence property
that s1 �= y. Analogously, exchanging the roles of the parents x and y using
the symmetry axiom of recombination structures, we know s2 �= x. Observe,
however, that there are no restrictions in having s1 = x and s2 = y. But, since
we assumed s1 = s2, we find the following contradictions: x = s1 = s2 �= x,
and y = s2 = s1 �= y. Therefore, s1 �= s2. ��

202 M. D. Garćıa and A. Moraglio

Since all recombination P-structures fulfil the inbreeding properties but only
geometric recombination P-structures are equivalent to geometric crossovers
(Theorem 1), from Theorem 2 we conclude the following.

Corollary 1. The inbreeding properties of geometric crossovers are necessary
but not sufficient conditions to determine if a crossover is geometric.

This resolves the question of whether the inbreeding properties are sufficient
or not for geometricity, which was left open in [12]. In the light of this result, it
would be worth identifying additional inbreeding properties that when consid-
ered jointly would be sufficient to guarantee that a crossover is geometric.

6 Discrete Nodal Domains for Uniform Recombination
in Boolean Spaces with Hamming Distance: Examples

Section 5 justified that proposing ELs theory to analyse the abstract concave
classes of the geometric framework is not futile by showing that geometric
crossovers are a specific case of recombination P-structures, and that certain
recombination P-structures coincide with geometric crossovers; thus motivating
a dual interpretation on landscapes induced by recombination. This section clari-
fies, with illustrative examples, how discrete nodal domains (Sect. 4) help analyse
the structure of landscapes induced by uniform recombination in Boolean spaces
with Hamming distance in particular, and how they link to global concavity. The
examples considered are on two artificial problems, One Max and Leading Ones,
and two NP-complete problems [6]:

Not-All-Equal Satisfiability (NAES). An instance is a set of clauses and its fitness
is the number of satisfied clauses. A clause consists of three literals (i.e. a
binary variable or its complement) not containing simultaneously a binary
variable and its complement, and it is satisfied if there are at least two distinct
literals such that one is 0 and the other is 1.

Weight Partition (WP). An instance is a vector of n weights wi corresponding
to objects oi, for 1 <= i <= n. The problem consists in finding an assignment
si ∈ {−1, 1} of weights such that f(w1, . . . , wn) = (

∑n
i=1 wisi)

2 is minimised.

Figure 3, obtained using Mathematica2, summarises key aspects of the prob-
lems' landscape structure. Although the examples considered are for the three-
dimensional Boolean hypercube embedded in the hypergraph induced by uniform
recombination [18], we have observed equivalent results in higher dimensions.

Next, we see how the global landscape structure could be inferred analyti-
cally. For ELs this is possible by knowing the corresponding eigenvalues, since
from their indexes we can tell whether they are Fujiyama or non-Fujiyama and
also upper-bound the number weak nodal domains using Proposition 2 (Sect. 4).
Then, we will explain why Leading Ones poses certain problems for this analyt-
ical approach.
2 The reader is referred to the Mathematica notebook publicly available online at:

https://github.com/marcosdg/ppsn-2018, for the examples details.

https://github.com/marcosdg/ppsn-2018

Bridging Elementary Landscapes and a Geometric Theory 203

Fig. 3. Strongly positive (‘black dots’) and negative (‘white dots’) discrete nodal
domains for the (a) Not-All-Equal satisfiability (NAES), (b) Weight Partitioning (WP),
(c) One Max and (d) Leading Ones problems on the three-dimensional hypercube.
W+, S+, W− and S− denote the number of weakly positive, strongly positive, weakly
negative and strongly negative domains respectively; and p denotes the order of the
eigenvalue (λp) for each of the eigenfunctions fNAES, fWP, fOneMax and fLeadingOnes.

Eigenvalues of Elementary Landscapes. To find them we need to know the
uniform recombination Laplacian LR for the three-dimensional hypercube (see
Lemma C7 [18]): (LR)xy = 2(23)Ixy −

(
2 (3/2)3 3−dH(x,y)

)
. We observe that this

Laplacian has eigenvalues {0, 8, 8, 8, 12, 12, 12, 14} (in increasing order and
starting at index 0); and that One Max is elementary for λ1 = 8, and NAES
and WP for λ2 = 12: LRf̃OneMax = 8 ∗ f̃OneMax, LRf̃NAES = 12 ∗ f̃NAES and
LRf̃WP = 12 ∗ f̃WP.

One Max, NAES and WP. From the eigenvalues we know that One Max is
a Fujiyama EL (p = 1), that is with a unique global optimum and single-peaked.
This agrees with the fact that fOneMax(x1, . . . , xn) :=

∑n
i=1 xi is a linear pseudo-

Boolean function whose Fourier expansion using Walsh functions has only non-
zero terms in the 0-th and 1-st orders thus elementary for p = 1. Whereas NAES
and WP are non-Fujiyama ELs of order p = 2. These results are a consequence of
Corollaries 2 and 3 in [18], proving that eigenfunctions of the mutation Laplacian
(1) are also eigenfunctions of the uniform recombination Laplacian (2). Besides,
one notes that the eigenvalue (λ2 = 12) for NAES and WP does not coincide
with the eigenvalue (λ2 = 4) obtained for the mutation Laplacian [8]. Neverthe-
less, that is expected: two spaces may have identical eigenfunctions but different
eigenvalues, possibly affecting the correlation between fitness values (i.e. rugged-
ness) of the landscape [18]. Thus, two landscapes may have identical number of
nodal domains (i.e. same global structure) and different ruggedness.

204 M. D. Garćıa and A. Moraglio

Number of Weak Nodal Domains. Proposition 2 provides upper-bounds
for the number of weak nodal domains; for One Max, NAES and WP we have:
W+(f̃OneMax) + W−(f̃OneMax) = 1 + 1 <= w23,1 = 2, W+(f̃NAES) + W−(f̃NAES) =
2 + 2 <= w23,2 = 4 and W+(f̃WP) + W−(f̃WP) = 2 + 2 <= w23,2 = 4. This means
that One Max has two weak nodal domains corresponding to two major clusters
of local optima, separated by the hyperplane described by the average fitness.
NAES and WP have at most four weak nodal domains and thus we cannot expect
more than four clusters. Particularly, for p = 1 and p = 2, the upper-bounds
remain constant regardless of the dimension (Table 4.1 in [1]).

Leading Ones. We observed in Mathematica that Leading Ones has the same
number of discrete nodal domains as One Max by computing them. From
Fig. (3d) one may think that Leading Ones is an EL for p = 1; however, it
is not elementary neither for recombination nor mutation neighbourhoods, but
a sum of n elementary landscapes. The reason is that fLeadingOnes(x1, . . . , xn) :=
∑n

i=1

∏i
j=1 xj is a k-bounded pseudo-Boolean function that is a sum of Walsh

functions where the bitwise non-linearity is at most k bits. For Leading Ones
k = n, thus the highest order is p = n (i.e. the bit string length). This means
that we cannot use Propositions 1 and 2 to know a priori the number of discrete
nodal domains, since in general they do not hold when the landscape is a sum
of ELs. Finding those cases where they hold is an open problem [1].

Concluding, discrete nodal domains are a promising analytic tool with which
tackle the challenge of identifying landscape classes, because they capture key
information of the landscape structure and can be related to ELs via eigenvalues
and eigenfunctions. Then, what the abstract concave classes would correspond
to? Previous observations suggest Fujiyama ELs (p = 1), since they overlap with
single-peaked landscapes. For instance, One Max can be shown to be average-
concave [13] and we now know that One Max is Fujiyama. Further research will
confirm whether this intuition is correct.

7 Conclusions

The geometric framework has been successful in finding proper subclasses of
EAs and fitness landscapes with provably polynomial runtime guarantees, how-
ever missing analytical means for landscape structure analysis. Besides, ELs
theory provides a fine-grained analysis of the landscape structure in terms of
its spectrum (i.e. eigenvalues and eigenfunctions) and discrete nodal domains,
but lacking EAs dynamics modelling and runtime results. The ultimate goal of
this research is precisely unifying these two frameworks, aiming at developing
complementary geometric and algebraic views on fitness landscape analysis, to
better understand when and why EAs perform well.

This paper took the first steps towards such goal by putting together for the
first time both frameworks and highlighting their key ideas. First, proving that
all geometric crossovers can be conceived as recombination P-structures, and

Bridging Elementary Landscapes and a Geometric Theory 205

that there exists a specific subclass of these that match geometric crossovers
(Sect. 5). Then, illustrating and clarifying with examples how discrete nodal
domains could help to identify concave landscape classes for problems that are
elementary, by analysing their spectrum (Sect. 6). The next important steps
would be to formalise the concave classes in terms of discrete nodal domains
and convex search in ELs theory. Also, it would be worth researching whether
landscape funnels can be formalised in terms of discrete nodal domains.

References

1. Bıyıkoğlu, T., Leydold, J., Stadler, P.F.: Laplacian Eigenvectors of Graphs: Perron-
Frobenius and Faber-Krahn Type Theorems. Lecture Notes in Mathematics, vol.
1915. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73510-6

2. Borenstein, Y., Moraglio, A. (eds.): Theory and Principled Methods for the Design
of Metaheuristics. Natural Computing Series. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-33206-7

3. Changat, M., et al.: Topological Representation of the Transit Sets of k-Point
Crossover Operators (2017). arXiv:1712.09022

4. Davies, E.B., Gladwell, G.M., Leydold, J., Stadler, P.F.: Discrete nodal domain
theorems. Linear Algebra Appl. 336(1), 51–60 (2001)

5. Gitchoff, P., Wagner, G.P.: Recombination induced hypergraphs: a new approach
to mutation-recombination isomorphism. Complexity 2(1), 37–43 (1996)

6. Grover, L.K.: Local search and the local structure of NP-complete problems. Oper.
Res. Lett. 12(4), 235–243 (1992)

7. Kauffman, S.A.: The Origins of Order: Self-organization and Selection in Evolution.
Oxford University Press, New York (1993)

8. Klemm, K., Stadler, P.F.: Rugged and elementary landscapes. In: Borenstein, Y.,
Moraglio, A. (eds.) Theory and Principled Methods for the Design of Metaheuris-
tics. NCS, pp. 41–61. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-33206-7 3

9. Menon, A. (ed.): Frontiers of Evolutionary Computation, Genetic Algorithms and
Evolutionary Computation, vol. 11. Springer, New York (2004). https://doi.org/
10.1007/b116128

10. Moraglio, A.: Towards a Geometric Unification of Evolutionary Algorithms. Doc-
toral thesis, University of Essex, Essex, UK, November 2007

11. Moraglio, A.: Abstract convex evolutionary search. In: Proceedings of the 11th
Workshop on Foundations of Genetic Algorithms, FOGA 2011, pp. 151–162. ACM,
Schwarzenberg (2011)

12. Moraglio, A., Poli, R.: Inbreeding properties of geometric crossover and non-
geometric recombinations. In: Stephens, C.R., Toussaint, M., Whitley, D., Stadler,
P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp. 1–14. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73482-6 1

13. Moraglio, A., Sudholt, D.: Principled design and runtime analysis of abstract con-
vex evolutionary search. Evol. Comput. 25(2), 205–236 (2017)

14. Richter, H., Engelbrecht, A. (eds.): Recent Advances in the Theory and Application
of Fitness Landscapes. ECC, vol. 6. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-41888-4

https://doi.org/10.1007/978-3-540-73510-6
https://doi.org/10.1007/978-3-642-33206-7
https://doi.org/10.1007/978-3-642-33206-7
http://arxiv.org/abs/1712.09022
https://doi.org/10.1007/978-3-642-33206-7_3
https://doi.org/10.1007/978-3-642-33206-7_3
https://doi.org/10.1007/b116128
https://doi.org/10.1007/b116128
https://doi.org/10.1007/978-3-540-73482-6_1
https://doi.org/10.1007/978-3-642-41888-4
https://doi.org/10.1007/978-3-642-41888-4

206 M. D. Garćıa and A. Moraglio

15. Stadler, P.F.: Towards a theory of landscapes. In: López-Peña, R., Waelbroeck, H.,
Capovilla, R., Garćıa-Pelayo, R., Zertuche, F. (eds.) Complex Systems and Binary
Networks. Lecture Notes in Physics, vol. 461, pp. 78–163. Springer, Heidelberg
(1995). https://doi.org/10.1007/BFb0103571

16. Stadler, P.F.: Fitness landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological
Evolution and Statistical Physics. Lecture Notes in Physics, vol. 585, pp. 183–204.
Springer, Boston (2002). https://doi.org/10.1007/0-387-28356-0 19

17. Stadler, P.F., Seitz, R., Wagner, G.P.: Population dependent fourier decomposition
of fitness landscapes over recombination spaces: evolvability of complex characters.
Bull. Math. Biol. 62(3), 399–428 (2000)

18. Stadler, P.F., Wagner, G.P.: Algebraic theory of recombination spaces. Evol. Com-
put. 5(3), 241–275 (1998)

19. Thomson, S.L., Daolio, F., Ochoa, G.: Comparing communities of optima with
funnels in combinatorial fitness landscapes. In: Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2017, pp. 377–384. ACM, New
York (2017)

20. van de Vel, M.L.J.: Theory of Convex Structures. North-Holland Mathematical
Library. North-Holland (1993)

https://doi.org/10.1007/BFb0103571
https://doi.org/10.1007/0-387-28356-0_19

Empirical Analysis of
Diversity-Preserving Mechanisms on
Example Landscapes for Multimodal

Optimisation

Edgar Covantes Osuna(B) and Dirk Sudholt

University of Sheffield, Sheffield S1 4DP, UK
{ecovantes1,d.sudholt}@sheffield.ac.uk

Abstract. Many diversity-preserving mechanisms have been developed
to reduce the risk of premature convergence in evolutionary algorithms
and it is not clear which mechanism is best. Most multimodal optimisa-
tion problems studied empirically are restricted to real-parameter prob-
lems and are not accessible to theoretical analysis, while theoreticians
analyse the simple bimodal function TwoMax. This paper looks to nar-
row the gap between both approaches. We perform an extensive empirical
study involving 9 common diversity mechanisms on Jansen-Zarges mul-
timodal function classes (Jansen and Zarges, PPSN 2016) that allow to
control important problem features while still being amenable to theo-
retical analysis. This allows us to study functions with various degrees
of multimodality and to explain the results in the light of previous theo-
retical works. We show which mechanisms are able to find and maintain
a large number of distant optima, escape from local optima, and which
fail to locate even a single peak.

Keywords: Diversity-preserving mechanisms
Evolutionary algorithms · Multimodal optimisation · Empirical study
Theory

1 Introduction

Many optimisation problems are multimodal, and finding global optima or
high-quality local optima can become a challenge for any optimisation algo-
rithm [15,17]. Evolutionary algorithms (EAs) are well suited to dealing with
multimodal problems due to their use of a population. A diverse population can
explore several hills in the fitness landscape simultaneously and offer several good
solutions to the user, a feature desirable for decision making, in multi-objective

The authors would like to thank the Consejo Nacional de Ciencia y Tecnoloǵıa -
CONACYT (the Mexican National Council for Science and Technology) for the
financial support under the grant no. 409151 and registration no. 264342.

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 207–219, 2018.
https://doi.org/10.1007/978-3-319-99259-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_17&domain=pdf

208 E. Covantes Osuna and D. Sudholt

optimisation and in dynamic optimisation. However, a major difficulty when
applying EAs is that the population may converge to a sub-optimal individual
before the fitness landscape is explored properly.

Many diversity-preserving mechanisms have been developed to reduce the
risk of such premature convergence, including fitness sharing, clearing, avoiding
duplicates, fitness diversity, crowding methods, restricted tournament selection,
and many others [4,7,16,18]. These mechanisms seek to enable EAs to visit many
different regions of the search space and generate solutions that differ from those
seen before [10]. Given such a variety of mechanisms to choose from, it is often
not clear which mechanism is the best choice for a particular problem.

Previous empirical analyses have considered real-parameter multimodal opti-
misation problems [5] like the 4 one-dimensional, five-peaked, sinusoidal, multi-
modal functions called M1−4 defined in [11, Sect. 5.3]. The single variable x is
restricted to the real-value range [0, 1] encoded using binary representation and
decoded by interpreting the bit string as unsigned binary integer and dividing
it by 2n − 1, where n is the length of the bit string. Other studies used Gray
codes [15]. The drawback of real-valued encodings is that it is not obvious how
phenotypic features such as local optima appear in genotype space; for example
what Hamming distance local optima have and how likely it is that mutation
jumps from one basin of attraction to another. This makes the analysis of the
population dynamics a very challenging task for theoretical analysis.

Previous theoretical studies that considered multimodal problems [1,2,6,13]
compared the expected running time of different diversity mechanisms to find
both global optima on the bimodal function TwoMax(x) := {∑n

i=1 xi, n −∑n
i=1 xi} that has a straightforward mapping between genotypes (bit strings)

and phenotypes (number of 1-bits). TwoMax consists of two different symmetric
slopes (or branches) ZeroMax and OneMax with 0n and 1n as global optima,
respectively, and the goal is to evolve a population that contains both optima1.
This is challenging as the two optima have the maximum possible Hamming
distance. Studying TwoMax led to insights into the capabilities and weaknesses
of various diversity mechanisms (see Sect. 2 and Sudholt’s survey [19]), however
a question left open is how diversity mechanisms deal with many local optima.

Jansen and Zarges [9] addressed the need for more general classes of func-
tions for multimodal optimisation for both empirical and theoretical analysis
by defining multimodal landscapes with straightforward binary encodings (see
Sect. 3). We seek to narrow the gap between theory and practice by performing
an empirical study on the Jansen-Zarges multimodal function classes, comple-
menting existing rigorous theory for TwoMax [1,2,6,13] with empirical results
of more complex functions with multiple different peaks, slopes and heights. The
main goal is to provide insights into the working principles of these mechanisms
by testing their ability to find and maintain many local optima in the popula-
tion as well as their ability to escape from local optima with different basins of

1 In [6] an additional fitness value for 1n was added to distinguish between a local
optimum 0n and a unique global optimum 1n. The discussion of previous work
from [6] is adapted to a TwoMax with two optima [1,2,13] (see Table 1 and [19]).

Empirical Analysis of Diversity-Preserving Mechanisms 209

Algorithm 1. (μ+1) EA
1: Initialise P with μ individuals chosen uniformly at random.
2: while stopping criterion not met do
3: Choose x ∈ P uniformly at random.
4: Create y by flipping each bit in x independently with probability 1/n.
5: Choose z ∈ P uniformly at random from all individuals with worst fitness in P .
6: if f(y) ≥ f(z) then P = P \ {z} ∪ {y}.

attraction. We use previous theoretical results to inform the choice of algorithm
parameters and to discuss in how far our empirical results agree or disagree with
theoretical results obtained for TwoMax.

2 Diversity Mechanisms and Previous Results
for TwoMax

Following previous theoretical work, we consider diversity mechanisms embedded
in a bare-bones EA: a (μ+1) EA with uniform parent selection in a population
of size μ, using standard mutation (and no crossover). The offspring y replaces
a worst individual z from the population if f(y) ≥ f(z) (see Algorithm 1).

Table 1 summarises previous work for the (μ+1) EA with diversity mech-
anisms on TwoMax (details for each (μ+1) EA variant can be found in the
respective publications and in [19]). Some mechanisms succeed in finding both
optima on TwoMax efficiently, that is, in (expected) time O(μn log n). Others
have a very low success probability. Friedrich, Oliveto, Sudholt, and Witt [6]
showed that the plain (μ+1) EA (PL, Algorithm1) is not able to maintain
individuals on both branches for a long time; the whole population is likely to
converge to one of the two peaks [6, Theorem 1].

Introducing other simple mechanisms to the (μ+1) EA like avoiding genotype
duplicates (NGD), where (after initialisation) identical copies of individuals are
prevented from entering the population [6, Algorithm 2], and avoiding fitness
duplicates (NFD), rejecting individuals with the same fitness [6, Algorithm 3],
are not able to prevent the extinction of one branch, ending with the population
converging to one optimum with high probability [6, Theorem 2 and 3, resp.].

In the (μ+1) EA with probabilistic crowding (PC) [2, Algorithm 1], an off-
spring competes with its parent and the survivor is chosen with a probabil-
ity proportional to their fitness [12]. Covantes Osuna and Sudholt showed that
this mechanism is unable to evolve solutions of significantly higher fitness than
that obtained during initialisation (or, equivalently, through random search),
even when given exponential time [2, Theorem 2.2]. The reason is that fitness-
proportional selection between parent and offspring results in an almost uni-
form choice as both have very similar fitness, hence fitness-proportional selection
degrades to uniform selection for replacement. In deterministic crowding (DC),
the offspring competes against its parent and replaces it if the offspring is at least
as good [11]. For the (μ+1) EA with deterministic crowding [6, Algorithm 4],

210 E. Covantes Osuna and D. Sudholt

Table 1. Overview of runtime analyses for the (μ+1) EA with diversity mechanisms
on TwoMax, adapted from [2]. The success probability is the probability of finding
both optima within (expected) time O(μn log n). Conditions include restrictions on the
population size μ, the sharing/clearing radius σ, the niche capacity κ, window size w,
and μ′ := min(μ, log n).

Diversity mechanism Success prob. Conditions

PL Plain (μ+1) EA [6] o(1) μ = o(n/ log n)

NGD No Genotype Duplicates [6] o(1) μ = o(
√

n)

NFD No Fitness Duplicates [6] o(1) μ = poly(n)

PC Probabilistic Crowding [2] 2−Ω(n) all μ

DC Deterministic Crowding [6] 1 − 2−μ+1 all μ

RTS Restricted Tournament Selection [2] ≥ 1 − 2−μ′+3 w ≥ 2.5μ ln n

PFS Population-based Fitness Sharing�(σ = n/2) [6] 1 μ ≥ 2

FS Individual-based Fitness Sharing�(σ = n/2) [13] 1 μ ≥ 3

CL Clearing (σ = n/2) [1] 1 μ ≥ κn2

�Fitness sharing uses phenotypic sharing based on the number of ones

this mechanism with a sufficiently large population is able to reach both optima
with high probability in expected time O(μn log n) [6, Theorem 4].

In restricted tournament selection (RTS), for every offspring created, RTS
selects uniformly at random (u. a. r.) w (window size) members from the popu-
lation with replacement. Each offspring competes with the closest element from
this set and the offspring replaces it if its fitness is at least as good [8]. For the
(μ+1) EA with RTS [2, Algorithm 2], the mechanism succeeds in finding both
optima of TwoMax in the same way as deterministic crowding, provided that
w is chosen large enough [2, Theorem 3.1]. However, if w is too small, then it
cannot prevent one branch taking over the other, leading to exponential running
times with high probability [2, Theorem 3.4].

Fitness sharing derates the real fitness of an individual by an amount that
represents the similarity to other population members. A population-based fit-
ness sharing (PFS) approach [6, Algorithm 5], constructing the best possible new
population amongst parents and offspring is able to find both optima in expected
time O(μn log n) for any population size μ ≥ 2 [6, Theorem 5]. A drawback of
this approach is that examining all possible new populations is computation-
ally expensive. The conventional fitness sharing (FS), where selection is based
on individuals, was studied by Oliveto, Sudholt, and Zarges [13, Algorithm 1].
Population size μ = 2 is not sufficient to find both optima in polynomial time;
the success probability is only 1/2−Ω(1) [13, Theorem 1]. However, with μ ≥ 3,
the (μ+1) EA finds both optima in expected time O(μn log n) [13, Theorem 3].
In all the above results, fitness sharing used a phenotypic distance: the distance
between two search points x and y is the absolute difference in their number of
ones. This choice is tailored to TwoMax and is not applicable in our scenario.

Empirical Analysis of Diversity-Preserving Mechanisms 211

Hence our experiments must rely on fitness sharing with genotypic distances
(Hamming distance), for which no runtime analyses are available.

In clearing (CL), individuals are sorted in decreasing fitness and are processed
in this order. Each individual is compared against other individuals according to
its fitness with distance < σ (clearing radius) which determines if both individu-
als belong to the same subpopulation (niche) or not. Then, the procedure iterates
through all remaining individuals (i. e., those with lower or equal fitness) that
haven’t been cleared yet, until κ (niche capacity) best individuals (also called
winners) have been found, and all remaining individuals from the same niche
are cleared to the minimum fitness value possible [14]. Finally, the individuals
with best fitness are selected (set of winners) and individuals coming from the
new generation are preferred [1, Algorithm 1 and 2]. Clearing, with a clearing
radius of σ = n/2, niche capacity κ = 1, and μ ≥ κn2 is able to find both optima
in expected time O(μn log n) [1, Theorem 5.6].

3 Jansen-Zarges Multimodal Function Classes

Jansen and Zarges [9] introduced several problem classes spanned by k peaks
p1, p2, . . . , pk ∈ {0, 1}n for an arbitrary number k ∈ N of peaks. Each peak i has
a position pi ∈ {0, 1}n, a slope ai ∈ IR+, and an offset bi ∈ IR+

0 . The fitness
value of a search point depends on peaks in its vicinity as defined as follows.

Definition 1 (Definition 3 in [9]). Let k ∈ IN and k peaks (p1, a1, b1), (p2, a2,
b2), . . . , (pk, ak, bk) be given, then

– JZ1(x) := acp(x) · G
(
x, pcp(x)

)
+ bcp(x), called nearest peak function,

– JZ2(x) := max
i∈{1,2,...,k}

ai · G(x, pi) + bi, called weighted nearest peak function,

where cp(x) := arg mini∈{1,2,...,k} H(x, pi) is defined by the closest peak to a
search point, and G(x, pi) := n − H(x, pi) indicates the proximity of x to pi.

For the nearest peak function, JZ1(x), the fitness of a search point x is
determined by the proximity to the closest peak i = cp(x) along with its slope ai

and its offset bi. In cases where multiple i minimise H(x, pi), i should additionally
maximise ai · G(x, pi) + bi.

The weighted nearest peak function, JZ2(x), takes the height of peaks into
account. The peak i yielding the largest value ai · G(x, pi) + bi determines the
function value. The bigger the height of a peak, the bigger its influence on the
search space in comparison to smaller peaks. Note that, in case of equal slopes
a1 = · · · = ak and equal heights b1 = · · · = bk, both functions JZ1 and JZ2 using
parameters a1, . . . , ak, b1, . . . , bk are identical as for JZ2 the maximum over all
terms ai ·G(x, pi)+ bi for all 1 ≤ i ≤ k is attained for the closest peak i = cp(x).

Theorem 2. For JZ1 and JZ2 using the same parameters a1 = · · · = ak and
b1 = · · · = bk we have JZ1 = JZ2.

212 E. Covantes Osuna and D. Sudholt

In the case of two peaks p1 and p2, if these peaks are complementary, that
is, p2 = p1, then JZ1 and JZ2 generalise the TwoMax function, with TwoMax
being the special case of p1 = 0n, p2 = 1n, a1 = a2 = 1 and b1 = b2 = 0 [9]. This
setting was studied for the (μ+1) EA with clearing in [3].

We consider peaks being placed independently and u. a. r., as this strategy is
simple, fair, and it scales towards an arbitrary number of peaks. The slopes are
chosen equal to 1 for all peaks for the sake of simplicity. Even though the peaks
are placed randomly, if the peaks have moderately similar heights, the resulting
fitness landscape has a clear structure: with high probability all peaks are local
optima, and all search points within a Hamming ball of radius Ω(n) belong to
a peak’s basin of attraction. This holds for both functions JZ1 and JZ2 as they
have equal fitness values within the mentioned Hamming balls (but may have
different values on other search points).

Theorem 3. Assume k peaks p1, . . . , pk chosen independently and u. a. r. from
{0, 1}n. If a1 = · · · = ak = 1 and max1≤i≤k bi − min1≤i≤k bi ≤ cn for a constant
c < 1/2 then with probability 1−k2e−Ω(n) for radius r := (1/2−c)/3 ·n we have:

1. all k peaks p1, . . . , pk are local optima in both f1 and f2,
2. for all 1 ≤ i ≤ k, all search points in Bi := {x | H(x, pi) ≤ r}, a Hamming

ball of radius r around pi, belong to the basin of attraction of pi with respect
to both JZ1 and JZ2, that is, there is a Hamming path from x to pi on which
the values of JZ1 and JZ2 are strictly increasing, and

3. for all search points x ∈ ⋃k
i=1 Bi, JZ1(x) = JZ2(x).

Proof. Assume without loss of generality min1≤i≤k bi = 0 (as adding a fixed
value does not affect the problem structure), hence bi ≤ cn for all 1 ≤ i ≤ k.

By Chernoff bounds, the probability that two different peaks will have Ham-
ming distance at most n/2 − r is e−Ω(n). By the union bound, the probability
that this holds for any pair of peaks is at most k2 · e−Ω(n). We assume in the
following that every two peaks have a Hamming distance larger than n/2 − r.

Now consider a search point x ∈ Bi, that is, H(x, pi) ≤ r. Since r ≤ n/6 we
have n/2 ≥ 3r, and thus for all j �= i we have H(x, pj) ≥ H(pi, pj) − H(x, pi) >
n/2−r−r ≥ r ≥ H(x, pi). So pi is a unique closest peak, cp(x) = i. By definition
of JZ1, the second statement follows for JZ1 as on every shortest Hamming path
from x to pi, subsequently decreasing the Hamming distance to pi increases the
fitness by ai = 1. Since r ≥ 1 if n is large enough, pi is a local optimum for JZ1.

It only remains to show the third statement as then the first two statements
also apply to JZ2. To prove that JZ2(x) = JZ1(x) for x ∈ Bi, we need to show
that the maximum over terms aj · G(x, pj) + bj = n − H(x, pj) + bj from the
definition of JZ2 is attained for j = i. We have n − H(x, pi) + bi ≥ n − r as
H(x, pi) ≤ r and bi ≥ 0. For j �= i we have n − H(x, pj) + bj < n/2 + 2r + cn as
bj ≤ cn and H(x, pj) ≥ H(pi, pj)−H(x, pi) > n/2−r−r = n/2−2r. Noting that
n/2+2r+ cn = n/2+3r+ cn−r = n/2+(n/2− cn)+ cn−r = n−r establishes
n−H(x, pj)+bj ≤ n−H(x, pi)+bi and hence JZ2(x) = max1≤j≤k(n−H(x, pj)+
bj) = n − H(x, pi) + bi = JZ1(x). ��

Empirical Analysis of Diversity-Preserving Mechanisms 213

4 Experimental Analysis

For the experimental analysis we test each of the algorithms from Table 1
(referred to by the acronyms defined in the first column) on Jansen-Zarges
multimodal function classes. We consider a problem size n = 100, genotypic
distance for all algorithms that require a dissimilarity measure and stop runs
after 10μn ln n generations. This time limit is motivated by [2, Lemma 3.3] stat-
ing that, loosely speaking, 2eμn ln n ≈ 5.44μn ln n generations are sufficient to
perform hill climbing on two peaks with high probability.

The experimental framework is divided in 3 experimental set-ups. In Sect. 4.1
we assess the ability of each mechanism to find many peaks with equal height, and
in Sect. 4.2, we assess the ability of each mechanism to maintain the population
diversity when considering peaks with different heights to yield global and local
optima. For both sections, the number of peaks was increased exponentially as
k = {2, 4, 8, . . . , 64}. For each k, we generated 100 different instances choosing k
peaks u. a. r. from {0, 1}n. In each experiment, all algorithms are tested on the
same set of 100 instances to ensure a fair comparison. The challenge for each
mechanism is to find and maintain as many peaks as possible before reaching the
10μn ln n generations; we record the fraction of the peaks found. The population
size is chosen large enough (μ = 100) to be able to accommodate all peaks.

The analysis in Sect. 4.3 is inspired by [3, Sect. 7.3] and focusses on landscapes
with two peaks. In this section we take a closer look at the ability of the diversity
mechanisms to deal with different basins of attraction, including a wider range
of two-peaked landscapes than the ones likely to be generated by placing peaks
u. a. r.. The goal is to observe which mechanisms are able to escape from local
optima by tunnelling through the fitness valley that separates two peaks. We
choose μ = 32 as in [3, Sect. 7.3] and also consider the same two initialisations:
the standard uniform random initialisation and biased initialisation where the
whole population is initialised with copies of one peak (0n for TwoMax). Biased
initialisation is used in order to observe how the mechanisms are able to escape
from a local optimum and how fast it is compared to a random initialisation.

Based on the theoretical analysis in [3] we define the window size w =
2.5μ ln n for RTS. We know from [6,13] that both FS approaches with phe-
notypic sharing and σ = n/2 are always efficient on TwoMax but no theory
for genotypic sharing is available. Preliminary experiments for genotypic shar-
ing and σ = n/2 on TwoMax yielded poor results; however with σ = n (which
implies that all individuals always share fitness) both peaks were found in most
runs. This makes sense on other landscapes as well as if σ is set smaller than the
radius or basin of attraction around a local optimum, then FS is unable to push
individuals away from said local optimum. Thus it seems best to err on the side
of choosing σ too large rather than too small.

For CL the situation is different. If σ is chosen too large, such that there
are several optima within a distance of σ, then global optima may be cleared,
making it impossible to maintain many optima in the population. So for CL
it seems best to err on the side of choosing σ too small rather than too large.
We choose σ = n/3 for Sects. 4.1 and 4.2 as with high probability every two

214 E. Covantes Osuna and D. Sudholt

different peaks will have a Hamming distance larger than n/3 (cf. Theorem 3).
For Sect. 4.3, we use the recommendation σ = min{H(p1, p2), n/2} from [3].

4.1 Finding Peaks of Equal Height

We consider the JZ1 function with equal slopes a1 = · · · = ak = 1 and off-
sets b1 = · · · = bk = 0. We know from Theorem 2 that with equal parameters
JZ1 = JZ2. In Fig. 1 (blue/left box plots), we show the fraction of peaks obtained
in each of the 100 instances and its variance for each choice of k.

As can be seen, the PL, NGD and NFD perform poorly; these have already
been proven to perform poorly on TwoMax [6]. PC as predicted in [2] is not
able to find even one peak. FS performs best for an intermediate number of
peaks, k ∈ {4, 8, 16}, but still far worse than the best mechanisms. This is in
contrast to theoretical results [6,13] where FS in both variants was shown to be
very effective on TwoMax. These differences may be down to the differences
between TwoMax and JZ1 with random peaks and/or they may be caused by
the differences between phenotypic and genotypic sharing. Interestingly, PFS
performs far worse than the conventional FS. This is surprising as PFS uses a
significant amount of computation time to search for the best possible population
(in terms of shared fitness) it can create out of all parents and offspring, hence we
would have expected it to perform better than FS. A possible explanation for the
poor performance of FS is that even when the population is able to locate basins
of attraction of several peaks, we found several individuals scattered around each
peak, apparently repelling each other and preventing each other from reaching
the peak.

Finally, DC, RTS and CL perform surprisingly well: they find all optima most
of the time for k ≤ 16, and find most optima for k = 32. Only for a large number
of k = 64 peaks, performance deteriorated to around 80% of peaks found. This
deterioration is not surprising as the population size was fixed to μ = 100. RTS
with w = 2.5μ ln n seems to behave similarly to DC as predicted in [2].

4.2 Finding Peaks with Different Height

For this case we make use of the JZ2 function with a1 = · · · = ak = 1 and b1 · · · bk

chosen independently and u. a. r. from [0, 1, . . . , n/3]. This range is motivated by
Theorem 3, as here two peaks differ in their heights by at most n/3, choosing the
leading constant c := 1/3 as the simplest constant smaller than 1/2. Theorem 3
then yields that all search points within Hamming balls of radius n/18 centred
at a peak are located in the peak’s basin of attraction. Figure 1 (red/centre box
plots) shows the fraction of peaks obtained in each of the 100 instances and its
variance for each k = {2, 4, 8, . . . , 64} peaks. To gauge the quality of the peaks
found, we also plot the normalised best fitness found (green/right box plots),
formally f∗

i /opti where f∗
i is the fitness of the best peak found on instance i and

opti is the optimal value of instance i.
In this setting PL, NGD and NFD manage to find the global optimum in

up to 80% of instances. This suggests that on this function class it is fairly easy

Empirical Analysis of Diversity-Preserving Mechanisms 215

to find a global optimum. However, they rarely find more than one peak, hence
they seem to suffer from premature convergence. PC continues to show the worst
performance of all mechanisms. PFS and FS find fewer peaks on JZ2 compared
to JZ1. This makes sense since the former setting is more difficult than the latter;
both mechanisms seem to suffer from the issues mentioned in Sect. 4.1.

Finally, DC, RTS and CL also find fewer peaks due to the difficulty of this
setting, but still show the best performance of all mechanisms analysed in this
paper and they manage to find the global optimum in all instances. For k ≤ 8 is
not possible to always find all peaks any more, but they still manage to find at
least 50% of the peaks. Then, for k ≥ 16 the performance deteriorates in such
a way that it is not possible to reach any more 50% of the peaks but still the
mechanisms manage to find some of the peaks. The general cause of the drop
in the performance seems to be that all mechanisms struggle to escape from the
optimum found, also that low-quality optimums are being dropped when better
peaks have been found.

4.3 Escaping from Local Optima

Theorem 3 and its proof suggest that when peaks are chosen u. a. r., they will have
a Hamming distance close to n/2. We would like to investigate how the diversity
mechanisms behave if peaks have different Hamming distances. Following [2],
we focus on two peaks and vary their Hamming distance between 1 and n by
choosing p1 = 0n and p2 ∈ {0n−11, 0n−212, . . . , 1n}, along with a1 = a2 = 1
and b1 = b2 = 0. As argued in [2], this captures the performance across all
possible JZ1 functions with two complementary peaks and the given slopes and
offsets. In particular, it includes many functions that only have an exponentially
small probability to be generated when choosing peaks independently and u. a. r.
With biased initialisation, the algorithms have to find the other optimum by
tunnelling through the fitness valley that separates these two peaks. This is a
much harder task compared to hill climbing on various hills, where the aim is
for the population to maintain a good spread over the search space.

We use the set-up and empirical data for CL from [3] and report the average
number of generations of 100 runs, with two stopping criteria: both optima have
been found or t = 10μn ln n generations were reached.

From Fig. 2a all mechanisms are effective when the Hamming distance is
so small that the peaks are very close together such that the second peak can
be found by a mutation of the first peak found (except for PC, that is not
able to reach a single peak). But as the distance increases, the time for some
mechanisms increases rapidly; they are inefficient on all non-trivial settings. DC
and RTS seem to be agnostic of Hamming distances as they show a very stable
and equal performance across the whole range of Hamming distances. This make
sense as DC climbs up both peaks with equal probability (cf. the analysis on
TwoMax [6]) and RTS behaves similarly to DC. CL is very effective and only
mildly worse than DC and RTS. We see that for FS with genotypic sharing is
only effective if the peaks have a Hamming distance that is very close to n or
trivially small. For intermediate values, FS fails badly.

216 E. Covantes Osuna and D. Sudholt

PL NGD NFD PC DC RTS PFS FS CL
0

0.2

0.4

0.6

0.8

1

(a) k = 2

PL NGD NFD PC DC RTS PFS FS CL
0

0.2

0.4

0.6

0.8

1

(b) k = 4

PL NGD NFD PC DC RTS PFS FS CL
0

0.2

0.4

0.6

0.8

1

(c) k = 8

PL NGD NFD PC DC RTS PFS FS CL
0

0.2

0.4

0.6

0.8

1

(d) k = 16

PL NGD NFD PC DC RTS PFS FS CL
0

0.2

0.4

0.6

0.8

1

(e) k = 32

PL NGD NFD PC DC RTS PFS FS CL
0

0.2

0.4

0.6

0.8

1

(f) k = 64

Fig. 1. Experimental results for all (μ+1) EA variants from Table 1 among 100
instances generated u. a. r. for each number of peaks k = {2, 4, 8, . . . , 64}, μ = 100 and
n = 100, stopping runs after 10μn ln n generations. Blue/left: fraction of peaks found
on JZ1 with peaks of equal height. Red/centre: fraction of peaks found on JZ2 with
peaks with different heights, b1 . . . bk chosen u. a. r. from {0, 1, . . . , n/3}. Green/right:
normalised best fitness found on JZ2 experiments. Squares indicate median values.
(Color figure online)

Empirical Analysis of Diversity-Preserving Mechanisms 217

1 20 40 60 80 100

0

0.5

1

1.5

·105

H(p1, p2)

(a) Random Initialisation

1 20 40 60 80 100

0

0.5

1

1.5

·105

H(p1, p2)

PL
NGD
NFD
PC
DC
RTS
PFS
FS
CL

(b) Biased Initialisation

Fig. 2. The average number of generations among 100 runs for finding both peaks
p1 = 0n and p2 = {0n−11, 0n−212, . . . , 1n} on the fitness landscape defined by JZ2

with a1 = a2 = 1 and b1 = b2 = 0 or t = 10μn ln n generations were reached, for all
(μ+1) EA variants mentioned in Table 1, using n = 100 and μ = 32. Results for both
random and biased initialisation are shown.

With biased initialisation (Fig. 2b), CL is the only mechanism able to escape
from local optima with different basins of attraction. As shown theoretically
in [3], this is because cleared individuals are able to explore the fitness landscape
by performing a random walk. We know from [6,13] that both FS approaches
with phenotypic sharing and sharing radius σ = n/2 are able to escape from local
optima as well, if the two peaks are complementary. With genotypic sharing both
FS approaches perform very poorly and seem unable to escape from local optima.
Also the other mechanisms fail as they are unable to accept worse search points.

5 Conclusions

We have performed an extensive empirical study involving 9 common diver-
sity mechanisms on Jansen-Zarges multimodal function classes, covering various
degrees of multimodality from 2 to 64 peaks and peaks having equal or different
heights, reflected in their basins of attraction. Our results show that the plain
(μ+1) EA, the simple mechanisms: avoiding genotype and fitness duplicates can-
not maintain subpopulations on several peaks; once a peak has been found it
seems impossible to escape from such a peak. Probabilistic crowding shows a
terrible performance as it is unable to locate even a single peak. These findings
are in line with theoretical results on TwoMax [2,6].

Previous theoretical results have shown that both fitness sharing approaches
are always efficient on TwoMax if phenotypic distances are being used and
parameters are set appropriately [6,13]. This includes the ability to climb down
a peak and to tunnel through fitness valleys to reach other niches. Unfortunately
this is not the case for fitness sharing with genotypic distance. Only when the

218 E. Covantes Osuna and D. Sudholt

peaks have a Hamming distance that is trivially small or very close to n they seem
to be effective; for any other intermediate case they show a poor performance.

Deterministic crowding, restricted tournament selection and clearing perform
well for peaks with the same slope and height, much better than all other diver-
sity mechanisms. Only for large numbers of peaks (k = 64) and different heights
the performance starts to deteriorate. Finally, only clearing has shown the ability
to escape from local optima since all other mechanisms seem unable to accept
worse search points or unable to tunnel through fitness valleys.

References

1. Covantes Osuna, E., Sudholt, D.: Analysis of the clearing diversity-preserving
mechanism. In: Proceedings of FOGA 2017, pp. 55–63. ACM (2017)

2. Covantes Osuna, E., Sudholt, D.: Runtime analysis of probabilistic crowding
and restricted tournament selection for bimodal optimisation. In: Proceedings of
GECCO 2018. (2018 to appear). http://arxiv.org/abs/1803.09766

3. Covantes Osuna, E., Sudholt, D.: On the runtime analysis of the clearing diversity-
preserving mechanism. Evol. Comput. http://arxiv.org/abs/1803.09715

4. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary
algorithms: a survey. ACM Comput. Surv. 45(3), 35:1–35:33 (2013)

5. Das, S., Maity, S., Qu, B.Y., Suganthan, P.: Real-parameter evolutionary multi-
modal optimization – a survey of the state-of-the-art. Swarm Evol. Comput. 1(2),
71–88 (2011)

6. Friedrich, T., Oliveto, P.S., Sudholt, D., Witt, C.: Analysis of diversity-preserving
mechanisms for global exploration. Evol. Comput. 17(4), 455–476 (2009)

7. Glibovets, N.N., Gulayeva, N.M.: A review of niching genetic algorithms for mul-
timodal function optimization. Cybern. Syst. Anal. 49(6), 815–820 (2013)

8. Harik, G.R.: Finding multimodal solutions using restricted tournament selection.
In: Proceedings of the 6th ICGA, pp. 24–31. Morgan Kaufmann Publishers Inc.
(1995)

9. Jansen, T., Zarges, C.: Example landscapes to support analysis of multimodal
optimisation. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G.,
Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 792–802. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45823-6 74

10. Lozano, M., Garćıa-Mart́ınez, C.: Hybrid metaheuristics with evolutionary algo-
rithms specializing in intensification and diversification: overview and progress
report. Comput. Oper. Res. 37(3), 481–497 (2010)

11. Mahfoud, S.W.: Niching methods for genetic algorithms. Ph.D. thesis, University
of Illinois at Urbana-Champaign (1995)

12. Mengsheol, O., Goldberg, D.: Probabilistic crowding: deterministic crowding with
probabilistic replacement. In: Proceedings of GECCO 1999, pp. 409–416 (1999)

13. Oliveto, P.S., Sudholt, D., Zarges, C.: On the runtime analysis of fitness shar-
ing mechanisms. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.)
PPSN 2014. LNCS, vol. 8672, pp. 932–941. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10762-2 92

14. Pétrowski, A.: A clearing procedure as a niching method for genetic algorithms.
In: Proceedings of ICEC 1996, pp. 798–803 (1996)

15. Sareni, B., Krahenbuhl, L.: Fitness sharing and niching methods revisited. IEEE
Trans. Evol. Comput. 2(3), 97–106 (1998)

http://arxiv.org/abs/1803.09766
http://arxiv.org/abs/1803.09715
https://doi.org/10.1007/978-3-319-45823-6_74
https://doi.org/10.1007/978-3-319-10762-2_92
https://doi.org/10.1007/978-3-319-10762-2_92

Empirical Analysis of Diversity-Preserving Mechanisms 219

16. Shir, O.M.: Niching in evolutionary algorithms. In: Rozenberg, G., Bäck, T., Kok,
J.N. (eds.) Handbook of Natural Computing, pp. 1035–1069. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-540-92910-9 32

17. Singh, G., Deb, K.: Comparison of multi-modal optimization algorithms based on
evolutionary algorithms. In: Proceedings of GECCO 2006, pp. 1305–1312. ACM
(2006)

18. Squillero, G., Tonda, A.: Divergence of character and premature convergence: a
survey of methodologies for promoting diversity in evolutionary optimization. Inf.
Sci. 329, 782–799 (2016)

19. Sudholt, D.: The benefits of population diversity in evolutionary algorithms: a
survey of rigorous runtime analyses (2018). http://arxiv.org/abs/1801.10087

https://doi.org/10.1007/978-3-540-92910-9_32
http://arxiv.org/abs/1801.10087

Linear Combination of Distance Measures
for Surrogate Models in Genetic

Programming

Martin Zaefferer1(B), Jörg Stork1, Oliver Flasch2,
and Thomas Bartz-Beielstein1

1 Institute of Data Science, Engineering, and Analytics,
TH Köln, Steinmüllerallee 6, 51643 Gummersbach, Germany

{martin.zaefferer,joerg.stork,thomas.bartz-beielstein}@th-koeln.de
2 sourcewerk GmbH, Roseggerstraße 59, 44137 Dortmund, Germany

oliver.flasch@sourcewerk.de

Abstract. Surrogate models are a well established approach to reduce
the number of expensive function evaluations in continuous optimiza-
tion. In the context of genetic programming, surrogate modeling still
poses a challenge, due to the complex genotype-phenotype relationships.
We investigate how different genotypic and phenotypic distance mea-
sures can be used to learn Kriging models as surrogates. We compare
the measures and suggest to use their linear combination in a kernel.

We test the resulting model in an optimization framework, using sym-
bolic regression problem instances as a benchmark. Our experiments
show that the model provides valuable information. Firstly, the model
enables an improved optimization performance compared to a model-free
algorithm. Furthermore, the model provides information on the contribu-
tion of different distance measures. The data indicates that a phenotypic
distance measure is important during the early stages of an optimization
run when less data is available. In contrast, genotypic measures, such as
the tree edit distance, contribute more during the later stages.

Keywords: Genetic programming · Surrogate models
Distance measures

1 Introduction

Genetic programming (GP) automatically evolves computer programs that aim
to solve a task. This idea goes back to fundamental work by Koza [1] and follows
the principles of evolutionary computation. The computer programs are indi-
viduals subject to an evolutionary process, which improves them based on their
fitness, i.e., their ability to solve a problem. Examples for GP tasks are symbolic
regression (SR), classification, and production scheduling [2,3].

Expensive fitness functions pose a challenge to evolutionary algorithms,
including GP. This occurs, e.g., when the fitness function requires laboratory
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 220–231, 2018.
https://doi.org/10.1007/978-3-319-99259-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_18&domain=pdf

Linear Combination of Distance Measures for Surrogate Models in GP 221

experiments or extensive simulations. Frequently, Surrogate Model-Based Opti-
mization (SMBO) is used to deal with expensive evaluations [4]. Most SMBO
research focuses on problems with continuous variables, where many competitive
regression models are available. In the context of GP, the use of surrogates is not
well researched. This might seem surprising, as the computational bottleneck of
most GP applications is the evaluation of fitness cases. Unfortunately, surrogate
modeling of GP tasks, such as SR, is difficult, because it subsumes modeling of
a complex genotype-phenotype-fitness mapping. Recent work in deep learning
suggests that this mapping can be approximated, at least in certain domains of
program synthesis [5].

In the last years, combinatorial search spaces were treated successfully with
SMBO, by using distance-based models [6,7]. However, there is no generic way
for choosing an adequate distance measure. For complex tree shaped structures,
which occur in GP, it is challenging to select a suitable distance measure and
find a feasible modeling approach. For that reason, we will focus on the following
research questions regarding SMBO for GP and tree-shaped structures:

1. How do different distance measures compare to each other?
2. What impact do these distances have on the model?
3. How does SMBO based on a linear combination of these distances compare

to a model-free Evolutionary Algorithm (EA) and random search?

To answer these questions, we will utilize bi-level optimization problems based
on different SR tasks as test functions. While these test functions are not that
expensive to evaluate (and hence are not a natural use-case for surrogate models),
they present a challenging benchmark for the proposed models. They allow us to
gain insights into the topics summarized by our research questions. We expect
that our result can be transferred to other problems with tree shaped structures,
such as program synthesis for general purpose or domain-specific languages.

2 Related Work

In the following, we will differentiate between two approaches, which will be
further referred to as (a) SMBO and (b) SAEA.

(a) Sequential SMBO generates new candidate solutions by performing a search
procedure on the surrogate model, e.g., as described for the Efficient Global
Optimization (EGO) algorithm by Jones et al. [8].

(b) Approaches that utilize surrogates to assist an EA (SAEA), e.g., as described
by Jin [9]. For example, the surrogate is utilized to support the selection
process of an EA by predicting the fitness of proposed offspring.

Most studies on GP and surrogate modeling focus on SAEA. Kattan and
Ong [10] describe an SAEA approach with two distinct Radial Basis Function
Network (RBFN) models (semantic and fitness). The conjunction of both models
is used to evolve a subset of the population. They report superiority of their
approach over standard GP for three different tasks, including SR.

222 M. Zaefferer et al.

Hildebrandt and Branke [11] present a phenotypic distance. They optimize
job dispatching rules with an SAEA approach. Their surrogate model is a nearest
neighbor regression model based on the phenotypic distance. They demonstrate
that their model allows for a faster evolution of good solutions. This approach
is also discussed and extended by Nguyen et al. [12,13].

To the best of our knowledge, only Moraglio and Kattan [14] describe an
SMBO approach to GP where a very limited number of function evaluations is
allowed. They use an RBFN with appropriate distance measures. Their results
did not indicate a significant improvement over the use of a model-free optimiza-
tion approach.

In contrast to these works, we aim to learn Kriging models (following the
idea of EGO [8]) and employ them in an SMBO framework with a severely
limited number of 100 fitness function evaluations. Our models are based on a
linear combination of three diverse distances. Like several of the above described
studies, we use SR as a test case. We want to show that the relation between
complex structures and their associated fitness can be learned and exploited
for optimization purposes. Although SR is not particularly expensive, we argue
that it presents a difficult and challenging test case to investigate whether our
proposed models are able to learn such a complex search landscape.

3 A Test Case for SMBO-GP: Bi-level Symbolic
Regression

In SR, a regression task is solved by evolving symbolic expressions. In essence,
SR searches for a formula that best represents a given data set. The formulas
can be represented by trees. Each tree consists of nodes and leaves, as well as the
discrete labels on the nodes (mathematical operators, e.g., +,−, ∗, /) and leaves
(variables and real-valued constants). Figure 1 shows the tree structure of the
symbolic expression

√
c1 − z2 + (z1c2). Our goal is to develop models that learn

the relation between discrete tree structures and their fitness. For now, we are
not interested in the influence of the real-valued constants. Hence, we suggest a
bi-level problem definition.

3.1 Problem Definition

The upper level is the optimization of the discrete tree structure. For each fitness
evaluation of the upper level, the lower level optimization problem has to be
solved, which comprehends the optimization of the constants. Therefore, the
upper level problem is defined by

min
x

F (x, c) subject to c ∈ arg min
c

f(x, c),

where x is the tree structure representation, c ∈ R
d is the set of dc constant

values, and f(x, c) is the lower level objective function. Note, that the number
of constants dc depends on x. In extreme cases, the tree x may not contain any

Linear Combination of Distance Measures for Surrogate Models in GP 223

1
2

2

2

f(x,{6.2,01}) = 0.4

f(x,{8.9,2.5}) = 0.3

f(x,{3,0}) = 0.1

F(x,c)
+

*sqrt
-

z1

z2c1

c2

+
*sqrt

-
z1

z26.2

0.1

+
*sqrt

-
z1

z28.9

2.5

+
*sqrt

-
z1

z23

0

x: tree representation of a
symbolic expression

lower level: optimization of constants ci

Fig. 1. Example for the upper level candidate x =
√
c1 − z2 + (z1c2). To estimate its

fitness F (x, c), a lower level optimizer (step 1) estimates the fitness f(x, c) for different
constants (step 2) and returns the best to F (x, c) (red circle). (Color figure online)

constants (dc = 0), which eliminates the lower level problem. The fitness will be
determined as

f(x, c) = 1 − |cor(ŷ(x, c), y)|, (1)

where ŷ(x, c) denotes the output of the symbolic expression for the data set,
y is the corresponding vector of true observations, and cor(·, ·) is the Pearson
correlation coefficient. If ŷ(x, c) becomes infeasible (e.g., due to a negative square
root or division by zero), we assign a penalty value. To that end, we use the
upper bound of our fitness function, fpenalty(x, c) = 1. An example of an upper
level candidate’s evaluation is visualized in Fig. 1. If not stated otherwise, fitness
evaluations refer to evaluations of the upper level function F .

3.2 Surrogate Model-Based Optimization

The SMBO approach we employ for the upper level optimization is loosely based
on the EGO algorithm [8]. Initially, the search space is randomly sampled. The
resulting data is used to learn a suitable regression model. This surrogate model
is subject to a search via an optimization algorithm (e.g., an EA), which opti-
mizes an infill criterion based on the model. An iteration ends with evaluating
the actual (upper level) fitness of the new individual. Then, the surrogate model
is updated with the new data and the procedure iterates.

As in standard EGO, we utilize a Kriging regression model, which assumes
that the observed data is derived from a Gaussian process [15]. One reason for the
popularity of Kriging in SMBO is that it allows to estimate its own uncertainty.
The uncertainty estimate can be used to calculate the expected improvement
(EI) infill criterion, which allows to balance exploitation and exploration in an
optimization process [8,16].

Importantly, Kriging is based on correlation measures or kernels, which
describe the similarity of samples. Exponential kernels, e.g., k(x, x′) =
exp(−θ||x − x′||2), with the parameter θ determined by Maximum Likelihood

224 M. Zaefferer et al.

Estimation (MLE), are often used. It is straightforward to extend kernel-based
models to combinatorial search spaces [6,7]. The core idea is to replace the dis-
tance measure, e.g., in the exponential kernel k(x, x′) = exp(−θd(x, x′)). The
distance measure d(x, x′) can be some adequate measure of distance between
candidate solutions, such as an edit distance. Our study follows this idea. We
will compare different distance measures and test how much they can contribute
to Kriging models in an SMBO algorithm.

4 Kernels for Bi-level Symbolic Regression

We investigate four distance measures between trees or symbolic expressions,
that will embedded into an exponential kernel.

4.1 Phenotypic Distance

The Phenotypic Distance (PhD) estimates the dissimilarity of two individu-
als (trees) based on their program output/phenotype, instead of using their
code/genotype. This idea has been suggested by Hildebrandt and Branke for
evolving dispatching rules via GP [11]. They defined a phenotypic dissimilarity
by comparing the outcome of a decision rule based on a small set of test situ-
ations. Our SR tasks require a different definition of the phenotypic distance.
We propose to measure the correlation between the outcomes of two symbolic
expressions, with all numeric constants set to one. Hence, we save the effort of
the optimization of the constants and compare the outputs of the expressions
ŷ(x,1) with

dPhD(x, x′) = 1 − |cor(ŷ(x,1), ŷ(x′,1))|.
If either of the two expressions is infeasible (e.g., due to division by zero), the
distance will be set to one. Setting all constants to one is of course arbitrary. A
random sample would also be possible but potentially problematic. A difference
in phenotype could be perceived due to a different assignment of the constants on
the leaves, rather than an actually different behavior of the symbolic expressions.

4.2 Tree Edit Distance

As an alternative to the PhD, we will also employ genotypic distances, i.e.,
distances between trees. One possible definition of distance between trees is the
minimal number of edit operations required to transform one tree into another.
This approach is denoted as the Tree Edit Distance (TED). We use the TED
implementation that was introduced by Pawlik and Augsten [17]. It is available
in the APTED library version 0.1.1 [18]. The APTED implementation counts
the following edit operations: node deletion, node insertion, and node relabeling.

Linear Combination of Distance Measures for Surrogate Models in GP 225

4.3 Structural Hamming Distance

The Structural Hamming Distance (SHD) [19] has been used to express genotypic
dissimilarity for model-based GP in several studies [10,11,14]. Roughly speaking,
it compares two trees by recursively checking each node that the two trees have
in common. To compare nodes, it uses the Hamming Distance (HD), which is
one if two labels are different and zero otherwise. The original SHD (SHD1) is
defined as

dSHD1(x, x′) =

⎧
⎨

⎩

1, if arity(x0) �= arity(x′
0)

HD(x0, x
′
0), if arity(x0) = arity(x′

0) = 0
Δ(x, x′), if arity(x0) = arity(x′

0) = m,

with

Δ(x, x′) =
1

m + 1
+ HD(x0, x

′
0) +

m∑

i=1

dSHD1(xi, x
′
i). (2)

Here, x and x′ are trees, x0 indicates a root node of x, xi with i ≥ 1 is the
i-th subtree of x, and arity(x0) implies the number of subtrees linked to the
corresponding node. We use a slight variation, which we refer to as SHD2. For
the sake of simplicity, we define it for trees with a maximum arity of two. SHD1
and SHD2 are identical, except for the case arity(x0) = arity(x′

0) = m > 1.
Then, Eq. (2) becomes

Δ(x, x′) =
1

m + 1
+ HD(x0, x

′
0)+

min {dSHD2(x1, x
′
1) + dSHD2(x2, x

′
2),dSHD2(x1, x

′
2) + dSHD2(x2, x

′
1)} .

That means, when two subtrees x1, x2 are compared with their counterparts
x′
1, x

′
2, we use the pairing or alignment between x and x′ which yields the smaller

distance. Potentially, this is more accurate, since it does not depend on the (arbi-
trary) initial alignment of the two trees. But SHD2 requires additional compu-
tational effort, even more so for larger arities.

The reason for using this modified variant lies in the nature of our SMBO
algorithm. SAEAs yield datasets where some individuals will have common
ancestors (or are ancestors of each other), and hence, are inherently more likely
to be aligned with each other. Contrarily, SMBO generates new trees via a ran-
domly initialized search that avoids direct an cestor relationships among indi-
viduals. This implies that two trees are more likely to have different alignments.
Then, SHD2 is a potentially more accurate (but costly) measure.

4.4 Comparison and Linear Combination of Distances

For the comparison of the four different distance measures, we first calculated
the distance matrices for 100 randomly generated trees (symbolic expressions).
We used the same random tree-generation method as in Sect. 5. We computed
the Pearson correlation between the different distance matrices. For this sample,

226 M. Zaefferer et al.

the SHD variants yielded a strong correlation of 0.99, which indicates that they
reflect very similar information. For the remaining samples, the correlation was
0.51 (PhD, SHD2), 0.29 (PhD, TED), and 0.37 (TED, SHD2). That is, the
largest diversity was observed between PhD and TED. Figure 2 visualizes the
corresponding distance matrices. It shows that the SHD does have problems
with differentiating between trees of different complexity. Several large blocks of
the SHD matrices have a value of one, indicating that the respective trees are
at maximum distance. This lack of perceiving a more fine-grained difference is
problematic. It implies that any model based on SHD is potentially inaccurate
for trees of a complexity that has not been observed so far. TED and PhD tend to
see larger distances for more complex trees. This is obvious for TED, as complex
trees require more operations to be transformed into each other. For PhD it is
clear that complex trees can produce more diverse phenotypic behavior.

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

SHD2 SHD1

PhD TED

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

i

j

d(x,x')
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 2. Image plot of the four different tree distance measures. Each image cell is an
element of a distance matrix. The trees are sorted by their complexity (tree depth and
number of nodes). Trees in the lower left corner are less complex than those in the
upper right. The tree depth is annotated in red at the bottom of each plot. (Color
figure online)

With regards to the computational effort, we note that TED is by far the
most expensive measure. It is followed by the PhD and the cheapest measure is
SHD1. While the specifics strongly depend on the implementation, we note that
the TED required at least an order of magnitude more computation time than
the others. This is not surprising, as determining the minimal number of edit
operations requires to solve an optimization problem.

Linear Combination of Distance Measures for Surrogate Models in GP 227

The PhD measure seems most promising in terms of generalizability. Most GP
problems involve some phenotypic behavior that may be measured/compared.
SHD and TED are limited to problems with tree structures and discrete labels.

The diversity of the different distances suggests that it is promising to com-
bine them. We propose a linear combination of the PhD, TED, and SHD2. We
decided to focus on one of the SHD variants due to their similarity and chose
the SHD2 variant due to its potentially increased accuracy. Also, its increased
computational cost disappears compared to the larger costs of the TED. The
linear combination in the kernel is

k(x, x′) = exp {−β1dSHD2(x, x′) − β2dPhD(x, x′) − β3dTED(x, x′)} . (3)

Each distance receives a weight βi ∈ R
+ that is determined by MLE. The linear

combination allows for a potentially more accurate Kriging model. As we do
not know a-priori which distance measure is appropriate for a certain problem
(or whether they complement each other), the combination shifts this decision
problem to the model. Furthermore, the weights provide insights into when and
how much each distance contributes to the model.

5 Case Study

We performed a case study, testing the SMBO algorithm with six SR tasks.

Symbolic Regression Test Problems: We chose the Newton, sine-cosine, Kotan-
chek2D, and Salustowicz1D problems as used in [2] and the sqr and sqr+log
problem as used in [10]. All problem configurations remained unchanged, i.e.,
operator set, data set size, and bounds for variables. We did not evaluate the
derived symbolic expressions on an additional test set since our goal was to
determine the ability of the SMBO algorithm to learn the connection between
candidate solutions and fitness.

Lower level optimization of the constants: To optimize the lower level objective
function, we decided to use the locally biased version of the Dividing RECTangles
(DIRECT) algorithm [20] for a global search. DIRECT uses 1000×dc evaluations
of the objective function. The result of the DIRECT run is further refined with
a Nelder-Mead local search [21] (also 1000 × dc evaluations).

Upper level optimization of the structure: All algorithms received a budget of
100 upper-level objective function evaluations to emulate an expensive optimiza-
tion problem. We used Random Search (RS) and a model-free EA as baselines.
All operators were taken from the rgp package [22]. For creating new individ-
uals, both baselines used randfuncRampedHalfAndHalf, parameterized with a
maximum tree depth of 4 and a probability to generate constants of 0.2. Fur-
thermore, the EA employed crossoverexprFast for recombination, which ran-
domly exchanges subtrees. For mutation, mutateSubtreeFast was used. The
parameters of the mutation operator are as follows: 0.1 (probability to insert a
subtree), 0.1 (probability to delete a subtree), 0.1 (probability of creating a sub-
tree instead of a leaf), 0.2 (constant generation probability), and 4 (maximum

228 M. Zaefferer et al.

tree depth). Since constant values were not considered at the upper level, the
respective bounds in the operator are both set to one. We employed a standard
EA (based on optimEA in the CEGO package [23]) that used the above described
operators. The EA used truncation selection, and a fixed number of children in
each generation. The population size and number of children were tuned (see
Sect. 5.1).

The upper level problem was also solved by the SMBO algorithm. We used
the Kriging model from the CEGO package, with the kernel given in Eq. (3). The
model was trained within 1, 000 likelihood evaluations (via DIRECT). The EA
searched on the surrogate model with 10, 000 evaluations of the EI criterion in
each iteration. The SMBO search was initialized with 20 random trees.

For the analysis, we recorded the best individual for each run. In addition,
we recorded the weights used for linear combination of the distances in each
iteration, to evaluate the contribution of each distance function over time. Each
algorithm run was repeated 20 times.

5.1 Algorithm Tuning

We decided to tune some potentially sensitive parameters to allow for a more fair
comparison between the model-based and model-free algorithm. The model-free
GP algorithm’s population size μ and number of children λ produced in each
iteration were tuned. All combinations of μ = {5, 10, 15, 20} and λ = {1, 2, 3, 4, 5}
were tested. The optimization performance was expected to be sensitive to these
parameters, due to the extremely small fitness evaluation budget.

For the SMBO algorithm, we did not tune μ and λ. Due to the overall larger
complexity we decided to set the parameters based on experience only, without a
detailed tuning. In fact, due to the larger number of evaluations (of the surrogate
model) the algorithm should be less sensitive to μ and related parameters. Since
10, 000 evaluations of the surrogate model were allowed, a (relative to the model-
free EA) large μ = 200 was given to the EA and correspondingly larger λ = 10.

We also performed preliminary experiments with the mean square error
(MSE) instead of the correlation-based fitness measurement in Eq. (1). The
MSE-based experiments yielded rather poor results with SMBO. This may be
explained by the penalty for infeasible candidates. The penalty value is very
difficult to set for the MSE case. A poor choice may severely impair the ability
to train a good Kriging model because of strong jumps or plateaus in the fitness
landscape. While our preliminary experiments were not very detailed, they can
be counted as additional tuning effort, since they influenced the choice of the
correlation measure used in the phenotypic distance.

5.2 Analysis and Discussion

Boxplots of the best observed fitness after 50 and 100 evaluations of the objective
function F are shown in Fig. 3. We report results of the tuned, model-free EA
that achieved the best mean rank on all problems (μ = 15, λ = 1). The minimal
λ makes sense, as it allows to perform a large number of iterations despite the

Linear Combination of Distance Measures for Surrogate Models in GP 229

●

●

●

● ●●
●

●●

●

●●

●

●
●

●

●●

●●

●

● ●

●●

●
●
●

●

●

●●
●

●
●

● ●

●

●

●●

●● ●●

Salustowicz1D sqr sqr+log

Newton sine−cosine Kotanchek2D

RS EA SMBO RS EA SMBO RS EA SMBO

RS EA SMBO RS EA SMBO RS EA SMBO

0.1

0.2

0.3

0.0000

0.0025

0.0050

0.0075

0.0100

0.0

0.2

0.4

0.6

0.00000

0.00025

0.00050

0.00075

0.00100

0.0

0.1

0.2

0.3

0.4

0.0000

0.0005

0.0010

0.0015

0.0020

method

1−
|c

or
(ŷ

,y
)| evaluations

50

100

Fig. 3. Boxplot of best found values after 50 and 100 evaluations respectively.

small budget. For each problem and number of evaluations, we tested for statisti-
cal significance of the observed differences via the non-parametric Kruskal-Wallis
rank sum test and Conover posthoc test, with a significance level of 0.05. The
SMBO was significantly better than its two competitors in most cases, except
for Salustowicz1D and Kotanchek2D after 100 evaluations, where no evidence
for significant differences to the model-free EA is found. The EA was signifi-
cantly better than the plain RS, except for Newton and sine-cosine (50 and 100
evaluations) as well as Kotanchek2D (50 evaluations).

To determine which distance measures contributed to these results, the
weights of the linear combination are shown in Fig. 4. The weights are normal-
ized so that they sum up to one. We show results for two problems, since they
are similar in the other four cases. Usually, the PhD received the largest weights
in the beginning, whereas the importance of the TED increased throughout the
run, sometimes overtaking the PhD. SHD usually does not contribute as much,
except for the sqr problem instance. Here, SHD overtakes both other distances
at the end of the run. The generally larger importance of the PhD compared
to SHD is in agreement with previous results by Hildebrandt and Branke [11],
where a similar distance achieved better results than SHD.

We confirmed these results by additional optimization experiments for each
single distance (i.e., without a linear combination). Runs with PhD tended to
suggest good candidate solutions early, whereas TED and SHD performed better
later on. The linear combination performed at least as well as the best of the
single-distance models.

230 M. Zaefferer et al.

20 40 60 80 100

0.
0

0.
4

0.
8

Salustowicz1D

iteration

av
g.

 n
or

m
al

iz
ed

 w
ei

gh
t

20 40 60 80 100

0.
0

0.
4

0.
8

sqr

iteration

av
g.

 n
or

m
al

iz
ed

 w
ei

gh
t

Fig. 4. Average normalized weights for the different kernels/distances. Solid line: PhD,
dashed line: TED, dotted line: SHD2.

6 Conclusion and Outlook

We investigated whether three distance measures can be employed in an SMBO
algorithm based on a Kriging model. We tested the algorithm with SR tasks.
With respect to the research questions stated in Sect. 1, our results can be sum-
marized as follows:

1. The distance measures PhD, SHD and TED are quite diverse. The SHD dif-
ferentiates poorly between trees with different complexities. Especially the
TED seems to be much more fine grained, but it requires the most computa-
tional effort. On the other hand, the PhD is comparatively cheap to evaluate
and independent of the genotype.

2. Interestingly, the PhD seemed to contribute most, followed by the TED. This
was especially true for small data sets at the beginning of an optimization
run. Later on, TED and to a lesser extent SHD gained importance.

3. A Kriging model based on a linear combination of the three distances seems
to be beneficial for SMBO. The SMBO algorithm outperformed a model-free
algorithm and random search. All algorithms used no more than 100 fitness
evaluations.

In future work, we would like to determine how well these results apply to other
problem classes. Furthermore, alternatives to the linear combination of distances
should be investigated.

References

1. Koza, J.R.: Genetic programming as a means for programming computers by nat-
ural selection. Stat. Comput. 4(2), 87–112 (1994)

2. Flasch, O.: A modular genetic programming system. Ph.D. thesis, TU Dortmund
(2015)

3. Nguyen, S., Mei, Y., Zhang, M.: Genetic programming for production scheduling:
a survey with a unified framework. Complex Intell. Syst. 3(1), 41–66 (2017)

Linear Combination of Distance Measures for Surrogate Models in GP 231

4. Bartz-Beielstein, T., Zaefferer, M.: Model-based methods for continuous and dis-
crete global optimization. Appl. Soft Comput. 55, 154–167 (2017)

5. Parisotto, E., Mohamed, A., Singh, R., Li, L., Zhou, D., Kohli, P.: Neuro-symbolic
program synthesis (2016). arXiv e-prints 1611.01855

6. Moraglio, A., Kattan, A.: Geometric generalisation of surrogate model based opti-
misation to combinatorial spaces. In: Merz, P., Hao, J.-K. (eds.) EvoCOP 2011.
LNCS, vol. 6622, pp. 142–154. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20364-0 13

7. Zaefferer, M., Stork, J., Friese, M., Fischbach, A., Naujoks, B., Bartz-Beielstein,
T.: Efficient global optimization for combinatorial problems. In: Proceedings of
the 2014 Genetic and Evolutionary Computation Conference, GECCO 2014, pp.
871–878. ACM, New York (2014)

8. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Global Optim. 13(4), 455–492 (1998)

9. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future
challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)

10. Kattan, A., Ong, Y.S.: Surrogate genetic programming: a semantic aware evolu-
tionary search. Inf. Sci. 296, 345–359 (2015)

11. Hildebrandt, T., Branke, J.: On using surrogates with genetic programming. Evol.
Comput. 23(3), 343–367 (2015)

12. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Selection schemes in surrogate-
assisted genetic programming for job shop scheduling. In: Dick, G., et al. (eds.)
SEAL 2014. LNCS, vol. 8886, pp. 656–667. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-13563-2 55

13. Nguyen, S., Zhang, M., Tan, K.C.: Surrogate-assisted genetic programming with
simplified models for automated design of dispatching rules. IEEE Trans. Cybern.
47(9), 1–15 (2016)

14. Moraglio, A., Kattan, A.: Geometric surrogate model based optimisation for
genetic programming: Initial experiments. Technical report, University of Birm-
ingham (2011)

15. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling.
Wiley, Hoboken (2008)

16. Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for
seeking the extremum. In: Towards Global Optimization 2, North-Holland, pp.
117–129 (1978)

17. Pawlik, M., Augsten, N.: Tree edit distance: robust and memory-efficient. Inf. Syst.
56, 157–173 (2016)

18. Pawlik, M., Augsten, N.: APTED release 0.1.1. GitHub (2016). https://github.
com/DatabaseGroup/apted. Accessed 01 June 2017

19. Moraglio, A., Poli, R.: Geometric landscape of homologous crossover for syntactic
trees. In: 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK.
IEEE (2005)

20. Gablonsky, J., Kelley, C.: A locally-biased form of the direct algorithm. J. Global
Optim. 21(1), 27–37 (2001)

21. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J.
7(4), 308–313 (1965)

22. Flasch, O., Mersmann, O., Bartz-Beielstein, T., Stork, J., Zaefferer, M.: RGP: R
genetic programming framework. R package version 0.4-1 (2014)

23. Zaefferer, M.: Combinatorial efficient global optimization in R - CEGO v2.2.0
(2017). https://cran.r-project.org/package=CEGO Accessed 10 Jan 2018

https://arxiv.org/abs/1611.01855
https://doi.org/10.1007/978-3-642-20364-0_13
https://doi.org/10.1007/978-3-642-20364-0_13
https://doi.org/10.1007/978-3-319-13563-2_55
https://doi.org/10.1007/978-3-319-13563-2_55
https://github.com/DatabaseGroup/apted
https://github.com/DatabaseGroup/apted
https://cran.r-project.org/package=CEGO

On Pareto Local Optimal Solutions
Networks

Arnaud Liefooghe1,2(B), Bilel Derbel1,2, Sébastien Verel3,
Manuel López-Ibáñez4, Hernán Aguirre5, and Kiyoshi Tanaka5

1 Univ. Lille, CNRS, Centrale Lille, UMR 9189 – CRIStAL, 59000 Lille, France
arnaud.liefooghe@univ-lille.fr

2 Inria Lille – Nord Europe, 59650 Villeneuve d’Ascq, France
3 Univ. Littoral Côte d’Opale, LISIC, 62100 Calais, France

4 Alliance Manchester Business School, University of Manchester, Manchester, UK
5 Faculty of Engineering, Shinshu University, Nagano, Japan

Abstract. Pareto local optimal solutions (PLOS) are believed to highly
influence the dynamics and the performance of multi-objective optimiza-
tion algorithms, especially those based on local search and Pareto dom-
inance. A number of studies so far have investigated their impact on
the difficulty of searching the landscape underlying a problem instance.
However, the community still lacks knowledge on the structure of PLOS
and the way it impacts the effectiveness of multi-objective algorithms.
Inspired by the work on local optima networks in single-objective opti-
mization, we introduce a PLOS network (PLOS-net) model as a step
toward the fundamental understanding of multi-objective landscapes
and search algorithms. Using a comprehensive set of ρmnk-landscapes,
PLOS-nets are constructed by full enumeration, and selected network
features are further extracted and analyzed with respect to instance
characteristics. A correlation and regression analysis is then conducted
to capture the importance of the PLOS-net features on the runtime
and effectiveness of two prototypical Pareto-based heuristics. In partic-
ular, we are able to provide empirical evidence for the relevance of the
PLOS-net model to explain algorithm performance. For instance, the
degree of connectedness in the PLOS-net is shown to play an even more
important role than the number of PLOS in the landscape.

1 Introduction

Context and motivation. In landscape analysis, the search space is regarded as an
object having spatial and structural properties which are believed to characterize
the intrinsic difficulties underlying the solving of an optimization problem and,
hence, the dynamics and performance of recognized optimization techniques [16].
This aim may be achieved in an incremental manner: (i) gaining fundamental
understanding of the information provided by the landscape structure, (ii) using
this information to catalyze the good practice and design of search techniques,
and (iii) developing out-of-the-box effective heuristics, for example, by contribut-
ing to the foundation of landscape-aware selection methods based on statistical
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 232–244, 2018.
https://doi.org/10.1007/978-3-319-99259-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_19&domain=pdf

On Pareto Local Optimal Solutions Networks 233

and machine learning prediction models [11]. In this paper, we make a step
towards leveraging the so-called local optima network model, with the primary
goal of providing empirical evidence on its relevance and usefulness for multi-
objective combinatorial optimization.

Overview of (single-objective) local optima network. Given a combinatorial opti-
mization problem, it is widely accepted that understanding the underlying (land-
scape) properties of local optimal solutions is of high importance. This is espe-
cially because heuristics are essentially navigating through the landscape in
search of high-quality local optima that are hopefully as close as possible to
the global one. A major issue, however, comes from the curse of dimensionality,
which makes it difficult to define metrics and extract statistics that are mean-
ingful and easy to interpret. In single-objective optimization, the local optima
network (LON) is a relatively new model [13,14] that adapts the notion of the
inherent network of energy surfaces in chemical physics [6] to compress the infor-
mation given by the whole search space into a smaller and synthetic mathemat-
ical object described as a graph. The local optima are thereby the nodes of
the graph and there is an edge or a transition (arc) between two nodes if the
search process is potentially able to jump from one local optima (or basin of
attraction) to another one. Variants of the definition of edges and nodes exist
that capture different facets of search algorithms, however, these variants do not
alter the primary purpose behind the analysis of LONs. The LON model not
only aims at capturing in detail the number and distribution of local optima
in the search space, but it also aims at enabling the definition of novel features
having interesting correlation with the behavior of local search heuristics [4,14].

Overview of related work in multi-objective optimization. To the best of our
knowledge, there are no investigations on defining and studying LONs in multi-
objective combinatorial optimization, although local optimality also constitutes
a central issue in the multi-objective case. For instance, the distribution and
the connection of local optima induced by a scalarizing (single-objective) func-
tion is studied in [1,9], which is informative when multiple scalarizations of the
objectives are considered. In [15], local optimality under Pareto dominance is
defined, which is then related to the convergence of Pareto local search. Such a
definition of Pareto local optimal solutions (PLOS) was later used in a number
of studies. For example, it is shown in [18] how the characteristics of a problem
instance can be related to the number of PLOS. Alternative definitions of local
optima in terms of sets of nondominated solutions are also being investigated in
relation to different multi-objective search paradigms [12]. A definition of local
optimal sets for continuous multi-objective landscapes can also be found in [8].
In fact, although a multi-objective search heuristic aims at providing a whole set
of solutions approximating the Pareto set, information about PLOS is found to
influence the global search performance, especially when considering algorithms
using local search and Pareto dominance as core components [3].

234 A. Liefooghe et al.

Paper contributions. The work described in this paper aims at pushing further
the understanding of the structure of PLOS, eventually leading to new insights
into what makes a multi-objective problem instance difficult and what makes a
particular multi-objective search algorithm effective. More specifically, our con-
tribution can be summarized following two lines:

– We introduce a model, inspired by the single-objective LON, that describes
the network of Pareto local optimal solutions (PLOS-net) for multi-objective
optimization. Using a comprehensive set of ρmnk-landscapes, we con-
duct a preliminary visual inspection and comparison of the corresponding
PLOS-nets, showing how such networks enlighten the nature of the multi-
objective landscape where the search is expected to operate.

– We further analyze the proposed PLOS-nets by introducing features from
network analysis. Based on a comprehensive statistical analysis, the predic-
tive importance of the newly-defined PLOS-net features is then studied with
respect to the performance of pure Pareto local search [15] and of a global evo-
lutionary multi-objective optimizer [10]. Our analysis indicates that PLOS,
and more critically their connections in the PLOS-net, have the largest influ-
ence on the runtime of PLS, even larger than the number of objectives and
their conflicting nature.

Outline. The rest of this paper is organized as follows. In Sect. 2, we recall
some definitions for multi-objective optimization, and we describe the ρmnk-
landscapes that will be later used in our empirical investigations. In Sect. 3, we
define the notion of PLOS-net for multi-objective optimization, and we conduct
a visual inspection of selected PLOS-nets. We also define features extracted
from the PLOS-net, and we discuss how they relate with search performance. In
Sect. 4, we study the effect and importance of PLOS-net features on algorithm
performance. In Sect. 5, we conclude the paper and discuss open issues.

2 Multi-objective Optimization and ρmnk-Landscapes

We assume that we are given a (black-box) optimization problem characterized
by a set of feasible solutions X (the decision space) and an objective function
f : X �→ IRm, to be maximized. We denote by Z = f(X) = {z ∈ IRm |∃x ∈ X :
z = f(x)} the image of X in the objective space. Given two solutions x, x′ ∈ X,
x is said to dominate x′ (x ≺ x′) iff fi(x′) � fi(x) for all i ∈ {1, . . . ,m} and
fi(x′) < fi(x) for at least one i ∈ {1, . . . , m}. The set X� ⊆ X for which there
exists no solution x ∈ X such that f(x) ≺ f(x�) for all x� ∈ X�, is the Pareto
set and its image Z� = f(X�) in the objective space is the Pareto front.

We consider ρmnk-landscapes as a problem-independent model used for
multi-objective multi-modal landscapes with objective correlation [18]. Solu-
tions are binary strings of size n, i.e., X = {0, 1}n. The objective vector
f = (f1, f2, . . . , fm) is defined as f : {0, 1}n �→ [0, 1]m such that each objective
function fi is a pseudo-boolean function to be maximized. The value fi(x) of a
solution x = (x1, x2, . . . , xn) is the average value of the contributions associated

On Pareto Local Optimal Solutions Networks 235

with each variable xj . Given objective fi and variable xj , a component function
fij : {0, 1}k+1 �→ [0, 1] assigns a real-valued contribution to every combination
of xj and its k epistatic interactions {xj1 , . . . , xjk}. For every i ∈ {1, . . . , m},
the objective function is then defined as fi(x) = 1

n

∑n
j=1 fij(xj , xj1 , . . . , xjk).

The epistatic interactions, i.e., the k variables that influence the contribution
of xj , are set uniformly at random among the (n−1) variables other than xj [7].
By increasing the number of epistatic interactions k from 0 to (n − 1), problem
instances can be gradually tuned from smooth to rugged. In ρmnk-landscapes,
fij-values follow a multivariate uniform distribution of dimension m, defined by
an m × m positive-definite symmetric covariance matrix (cpq) such that cpp = 1
and cpq = ρ for all p, q ∈ {1, . . . , m} with p �= q, where ρ > −1

m−1 defines the corre-
lation among the objectives [18]. The positive (respectively, negative) objectives
correlation ρ decreases (respectively, increases) the degree of conflict between
the different objective function values. We use the same correlation coefficient,
and the same epistatic degree and interactions for all objectives.

We generate 520 ρmnk-landscapes as follows. The problem size is set to
n = 16; the problem non-linearity to k ∈ {0, 1, 2, 4}, from linear to rugged
landscapes; the number of objectives to m ∈ {2, 3}; and the objective correlation
to ρ ∈ {−0.7,−0.4,−0.2, 0, 0.2, 0.4, 0.7} subject to ρ > −1

m−1 , from conflicting to
correlated objectives. We generate 10 instances independently at random for
each parameter combination.

3 Pareto Local Optimal Solutions Network

3.1 Definition and Visual Inspection of PLOS-net

The Pareto local optimal solutions network (PLOS-net) proposed in this paper
can be constructed for a given optimization problem (X, f) and neighborhood
relation N : X �→ 2X . For ρmnk-landscapes, the neighborhood relation is the
1-bit-flip operator: two solutions are neighbors if the Hamming distance between
them is one. Let us first define Pareto local optimal solution (PLOS) [15].

Definition 1. A solution x ∈ X is a Pareto local optimal solution if it is not
dominated by any of its neighbors: ∀x′ ∈ N (x), ¬(x′ ≺ x).

For m = 1, this is equivalent to the conventional definition of a single-objective
local optimal solution. Based on PLOS, we then define a PLOS-net as follows.

Definition 2. A Pareto local optimal solutions network (PLOS-net) is a (undi-
rected unweighted simple) graph G = (N,E), such that the set of vertices N are
the Pareto local optimal solutions, and there is an edge eij ∈ E between two
nodes xi and xj iff xi ∈ N (xj) or xj ∈ N (xi).

Two solutions connected by an edge in the PLOS-net are necessarily mutually
nondominated. Moreover, the Pareto (global) optimal solutions (POS) are par-
ticular nodes of the PLOS-net.

A visual inspection of the so-defined PLOS-nets is given in Fig. 1 for some
selected landscapes. The different PLOS-nets are extracted by full enumeration.

236 A. Liefooghe et al.

The two first rows are for a (fixed) number of objectives (m = 2), while the last
two are for m = 3. In the first and third rows, the degree of objective correlation
ρ varies for a fixed value of k = 1, whereas in the second and fourth rows, the
value of k varies for a fixed value of ρ = 0.0. The x– and y–axes correspond
to the first two objectives (f1, f2) and the scale is intentionally different for the
different instances for a better visualization. For m = 3, we see a 2D-projection
while the color intensity depicts f3–values.

By mapping the PLOS-nets into the objective space, we intend to illustrate
the shape of the network while providing a first hint on the impact of instance
parameters on the distribution of PLOS. As somewhat expected, the objective
correlation ρ impacts the shape and region spanned by the Pareto front; e.g.,
nodes of the PLOS-net at the upper objective space limit for m = 2. More inter-
estingly, the number of nodes in the PLOS-nets increases when the number of
objectives m, when the degree of conflict between the objectives −ρ, or when the
problem non-linearity k increase. A similar trend for the number of connections
between nodes can be observed. However, the increase in the PLOS-net density
seems to be proportionally lower than the number of PLOS.

This visual projection of PLOS-nets in the objective space is certainly not
sufficient to elicit the structure and complexity of the underlying graphs in a
comprehensive manner. For instance, at first sight, PLOS-nets might look fully
connected. As it will be highlighted later in our analysis, this is definitely not
true in general for the considered instances. Interestingly, the connectedness
between PLOS is one critically important aspect for multi-objective local search.
A closer investigation of the PLOS-net model will enable us to fully capture
such an aspect, among others, in a very natural manner. Because of its roots
in graph theory and complex networks [17], the PLOS-net model allows us to
define informative metrics and statistics with respect to the structure of PLOS,
as detailed in the following.

3.2 Definition of PLOS-net Features

Looking at the PLOS-net as a mathematical object, we propose to define and
analyze a number of graph-based features inspired by previous studies from
single-objective LON analysis [4,13,14] but taking into account the Pareto dom-
inance relation when necessary, and hence accommodating the multi-objective
nature of the considered problems.

The first two considered features give a general idea on the node degrees,
that is the number of edges leaving a PLOS and connecting it to other PLOS.

– node prop: The number of nodes in the network, i.e., the number of PLOS,
proportional to the search space size.

– degree avg: The average degree of a node, proportional to the number of
nodes. This metric is equivalent to the density of edges, that is, the number
of edges proportional to the maximum number of edges in a complete graph.

On Pareto Local Optimal Solutions Networks 237

ρ = −0.4, m = 2, n = 16, k = 1 ρ = 0.0, m = 2, n = 16, k = 1 ρ = 0.4, m = 2, n = 16, k = 1

ρ = 0.0, m = 2, n = 16, k = 0 ρ = 0.0, m = 2, n = 16, k = 2 ρ = 0.0, m = 2, n = 16, k = 4

ρ = −0.4, m = 3, n = 16, k = 1 ρ = 0.0, m = 3, n = 16, k = 1 ρ = 0.4, m = 3, n = 16, k = 1

ρ = 0.0, m = 3, n = 16, k = 0 ρ = 0.0, m = 3, n = 16, k = 2 ρ = 0.0, m = 3, n = 16, k = 4

Fig. 1. Exemplary PLOS-nets. For m = 3, a two-dimensional projection is displayed,
the darker the node color, the higher the f3−value. Notice the different scales of axes.

238 A. Liefooghe et al.

The next two features are related to the connectedness between PLOS. We argue
that connectedness affects whether a local search with exhaustive neighborhood
exploration will be able (or not) to find all PLOS.

– comp prop: The number of connected components in the graph, proportional
to the number of nodes. A connected component is a maximal subgraph in
which there exist a path between any pairs of nodes.

– comp max size: The size of the largest connected components, proportional
to the number of nodes.

The next three features deal with the paths that connect PLOS, either among
them or to PLOS that are also Pareto (global) optimal solutions (POS). This is
mostly intended to provide an information about how fast navigating between
PLOS can lead to the Pareto front.

– path length: The average path length between any pair of nodes, propor-
tional to the maximum distance between pairs of solutions. When the graph
is not connected, only existing paths are considered.

– path pos exist: The average number of nodes that are connected with (at
least) one POS in the graph, proportional to the number of nodes.

– path length pos: The average path length between nodes and their closest
POS in the graph, proportional to the maximum distance between pairs of
solutions. Nodes not connected to any POS are not taken into account.

The last three features describe the similarity of PLOS and are intended to
capture how the PLOS may be clustered together, eventually inferring some
preferred connections as observed in network communities.

– assort degree: The tendency of nodes to be connected to nodes with a
similar degree.

– assort pos: The tendency of local (resp. global) optimal nodes to be con-
nected to local (resp. global) optimal nodes.

– assort rank: The tendency of nodes to be connected to nodes with a similar
rank. The rank of nodes is here defined in terms of nondominated sorting
within the whole search space (dominance depth) [5].

3.3 Exploratory Analysis

Based on the 10 aforementioned features, we are able to provide a more detailed
analysis on the effect of instance parameters on the structure of the PLOS-net,
as reported in Fig. 2. Confirming our visual inspection, one can clearly notice
the positive correlation of the number of PLOS with −ρ, m and k. This correla-
tion is actually reverted when looking at the density of the graph degree avg.
This indicates that not only the number of PLOS increases with the intrinsic
difficulty of an instance, but PLOS become more sparsely connected. A similar
situation occurs when looking at the size of the induced connected components.
For instances with a low degree of non-linearity (k = 1), the proportional size

On Pareto Local Optimal Solutions Networks 239

●

●

●

●

●

●

●

●

●

●

m = 2 m = 3

−0.7 −0.4 −0.2 0 0.2 0.4 0.7 −0.7 −0.4 −0.2 0 0.2 0.4 0.7

10−4

10−3

10−2

10−1

100
no

de
_p

ro
p

k = 0

k = 1

k = 2

k = 4

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

m = 2 m = 3

−0.7 −0.4 −0.2 0 0.2 0.4 0.7 −0.7 −0.4 −0.2 0 0.2 0.4 0.7

10−4

10−3

10−2

10−1

100

co
m

p_
pr

op

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●●

m = 2 m = 3

−0.7 −0.4 −0.2 0 0.2 0.4 0.7 −0.7 −0.4 −0.2 0 0.2 0.4 0.7
0.00

0.25

0.50

0.75

1.00

pa
th

_l
en

gt
h

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

m = 2 m = 3

−0.7 −0.4 −0.2 0 0.2 0.4 0.7 −0.7 −0.4 −0.2 0 0.2 0.4 0.7
0.00

0.25

0.50

0.75

1.00

pa
th

_l
en

gt
h_

po
s

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

m = 2 m = 3

−0.7 −0.4 −0.2 0 0.2 0.4 0.7 −0.7 −0.4 −0.2 0 0.2 0.4 0.7
0.00

0.25

0.50

0.75

1.00

rho

as
so

rt_
po

s

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

m = 2 m = 3

−0.7 −0.4 −0.2 0 0.2 0.4 0.7 −0.7 −0.4 −0.2 0 0.2 0.4 0.7

10−3

10−2

10−1

100

de
gr

ee
_a

vg

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

m = 2 m = 3

−0.7 −0.4 −0.2 0 0.2 0.4 0.7 −0.7 −0.4 −0.2 0 0.2 0.4 0.7
0.00

0.25

0.50

0.75

1.00

co
m

p_
m

ax
_s

iz
e

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

m = 2 m = 3

−0.7 −0.4 −0.2 0 0.2 0.4 0.7 −0.7 −0.4 −0.2 0 0.2 0.4 0.7
0.00

0.25

0.50

0.75

1.00
pa

th
_p

os
_e

xi
st

●

●

●

●

●

●

●

●

●

●

●

●

●

●

m = 2 m = 3

−0.7 −0.4 −0.2 0 0.2 0.4 0.7 −0.7 −0.4 −0.2 0 0.2 0.4 0.7
0.00

0.25

0.50

0.75

1.00

as
so

rt_
de

gr
ee

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

m = 2 m = 3

−0.7 −0.4 −0.2 0 0.2 0.4 0.7 −0.7 −0.4 −0.2 0 0.2 0.4 0.7
0.00

0.25

0.50

0.75

1.00

rho

as
so

rt_
ra

nk

Fig. 2. Distribution of feature-values with respect to instance parameters.

of the largest connected component comp max size is 1 in most cases, mean-
ing that all PLOS are connected. This is confirmed by the path pos exist
feature, measuring how many PLOS are connected to (global) POS, which is
also found to be close to 1 for k = 1. However, with the exception of 3-
objective instances with highly conflicting objectives (ρ < 0), the PLOS-nets
are clearly disconnected (path pos exist) and PLOS are relatively far from the
Pareto set (path length pos). Surprisingly, the degree of connectedness seems
to increase substantially for the highest value of k = 4. Finally, we can remark

240 A. Liefooghe et al.

that the tendency of a node to be connected with nodes having the same degree
(assert degree) is mainly impacted by the degree of non-linearity k, while the
other parameters ρ and m have only a marginal effect. This trend is roughly the
same when looking at how the PLOS are mutually connected as a function of
their nondominated rank (assort rank). To summarize, we found that the con-
nectedness of the PLOS-net is highly related to instance parameters, especially
to the degree of non-linearity k, which is obviously related to search difficulty.
In the next section, we go deeper in the analysis by providing a comprehen-
sive statistical study of the predictive power of the features with respect to two
conventional Pareto-based multi-objective search algorithms.

4 PLOS-net Features vs. Search Performance

4.1 Algorithms and Search Performance

In the following, we consider the relative impact of PLOS-net features on both
Pareto Local Search (PLS) [15] and the Global Simple Evolutionary Multi-
objective Optimizer (G-SEMO) [10]. For PLS, we are interested in the total
number of evaluations performed by the algorithm before falling into a maximal
Pareto local optimum set [15]. For G-SEMO, the stopping condition is arbitrar-
ily set to 104 solutions evaluated. For both algorithms, we are interested in the
quality of the approximation set, measured in terms of the Pareto front resolu-
tion, i.e., the proportion of nondominated solutions identified. We perform 30
independent runs of each algorithm per instance.

The expected number of evaluations performed by PLS is reported in Fig. 3.
The expected Pareto front resolution obtained by PLS and G-SEMO is reported
in Fig. 4. These two figures illustrate how strong is the effect of the intrinsic
instance parameters on search performance. Notice in particular the linear slope
of the PLS runtime as a function of ρ, and the strong similar effect of k on the
accuracy of PLS and G-SEMO, independently of ρ and m.

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

m = 2 m = 3

PLS

−0.7 −0.4 −0.2 0 0.2 0.4 0.7 −0.7 −0.4 −0.2 0 0.2 0.4 0.7

103

104

rho

ev

al
ua

tio
ns

k = 0

k = 1

k = 2

k = 4

Fig. 3. Expected number of evaluations performed by PLS.

On Pareto Local Optimal Solutions Networks 241

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

m = 2 m = 3

PLS

−0.7 −0.4 −0.2 0 0.2 0.4 0.7 −0.7 −0.4 −0.2 0 0.2 0.4 0.7
0.00

0.25

0.50

0.75

1.00

rho

Pa
re

to
 fr

on
t r

es
ol

ut
io

n

k = 0

k = 1

k = 2

k = 4

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

m = 2 m = 3

G
−SEM

O

−0.7 −0.4 −0.2 0 0.2 0.4 0.7 −0.7 −0.4 −0.2 0 0.2 0.4 0.7

0.25

0.50

0.75

1.00

rho

Fig. 4. Expected Pareto front resolution obtained by PLS and G-SEMO.

4.2 Effect of PLOS-net Features on Search Performance

The correlation of instance parameters (ρ, m, k) and PLOS-net features with
search performance is reported in Fig. 5. First, both the number of objectives m
and their correlation degree ρ are highly correlated with the runtime of PLS
and very little with search quality, while the opposite holds for the problem non-
linearity k. Second, interesting correlations can clearly be observed for PLOS-net
features. On the one hand, the number of connected components as well as the
density of the network are correlated both to runtime and quality. We argue
that this is due to the fact that local search is basically exploring the con-
nected components in a pseudo-exhaustive manner. Hence, the performance of
the considered algorithms is naturally correlated to how local optimal solutions
are connected together. On the other hand, the features related to path length
and node connection similarity have the lowest correlation with the runtime of
PLS. However, this is no more true when examining the search resolution where
the correlation of such features to the Pareto front resolution obtained by PLS
and G-SEMO is consistently similar and more pronounced. In fact, the distance
between local and global optima, as captured by path lenght pos, is a natural
outcome to understand how likely a Pareto local search can find its way to Pareto
optimal solutions when starting from a local optima and navigating throughout
the PLOS-net under Pareto dominance.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

PLS − # evaluations PLS − PF resolution G−SEMO − PF resolution

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0
asso

rt_
rank

asso
rt_

pos

asso
rt_

degree

path_length_pos

path_pos_exis
t

path_length

comp_max_siz
e

comp_prop
degree_avg
node_prop

k
m

rho

correlation

Fig. 5. Spearman’s rank correlation coefficient between parameters/feature-values and
the expected number of evaluations performed by PLS (left), the expected Pareto front
resolution obtained by PLS (middle) and by G-SEMO (right).

242 A. Liefooghe et al.

Table 1. Variance explained by the regression model for different input variables.

Instance
parameters

PLOS-net
parameters

Instance parameters
+ PLOS-net parameters

PLS – # evaluations 75.15 % 94.37 % 95.06 %

PLS – PF resolution 70.31 % 83.84 % 84.77 %

G-SEMO – PF resolution 67.01 % 80.07 % 81.37 %

●

●

●

●

●

●

●

●

●

●

●

●

●

PLS − # evaluations

0e+00 2e+06 4e+06

asso
rt_

degree
k

asso
rt_

rank

path_pos_exis
t

path_length

comp_max_siz
e

asso
rt_

pos
rho
m

path_length_pos
degree_avg
node_prop
comp_prop

●

●

●

●

●

●

●

●

●

●

●

●

●

PLS − PF resolution

0.00 0.01 0.02
m

rho
asso

rt_
rank

asso
rt_

pos
node_prop

degree_avg

path_length_pos

asso
rt_

degree

path_pos_exis
t

comp_prop
path_length

k

comp_max_siz
e

mean decrease in accuracy

●

●

●

●

●

●

●

●

●

●

●

●

●

G−SEMO − PF resolution

0.00 0.01 0.02 0.03
m

rho

path_pos_exis
t

asso
rt_

rank

comp_max_siz
e

asso
rt_

pos

path_length_pos
node_prop
comp_prop

asso
rt_

degree
degree_avg
path_length

k

Fig. 6. Relative importance (mean decrease in accuracy) of input variables (instance
parameters and PLOS-net features) on the random forest regression model.

4.3 Importance of PLOS-net Features on Search Performance

In this last section, we build a machine learning regression model to predict
search performance based on three sets of input variables: (i) instance parame-
ters only (i.e. ρ, m, k), (ii) features from the network only (cf. Sect. 3.2), and (iii)
the combination of the two. Given the non-linearity observed on the data, we
decide to use random forest as a regression model [2], which also allows us to cal-
culate the relative importance of input variables on the quality of the model. The
proportion of variance explained by the random forest regression model for differ-
ent input variables and search performance measures are reported in Table 1. As
we can see, the addition of PLOS-net features as input variables largely improve
the regression accuracy, and consequently the predictive power of the regression
model. Additionally, the importance of model’s input variables [2] are depicted
in Fig. 6. For a given search performance measure, the instance parameters and
PLOS-net features are sorted in the decreasing order of importance, from top to
bottom. Again, the PLOS-net features, especially those related to connectedness
of PLOS, appear to have a high importance. By contrast, for the search quality
measure, the number of objectives m and the objective correlation ρ has a rela-
tively low importance, whereas the degree of non-linearity k has a relatively high
importance. Finally, the number of PLOS, although being relatively important
for the regression model, is less important than other PLOS-net features such
as the structure of connected components.

On Pareto Local Optimal Solutions Networks 243

5 Conclusions

In this paper, we introduced the Pareto local optimal solutions network model
as an alternative to capture the structure of multi-objective landscapes. We also
investigated its relation with the performance of multi-objective search algo-
rithms. Our work is to be viewed as the first step towards more systematic
investigations on the accuracy of PLOS-nets as a powerful fundamental tool for
enhancing our understanding and our practice of multi-objective optimization.
In fact, several questions are left open. For example, it would be interesting
to test whether our conclusions still hold for other state-of-the-art algorithms
and standard multi-objective combinatorial optimization problems. Studying the
scalability of the PLOS-net model for large-size problem instances is a challeng-
ing issue that should allow us to consider more practical prediction scenarios.
It is for instance still unclear how to estimate the proportion of nodes in the
PLOS-net and their relative connectedness. Considering adaptation of a simple
solution-based Pareto adaptive walk [3] for this purpose can be a promising sam-
pling methodology, which is worth investigating in the future. It would also be
interesting to investigate how leveraging PLOS-net features could help improving
the performance of the multi-objective optimization algorithms.

Acknowledgments. The authors are thankful to Joshua Knowles and Tea Tus̃ar for
fruitful discussions relating to this paper. This research was partially conducted in the
scope of the MODŌ International Associated Laboratory, and was partially supported
by the French National Research Agency (ANR-16-CE23-0013-01).

References

1. Borges, P., Hansen, M.: A basis for future successes in multiobjective combinato-
rial optimization. Technical report, IMM-REP-1998-8, Institute of Mathematical
Modelling, Technical University of Denmark, Lyngby, Denmark (1998)

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
3. Daolio, F., Liefooghe, A., Verel, S., Aguirre, H.E., Tanaka, K.: Problem features

versus algorithm performance on rugged multiobjective combinatorial fitness land-
scapes. Evol. Comput. 25(4), 555–585 (2017)

4. Daolio, F., Verel, S., Ochoa, G., Tomassini, M.: Local optima networks and the
performance of iterated local search. In: GECCO, pp. 369–376 (2012)

5. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley,
Hoboken (2001)

6. Doye, J.P.K.: The network topology of a potential energy landscape: a static scale-
free network. Phys. Rev. Lett. 88, 238701 (2002)

7. Kauffman, S.A.: The Origins of Order. Oxford University Press, Oxford (1993)
8. Kerschke, P., et al.: Towards analyzing multimodality of continuous multiobjective

landscapes. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G.,
Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 962–972. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45823-6 90

9. Knowles, J., Corne, D.: Towards landscape analyses to inform the design of a
hybrid local search for the multiobjective quadratic assignment problem. In: Soft
Computing Systems, vol. 2002, pp. 271–279 (2002)

https://doi.org/10.1007/978-3-319-45823-6_90

244 A. Liefooghe et al.

10. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of evolutionary algo-
rithms on a simplified multiobjective knapsack problem. Nat. Comput. 3(1), 37–51
(2004)

11. Liefooghe, A., Derbel, B., Verel, S., Aguirre, H., Tanaka, K.: Towards landscape-
aware automatic algorithm configuration: preliminary experiments on neutral and
rugged landscapes. In: Hu, B., López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol.
10197, pp. 215–232. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
55453-2 15

12. López-Ibáñez, M., Liefooghe, A., Verel, S.: Local Optimal sets and bounded
archiving on multi-objective NK-landscapes with correlated objectives. In: Bartz-
Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672,
pp. 621–630. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-
2 61

13. Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of NK landscapes’ basins
and local optima networks. In: GECCO, pp. 555–562 (2008)

14. Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: a new
model of combinatorial fitness landscapes. In: Richter, H., Engelbrecht, A. (eds.)
Recent Advances in the Theory and Application of Fitness Landscapes. ECC, vol.
6, pp. 233–262. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
41888-4 9

15. Paquete, L., Schiavinotto, T., Stützle, T.: On local optima in multiobjective com-
binatorial optimization problems. Ann. Oper. Res. 156(1), 83–97 (2007)

16. Richter, H., Engelbrecht, A.E.: Recent Advances in the Theory and Application of
Fitness Landscapes. Emergency, Complexity, and Computation. Springer, Berlin
(2014). https://doi.org/10.1007/978-3-642-41888-4

17. Tomassini, M., Verel, S., Ochoa, G.: Complex-network analysis of combinatorial
spaces: the NK landscape case. Phys. Rev. E 78(6), 066114 (2008)

18. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjec-
tive combinatorial search space: MNK-landscapes with correlated objectives. Eur.
J. Oper. Res. 227(2), 331–342 (2013)

https://doi.org/10.1007/978-3-319-55453-2_15
https://doi.org/10.1007/978-3-319-55453-2_15
https://doi.org/10.1007/978-3-319-10762-2_61
https://doi.org/10.1007/978-3-319-10762-2_61
https://doi.org/10.1007/978-3-642-41888-4_9
https://doi.org/10.1007/978-3-642-41888-4_9
https://doi.org/10.1007/978-3-642-41888-4

Perturbation Strength and the Global
Structure of QAP Fitness Landscapes

Gabriela Ochoa1(B) and Sebastian Herrmann2

1 University of Stirling, Stirling, Scotland, UK
gabriela.ochoa@stir.ac.uk

2 Hochschule RheinMain, Wiesbaden, Germany
sebastian.herrmann@hs-rm.de

Abstract. We study the effect of increasing the perturbation strength
on the global structure of QAP fitness landscapes induced by Iterated
Local Search (ILS). The global structure is captured with Local Optima
Networks. Our analysis concentrates on the number, characteristics and
distribution of funnels in the landscape, and how they change with
increasing perturbation strengths. Well-known QAP instance types are
considered. Our results confirm the multi-funnel structure of QAP fit-
ness landscapes and clearly explain, visually and quantitatively, why ILS
with large perturbation strengths produces better results. Moreover, we
found striking differences between randomly generated and real-world
instances, which warns about using synthetic benchmarks for (manual
or automatic) algorithm design and tuning.

Keywords: Local Optima Network · Quadratic Assignment Problem
QAP · Iterated Local Search · Perturbation strength
Fitness landscapes

1 Introduction

The Quadratic Assignment Problem (QAP) requires the assignment at minimal
cost of a set of facilities to a set of locations, given the flows between facilities and
the distances between locations. The QAP is one of the most difficult combinato-
rial optimisation problems. Current exact algorithms can solve mostly problems
of up to 30 to 40 facilities, therefore, metaheuristics are frequently used to solve
larger instances. The most successful are Hybrid Evolutionary Algorithms [1,2]
and Iterated Local Search (ILS) with variable perturbation strengths [3,4].

Several studies have analysed QAP fitness landscapes [1,3,5]. The local
properties are usually studied through an autocorrelation analysis, while the
global structure through a fitness distance correlation analysis. The existence of
plateaus and the structure of basins have also been studied [5]. These studies sug-
gest that QAP instances have unstructured landscapes. The distances between
local optima and the best-known solutions, as well as the average distances
between local optima are very close to the landscape diameter (the maximum
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 245–256, 2018.
https://doi.org/10.1007/978-3-319-99259-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_20&domain=pdf

246 G. Ochoa and S. Herrmann

possible distance between any two solutions). In some QAP instances, the local
optima are neither restricted to a small region of the search space, nor seem to
be correlated, QAP landscapes do not always have a ‘big-valley’.

Beyond fitness distance correlation analysis, there are no tools available to
understand the global structure of fitness landscapes. Local Optima Networks
(LONs) [6], fill this gap by providing a compressed model of landscapes, where
nodes are local optima, and edges possible transitions among them. They model
the distribution and connectivity pattern of local optima, and thus help to char-
acterise the underlying landscape global structure. LONs have been recently used
to study the multi-funnel structure of fitness landscapes [7–9]. A funnel refers to
a grouping of local optima, forming a coarse-level gradient towards a low cost
solution at the end. When sub-optimal funnels exist, search can get trapped and
fail to reach the global optimum despite a large computing time.

Iterated local search is a simple yet powerful search strategy. It works by
iteratively alternating an intensification stage (local search) with a diversification
stage (perturbation or kick). We will refer to the strength of a perturbation as
the number of solution components that are modified. Such components are, for
example, the number of jobs to move in production scheduling, or the number of
edges to interchange in the Travelling Salesperson Problem (TSP) [10]. Recent
studies using LONs have shown that increasing the perturbation strength of ILS
can ‘smooth’ the multi-funnel structure, i.e., cause some funnels to disappear or
merge, with the effect of improving the algorithm performance [11,12].

For some problems, such as the TSP [12], an appropriate perturbation
strength can be small and rather independent of the instance size. ILS implemen-
tations to solve the QAP, instead, have shown to benefit from large perturbation
sizes. As reported in [10], the best perturbation size depends on the particular
instance. For some instances, altering as many as 75% of the solution compo-
nents produced the best performance. We argue that this behaviour can be better
understood by studying the underlying landscape global structure.

The effect of increasing the perturbation strength on the global structure of
QAP fitness landscapes has not yet been studied. In this article, we use LONs
to characterise and contrast the landscapes of QAP instances of different classes
and perturbation strengths. Our contribution is twofold. First, we offer a deeper
understanding of why an increased perturbation strength proves advantageous
for the QAP. Second, we illustrate, visually and quantitatively, the structural dif-
ferences between real-world and synthetic QAP instances. Another contribution
of this article is a more rigorous description of the notion of funnels, formalis-
ing the notion of monotonic sequences from the study of energy landscapes in
theoretical chemistry [13] to the context of LONs for combinatorial optimisation.

2 The Quadratic Assignment Problem

A solution to the QAP is generally written as a permutation s of the set
{1, 2, ..., n}, where si gives the location of item i. Therefore, the search space
is of size n!. The cost, or fitness function associated with a permutation s is a

Perturbation Strength and the Global Structure of QAP Fitness Landscapes 247

quadratic function of the distances between the locations, and the flow between
the facilities, f(s) =

∑n
i=1

∑n
j=1 aijbsisj , where n denotes the number of facili-

ties/locations and A = {aij} and B = {bij} are the distance and flow matrices,
respectively.

Our goal is to visualise and characterise in detail the global structure of
QAP fitness landscapes. Therefore, we consider a group of 8 instances from the
QAPLIB1 [14] with sizes ranging from 30 to 42 facilities, which are of moderate
size, yet not trivial to solve. Specifically, we selected the largest available real-
world instances around this range, and complemented them with instances of
similar sizes from the other types. According to [3,15], most QAPLIB instances
can be classified into four types. We selected two instances of each type as
indicated below.

1. Uniform random distances and flows. In these problems, denoted by tainna,
where nn is the problem size, flows and distances are randomly drawn from
a uniform distribution. They are known to be the hardest to solve optimally,
however, heuristic methods generally find solutions 1 or 2 per cent above the
optimum in short computation time [15]. We selected two instances of this
group: tai30a and tai35a.

2. Random flows on grids. These problems consider a rectangular tiling of n1×n2

squares of unit size. A location is one of these squares and the distances
between them are measured. The flows are randomly generated, but not nec-
essarily uniformly. These problems are known to be symmetrical and to have
multiple of 4 (n1 �= n2) or 8 (n1 = n2) different optimal solutions. We selected
two instances of this group: nug30 and sko42.

3. Real-world problems. These problems arise from practical applications. We
briefly describe the instances used in this article. The Krarup and Pruzan
instances, denoted by kra, contain real world data and were used to plan the
Klinikum Regensburg in Germany. In the Steinberg’s instances, denoted by
ste, the goal is to minimise the length of connections between units that have
to be placed on a rectangular grid [14]. We selected two instances of this
group: kra30a and ste36a (notice that there are no real-world instances of
size around 40 in QAPLIB).

4. Random real-world like problems. These instances, denoted by tainnb, are
randomly generated in a way that they resemble the structure of the real-
world instances. We selected two instances of this group: tai30b and tai40b.

3 Algorithms and Definitions

We use the implementation of ILS by Stützle [3], which allows us to explore
the effect of different perturbation strengths. The local search stage uses a first
improvement hill-climbing variant with the pairwise (2-exchange) neighbour-
hood. This operator swaps any two positions in a permutation. The perturbation
operator exchanges k randomly chosen items, which corresponds to a random
move in the k-opt neighbourhood. Algorithm1 outlines the pseudo-code.
1 http://www.seas.upenn.edu/qaplib/.

http://www.seas.upenn.edu/qaplib/

248 G. Ochoa and S. Herrmann

Algorithm 1. Iterated Local Search (ILS)
Require: Search space S, Fitness function f(S),

Perturbation strength k, Stopping threshold t
1: Choose initial random solution s0 ∈ S
2: l ← LocalSearch(s0)
3: i ← 0
4: repeat
5: s′ ← Perturbation(l, k)
6: l′ ← LocalSearch(s′)
7: if f(l′) ≤ f(l) then
8: l ← l′

9: i ← 0
10: end if
11: i ← i + 1
12: until i ≥ t
13: return l

3.1 Monotonic LON Model

Monotonic LON. Is the directed graph MLON = (L,E), where nodes are the
local optima L, and edges E are the monotonic perturbation edges.

Local Optima. We assume a search space S with a fitness function f(S) and a
neighbourhood function N(s). A local optimum, which in the QAP is a minimum,
is a solution l such that ∀s ∈ N(l), f(l) ≤ f(s). Notice that the inequality is not
strict, in order to allow the treatment of neutrality (local optima of equal fitness),
which we found to occur in some QAP instances. The set of local optima, which
corresponds to the set of nodes in the network model, is denoted by L.

Monotonic Perturbation Edges. Edges are directed and based on the per-
turbation operator (k-exchange, k > 2). There is an edge from local optimum l1
to local optimum l2, if l2 can be obtained after applying a random perturbation
(k-exchange) to l1 followed by local search, and f(l2) ≤ f(l1). These edges are
called monotonic as they record only non-deteriorating transitions between local
optima. Edges are weighted with estimated frequencies of transition. We deter-
mined the edge weights in a sampling process. The weight is the number of times
a transition between two local optima basins occurred with a given perturbation
(see Sect. 4). The set of edges is denoted by E.

3.2 Compressed Monotonic LON Model

We have observed neutrality at the LON level (i.e. connected sets of optima that
share the same fitness value) on several combinatorial problems. This lead us to
propose a coarser LON model [9], which compresses the local optima that are
connected by neutrality into single nodes. We found this type of neutrality on
some QAP instances, specifically, the grid-based and real-world instances (see
Sect. 2). Therefore, we considered the compressed model in this study.

Perturbation Strength and the Global Structure of QAP Fitness Landscapes 249

Compressed Monotonic LON. Is the directed graph CMLON = (CL,CE),
where nodes are compressed local optima CL as defined below. The edges CE
are aggregated from the monotonic edge set E by summing up the edge weights.

Compressed Local Optima. A compressed local optimum is a set of connected
nodes in the MLON with the same fitness value. Two nodes in the MLON are
connected if there is a monotonic perturbation edge between them. The set of
connected MLON optima with the same fitness, denoted by CL, corresponds to
the set of nodes in the Compressed Monotonic LON model.

Monotonic Sequence. A monotonic sequence is a path of connected nodes
MS = {cl1, cl2, . . . , cls} where cli ∈ CL. By definition of the edges, f(cli) ≤
f(cli−1). There is a natural end to every monotonic sequence, cls, when no
improving transitions can be found. In the directed CMLON network, cls will
be a node without outgoing edges (or sink)2.

Funnel. A funnel can be loosely described a grouping of local optima, conform-
ing a coarse-grained gradient towards a low cost optimum. More formally, we
characterise funnels in the CMLON as the aggregation of all monotonic sequences
ending at the same point (or sink). Funnels can be seen as basins of attraction
at the level of local optima [7].

4 Experimental Setting

Exhaustive enumeration of the search space, and thus complete extraction of the
LON models, is not feasible for permutation sizes larger than 10. Our instances
have sizes n ≥ 30, therefore sampling is required. The sampling procedure con-
sists of running an instrumented version of Stützle [3] ILS (described in Sect. 3),
where the stopping threshold is set to t = 10 000 iterations without any improve-
ment. This serves the purpose of empirically estimating the funnel ends, i.e.,
solutions at the end of the ILS trajectory, where escaping is difficult, if not
impossible. Our ILS only accepts improving or equal fitness from perturbation
moves in order to model monotonic sequences. While running ILS, we store in
a set L all the unique optima obtained after the local search stage, and in a set
E all the unique edges obtained after a perturbation followed by local search.
To construct the MLONs for each instance and perturbation strength, these sets
of nodes and edges are aggregated over 200 runs, started from different random
configurations. Five perturbation strengths p, corresponding to k-exchanges, are
explored (summarised in Table 1), ranging from k = n

8 to a complete restart.
Once the MLONs are constructed, we proceed to identify the connected compo-
nents with shared fitness, and thus construct the respective compressed models.

There are multiple performance and network metrics that can be computed
and used to understand search difficulty and landscape structure. We selected a
minimal subset characterising the key global structural properties. ILS perfor-
mance is measured with two metrics: (i) success rate, i.e., the proportion of runs

2 In directed graphs, a node without outgoing edges is called a sink.

250 G. Ochoa and S. Herrmann

Table 1. Perturbation strengths.

Flag (p) 1 2 3 4 5

Size (k) n
8

n
4

n
2

3n
4

restart

that reached a global optimum, and (ii) the normalised proximity to the global
optimum evaluation (i.e. the inverse of the performance gap). These metrics are
gathered from 200 independent runs on each instance and perturbation strength.

Table 2. Performance and local optima network metrics.

Perf. metrics success Success rate of finding a global optimum

proximity Normalised proximity to the global optimum
evaluation

Network metrics noptima Number of optima (including both local and
global)

compresssion Ratio of number of compressed to total number
of optima

pglobal Proportion of funnels that are globally optimal

strength Normalised incoming strength of globally optimal
sink(s)

The landscapes’ global structure is assessed using four characteristics, sum-
marised in Table 2. The number of optima (noptima) is the number of nodes of
the MLON model. Since we compute the compressed model CMLON, we report
also the ratio of the number of compressed optima to the number of optima
(compression). For characterising the multi-funnel structure, we measure the
proportion of funnels that end at the global optimum level (pglobal). This is the
ratio of the number of global funnels to the total number of funnels. The central-
ity of good solutions has been found to correlate with search difficulty [16]. As
a measure of the centrality and reachability of the global optima, we compute
the normalised incoming strength (weighted degree) of the global optimal sinks
(strength). This is computed as the sum of the incoming strengths of the globally
optimal sinks divided by the sum of the incoming strengths for all sinks.

5 Results

5.1 Visualisation

A first step in analysing the structure of networks is to visualise them. Figure 1
illustrates four compressed MLONs of a single QAP instance, sko42 at different
perturbation strengths p ∈ {1, 3, 4, 5}. sko42 is representative for other QAP

Perturbation Strength and the Global Structure of QAP Fitness Landscapes 251

instances and also the largest in our set. The number of optimal and suboptimal
funnels and the ILS success rate are also indicated. Each node is a compressed
optimum, and edges are monotonic transitions with the corresponding pertur-
bation strength.

Fig. 1. Compressed monotonic local optima networks for instance sko42 at four
different perturbation strengths p ∈ {1, 3, 4, 5}. The number of funnels f
(optimal, suboptimal) and the ILS success rate sr are indicated. The size of nodes
is proportional to their incoming strength. Red highlights the global optimal fun-
nels, while blue suboptimal funnels. Funnel ends (sinks) are indicated in more intense
colours. (Color figure online)

The networks in Fig. 1 capture the whole set of sampled nodes and edges for
each network, whose sizes range from 1,976 nodes (plot (d)) to 3,234 nodes (plot
(a)). Plots were produced with the R statistical language using force-directed lay-
out methods as implemented in the igraph library [17]. The decorations reflect

252 G. Ochoa and S. Herrmann

features relevant to search dynamic; the size of nodes is proportional to their
incoming weighted degree (strength), which indicates how much a node ‘attracts’
the search process. Red nodes belong to the funnel(s) containing a global opti-
mum, while blue nodes belong to suboptimal funnels. The funnels’ terminating
nodes (sinks) are highlighted with a black outline and a more intense colour. A
visual inspection reveals clear structural differences among the four perturba-
tion strengths. For the smallest strength (p = 1, plot (a)), four global optima
can be seen in red, but there is no clear funnel basin structure. However, for
p = 2 (plot (b)), a clear pattern emerges, showing the basins (i.e. collection of
monotonic sequences with a common ending point) of four optimal funnels in
red, and a number of suboptimal funnels in blue. The success rate increases to
0.53, the highest for this instance. For a stronger perturbation, (p = 4, plot (c))
the performance deteriorates. The four global optimal funnels can still be seen,
but their basins become small, and a multitude of sub-optimal funnels appear.
Finally, for a complete restart (p = 5, plot (d)), only one of the four global
optima was found by the sampling process, the number of sub-optimal funnels
is almost 200 and the success rate is close to zero.

In order to have a view of the global structure of the remaining three types
of QAP instances, Fig. 2 shows the network plots for a uniform random instance
(tai30a, plots (a) and (b)), a real-world instance (kra30a, plots (c) and (d)),
and a random real-world like instance (tai40a, plots (e) and (f)). Due to space
constraints, only two perturbation strengths are shown, p = 1 (left plots) and
the value of p producing the highest success rate (right plots). The most striking
observation from these plots are the structural differences between the randomly
generated instances and the real-world instance. The random instances have
a single global optimum, whereas the real-world (and indeed the grid based
instances, see Fig. 1), generally have several global optima. The random uniform
instances (tai30a, plots (a) and (b)) are very difficulty to solve to optimality.
Even for the best-performing perturbation strength (p = 3, plot (b)), the single
global optimum belongs to a tiny funnel, so it is difficult to find. On the other
extreme, the random real-world like instances (e.g. tai40b, plots (e) and (f)),
are far too easy to solve, reaching 100% success for p = 3. Importantly, for both
perturbation strengths, a single funnel structure is observed (there are no blue
nodes in plots (e) and (f)), which clearly contrasts with the multi-funnel nature
of the other instances.

The tai40b networks (plots (e) and (f)) show some intermediate nodes with
high strengths (larger pink nodes) in the path to the global optima (red node
with black outline). However, there are escape edges from these intermediate
attractors, so the perturbation operator is able to overcome them and reach the
global optimum. These instances are therefore easy to solve, and the success rate
will be 1.0 even for a low perturbation, given enough running time. Regarding
the real-world instance kra30a, for a perturbation strength p = 3 (plot (d)), the
four optimal funnels observed for p = 1 (plot (c)) merge into a single funnel with
a large incoming strength, explaining the high success rate in this case.

Perturbation Strength and the Global Structure of QAP Fitness Landscapes 253

(a) tai30a, p=1, f=(1,188), sr=0.015 (b) tai30a, p=3, f=(1,94), sr=0.03

(c) kra30a, p=1, f=(4,63), sr=0.18 (d) kra30a, p=4, f=(1,0), sr=0.97

(e) tai40b, p=1, f=(1,0), sr=0.48 (f) tai40b, p=3, f=(1,0), sr=1.0

Fig. 2. Compressed monotonic local optima networks for instances of the three remain-
ing types and two perturbation strengths, p = 1 (left) and the best performing pertur-
bation (right). For more details see caption of Fig. 1

254 G. Ochoa and S. Herrmann

5.2 Structural and Performance Metrics

Figure 3 shows the network and performance metrics described in Table 2 for
the eight QAP instances selected. Results were collected for five perturbations
strengths as indicated in Table 1. For most instances, the best performance, as
measured by both success rate and proximity to the optimum cost, is achieved
with an intermediate perturbation strength of p = 3, which corresponds to 50%
changes to the solution. A perturbation strength of p = 4 (75% alterations to
the solution), produces the best performance for one of the instances, kra30a.
For the random uniform instances (tai30 and tai35), success rates are rather low,
however, the solutions found are not far in evaluation from the global optimum

● ●
● ● ●

1000

2000

3000

8000

1 2 3 4 5
p

no
pt
im

a

● ● ● ● ●0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
p

co
m
pr
es

si
on

● ●
●

● ●0.00

0.25

0.50

0.75

1.00

1 2 3 4 5
p

st
re
ng

th

● ● ● ● ●0.00

0.25

0.50

0.75

1.00

1 2 3 4 5
p

pg
lo
ba

l

● ● ● ● ●0.00

0.25

0.50

0.75

1.00

1 2 3 4 5
p

su
cc
es

s

●

●

●

●

●

0.980

0.985

0.990

0.995

1.000

1 2 3 4 5
p

pr
ox

im
ity

instance
● tai30a

tai35a

nug30

sko42

kra30a

ste36a

tai30b

tai40b

Fig. 3. Structural and performance metrics (as defined in Table 2) for five perturbation
strengths (as defined in Table 1).

Perturbation Strength and the Global Structure of QAP Fitness Landscapes 255

as indicated by the proximity metric. The network metrics, strength and pglobal,
seem to correlate well with the performance metrics. The reduction of the number
of sub-optimal funnels and the increased strength of the global optimal sink,
obtained with perturbation strengths p = {3, 4}, offer an explanation for the
increased success rate from the point of view of the landscape global structure.

The most remarkable observations from the plots in Fig. 3 are the notable
differences between the randomly generated instances and the real-world and
grid-based instances. Looking at the compression metric, we can observe that
both the random uniform and random real-world like instances show zero com-
pression, which means that there is no neutrality at the level of local optima.
The grid-based (nug30 and sko42) and real-world (kra30a and sko42) instances,
on the other hand, show neutrality at the local optima level, which decreases
with the perturbation strength, indicating that local optima with the same fit-
ness become connected and thus merged. The uniform random instances (tai30a
and tai35a) have very low levels of strength and ratio of global optimal funnels
(pglobal), whereas the random real-world like instances (tai30b and tai40b) go
to the other extreme, showing a single funnel leading to the global optimum.

6 Conclusion

We have extracted and analysed the compressed monotonic local optima net-
works induced by iterated local search with different perturbation strengths on
QAP instances of different types. Our results confirm that intermediate per-
turbation strengths of around 50%, or occasionally even 75% alterations to the
solution, produce the best performance. This is consistent with previous find-
ings [16]. Our analysis explains this behaviour; a multi-funnel structure generally
occurs with low perturbation strengths. With increased perturbation strength,
the number of sub-optimal funnel decreases, while the size of the optimal fun-
nels increases, which facilitates reaching the global optimum. We found striking
differences between the randomly generated instances, the real-world instances
and the grid-based instances. The latter have more than one global optimum,
and several local optima sharing the same fitness, which is not the case on the
random instances. Moreover, the uniform random instances are very difficult to
solve to optimality; they show multiple funnels with very small basins, which
do not merge with increased perturbation. On the other extreme, the random
real-world like instances are very easy to solve to optimality; their global struc-
ture shows a single funnel with a large basin. This is in stark contrast with the
multi-funnel structure of the real-world and grid-based instances.

We argue that care should be taken when using randomly generated instances
to improve the manual or automatic design of heuristic methods. It is not clear
that knowledge extracted from random instances will generalise to real-world
instances. Future work will explore the effect of adding crossover, and whether
the most effective perturbation strength can be inferred from cheap estimations
of the global structure of the underlying landscapes.

256 G. Ochoa and S. Herrmann

Acknowledgements. Thanks are due to Thomas Stützle who shared with us his
QAP Iterated Local Search source code.

References

1. Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the
quadratic assignment problem. IEEE Trans. Evol. Comput. 4(4), 337–352 (2000)

2. Drezner, Z., Misevicius, A.: Enhancing the performance of hybrid genetic algo-
rithms by differential improvement. Comput. Oper. Res. 40(4), 1038–1046 (2013)

3. Stützle, T.: Iterated local search for the quadratic assignment problem. Eur. J.
Oper. Res. 174(3), 1519–1539 (2006)

4. Benlic, U., Hao, J.K.: Breakout local search for the quadratic assignment problem.
Appl. Math. Comput. 219(9), 4800–4815 (2013)

5. Tayarani-N, M.H., Prügel-Bennett, A.: Quadratic assignment problem: a landscape
analysis. Evol. Intell. 8(4), 165–184 (2015)

6. Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of NK landscapes’ basins
and local optima networks. In: Genetic and Evolutionary Computation Conference,
GECCO, pp. 555–562. ACM (2008)

7. Herrmann, S., Ochoa, G., Rothlauf, F.: Communities of local optima as fun-
nels in fitness landscapes. In: Genetic and Evolutionary Computation Conference
GECCO, pp. 325–331 (2016)

8. Ochoa, G., Veerapen, N.: Mapping the global structure of TSP fitness landscapes.
J. Heurist. 24, 1–30 (2017)

9. Ochoa, G., Veerapen, N., Daolio, F., Tomassini, M.: Understanding phase transi-
tions with local optima networks: number partitioning as a case study. In: Hu, B.,
López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol. 10197, pp. 233–248. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-55453-2 16

10. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and
applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics,
pp. 363–397. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-
5 12

11. Herrmann, S., Herrmann, M., Ochoa, G., Rothlauf, F.: Shaping communities of
local optima by perturbation strength. In: Genetic and Evolutionary Computation
Conference, GECCO, pp. 266–273 (2017)

12. McMenemy, P., Veerapen, N., Ochoa, G.: How perturbation strength shapes the
global structure of TSP fitness landscapes. In: Liefooghe, A., López-Ibáñez, M.
(eds.) EvoCOP 2018. LNCS, vol. 10782, pp. 34–49. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-77449-7 3

13. Berry, R.S., Kunz, R.E.: Topography and dynamics of multidimensional inter-
atomic potential surfaces. Phys. Rev. Lett. 74, 3951–3954 (1995)

14. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB - a quadratic assignment problem
library. J. Glob. Optim. 10(4), 391–403 (1997)

15. Taillard, E.: Comparison of iterative searches for the quadratic assignment prob-
lem. Locat. Sci. 3(2), 87–105 (1995)

16. Herrmann, S., Ochoa, G., Rothlauf, F.: Pagerank centrality for performance pre-
diction: the impact of the local optima network model. J. Heurist. 24, 243–264
(2017)

17. Csardi, G., Nepusz, T.: The igraph software package for complex network research.
InterJournal, Complex Systems, 1695 (2006). http://igraph.org

https://doi.org/10.1007/978-3-319-55453-2_16
https://doi.org/10.1007/978-1-4419-1665-5_12
https://doi.org/10.1007/978-1-4419-1665-5_12
https://doi.org/10.1007/978-3-319-77449-7_3
https://doi.org/10.1007/978-3-319-77449-7_3
http://igraph.org

Sampling Local Optima Networks
of Large Combinatorial Search Spaces:

The QAP Case

Sébastien Verel1(B), Fabio Daolio2, Gabriela Ochoa2, and Marco Tomassini3

1 EA 4491 - LISIC - Laboratoire d’Informatique Signal et Image de la Côte d’Opale,
Université du Littoral Côte d’Opale, 62228 Calais, France

verel@univ-littoral.fr
2 Computing Science and Mathematics, University of Stirling, Stirling, Scotland, UK

3 Information Systems Department, Faculty of Business and Economics,

University of Lausanne, Lausanne, Switzerland

Abstract. Local Optima Networks (LON) model combinatorial land-
scapes as graphs, where nodes are local optima and edges transitions
among them according to given move operators. Modelling landscapes
as networks brings a new rich set of metrics to characterize them. Most of
the previous works on LONs fully enumerate the underlying landscapes
to extract all local optima, which limits their use to small instances.
This article proposes a sound sampling procedure to extract LONs of
larger instances and estimate their metrics. The results obtained on two
classes of Quadratic Assignment Problem (QAP) benchmark instances
show that the method produces reliable results.

1 Introduction

Fitness landscapes are a commonly-used metaphor to describe heuristic search
of a globally optimal, or at least of a satisfying solution, among the set of admis-
sible solutions (see Richter and Engelbrecht [1] for a recent review of the state
of the art in the field). The number and distribution of local optima in com-
binatorial fitness landscapes are known to have an impact on the performance
of search heuristics. Local Optima Networks (LONs) have been recently pro-
posed as a model of combinatorial landscapes that specifically captures these
landscape features [2–4]. In this network model, the nodes are the local optima
of the underlying optimisation problem and the edges account for transitions
among them using a neighbourhood operator. Modelling combinatorial land-
scapes as networks brings a whole new set of metrics for capturing the topology
and structure of combinatorial search spaces, and provides tools for estimating
search difficulty. Most previous work with this model required the full enumer-
ation of the search space in order to extract the nodes and edges of the local
optima network, therefore it was applicable only to small problems. We present
a sampling methodology for extracting local optima networks of large combina-
torial problem instances, and estimating the relevant landscape network metrics
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 257–268, 2018.
https://doi.org/10.1007/978-3-319-99259-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_21&domain=pdf

258 Verel et al.

for benchmark instances of the Quadratic Assignement Problem (QAP). The
fitness landscape of QAP have been studied several times (for example see the
algebraic analysis of the autocorrelation function in Chicano et al. [5]). In this
work, we propose to increase the number of relevant features to analyse large size
fitness landscape that could be potentially be used for performance prediction
of QAP algorithms.

The article is structured as follows. The next section briefly overviews previ-
ous work on local optima networks, describes the QAP, and the combinatorial
landscapes considered. Section 3 describes local optima networks and the met-
rics employed as features. Section 4 outlines our approach for network sampling
and Sect. 5 describes the empirical validation of the obtained estimates. Finally,
Sect. 6 summarises our findings and suggest directions for future work.

2 Combinatorial Landscapes

Given a discrete optimization problem, a fitness landscape for its instances is
defined as a finite set S of possible solutions, a neighbourhood N (s) given by
the set of solutions that can be reached from any solution s ∈ X by applying a
simple move operator, and a function f : S → R that, given a solution, provides
its objective value or fitness [6]. One can define a number of useful concepts
such as global and local optima, and basins of attraction among others. It is also
possible to define ways in which the search space can be traversed in a random
or adaptive way in order to collect configuration space statistics or to improve
the current solution.

Starting from the above notions, the local optima network (LON) model for
combinatorial landscapes was first proposed in [2], with follow up work appear-
ing in [3,7] using Kauffman’s NK [8]. Subsequently, more complex and realistic
search spaces were studied: the quadratic assignment problem [9], and the per-
mutation flowshop problem [10] which are known to be NP-hard. In a LON,
vertices correspond to solutions that are minima or maxima of the associated
combinatorial problem, and edges correspond to weighted transitions among
them. Initially, weighed edges represented an approximation to the probability
of transition between the respective basins in a given direction [2,3,7]. This defi-
nition, although informative, produced densely connected networks and required
exhaustive sampling of the basins of attraction. A second version, escape edges
was proposed in [4], which does not require a full computation of the basins.
Instead, these edges account for the chances of escaping a local optimum after
a controlled mutation (e.g. 1 or 2 bit-flips in binary space) followed by hill-
climbing. It is this later version that is used here. In order to demonstrate the
methodologies proposed in this study, we consider the Quadratic Assignment
Problem which is described below.

2.1 The Quadratic Assignment Problem

The Quadratic Assignment Problem [9] is a combinatorial problem in which a
set of facilities with given inter-facilities flows has to be assigned to a set of

Sampling Local Optima Networks of Large Combinatorial Search Spaces 259

locations with given inter-locations distances in such a way that the sum of the
product of flows and distances is minimised. A solution to the QAP is generally
written as a permutation π of the set {1, 2, ..., n}. The cost associated with a
permutation π is given by:

C(π) =
n∑

i=1

n∑

j=1

aijbπiπj

where n denotes the number of facilities/locations and A = {aij} and B = {bij}
are referred to as the distance and flow matrices, respectively. The structure of
these two matrices characterises the class of instances of the QAP problem.

The results presented in this article are based on two instance generators
proposed in [11] which are in turn inspired by [12] included in the QAPLib.
In [11] the generators were devised for the multi-objective QAP, but are adapted
here for the single-objective QAP. In order to perform a statistical analysis of
the extracted local optima networks, we consider 30 problem instances for each
class and size combination.

– Uniform generator: produces uniformly random instances where all flows and
distances are integers sampled from uniform distributions. The distances are
random integer numbers between 0 and 99 (bounds included). The flow matrix
is symmetric with random integer entries between 1 and 99. This leads to
the kind of problems known in literature as Tainna, being nn the problem
dimension [12].

– Real-like generator: makes instances where the distance and flow matrices
have structured entries. To generate the symmetric distance matrix, N points
(integer coordinates) are randomly distributed in a circle of radius 100, and
the entries are given by the distances between these N points. The flow matrix
is also symmetric with entries following the law �10r� where r is a uniform
random integer from [L,U]. This procedure generates non-uniformly random
instances of type Tainnb which have the so called “real-like” structure (see
QAPLib) since they resemble the structure of QAP problems found in prac-
tical applications. The problem instances from the QAPLib are often unique
example of a class of problems, so our study considers two parameterisations
of real-like instances which allows a statically analysis: rl1 : L = −10 and
U = 5, rl2 : L = −2 and U = 4.

3 Obtaining the Local Optima Networks

Our study considers the permutation representation for QAP solutions. In this
case, the most basic neighbourhood structure in the search space is given by the
pairwise exchange operation that exchanges any two positions in a permutation,
thus transforming it into another permutation.

In what follows, we define how the LON graphs are obtained from the fitness
landscapes corresponding to QAP instances.

260 Verel et al.

Nodes: The nodes in the network are local optima (LO) in the search space. For
a minimisation problem such as QAP, a solution x ∈ X is a local optimum iff
∀x′ ∈ N (x), f(x) � f(x′). Notice that in this work we do not target specifically
neutral fitness landscape with large plateaus. However, this definition of local
optima is still relevant for small amounts of neutrality. For fitness landscapes
with high levels of neutrality, please refer to the definitions of previous work
[13] where the nodes are local optima plateaus. LO are extracted using a best-
improvement hill-climber (hc), as given in Algorithm 1. Thereby, when selecting
the fittest neighbour (line 4), ties are broken at random.

Algorithm 1. Best-improvement hill-climbing (minimisation)
1: procedure HillClimbing
2: x ← random initial solution
3: while x �= Local Optimum do
4: set x′ ∈ N (x), s.t. f(x′) = miny∈N (x)f(y)
5: if f(x′) < f(x) then
6: x ← x′

7: end if
8: end while
9: end procedure

Escape Edges: The edges in the network are defined according to a distance
function dist and a positive integer D > 0. The distance function represents
the minimal number of moves between two solutions for a given search (muta-
tion) operator. There is an edge eij between LOi and LOj if a solution x exists
such that dist(x,LOi) � D and hc(x) = LOj . In other words, if LOj can
be reached after mutating LOi and running hill-climbing from the mutated
solution. The weight w̃ij of this edge is w̃ij = �{x ∈ X | dist(x,LOi) �
D and hc(x) = LOj}. That is, the number of LOi mutations that reach LOj after
hill-climbing. This weight can be normalised by the total number of solutions,
�{x ∈ X | dist(x,LOi) � D}, within reach at distance D: wij = w̃ij/

∑
j w̃ij .

Local Optima Network: The weighted local optima network Gw = (N,E) is
the graph where the nodes ni ∈ N are the local optima, and there is an edge
eij ∈ E, with weight wij , between two nodes ni and nj if wij > 0. According to
the definition of weights, wij may be different than wji. Thus, two weights are
needed in general, and we have a weighted, oriented transition graph.

3.1 Complex Network Metrics

The previous section described how to obtain the LONs. A number of models
and statistical metrics have been proposed to study the structure and func-
tion of large networks [14]. The first section of Table 1 summarises the met-
rics for weighted networks considered in this study. First, we introduce some

Sampling Local Optima Networks of Large Combinatorial Search Spaces 261

basic network notation before defining more advanced metrics. Let us denote
aij an element of the graph’s adjacency matrix A for a weighted oriented graph
Gw = (N,V), defined as aij = 1 if wij > 0, aij = 0 if wij = 0. Finally,
ki =

∑
j �=i aij is the degree of node i, whereas si =

∑
j �=i wij is a generalisation

of a node’s degree for weighted networks called the node’s strength. From those
basic definitions, we can define the average outdegree, zout, as the average of ki

for all nodes.
Disparity of a node ni measures how heterogeneous are the contributions of

the edges of node ni to the total weight (strength):

Y2(i) =
∑

j �=i

(
wij

si

)2

Thus, the average disparity y2 is defined as the average for all nodes of Y2(i).
The standard clustering coefficient [14] does not consider weighted edges.

We thus use the weighted clustering cw(i) measure of a node ni proposed in [15],
which combines the topological information with the weight distribution of the
network:

cw(i) =
1

si(ki − 1)

∑

j,h

wij + wih

2
aijajhahi.

For each triple formed in the neighbourhood of the node ni, cw(i) counts
the weight of the two participating edges of the node ni. The average weighted
clustering coefficient wcc is defined as wcc = 1/|N |∑ni∈N cw(i). The reader is
referred to [15] for more details.

A network is said to show assortative mixing if the nodes in the network
that have many connections tend to be connected to other nodes with many
connections [16]. Assortativity can be measured using the Pearson correlation
coefficient r of degree between pairs of linked nodes. Positive values of r indicate
a correlation between nodes of similar degree, whereas negative values indicate
relationships between nodes of different degree. We use here the weighted assor-
tativity, denoted knn, which measures the nearest-neighbours degree correlation.
This metric reflects the affinity to connect with high or low-degree neighbours.

The fitness-fitness correlation (fnn) measures the correlation between the
fitness values of adjacent local optima. It is the Pearson correlation coefficient
between the fitness value fi of node ni and the weighted-average of it nearest-
neighbours fitness, defined as fn,w(i) = 1/si

∑
j �=i wijfj .

4 Sampling Local Optima Networks

Most of the previous work has considered small search spaces (problem sizes
up to 18 for binary spaces and up to 10 for permutation spaces), where it was
possible to exhaustively enumerate and fully extract the local optima network
models. For larger search spaces, i.e., those corresponding to realistic problem

262 Verel et al.

Table 1. Set of features used for network characterisation and for sampling.

Network metrics

fit Average fitness of local optima in the network

wii Average weight of self-loops

zout Average outdegree, i.e., number of outgoing edges

y2 Average disparity for outgoing edges

knn Weighted assortativity

wcc Weighted clustering coefficient. Measures
“cliquishness” of a neighbourhood

fnn Fitness-fitness correlation. Measures the correlation
between the fitness values of adjacent local optima

snowball sampling metrics

lhc Average length of hill-climbing to local optima

mlhc Maximum length of hill-climbing to local optima

nhc Number of hill-climbing paths to local optima

sizes, a methodology for sampling the local optima networks is required. We
propose here an original method for extracting a significant subset of the local
optima and transition edges. Thereafter, the network metrics are estimated from
the sampled network. The sampling follows a random walk over the local optima
network coupled with a snowball process, also known as chain-referral [17]. Snow-
ball sampling is a non-probabilistic technique used in sociology where existing
subjects recruit future subjects from among their acquaintances. The sample
population then grows like a rolling snowball, similarly to breadth-first search. In
the computational implementation, the snowball procedure enlarges an original
node sample by joining adjacent nodes. Two control parameters are required: the
number of neighbours to consider m (how many acquaintances a recruit should
name), and the depth of the sampling d (how many referral steps).

Fig. 1. Illustration of the sampling procedure, featuring a random walk of length l = 5,
a number of sampled edges m = 3, and a sampling depth d = 2. The light circles in
the center are solutions xi on the random walk, while dark circles on the outside are
solutions sampled during the snowball procedure.

Sampling Local Optima Networks of Large Combinatorial Search Spaces 263

Algorithm 2. Sampling methodology for local optima networks
1: procedure LONSampling(d, m, l)
2: x0 ← hc(x) � where x is randomly initialised
3: N̂ ← {x0}
4: Ê ← ∅
5: for t ← 0, . . . l − 1 do
6: Snowball(d, m, xt)
7: xt+1 ← RandomWalkStep(xt)
8: end for
9: end procedure

1: procedure Snowball(d, m, x)
2: if d > 0 then
3: for j ← 1, . . . m do
4: x′ ← hc(op(x))
5: N̂ ← N̂ ∪ {x′} � Add node to the sample
6: if (x, x′) ∈ Ê then
7: ŵx,x′ ← ŵx,x′ + 1
8: else
9: Ê ← Ê ∪ {(x, x′)} � Add edge to the sample

10: ŵx,x′ ← 1
11: Snowball(d − 1, m, x′)
12: end if
13: end for
14: end if
15: end procedure

1: procedure RandomWalkStep(xt)
2: neighbourSet ← {x : (xt, x) ∈ Ê ∧ x �∈ {x0, . . . , xt}}
3: if neighbourSet �= ∅ then � Randomly select a neighbour
4: Select randomly xt+1 ∈ neighbourSet
5: else � Restart from a random solution x
6: xt+1 ← hc(x)
7: N̂ ← N̂ ∪ {xt+1}
8: end if
9: return xt+1

10: end procedure

Figure 1 and Algorithm 2 illustrate the local optima network sampling proce-
dure, which requires a hill-climbing algorithm (Algorithm1), a mutation opera-
tor op, and a snowball sampling procedure. An initial local optimum is obtained
using hill-climbing (hc) starting from a randomly generated solution. This ini-
tial local optimum is the starting point of the random walk, whose length is
controlled by a parameter l indicating the number of steps. At each step of the
walk, a snowball procedure is computed as follows: let xt be the local optimum
sampled at step t of the random walk. From xt, a snowball sampling is per-
formed, by applying m times the mutation operator op followed by hill-climbing

264 Verel et al.

to produce neighbouring local optima. Then, the edges and the corresponding
weights from xt are updated. Using recursion, the snowball procedure (with a
decreasing depth) is invoked from each adjacent node. For the next step in the
walk xt+1, a neighbouring node of xt that is not already in the walk is selected.
If this is not possible (i.e. if all xt adjacent nodes are already in the walk), then
xt+1 is set as a local optimum obtained from a randomly generated solution,
that is xt+1 = hc(x) where x is a random solution. The second part of Table 1
summarises the main sampling metrics.

The random walk allows for the estimation of the network metrics that are
based on the correlations between neighbouring nodes. The snowball procedure
permits the estimation of metrics that require higher-oder interactions (that is,
“neighbours of neighbours”) such as the clustering coefficient. Moreover, along
the sampling, a number of hill-climbing runs are performed, allowing us to oppor-
tunistically extract other metrics such as the average length of adaptive walks,
the average maximum length of adaptive walks to reach each local optimum
of the sampled set, and the corresponding average number of adaptive walks
to each local optimum1. These sampled values have been used, together with
network metrics, to predict the performance of metaheuristics on large problem
instances (work to be presented elsewhere).

5 Empirical Validation

In order to validate the sampling methodology, we compared the estimated net-
work metrics against their exact values obtained from previous work on small
instances. Various sampling parameters and instance types were considered. We
report here the QAP landscape experiments. Three instance types were tested,
namely, uniform (uni) and two settings of real-like instances (rl1) and (rl2) as
described in Sect. 2.1. For each type and size, 30 instances were generated. The
depth of the snowball sampling procedure was set to d = 2. Table 2 summarizes
the remaining parameters for both the small and larger instances.

Table 2. Parameters for the empirical validation of the sampling procedure. N : prob-
lem dimension. Sampling parameters, m: number of edges, l: size of the random walk.

Small Large

Problem size (N) 10 30, 50, 70, 100, 150

Sampling (m, l) (15, 50), (30, 50), (15, 100) (30, 100), (60, 100), (30, 400)

op strength (D) 2 4

1 Here an adaptive walk means that from a given point the walk goes to a randomly
chosen neighbor if the neighbor’s fitness is better, otherwise it tries another random
neighbor.

Sampling Local Optima Networks of Large Combinatorial Search Spaces 265

Fig. 2. Small QAP instances (n = 10). Estimated network metrics depending on
instance type. Boxplots labelled ‘full’ correspond to the metrics calculated from the
complete networks, whereas the remaining boxplots illustrate different sampling param-
eter pairs (m, l).

The plots in Fig. 2 show the network metrics: fit, wii, fnn, y2, knn and wcc,
described in Table 1, for the small QAP instances. These metrics have been shown
to be significantly related to search performance in previous work [18,19]. The
colours in the plot refer to the different sampling parameter pairs (m, l), whereas
the curves named ‘full’ correspond to the metrics calculated from fully enumer-
ated networks, which is only possible for these small instances. The estimated
metrics for the different instance classes follows the trend of the full metrics,
and their values depend on the instance class. The sampling parameter m has a
larger impact on the estimation with higher values producing better estimates.
Some metrics are better estimated than others with fitness of local optima and
weighted clustering coefficient (wcc) producing the best match.

266 Verel et al.

rl1 rl2 uni

107

108

109

30 50 70 100 150 30 50 70 100 150 30 50 70 100 150
N

m=30 l=100
m=30 l=400
m=60 l=100

Fitness of local optima
rl1 rl2 uni

0.7

0.8

0.9

30 50 70 100 150 30 50 70 100 150 30 50 70 100 150
N

Self−loop transition weight

rl1 rl2 uni

0.80

0.85

0.90

0.95

30 50 70 100 150 30 50 70 100 150 30 50 70 100 150
N

Neighbors fitness correlation
rl1 rl2 uni

0.25

0.50

0.75

30 50 70 100 150 30 50 70 100 150 30 50 70 100 150
N

Disparity of outgoing transitions

rl1 rl2 uni

0.0

0.2

0.4

0.6

30 50 70 100 150 30 50 70 100 150 30 50 70 100 150
N

Neighbors degree correlation
rl1 rl2 uni

0.25

0.50

0.75

1.00

30 50 70 100 150 30 50 70 100 150 30 50 70 100 150
N

Weighted clustering coefficient

Fig. 3. Large QAP instances. Estimated network metrics as a function of the instance
type (uni, rl1, rl2) and size (n ∈ {30, 50, 70, 100, 150}). The curves represent the sam-
pling parameter pairs (m, l).

Figure 3 shows the estimated network metrics for the larger QAP instances.
The curves represent the sampling parameter pairs (m, l), grouped from left to
right according to the instance type: uni, rl1, rl2. The instance sizes explored,
n ∈ {30, 50, 70, 100, 150}, are indicated in the X axis labels. The differences
among the estimated metrics are small for the three sampling parameter pairs. As
for the small instances, the m parameter has a larger impact on the estimation.
The curves for (m, l) ∈ {(30, 100), (30, 400)} are almost identical. Therefore, for a
fixed computational cost it seems preferable to increase the sampling parameter
m (number of edges) rather than the length of the random walk (parameter l).
Beyond the quality of the estimation, the main metrics of LON are different
according to the class of the QAP instances. For example, the weight clustering
coefficient is lowest for uniform type of instance which corresponds to less dense

Sampling Local Optima Networks of Large Combinatorial Search Spaces 267

network; or the self-loop transition weight is highest for the real-like instances of
type 2. Without giving all details, the metrics seems to give useful information
on the structure of the LON, and problem difficulty. The sampling methodology
opens research directions on the performance prediction for large size instance.

6 Conclusions and Future Work

The fitness landscape metaphor has been often used in the context of meta-
heuristics to search for solutions to difficult problems. In the last few years, we
have put forward a novel view of fitness landscapes based on a network called
the Local Optima Network which captures fundamental features of the underly-
ing fitness landscape, as well as information about the transitions among local
optima basins. In previous work on relatively small instances of typical combina-
torial problems we have been able to show that selected LON network statistics
correlated with the problem instance difficulty and can be used to predict the
performance of well-known metaheuristics on these search spaces. Although it is
useful to show these capabilities in principle, the main limitation of the approach
was that it required complete enumeration of all local optima in the search space,
which of course can only be done for relatively small problem instances. In the
present study we have shown that it is possible to sample larger search spaces
without losing much in accuracy. This has been done by first comparing sampled
and exhaustively enumerated spaces results for small instances, which give simi-
lar results, and then extending the procedure to larger sizes. The results obtained
on uniformly random, as well as real-like QAP instances, are satisfactory and
consistent.

In previous work with small instances, it was found that some network
statistics were useful to predict performance [18,19]. As a follow-up work, a
similar analysis could be conducted with larger sampled instances in order to
find whether LON features could be more correlated with performance than
basic fitness landscape features. This will allow to predict performance on larger
instances using LON features. Finally, we note that the proposed methodology
is not limited to sampling problem instance LON’s. The same or a very similar
approach could also be used to sample other features of a combinatorial search
space. Many aspects remain to be studied and we intend to extend the method-
ology to other important combinatorial problems and their fitness landscapes.
Future work is also planned to extend the sampling method to fitness landscapes
that have a significant amount of neutrality.

References

1. Richter, H., Engelbrecht, A.E.: Recent Advances in the Theory and Application
of Fitness Landscapes. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-41888-4

2. Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of NK landscapes’
basins and local optima networks. In: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2008, pp. 555–562. ACM (2008)

https://doi.org/10.1007/978-3-642-41888-4
https://doi.org/10.1007/978-3-642-41888-4

268 Verel et al.

3. Tomassini, M., Verel, S., Ochoa, G.: Complex-network analysis of combinatorial
spaces: the NK landscape case. Phys. Rev. E 78(6), 066114 (2008)

4. Vérel, S., Daolio, F., Ochoa, G., Tomassini, M.: Local optima networks with escape
edges. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoe-
nauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp. 49–60. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35533-2 5

5. Chicano, F., Luque, G., Alba, E.: Autocorrelation measures for the quadratic
assignment problem. Appl. Math. Lett. 25(4), 698–705 (2012)

6. Reidys, C., Stadler, P.: Combinatorial landscapes. SIAM Rev. 44(1), 3–54 (2002)
7. Ochoa, G., Verel, S., Tomassini, M.: First-improvement vs. best-improvement local

optima networks of NK landscapes. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 104–113. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15844-5 11

8. Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged
landscapes. J. Theor. Biol. 128, 11–45 (1987)

9. Koopmans, T.C., Beckmann, M.: Assignment problems and the location of eco-
nomic activities. Econometrica 25(1), 53–76 (1957)

10. Daolio, F., Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of the
permutation flow-shop problem. In: Legrand, P., Corsini, M.-M., Hao, J.-K., Mon-
marché, N., Lutton, E., Schoenauer, M. (eds.) EA 2013. LNCS, vol. 8752, pp.
41–52. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11683-9 4

11. Knowles, J., Corne, D.: Instance generators and test suites for the multiobjective
quadratic assignment problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele,
L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 295–310. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36970-8 21

12. Taillard, E.D.: Comparison of iterative searches for the quadratic assignment prob-
lem. Locat. Sci. 3(2), 87–105 (1995)

13. Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with
neutrality. IEEE Trans. Evol. Comput. 15(6), 783–797 (2011)

14. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford
(2010)

15. Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Characterization
and modeling of weighted networks. Phys. A 346, 34–43 (2005)

16. Newman, M.E.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701
(2002)

17. Goodman, L.: Snowball sampling. Ann. Math. Stat. 32(1), 148–170 (1961)
18. Chicano, F., Daolio, F., Ochoa, G., Vérel, S., Tomassini, M., Alba, E.: Local optima

networks, landscape autocorrelation and heuristic search performance. In: Coello,
C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN
2012. LNCS, vol. 7492, pp. 337–347. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32964-7 34

19. Daolio, F., Verel, S., Ochoa, G., Tomassini, M.: Local optima networks and the
performance of iterated local search. In: Genetic and Evolutionary Computation
Conference, GECCO 2012, pp. 369–376. ACM Press (2012)

https://doi.org/10.1007/978-3-642-35533-2_5
https://doi.org/10.1007/978-3-642-15844-5_11
https://doi.org/10.1007/978-3-319-11683-9_4
https://doi.org/10.1007/3-540-36970-8_21
https://doi.org/10.1007/978-3-642-32964-7_34
https://doi.org/10.1007/978-3-642-32964-7_34

Algorithm Configuration, Selection, and
Benchmarking

Algorithm Configuration Landscapes:

More Benign Than Expected?

Yasha Pushak1(B) and Holger Hoos1,2

1 Department of Computer Science, The University of British Columbia,
Vancouver, Canada
ypushak@cs.ubc.ca

2 LIACS, Universiteit Leiden, Leiden, The Netherlands
hh@liacs.nl

Abstract. Automated algorithm configuration procedures make use of
powerful meta-heuristics to determine parameter settings that often sub-
stantially improve the performance of highly heuristic, state-of-the-art
algorithms for prominent NP-hard problems, such as the TSP, SAT and
mixed integer programming (MIP). These meta-heuristics were origi-
nally designed for combinatorial optimization problems with vast and
challenging search landscapes. Their use in automated algorithm con-
figuration implies that algorithm configuration landscapes are assumed
to be similarly complex; however, to the best of our knowledge no work
has been done to support or reject this hypothesis. We address this gap
by investigating the response of varying individual numerical parameters
while fixing the remaining parameters at optimized values. We present
evidence that most parameters exhibit uni-modal and often even convex
responses, indicating that algorithm configuration landscapes are likely
much more benign than previously believed.

1 Introduction

Automated algorithm configuration procedures are able to find configurations
that are often substantially better than expert-determined default settings. Cur-
rent methods are heavily-based on meta-heuristics (such as ParamILS [12], an
iterated local search procedure; GGA [2], a gender-based genetic algorithm, and
SMAC [9], a model-based stochastic search algorithm), which are typically used
to solve NP-hard combinatorial optimization problems with complex search
landscapes. To the best of our knowledge, the properties of the algorithm con-
figuration search landscapes have not been investigated so far. In this work, we
conduct such an investigation, focusing on numerical parameters, which promi-
nently occur in many algorithm configuration scenarios, and provide evidence
that these configuration landscapes are more benign than one might assume.

As a motivating example, consider the problem of configuring a stochastic
local search algorithm A with a numerical parameter p that controls the trade-
off between intensification and diversification. Let us assume that low values
result in low intensification, and high values in high intensification. Intuitively,
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 271–283, 2018.
https://doi.org/10.1007/978-3-319-99259-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_22&domain=pdf

272 Y. Pushak and H. Hoos

one would expect a single optimal setting to exist for this parameter; for lower
values of p, the performance of A would deteriorate due to insufficient diversifi-
cation (resulting in stagnation behaviour), and for higher values of p, insufficient
intensification would degrade the performance of A. Therefore, the response of
A’s performance to p would be uni-modal, perhaps even convex. We hypothesize
that many – perhaps: most – numerical parameters have similar characteristics.

Specifically, in this work, we investigate two research questions regarding the
way the performance of a given algorithm depends on its parameter settings.
RQ 1. When all other parameters are fixed, are the responses of indi-
vidual numerical parameters uni-modal or convex; if so, how often?
Here, the response of a parameter p refers to the function mapping values of p
to the performance of the given algorithm. In the context of automated config-
uration of a given target algorithm A, the performance of A is assessed (and
optimized) on a set I of problem instances. Following many state-of-the-art con-
figurators [9,12,14], we asses the performance of A using PAR10 on I, i.e., mean
running time with timed-out runs counted at 10 times their running time cutoff.
Ideally, the response of A to its parameters would be identical for all instances
in I; however, we cannot assume that this will always be the case. This gives
rise to our second research question: RQ 2. When all other parameters
are fixed, are the responses of individual numerical parameters uni-
modal or convex on individual instances; if so, how often? To obtain
robust estimates for the performance of A on each i ∈ I, we took medians over 10
independent runs per instance. We note that the aggregation of performance over
a set of instances (as in RQ 1) could lead to more complex parameter responses
– i.e., a negative answer to RQ 1 – even if the responses on individual instances
were benign. However, more likely, aggregation should have a smoothing effect
on the parameter responses, so that a negative answer to RQ 2 might still be
consistent with a positive answer to RQ 1.

The answers to these research questions matter, because existing configura-
tors make only weak assumptions about the landscapes they search. Indeed, the
only assumption made by well-known, high-performance configurators, such as
SMAC [9], ParamILS [12] and GGA [2], is that the performance of one configu-
ration is likely to be correlated with the performance of nearby configurations.
Of the configurators we consider here, only irace [14] (by the nature of the gener-
ative probabilistic model it uses to sample promising configurations) assumes a
smooth response for numerical parameters. Additional structural insights, such
as uni-modality or convexity of individual parameter responses, could at least in
theory be exploited to substantially improve configurator performance.

In the literature on combinatorial optimization and meta-heuristics, land-
scape analysis is a well-established topic. Two particularly prominent approaches
are based on the analysis of fitness-distance correlation and of landscape corre-
lation functions (see, e.g., Chap. 5 of [8] and the references therein). When used
in empirical work for the characterization of landscapes, both approaches assess
global landscape properties, while our work is focused on local properties. Fur-
thermore, to yield reasonably accurate results, they both require large sets of

Algorithm Configuration Landscapes: More Benign Than Expected? 273

samples from a given landscape, which, in the context of algorithm configura-
tion, are expensive to obtain (every sample involves many runs of the given tar-
get algorithm, one for each problem instance in the given training set.) Finally,
both approaches require normalization to deal with parameters whose domains
show large differences in range or number of values (for discrete parameters),
as frequently encountered in typical algorithm configuration scenarios, and have
difficulties dealing with integer-valued parameters with small ranges (such as
BACKBONE TRIALS for LKH [7] considered in our study).

Somewhat related to our work, in the algorithm configuration literature, there
has been a recent focus on analyzing parameter importance, i.e., the degree to
which individual parameters affect the performance of a given algorithm. Impor-
tance analysis approaches such as ablation analysis [6], fANOVA [11] and for-
ward selection based on empirical performance models [10] are orthogonal to our
work, since they quantify the impact of parameters on algorithm performance,
but do not provide direct insights into the shape of the parameter responses or
structural aspects of the configuration landscapes arising from these shapes.

The remainder of this paper is structured as follows. In Sect. 2, we explain
our methods for investigating the structure of configuration landscapes. Then,
in Sect. 3, we introduce the setup used for our experimental investigation. The
results of this investigation are presented in Sect. 4, and finally, in Sect. 5, we
summarize our findings and outline several avenues for future work.

2 Methods

Our approach to analyzing configuration landscapes is severely constrained by
the fact that for typical configuration scenarios, obtaining performance measure-
ments for all configurations or even sampling a substantial fraction of the land-
scape would be prohibitively expensive. For example, the smallest configuration
scenario we study (which involves two integer-valued parameters for the TSP
solver, EAX [17]), would take over 500 CPU years on our reference machines to
obtain complete evaluation of the corresponding configuration landscape. Con-
figuration spaces grow exponentially with the number of parameters, so even
relatively sparse samples quickly become unaffordable. Therefore, to perform
our analysis of configuration landscapes, we restricted ourselves to a small num-
ber of configurations. In the light of this, and consistent with the aims of our
investigation, we focused on individual slices of the parameter responses.

2.1 Parameter Response Slices

Given a target algorithm A, a response slice for parameter p is obtained by fixing
all other parameters of A to some value and measuring the performance of A as
a function of p. Intuitively, this corresponds to a slice through the configuration
landscape of A, and technically, it can be seen as a conditional response, subject
to all other parameters taking a specific value. Since we are primarily interested
in the parameter responses near high-quality configurations, we first performed

274 Y. Pushak and H. Hoos

25 independent runs of SMAC [9] for each scenario (configuring both numerical
and categorical parameters), and subsequently evaluated the resulting configura-
tions on the entire training set. We then used the best-performing configuration
on the training set as the centre point for each parameter slice.

Even evaluating every possible value for each parameter response slice in our
EAX scenario (described in more detail in Sect. 3) would take 6 CPU years, so
we further reduced our slices to only 15 parameter values each. If a parameter
had less than 15 possible values, then we used all of them; otherwise, to obtain
high resolution near the best-known parameter setting, we increased the spacing
between adjacent values exponentially with increasing distance from the best-
known value. We added an additional constraint to ensure that we obtained some
coverage of the parameter response on either side of the best-known parameter
setting: we restricted at most 75% of the points to be on one side of the best-
known value (note that if the best-known value took the maximum or minimum
allowed value, we could not enforce this constraint). Since there were still many
possible locations for the points satisfying these constraints, we multiplied the
grid of points by a randomly chosen weight to choose their exact location. For any
integer-valued parameter, we first determined a set of values as for real-valued
parameters, and then rounded each setting thus obtained to the nearest valid
and previously unused value. Finally, to obtain robust performance estimates
for each value in a given parameter slice, we performed 10 independent runs per
instance and determined a median performance value from these.

2.2 Bootstrap Analysis and Confidence Intervals

To account for the variance between independent target algorithm runs and prob-
lem instances, we used a nested bootstrap procedure similar to the one by Mu
et al. [15] with 1 001 outer and inner bootstrap samples. To be precise, for each
parameter value and problem instance, we created 1 001 (inner) bootstrap sam-
ples of the 10 independent runs to obtain a distribution of median performance
values; from these, we determined 95% bootstrap confidence intervals. Next, we
created 1 001 bootstrap samples of the instance set, and for each occurrence of
an instance in a sample we sampled at random from the corresponding distri-
bution of median performance values. Finally, we calculated medians and 95%
confidence intervals for the performance observed at each parameter value. We
used Bonferroni multiple testing correction when calculating confidence inter-
vals, since each slice had up to 15 parameter values, and linear interpolation to
estimate confidence intervals between adjacent parameter values.

2.3 Tests for Convexity and Uni-modality

We designed two testing procedures to determine if there is sufficient evidence
to reject the hypotheses of convexity and uni-modality of a given parameter
response slice with 95% confidence. These tests attempt to fit a piece-wise linear
curve that is constrained to be uni-modal or convex, respectively, through the
previously described bootstrap confidence intervals. We say that a test rejects

Algorithm Configuration Landscapes: More Benign Than Expected? 275

uni-modality or convexity if no such line exists. If the upper bound of a param-
eter value was censored, we excluded it from the test, since there is insufficient
information to properly reason about it. When considering individual instance
response slices (RQ 2), if there were too few uncensored data points to perform a
test, we considered it to be insufficient data to reject the hypotheses of convexity
or uni-modality. For aggregate response slices (RQ 1), we used PAR10 scores,
counting censored runs at 10 times our running time cutoff).

2.4 Identifying “Interesting” Parameter Response Slices

Parameters with almost flat responses (i.e., robust ones, whose settings have
little or no effect on the performance of the algorithm) are of limited interest
to our investigation. We therefore used a simple heuristic procedure to identify
parameters with interesting (i.e., non-flat or sensitive) responses, based on the
sizes of and overlap between the bootstrap confidence intervals for each value in
the respective parameter response slice. To be precise, we define a parameter’s
response to be interesting if the size (in terms of the log of the performance
measure) of the overlap between the two confidence intervals with the least
amount of overlap is at most half of the average size of the confidence intervals.

2.5 Counting the Number of Modes (Local Minima)

One commonly used feature to describe the ruggedness of a search landscape is
the number and density of local optima (see, e.g., Chap. 5 of [8]). We partially
capture this notion of ruggedness by counting the number of modes that occur
along a parameter response slice. To do this, we use a very similar procedure to
our tests for uni-modality and convexity: we fit the flattest possible piece-wise
linear curve within the region defined by the 95% confidence intervals along a
given parameter response slice and then count the number of modes in that line.

2.6 Fitness Distance Analysis

Since traditional fitness distance analysis would have been too expensive, con-
sidering the constraints on our computational budget, we applied it locally to
the sets of data points belonging to each parameter response slice. We also calcu-
lated the FDC for each bootstrap sample of a parameter response slice to obtain
medians and confidence intervals for each slice.

3 Experimental Setup

We studied 10 different algorithm configuration scenarios, spanning three widely
studied, NP-hard problems (SAT, MIP and TSP), 6 prominent algorithms for
these and 5 well-known instance sets. All of these scenarios involve the mini-
mization of running time, measured in terms of PAR10, i.e., mean running time
with timed-out runs counted at 10 times the running time cutoff. In Table 1,

276 Y. Pushak and H. Hoos

Table 1. The instance sets we studied from ACLib scenarios and the configuration
budgets and training/testing running time cutoffs we used for their scenarios.

Problem Instance set Configuration
budget [CPU
days]

Training running
time cutoff [CPU
sec]

Test running
time cutoff
[CPU sec]

SAT Circuit-fuzz 2 300 600

BMC08 2 300 600

MIP CLS 2 10000 10000

Regions200 2 10000 10000

TSP tsp-rue-1000-3000 1 86 3600

we summarize the configuration budgets and running time cutoffs used for our
scenarios. All instance sets are readily available online in ACLib scenarios that
have been identified as interesting and challenging benchmarks for algorithm
configurators [13]. For the SAT and MIP instance sets, we used the same bud-
gets and running time cutoffs as specified in the corresponding ACLib scenarios.
We increased the running time cutoff for the test set (and parameter slices) for
the SAT and TSP scenarios, in order to better assess poorly performing config-
urations.

Table 2. The 6 algorithms we studied. *We configured all 185 numerical parameters,
but only studied slices for the 10 most important (see text for details).

Problem Algorithm Version Numerical
parameters

Categorical
parameters

SAT CaDiCaL sc17 40 22

Lingeling azf 185* 137

Cryptominisat 4.1 22 36

MIP CPLEX 12.6 22 52

TSP EAX+ restart JDL 2 0

LKH+ restart 2.0.7 12 9

Table 2 provides an overview of the 6 algorithms we studied. We introduce a
few new, state-of-the-art algorithms not found in existing ACLib scenarios.

For SAT, we studied CaDiCaL [3], because it was one of the top-performing,
configurable solvers in the application track of the 2017 SAT competition; lin-
geling [3], because it was the winner of the 2014 Configurable SAT Solver chal-
lenge on the circuit-fuzz and BMC08 instances; and cryptominisat [18], because
it is a variant of the well-known and commonly used minisat algorithm. Refer-
ence implementations of lingeling and cryptominisat were directly obtained from
ACLib 2.0, whereas that of CaDiCaL was taken from the 2017 SAT competition.

Algorithm Configuration Landscapes: More Benign Than Expected? 277

For TSP, we chose two extensively studied [4,16], state-of-the-art, inexact
solvers: EAX [17] and LKH [7]. We used the same implementations as Mu et
al. [16] and Dubois-Lacoste et al. [4], which were modified to use a restarting
mechanism and terminate upon reaching optimal solution quality values (known
from long runs of an exact solver). The TSP scenarios in ACLib configure for
solution quality, so we chose these solvers to focus on running time minimization.

For MIP, we studied the high-performance commercial solver IBM ILOG
CPLEX [1], version 12.6 (featured in several ACLib scenarios), which terminates
upon finding an optimal solution to a given MIP instance and completing a
proof of optimality. We slightly modified the CPLEX scenarios from ACLib, by
treating CPLEX as a randomized algorithm. Earlier versions of CPLEX used a
fixed random seed that was not exposed to the user; however, CPLEX is in fact
a randomized solver, and treating it as such avoids potential problems arising
from bias due to the use of a specific random seed.

For every algorithm except lingeling we were able to evaluate parameter
slices for all of their numerical parameters; however, since lingeling had so many
parameters, we restricted our analysis to a subset of them. Falkner et al. [5]
reported the 10 most important parameters according to fANOVA [11] (all of
which were numerical) for lingeling on the circuit-fuzz instance set, so we only
used these 10. We also slightly modified the ranges for a few parameters for
LKH and CPLEX. Some of the numerical parameters use values 0 or -1 to
encode special behaviour, e.g., the automatic setting of the parameter value
or deactivation of the mechanism controlled by the parameter. In cases where
the documentation was unclear, we erred on the side of caution and removed a
parameter value or treated the special value as a categorical parameter.

In Table 3, we show the results from configuring our 10 scenarios, using 25
runs of SMAC [9] per scenario. These results are consistent with the literature.
We note that in some cases, configuration did not result in significant perfor-
mance improvements over the default parameter settings of a given algorithm;
this is unproblematic, since our goal in performing automated configuration
was not to obtain improved performance, but rather to ensure we used high-
performance configurations as reference points for the parameter response slices
that formed the basis for our configuration landscape analysis.

We ran all of our experiments on Ada, a cluster of 20 nodes, equipped with 32
2.10 GHz Intel Xeon E5-2683 v4 CPUs with 40960 KB cache and 96 GB RAM
each, running openSUSE Leap 42.1 (x86 64). To minimize detrimental cache
effects and memory contention, in all experiments, we used a single core per CPU
and limited RAM use to 3 GB. In total, we used 43.5 CPU years for automated
configuration and collection of parameter response slice data.

4 Results

We collected and analyzed 193 parameter slices for instance sets and individual
problem instances, as motivated in Sect. 1 and outlined in Sects. 2 and 3.

278 Y. Pushak and H. Hoos

Table 3. PAR10 values on the test sets for the default configuration versus the con-
figuration with the best training PAR10. All times are in CPU seconds.

Problem Algorithm Instance set Default
PAR10

Configured
PAR10

Speedup

SAT CaDiCaL Circuit-fuzz 468.71 252.34 1.86

BMC08 638.57 637.93 1.00

Lingeling Circuit-fuzz 382.23 279.29 1.37

BMC08 692.80 691.51 1.00

Cryptominisat Circuit-fuzz 444.68 276.83 1.61

BMC08 938.61 970.07 0.97

MIP CPLEX CLS 40.39 3.39 11.91

Regions200 106.77 6.40 16.68

TSP EAX tsp-rue-1000-3000 65.99 56.84 1.16

LKH tsp-rue-1000-3000 428.60 228.62 1.87

4.1 RQ 1. Uni-modality and Convexity on Instance Sets

Overall, the parameter response slices for instance sets appear to be more benign
than one might expect. Our tests for uni-modality and convexity failed to reject
for all but 1 of the 193 parameter slices. That is, 99.48% of the slices we mea-
sured appear to be both uni-modal and convex. Somewhat surprisingly, our
heuristic method outlined in Sect. 2.4 identified only 18 of the slices as inter-
esting. In Fig. 1, we show 4 parameter response slices that are representative
of the qualities we observed in this set of 18 (the remaining 14 are available in
our online, supplementary material, available at http://ada.liacs.nl/projects/ac-
landscapes). To our surprise, neither lingeling nor cryptominisat had any inter-
esting parameter response slices. The parameter that fANOVA rated to be the
most important for lingeling [5] shows a slight dip at the smallest parameter
value in the slice for the circuit-fuzz instance set. To investigate further, we eval-
uated an additional 15 parameter values, but still found it to be un-interesting
according to our criterion.

The only parameter we found having a non-unimodal and non-convex
response was LKH’s BACKBONE TRIALS parameter (see Fig. 1), which specifies
the number of backbone trials in each run. Apart from BACKBONE TRIALS= 0,
even this response slice appears to be convex and uni-modal. To the best of our
knowledge, a value of 0 does not have special meaning, apart from the obvious
semantic difference of some versus no backbone trials, which may alone account
for this difference, since it likely corresponds to a (poorly performing) heuristic
component of the algorithm that is turned on or off.

Some of the parameter responses (e.g., keepglue in Fig. 1), appear to be
flat for poorly performing parameter values, and hence non-convex overall. Our
tests were unable to reject convexity, despite this visual evidence, because of the
relatively wide bootstrap confidence intervals. However, we believe that these

http://ada.liacs.nl/projects/ac-landscapes
http://ada.liacs.nl/projects/ac-landscapes

Algorithm Configuration Landscapes: More Benign Than Expected? 279

102

103

 0 10 20 30 40 50 60 70 80

C
PU

 S
ec

on
ds

keepglue

101

102

103

104

105

 0 1 2 3 4 5

C
PU

 S
ec

on
ds

BACKBONE TRIALS

101

102

103

104

 0 200 400 600 800 1000

C
PU

 S
ec

on
ds

Npop

100

101

 150 200 250 300 350

C
PU

 S
ec

on
ds

mip limits submipnodelim

Median of PAR10
95% Confidence Interval

Fig. 1. Four parameter response slices. From left to right top to bottom: CaDiCaL’s
keepglue on the circuit-fuzz instance set, LKH’s BACKBONE TRIALS on the tsp-rue-1000-
3000 instance set, EAX’s Npop on the tsp-rue-1000-3000 instance set and CPLEX’s
mip limits submipnodelim on the Regions200 instance set.

flat regions are an artifact of how PAR10 scores treat censored runs, and that a
sufficiently large running time cutoff would yield convex responses.

Interestingly, in the three SAT scenarios involving the BMC08 instance set,
we found only one parameter response slice considered interesting according to
our criterion: CaDiCaL’s restartmargin. This is consistent with the fact that
SMAC was unable to achieve significant performance improvements for these
scenarios. We further note that the default value for restartmargin is very near
to the best-known value. Hence, it appears that better configurations may not
exist rather than being hard to find due to highly irregular or rugged landscapes.

4.2 RQ 2. Uni-modality and Convexity on Individual Instances

To study our second research question, we ran our tests for convexity and uni-
modality on the parameter response slices for each individual problem instance.
We consider the parameters independently by looking at statistics of their
responses on each instance. For example, on the left pane of Fig. 2 we plot a
cumulative distribution function (CDF) showing on the y-axis the percentage of
parameters that had convex responses on a percentage of instances less than or
equal to the value specified on the x-axis. Surprisingly, there is a large percentage
of parameters with convex responses slices for most instances. However, nearly
half of the parameters with interesting response slices on the entire instance set
tend to have much fewer convex parameter responses on the individual instances.
Our procedure (outlined in Sect. 2.3), sometimes assumes uni-modality or con-
vexity when there is insufficient data to perform a test. On average, over all
parameters, this happened for only 6.2% of the instances we considered, and at

280 Y. Pushak and H. Hoos

most, on 16.9% of the instances. Hence, even if all of these cases were instead
assumed to be non-unimodal or non-convex, our overall results would not be
substantially different.

Furthermore, looking at the CDF of the average numbers of modes for each
instance parameter slice on the right pane of Fig. 2, we see that just under 50%
of the interesting parameters have an average of more than one mode for their
individual instance responses. On the other hand, most of the parameters have
an average of only one mode per instance, which is consistent with the fraction
of parameters with primarily convex instance response slices.

Overall, there are a surprisingly large number of parameter response slices
that are both uni-modal and convex on most or all of their individual instances.
In Table 4, we show a summary of these results, in addition to the corresponding
results for the parameter responses on entire instance sets. Note that for the
aggregate instance set parameter responses, we show the percentage of uni-modal
and convex parameter response slices observed on different instance sets, whereas
for the individual instances, we first computed the percentage of instances with
uni-modal and convex responses for each parameter, and then report the average
percentages over the set of all parameters.

 0

 25

 50

 75

 100

 0 25 50 75 100

%
 o

f P
ar

am
et

er
 R

es
po

ns
es

% of Instances with Convex Responses

Interesting Parameters
All Parameters

 0

 25

 50

 75

 100

 1 1.5 2 2.5 3 3.5 4

%
 o

f P
ar

am
et

er
 R

es
po

ns
es

Average Number of Modes Per Instance

All Parameters
Interesting Parameters

Fig. 2. CDFs summarizing our findings for individual instances. Left: for each param-
eter we computed the percentage of instances on which it had a convex response, and
then we plot the CDF of these percentages; right: the CDF of the average number of
modes observed in the responses for a parameter on each instance.

Our analysis of the fitness distance correlation coefficient (FDC) for the
parameter response slices supports our hypothesis that parameter responses on
individual instances are more rugged than the aggregate responses on entire
instance sets. In particular, we found that 80% of the parameters have an aver-
age instance response slice FDC less than 0.25, compared to 0.4 for the instance
set responses. However, through manual inspection of the instance parameter
slices, we found that some responses obtained low FDC scores simply because
they are relatively flat (hence deviations in parameter value have low correlation
with deviations in algorithm performance). Still, the high average numbers of
modes observed for some of the parameters indicate that these responses are
truly rugged.

Algorithm Configuration Landscapes: More Benign Than Expected? 281

Table 4. Left: the percentages of uni-modal and convex parameter response slices on
entire instance sets; right: we computed the percentage of instances with convex or uni-
modal responses for each parameter, and then show the average percentages over the
parameters, i.e., we show the percentage of convex and uni-modal instance responses
for the “average parameter”.

Instance set Individual instances

% Uni-modal
parameters

% Convex
parameters

Average %
uni-modal
instances

Average %
convex
instances

All
parameters

99.5 99.5 95.3 92.6

Interesting
parameters

94.4 94.4 76.1 66.1

To check that these were not spurious results, we performed exact replicates
for three scenarios that were near the Pareto front of the largest average number
of modes and the smallest average FDC: CaDiCaL’s posize and elimint on
circuit-fuzz instances, and CPLEX’s mip limits cutpasses on CLS instances.
Then, for each parameter, we chose three instances near to their respective
Pareto fronts. In all cases, the replicates were qualitatively identical to the orig-
inal ones. Additional details on these experiments and our FDC analysis can be
found at http://ada.liacs.nl/project/ac-landscapes.

5 Conclusions and Future Work

Overall, we found strong support for our hypothesis that parameter responses
on instance sets tend to be uni-modal and convex. We also found evidence that
many parameters have convex and uni-modal responses on individual problem
instances; however, these responses tend to be (in some cases substantially) more
rugged than their aggregate counterparts. We were surprised to find that a small
percentage of parameters appear to have highly rugged responses on most of the
instances. However, even though these parameters have rugged response slices
on individual instances, their aggregate responses still tend to be uni-modal
and convex on the entire instance set, after performing bootstrap sampling to
account for the variability over instances. This may be why the simple Gaussian
model used for generating promising configurations in irace [14], which inherently
exploits smoothness in individual parameter responses, works rather well.

Our results do not preclude the possibility of complex parameter interac-
tions that result in configuration landscapes with many local optima. Future
work could study parameter interactions and investigate whether or not local
minima are rare, or at least easy to escape. Categorical parameters also play an
important role in many algorithm configuration scenarios. Here, we set categor-
ical parameters to values found in high-quality solutions; however, it would be

http://ada.liacs.nl/project/ac-landscapes

282 Y. Pushak and H. Hoos

interesting to explore whether similar results to those we reported here hold for
other settings of the categorical parameters of a given target algorithm. More-
over, it would be very interesting to investigate to which extent our findings
interact with parameter importance, as assessed by fANOVA and ablation anal-
ysis.

We note that our method for collecting data is focussed on high-performance
regions of the configuration spaces we considered, as is the search process of
algorithm configurators. Therefore, our results may only hold in these regions;
this would be at least of theoretical interest and could be investigated in future
work. Another direction is to extend our analysis to scenarios that involve opti-
mization of solution quality, such as loss scenarios involving hyperparameter
optimization of machine learning algorithms. Finally, and perhaps most inter-
estingly, we strongly believe that our results open the door to designing new
algorithm configuration procedures that exploit the relatively benign character-
istics of typical configuration landscapes discovered in this work.

Acknowledgements. YP was supported by an NSERC Vanier Scholarship. HH
acknowledges funding through an NSERC Discovery Grant, CFI JLEF funding and
startup funding from Universiteit Leiden.

References

1. IBM Corp: IBM ILOG CPLEX Optimizer (2018). https://www.ibm.com/
analytics/data-science/prescriptive-analytics/cplex-optimizer. Accessed 30 Mar
2018

2. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS,
vol. 5732, pp. 142–157. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04244-7 14

3. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT entering the
SAT Competition 2017. In: Proceedings of SAT Competition 2017: Solver and
Benchmark Descriptions, pp. 14–15 (2017)

4. Dubois-Lacoste, J., Hoos, H., Stützle, T.: On the empirical scaling behaviour of
state-of-the-art local search algorithms for the Euclidean TSP. In: Proceedings of
GECCO, pp. 377–384 (2015)

5. Falkner, S., Lindauer, M., Hutter, F.: SpySMAC: automated configuration and per-
formance analysis of SAT solvers. In: Heule, M., Weaver, S. (eds.) SAT 2015.
LNCS, vol. 9340, pp. 215–222. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24318-4 16

6. Fawcett, C., Hoos, H.: Analysing differences between algorithm configurations
through ablation. JOH 22(4), 431–458 (2016)

7. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman
heuristic. EJOR 126, 106–130 (2000)

8. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Mor-
gan Kaufmann Publishers Inc., San Francisco (2005)

9. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1007/978-3-319-24318-4_16
https://doi.org/10.1007/978-3-319-24318-4_16
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40

Algorithm Configuration Landscapes: More Benign Than Expected? 283

10. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Identifying key algorithm parameters
and instance features using forward selection. In: Nicosia, G., Pardalos, P. (eds.)
LION 2013. LNCS, vol. 7997, pp. 364–381. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-44973-4 40

11. Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyper-
parameter importance. In: Proceedings of ICML, pp. 754–762 (2014)

12. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. JAIR 36, 267–306 (2009)

13. Hutter, F., et al.: AClib: a benchmark library for algorithm configuration. In:
Proceedings of LION, pp. 36–40 (2014)

14. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L., Stützle, T., Birattari, M.: The
irace package: iterated racing for automatic algorithm configuration. ORP 3, 43–58
(2016)

15. Mu, Z., Hoos, H.: Empirical scaling analyser: an automated system for empirical
analysis of performance scaling. In: Proceedings of GECCO, pp. 771–772 (2015)

16. Mu, Z., Hoos, H.H., Stützle, T.: The impact of automated algorithm configuration
on the scaling behaviour of state-of-the-art inexact TSP solvers. In: Festa, P.,
Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 157–172.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50349-3 11

17. Nagata, Y., Kobayashi, S.: A powerful genetic algorithm using edge assembly
crossover for the traveling salesman problem. INFORMS JOC 25(2), 346–363
(2013)

18. Soos, M.: CryptoMiniSat v4. In: Proceedings of SAT Competition 2014: Solver and
Benchmark Descriptions, p. 23 (2014)

https://doi.org/10.1007/978-3-642-44973-4_40
https://doi.org/10.1007/978-3-642-44973-4_40
https://doi.org/10.1007/978-3-319-50349-3_11

A Model-Based Framework for Black-Box
Problem Comparison Using Gaussian

Processes

Sobia Saleem1, Marcus Gallagher1(B), and Ian Wood2

1 School of Information Technology and Electrical Engineering,
University of Queensland, Brisbane 4702, Australia

{s.saleem,marcusg}@uq.edu.au
2 School of Mathematics and Physics, University of Queensland,

Brisbane 4702, Australia
i.wood1@uq.edu.au

Abstract. An important challenge in black-box optimization is to be
able to understand the relative performance of different algorithms on
problem instances. This has motivated research in exploratory land-
scape analysis and algorithm selection, leading to a number of frame-
works for analysis. However, these procedures often involve significant
assumptions, or rely on information not typically available. In this paper
we propose a new, model-based framework for the characterization of
black-box optimization problems using Gaussian Process regression. The
framework allows problem instances to be compared in a relatively sim-
ple way. The model-based approach also allows us to assess the goodness
of fit and Gaussian Processes lead to an efficient means of model compar-
ison. The implementation of the framework is described and validated
on several test sets.

1 Introduction

A continuous black box optimization problem is defined as:

min f(x), x ∈ S ⊆ IRn (1)

where f() is the objective or fitness function and S is the feasible search space. It
is assumed that the form of f() is unknown but can be evaluated at any feasible
candidate solution. Many real world problems can be formulated in this way
and metaheuristic algorithms are specifically developed for this class of prob-
lems. The performance of an algorithm instance on a problem instance depends
on how well the assumptions made by the algorithm suit the structure of the
problem fitness landscape. Exploratory/fitness landscape analysis [10] aims to
develop landscape features for understanding black-box problems, based on a
sample of candidate solutions. A variety of different features have been pro-
posed to measure different properties of problem landscapes [14]. If we are able
to effectively characterize and compare problem instances, it should enable a
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 284–295, 2018.
https://doi.org/10.1007/978-3-319-99259-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_23&domain=pdf

A Model-Based Framework for Black-Box Problem Comparison Using GP 285

better understanding of algorithms and facilitate automated algorithm selection
and configuration.

Evaluating the effectiveness of exploratory landscape analysis features and
their role in the algorithm selection techniques is a nontrivial experimental chal-
lenge. While a number of procedures have been explored in the literature, they
can be complex, involve the calculation of a set of landscape features and mul-
tiple stages of analysis that may require information not generally available for
new problems.

In this paper we propose a model-based framework for continuous black-box
problem comparison using Gaussian process (GP) regression. The advantages of
this framework are that a flexible model is used, the accuracy of which can be
measured, together with an appropriate way of comparing problems via their GP
models. We describe our specific implementation of the model-based framework
and evaluate the approach on a number of pre-designed test problem sets.

The paper is organized as follows: Sect. 2 summarizes existing frameworks
for problem characterization and their limitations. Our proposed model-based
framework for problem comparison is described in Sect. 3, highlighting its main
elements. In Sect. 4 we describe the experiments, including the problem sets used
based on controlled transformations. The experimental results are presented and
discussed in Sect. 5 followed by the concluding Sect. 6.

2 Existing Frameworks for Problem Characterization
and Algorithm Selection

An early framework for algorithm selection based on problem features was pro-
posed by Rice [20]. This framework is based on extracting problem characteristics
c ∈ C for the given problem f ∈ F and selecting an algorithm α ∈ A such that
the output (e.g. performance) y ∈ Y is maximized. The relationship between
Rice’s framework and more recent research in landscape analysis, meta-learning
models and algorithm portfolios is discussed in [14].

Many different features have been proposed in the literature for problem char-
acterization. But capturing and summarizing the structure of an arbitrary land-
scape is a difficult task [9]. Most features make very strong modelling assump-
tions (e.g. the R2 coefficient for a linear or quadratic model of the landscape) or
only use part of the information available in the sample (e.g. the sample skewness
or kurtosis of the f values in the sample). Using a set of features in combination
is a possibility [22], but the features are heterogeneous, making it difficult to
select and utilize features in a principled way [16].

A regression model based on landscape features and algorithm (CMA-ES)
hyperparameters is built in [13] to predict algorithm performance for a given
problem. A framework to analyze the performance of algorithms using prob-
lem features is given in [15]. It uses a set of nine selected features and applies
principal component analysis to reduce the feature space to two dimensions. An
algorithm footprint is estimated on the feature space to relate which feature

286 S. Saleem et al.

Framework 1. Model-based continuous problem comparison
Given: set of problem instances, sample size N , regression model.
for all problems do

Draw a sample of size N from the search space S.
Evaluate f over the sample.
Fit a regression model using the sample and f values.
Evaluate the goodness of fit of the model.

end for
Calculate pairwise (dis)similarities between models.
Output: Problem similarity values.
Results Analysis: Dimensionality reduction or other techniques.

values correspond to particular algorithm performance. Another framework sug-
gested in [11] uses algorithm rankings from the BBOB competition [5] to predict
the best algorithm for a set of benchmark problems. The results are related to
problem features to find some rules about the algorithm problem relationship.
This approach requires a carefully chosen set of test functions and performance
measures of the list of algorithms selected.

Most existing techniques that use problem features for algorithm selection or
performance prediction are retrospective, using information not generally avail-
able for new problem instances, such as reported algorithm performance data
or labelled categories of problems. Fundamentally, a way of comparing a set of
problems in terms of their relative distances to each other might be simpler and
yet still allow us to better understand the problem-algorithm mapping. In the
next Section we describe a framework aimed at this, using GP regression models.

3 A Model-Based Framework for Problem Comparison

The framework proposed here essentially involves fitting a regression model to
a sample of candidate solutions and fitness function values for a set of black-
box optimization problem instances. A goodness of fit or error measure is then
used to evaluate the regression model. Our framework compares problems by a
comparison of the regression models built for each problem. This provides a set of
pairwise distance or similarity values which characterize a problem set in terms
of their relative distances or similarities. Algorithm selection could then follow
based on the assumption that an algorithm that is effective for a given problem
instance is likely to also be effective for nearby problem instances. Calculating
features embeds a problem set in a somewhat arbitrary space, where selecting a
suitable similarity measure may be difficult. Assuming the sample contains some
information about the important landscape structure, a clear advantage of using
a flexible regression model is that increasing the sample size will typically result
in an improved model fit (i.e. a better representation of the problem landscape)
whereas in the case of estimating problem features, increasing the sample size
simply makes the feature estimate more robust.

A Model-Based Framework for Black-Box Problem Comparison Using GP 287

3.1 Problem Comparison Using Gaussian Processes

In principle any regression model could be used in the above framework, however
GPs are particularly well-suited to this task, as discussed below. Briefly, a GP is
defined as a collection of random variables such that their joint distribution is a
multivariate Gaussian, N (μ,Σ) [19]. A GP is completely specified by its mean
(E[f(x)]) and covariance (k(xi,xj)) functions. This defines a prior distribution
over the function space. Given a set of training data consisting of input vectors,
x and target values y, the posterior predictive distribution of the GP at a test
point, x∗, is Gaussian with mean and variance given by:

f̄∗ = kT
∗ (K + σ2

nI)−1y (2)

Var(f∗) = k(x∗,x∗) − kT
∗ (K + σ2

nI)−1k∗ (3)

where K is the (N × N) covariance matrix between all pairs of points in the
training set, k∗ is a vector of covariance values between the test point and the
training set, I is the identity matrix and σ2

n is an additive noise parameter (see
below).

In general, calculating a distance or difference between regression models can
be a complex task. However given two GPs, the distance calculation becomes
a difference between two multivariate Gaussian distributions. The difference
between two continuous probability density functions, p(x) and q(x), is com-
monly measured using the Kullback Leibler (KL) divergence:

dKL(p||q) =
∫ ∞

−∞
p(x) log

p(x)
q(x)

dx (4)

If we have two multivariate Gaussian distributions, Na(μa,Ka) and Nb(μb,Kb),
then the KL divergence can be written in closed form:

dKL(Na||Nb) =
1
2

log |KbK
−1
a | +

1
2
K−1

b ((μa − μb)(μa − μb)T + Ka − Kb) (5)

We use the Jeffreys divergence [7], dJ which is a symmetric version of the
KL divergence:

dJ(Na||Nb) =
1
2
(dKL(Na||Nb) + dKL(Nb||Na)) (6)

This gives us an efficient and direct way to calculate the difference between two
problems via the GP models of their landscapes. Similar problems are expected
to have relatively small divergence values and large divergence values will imply
that the problems are quite different from each other.

3.2 Gaussian Process Implementation Details

Building a GP regression model requires the selection of mean and covariance
functions. The mean function is assumed to be zero (the sample data can be

288 S. Saleem et al.

centred by subtracting the sample mean prior to fitting the model). There are
many possible covariance functions that can be used to characterize the degree of
similarity between data points in the input space [18]. The squared exponential
covariance function is the most common choice [19]. The squared exponential
covariance function has the form:

k(xi,xj) = σ2
f exp

(
1

2l2
||xi − xj ||2

)
+ σ2

nδij (7)

where δij is the Kronecker delta function. The characteristic length scale l is
indicative of the smoothness of the function. This hyperparameter captures the
distance needed to move in any direction for the function values to become
uncorrelated. σ2

f is the signal variance. In addition, the noise variance σ2
n is a

hyperparameter of the GP which specifies the trade-off between the strength
of the prior and fitting observed data [19]. In this paper we use the squared
exponential covariance function as a spherical model across all dimensions of
our problem sample data (i.e. a single l parameter is used). The optimization
of these hyperparameters is important for fitting a GP. We use a standard app-
roach to this: conjugate gradient is used to maximize the log-likelihood [19]. The
hyperparameter optimization problem is not convex, so we use trial and error to
set hyperparameters in the ranges indicated by the problem data. Many values
worked well; for the results presented here the initialization used was l = 0.5,
σ2
f = 1000 and σ2

n = 0.1.
In case of very smooth functions, the correlation between the observations

is very high. This results in very similar rows/columns in the covariance matrix
which can lead to making it poorly conditioned. This is an important issue in the
implementation of GP’s. The inversion of the covariance matrix is done using the
Cholesky decomposition as it increases the tolerance towards the conditioning
problem [17].

3.3 Related Work

Surrogate models have been widely used in optimization, particularly for prob-
lems where evaluating f is expensive. The model is used in place of the actual
objective function. In using surrogate models it is important to balance the
number of samples used (which should be minimum) with the improvement in
approximation [3]. GPs as well as other models such as Random Forests and Sup-
port Vector Machines have been used [1]. Bayesian optimization algorithms use
GPs to find a better solution using a minimum number of function evaluations
[4,17]. A survey on the use of surrogate models in evolutionary computation is
given in [6]. A framework based on using GP to find the promising individuals
in the PSO population during the search is presented in [21].

As far as we are aware, there has only been one recent paper where surrogate
regression models have been directly used to characterize problem instances [2].
The authors’ main focus is on reducing the sample size required for feature-
based algorithm selection. Therefore, a GP model is built from a small sample

A Model-Based Framework for Black-Box Problem Comparison Using GP 289

as a surrogate, with further sampling carried out on the surrogate. In contrast,
we calculate the difference between models fitted to these samples rather than
computing features based on the surrogate model.

Finally, the Jeffrey’s divergence has previously been used to compare prob-
lems in the context of length-scale feature analysis [12]. Length scale distribu-
tions were obtained using kernel density estimation and the divergence values
calculated numerically over the sample. As shown above, the GP model-based
framework requires no density estimation and the divergence values are calcu-
lated in closed-form.

4 Experimental Methodology

In this section we validate our framework on several test problems. We have gen-
erated 4 sets of 11 problem instances by gradually transforming a standard test
problem into a different problem in a controlled way. The transformations deter-
mine a possible intuitive ordering of the problems, which we then try and recover
in the black-box scenario, using the GP model-based framework. Existing prob-
lem sets such as the BBOB functions [5] do not have such an ordering, making it
less straightforward to evaluate our results. The problem transformations are:

– Sphere to Rastrigin: the amplitude of the periodic term in the Rastrigin
function is increased in 10 equal steps.

– Rastrigin to Flat: piece-wise linear combination, flat region grows from the
center and expands equally in each intermediate problem.

– Sphere to Ellipse: increase in condition number across problem dimensions.
– Linear to Sphere: piece-wise linear combination, linear slope function is

replaced by sphere function starting from the center.

Figure 1 illustrates the transformations in 1-D. We used 2-D and 5-D versions
of the problems, with S = [−5, 5]n. The sample size used was N = 1000 for
the 2-D problems and N = 2500 for the 5-D problems. To visualize the results,
dimensionality reduction techniques based on the similarity matrices can be
utilized. We applied the t-Stochastic Neighbor Embedding (t-SNE) algorithm [8]
as well as heatmaps and dendrograms to visualize the problem comparisons. t-
SNE is a state of the art dimensionality reduction technique in machine learning.
The algorithm is based on similar principles to our framework in that it calculates
the KL divergence between a distribution of distances in a high dimensional data
space and a lower dimensional mapping.

5 Results and Discussion

To measure the goodness of fit of the GP model, we have used the normalized
mean square error (NMSE) for the test set. The NMSE calculates the deviation
between the GP model predicted (f∗(xi)) and actual fitness values at sample
points. It is defined as:

290 S. Saleem et al.

-5 0 5
0

20

40

Sp
he

re
 to

R
as

tri
gi

n
-5 0 5

0

20

40

-5 0 5
0

20

40

-5 0 5
0

50

-5 0 5
0

50

R
as

tri
gi

n
to

Fl
at

-5 0 5
0

50

-5 0 5
0

50

-5 0 5
0

20

40

-5 0 5
0

20

40

Sp
he

re
 to

El
lip

se

-5 0 5
0

5

10
107

-5 0 5
0

1

2
108

-5 0 5
0

2

4
108

-5 0 5

problem 1

-50

0

50

Li
ne

ar
 to

Sp
he

re

-5 0 5

problem 4

-50

0

50

-5 0 5

problem 8

-50

0

50

-5 0 5

problem 11

0

20

40

Fig. 1. Problem transformations used to generate the test problem sets. Shown are
1-D versions of problems 1,4,8 and 11 in each set.

NMSE =
1
N

∑
i

(f∗(xi) − f(xi))2

f∗() · f()
(8)

where f() is the sample mean of the function values. The NMSE values for the
models of all the problems in each transformation in 2D are shown in Table 1.
The NMSE values for 5D problem models are shown in Table 2.

Table 1. The estimated NMSE values in 2D.

Prob ID Sphere2Ellipse Rastrigin2Flat Sphere2Rastrigin Linear2Sphere

1 8.59E-06 0.001599 9.44E-06 3.66E-06

2 1.20E-08 0.0067396 0.00019719 3.72E-06

3 3.91E-09 0.014997 0.0002686 0.001875

4 9.51E-10 0.01169 0.00026819 0.0034078

5 5.38E-10 0.031776 0.00052105 0.0076807

6 7.59E-10 0.077764 0.00028147 0.014644

7 3.50E-10 0.085257 0.00071756 0.07977

8 3.17E-10 0.31847 0.00066255 0.092218

9 2.21E-10 4.1164 0.00019552 0.015076

10 2.36E-10 2.7546 0.00029032 0.11195

11 2.89E-10 0.002448 0.00036012 8.79E-06

A Model-Based Framework for Black-Box Problem Comparison Using GP 291

Table 2. The estimated NMSE values in 5D.

Prob ID Sphere2Ellipse Rastrigin2Flat Sphere2Rastrigin Linear2Sphere

1 1.20E-06 0.030001 1.63E-06 2.97E-06

2 1.15E-08 0.030058 0.0013048 2.45E-06

3 4.76E-09 0.032689 0.004254 3.53E-06

4 3.05E-09 0.038068 0.0080946 0.0014831

5 9.84E-10 0.057157 0.011884 0.0264

6 8.69E-10 0.11271 0.01589 0.1312

7 4.85E-10 0.40765 0.019802 0.23115

8 2.03E-10 2.5472 0.023586 0.22068

9 1.56E-10 7.4724 0.027164 0.014305

10 3.71E-11 0.79306 0.030465 1.47E-06

11 1.70E-10 0.0024149 0.033622 1.54E-06

The t-SNE plots for the Sphere to Ellipse transformations in 2D and 5D
are shown in Fig. 2. The results show that the order of the problems in the
transformation is very strongly recovered from our framework (i.e. problem i
tends to be closest to i − 1 and/or i + 1). The model error values for all the
problems in this set are very small, indicating that the GP is an accurate model of
these landscapes. The dimensionality reduction attempts to preserve the pairwise
distances between the problem instances, so the orientation of the points in the
plot is not meaningful.

-150 -100 -50 0 50 100
-1000

-500

0

500

1000
Sphere to Ellipse 2D

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 11

-150 -100 -50 0 50 100 150
-600

-400

-200

0

200

400

600
Sphere to Ellipse 5D

 1
 2

 3

 4

 5

 6

 7

 8

 9

 10
 11

Fig. 2. t-SNE visualisations of the Sphere to Ellipse problem set. Left: 2D, Right: 5D

Figure 3 shows the t-SNE plot for the Rastrigin to Flat problem set in 2D
and 5D. The visualisation shows that the problem order from the transforma-
tion is strongly recovered. This problem transformation is rather complex as it
combines multiple local minima and a perfectly flat surface. The error values for
the models (Tables 1 and 2) show relatively high values for problems 8,9 and 10,
suggesting that the model lacks some accuracy at modelling the function. This

292 S. Saleem et al.

-500 0 500
-800

-600

-400

-200

0

200

400

600
Rastrigin to Flat 2D

 1

 2
 3 4

 5

 6

 7

 8

 9

 10

 11

-1000 -500 0 500 1000
-300

-200

-100

0

100

200

300

400
Rastrigin to Flat 5D

 1

 2

 3

 4

 5
 6

 7
 8

 9

 10

 11

Fig. 3. t-SNE visualisations of the Rastrigin to Flat problem set. Left: 2D, Right: 5D

may partly explain the distribution of problems in Fig. 3 (e.g. problems 9 and
10 in the 2D set are well separated from 8 and 11). No model can be expected
to provide a highly accurate model of arbitrary fitness landscapes based on a
modest sample of data. A strength of our approach is that rather than simply
accepting calculated feature values, the error of the model gives us a measure
of how reliable our results are. For the Sphere to Rastrigin transformations,
Fig. 4(a) shows excellent recovery of the problem ordering in 2D. The Sphere
function (problem 1) appears somewhat separate, perhaps because it is the only
unimodal problem in the set. In Fig. 4(b) the trend is not as visually obvious
across the entire problem set, however most problem instances have, as their
nearest neighbours, the neighbouring problems in the transformation (e.g. 8 is
closest to 9 and 10, 7 is closest to 6 and 5). The model error values for this prob-
lem transformation, (Tables 1 and 2), are all relatively low indicating a good fit
to the data. Error values increase a little from 2D to 5D, with these sample sizes.
Note that a model can still be capturing some important landscape properties
and have a large error value.

-600 -400 -200 0 200 400
-1500

-1000

-500

0

500

1000

1500
Sphere to Rastrigin 2D

 1

 2
 3

 4
 5

 6

 7

 8

 9
 10

 11

-3000 -2000 -1000 0 1000 2000
-1000

-500

0

500

1000

1500

2000
Sphere to Rastrigin 5D

 1

 2

 3

 4

 5

 6

 7

 8
 9

 10
 11

Fig. 4. t-SNE visualisations of the Sphere to Rastrigin set. Left: 2D, Right: 5D.

The Linear to Sphere transformation is done in a piece-wise way which may
contribute to high NMSE values in the middle functions of the transformation.

A Model-Based Framework for Black-Box Problem Comparison Using GP 293

Function 1 is the Linear function and Function 11 is the Sphere function and
both have a very good model fit. Both of these functions are smoothly structured
functions and we can see in the Fig. 5 that both are rather close to each other.
The remaining problems also form a cluster which show their similarity.

-600 -400 -200 0 200 400 600
-1000

-500

0

500

1000
Linear to Sphere 2D

 1
 2

 3
 4

 5

 6

 7
 8

 9

 10

 11

-300 -200 -100 0 100 200
-1500

-1000

-500

0

500

1000
Linear to Sphere 5D

 1 2 3

 4 5 6 7 8 9

 10 11

Fig. 5. t-SNE visualisations of the Linear to Sphere problem set. Left: 2D, Right: 5D

A more direct way of examining the results is to look at a pairwise distance
matrix. Figure 6 shows two examples for the 5D Sphere to Ellipse and 5D Linear
to Sphere problem sets visualized as heat maps. The pattern across the Sphere
to Ellipse transformation reflects almost perfectly the definition of the trans-
formation: nearby problems are close to the diagonal and have a low distance
value, which smoothly increases as we move away from the diagonal. For the
Linear to Sphere transformation we can see that the model distances between
problems 1–3 and 5–7 are greater than expected, as are the distances between
5–8 and 10–11. This agrees with the t-SNE plot for this problem set (Fig. 5,
right). Finally, dendrograms offer another popular way of displaying distance
data. Figure 7 shows examples for the 2D Linear to Sphere and 5D Sphere to
Rastrigin problem sets. For some problems (Figs. 5, left and 4, right), the relative
magnitude of the distances between problems is more accurately represented in
dendrograms as compared to the t-SNE plots for these problem sets.

Sphere to Ellipse 5D

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

Linear to Sphere 5D

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

Fig. 6. Heat maps for two of the problem sets. Left: 5D Sphere to Ellipse, Right: 5D
Linear to Sphere. Greyscale shows the log of the distance values for better contrast.

294 S. Saleem et al.

 2 10 3 4 5 6 7 8 9 1 11

Problem ID

0

0.5

1

1.5

2

D
J

1013 Linear to Sphere 2D

 2 6 7 5 3 10 11 4 8 9 1

Problem ID

0

5

10

15

D
J

1012 Sphere to Rastrigin 5D

Fig. 7. Dendrograms for two of the problem sets. The relative distances between prob-
lems is given by the y-axis. (Left) 2D Linear to Sphere transformation, (Right) 5D
Sphere to Rastrigin transformation.

6 Conclusion

Exploratory landscape analysis and algorithm selection frameworks have moti-
vated the research in understanding problems. Here, we have proposed a model
based framework for understanding problems using Gaussian Processes. Being a
regression model, we have a measure of goodness of fit which provides a source
of verification of model. To get the distance between models of problems, GP
provide a closed form expression for measuring KL divergence which avoids any
numerical approximations. We tested the methodology on a set of problem trans-
formations with pre-defined similarity ranking. The framework is tested on its
ability to identify the distance between problems in each transformation. GPs
are known to provide a surrogate model of the function using a small set of sam-
ples. In future we will extend our methodology on problems with smaller sample
sizes. The experiments in this paper are limited to 2D and 5D problems, but
higher dimensional problems also need to be explored. The experimental results
presented here indicate that measures based on these models can detect small
differences between problems and recover much of an specified problem ordering.

References

1. Bajer, L., Pitra, Z., Holeňa, M.: Benchmarking Gaussian processes and random
forests surrogate models on the BBOB noiseless testbed. In: Proceedings of the
Companion Publication of the 2015 Conference on Genetic and Evolutionary Com-
putation, pp. 1143–1150. ACM (2015)

2. Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M.: Surrogate assisted feature com-
putation for continuous problems. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.)
LION 2016. LNCS, vol. 10079, pp. 17–31. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-50349-3 2

3. Forrester, A., Keane, A., et al.: Engineering Design via Surrogate Modelling: A
Practical Guide. Wiley, Hoboken (2008)

4. Frean, M., Boyle, P.: Using Gaussian processes to optimize expensive functions.
In: Wobcke, W., Zhang, M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 258–267.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89378-3 25

https://doi.org/10.1007/978-3-319-50349-3_2
https://doi.org/10.1007/978-3-319-50349-3_2
https://doi.org/10.1007/978-3-540-89378-3_25

A Model-Based Framework for Black-Box Problem Comparison Using GP 295

5. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization
benchmarking: noiseless functions definitions. Technical report (2009)

6. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future
challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)

7. Legrand, L., Grivel, E., Giremus, A.: Jeffrey’s divergence between autoregressive
moving-average processes. In: 2017 25th European Signal Processing Conference
(EUSIPCO), pp. 1085–1089. IEEE (2017)

8. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res.
9(Nov), 2579–2605 (2008)

9. Malan, K.M., Engelbrecht, A.P.: Fitness landscape analysis for metaheuristic per-
formance prediction. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the
Theory and Application of Fitness Landscapes. ECC, vol. 6, pp. 103–132. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-41888-4 4

10. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.:
Exploratory landscape analysis. In: Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, pp. 829–836. ACM (2011)

11. Mersmann, O., Preuss, M., Trautmann, H., Bischl, B., Weihs, C.: Analyzing the
bbob results by means of benchmarking concepts. Evol. Comput. 23(1), 161–185
(2015)

12. Morgan, R., Gallagher, M.: Analysing and characterising optimization problems
using length scale. Soft Comput. 21(7), 1735–1752 (2017)

13. Muñoz, M.A., Kirley, M., Halgamuge, S.K.: A meta-learning prediction model of
algorithm performance for continuous optimization problems. In: Coello, C.A.C.,
Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS,
vol. 7491, pp. 226–235. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32937-1 23

14. Munoz, M.A., Kirley, M., Halgamuge, S.K.: The algorithm selection problem on the
continuous optimization domain. In: Moewes, C., Nürnberger, A. (eds.) Compu-
tational Intelligence in Intelligent Data Analysis, pp. 75–89. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-32378-2 6

15. Muñoz, M.A., Smith-Miles, K.A.: Performance analysis of continuous black-box
optimization algorithms via footprints in instance space. Evol. Comput. 25(4),
529–554 (2017)

16. Muñoz, M.A., Sun, Y., Kirley, M., Halgamuge, S.K.: Algorithm selection for black-
box continuous optimization problems: a survey on methods and challenges. Inf.
Sci. 317, 224–245 (2015)

17. Osborne, M.A., Garnett, R., Roberts, S.J.: Gaussian processes for global optimiza-
tion. In: 3rd International Conference on Learning and Intelligent Optimization
(LION3), pp. 1–15. Citeseer (2009)

18. Rasmussen, C.E., Nickisch, H.: Gaussian processes for machine learning (GPML)
toolbox. J. Mach. Learn. Res. 11(Nov), 3011–3015 (2010)

19. Rasmussen, C.E., Williams, C.K.: Gaussian Process for Machine Learning. MIT
press, Cambridge (2006)

20. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
21. Su, G.: Accelerating particle swarm optimization algorithms using Gaussian pro-

cess machine learning. In: 2009 International Conference on Computational Intel-
ligence and Natural Computing, CINC 2009, vol. 2, pp. 174–177. IEEE (2009)

22. Sun, Y., Halgamuge, S.K., Kirley, M., Munoz, M.A.: On the selection of fitness
landscape analysis metrics for continuous optimization problems. In: 2014 7th
International Conference on Information and Automation for Sustainability (ICI-
AfS), pp. 1–6. IEEE (2014)

https://doi.org/10.1007/978-3-642-41888-4_4
https://doi.org/10.1007/978-3-642-32937-1_23
https://doi.org/10.1007/978-3-642-32937-1_23
https://doi.org/10.1007/978-3-642-32378-2_6

A Suite of Computationally Expensive
Shape Optimisation Problems Using

Computational Fluid Dynamics

Steven J. Daniels(B), Alma A. M. Rahat(B), Richard M. Everson,
Gavin R. Tabor, and Jonathan E. Fieldsend

University of Exeter, Exeter, UK
{S.Daniels,A.A.M.Rahat,R.M.Everson,G.R.Tabor,J.E.Fieldsend}@exeter.ac.uk

Abstract. In many product design and development applications, Com-
putational Fluid Dynamics (CFD) has become a useful tool for analysis.
This is particularly because of the accuracy of CFD simulations in pre-
dicting the important flow attributes for a given design. On occasions
when design optimisation is applied to real-world engineering problems
using CFD, the implementation may not be available for examination.
As such, in both the CFD and optimisation communities, there is a
need for a set of computationally expensive benchmark test problems
for design optimisation using CFD. In this paper, we present a suite of
three computationally expensive real-world problems observed in differ-
ent fields of engineering. We have developed Python software capable
of automatically constructing geometries from a given decision vector,
running appropriate simulations using the CFD code OpenFOAM, and
returning the computed objective values. Thus, users may easily evalu-
ate a decision vector and perform optimisation of these design problems
using their optimisation methods without developing custom CFD code.
For comparison, we provide the objective values for the base geometries
and typical computation times for the test cases presented here.

1 Introduction

Many real-world engineering design optimisation problems are computationally
expensive. For instance, optimising the shape of an aircraft wing may require
evaluating the performance of candidate designs in flight using Computational
Fluid Dynamics (CFD). A high-fidelity simulation may take hours to converge,
imposing a practical limit to how many designs may be considered during opti-
misation.

In recent years, interest in computationally expensive optimisation problems
has grown rapidly. It was first popularised by Jones et al. [1]. They presented
two real-world problems: minimising a voltage spike in an integrated circuit,
and exploring the trade-off between viscosity and yield stress in a proprietary
automotive application; both of which required expensive computer simulations.
Since then many example problems have been published. For instance, Naujoks
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 296–307, 2018.
https://doi.org/10.1007/978-3-319-99259-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_24&domain=pdf

A Suite of Computationally Expensive Shape Optimisation Problems 297

et al. presented a multi-objective shape optimisation problem for aerofoils, opti-
mising high-lift and low-drag simultaneously using CFD simulations [2]. Similar
problems with a particular attention to drag coefficients and uncertainty are
available from [3,4]. Leary et al. presented a CFD-based shape optimisation
problem of minimising the volume of beams subject to stress and stiffness con-
straints [5]. In [6], a multi-objective optimisation problem of minimising pressure
drop and maximising heat flux for the design of a heat exchanger using CFD
was discussed. Another example is the rocket simulator in [7], which has been
used for simultaneously optimising the time to return to earth and the angular
distance travelled [8]. More recently, Daniels et al. presented several CFD based
geometry optimisation problems: minimising pressure difference in a pipe [9] and
a duct [10]. Beyond engineering design problems, further examples of computa-
tionally expensive problems exist in the literature from the machine learning
community, mostly for optimising model parameters to reduce training errors;
see for examples [11–13].

Note that authors often develop custom codes for their problems, and they
are generally reluctant to release code, primarily because many problems are
proprietary in nature. Therefore, despite numerous example problems, it is often
difficult to acquire the simulators for exact comparison of methods. Moreover,
there is no complete test suite of benchmark problems similar to inexpensive
test suites such as the DTLZ test problems [14]. The optimisation community is
actively investigating benchmark computationally expensive problems. However,
most previous attempts, for example [15,16], use pseudo-expensive problems, i.e.
inexpensive functions are used with delays to mimic expensive problems.

Addressing these issues, the aim of this paper is to present a test problem
suite1 for computationally expensive problems with the following features:

– We focus on real-world problems of designing apparatus using CFD to evalu-
ate the performances of a geometry in a fluid environment. As such these are
functions that are truly computationally expensive to evaluate, and optimi-
sation has real implications for engineers.

– All problems use open source software suitable for popular platforms and
machines, and thus enable comparison between different methods without
requiring substantial hardware.

– This flexible suite offers the opportunity to create different instances of a
problem with a configurable number of dimensions for the decision space. In
practice increasing the number of dimensions increases the difficulty of the
associated problem.

– We provide the base geometry performance and the computation time so that
they may be used as a yardstick for comparison.

– Some decision vectors may result in an unphysical geometry, and consequently
a CFD simulation will fail. We therefore constrained the problems to only
evaluate feasible geometries. We provide a callable function encapsulating the

1 Python code for these test problems and relevant instructions are available at:
https://bitbucket.org/arahat/cfd-test-problem-suite.

https://bitbucket.org/arahat/cfd-test-problem-suite

298 S. J. Daniels et al.

constraint checks to inform the users whether a decision vector is feasible. As
such users may treat these constraints as black-box functions.

– Some design optimisation scenarios are naturally phrased as single objec-
tive problems, while others are inherently multi-objective. Adhering to such
genuine objectivity of design optimisation, we present three distinct design
problems: two single-objective and one multi-objective.

The rest of the paper is organised as follows. Section 2 provides a background
discussion on geometry optimisation using CFD, and in Sect. 3 we present the
necessary background regarding geometry representation. The problems in this
test suite are detailed in Sects. 4 and 5. Finally, we draw conclusions in Sect. 6
with the base geometry performance and relevant computation time.

2 Computational Fluid Dynamics (CFD)

Design performance in a fluid environment cannot usually be evaluated ana-
lytically. It is therefore necessary to resort to a numerical approximation using
CFD. CFD undoubtedly represents the more computationally costly end of engi-
neering simulation, requiring fast processing speed and making serious demands
on memory, multi-processor intercommunication speeds (for parallelisation) and
even graphical visualisation. CFD requires the solution of a set of Partial Differ-
ential Equations (PDEs) which describe the physics of fluid flow (principally the
Navier-Stokes equations, obtained independently by M. Navier and G. Stokes in
1822). This is typically achieved using the Finite Volume Method, in which the
fluid continuum is discretised into a grid and the PDEs are solved algebraically
for each cell. There are many software packages available to perform these cal-
culations. Over the last few years the open-source C++ code OpenFOAM [17]
has emerged as one of the most popular CFD codes in the community, partly
boosted by the financial issues of using a commercial code with a ‘per core’
license cost.

For this test suite, we have developed a Python-based optimisation frame-
work to operate with OpenFOAM. The communication of the Python libraries
with OpenFOAM was achieved using PyFoam as an interface to control the
OpenFOAM case set-ups and runs, and to post-process the data generated after
each CFD simulation. An appealing aspect of this framework is that the simula-
tions are run in an automated procedure based on a decision vector prescribed by
the user. The parametric geometries generated from the decision vector are con-
verted into sterolithography (STL) files and imported into OpenFOAM. Inter-
ested readers should refer to [18] for details of importing a STL file into Open-
FOAM environment. Following CFD simulation with the imported STL file, the
problem specific objective value(s) are computed from the flow fields. In the next
section, we describe the geometry representation methods used in this paper.

3 Geometry Representation Methods

Generally, the standard procedure to create a geometry is to use a Com-
puter Aided Design (CAD) software. However, it is difficult to automati-
cally alter designs using CAD. Consequently, we resort to various parametric

A Suite of Computationally Expensive Shape Optimisation Problems 299

representations for parts of the original geometry created in CAD; varying the
parameters of the representation allows the generation of new geometries. The
new geometries may then be considered as candidate designs in the optimisa-
tion. Below we briefly describe the representation methods used in this paper.
To keep computation times manageable we formulate the test problems in terms
of two-dimensional geometries (although one is a fully three-dimensional flow).

3.1 Catmull-Clark Subdivision Curves

To alter the boundary wall of a geometry, we use Catmull-Clark subdivision
curves [19]. In this method, a curve C is parametrised with a sequence of n
vertices S0 = 〈p1, . . . ,pn〉. We refer to each vertex vector pi ∈ R

2 in the control
polygon S0 as a control point. We then insert a mid-point between adjacent
vertices, and adjust each of the vertices’ position iteratively. Thus, at the jth
iteration with previous vertex sequence Sj−1, we generate a larger sequence Sj .
The vectorial subdivision operation in each iteration j may be expressed as:

Sj [1] = Sj−1[1], (1)

Sj [|Sj |] = Sj−1[|Sj−1|], (2)

Sj [2i] =
Sj−1[i − 1] + 6Sj−1[i] + Sj−1[i + 1]

8
, (3)

Sj [2i + 1] =
4Sj−1[i − 1] + 4Sj−1[i + 1]

8
, (4)

where |Sj | = 2|Sj−1| − 1 is the total number of elements in the sequence Sj ,
Sj [k] is the kth element in the sequence, and indices i ∈ {2, . . . , |Sj−1| − 1}.

The curve C = limj→∞ Sj is a result of the infinite iterative process of sub-
division starting from the original sequence of vertices S0. Thus a sequence S0

with a small number of control points is sufficient to represent a curve with
infinitely many points. We construct a decision vector from S0 by sequentially
arranging the control points in a vector.

It should be noted that from practical perspective only a few iterations of
subdivision usually results in a visually smooth curve that may be exported in
STL format. We set the iteration limit to five in this paper. In Fig. 1, we provide
an illustration of a Catmull-Clark subdivision curve.

3.2 Chebyshev Polynomials

Often multiple geometric variables may be spatially related, but the nature of
this relationship may not be known a priori. Rather than representing these
independently, it may be useful to encode their relationship with a parametrised
function such that altering the parameters changes all geometric variables simul-
taneously. An additional benefit is that a small number of parameters may then
represent a large number of variables, and consequently reduce the search space
size. In this paper, we used Chebyshev polynomials for encoding spatial rela-
tionships for one dimensional variables [20].

300 S. J. Daniels et al.

S0

S1

S5

Fig. 1. Illustration of a Catmull-Clark subdivision curve. The blue line shows the
original control polygon S0 with the control points depicted in blue dots. After one
iteration, the resulting approximation S1 is shown in orange with the new control
points shown in solid squares. The visually smooth curve S5 after five iterations is
drawn in black. From practical perspective, further iterations are unnecessary as the
curve is already smooth enough for STL file generation. (Color figure online)

A function based on Chebyshev polynomials (type I) may be defined as:

f(t, c) =
n∑

i=0

ciTi(t), (5)

where, t ∈ [0, 1] is a location variable, Ti(t) = (−2)ii!
(2i)!

√
1 − t2 di

dti (1 − t2)
i−1
2 is

the ith Chebyshev basis function, which is orthogonal to all other Chebyshev
functions, and the associated coefficient vector is c = (c1, . . . , cn)� with ci ∈
[−1, 1]. With this parameterised function, if there are k variables at locations
t1, . . . , tk, and a vector of n coefficients (or parameters) c, then the jth variable
of interest takes the value:

vj = f(tj , c). (6)

The coefficient vector may be directly considered as the decision vector here,
and as it is varied, we may achieve a distinct value for vj at a fixed location tj .

Note that it is straightforward to scale the variables vj and locations tj
between specified lower and upper bounds. Furthermore, so long as n < k, a
smaller number of coefficients (or parameters) in this representation may directly
encapsulate and control the relationships between the k variables v1, . . . , vk.
Thus we may effectively reduce the search space. An illustration of the scheme
is presented in Fig. 2a.

3.3 Monotonic Beta Cumulative Distribution Functions

It can be envisaged that some geometric variables should be monotonically
increasing with respect to location. Again, we may use parametric monotonic
functions to encode such relationships. In this paper, we use a weighted sum of
cumulative distribution functions (CDFs) of Beta distributions for this purpose.

Let the function F (t, α, β) be the CDF of a Beta distribution. The CDF
monotonically increases from zero to one as location t is changed from zero to one
for a specified set of shape parameters α > 0 and β > 0. If the shape parameters

A Suite of Computationally Expensive Shape Optimisation Problems 301

tmin t1 t2 t3 tmax

t

vmin

v1

v2

v3

vmax
f
(t
,c
)

(a) Chebyshev polynomials from (5).

tmin t1 t2 t3 tmax

t

vmin

v1

v2

v3

vmax

b(
t,
a,

b
,ω

)

(b) Monotonic Beta CDF from (7).

Fig. 2. Illustration of parametric functions: Chebyshev polynomials in (a) and mono-
tonic Beta CDFs in (b). Function responses are depicted in blue. Red squares show
the selected function values v1, v2 and v3 at locations t1, t2 and t3. For demonstration
we chose arbitrary parameter vectors c,a,b and ω. Clearly, changing the parameters
will result in a different function response. Thus, a variable of interest vj at a fixed
location tj may be varied by changing the relevant parameters, but the basis function
representation ensures that changes to a single coefficient yields correlated changes to
all the variables. (Color figure online)

are altered to α′ and β′, this will result in a distinct monotonic relationship
between t and F (t, α′, β′) in comparison to t and F (t, α, β). To further increase
the flexibility of such a representation, we may consider the weighted sum of
multiple Beta CDFs, and as a convex combination of monotonic functions this
will preserve the monotonicity. Such a combination of n Beta CDFs may be
expressed as:

b(t,a,b,ω) =
n∑

i=1

ωiF (t, αi, βi), (7)

where ω = (ω1, . . . , ωn)� is the weight vector with ωi > 0 for all i,
∑

i ωi = 1,
and a = (α1, . . . , αn)� and b = (β1, . . . , βn)� are the vectors of parameters for
the Beta distribution. As in Sect. 3.2, we can now compute a monotonic variable
of interest using Eq. (6) by replacing f(tj , c) with b(t,a,b,ω). Again, if we choose
a small n number of Beta functions to represent a large k number of monotonic
geometric variables, then we efficiently reduce the size of the search space. The
scheme is depicted in Fig. 2b.

4 Single Objective Problems

In this paper, we present two single objective problems: PitzDaily and Kaplan
draft tube. These are detailed in the next sections.

4.1 PitzDaily

Flow separation, recirculation, and reattachment are common phenomena
observed in many engineering applications, and are usually undesirable features

302 S. J. Daniels et al.

Fig. 3. (Left) streamlines of the flowfield coloured by velocity magnitude for the original
(base) PitzDaily case. (Top-right) a schematic of the Catmull-Clark subdivision curve
setup for the PitzDaily test case, and a randomly generated subdivision curve. (Bottom-
right) streamlines and contour of the resulting flowfield from the random design.

within a product’s design. Based on the experimental set up by Pitz and Daily
[21], this first case features a so-called ‘backward-facing step’, which serves as
a simple prototype for simulating the above flow phenomena. In this geometry,
the flow separates at the edge of the step, creating a recirculation zone, the flow
then reattaches at some distance beyond the step. The flow structure for the
base case can be seen in Fig. 3 (bottom-left). Traditionally, this case has fea-
tured as a benchmark case for testing the accuracy of CFD methodologies and
thus has been the focus of much experimental and computational investigation.
Furthermore, this has also been used as a test case for adjoint (gradient descent)
methods of optimisation (see for example [22]).

Head losses within a flow are an undesirable characteristic for engineering
design. To quantify this, the mechanical energy loss factor, ζ, describes the
energy that is converted to a form that cannot be used during the operation
of an energy producing, consuming, or conducting system (i.e. due to frictional
losses, or dissipation due to turbulence). In one mathematical form, ζ is defined
as the total pressure difference between the inflow and outflow of the apparatus
(relative to the kinetic energy at the inflow), i.e.

ζ =
1

1
2ρU2

in

[
1

Ain

∫

in

Pt,in(u · n)dAin − 1
Aout

∫

out

Pt,out(u · n)dAout

]
, (8)

where Pt is the total pressure, and u · n indicates the velocity component normal
to the boundary, Uin is the inflow velocity, ρ is the density of the fluid, A is the
cross-sectional area, and subscripts in and out indicate the inflow and outflow
boundaries. The primary objective of this case is to minimise this energy loss,
i.e. min ζ. Using adjoint (gradient descent) optimisation, [22] identified a local
minimum, with ζ = 0.09032; this was achieved by removing the backward-facing
step, and by gently increasing and decreasing the cross-sectional area along the
domain. Based on this, the design optimisation for this first case focuses on
altering the geometry across the lower portion of the domain.

2 Solution repeated using our framework.

A Suite of Computationally Expensive Shape Optimisation Problems 303

Fig. 4. Top-left: a schematic of the Hölleforsen-Kaplan sharp-heeled draft tube.
Bottom-left: streamlines of the flow through the base (original) design. Top-right: a
schematic of the Catmull-Clark subdivision curve setup for the Kaplan Draft tube,
and a randomly generated subdivision curve. Bottom-right: streamlines of the result-
ing flowfield from the new (random) design.

Figure 3 (top-right) shows the case setup for optimisation. The fixed bound-
ing box indicates the limits which the Catmull-Clark control points cannot
exceed. Fixed points are applied to enforce a smooth transition between the
Catmull-Clark subdivision curve and the adjacent wall. The bottom-right panel
of Fig. 3 also shows an example geometry created from a randomly generated set
of Catmull-Clark control points. Note that the number of control points can be
defined by the user. For this configuration, the energy loss ζ = 0.2037, which is
an improvement on the cost function for the base design (see Table 1).

4.2 Sharp-Heeled Kaplan Draft Tube

A hydropower plant converts the gravitational potential energy of water from
an upstream reservoir into electrical energy, by means of a turbine coupled to a
generator. The flow leaving the turbine loses its velocity in the draft (exhaust)
tube, where kinetic energy of the flow is transformed into pressure. This energy
conversion has a significant impact on the efficiency and power of the turbines,
thus, the draft tube design is of great interest to the industry. The two most
common draft tubes considered in the literature are the sharp-heeled and under-
ground designs; the former represents a large group that were installed in Swedish
hydropower plants in the 1950s. Elbow-draft tubes are widely used for vertical
Kaplan and Francis turbines, due to their low height, lesser excavation cost, and
greater potential for pressure recovery. This type of draft tube consists of three
parts: a cylindrical cone, an elbow, and an end diffuser. The draft tube geome-
try considered for the second case of this test suite is a 1:11 scaled model from

304 S. J. Daniels et al.

Fig. 5. CFD case set up for the staggered ‘quincunx’ formation of the cross-flow tube-
bundle heat exchanger.

the Hölleforsen Kaplan turbine, built in 1949. A schematic of this draft tube
geometry is shown in Fig. 4 (top-left).

The flowfield through the base design of the draft tube is shown in Fig. 4
(bottom-left). An unusual characteristic of this test case is that a swirl-flow is
imposed at the inflow, which simulates the exit flow from the turbine. This makes
the flowfield complex, and, unlike the other test cases in this suite, inherently
three-dimensional. As discussed earlier, the main purpose of the draft tube is to
recover the kinetic energy leaving the turbine by increasing the pressure energy.
A performance indicator of this is given by the pressure recovery factor,

Cp =
1

1
2ρU2

in

[
1

Aout

∫

Aout

poutdAout − 1
Ain

∫

Ain

pindAin

]
, (9)

where p is the static pressure. A higher value of Cp indicates a higher conversion
of kinetic energy to pressure energy. Thus, the single objective of this problem
is to maximise the pressure recovery factor, i.e. max Cp. The region of inter-
est for this case is the end-diffuser; changing its shape dramatically alters the
structure of the swirl-flow, and the resulting kinetic-pressure energy conversion.
Two Catmull-Clark subdivision curves define the shape of the top and bottom
of this section, as indicated in Fig. 4 (top-right). Once again, a randomly gen-
erated subdivsion curve using one free control point is used as a demonstration
for altering the diffuser shape. As this is a three-dimensional flow, this test case
requires the highest computational effort out of all the cases in this test suite.
Thus, it is likely that the user will run this case in parallel, something for which
the OpenFOAM code is already equipped. The method of parallel computing
used by OpenFOAM is known as ‘domain decomposition’, in which the geom-
etry and associated fields are divided into sections allocated to separate cores.
For the example case in Fig. 4, the pressure recovery factor Cp = 0.955, which is
an improvement on the cost function for the base design (see Table 1).

5 Multi-objective Problem: Heat Exchanger

A cross-flow tube-bundle heat exchanger has a wide range of applications in many
fields, such as the chemical, food and nuclear industries, and HVAC (Heating,
Ventilation and Air Conditioning) sectors, to name a few. Generally, this type of

A Suite of Computationally Expensive Shape Optimisation Problems 305

Fig. 6. (Left) tube arrangement of the base case for the heat exchanger. (Right) tube
arrangement of a randomly generated decision vector. (Top row) contours of the tem-
perature distribution. (Bottom row) contours of static pressure across the CFD domain.

heat exchanger contains many rows of tubes oriented in a direction perpendicular
to the flow, as shown in Fig. 5. The tubes may be arranged in many configurations
in order to obtain the greatest heat transfer between the two media. The transfer
of heat between the tubes and the main flow occurs through the tube walls
and will be maximised by increasing the surface area of contact between the
flow and the walls. A detrimental effect of this may be that the static pressure
across the tube configuration increases, requiring greater energy to push the flow
through the heat exchanger. Overall, this potentially results in a conflicting pair
of objectives for heat exchanger design.

For this final test case, we have constructed a simple heat exchanger with
three rows of tubes. The design variables include altering the diameter of the
tubes, the position of the tubes in the streamwise direction, and the number of
tubes per row. To alter these variables, the decision vector contains the param-
eters of Chebyshev polynomials (for number of tubes in a row, and radii of the
tubes), and monotonic Beta functions (for the position of the tubes) as described
in Sects. 3.2 and 3.3. The cost functions describing the heat transfer and pressure
drop across the heat exchanger are defined as follows:

max |ΔT | = |Tin − Tout|, (10)
min |Δp| = |pin − pout|, (11)

where p is the static pressure (units in Pascal, Pa), and T is the temperature
(units in Kelvin, K). Figure 6 (right) shows the result of a random decision
vector on the configuration of the pipes and the flowfield. The cost functions
from this random configuration are |ΔT | = 26.8733K and |Δp| = 12035.9Pa;
this shows that this configuration has improved on the pressure drop across
the heat exchanger but the heat transfer has worsened when compared to the
staggered ‘quincunx’ tube formation of the base case (see Table 1).

6 Conclusion

In this work we describe a Python-based software framework for the automated
optimisation of a suite of computationally expensive design problems. These

306 S. J. Daniels et al.

include two single objective, and one multi-objective cases to act as benchmark
test problems for the CFD and optimisation communities. An appealing aspect of
this code is its flexibility, allowing the user to test their optimisation methodology
under a number of dimensions for the decision space, and the application of
these methods to real-world engineering problems. The schematics and contour
diagrams shown in this paper were generated using utilities in the proposed
framework, and ParaView – a visualisation utility – was used to visualise the
flowfield data. In summary, Table 1 below shows the cost function values and
typical simulation runtimes for the base case of each test problem, which may
be used as a yardstick to compare the fitness of optimal designs found using
different optimisation algorithms.

Table 1. Base geometry evaluation results for each test case. The calculations were
performed using an Intel Xeon(R)-3.60 GHz desktop.

Test Problem Execution time (sec) f1(x) f2(x)

PitzDaily 40.35 0.312 (-)

Kaplan Draft Tubea 947.37 0.939 (-)

Heat Exchanger 34.55 40.933K 19,577Pa
aSimulation was performed in parallel using four-cores.

Acknowledgements. This work was supported by the UK Engineering and Physical
Sciences Research Council (EPSRC) grant (reference number: EP/M017915/1).

References

1. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Global Optim. 13(4), 455–492 (1998)

2. Naujoks, B., Willmes, L., Bäck, T., Haase, W.: Evaluating multi-criteria evolution-
ary algorithms for airfoil optimisation. In: Guervós, J.J.M., Adamidis, P., Beyer,
H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol.
2439, pp. 841–850. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45712-7 81

3. Keane, A.J.: Statistical improvement criteria for use in multiobjective design opti-
mization. AIAA J. 44(4), 879–891 (2006)

4. Forrester, A.I.J., Bressloff, N.W., Keane, A.J.: Optimization using surrogate mod-
els and partially converged computational fluid dynamics simulations. In: Proceed-
ings of Mathematical, Physical and Engineering Sciences, vol. 462, no. 2071, pp.
2177–2204 (2006)

5. Leary, S.J., Bhaskar, A., Keane, A.J.: A derivative based surrogate model for
approximating and optimizing the output of an expensive computer simulation.
J. Global Optim. 30(1), 39–58 (2004)

6. Foli, K., Okabe, T., Olhofer, M., Jin, Y., Sendhoff, B.: Optimization of micro heat
exchanger: CFD, analytical approach and multi-objective evolutionary algorithms.
Int. J. Heat Mass Transf. 49(5), 1090–1099 (2006)

https://doi.org/10.1007/3-540-45712-7_81
https://doi.org/10.1007/3-540-45712-7_81

A Suite of Computationally Expensive Shape Optimisation Problems 307

7. Hasbun, J.E.: Classical Mechanics with MATLAB Applications. Jones & Bartlett
Publishers, Burlington (2012)

8. Shah, A., Ghahramani, Z.: Pareto frontier learning with expensive correlated objec-
tives. In: International Conference on Machine Learning, pp. 1919–1927 (2016)

9. Daniels, S.J., Rahat, A.A.M., Tabor, G., Fieldsend, J., Everson, R.: Shape optimi-
sation using computational fluid dynamics and evolutionary algorithms. In: 11th
OpenFOAM Workshop, Portugal (2016)

10. Daniels, S.J., Rahat, A.A.M., Tabor, G., Fieldsend, J., Everson, R.: Automatic
shape optimisation of the turbine-99 draft tube. In: 12th OpenFOAM Workshop,
Exeter (2017)

11. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. arXiv preprint arXiv:1012.2599 (2010)

12. González, J., Dai, Z., Hennig, P., Lawrence, N.: Batch Bayesian optimization via
local penalization. In: Artificial Intelligence and Statistics, pp. 648–657 (2016)

13. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the
human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1),
148–175 (2016)

14. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolu-
tionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.)
Evolutionary Multiobjective Optimization, pp. 105–145. Springer, London (2005).
https://doi.org/10.1007/1-84628-137-7 6

15. Liang, J., Qu, B., Suganthan, P.: Problem definitions and evaluation criteria for
the CEC 2014 special session and competition on single objective real-parameter
numerical optimization. Technical report, Computational Intelligence Laboratory,
Zhengzhou University, Zhengzhou, China and Nanyang Technological University,
Singapore (2014)

16. Chen, Q., Liu, B., Zhang, Q., Liang, J., Suganthan, P., Qu, B.: Problem definitions
and evaluation criteria for CEC 2015 special session on bound constrained single-
objective computationally expensive numerical optimization. Technical report,
Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China
and Nanyang Technological University (2015)

17. Weller, H., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational
continuum mechanics using object orientated techniques. Comput. Phys. 12(6),
620–631 (1998)

18. Daniels, S.J., Rahat, A.A.M., Tabor, G., Fieldsend, J., Everson, R.: A review
of shape distortion methods available in the OpenFoam framework for automated
design optimisation. In: Nóbrega, J., Jasak, H. (eds.) OpenFOAM: Selected Papers
of the 11th Workshop. Springer, Heidelberg (2018, in Press)

19. Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topo-
logical meshes. Comput.-Aided Des. 10(6), 350–355 (1978)

20. Arfken, G.B., Weber, H.J., Harris, F.E.: Mathematical Methods for Physicists: A
Comprehensive Guide. Academic Press, Cambridge (2011)

21. Pitz, R., Daily, J.: An experimental study of combustion the turbulent structure of
a reacting shear layer formed at a rearward-facing step. Technical report, University
of California, Berkeley, California, USA, NASA Contractor Report 165427, August
1981

22. Nilsson, U.: Description of adjointShapeOptimizationFoam and how to imple-
ment new objective functions. Technical report, Chalmers University of Technology
(2014)

http://arxiv.org/abs/1012.2599
https://doi.org/10.1007/1-84628-137-7_6

Automated Selection and Configuration
of Multi-Label Classification Algorithms

with Grammar-Based Genetic
Programming

Alex G. C. de Sá1(B), Alex A. Freitas2, and Gisele L. Pappa1

1 Computer Science Department, Universidade Federal de Minas Gerais,
Belo Horizonte, Brazil

{alexgcsa,glpappa}@dcc.ufmg.br
2 School of Computing, University of Kent, Canterbury, UK

A.A.Freitas@kent.ac.uk

Abstract. This paper proposes Auto-MEKAGGP, an Automated
Machine Learning (Auto-ML) method for Multi-Label Classification
(MLC) based on the MEKA tool, which offers a number of MLC algo-
rithms. In MLC, each example can be associated with one or more class
labels, making MLC problems harder than conventional (single-label)
classification problems. Hence, it is essential to select an MLC algo-
rithm and its configuration tailored (optimized) for the input dataset.
Auto-MEKAGGP addresses this problem with two key ideas. First, a
large number of choices of MLC algorithms and configurations from
MEKA are represented into a grammar. Second, our proposed Grammar-
based Genetic Programming (GGP) method uses that grammar to search
for the best MLC algorithm and configuration for the input dataset.
Auto-MEKAGGP was tested in 10 datasets and compared to two well-
known MLC methods, namely Binary Relevance and Classifier Chain,
and also compared to GA-Auto-MLC, a genetic algorithm we recently
proposed for the same task. Two versions of Auto-MEKAGGP were
tested: a full version with the proposed grammar, and a simplified ver-
sion where the grammar includes only the algorithmic components used
by GA-Auto-MLC. Overall, the full version of Auto-MEKAGGP achieved
the best predictive accuracy among all five evaluated methods, being the
winner in six out of the 10 datasets.

Keywords: Automated machine learning (Auto-ML)
Multi-label classification · Grammar-based genetic programming

1 Introduction

The outgrowing popularity of machine learning algorithms and its indiscriminate
use by practitioners who do not necessarily know the peculiarities of these meth-
ods have made the area of automated machine learning (Auto-ML) [3,5,6,8,14]
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 308–320, 2018.
https://doi.org/10.1007/978-3-319-99259-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_25&domain=pdf

Automated Selection and Configuration of MLC Algorithms with GGP 309

more relevant than ever. The area of Auto-ML emerged to deal with the problem
of how to select learning algorithms and their hyper-parameters to successfully
solve a given ML problem. This problem is a hard one even for experts, which
usually follow ad-hoc approaches to choose learning algorithms. In the major-
ity of cases, such decisions are based on trial and error when testing different
methods from the literature or on the recommendation of other experienced
data scientists. Additionally, the algorithm’s hyper-parameters are rarely deeply
explored to achieve the best algorithm’s performance for the given problem.

This scenario makes many ML solutions biased, incomplete and inefficient.
Auto-ML proposes to deal with these problems by customizing solutions (in
terms of algorithms and configurations) to ML problems. Most Auto-ML systems
proposed to date focus on generating sequences of steps to solve single label
classification (SLC) problems [3,5,6,8,14]. The objective of classification is to
learn models from data capable of expressing the relationships between a set of
predictive attributes and a predefined set of class labels. In the case of SLC, each
instance is associated to a single class label.

However, there is an increasing number of applications that require asso-
ciating an example to more than one class label, including image and video
annotation, gene function prediction, medical diagnosis and tag suggestion for
text mining. For example, in the context of medical diagnosis, a patient can be
associated to one or more diseases (e.g., diabetes, pancreatic cancer and high
blood pressure) at the same time. This classification scenario is better known
as multi-label classification (MLC) [15]. MLC is considered a more challenging
problem than SLC. First, the algorithm needs to consider the label correlations
(i.e., detecting if they exist or not) in order to learn a model that produces accu-
rate classification results. Second, the limited number of examples for each class
label in the dataset makes generalization harder, as the algorithm needs more
examples to create a good model from such complex data.

In the same way that MLC is harder than SLC, we consider the Auto-ML
task for MLC data more challenging than the Auto-ML task for SLC data. This
is because of the higher difficulty to learn from multi-label data, the strain to
evaluate the produced MLC models [15], and the computational cost involved.
Despite these problems, we have recently proposed the first Auto-ML method
to tackle MLC [2], here referred to as GA-Auto-MLC. The method is a sim-
ple real-coded genetic algorithm (GA) that performs a search in a very large
(hierarchical) search space of many different types of MLC algorithms from the
MEKA framework [12]. Although GA-Auto-MLC was effective in the experi-
ments reported in [2] (with only three datasets), its solution encoding approach
has two major drawbacks: it is cumbersome and it allows individuals repre-
senting impractical MLC algorithm configurations (in the sense that the MLC
algorithms could have invalid configurations or take too long to run).

GA-Auto-MLC encodes solutions using a real-valued array to code a com-
plex hierarchical structure representing the MLC algorithms and their hyper-
parameters. Although the genotype is represented by a vector of a fixed prede-
fined size, each position of the array can map to distinct components (essential
functional parts) of MLC algorithms. In other words, the genes do not have any

310 A. G. C. de Sá et al.

semantic meaning regarding the mapping to the phenotype. Because of that,
when performing genetic operations (such as crossover and mutation), some
operations are highly conservative (e.g., no changes occur in the phenotype after
a mutation operation) while others highly destructive (e.g., abrupt changes occur
in the phenotype after a mutation operation).

Aiming to address the aforementioned problems, this paper proposes a new
evolutionary Auto-ML for MLC (based on the MEKA tool), namely Automated
MEKA (Auto-MEKAGGP). Auto-MEKAGGP is a grammar-based genetic pro-
gramming method [7] capable of handling the complex hierarchical nature of the
MLC search space while avoiding the generation of invalid solutions. The method
was conceived to explore a larger set of MLC algorithms and components when
compared to GA-Auto-MLC. Auto-MEKAGGP optimizes the choice of an MLC
algorithm and hyper-parameter settings to the target problem.

In order to evaluate its effectiveness, Auto-MEKAGGP was tested in 10
datasets and compared to two well-known MLC algorithms: Binary Relevance
(BR) [15] and Classifier Chain (CC) [11]. Auto-MEKAGGP was also compared
to GA-Auto-MLC, and all comparisons were based on a combination of sev-
eral multi-label predictive accuracy measures [2,15]. We run two versions of
Auto-MEKAGGP: a full version with our proposed grammar, and a simplified
grammar version including only the components of GA-Auto-MLC. The results
showed that Auto-MEKAGGP was the best method in terms of average rank,
followed by its simplified version, and then GA-Auto-ML, BR and CC.

The remainder of this paper is organized as follows. Section 2 reviews related
work on Auto-ML and MLC. Section 3 details the proposed method, while Sect. 4
presents and discusses the results obtained. Finally, Sect. 5 draws some conclu-
sions and discusses directions of future work.

2 Related Work

Currently, Auto-ML methods [3,5,6,8,14] have been dealing with the optimiza-
tion of complete ML pipelines. This means that, instead of just focusing on ML
algorithms and their hyper-parameters, these methods are also concerned with
other aspects of ML, such as data preprocessing (e.g., feature normalization
or feature selection) and post-processing (e.g., classification probability calibra-
tion). Most methods proposed so far in the literature use as their search method
either Bayesian optimization or evolutionary approaches.

Auto-WEKA [14] automates the process of selecting the best ML pipeline in
WEKA [16], whereas Auto-SKLearn [5] optimizes the pipelines in Scikit-Learn
[10]. Both methods implemented a random forest based version of a Bayesian
optimization approach (i.e., Sequential Model-based Algorithm Configuration).

Evolutionary methods are also commonly used to perform this task. The
Tree-Based Pipeline Optimization Tool (TPOT) [8], for instance, applies a
canonical genetic programming (GP) algorithm to search for the most appropri-
ate ML pipeline in the Scikit-Learn library. Considering a different evolutionary
approach, the Genetic Programming for Machine Learning method (GP-ML) [6]

Automated Selection and Configuration of MLC Algorithms with GGP 311

uses a strongly typed genetic programming (STGP) method to restrict the Scikit-
Learn pipelines in such a way that they are always meaningful from the machine
learning point of view. Finally, the REsilient ClassifIcation Pipeline Evolution
method (RECIPE) [3] adopts a grammar-based genetic programming (GGP)
method to search for Scikit-Learn pipelines. It uses a grammar to organizes the
knowledge acquired from the literature on how successful ML pipelines look like.
The grammar avoids the generation of invalid pipelines, and can also speed up
the search.

All Auto-ML methods previously discussed were designed to solve the conven-
tional single-label classification task. By contrast, we propose Auto-MEKAGGP,
a grammar-based genetic programming method to solve the Auto-ML task for
multi-label data. Auto-MEKAGGP overcomes the major drawbacks of our pre-
viously proposed GA-Auto-MLC method [2], being able to properly handle the
complex hierarchical nature of the MLC search space. It is important to point
out that in this paper we focus only on algorithms and hyper-parameters (not
pipelines), as the MLC search space is much bigger than the SLC search space.

Most works in the MLC literature fall into one of two approaches [15]: prob-
lem transformation (PT) and algorithm adaptation (AA). While PT creates algo-
rithms that transform the multi-label dataset (task) into one or more single-label
classification tasks (making it possible to use any SLC algorithm), AA adapts
traditional single-label classification algorithms to handle multi-label data.

Among the many MLC algorithms in the literature, it is worth mentioning:
Binary Relevance (BR), which learns Q = |L| independent binary classifiers,
one for each label in the label set L; Label Powerset (LP), which creates a single
class for each unique set of labels that exists in a multi-label training set; and
Classifier Chain (CC), which extends the BR method by chaining the Q binary
classifiers (also one for each label), where the attribute space of each link in the
chain is increased with the classification outputs of all previous links. For more
details about MLC algorithms, see [1,15].

Given the very large variety of MLC algorithms in the literature—each one
having its own assumptions or biases—it is clear that selecting the best MLC
algorithm for a dataset is a hard task, and the use of Auto-ML is fully jus-
tified. This is because different algorithms’ assumptions can lead to different
predictive performances, depending on the characteristics of the dataset and the
algorithms. For instance, when the BR method is selected, the label correlations
are disregarded, which is beneficial for some types of datasets. However, consid-
ering the label correlations is essential for some other datasets, which makes LP
and CC methods better choices. Hence, it is important to identify these patterns
and map specific algorithms (with hyper-parameters) to specific datasets.

3 Automatically Selecting Algorithms and
Hyper-Parameters for Multi-Label Classification

This section presents Automated MEKA (Auto-MEKAGGP), a method con-
ceived to automatically select and configure MLC algorithms in the MEKA

312 A. G. C. de Sá et al.

Fig. 1. The proposed method to select and configure MLC algorithms.

tool [12]. Auto-MEKAGGP relies on a grammar-based genetic programming
(GGP) search to select the best MLC algorithm and its associated hyper-
parameters to a given dataset. The GGP search naturally explores the hier-
archical nature of the problem, a missing feature of our previous method [2].

As shown in Fig. 1, Auto-MEKAGGP receives as input an MLC dataset (with
the attribute space XF with F features and the Q class labels, L1 to LQ) and a
grammar describing the (hierarchical) search space of MLC algorithms and their
hyper-parameters. The grammar directly influences the search, as each individual
created by the GGP is based on its production rules, which guarantees that all
individuals are valid. In other words, the MLC grammar defines the search space
and how the individuals are created and modified (see Sect. 3.1).

Auto-MEKAGGP works as follows. First, it creates an initial population of
individuals (trees representing MLC algorithms) by choosing at random valid
rules from the grammar (see Sect. 3.1), generating a derivation tree. Next, an
iterative process starts. First, a mapping of each derivation tree to a specific MLC
algorithm is performed. The individuals are evaluated by running the algorithm
they represent within the MEKA tool on the input (see Sect. 3.2). Different MLC
measures are taken into account to assess the individuals’ quality, i.e., the fitness
function. Next, Auto-MEKAGGP checks if a search stopping criterion is satis-
fied (e.g., a fixed number of iterations or a quality criterion). If this criterion
is not satisfied, Auto-MEKAGGP selects individuals by using tournament selec-
tion. Next, the GGP operators (i.e., Whigham’s crossover and mutation [7]) are
applied on the selected individuals to create a new population. These operators
also respect the grammar constraints, ensuring that the produced individuals
represent valid solutions. This process goes on until the stopping criterion is sat-
isfied. At the end of the evolution, the best individual (an MLC algorithm with
its hyper-parameters) is returned, and its model is built from the full training
set and evaluated in the test set (which was not accessed during the evolution),
in order to measure the predictive performance of the returned individual.

Automated Selection and Configuration of MLC Algorithms with GGP 313

It is worth noting that Auto-MEKAGGP was implemented using EpochX [9],
an open source genetic programming framework, and is available for download1.

3.1 Grammar: A Formal Description of the MLC Search Space

This section describes the grammar used to specify the search space of our pro-
posed Auto-MEKAGGP method. The Auto-MEKAGGP’s grammar was created
based on MEKA, which is a multi-label extension to WEKA [16], and hence
includes most of its algorithms. MEKA has a large variety of algorithms, focus-
ing mainly on problem transformation methods.

We first performed a deep study of the MLC search space in MEKA: the
algorithms and their hyper-parameters, the constraints associated with different
hyper-parameter settings, the hierarchical nature of operations performed by
problem transformation algorithms and meta-algorithms, and other issues. The
grammar includes 30 MLC algorithms, exploring most algorithms in MEKA. We
let some algorithms aside because of their poor performance to solve the MLC
task or because of errors when testing the algorithm for different types of data.
The MLC algorithms were divided into three types: problem transformation
(PT), algorithm adaptation (AA) and meta-algorithms (Meta).

PT algorithms usually call the SLC algorithms to solve an MLC prob-
lem, transforming the given problem into one or various SLC problems. For
these algorithms, we choose 30 SLC algorithms based on a robust method
to select and configure algorithms in WEKA, i.e., Auto-WEKA [14]. On the
other hand, AA methods do not need to transform the data in a preprocess-
ing step, applying their learning process in a direct way. Finally, meta algo-
rithms have the aforementioned MLC algorithms (PT or AA) as base algorithms,
using the base classifiers’ outputs in different ways to try to improve MLC
performance. Considering these learning algorithms, their hyper-parameters,
their dependencies and constraints, the search space of MLC algorithms has
(8.420 × 10128) + [(5.642 × 10124) × Q] + [(1.755 × 10113) × Q2] possible MLC
algorithm configurations, where Q is the number of labels of the input dataset.
For more details about these possible algorithm configurations, see [1].

After studying this search space, we defined a grammar that encompasses
the knowledge about MLC in MEKA, i.e., all algorithms, hyper-parameters and
constraints. Formally, a grammar G is represented by a four-tuple <N, T, P,
S>, where N represents a set of non-terminals, T a set of terminals, P a set of
production rules and S (a member of N) the start symbol.

Figure 2 presents a sample of our proposed grammar. The complete version
of the MLC grammar is specified in [1] and the implemented grammar (i.e., for
EpochX) is also available online2. The proposed grammar has 138 production
rules, in a total of 137 non-terminals and 230 terminals. It uses the Backus Naur
Form (BNF), where each production rule has, for instance, the form <Start>

1 Code and documentation are available at: https://github.com/laic-ufmg/automlc/.
2 The implementation of the grammar(s) for EpochX is available at: https://github.

com/laic-ufmg/automlc/tree/master/PPSN.

https://github.com/laic-ufmg/automlc/
https://github.com/laic-ufmg/automlc/tree/master/PPSN
https://github.com/laic-ufmg/automlc/tree/master/PPSN

314 A. G. C. de Sá et al.

Fig. 2. An excerpt of the proposed grammar for multi-label classification.

::=<Meta−Algorithm><AlgorithmA> |<AlgorithmB> ParamA. Symbols
wrapped in “<>” represent non-terminals, whereas terminals (such as ParamA)
are not bounded by “< >”. The special symbols “|”, “[]” and “()” represent,
respectively, a choice, an optional element and a set of grouped elements that
should be used together. Additionally, the symbol “#” represents a comment in
the grammar, i.e., it is ignored by the grammar’s parser. The choice of one among
all elements connected by “|” is made using a uniform probability distribution
(i.e., all elements are equally likely to occur in an individual).

3.2 From Individual Representation to Individual Evaluation

Each individual is represented by a tree, derivated from the expansion of the
production rules of the MLC grammar. The mapping process takes the terminals
from the tree and constructs a valid MLC algorithm from them. Given the
mapped MLC algorithm in MEKA (and WEKA), the fitness function measures
how effective each algorithm is for the input dataset To do this, the training set
is split into two parts: a learning set (80%) and a validation set (20%). We use
a stratified sampling method [13] to split the training set. Each MLC algorithm
creates an MLC model from the learning set and evaluates its predictive accuracy
on the validation set, using the fitness function.

MLC algorithms are usually evaluated considering several measures [15].
Hence, we set the fitness function as the average of four of these MLC mea-
sures [2,15]: Exact Match (EM), Hamming Loss (HL), F1 Macro averaged by
label (FM) and Ranking Loss (RL), as indicated in Eq. 1:

Fitness =
EM + (1 −HL) + FM + (1 −RL)

4
(1)

EM is a very strict evaluation metric, as it only takes the value one when the
predicted label set is an exact match to the true label set for an example, and
takes the value zero otherwise. HL counts how many times a label not belonging

Automated Selection and Configuration of MLC Algorithms with GGP 315

to the example is predicted, or a label belonging to the example is not predicted.
FM is the harmonic mean between precision and recall, and its average is first
calculated per label and, after that, across all the labels in the dataset. This
metric is interesting because it accounts for different levels of class imbalance
of the data. Finally, RL measures the number of times that irrelevant labels
are ranked higher than relevant labels, i.e., it penalizes the label pairs that are
reversely ordered in the ranking for a given example. All four metrics are within
the [0, 1] interval. However, the EM and FM measures should be maximized,
whereas HL and RL should be minimized. Hence, HL and RL are subtracted
from one in Eq. 1 to make the search maximize the fitness function.

4 Experimental Results

This section presents the experimental results of the proposed method in 10
datasets from the KDIS (Knowledge and Discovery Systems) repository3. The
datasets are presented in the first two columns of Table 1, where name of the
dataset is followed by a three-tuple (M,F,Q), where M is the number of exam-
ples, F is the number of features, and Q is the number of labels.

Tests are performed with two different grammar versions: a simplified ver-
sion4 that matches the search space of GA-Auto-MLC [2] and a full version5

corresponding to the complete set of MLC components defined in this paper.
The simplified version (i.e., Auto-MEKAGGP(S)) allows us to directly compare
our results to those obtained by GA-Auto-MLC.

The two versions of Auto-MEKAGGP and GA-Auto-MLC were executed with
the following parameters: 100 individuals evolved for at most 100 generations,
tournament selection of size two, elitism of five individuals, and crossover and
mutation probabilities of 0.9 and 0.1, respectively. If the best individual remains
the same for over five generations and the algorithm has run for at least 20
generations, we stop the evolutionary process and return that best individual.
The learning and validation sets are resampled from the training set every five
generations in order to avoid overfitting. Additionally, we use time and memory
budgets for each MLC algorithm (generated by the evolutionary Auto-MLC
methods) of 450 s (7.5 min) and 2 GB of RAM, respectively.

The algorithms produced are also compared to Binary Relevance (BR)
and Classifier Chain (CC) methods. These two methods do not have hyper-
parameters at the MLC level, but can use different SLC algorithms. We test
them with 11 candidate algorithms [16]: Näıve Bayes (NB), Tree Augmented
Näıve Bayes (TAN), Bayesian Network Classifier algorithm with a K2 search
method (BNC-K2), Logistic Model Trees (LMT), Random Forest (RF), C4.5
(J48), Sequential Minimal Optimization (SMO), Multi-Layer Perceptron (MLP),

3 The datasets are available at: http://www.uco.es/kdis/mllresources/.
4 Available at: https://github.com/laic-ufmg/automlc/tree/master/PPSN/AutoME

KAS.bnf.
5 Available at: https://github.com/laic-ufmg/automlc/tree/master/PPSN/Auto

MEKA.bnf.

http://www.uco.es/kdis/mllresources/
https://github.com/laic-ufmg/automlc/tree/master/PPSN/AutoMEKAS.bnf
https://github.com/laic-ufmg/automlc/tree/master/PPSN/AutoMEKAS.bnf
https://github.com/laic-ufmg/automlc/tree/master/PPSN/AutoMEKA.bnf
https://github.com/laic-ufmg/automlc/tree/master/PPSN/AutoMEKA.bnf

316 A. G. C. de Sá et al.

Table 1. The characteristics of the datasets, and the comparison for the versions of
Auto-MEKAGGP and the baseline methods in the test set as to the fitness function.

Dataset (M, F, Q) Auto-MEKA Auto-MEKA GA-Auto-MLC BR CC

GGP GGP (S)

Flags (194, 18, 7) 0.606 (0.02) 0.598 (0.02) 0.603 (0.03) 0.582 (0.02) 0.590 (0.04)

Scene (2407, 294, 6) 0.837 (0.01) 0.830 (0.01) 0.826 (0.01) 0.824 (0.01) 0.787 (0.02)

Birds (645, 260, 19) 0.724 (0.02) 0.718 (0.02) 0.722 (0.01) 0.715 (0.03) 0.657 (0.02)

Yeast (2417, 103, 14) 0.567 (0.01) 0.568 (0.01) 0.565 (0.01) 0.566 (0.00) 0.552 (0.01)

GPosPse (519, 440, 4) 0.734 (0.04) 0.729 (0.04) 0.721 (0.03) 0.700 (0.04) 0.697 (0.04)

CHD 49 (555, 49, 6) 0.554 (0.02) 0.549 (0.02) 0.550 (0.02) 0.540 (0.02) 0.524 (0.02)

WTQlty (1060, 16, 14) 0.521 (0.01) 0.522 (0.01) 0.524 (0.01) 0.523 (0.02) 0.483 (0.01)

Emotions (593, 72, 6) 0.668 (0.02) 0.676 (0.02) 0.674 (0.01) 0.666 (0.02) 0.627 (0.02)

Reuters (294, 1000, 6) 0.473 (0.04) 0.475 (0.04) 0.476 (0.05) 0.469 (0.04) 0.457 (0.04)

Genbase (662, 1186, 27) 0.941 (0.01) 0.938 (0.01) 0.938 (0.01) 0.887 (0.10) 0.934 (0.01)

Average values 0.663 0.660 0.660 0.647 0.631

Average ranks 1.800 2.250 2.250 3.900 4.800

K-Nearest Neighbors (KNN), PART and Logistic Regression (LR). All SLC algo-
rithms use the default hyper-parameters, except for SMO which uses a Gaussian
Kernel (with default hyper-parameters), and for KNN which searches for the
best K value in the interval [1, 20] by performing a leave-one-out procedure
based on the learning and validation sets. Note that identical time and memory
budgets were applied in this local search to provide a fair comparison.

We perform the experiments using a stratified five-fold cross-validation [13]
with six repetitions varying Auto-MEKAGGP’s random seed, resulting in 30 runs
per dataset for each method. Table 1 presents the (average) results of fitness
function (see Eq. 1) in the test set followed by their standard deviations. For
each dataset, the best average result is displayed in bold.

We use the well-known statistical approach proposed by Demšar [4] to com-
pare different methods, using an adapted Friedman test followed by a Nemenyi
post hoc test with significance level of 0.05. The last two rows of Table 1 show
the average value and the average rank for each method.

As shown in Table 1, Auto-MEKAGGP has achieved the best (lowest) aver-
age rank (based on the fitness measure), followed by Auto-MEKAGGP(S) and
GA-Auto-MLC, which had the same rank. BR and CC presented the worst
performances. There was no statistically significant difference between the per-
formances of the two versions of Auto-MEKAGGP and GA-Auto-MLC. However,
Auto-MEKAGGP was the best method in six out of the 10 datasets in Table 1,
whilst Auto-MEKAGGP(S) and GA-Auto-MLC were each the best in only two
datasets. Finally, both versions of Auto-MEKAGGP (and, also, GA-Auto-MLC)
performed statistically better than BR and CC, well-known MLC methods.

Automated Selection and Configuration of MLC Algorithms with GGP 317

0 5 10 15 20 25

0.
5

0.
6

0.
7

0.
8

0.
9

Generations

Fi
tn
es

s

●

●

●

●

●
●

●

●
●

●

●
●

●
● ●

●
●

●
●

●

●
●

● ● ● ●

● Average
Best

(a) Auto-MEKAGGP’s behavior.

0 5 10 15 20 25

0.
5

0.
6

0.
7

0.
8

0.
9

Generations

Fi
tn
es

s

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

● ●
●

●
●

● ● ● ● ● ●

● Average
Best

(b) GA-Auto-MLC’s behavior.

Fig. 3. Evolution of fitness values for the dataset GPosPse.

4.1 Evolutionary Behavior

This section compares the evolutionary behaviors of Auto-MEKAGGP and GA-
Auto-MLC. We did not include Auto-MEKAGGP(S) in this analysis because its
results were not significantly better than those achieved by GA-Auto-MLC.

Figures 3(a) and (b) illustrate the fitness evolution of the best individuals
of the population and the average fitness of the population of individuals of
Auto-MEKAGGP and GA-Auto-MLC for the dataset GPosPse. All curves con-
sider the mean of the only 10 runs (out of 30) with the same final number of
generations (25). This dataset was chosen because it shows a situation where
Auto-MEKAGGP is clearly better than GA-Auto-MLC, but the evolution curves
are similar for other datasets. Note that the fitness values of the individuals
can decrease or increase from one generation to another due to training data
resampling.

Observe that Auto-MEKAGGP’s population converges faster than GA-Auto-
MLC’s one. This may be due to the lack of semantic meaning of the genes in
GA-Auto-ML’s individuals, so a GA-Auto-MLC’s individual can change severely
from one generation to another by performing crossover and mutation. This is
less likely to happen in Auto-MEKAGGP as the grammar restricts the GGP
operations, which explains why the produced individuals converge quickly.

4.2 The Diversity of the Selected MLC Algorithms

This section analyzes the diversity of the MLC algorithms selected by two evo-
lutionary Auto-ML methods: Auto-MEKAGGP and GA-Auto-ML. We focus only
on the selected MLC algorithms (the “macro-components” of the Auto-ML meth-
ods), and not on their selected parameter settings (the “micro-components”), to
simplify the analysis. We do not report results for Auto-MEKAGGP(S) because
again the full version of this method, Auto-MEKAGGP, obtained better results,

318 A. G. C. de Sá et al.

BR C
C

FW PS PS
t

O
th
er
s

Non−meta
Meta

MLC Algorithms

Av
er

ag
e

Pe
rc

en
ta

ge
 o

f S
el

ec
tio

n

0

10

20

30

40

28.7 %

8.3 % 7.3 % 8 %
10.7 %

37 %

(a) Auto-MEKAGGP.

BR C
C

C
D
N LP PS
t

O
th
er
s

Non−meta
Meta

MLC Algorithms

Av
er

ag
e

Pe
rc

en
ta

ge
 o

f S
el

ec
tio

n

0

10

20

30

40

28 %

8.3 %
6.3 %

11 % 11 %

35.4 %

(b) GA-Auto-MLC.

Fig. 4. Barplots for the MLC algorithms’ selection over all the 300 runs.

as discussed earlier. Analyzing the MLC algorithms selected by Auto-MEKAGGP

and GA-Auto-ML can help us to better understand the results of Table 1, giving
an idea of how the choice of an MLC algorithm influences the performance of these
two Auto-ML methods.

Figures 4(a) and (b) present the bar plots to analyze the percentage of selec-
tion of MLC algorithms for the Auto-ML methods. For the full details about
each MLC algorithm, see [1]. In these figures, we have for each MLC algorithm
a (gray/white) bar, representing the average percentage of selection over all the
300 runs: 10 datasets times 30 independent runs per dataset (5 cross-validation
folds times 6 single runs with different random seeds). These percentages rely on
two cases: (i) when the traditional MLC algorithm is solely selected; (ii) when
the traditional MLC algorithm is selected together with a MLC meta-algorithm.
To emphasize these two cases, the bar for each traditional MLC algorithm is
divided into two parts, with sizes proportional to the percentage of selection as
a standalone algorithm (in gray color) and the percentage of selection as part of
a meta-algorithm (in white color).

BR was the traditional MLC algorithm most frequently selected (in about
30% of all runs) by both Auto-ML methods. Besides, Classifier Chain (CC), Four-
Class Pairwise Classification (FW), and Pruned Sets with and without threshold
(PS and PSt) were selected in total in 34.3% of all runs by Auto-MEKAGGP;
whilst CC, Conditional Dependency Networks (CDN), LP and PSt were selected
in total in 36.6% of all runs by GA-Auto-MLC. Note that the MLC algorithms
most frequently selected by Auto-MEKAGGP and GA-Auto-ML are broadly sim-
ilar, which suggests that Auto-MEKAGGP’s superior performance is partly due
to a better exploration of the space of hyper-parameter settings of those most
successful MLC algorithms. Finally, we observed that Auto-MEKAGGP selected
meta MLC algorithms in 53.3% of all runs, whilst GA-Auto-MLC selected meta
MLC algorithms in only 27.4% of all runs.

Automated Selection and Configuration of MLC Algorithms with GGP 319

5 Conclusions and Future Work

This paper introduced Auto-MEKAGGP, a new grammar-based genetic pro-
gramming method for automatically selecting the best Multi-Label Classifica-
tion (MLC) algorithm and its hyper-parameter settings for an input dataset.
Auto-MEKAGGP uses a grammar representing prior knowledge about MLC algo-
rithms, restricting its search space to valid solutions.

Auto-MEKAGGP was compared to two well-known MLC algorithms – Binary
Relevance (BR) and Classifier Chain (CC) – and to GA-Auto-ML, a GA we
recently proposed to solve this task [2]. We tested Auto-MEKAGGP with the
full version of the proposed grammar and with a simplified grammar ver-
sion which has the same search space (candidate MLC algorithms and their
hyper-parameters) as GA-Auto-ML. Overall, the full version of Auto-MEKAGGP

obtained the highest predictive accuracy among all five tested methods, being
the winner in six out of the 10 datasets. Also, both versions of Auto-MEKAGGP,
as well as GA-Auto-ML, obtained statistically significantly higher accuracies
than BR and CC.

In future work we plan to extend Auto-MEKAGGP to search for MLC
pipelines too. This means to search for the best combination of MLC algo-
rithms, data preprocessing and post-processing methods, and their respective
hyper-parameters.

Acknowledgments. This work has been partially funded by the EUBra-BIGSEA
project by the European Commission under the Cooperation Programme (MCTI/RNP
3rd Coordinated Call), Horizon 2020 grant agreement 690116. In addition, this work
has been partially supported by the following Brazilian Research Support Agencies:
CNPq, CAPES and FAPEMIG.

References

1. de Sá, A.G.C., Freitas, A.A., Pappa, G.L.: Multi-label classification search space
in the MEKA software. Technical report, UFMG (2018). https://github.com/laic-
ufmg/automlc/tree/master/PPSN/MLC-SearchSpace.pdf

2. de Sá, A.G.C., Pappa, G.L., Freitas, A.A.: Towards a method for automatically
selecting and configuring multi-label classification algorithms. In: Proceedings of
GECCO Companion, pp. 1125–1132 (2017)

3. de Sá, A.G.C., Pinto, W.J.G.S., Oliveira, L.O.V.B., Pappa, G.L.: RECIPE: a
grammar-based framework for automatically evolving classification pipelines. In:
McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.)
EuroGP 2017. LNCS, vol. 10196, pp. 246–261. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-55696-3 16

4. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

5. Feurer, M., Klein, A., Eggensperger, K., et al.: Efficient and robust automated
machine learning. In: Proceedings of the International Conference on Neural Infor-
mation Processing Systems, pp. 2755–2763 (2015)

https://github.com/laic-ufmg/automlc/tree/master/PPSN/MLC-SearchSpace.pdf
https://github.com/laic-ufmg/automlc/tree/master/PPSN/MLC-SearchSpace.pdf
https://doi.org/10.1007/978-3-319-55696-3_16
https://doi.org/10.1007/978-3-319-55696-3_16

320 A. G. C. de Sá et al.

6. Křen, T., Pilát, M., Neruda, R.: Automatic creation of machine learning workflows
with strongly typed genetic programming. Int. J. Artif. Intell. Tools 26(5), 1–24
(2017)

7. Mckay, R., Hoai, N., Whigham, P., Shan, Y., O’Neill, M.: Grammar-based genetic
programming: a survey. Genet. Program Evolvable Mach. 11(3), 365–396 (2010)

8. Olson, R., Bartley, N., Urbanowicz, R., Moore, J.: Evaluation of a tree-based
pipeline optimization tool for automating data science. In: Proceedings of GECCO,
pp. 485–492 (2016)

9. Otero, F., Castle, T., Johnson, C.: EpochX: genetic programming in Java with
statistics and event monitoring. In: Proceedings of GECCO Companion, pp. 93–
100 (2012)

10. Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning
in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

11. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label
classification. Mach. Learn. 85(3), 333–359 (2011)

12. Read, J., Reutemann, P., Pfahringer, B., Holmes, G.: MEKA: a multi-label/multi-
target extension to WEKA. J. Mach. Learn. Res. 17(21), 1–5 (2016)

13. Sechidis, K., Tsoumakas, G., Vlahavas, I.: On the stratification of multi-label
data. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML
PKDD 2011. LNCS (LNAI), vol. 6913, pp. 145–158. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23808-6 10

14. Thornton, C., Hutter, F., Hoos, H., Leyton-Brown, K.: Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms. In: Pro-
ceedings of the ACM SIGKDD Conference, pp. 847–855 (2013)

15. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O.,
Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685.
Springer, Boston (2010). https://doi.org/10.1007/978-0-387-09823-4 34

16. Witten, I., Frank, E., Hall, M.A., Pal, C.: Data Mining: Practical Machine Learning
Tools and Techniques, 4th edn. Morgan Kaufmann, Burlington (2016)

https://doi.org/10.1007/978-3-642-23808-6_10
https://doi.org/10.1007/978-0-387-09823-4_34

Performance Assessment of Recursive
Probability Matching for Adaptive
Operator Selection in Differential

Evolution

Mudita Sharma1(B), Manuel López-Ibáñez2, and Dimitar Kazakov1

1 University of York, York, UK
{ms1938,dimitar.kazakov}@york.ac.uk

2 University of Manchester, Manchester, UK
manuel.lopez-ibanez@manchester.ac.uk

Abstract. Probability Matching is one of the most successful methods
for adaptive operator selection (AOS), that is, online parameter control,
in evolutionary algorithms. In this paper, we propose a variant of Prob-
ability Matching, called Recursive Probability Matching (RecPM-AOS),
that estimates reward based on progress in past generations and esti-
mates quality based on expected quality of possible selection of operators
in the past. We apply RecPM-AOS to the online selection of mutation
strategies in differential evolution (DE) on the bbob benchmark func-
tions. The new method is compared with two AOS methods, namely,
PM-AdapSS, which utilises probability matching with relative fitness
improvement, and F-AUC, which combines the concept of area under
the curve with a multi-arm bandit algorithm. Experimental results show
that the new tuned RecPM-AOS method is the most effective at iden-
tifying the best mutation strategy to be used by DE in solving most
functions in bbob among the AOS methods.

Keywords: Parameter control · Probability matching
Differential evolution · Black-box optimisation

1 Introduction

In many optimisation algorithms, there are operations, such as crossover, muta-
tion, and neighbourhood exploration, for which a discrete number of operators or
strategies exist. Choosing the right operator is often key for improving the per-
formance of the algorithm. Adaptive Operator Selection (AOS) is a framework
that dynamically selects an operator at run-time from a finite set of choices. AOS
methods are a subset of online tuning or parameter control methods [11]. Exam-
ples of AOS methods include PM-AdapSS [7] and F-AUC [5], both of which
were introduced in the context of selecting a mutation strategy in differential
evolution (DE) [13]. In particular, PM-AdapSS uses probability matching (PM)
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 321–333, 2018.
https://doi.org/10.1007/978-3-319-99259-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_26&domain=pdf

322 M. Sharma et al.

as the method for operator selector, whereas F-AUC uses a method inspired
by multi-armed bandits. PM was initially proposed in the context of classifier
systems [6] and it was later adapted as a component of AOS methods [7].

In this work, we propose a variant of PM called Recursive Probability Match-
ing (RecPM). PM probabilistically selects an operator to apply according to its
estimated quality. The quality of each operator is calculated as the weighted
sum of a reward value, which measures the impact of the most recent applica-
tion of the operator on solution fitness, and its historical quality. Instead, our
proposed RecPM estimates the quality of each operator according to a method
inspired by the Bellman equation from reinforcement learning [16], which takes
into account not only the reward values but also the selection probabilities of
other operators. By combining RecPM with a credit assignment method based
on offspring survival rate, we obtain the RecPM-AOS method.

We follow previous works [4], and apply RecPM-AOS to adaptively select a
mutation strategy in DE for continuous optimisation, and compare our results
with both PM-AdapSS and F-AUC. For completeness, we also include two state-
of-the-art algorithms: a variant of DE, JADE [17], and an evolution strategy
with covariance matrix adaptation, CMAES [10]. As a benchmark, we use the
noiseless functions from the black-box optimisation benchmark (bbob) [8]. Our
results show that RecPM-AOS is competitive with other AOS methods.

2 Background

2.1 Adaptive Operator Selection

Adaptive Operator Selection (AOS) methods dynamically select, at each iter-
ation t of an algorithm, one operator k out of a discrete set of K operators.
The selection is based on (1) a credit or reward value rk,t that rewards recent
performance improvements attributed to the application of the operator and
(2) an estimated quality of the operator qk,t that accumulates historical perfor-
mance or takes into account the performance of other operators. We identify two
components of AOS methods: the credit assignment and the operator selection.

Credit Assignment (CA) defines the performance statistics that measure
the impact of the application of an operator and assigns a reward value rk,t

according to this impact. For example, the reward of a mutation operator may
be defined in terms of the fitness of the solutions generated by its application.
CA is applied after each application of the operator, possibly taking into account
its past performance. For example, the CA of F-AUC uses a sliding window of
size W to store the rank-transformed fitness obtained by the last W selected
operators that generated an improved solution. A decay factor is applied to the
ranks so that top-ranks are rewarded more strongly. The ranks in the window are
used to compute a curve of the contribution of each operator and the area under
the curve (AUC) is taken as the reward value of the operator. More details are
given in the original paper [5]. On the other hand, PM-AdapSS only considers

Recursive Probability Matching for Adaptive Operator Selection 323

the immediate performance of the operators and calculates the reward of selected
operator k at iteration t as:

rk,t =
1

N surv

Nsurv∑

i=1

f(xbest) · |f(xparent
i) − f(x i)|

f(x i)
(1)

where N surv is the number of offspring that improved over its parent, and f(x i),
f(xparent

i), and f(xbest) are the fitness of an offspring solution generated by
selected operator k, of its parent solution and of the best solution found so
far, respectively. If there is no improvement or the operator was not selected at
iteration t, the reward is zero.

The Operator Selector (OS) estimates the quality qi,t+1 of each operator i,
based on the reward assigned to it at iteration t, and chooses one operator to use
in iteration t+1 among K operators according to its quality. For example, the OS
in F-AUC uses a multi-arm bandit (MAB) technique called Upper Confidence
Bound (UCB) [1] to calculate:

qi,t+1 = ri,t + C·
√

2 log
∑K

j=1 nj,t

ni,t
(2)

where C is a scaling factor parameter, ni,t is the number of applications of
operator i in the last W iterations that improved a solution, and ri,t is the
reward assigned to operator i at iteration t. In the above equation, ri,t intro-
duces exploitation whereas the second term introduces exploration. The operator
selector greedily chooses the operator with the highest quality value. By compar-
ison, PM-AdapSS uses probability matching (PM) to map the quality of each
operator to a probability value and applies roulette-wheel selection to proba-
bilistically choose the next operator. In particular, the quality of each operator
is calculated as:

qi,t+1 = qi,t + α · (ri,t − qi,t) ,∀i ∈ K (3)

where α is a parameter called adaptation rate. The selection probabilities for
choosing an operator in iteration t + 1 are calculated as:

pi,t+1 = pmin + (1 − K · pmin)

(
qi,t+1∑K

j=1 qj,t+1

)
(4)

where pmin is a minimum probability of selection. Initially, qi,0 = 1 and pi = 1/K,
∀i ∈ K. Thus initially all operators have the same chance of getting selected.

Table 1 summarizes the components of the various AOS methods compared
in this paper. The components of the proposed RecPM-AOS are described in
the following Sect. 3.

324 M. Sharma et al.

Table 1. Comparison of AOS methods and their components.

F-AUC PM-AdapSS RecPM-AOS

CA Area under the
curve

Average relative Offspring survival rate
(Eq. 10)

Fitness improvement
(Eq. 1)

OS Multi-armed
bandit

Probability matching
(Sect. 2.1)

Probability matching
(Sect. 2.1)

OS Selection Greedy Roulette wheel Roulette wheel

Quality UCB (Eq. 2) Weighted sum of quality
and reward (Eq. 3)

Bellman equation
(Eq. 9)

Parameters Window size(W),
scaling factor(C)

pmin, α pmin, γ

2.2 Mutation Strategies in Differential Evolution

In order to evaluate different AOS methods, we apply them to the online selection
of mutation strategies in differential evolution (DE) [13]. In DE, the mutation
strategy creates an offspring solution u as a linear combination of three or more
parent solutions x i, where i is the index of a solution in the current population.
Different strategies show a different balance between exploration and exploita-
tion in the search space and they may be applied to the current solution, a
random one or the best one. Examples of such mutation strategies [2] are:

“DE/rand/1”: ui = xr1 + F · (xr2 − xr3)
“DE/rand/2”: ui = xr1 + F · (xr2 − xr3 + xr4 − xr5)

“DE/rand-to-best/2”: ui = xr1 + F · (xbest xr1 + xr2 − xr3 + xr4 − xr5)
“DE/current-to-rand/1”: ui = xi + F (xr1 xi + xr2 xr3)

where F is a parameter, and r1, r2, r3, r4, and r5 are randomly generated indexes.
For a fair comparison, all AOS methods in this paper are integrated into the

same DE algorithm and able to select from the set of mutation strategies shown
above. The general framework of DE with AOS is shown in Algorithm1.

3 Recursive PM (RecPM)

We propose here a novel PM variant called Recursive Probability Matching
(RecPM). The main difference between PM and RecPM is that the latter esti-
mates the quality of each operator by adapting the Bellman equation from
Markov Decision Processes (MDPs) [14,16]. MDP is a framework from Reinforce-
ment Learning for making decisions in a stochastic environment. MDP assumes
that the current state is independent of the whole history given the previous state

Recursive Probability Matching for Adaptive Operator Selection 325

Algorithm 1. DE with AOS
1: Initialise parameter values of DE (F , NP , CR) and AOS method
2: Initialise and evaluate fitness of each individual x i in the population
3: t = 0 (generation number or time step)
4: while stopping condition is not satisfied do
5: for each x i, i = 1, . . . , NP do
6: if one or more operators not yet applied then
7: k = Uniform selection among operator(s) not yet applied
8: else
9: k = Select mutation strategy based on selection method (AOS)

10: Generate offspring using selected operator k
11: Evaluate offspring population
12: Perform credit assignment (AOS)
13: Estimate quality for each operator (AOS)
14: Update selection value (eg. probability) for each operator (AOS)
15: t = t + 1

(Markov property). Bellman equation [14] is widely used in MDPs to calculate
the expected return starting from a state. Although other AOS and parameter
control methods have used techniques from MDP such as Q-learning and SARSA
[11], our proposal is the first to be based on Bellman equation, to the best of
our knowledge.

In the context of AOS, a state represents the selected operator k at a time
step t and the corresponding reward is the future immediate reward assigned
to the operator r′

k,t+1, which is based on the impact of the application of the
operator on the performance of the algorithm. Since the next operator is chosen
probabilistically, we consider only transitions between states and rewards, and
not actions, thus we follow the Bellman equation for discrete decision processes
[14, p. 3094], which is used to predict the next state according to the expected
next reward given the current state. Our motivation for using the Bellman equa-
tion is to use the historical performance of operators to predict their quality in
the next iteration, which is then mapped to their probability of selection.

We use the Bellman equation to estimate the quality qk,t of an operator k
after its application in iteration t as the expected value (E[·]) of its total sum of
discounted future rewards:

qk,t = E[r
′
k,t+1 + γr

′
k,t+2 + · · · | Kt = k] = E[

∞∑

z=0

γ
z
r

′
k,t+z+1 | Kt = k] (5)

= E[r
′
k,t+1 + γ

∞∑

z=0

γ
z
r

′
k,t+z+2 | Kt = k] (using recursive property) (6)

= rk,t+1 +

K∑

j=1

Pkj

[
γE

[∞∑

z=0

γ
z
r

′
k,t+z+2 | Kt+1 = j

]]
(assuming E[r

′
k] = rk) (7)

= rk,t+1 + γ

K∑

j=1

Pkjqj,t+1 (using definition of qk,t in Eq. 5) (8)

326 M. Sharma et al.

where rk,t+1 is the accumulated reward that stores all the past achievements
(accumulated reward) for operator k and γ is the discount rate. In the context
of AOS, we do not know the probability matrix P of size K ×K, thus we decided
to calculate each entry as Pk,j = pk + pj , that is, as the sum of the selection
probabilities of operators k and j.

The rationale behind the formula above is as follows: When estimating qk,t,
operator k competes with all other operators j ∈ K, including itself, since the
selection of other operators in the past has impact on the current performance
of the selected operator. Thus, their probabilities are added and multiplied by
by the quality estimate of operator j. These values are then aggregated in the
end to get an overall estimate for operator k. The quality is an estimate not
because of the expected values, which are assumed to be completely provided
by the method, but because qj,t+1 is not known and the current estimate at t
is used instead. When considering all operators, this forms a system of linear
equations and can be re-written in the following vector form:

Qt = Rt+1 + γPQ t or Q = (1 − γP)−1R (9)

where Q and R = [ri] are the K-dimensional quality and reward vectors that
are updated at the end of each iteration t. The system of linear equations can
be solved efficiently by matrix inversion [14] when the number of operators is
small. Q is then normalised using the softmax function, which “squashes” each
real value to a K-dimensional vector in the range (0, 1) using the exponential
function. Once the quality is estimated for each operator, the probability vector
p = [pi] and probability matrix P are updated as in PM-AdapSS (Eq. 4) and
used for the selection of an operator.

RecPM utilises the steps of Probability Matching as described in Sect. 2.1
except for the definition of operator quality, which is estimated using the Bell-
man equation as shown above. However, to obtain an AOS method, we still need
to specify the credit assignment method that updates the reward values after
the application of the selected operators at time step t. We propose to calculate
the immediate reward r′

k,t+1 assigned to the selected operator as the number
N surv

t of offspring that survive to the next generation t+1 divided by the popu-
lation size NP . We define the accumulated reward rk,t assigned to an operator
as the ratio of offspring that survived plus half the last accumulated reward.
The remainder unselected operators receive half of their accumulated reward.
Thus, each operator gets a fraction of last reward value, that stores its historical
performance, and the selected one gets extra reward. The value of 0.5 as weight
assigned to rk,t was chosen by intuition.

ri,t+1 =

{
r′
k,t+1 + 0.5 · rk,t, if k is selected

0.5 · ri,t, ∀i �= k
, where r′

k,t+1 =
N surv

t

NP
(10)

The rational behind this credit assignment is that, if the operator is unlucky
and not getting selected for enough number of generations, it still receives some
reward based on its past performance and it has a chance of being selected in

Recursive Probability Matching for Adaptive Operator Selection 327

Fig. 1. Bootstrapped empirical cumulative distribution of the number of objective
function evaluations divided by dimension (FEvals/DIM) for 51 targets with target
precision in 10[−8..2] for all functions in 20-D. As reference algorithm, the best algorithm
from BBOB 2009 is shown as light thick line with diamond markers.

the future. This ensures that such operator is not discarded completely and may
be selected after a certain number of generations.

The combination of RecPM with the above credit assignment leads to a
new AOS method named RecPM-AOS in the following. When comparing PM-
AdapSS and RecPM-AOS , the former uses PM as an operator selector whereas
the latter uses RecPM . Both AOS methods use a credit assignment based on the
number of improvements from parent to offspring (N surv), however, PM-AdapSS
uses average relative fitness improvement (Eq. 1) as immediate reward without
using accumulated reward, whereas RecPM-AOS uses offspring survival rate as
immediate reward combined with a fraction of its previous accumulated reward.

RecPM-AOS is integrated within DE (Algorithm1) to make DE more effi-
cient by adaptively selecting, at run-time, a mutation strategy among the four
mutation strategies shown in Sect. 2.2. DE combined with RecPM-AOS has five
parameters: three belong to DE, namely, scaling factor (F), population size

328 M. Sharma et al.

(NP) and crossover rate (CR), while discount factor (γ) and minimum selection
probability (pmin) belong to RecPM-AOS .

4 Experimental Analysis

In the following, we compare the performance of proposed RecPM-AOS within
DE with two other algorithms, namely DE-F-AUC [5] and PM-AdapSS-DE [7],
for the online selection of mutation strategies in DE. More advanced DE variants
are available in the literature, however, we want to understand and analyse the
impact of the various AOS methods without possible interactions with other
adaptive components of those variants. Nonetheless, for the sake of completeness,
we also compare our results with two state-of-the-art algorithms JADE [17]
and CMAES [10]. JADE is a DE variant that uses a mutation strategy called
“current-to-pbest” and adapts the crossover probability CR and mutation factor
F using the values which proved to be useful in recent generations. CMAES is
an evolution strategy that samples new candidate solutions from a multivariate
Gaussian distribution and adapts its mean and covariance matrix.

We use bbob (Black-box optimisation Benchmarking) [8] test suite to test the
algorithms. bbob provides an easy to use tool-chain for benchmarking black-box
optimisation algorithms for continuous domains and to compare the performance
of numerical black-box optimisation algorithms. We evaluate all algorithms on
the 24 noiseless continuous benchmark functions [9] provided by bbob, each
with 15 different instances, totalling to 360 function instances. Each instance
of a function is a rotation and/or translation of the original function leading
to a different global optimum. These 24 functions are grouped in five classes,
namely, separable, moderate, ill-conditioned, multi-modal and weak-structure
functions. Each algorithm with AOS method is run to a maximum number of
105 ·d function evaluations (FEvals), where d is the dimension of the benchmark
function. In this paper, we focus on d = 20 for all functions. The solutions in the
initial population for each function instance are generated with different seeds.

4.1 Parameter Tuning

We tune the parameters of the DE-RecPM-AOS , DE-F-AUC and PM-AdapSS-
DE using the offline automatic configurator irace [12], which saves the hassle of
manual tuning and allows for a fully specified and reproducible procedure. The
input given to irace is the range of all parameters that need tuning (Table 2) and
a set of training function instances; it then looks for good performing parameter
configurations by executing the target algorithm on different training instances
with a budget of 104 FEvals. In our case, the training set consist of only 10% of
the function instances, randomly selected within each class, to avoid over-fitting.

In order to evaluate the impact of parameter tuning, we consider three param-
eter configurations of each algorithm. The first configuration is obtained by tun-
ing all parameters of DE and the AOS methods. The second configuration is

Recursive Probability Matching for Adaptive Operator Selection 329

Table 2. Optimal parameter configurations selected from the range shown below the
parameter name. The following prefix abbreviations are used: RecPM for DE-RecPM-
AOS, AdapSS for PM-AdapSS-DE and FAUC for DE-F-AUC. The symbol ‘-’ in the
table means that the parameter is not applicable to the AOS method.

F NP CR α pmin γ W C

[0.1, 2.0] [50, 400] [0.1, 1.0] [0.0, 1.0] [0.0, 0.25] [0.1, 1.0] [0, 200] [0.0, 1.0]

RecPM1 0.47 168 0.98 - 0.17 0.75 - -

RecPM2 0.5 200 1.0 - 0.11 0.46 - -

RecPM3 0.5 200 1.0 - 0.0 0.6 - -

AdapSS1 0.51 117 0.97 0.48 0.22 - -

AdapSS2 0.5 200 1.0 0.86 0.04 - - -

AdapSS3 0.5 200 1.0 0.6 0.0 - - -

FAUC1 0.24 96 0.55 - - - 31 0.14

FAUC2 0.5 200 1.0 - - - 5 0.35

FAUC3 0.5 200 1.0 - - - 50 0.5

obtained by tuning only the parameters of the AOS methods, while the param-
eter values of DE are taken from [4]: CR = 1.0, F = 0.5 and NP = 200. The
value CR = 1.0 means that a mutation strategy is applied to each dimension of
all parents, which maximizes the impact of the mutation strategies. Finally, the
third configuration (default) uses the settings suggested in [4] for DE-F-AUC
and PM-AdapSS-DE, which uses the DE settings described earlier and AOS set-
tings tuned with a different configurator. All parameter configurations are shown
in Table 2.

4.2 Comparison of AOS Methods with Different Parameter Settings

After tuning, each obtained configuration is evaluated on the full bbob bench-
mark set. We use plots of the Empirical Cumulative Distribution Function
(ECDF) to assess their performance (Fig. 1). The ECDF displays the proportion
of problems solved within a specified budget of function evaluations (FEvals) for
different targets ftarget = fopt+Δf , where fopt is an the optimum function value
to reach with some precision Δf ∈ [10−8, 102]. In the plots, FEvals is given on
the x-axis and y-axis represents the fraction of problems solved. A large symbol
‘×’ shows the maximum number of function evaluations given to each algorithm,
in our case, 105 ·d FEvals are given to each algorithm with AOS method. Results
reported after this symbol use bootstrapping to estimate the number of evalua-
tions to reach a specific target for a problem [3]. The results denoted with best
2009 correspond to the artificial best algorithm from the bbob-2009 workshop
constructed from the data of the algorithm with the smallest aRT (average Run
Time) for each set of problems with the same function, dimension and target.
The aRT is calculated as the ratio of the number of function evaluations for

330 M. Sharma et al.

reaching the target value over successful runs (or trials), plus the maximum
number of evaluations for unsuccessful runs, divided by the number of success-
ful trials. Data to generate ECDF graphs for DE-F-AUC3, PM-AdapSS-DE3,
CMAES and JADE is obtained directly from the coco website.1 The trials that
reached ftarget within specified budget are termed as successful trials, #succ.
Table 3 shows the aRT (average Run Time), calculated as the ratio of the num-
ber of function evaluations for reaching the target value over successful runs,
plus the maximum number of evaluations for unsuccessful trials, divided by the
number of successful trials, on four out of 24 functions only due to limited space.
The runtime for a function becomes undefined if there are no successful runs.
The complete table can be seen in the supplementary material [15].

We expected to tune DE-F-AUC and PM-AdapSS-DE algorithms with the
hope to replicate the original results for DE-F-AUC3 and PM-AdapSS-DE3
[5,7]. But we could not match the results shown in these papers. Thus, we
decided to use the data available online at the coco website and compare vari-
ants of proposed algorithm with DE-F-AUC3 and PM-AdapSS-DE3 only. The
interested reader is referred to the supplementary material [15] to find the results
of tuned DE-F-AUC and PM-AdapSS-DE algorithms. The ECDF graphs of vari-
ants of proposed algorithm with DE-F-AUC3 and PM-AdapSS3 are shown in
four plots of Fig. 1 that show the performance of algorithms averaged over all
360 functions tested. From now on we only talk about the original results and
not the replicated ones.

ECDF1 shows results obtained for three variants of DE-RecPM-AOS. As
expected, proposed algorithm with all tuned parameters outperformed its all
other variants both in terms of speed and percentage of problems solved. When
all three AOS methods use the default settings (ECDF2), it is estimated that
F-AUC and RecPM-AOS solves the same number of problems but within given
budget all algorithms solved same number of problems with varied speed. The
third graph (ECDF3) where only parameters of AOS method are tuned in pro-
posed algorithm shows that DE-F-AUC3 and PM-AdapSS-DE3 solves maxi-
mum problems with almost same speed within given budget. But when given
more FEvals, according to bootstrapping technique, DE-RecPM-AOS2 shows
the same performance as DE-F-AUC3 by solving the same number of problems
whereas PM-AdapSS-DE3 could not match the performance of other two algo-
rithms. ECDF4 compares results of DE-RecPM-AOS1, DE-F-AUC3 and PM-
AdapSS-DE3. The proposed method with all tuned parameters that is, parame-
ters of DE algorithm and of RecPM-AOS method outperformed all other algo-
rithms by solving 75% of the problems. This is clearly because of the properties
the proposed AOS method has. The tuned configurations of replicated algo-
rithms: DE-F-AUC and PM-AdapSS-DE are not better than the original results
reported, which we cannot replicate.

Summing up the above discussion, it can be said that tuning all the parame-
ters of the proposed algorithm (DE-RecPM-AOS1) outperformed all its variants,
thus tuning on training set plays an important role. It also outperformed all other

1 http://coco.gforge.inria.fr/doku.php?id=algorithms-bbob.

http://coco.gforge.inria.fr/doku.php?id=algorithms-bbob

Recursive Probability Matching for Adaptive Operator Selection 331

Table 3. Average runtime (aRT in number of function evaluations) divided by the
respective best aRT measured during BBOB-2009 in dimension 20. RecPM: DE-
RecPM-AOS, AdapSS: PM-AdapSS-DE, FAUC: DE-F-AUC. The different target Δf -
values are shown in the top row. #succ is the number of trials that reached the (final)
target fopt + 10−8. The median number of conducted function evaluations is addition-
ally given in italics, if the target in the last column was never reached. Best results are
printed in bold.

20-D
Δfopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f1 43 43 43 43 43 43 43 15/15
AdapSS3101 196 291 377 465 646 827 15/15
CMAES 7.5 13 20 26 33 45 58 15/15
FAUC3 93 180 265 350 431 597 763 15/15
JADE 47 94 143 191 240 340 437 15/15
RecPM1 96 187 278 369 459 636 819 15/15
RecPM2 114 219 317 410 510 707 932 15/15
RecPM3 132 263 432 932 1234 1621 2076 14/15

f2 385 386 387 388 390 391 393 15/15
AdapSS3 52 63 73 83 93 112 132 15/15
CMAES 36 43 45 47 47 48 50 15/15
FAUC3 48 58 68 77 86 105 123 15/15
JADE 28 34 39 44 50 61 71 15/15
RecPM1 47 57 66 76 85 103 121 15/15
RecPM2 72 90 108 127 147 186 223 15/15
RecPM3 66 111 180 205 278 333 360 15/15

Δfopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f13 652 2021 2751 3507 18749 24455 3020115/15

AdapSS328 13 12 12 2.6 2.6 2.6 15/15
CMAES 6.3 5.1 4.5 4.4 1.9 4.6 8.4 12/15
FAUC3 25 12 11 11 2.4 2.5 2.5 15/15
JADE 17 14 15 14 3.6 4.8 9.0 15/15
RecPM1 29 14 14 14 3.2 3.6 4.2 15/15
RecPM2 36 17 16 16 3.6 4.1 7.2 15/15
RecPM3 44 32 32 38 7.8 8.8 8.0 15/15

f14 75 239 304 451 932 1648 15661 15/15
AdapSS343 34 43 40 25 20 2.8 15/15
CMAES 4.2 3.0 3.7 4.3 4.2 6.2 1.2 15/15
FAUC3 33 30 38 36 23 19 2.8 15/15
JADE 18 18 23 25 20 38 62 5/15
RecPM1 40 33 42 41 26 24 4.2 15/15
RecPM2 52 44 58 53 32 27 4.3 15/15
RecPM3 47 43 54 51 35 38 5.1 15/15

AOS methods within DE solving 75% of the total problems. Thus, historical
information preserving property in the form of reward and using Bellman equa-
tion to estimate quality of operator led to efficient adaptability of operators.
On the other hand both F-AUC and RecPM-AOS makes use of past perfor-
mances of operators, we do that by defining reward of each operator capturing
a fraction of its last reward which reduces the hassle of maintaining a window of
certain size. However, F-AUC and PM-AdapSS shows similar speed in solving
a fixed number of problems and DE-RecPM-AOS1 has faster convergence speed
and increased percentage of problems solved. The full table showing aRT for
AOS methods within DE algorithm in supplementary material shows that no
one algorithm has best converging speed for all functions and DE-F-AUC3 and
DE-RecPM-AOS1 shows competitive results.

4.3 Comparison of RecPM-AOS with State-of-the-Art Algorithms

CMAES and JADE are given a budget of 5 ·104 FEvals. When comparing differ-
ent versions of DE-RecPM-AOS with CMAES and JADE, proposed algorithm
with all tuned parameters is able to solve most functions than CMAES as seen in
ECDF4 in Fig. 1 that is, almost 10% more than best version of DE-RecPM-AOS :
DE-RecPM-AOS1. However, JADE manages to solve majority of the problems
than any AOS methods within DE, shown in ECDF1. In the initial runs, CMAES
has faster convergence speed than any other algorithm.

5 Conclusion and Future Work

We proposed a variant of probability matching, recursive-PM, as a parameter
control method that gives the quality as an aggregated estimate of future perfor-

332 M. Sharma et al.

mances of operators. The proposed adaptive operator selector adaptively selects
a mutation strategy in Differential Evolution. The algorithm differs from clas-
sical PM in the way it assigns the quality to a strategy. The reward given to
an operator depends on the short term success of that operator. It is compared
with two AOS methods DE-F-AUC, PM-AdapSS-DE and two state-of-the-art
algorithms CMAES, JADE. The overall performance of Recursive-PM within
DE with tuned parameters shows that it outperforms other two AOS methods
that is, DE-F-AUC and PM-AdapSS-DE, and CMAES by solving 75% of the
problems. The proposed algorithm could not outperform JADE, but had similar
convergence rate.

irace is used to find the good offline settings for the proposed AOS method,
which illustrates the usefulness of offline procedures to successfully design new
online adaptation methods. It is used to train the parameters on 10% of the total
function instances. We plan to extend the proposed algorithm by integrating it
with different definitions of credit assignment to compete with the state of the art
algorithms. To make RecPM-AOS perform better, we plan to extend proposed
algorithm by finding and tuning more parameters involved in the method such
as the fraction of previous reward to take under consideration when designing
credit assignment technique.

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

2. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution-an
updated survey. Swarm Evol. Comput. 27, 1–30 (2016)

3. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. CRC Press, Boca
Raton (1994)

4. Fialho, Á., Schoenauer, M., Sebag, M.: Fitness-AUC bandit adaptive strategy selec-
tion vs. the probability matching one within differential evolution: an empirical
comparison on the BBOB-2010 noiseless testbed. In: Pelikan, M., et al. (eds.)
GECCO (Companion), pp. 1535–1542 (2010)

5. Fialho, Á., Schoenauer, M., Sebag, M.: Toward comparison-based adaptive oper-
ator selection. In: Pelikan, M., et al. (eds.) 2010 Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), Portland, Oregon, USA, pp.
767–774 (2010)

6. Goldberg, D.E.: Probability matching, the magnitude of reinforcement, and clas-
sifier system bidding. Mach. Learn. 5(4), 407–425 (1990)

7. Gong, W., Fialho, Á., Cai, Z.: Adaptive strategy selection in differential evolution.
In: Pelikan, M., et al. (eds.) GECCO, pp. 409–416 (2010)

8. Hansen, N., Auger, A., Mersmann, O., Tusar, T., Brockhoff, D.: COCO: a plat-
form for comparing continuous optimizers in a black-box setting. Arxiv preprint
arXiv:1603.08785 (2016)

9. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimiza-
tion benchmarking 2009: noiseless functions definitions. Technical report, RR-6829,
INRIA, France (2009). (updated February 2010)

10. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

http://arxiv.org/abs/1603.08785

Recursive Probability Matching for Adaptive Operator Selection 333

11. Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Parameter control in evolutionary
algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187
(2015)

12. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

13. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical App-
roach to Global Optimization. Springer, New York (2005). https://doi.org/10.
1007/3-540-31306-0

14. Rust, J.: Structural estimation of Markov decision processes. In: Handbook of
Econometrics, vol. 4, pp. 3081–3143. Elsevier (1994)

15. Sharma, M., López-Ibáñez, M., Kazakov, D.: Performance assessment of recur-
sive probability matching for adaptive operator selection in differential evolution:
supplementary material (2018). https://doi.org/10.5281/zenodo.1257672. https://
github.com/mudita11/AOS-comparisons

16. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

17. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional
external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.5281/zenodo.1257672
https://github.com/mudita11/AOS-comparisons
https://github.com/mudita11/AOS-comparisons

Program Trace Optimization

Alberto Moraglio1(B) and James McDermott2

1 University of Exeter, Exeter, UK
A.Moraglio@exeter.ac.uk

2 University College Dublin, Dublin, Ireland
James.McDermott2@ucd.ie

Abstract. We introduce Program Trace Optimization (PTO), a sys-
tem for ‘universal heuristic optimization made easy’. This is achieved by
strictly separating the problem from the search algorithm. New problem
definitions and new generic search algorithms can be added to PTO eas-
ily and independently, and any algorithm can be used on any problem.
PTO automatically extracts knowledge from the problem specification
and designs search operators for the problem. The operators designed by
PTO for standard representations coincide with existing ones, but PTO
automatically designs operators for arbitrary representations.

Keywords: Universal optimisation · Operator design
Genotype-phenotype mappings

1 Introduction

In the 1960s and onwards, researchers in genetic algorithms proposed a vision
of them as ‘universal solvers’, capable of addressing any search and optimiza-
tion problem. Later, researchers found that this promise could not be delivered
because each new problem required a significant investment of time and exper-
tise in tailoring the algorithm to the problem for acceptable performance. This
is common to all metaheuristics: solvers succeed only when using an encoding
and search operators which are well-chosen for the problem at hand. This is hard
work, to be done per problem, and a black art, which requires (often unwritten)
expertise in both the problem and the solver.

The PTO vision is to make universal optimisation easy. This is achieved by
(i) neatly separating problem specification and solver definition, and (ii) auto-
matically tailoring the solver to the problem by analysing and using the structure
of the problem specification. In PTO, the core task for the user is to write a gen-
erator, which implicitly defines the set of possible solutions, rather than design a
representation and search operators as in most EAs. PTO will then induce these
automatically. For some problems, a good representation and search operators
are easy to create and PTO’s will be equivalent. In others, a generator is easier
to create: it is a more concrete task, perhaps more aligned with the thinking
of domain experts, as opposed to metaheuristics experts. In yet other cases, a
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 334–346, 2018.
https://doi.org/10.1007/978-3-319-99259-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_27&domain=pdf

Program Trace Optimization 335

generator may be an easy way to avoid constraint violations or express search
bias difficult to express through operators (e.g. the Heuristic TSP generator of
Sect. 4). PTO’s automatic design of search operators deals seamlessly with arbi-
trarily complex representations. The PTO user does not have to think about
how to optimise, while the researcher working on PTO solvers does not have to
think about specific problems.

2 Overview of PTO

PTO has two key ingredients: (i) a universal solution representation – the pro-
gram trace – that decouples problem and solver; (ii) a naming scheme on the
trace reflecting the problem structure that automatically adapts generic search
operators to the problem at hand. In the following, we briefly describe these.

2.1 Universal Solution Representation

Any search method requires an implicit or explicit representation for generation
and manipulation of solutions. PTO uses a universal solution representation
that applies to any problem. Metaheuristics defined on such a representation
can be applied unchanged to any problem, thus becoming universal optimisers.
The representation used by PTO is as follows. The user supplies a solution
generator, which implicitly defines the set of possible solutions. PTO runs it and
traces its execution, resulting in a sequential data structure called a program
trace. The trace can be thought of as the sequence of outcomes of (random)
decisions made by the generator in producing a particular solution. The trace
can be manipulated: it can be ‘played back’ in the generator to redo the same
sequence of decisions and produce the same solution; it can be edited and played
back to produce a variant solution; two parent traces can be combined and the
result played back to produce a child solution. That is, the trace is a genotype,
the solution is the corresponding phenotype, and the playback mechanism in
the generator is a developmental mapping; editing and recombination of traces
are search operators. The trace is a universal representation that applies to any
problem because it is implicit in the problem definition (in the generator) and
can be extracted automatically by tracing. No other representation can be more
general or more powerful, since the generator can use Turing-complete code.

2.2 Naming Scheme

The trace is a linear structure for any problem; the corresponding solution can be
any arbitrarily complex structure as the generator can use any construct of the
programming language, e.g. data structures, function calls and recursion, and
can return any data structure. The linear genotype allows for easy adaptation of
existing metaheuristics such as genetic algorithms or particle swarm optimiza-
tion to work in PTO, while indirectly searching spaces of arbitrarily complex
phenotypes. PTO annotates the trace so that it captures the problem structure

336 A. Moraglio and J. McDermott

implicitly expressed by the user in the generator. The key observation is that
the control structures used in the code of the generator reflect the structure of
the solutions generated, e.g., a solution with a matrix structure may be reflected
in the use of nested loops in the generator; a solution with a tree structure
may be reflected in the use of multiple recursion in the generator. To make this
information about solution structure available to the search operators acting on
the linear genotype, the trace is annotated with the ‘execution context’ in which
each random decision (a trace entry) took place. This execution context contains
information about the state of the process (a picture in time of the running pro-
gram), e.g., including the line of code from which the random number generator
was invoked, the values held in the loop indices, and the current stack of (possi-
bly recursive) calls. Search operators for annotated traces preserve the execution
context as much as possible, to prevent the equivalent of the disruptive “ripple
effect” [10] of Grammatical Evolution (GE). Generic search operators on the
trace representation induce domain-specific search operators on the phenotype
which are equivalent to known-good operators for standard representations. This
mechanism of automatic implicit adaptation of the search operators to the struc-
ture of the problem at hand naturally extends to arbitrarily complex solution
structures, as any solution structure can be described by a generator using a few
fundamental control structures (i.e., sequence, condition, iteration, subroutine),
which are handled by the annotation scheme.

2.3 PTO Software Architecture

PTO has a modular design in three parts. The tracer hooks into the user-supplied
generator, and records and plays back program traces. The solver is pluggable:
any metaheuristic solver can be plugged-in as the solver. The problem is also
pluggable: the user supplies an objective function and a generator. Advances in
any component do not require changes in the others.

User Interface: PTO automatically makes all design decisions and parameter
configurations. This makes the user interface unobtrusive and the learning curve
flat, and allows for reuse of existing code, e.g. EA initialisation methods or
constructive heuristics as generators (as in PODI [6]).

Tracer: The tracer interfaces to the problem definition by tracing the generator
when it is run, and playing back modified traces in the generator. This is achieved
by overriding the calls to any function of the Python standard random library
used by the generator, so that tracing and playing back are invisible to the user.
The tracer annotates the trace entry by dynamic analysis of the running code
of the generator as described in Sect. 3.1. The annotated trace is the interface
between the tracer and the solvers. Search operators work on annotated traces
but are only allowed to use the labels to align entries with the same label in
different traces, and cannot use any other information stored in the labels. This
decouples tracer and solvers, allowing the naming scheme (the information stored
in the labels) to be modified without the need to alter solvers.

Program Trace Optimization 337

Search Algorithm: The requirement for a meta-heuristic to work with PTO is
that it can work on the trace representation. This is a dictionary, i.e. a variable-
length linear structure with entries identified by names rather than by indexes,
and with heterogenous entries (real, binary, integer, and permutations – the out-
put domains of random number generators in the Python library). Generalising
meta-heuristics to work on the trace representation can be done in a principled
way using the geometric framework [7] so as to retain the original dynamics of
the meta-heuristic on the new representation. The meta-heuristics currently in
PTO include Genetic Algorithm, Stochastic Hill-Climbers, Geometric Particle
Swarm Optimisation [8] and Random Search.

2.4 Related Work

PTO builds on and combines previous ideas. The idea of using a sequence of deci-
sions as a genotype was originally introduced in the Program Optimisation with
Dependency Injection (PODI) system [6], with emphasis on using it with com-
plex and smart generators, to evolve complex constrained structures. PODI is
similar to the decision chain encoding [5]. Constructive heuristics and simulated
annealing have also been hybridized for vehicle routing problems [1]. PODI can
be thought of as a generalisation of GE [9] that, instead of using a grammar to
map linear genotypes to complex phenotypes, uses an unrestricted program i.e.,
the generator, which is much more expressive. GE and by extension PODI can
suffer from low locality [11] and the ripple effect [10] as a result of the mapping.

PTO goes beyond PODI and the other approaches by seeing the trace as a
universal representation, allowing generic meta-heuristics to be used on any prob-
lem. The PTO philosophy of separating problem specification and solver mirrors
that of Probabilistic Programming (PP) [4]. Connections between PTO and PP
run deep. The PTO trace representation and naming scheme are the translation
to an optimisation context of a successful PP approach [13] to inference over
complex probabilistic models. Links between PP and EC have previously been
made, including optimisation on a type of program trace [2]. The idea of auto-
matic implicit design – that generic search operators on the trace representation
induce domain-specific search operators at the “phenotype” level – is novel to
PTO. This will be described in some detail in Sect. 3.

PTO differs from other works. There are approaches for the automatic design
of search operators for specific problems based on hyper-heuristics e.g., [3]. PTO
automatic design is different from these approaches, as it does not rely on search-
ing the space of search operators but rather on extracting and using implicit
problem-knowledge from the problem specification. Also PTO design differs from
that of mathematical theories for the design of search operators such as the geo-
metric framework [7], as in PTO the design is automatic and implicit rather
than manual and explicit. PTO aims at shielding users from choosing param-
eters. This is not done by automatic off-line parameter tuning and algorithm
configuration [12], but rather by choosing default robust parameter values in a
principled manner that work well in many situations. PTO aims at being very

338 A. Moraglio and J. McDermott

easily extendible and encompasses a large number of problems and search algo-
rithms, and its design is highly modular. But unlike existing software libraries
for metaheuristics, PTO is a self-configuring system which seamlessly adapts to
any problem and any arbitrarily complex representation.

The No Free Lunch theorem [14] does not prevent PTO from good univer-
sal performance, because as will be described, PTO automatically tailors the
operators to the problem. Thus, PTO is effectively not a black-box method.

3 Implicit Operator Design

Here, we define the naming scheme and generic search operators on traces. For
illustrative purposes, we then give two examples using simplified naming schemes
to show how the naming scheme implicitly adapts generic search operators to
problem-specific search operators by using the control structure in the code of
the generator. Finally, we discuss how problem knowledge is embedded in PTO.

3.1 Naming Scheme

We follow the approach of Wingate et al. [13] and name random choices according
to their structural position in the execution trace, which we define in a way
roughly analogous to a stack address: a random choice’s name is defined as the
list of the functions, their line numbers, and their loop indices, that precede it
in the call stack. A trace annotated in this way is called a structured trace. The
formal specification is inductive, as shown in Algorithm 1 (some details omitted).

Algorithm 1. Annotating a structured trace.
Begin executing the generator with empty function, line, and loop stacks.
When entering a function,

- push a unique function id on the function stack
- push a 0 on the line stack.

When moving to a new line, increment the last value on the line stack.
When starting a loop, push a 0 on the loop stack.
When iterating through a loop, increment the last value on the loop stack.
When exiting a loop, pop the loop stack.
When exiting a function, pop the function stack and the line stack.
When a random choice is made, name it with the entire contents of all stacks.

We also define a linear trace. It can be seen as a special case of the structured
trace, in which each entry is named after its sequential position in the trace, thus
more similar to PODI [6]. The search operators defined next work on both linear
and structured traces.

Program Trace Optimization 339

3.2 Search Operators on Named Traces

Initialisation runs the generator and traces its execution. Point mutation
picks a random entry of the trace and replaces its value with a value drawn
from the same random call. Uniform crossover aligns parent traces on their
names (i.e. dictionary keys). For names that appear in both parents, the offspring
inherits the corresponding entries from either parent at random, i.e. using a
random mask to select. For names that appear in only one parent, the offspring
inherits all of them. Repair is applied after each alteration of the trace, i.e.,
after the application of any variation operator. The repair takes place when
running the modified trace in the generator in playback mode to generate the
corresponding solution. If there is a mismatch, i.e. the current value comes from
a random call other than the one identified by the name, then a new random
value is drawn from the correct random call. If the trace is used up before the
generator finishes, the trace is extended with new random entries as needed.
Excess entries in the trace, not used by the generator, are deleted.

3.3 Example: Loops and Matrices

The user writes a generator and objective function using standard Python:

1: def generator():

2: s = random.randint(1,5)

3: return [[random.randint(1,15) for i in range(s)]

4: for j in range(s)]

5: def objective(matrix): return determinant(matrix)

In this simple example, the generator outputs a random square matrix, such
as those shown below (next page). The objective function (to be maximised) is
the determinant, calculated by recursively decomposing into sub-matrices.

Tracing. When the generator runs to generate a solution, a sequence of ran-
dom events take place. The sequence of outcomes of the random events is
the trace associated with the solution. In the example, the generator makes
1 call to random.randint(1,5) and then s2 calls to random.randint(1,15). The
(unannotated) trace is a sequence of the outcomes of these random calls, e.g.,
T=(3,9,13,5,1,11,7,3,7,4). In this example, the trace (genotype) is a list of
integers, and the solution (phenotype) is a square matrix of integers, e.g., trace
T corresponds to the matrix at bottom of page on left.

Playback. Given a trace, the corresponding solution is found by running the
generator in ‘playback mode’ using the trace to override the source of randomness
when random calls are made. This is the genotype-phenotype mapping.

Mutation and Linear Trace. Point mutation changes a single entry of the
trace. E.g., in the trace T if 13 changes to 4, then T ⇒ (3,9, 4 ,5,1,11,7,3,7,4),
corresponding to the change in solution illustrated below on the left. The change
in the trace T ⇒ 2 ,9,13,5,1,11,7,3,7,4) corresponds to the change illustrated

340 A. Moraglio and J. McDermott

in the centre. When the trace is played back in the generator, excess entries are
deleted to obtain (2,9,13,5,1). The mutation has changed the size of the matrix
from 3 to 2, and the original trace is scanned sequentially (i.e., played back) to
fill in the smaller matrix (and the surplus elements are discarded).
⎛
⎝

9 13 5
1 11 7
3 7 4

⎞
⎠⇒

⎛
⎝

9 4 5
1 11 7
3 7 4

⎞
⎠ ;

⎛
⎝

9 13 5
1 11 7
3 7 4

⎞
⎠⇒

(
9 13
5 1

)
;

⎛
⎝

9 13 5
1 11 7
3 7 4

⎞
⎠⇒

(
9 13
1 11

)

This is however not satisfactory, as the mutation operator is treating these
square matrices as sequential objects. A more satisfactory mutation operator
would act as illustrated above on the right, extracting a square submatrix of size
two from the original one.

Mutation and Structured Trace. The structured trace aims to fix this prob-
lem. For illustrative purposes, in this example we use the simplified naming
scheme with line number of the call and loop indices i and j, i.e., of the form
[line number, i, j], instead of the general one in Sect. 3.1. The original trace
T, i.e., (3,9,13,5,1,11,7,3,7,4), is then annotated as follows:

([2,-,-]:3, [3,1,1]:9, [3,1,2]:13, [3,1,3]:5, [3,2,1]:1, [3,2,2]:11,

[3,2,3]:7, [3,3,1]:3, [3,3,2]:7, [3,3,3]:4).
As before, the first element of the trace is mutated from 3 to 2. When played

back in the generator, elements of the structured trace are not accessed sequen-
tially but by the context in their names, e.g., when line 3 is executing with i =

1, and j = 2, the decision returned from random.randint(1,15) is 13. Excess ele-
ments not used in play-back are deleted. Since now size = 2, when playing back
the mutated trace in the generator the values of i and j that will be encountered
are 1 and 2 (never 3), producing the modified trace:

([2,-,-]:2, [3,1,1]:9, [3,1,2]:13, [3,2,1]:1, [3,2,2]:11).

Induced Phenotypic Operators. The structured naming scheme and generic
trace operators combine to give induced phenotypic operators tailored to matri-
ces. In mutation, when size changes, the top left square matrix is retained.
Crossover works by aligning parent matrices at the top left corner before recom-
bination, as illustrated in Table 1.

3.4 Example: Recursion and Expressions

The example in this section illustrates that PTO with linear trace suffers from a
disruptive “ripple effect” similar to GE’s due to offspring genotype entries being
used out of context. This is resolved by using the structured trace which results
in implicit design of meaningful search operators for tree structures.

Below is a recursive generator in standard Python for random Boolean
expressions on three variables contained in strings.

Program Trace Optimization 341

1: def gen():

2: expr_type = random.choice([’var’,’uop’,’biop’])

3: if expr_type == ’var’:

4: return random.choice([’x1’,’x2’,’x3’])

5: if expr_type == ’uop’:

6: return ’not ’ + gen()

7: if expr_type == ’biop’:

8: return ’(’ + gen() + random.choice([’ and ’,’ or ’]) + gen() + ’)’

Tracing. Let us consider an example expression E = (x2 or x1). The unanno-
tated trace for this expression is T = [biop, var, x2, or, var, x1].

Mutation and Linear Trace. The entries of the trace have types, so when
we apply point mutation to an entry it can be replaced only with values of the
same type e.g., the first entry of T with biop can be changed only to var or uop

i.e., possible outputs of random.choice([’var’,’uop’,’biop’]). Point mutation
on the linear trace can have a global effect. For example, changing var in the
second entry of T to uop alters the context of all subsequent elements i.e., results
in type-mismatch for all of subsequent elements when the mutated trace is played
back in the generator to obtain the corresponding solution. The trace is then
repaired by resolving type mismatch errors in the trace by replacing erroneous
values by freshly generated values of the correct type, e.g. changing E=(x2 or

x1) ⇒ (not x3 and x3) with trace [biop, uop, var, x3, and, var, x3].

Mutation and Structured Trace. Continuing the example, using the sim-
plified naming scheme [function, line number]* instead of the general one, the
original trace T, i.e., [biop, var, x2, or, var, x1], is annotated as in Fig. 1(a).
It can be rendered as a tree as in Fig. 1(b). This is analogous to a GE derivation
tree, but distinct structurally: e.g. x1 is not a child of var and one does not read
the leaves to obtain the output (recall, it is returned by the generator).

Table 1. Uniform crossover on structured traces for matrices: (right) recombine aligned
traces p1 and p2 using random mask m to obtain the child trace uc, which when repaired
becomes c; (left) phenotypic effect of crossover.

p1 =

⎛
⎝

9 13 5
1 11 7
3 7 4

⎞
⎠

p2 =
(
1 2
3 4

)

c =
(
9 2
1 4

)

name p1 p2 m uc c
[2,−,−] 3 2 2 2 2
[3, 1, 1] 9 1 1 9 9
[3, 1, 2] 13 2 2 2 2
[3, 1, 3] 5 5
[3, 2, 1] 1 3 1 1 1
[3, 2, 2] 11 4 2 4 4
[3, 2, 3] 7 7
[3, 3, 1] 3 3
[3, 3, 2] 7 7
[3, 3, 3] 4 4

342 A. Moraglio and J. McDermott

Fig. 1. (a) Annotated structured trace for (x2 or x1). To read this we say, e.g., “x2
is the result of a call on line 4 of the first call (unique ID created by addition of -A) to
gen on line 8 of gen.” (b) “Derivation” tree. Bold integers indicate execution order; ‘L’
indicates line number; node labels (e.g. biop) indicate results of random calls; edges
indicate random calls from parent to child; shading indicates results of terminal random
calls.

When we apply the same point mutation to T as before (var ⇒ uop at the
second element, that is at the leaf labelled 4 in Fig. 1(b)), now with the structured
trace, the mutation affects only the local context and it is much less disruptive,
this time changing E e.g. (x2 or x1) ⇒ (not x3 or x1).

Table 2. Uniform crossover on structured traces for expressions: recombine aligned
traces p1 and p2 using random mask m to obtain the child trace uc, which when
repaired becomes c; the phenotypic effect of crossover is: p1 = (x2 or x1) p2 = (not

x3 and x3) c = (not x3 or x1).

Name p1 p2 m uc c

[gen, 2] biop biop 2 biop biop

[gen, 8] or and 1 or or

[gen, 8, gen-A, 2] var uop 2 uop uop

[gen, 8, gen-A, 4] x2 x2

[gen, 8, gen-B, 2] var var 1 var var

[gen, 8, gen-B, 4] x1 x3 1 x1 x1

[gen, 8, gen-A, 6, gen, 2] var var var

[gen, 8, gen-A, 6, gen, 4] x3 x3 x3

Induced Phenotypic Operators. The structured naming scheme and generic
trace operators combine to induce phenotypic operators tailored to nested
expressions. The phenotypic operators have a modularity property.

Mutation: when a decision node C (a leaf in the tree view of the annotated
trace) is mutated, no other change may be needed, so the effect is a point muta-

Program Trace Optimization 343

tion on the expression. In the worst case, mutation invalidates the contents of all
subtrees, of parent node P , following C. This is because (i) P (a function call)
is scoped and modular, and (ii) the execution order is mirrored in the ordering
of siblings of C, so a change in C cannot have an effect on past execution.

Crossover (see Table 2): aligning parents on names corresponds to aligning
their common tree structures at root (homologous crossover) with the effect on
phenotypes that corresponding sub-expressions between parents are exchanged.

Analogously to these two examples (Sect. 3.3 on matrices and Sect. 3.4 on
trees), the general naming scheme in Sect. 3.1 can induce phenotypic operators
tailored to any solution structure because it encompasses all control structures
i.e., sequential, conditional, nested and recursive function calls, nested loops, and
any composition of these, that can describe any generator.

3.5 Implicit Problem Knowledge

Different generators for the same problem lead to different annotation on traces,
different induced phenotypic operators, and so to different performance. PTO
assumes that the control structures used by the user coding the generator implic-
itly reflect an understanding of the inherent structure of the problem and its
underlying implicit representation. E.g., the user could have used a flat list rep-
resentation for the matrix problem. This generator would not embed problem
knowledge, and would lead to a structured trace coinciding with the linear trace,
hence possibly worse performance. The assumption of PTO is that users will see
the patterns and structures of the problem and use these in writing generators.
We believe that this is a realistic assumption, and users will do this naturally
and intuitively. PTO then automatically carries out design based on user’s intu-
ition on the problem. The resulting phenotypic operators will be effective to the
extent that the generator captures the structure of the problem.

Perfecting the naming scheme based on experience of how users use the sys-
tem in practice, and providing explicit guidelines to the user of how to effectively
put structure in generators, is an important line of future research.

4 Experiments and Results

Is the structured trace better than the linear trace? Do “smart” generators
boost performance? To seek preliminary answers, we test PTO on two very
different domains: travelling salesman problems, and symbolic regression with
grammatical evolution. We use three solvers: Random search (RS), simple Hill-
climbing (HC), and an Evolutionary Algorithm (EA). The budget is set to 20,000
evaluations for all experiments. For the EA, PTO internally sets the number of
generations = population size =

√
20000 = 141.

For symbolic regression by GE, the grammar for n variables is:

<expr> ::= <op>(<expr>, <expr>) | <var> | <const>

<op> ::= add | sub | mul | aq

<var> ::= x1 | x2 | ... | xn

<const> ::= 0.0 | 0.1 | ... | 1.0

344 A. Moraglio and J. McDermott

Fig. 2. Regression results (mean of 30) for polynomials (left) and dataset problems
(right).

Here, aq is the analytic quotient aq(x, y) = x/
√

1.0 + y2. We use the natural
generator which creates a program by making uniform choices among all possible
productions at each step. There is no maximum depth or weighting by tree
depth. The objective is -RMSE. We report results on several problems. Synthetic
instances are polynomials on n variables with degree d = 4, for n = {1, . . . , 10},
with coefficients uniform in [0, 1] for all possible terms. Well-known benchmarks
are also used: Pagie-2D, Vladislavleva-4, Dow Chemical, Tower, and Housing1.
We compare 3 solvers and 2 trace types, Linear (L) and Structured (S). We show
results on training data only since the goal is to investigate search performance
rather than generalisation. Results are shown in Fig. 2. These show that the best
combinations use the structured trace: HC/S and EA/S. HC/L does very well,
whereas EA/L is very weak. RS does very badly on larger synthetic problems,
and for RS the trace type makes no difference. For synthetic problems, the
differences are stronger for larger problems, demonstrating PTO scaling.

For travelling salesman problems we define two generators. In the Unbi-
ased (U) generator, a random permutation is generated by starting with the
integers {1, . . . , n}, and for each index, swapping with a randomly-chosen later
index. In the Heuristic (H) generator, a route is constructed by starting with a
random starting city, and at each step, choosing the next city randomly from
all those remaining, with their probabilities inversely weighted by the distance
from the current city. Results on 6 TSPLIB2 instances for 3 solvers and 2 gener-
ators are shown in Table 3. On larger problems in particular, EA/H is the best
combination: it out-performs each of its components (EA/U and RS/H).

Overall, the structured trace gives consistently better performance than the
linear trace, and “smart” generators can do very well. One surprising result is
the good performance of hill-climbing with a linear trace in GE.

1 Datasets taken from http://www.github.com/ponyge/ponyge2.
2 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

http://www.github.com/ponyge/ponyge2
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Program Trace Optimization 345

Table 3. TSP results presented as mean (stddev). Lower is better. Integers in instance
names (48–575) indicate problem size. Bold indicates best result per-instance.

Solver Gen att48 berlin52 eil101 u159 a280 rat575

RS U 112397 (3521) 23108 (464) 2854 (43) 381521 (5157) 30203 (420) 104536 (935)

RS H 71150 (2084) 15878 (448) 2029 (40) 222018 (3822) 18542 (304) 64691 (608)

HC U 67573 (4875) 14699 (827) 1628 (79) 198736 (8807) 16390 (520) 59456 (1385)

HC H 59976 (6092) 13850 (1110) 1888 (100) 201490 (12426) 18286 (1084) 65858 (2172)

EA U 68377 (4678) 14103 (913) 1747 (97) 224842 (9276) 18936 (499) 70865 (1183)

EA H 67503 (5192) 14727 (1065) 1910 (65) 112444 (6228) 10086 (279) 34949 (705)

5 Conclusions and Future Work

PTO provides a novel perspective on heuristic optimization by neatly separating
problem specification and search algorithm, and automatically tailoring search
operators to the problem at hand. We believe PTO has great potential and
envisage an ambitious research plan, organised in three research strands.

(i) Problems: PTO will be extended to other optimisation paradigms such as
multi-objective, co-evolution, dynamic and noisy objective functions. A broad
range of complex real-world applications will be tested, from logistics to inter-
active art. Generators for many problems will be borrowed from throughout the
fields of heuristics and EC and tested.

(ii) Trace: Variant naming schemes will be investigated for performance and for
their effect on operator design. The naming scheme will be used in a GE variant
which avoids the ripple effect in a principled way. Alternative styles of writing
generators will be investigated, and the results provided to users as guidelines.

(iii) Algorithms: Many more metaheuristics will be plugged-in to PTO, includ-
ing several already in the geometric framework [7], such as Surrogate-Based
Optimisation and Estimation of Distribution Algorithms. Robust parameter set-
tings and self-adaptive parameters will be investigated. Landscape analysis will
be used to validate algorithm design and generator choices. The links between
PTO and probabilistic programming will be used to import and export ideas.

Finally, PTO will be promoted as a community resource. Code is available
at https://github.com/program-trace-optimisation.

References

1. de Armas, J., Keenan, P., Juan, A.A., McGarraghy, S.: Solving large-scale time
capacitated arc routing problems: from real-time heuristics to metaheuristics. Ann.
Oper. Res. 1–28 (2018)

2. Batishcheva, V., Potapov, A.: Genetic programming on program traces as an infer-
ence engine for probabilistic languages. In: Bieger, J., Goertzel, B., Potapov, A.
(eds.) AGI 2015. LNCS (LNAI), vol. 9205, pp. 14–24. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21365-1 2

https://github.com/program-trace-optimisation
https://doi.org/10.1007/978-3-319-21365-1_2

346 A. Moraglio and J. McDermott

3. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res.
Soc. 64(12), 1695–1724 (2013)

4. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Future of Software Engineering, pp. 167–181. ACM (2014)

5. Janssen, P., Kaushik, V.: Decision chain encoding: evolutionary design optimiza-
tion with complex constraints. In: Machado, P., McDermott, J., Carballal, A. (eds.)
EvoMUSART 2013. LNCS, vol. 7834, pp. 157–167. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36955-1 14

6. McDermott, J., Carroll, P.: Program optimisation with dependency injection. In:
Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013.
LNCS, vol. 7831, pp. 133–144. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37207-0 12

7. Moraglio, A.: Towards a geometric unification of evolutionary algorithms. Ph.D.
thesis, University of Essex (2008)

8. Moraglio, A., Di Chio, C., Poli, R.: Geometric particle swarm optimisation. In:
Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.)
EuroGP 2007. LNCS, vol. 4445, pp. 125–136. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71605-1 12

9. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in an Arbitrary Language. Kluwer Academic Publishers, Norwell (2003)

10. O’Neill, M., Ryan, C., Keijzer, M., Cattolico, M.: Crossover in grammatical evolu-
tion. Genet. Program. Evolvable Mach. 4(1), 67–93 (2003)

11. Rothlauf, F., Oetzel, M.: On the locality of grammatical evolution. In: Collet,
P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006.
LNCS, vol. 3905, pp. 320–330. Springer, Heidelberg (2006). https://doi.org/10.
1007/11729976 29

12. Stützle, T., López-Ibáñez, M.: Automatic (offline) configuration of algorithms. In:
Laredo, J.L.J. (ed.) GECCO (Companion), pp. 681–702. ACM, New York (2015)

13. Wingate, D., Stuhlmueller, A., Goodman, N.: Lightweight implementations of
probabilistic programming languages via transformational compilation. In: Gor-
don, G., et al. (eds.) AISTATS. PMLR, vol. 15, pp. 770–778, 11–13 April 2011

14. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. Trans.
Evol. Comput. 1(1), 67–82 (1997)

https://doi.org/10.1007/978-3-642-36955-1_14
https://doi.org/10.1007/978-3-642-37207-0_12
https://doi.org/10.1007/978-3-642-37207-0_12
https://doi.org/10.1007/978-3-540-71605-1_12
https://doi.org/10.1007/978-3-540-71605-1_12
https://doi.org/10.1007/11729976_29
https://doi.org/10.1007/11729976_29

Sampling Heuristics for Multi-objective
Dynamic Job Shop Scheduling Using

Island Based Parallel Genetic
Programming

Deepak Karunakaran(B), Yi Mei, Gang Chen, and Mengjie Zhang

School of Engineering and Computer Science, Victoria University of Wellington,
PO Box 600, Wellington 6140, New Zealand

{deepak.karunakaran,yi.mei,aaron.chen,mengjie.zhang}@ecs.vuw.ac.nz

Abstract. Dynamic job shop scheduling is a complex problem in pro-
duction systems. Automated design of dispatching rules for these sys-
tems, particularly using the genetic programming based hyper-heuristics
(GPHH) has been a promising approach in recent years. However, GPHH
is a computationally intensive and time consuming approach. Parallel
evolutionary algorithms are one of the key approaches to tackle this draw-
back. Furthermore when scheduling is performed under uncertain manu-
facturing environments while considering multiple conflicting objectives,
evolving good rules requires large and diverse training instances. Under
limited time and computational budget training on all instances is not
possible. Therefore, we need an efficient way to decide which training
samples are more suitable for training. We propose a method to sam-
ple those problem instances which have the potential to promote the
evolution of good rules. In particular, a sampling heuristic which suc-
cessively rejects clusters of problem instances in favour of those prob-
lem instances which show potential in improving the Pareto front for
a dynamic multi-objective scheduling problem is developed. We exploit
the efficient island model-based approaches to simultaneously consider
multiple training instances for GPHH.

Keywords: Scheduling · Genetic programming · Parallel algorithms

1 Introduction

Job shop scheduling is a complex problem in manufacturing industries. In gen-
eral, researchers consider deterministic scheduling problems in which once the
information of a new job is obtained it remains constant. But in practice, due
to events like machine breakdown, variation in raw material quality, operator
availability, etc. uncertainty is ubiquitous in manufacturing environments. In
fact, with increasing uncertainty, scheduling becomes more difficult [8]. Dispatch-
ing rules have been widely used for generating schedules for different objectives
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 347–359, 2018.
https://doi.org/10.1007/978-3-319-99259-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_28&domain=pdf

348 D. Karunakaran et al.

and have shown good success for DJSS problems [12], particularly for schedul-
ing under uncertainty [9]. But designing them requires considerable exper-
tise and rigorous experimentation. Genetic programming based hyper-heuristic
(GPHH) approach has been very successful in automatically evolving dispatching
rules [12]. Due to the flexible representation and powerful search ability of GP,
existing GPHH methods can evolve very good rules for diverse shop scenarios [7]
while handling multiple objectives for DJSS problems [10].

GPHH in general demands high computational cost and time. To address
this issue, surrogate models [5] have been proposed as an alternative but they
suffer from poor accuracy among other drawbacks [10]. Another key technique
to reduce computation time is to use parallel evolutionary algorithms [14]. There
are two main categories of parallelization, parallelizing an independent run and
island models. Island models are particularly interesting because of their ability
to deal with local optima [14]. The island model uses a spatially structured net-
work of subpopulations (on different processors) to exchange promising individu-
als among each other is an effective approach. For example, [15] use a specialized
island model for multi-objective optimization. [1] is a recent work which demon-
strates the effectiveness of asynchronous parallel evolution for hyper-heuristics.

For GPHH to be effective, it is important to use a large training set containing
instances with diverse characteristics. This is more important when we consider
uncertain manufacturing environments as they present varying shop scenarios [7].
Moreover, when we consider multiple objectives the importance of using diverse
training set is compounded. For example, makespan and total tardiness are two
frequently considered conflicting objectives. Minimizing the makespan results in
high throughput where as minimizing tardiness requires jobs to be not very late.
A conflicting scenario arises when a set of jobs with long processing times but
shorter deadline compete with a set of jobs with shorter processing times and
longer deadlines. For higher throughput the shorter jobs must be completed first
as against the longer jobs which adversely affects the tardiness. For evolving
good dispatching rules it is important to present the evolutionary system with
training instances which capture scenarios highlighting all such conflicts amongst
the objectives, under different shop scenarios.

Therefore, for evolving dispatching rules for practical environments we need a
large and diverse training set. But this in turn will increase the already high com-
putational cost of GPHH. To address this problem, we need a method which can
effectively sample training instances to significantly improve the effectiveness of
GPHH without exceeding the computational budget. The parallel island model
has already been shown to be both efficient and effective for GPHH when dealing
with multiple objectives [6]. Motivated by this success, we address our issue with
the idea of associating the multiple islands with different training instances. Fur-
thermore, we utilize the inherent potential of migration policies [13] to introduce
a cooperative behavior among islands and collectively evolve better rules.

In this work, we consider multi-objective DJSS problems with a focus on
uncertainty in processing times which affects all our objectives. Our primary
goal is to develop a sampling heuristic for GPHH which selects good training

Sampling Heuristics for Dynamic Job Shop Scheduling 349

instances toward evolving a significantly better Pareto front. To this end, our
specific objectives are: (1) Develop a feature extraction method toward clustering
the training dataset into DJSS problem instances with different characteristics.
(2) Develop a sampling heuristic which iteratively rejects the clusters (successive
reject heuristic) in favor of those which have the potential to improve the Pareto
front. (3) Determine the migration policies of the island model toward improving
the efficacy of the proposed sampling heuristic.

2 Background

DJSS problems are characterized by continuous arrival of jobs from a Poisson
process [12]. nj operations constitute a job j with the constraint that they must
be processed in a predefined route say (oj,1 → oj,2 →, . . . , oj,nj

). Each operation
can be processed only on one machine in its route. Other conditions/assumptions
which are followed in this work are no preemption, no recirculation of jobs, no
machine failure and zero transit times. Total tardiness, makespan, total flow
time are some of the objectives considered for DJSS problems. In this work, we
consider two potentially conflicting objectives [12]: (1) total weighted tardiness
(TWT) and (2) makespan (Cmax).

TWT = Σwj × max(Cj − dj , 0),

where Cj = completion time, dj = due date and wj are weights.

Cmax = max(fj),

where fj is the flowtime of a job.

3 Proposed Method

3.1 Clustering of DJSS Problem Instances

We extract features from the DJSS problem instances based on the parameters:
number of operations per job, processing time, due date factor and uncertainty in
processing time. Firstly, the basic features for each job are extracted as described

Table 1. Job features

Feature Description

#operations Number of operations per job

p Estimated processing time of the job

Δp p′
p

, p′ is the actual processing time with uncertainty

Due date factor (ddf) (δduedate−δreldate)
p′ ; where δduedate is the due date

and δreldate is the release date

350 D. Karunakaran et al.

in Table 1. Once the feature values are aggregated for all the jobs in an instance;
the first, second and third quartiles of each aggregate are calculated to form a
12-dimensional feature vector characterizing each problem instance.

Consider an example of a DJSS problem instance with just 10 jobs

{j1, j2, j3, . . . j10}

For each job the features described in Table 1 are calculated and aggregated e.g.,
for processing time the aggregated feature values are:

{p1, p2, p3, . . . p10}

Then for each feature aggregate the quartiles are calculated. The feature vector
of the DJSS instance is of the form

{#opsQ1,#opsQ2,#opsQ3, pQ1, pQ2, pQ3,Δ
p
Q1,Δ

p
Q2,Δ

p
Q3, ddfQ1, ddfQ2, ddfQ3}

The objective of extraction of these features is to cluster the problem instances
into classes with different characteristics. Considering our earlier example,
assume we have one DJSS problem instance with high variability in number
of operations per job and their processing times and another instance with low
variability. It can be easily seen that our feature vectors corresponding to the
two problem instances can be used to differentiate them.

T is the training set containing n DJSS problem instances. We extract fea-
tures for all these problems and cluster them into C1 and C2 using K-means
clustering. We apply K-means clustering again on each of these clusters to yield
{C11, C12} and {C21, C22} respectively. This process can be repeated to obtain
more sub-clusters {{C111, C112}, {C121, C122}} and {{C211, C212}, {C221, C222}} and
so on.

3.2 Proposed Island Model

We use two classes of islands in our evolutionary system. The first class of islands,
represented as G in Fig. 1(a) and (b), sample training instances from the set T
throughout the evolutionary process. The second class of islands represented as
A and B in Fig. 1(b) sample problem instances from the different clusters the
choice of which varies with generations. The appropriate choice of the cluster is
controlled by the successive reject heuristic (SRH).

We first describe the evolutionary process of island G in Algorithm 1. In
every generation, a new training instance is sampled from T . Unless otherwise
mentioned, we use sample to denote a simple random sample. Due to our famil-
iarity with NSGA-II [3] and the fact that we consider only two objectives in this
work, we chose NSGA-II as our underlying evolutionary algorithm. In line 3, an
iteration of NSGA-II is performed. After each generation, the migration policy
determines (line 4) if there will be an exchange of individuals among the islands.
The output is a set of dispatching rules which can generate a Pareto front. Note

Sampling Heuristics for Dynamic Job Shop Scheduling 351

Fig. 1. (a) Standard island model, (b) Island model for successive reject heuristic

Algorithm 1. Island G

Input: T
Output: {ω1, ω2, . . . , ωp}

1 for g ← 1 : NG do
2 Sample an instance I ∈ T .

3 Run gth iteration of NSGA-II using I.
4 Receive/Send individuals using migration policies.

5 end
6 Collect the genetic programs corresponding to the Pareto front :

{ω1, ω2, . . . , ωp}.

Algorithm 2. Island Z (Z ∈ {A,B})
Input: CZ ,NSRH

Output: {ωz
1 , ωz

2 , . . . , ωz
p}

1 for g ← 1 : NG do
2 Sample an instance I ∈ CZ .

3 Run gth iteration of NSGA-II using I.
4 Receive/Send individuals using migration policies.
5 if g ∈ NSRH then
6 CZ ← SRH(P A

k , P B
k , CA, CB)

7 end
8 Collect the genetic programs corresponding to the Pareto front :

{ωz
1 , ωz

2 , . . . , ωz
p}.

that the final output of the parallel evolutionary system is the combination of
outputs from all individual islands (Table. 2).

In Algorithm 2, we describe the evolutionary process of the islands A and
B (Fig. 1(b)). Both islands are similar, except that they sample their training
instances from different clusters. Their migration policies are the same. The
cluster CZ is changed at discrete stages during the evolutionary process. The
set NSRH contains the generations at which the successive reject hypothesis
is invoked to change CZ (line 6). The rest of the procedure is the same as in
Algorithm 1.

352 D. Karunakaran et al.

Table 2. Notation

Notation Description

T Set of all DJSS problem instances for training

NG Total number of generations for evolutionary process

CZ Cluster corresponding to island Z ∈ {A, B}
P Z

k Top k individuals from island Z ∈ {A, B}
M−−→

X,Y
Migration policy from island X to Y

P2k Combined list of top k individuals from islands A and B

TOPk List of top k individuals across island A and B

TOP Zk #individuals which are present both in P Z
k and TOPk, Z ∈ {A, B}

NSRH Set of generations at which SRH is invoked

Successive Reject Heuristic. The successive reject heuristic (SRH) is
described in Algorithm 3. When the SRH is invoked by islands A and B at gener-
ation g ∈ NSRH , the top-k individuals from each island, PA

k and PB
k respectively,

are sent to the island G on which the SRH algorithm is run. The two sets of
individuals are then combined to get P2k (line 3). A new set of DJSS problem
instances,I is sampled from T with the purpose of assigning new fitness values
to each individual in P2k (lines 4–11).

After the fitness assignment, we use the NSGA-II fitness strategies to sort the
individuals. NSGA-II first ranks the individuals based on dominance relation and
then the individuals with same rank are ordered based on crowding distance [3].
We use the same approach to sort the individuals in P2k (line 12). After sorting,
the best k individuals are extracted from P2k into the list TOPk (line 13). Then
we count the number of individuals corresponding to each island in the list TOPk

(lines 14–15). The cluster corresponding to the island with the lower number of
individuals in TOPk is rejected (line 17 or 20). The CZ of the winning island is
further clustered into two sub-clusters (lines 18 or 21). The new clusters which
are the output of SRH algorithm are then randomly assigned to the islands. Till
the next invocation of SRH, the evolution in the islands is continued using DJSS
problem instances sampled from the new clusters.

Migration Policies. Migration policies play a major role in the performance
of the island models [13]. A migration policy states the number of individuals
to be sent to the destination island, frequency of migration and the generation
from which the migration starts. For the standard island model shown in Fig. 1(a)
designing a policy is straightforward. Due to symmetry, a single policy for all the
islands will suffice [6]. Since we consider two classes of islands which are working
together for a common goal, different migration policies must be designed for
different classes islands.

Formally, a policy M−−−→
I1,I2

from island I1 to I2 is defined by a triplet <start
generation, frequency, #individuals to send>. We consider the migration policy

Sampling Heuristics for Dynamic Job Shop Scheduling 353

Algorithm 3. Successive Reject Heuristic
Input: P A

k , P B
k , CA, CB

Output: {Cnew
A },{Cnew

B } to respective islands.
1 T ← set of all DJSS training instances.
2 I ←sample from T
3 P2K ← {P A

k , P B
k }

4 foreach p ∈ P2k do

5 tot.fit. ← −→
0

6 foreach I ∈ I do
7 obj.values ← Simulation for (p, I).
8 tot.fit. ← tot.fit. + obj.values

9 end
10 fit(p) ← tot.fit.

11 end
12 Sort P2k using NSGA-II fitness startegies.
13 TOPk ← Extract top-k individuals from P2k.

14 TOP A
k ← |P A

k ∩ TOPk|
15 TOP B

k ← |P B
k ∩ TOPk|

16 if TOP A
k ≥ TOP B

k then
17 Reject CB .
18 {Cnew

A },{Cnew
B } ← K-means cluster(CA)

19 else
20 Reject CA.
21 {Cnew

A },{Cnew
B } ← K-means cluster(CB)

22 end

M−−−→
I1,I2

to be different from M−−−→
I2,I1

. The selection of individuals for migration is
based on elitism, i.e., a proportion of fittest individual(s) are chosen from the
population for migration.

For island G, it is more productive to receive individuals from A and B
frequently as it will improve its diversity. This is because the evolved rules in A
and B are exposed to training instances which are different from G. On the other
hand a high frequency of migration between A and B will homogenize the islands,
making SRH less effective. Moreover, the frequency of migration in M−→

AG
is much

higher than M−→
GA

(similar for island B) for the same reasons. The same analysis
holds for determining the number of individuals to be migrated between the two.
Furthermore, the migration policy M−−→

AB
is restricted to exchanging individuals

only and immediately after invocation of SRH.

4 Experiment Design

4.1 Simulation Model

We use a DES system (Jasima) [4] to generate DJSS problem instances. The job
arrival follows a Poisson process with λ = 0.85 [7]. This assumption has been

354 D. Karunakaran et al.

used in large number of works [2,10,11]. For every run of the simulation, the
first 500 jobs are considered as warm-up and the objective values are calculated
for the next 2000 jobs.

The uncertainty in processing times is simulated using the model considered
in [7]. Basically for an operation oj,i the relationship between the processing
time with uncertainty p′

j,i and processing time without uncertainty pj,i is:

p′
j,i = (1 + θj,i)pj,i, θj,i ≥ 0.

θ follows exponential distribution [7]. In Table 3, the parameter β corresponds
to the scale parameter of the exponential distribution.

In order to create problem instances with varying characteristics, DJSS prob-
lem instances are generated with many combinations of the simulation param-
eters shown in Table 3. The combination of these four pairs of parameters can
simulate 16 types of jobs. For composing a training DJSS problem instance, 3
job types are considered at a time. On counting the unique combinations of 3
job types we find a total of 816 possible configurations (combinations without
repetitions). Since we extract features from problem instances in order to per-
form clustering we create 20 DJSS problems for each configuration to build the
training set T . Our preliminary study showed that a larger training set would
show no advantage but require more computational effort.

For testing, we create a new set (say Y) of DJSS problems using the 816
possible configurations mentioned above. We sample 30 DJSS problem instances
from Y to obtain our first test set. Due to large number of problem configurations
it is not possible to test on each of them separately. Therefore, we create four
more test sets by clustering Y and sampling 30 problem instances from each.
These test sets are denoted by 3-Y, 3-I, 3-II, 3-III and 3-IV, where 3 stands for
number of job types.

We also want to observe the generalization ability of our methods over more
complex configurations. Therefore, DJSS instances comprising of 4 job types are
created. On counting, the total number of unique configurations in this case are
as high as 3876 (combinations with repetitions). Performing the same procedure
described above generates the following test sets: 4-Y, 4-I, 4-II, 4-III and 4-IV.

Table 3. DJSS simulation parameters

Simulation paramter Values

Processing time range [0, 49], [20, 69]

Uncertainty scale parameter (β) {0.2, 0.4}
Due date tightness {1.5, 2.5}
operations per job {8, 10}

Sampling Heuristics for Dynamic Job Shop Scheduling 355

Table 4. Migration poli-
cies

Island-pairs Policies
−−→
GG <20, 20, 30>
−→
AB <50, 50, 60>
−→
BA <50, 50, 60>
−→
AG <20, 20, 30>
−−→
BG <20, 20, 30>
−−→
GB <50, 25, 10>
−→
GA <50, 25, 10>

Table 5. Terminal sets for GP.

Terminal set Meaning

PT Processing time of operation

RO Remaining operations for job

RJ Ready time of job

RT Remaining processing time of job

RM Ready time of machine

DD Due date

W Job weight

ERC Ephemeral random constant

4.2 Genetic Programming System

The terminal set for genetic programming is listed in Table 5. For all our islands
we use a population size of 800 each. We also compare performance of our method
with the standard NSGA-II for which the population size is set at 2500. With
a tree depth of 6, the crossover and mutation are 0.85 and 0.1 respectively [10].
Each evolutionary algorithm is run for 150 generations.

4.3 Island Model

We use the SRH algorithm at generations 49 and 99, i.e., NSRH = {49, 99}. The
SRH algorithm also requires the simulator to assign fitness to individuals. Fur-
thermore, for GPHH to utilize the problem instances from a cluster, considerable
number of generations are required. So frequently invoking SRH will not yield
the desired outcome but only incur additional computational cost. Therefore the
size of NSRH is small and generations selected are far apart.

The migration policies are presented in Table 4. While deciding the frequency
parameter of the migration policies involving islands A and B, NSRH has been
taken into account. The exchange of individuals starts after a delay as the evolved
rules in the early generations are not good. For the TOPk individuals the value
k = 30 was chosen, after experimental evaluation.

5 Results and Discussion

In this Section, we present the results from our experiments. We compare the
performance our method with standard NSGA-II algorithm and standard island
model approach. The hypervolume ratio (HV), inverted generational distance
(IGD) and spread (SPREAD) indicators are considered for comparison as they
are frequently used in the literature [12] to compare the generated Pareto fronts.
In order to approximate the true Pareto front as required by performance indi-
cators the individuals from all the methods across all runs are combined. For

356 D. Karunakaran et al.

each method the solutions are compared over 30 problem instances from a test
set. 30 independent runs produce 30 sets of dispatching rules for each method.
The Wilcoxon-rank-sum test is used to compare the performance. We consider
a significance level of 0.05.

The results are summarized in Tables 6, 7 and 8. Each cell in the tables con-
sists of a triplet which represents [win − draw − lose]. For example, in Table 6
the comparison between standard island model and NSGA-II approach is sum-
marized. For the training set 3-Y, if we consider hypervolume indicator, then
island model has significantly outperformed NSGA-II in 18 problem instances
and there is no significant difference observed for 12 problem instances.

Table 6. Island-Model versus NSGA-II

3-Y 3-I 3-II 3-III 3-IV 4-Y 4-I 4-II 4-III 4-IV

HV [18-12-0] [11-19-0] [18-12-0] [19-11-0] [17-13-0] [14-16-0] [15-15-0] [18-12-0] [16-13-0] [12-18-0]

IGD [24-6-0] [21-9-0] [25-5-0] [29-1-0] [27-3-0] [24-6-0] [21-9-0] [22-8-0] [22-8-0] [19-11-0]

SPREAD [3-22-5] [0-18-12] [4-23-0] [5-25-0] [2-28-0] [3-21-6] [6-22-2] [4-23-3] [5-20-5] [2-24-2]

In Table 6, we compare NSGA-II with standard island model. As expected,
the performance of island model is much better, which is line with the observa-
tions made in [6]. For HV and IGD performance indicators, the performance is
very good, but for SPREAD indicator there is no clear winner. This significant
difference in performance is consistent across all the test sets including 4-job
type configurations.

Table 7. SRH-Island model versus NSGA-II

3-Y 3-I 3-II 3-III 3-IV 4-Y 4-I 4-II 4-III 4-IV

HV [23-7-0] [17-3-0] [23-7-0] [25-5-0] [24-6-0] [20-10-0] [24-6-0] [22-8-0] [24-6-0] [21-9-0]

IGD [30-0-0] [30-0-0] [27-3-0] [29-1-0] [30-0-0] [30-0-0] [27-3-0] [30-0-0] [28-2-0] [29-1-0]

SPREAD [1-23-6] [0-25-5] [1-27-2] [3-26-1] [0-28-2] [4-21-5] [1-27-2] [1-27-2] [2-22-6] [0-25-5]

In Table 7, we compare the performance of NSGA-II and SRH-based island
model (SRH). Across all the test sets the proposed method has done well. Par-
ticularly for HV indicator, the SRH method has significantly done better in
more than 20 problem instances for almost every test set. Similar performance
is observed for IGD as well. Though once gain, with respect to SPREAD, there
is no verifiable difference. This is because the obtained Pareto fronts are sparse
for all the algorithms.

Finally we compare, the SRH approach with the standard island model.
Once again the SRH approach performs significantly better on an average of 10
problem instances from each test set. This confirms that SRH approach was able
to associate useful training instances through the successive rejection of clusters
of training instances.

Sampling Heuristics for Dynamic Job Shop Scheduling 357

Table 8. SRH-Island model versus island model

3-Y 3-I 3-II 3-III 3-IV 4-Y 4-I 4-II 4-III 4-IV

HV [10-20-0] [5-24-1] [6-22-2] [9-21-0] [14-16-0] [10-20-0] [10-20-0] [8-21-1] [9-21-0] [11-19-0]

IGD [18-12-0] [20-10-0] [19-11-0] [19-11-0] [20-10-0] [15-15-0] [14-15-1] [13-17-0] [15-15-0] [18-20-0]

SPREAD [5-18-7] [10-20-0] [3-24-3] [1-25-4] [0-23-7] [5-20-5] [1-22-7] [2-20-8] [4-17-9] [3-24-3]

5.1 Analysis

A frequently observed path taken by the successive reject heuristic is represented
below.

T → {C1, C2} → {C21, C22} → {C211, C212}

In retrospect, we analyze the clusters which showed potential to guide the
GPHH toward evolving better rules. In order to further validate the ability
of SRH, we took the clusters represented by C21 and C22 as training sets. We
performed 30 independent runs of NSGA-II algorithm on each. We observed that
the cluster rejected by SRH (C22) performed significantly poor on both HV and
IGD indicators. Figure 2 shows a box plot for HV indicator on a test problem
instance from the set 3-Y.

Fig. 2. Comparing C21(selected) and C22 (rejected) using HV.

Furthermore, we also analyzed the problem configurations associated with
cluster C21. One of the reasons for analyzing C21 and not C2 is its smaller size
and also the fact that out of 30 independent runs, this path was chosen by SRH
for 20 of the runs. We observed that the DJSS instances whose job types were
pertaining to equal proportion of high and low level of uncertainty were in high
numbers. Also, DJSS instances comprising jobs with low and high number of
operations per job were found in large numbers. In other words, SRH is biased
towards instances with high variability in their jobs. A high variability in the
training instances has more potential to present the GPHH with difficult and
conflicting scenarios, as explained in a previous example.

358 D. Karunakaran et al.

6 Conclusions

Most of the research works in evolutionary scheduling focus on improving only
the different aspects of algorithms. But it is also important to develop methods
to select appropriate training instances for the evolutionary algorithms to pro-
duce desired outcome. We have successfully taken a step toward this direction
by demonstrating that a simple sampling heuristic using basic features extracted
from the problem instances could improve the effectiveness of the evolutionary
process. By exploiting the potential of island model approach we obtained sig-
nificantly better results while maintaining computational efficiency. We demon-
strated the efficacy of our approach using just two objectives and in future, we
would extend our work to tackle many-objective scheduling problems.

References

1. Bertels, A.R., Tauritz, D.R.: Why asynchronous parallel evolution is the future of
hyper-heuristics: A CDCL SAT solver case study. In: Proceedings of the 2016 on
Genetic and Evolutionary Computation Conference Companion, pp. 1359–1365.
ACM (2016)

2. Branke, J., Nguyen, S., Pickardt, C., Zhang, M.: Automated design of production
scheduling heuristics: a review. IEEE Trans. Evol. Comput. 20, 110–124 (2016)

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

4. Hildebrandt, T.: Jasima - an efficient java simulator for manufacturing and logis-
tics. Last Accessed 16 (2012)

5. Hildebrandt, T., Branke, J.: On using surrogates with genetic programming. Evol.
Comput. 23(3), 343–367 (2015)

6. Karunakaran, D., Chen, G., Zhang, M.: Parallel multi-objective job shop scheduling
using genetic programming. In: Ray, T., Sarker, R., Li, X. (eds.) ACALCI 2016.
LNCS (LNAI), vol. 9592, pp. 234–245. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-28270-1 20

7. Karunakaran, D., Mei, Y., Chen, G., Zhang, M.: Toward evolving dispatching rules
for dynamic job shop scheduling under uncertainty. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 282–289. ACM (2017)

8. Kouvelis, P., Yu, G.: Robust Discrete Optimization and its Applications, vol. 14.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4757-2620-6

9. Lawrence, S.R., Sewell, E.C.: Heuristic, optimal, static, and dynamic schedules
when processing times are uncertain. J. Oper. Manag. 15(1), 71–82 (1997)

10. Nguyen, S., Mei, Y., Zhang, M.: Genetic programming for production scheduling:
a survey with a unified framework. Complex Intell. Syst. 3(1), 41–66 (2017)

11. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Dynamic multi-objective job shop
scheduling: a genetic programming approach. In: Uyar, A., Ozcan, E., Urquhart, N.
(eds.) Automated Scheduling and Planning. SCI, vol. 505, pp. 251–282. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39304-4 10

12. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Automatic design of scheduling
policies for dynamic multi-objective job shop scheduling via cooperative coevolu-
tion genetic programming. IEEE Trans. Evol. Comput. 18(2), 193–208 (2014)

https://doi.org/10.1007/978-3-319-28270-1_20
https://doi.org/10.1007/978-3-319-28270-1_20
https://doi.org/10.1007/978-1-4757-2620-6
https://doi.org/10.1007/978-3-642-39304-4_10

Sampling Heuristics for Dynamic Job Shop Scheduling 359

13. Nowak, K., Izzo, D., Hennes, D.: Injection, saturation and feedback in meta-
heuristic interactions. In: Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation, pp. 1167–1174. ACM (2015)

14. Sudholt, D.: Parallel evolutionary algorithms. In: Kacprzyk, J., Pedrycz, W. (eds.)
Springer Handbook of Computational Intelligence, pp. 929–959. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-43505-2 46

15. Xiao, N., Armstrong, M.P.: A specialized island model and its application in mul-
tiobjective optimization. In: Cantú-Paz, E. (ed.) GECCO 2003. LNCS, vol. 2724,
pp. 1530–1540. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45110-
2 24

https://doi.org/10.1007/978-3-662-43505-2_46
https://doi.org/10.1007/3-540-45110-2_24
https://doi.org/10.1007/3-540-45110-2_24

Sensitivity of Parameter Control
Mechanisms with Respect to Their

Initialization

Carola Doerr1(B) and Markus Wagner2

1 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6,
75005 Paris, France

carola.doerr@lip6.fr
2 Optimisation and Logistics, University of Adelaide, Adelaide, SA 5005, Australia

Abstract. The parameter setting problem constitutes one of the major
challenges in evolutionary computation, and is subject to considerable
research efforts. Since the optimal parameter values can change dur-
ing the optimization process, efficient parameter control techniques that
automatically identify and track reasonable parameter values are sought.

A potential drawback of dynamic parameter selection is that state-
of-the-art control mechanisms introduces themselves new sets of hyper-
parameters, which need to be tuned for the problem at hand. The gen-
eral hope is that the performance of an algorithm is much less sensitive
with respect to these hyper-parameters than with respect to its origi-
nal parameters. This belief is backed up by a number of empirical and
theoretical results. What is less understood in discrete black-box opti-
mization, however, is the influence of the initial parameter value. We con-
tribute with this work an empirical sensitivity analysis for three selected
algorithms with self-adjusting parameter choices: the (1 + 1) EAα, the 2-
rate (1+λ) EA2r,r/2, and the (1+(λ, λ)) GA. In all three cases we observe
fast convergence of the parameters towards their optimal choices. The
performance loss of a sub-optimal initialization is shown to be almost
negligible for the former two algorithms. For the (1+ (λ, λ)) GA, in con-
trast, the choice of λ is more critical; our results suggest to initialize it
by a small value.

Keywords: Parameter control · Evolutionary algorithms
Discrete black-box optimization · Initialization

1 Introduction

Every evolutionary algorithm (EA) and, more generally, every discrete black-
box optimization heuristic, comes with a set of (explicit or implicit) parameters
that needs to be set in order to run it. Among the most influential parameters
are the population sizes, the mutation rates, the crossover probabilities, and the
selective pressure. The choice of any of these parameters can have a significant
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 360–372, 2018.
https://doi.org/10.1007/978-3-319-99259-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_29&domain=pdf

Sensitivity of Parameter Control wrt Initialization 361

impact on the performance of the EA under consideration. It is therefore not
surprising that the parameter selection question has evolved into an important
research stream within the evolutionary computation community, cf. [17] for
detailed discussions.

The last forty years of research on the parameter setting problem have con-
tributed to a significant gain in performance, and have been a major building
block for the success of evolutionary computation methods. According to Eiben,
Hinterding, and Michalewicz [12] the parameter setting literature can be classi-
fied into two main research streams:

– Parameter tuning addresses the question how to efficiently identify good
parameter values through an initial set of experiments. After their identifica-
tion, these parameter values are not further adjusted during the optimization
process, but remain fixed instead. Among the most-widely applied tools for
parameter tuning are irace [18], SPOT [3], SMAC [14], ParamILS [15], and
GGA [2].

– Parameter control, in contrast, studies ways to adjust (“control”) the param-
eter values during the run of the optimization, to benefit from an adapta-
tion to the different stages of the optimization process. Using such non-static
parameter values, the EAs can, for example, evolve from a rather exploratory,
globally acting heuristic to a more and more locally exploiting one. Among
the best-known parameter control techniques are the step size and covariance
matrix adaptation in the CMA-ES [13] and variants of the 1/5-th success
rule [5,19,20].

The focus of our work is on parameter control for discrete black-box optimiza-
tion, a topic that has been somewhat neglected in the evolutionary computation
community, as confirmed by a quote of [16, Sect. 8], which says that “controlling
EA parameters on-the-fly is still a rather esoteric option”. A potential reason for
this situation may be the common critique that parameter control mechanisms
add yet another level of complexity to the algorithms.

The influence of the parameter control mechanisms are indeed difficult to
grasp analytically, so that only few theoretical works addressing the parameter
control question exist [7]. A related critique of parameter control is the fact that
on-the-fly parameter selection techniques come with their own hyper-parameters,
which need to be set to determine the exact update rules. From a high-level per-
spective one may feel that not much can be gained by replacing a parameter by
one or more hyper-parameters, but the general hope is that the influence of these
hyper-parameters is much less important than that of the original parameter val-
ues. Several studies confirm this hope for some specific settings, empirically as
well as in rigorous mathematical terms, cf. the surveys [1,7,12,16] and references
therein.

Our Contribution

Complementing our recent work on the sensitivity of parameter control mech-
anisms with respect to the hyper-parameters that determine the update

362 C. Doerr and M. Wagner

strength [11], we consider in this study their sensitivity with respect to ini-
tialization. More precisely, we analyze for three different EAs with self-adjusting
parameter selection the influence of the initial parameter value on the perfor-
mance: the (1 + 1) EAα proposed in [11], the 2-rate (1 + λ) EA2r,r/2 from [10],
and the (1 + (λ, λ)) GA proposed in [8] and analyzed in [6]. In the first two
algorithms the mutation rate is controlled by a success-based update rule. In
the (1+(λ, λ)) GA the adaptation of λ influences the offspring population sizes,
the mutation rate, and the crossover bias, cf. Sect. 3. For all three algorithms
we test the influence of extreme initialization, i.e., p = 1/n vs. p = 1/2 for the
(1+1) EAα and the (1+λ) EA2r,r/2, and λ = 1 vs. λ = n for the (1+(λ, λ)) GA.

Our selection of algorithms is clearly theory-biased, i.e., we favor those algo-
rithms for which mathematical analyses of their running time behavior are avail-
able. This allows us to chose update mechanisms which are known to be (close
to) optimal, so that our sensitivity analysis of the initial parameter values is not
biased by a non-sensible choice of hyper-parameters.

Our testbed comprises of the well-known OneMax and LeadingOnes
benchmark functions, again with the motivation to not bias the result by a non-
suitable control mechanism, and to allow for a comparison with known optimal
dynamic parameter values. The OneMax problem is the problem of maximizing
a function of the type Omz : {0, 1}n → [0..n], x �→ |{i ∈ [n] | xi = zi}|, where
the target string z ∈ {0, 1}n is of course unknown to the algorithm. OneMax
is a separable function, and thus easily solved in expected time Θ(n log n) by a
large range of standard EAs. LeadingOnes, in contrast, is non-separable, and
requires a quadratic number of function evaluations, on average, by standard
EAs. The LeadingOnes problem is the problem of optimizing functions of the
type Loz,σ : {0, 1}n → N, x �→ max{i ∈ [0..n] | ∀j ∈ [i] : xσ(j) = zσ(j)}, where
z is a length-n bit string and σ : [n] → [n] a permutation of the index set
[n]. We acknowledge that these simplified benchmark problems may not be very
representative for real-world optimization challenges. In accordance with [21]
we nevertheless believe that they can test several important features of reason-
able parameter control mechanisms, and give first indications into which update
schemes to favor under which conditions.

Our results indicate quite stable performances for the (1 + 1) EAα and the
(1+λ) EA2r,r/2. Even when initialized with extreme mutation rates, the dynamic
choice very quickly converges to optimal mutation rates and the incurred per-
formance loss of a sub-optimal initialization is small. The situation is different
for the (1 + (λ, λ)) GA. The number of function evaluations per iteration grows
linearly with the value of λ (more precisely, up to 2λ offspring are evaluated per
iteration), a cost that the additional drift towards the optimum cannot com-
pensate for. This situation of a too large λ value does not last very long, as we
observe again fast convergence of the parameter towards its optimal (dynamic)
setting. It nevertheless causes significant and non-negligible performance losses:
for the 1000-dimensional OneMax problem, for example, the worst initialization
λ = n yields a performance that is around 69% worse compared to that of the
optimal initial parameter choice λ = 1.

Sensitivity of Parameter Control wrt Initialization 363

2 Sensitivity Analysis for the (1+1) EAα

In [11] we have presented a (1 + 1) EA variant with success-based multiplica-
tive mutation rate updates, the (1 + 1) EAα. This algorithm starts the opti-
mization process with a random initial solution and an initial mutation rate
p = p0 ∈ (0, 1/2]. In every iteration one new solution candidate is created
from the current-best solution through a conditional standard bit mutation with
mutation rate p. The condition requires that at least one bit is changed, to avoid
useless function evaluations. In practice, this conditional mutation operator can
be implemented by first sampling a number � from the conditional binomial
distribution Bin>0(n, p) and then choosing uniformly at random and without
replacement the � positions in which the bits are flipped. If the so-created off-
spring is at least as good as its predecessor, it replaces the latter. In this case
the mutation rate is increased to min{Ap, 1/2}, where A > 1 is a constant that
remains fixed during the execution of the algorithm. If, on the other hand, the
offspring is strictly worse than its parent, it is discarded and the mutation rate
decreased to max{bp, 1/n2}, where 0 < b < 1 is another constant.

Altogether, the (1+1) EAα has three hyper-parameters: the update strengths
A and b as well as the initial mutation rate p0. It was demonstrated in [11] that
the (1 + 1) EAα(A, b,1/n) performs very well on the classic benchmark func-
tions OneMax and LeadingOnes for a broad choice of values for A and b.
For example, in 78% of all tested combinations of A ∈ (1, 2.5] and b ∈ [0.4, 1)
the (1 + 1) EAα(A, b, 1/n) achieved a better average running time than Ran-
domized Local Search (RLS) on the 250-dimensional LeadingOnes function.
About 90% of these configurations outperform the (1+1) EA>0 (which is the
(1 + 1) EAα(1, 1, 1/n)) on the 1000-dimensional OneMax function. In this
section we analyze how sensitive this performance is with respect to the choice
of the initial mutation rate p0.

2.1 Optimal Mutation Rates for OneMax and LeadingOnes

Before we present our empirical findings, we summarize in this section what is
known about the optimal mutation rates for OneMax and LeadingOnes.

OneMax. In [9] it was shown that the RLS variant flipping in every step the
number of bits that maximizes the expected progress cannot be significantly
worse than the best unary unbiased algorithm, which is the one minimizing in
every step the expected remaining running time. Denoting by kopt,OM(n,Om(x))

the choice that maximizes the expected Om-progress E

[
max{Om(mut�(x)) −

Om(x), 0}
]

:=
∑�

i=��/2�
(n−Om(x)

i)(Om(x)
�−i)(2i−�)

(n
�)

of flipping � bits in bit string x, the

following is known. kopt,OM(n,Om(x)) decreases monotonically with increasing
function value Om(x); it is n/2 for Om(x) = n/2 and equal to 1 for all x with
Om(x) ≥ 2n/3.

364 C. Doerr and M. Wagner

The expected OneMax value of a random initial solution x is n/2 for One-
Max, and with high probability Om(x) lies in the interval [n/2 ± √

n]. The
exact average optimal mutation strength is

∑n
i=1 P[Om(x) = i]kopt,OM(n, i). We

do not have any closed form for the drift maximizing value kopt,OM(n, i), but
we can evaluate this expression numerically. For n = 1000 the sum evaluates to
500.0252, which is very close to n/2.

LeadingOnes. For LeadingOnes the situation is much better understood.
The optimal mutation rate of the classic (non-resampling) (1 + 1) EA is
1/(Lo(x) + 1) [4] and the optimal number of bits to flip is kopt,LO(n,Lo(x)) :=
�n/(Lo(x)+1)	 [11, Lemma 1]. The average optimal number of bits to flip is thus∑n

i=0 kopt,LO(n, i)P[Lo(xu.a.r.) = i] =
∑n

i=0 �n/(i + 1)	2−(i+1). For n = 100
(250, 1000) this value is around 69 (173, 693).

2.2 Evaluating the Relative Average Improvement

In light of the discussion in Sect. 2.1, one might wonder if significant gains are
possible for the (1 + 1) EAα when the mutation rate is initialized as p0 = 1/2
instead of p0 = 1/n. As a first step towards analyzing the sensitivity of the
(1 + 1) EAα with respect to this initialization, we compute for each of the 120
configurations with A ∈ {1.1, 1.2, . . . , 2.5} and b ∈ {0.6, 0.65, . . . , 0.95} the aver-
age optimization time of 101 independent runs of the (1 + 1) EAα(A, b, 1/2).
We compare this average value to that of the same configuration (A, b) for
p0 = 1/n, and we compute the relative gain of the p0 = 1/2 initializa-
tion. That is, denoting by T (A, b, p0) the average optimization time of the
(1+1) EAα(A, b) with initialization p0, we calculate for each configuration (A, b)
the value (T (A, b, 1/n)−T (A, b, 1/2))/T (A, b, 1/n). This data is displayed in the
heatmaps of Fig. 1 for the 1000- and 1500-dimensional OneMax problem and
the 100- and 250-dimensional LeadingOnes problem, respectively.

We observe that the data is rather unstructured, and that a good relative
gain in one dimension does typically not apply to the other. The relative gains
range from a negative −10% (−8%) to a positive 8% (7%) improvement for
OneMax of dimension n = 1000 (n = 1500), and from −7% (−4%) to 5%
(4%) for the 100-(250-)dimensional LeadingOnes problem. Note that here the
relatively low number of repetitions has to be taken into account. The average
gain of the p0 = 1/2 initialization over the p0 = 1 initialization in all 120 (A, b)
configurations is about 0.17% (0.21%) for the OneMax problem of dimension
n = 1000 (n = 1500) and is about −0.13% (−0.05%) for LeadingOnes in
dimension n = 100 (n = 250). These small values indicate that the influence of
the initial parameter value is not very important. It may be surprising that the
average gain is negative for the LeadingOnes problem, but we suspect that
this is an effect of the problem size, which may vanish in larger dimension.

Sensitivity of Parameter Control wrt Initialization 365

(a) Om n = 1000 (b) Om n = 1500 (c) Lo n = 100 (d) Lo n = 250

Fig. 1. Relative difference (T (A, b, 1/n)−T (A, b, 1/2))/T (A, b, 1/n) of the average run-
ning time for 120 configurations of the (1 + 1) EAα with 1 < A ≤ 2.5 and 0.6 ≤ b < 1

Table 1. Average running times of the (1 + 1) EAα(A, b, p0) on OneMax for 1001
independent repetitions and results of the one-sided Wilcoxon rank-sum tests for the
null hypothesis that T (A, b, 1/2) < T (A, b, 1/n).

n A b T (A, b, 1/n) T (A, b, 1/2) (T1/n − T1/2)/T1/n p(1/2 < 1/n)

500 1.11 0.66 3,045 3,019 0.9% 0.096

500 1.2 0.85 3,063 2,994 2.3% 0.028

500 1.3 0.75 3,039 2,998 1.3% 0.092

500 2 0.5 3,035 2,980 1.8% 0.005

1000 1.11 0.66 6,780 6,788 −0.1% 0.231

1000 1.2 0.85 6,787 6,645 2.1% 0.009

1000 1.3 0.75 6,802 6,595 3.0% 0.001

1000 2 0.5 6,752 6,682 1.0% 0.086

2000 1.11 0.66 14,962 14,895 0.4% 0.112

2000 1.2 0.85 14,834 14,854 −0.1% 0.478

2000 1.3 0.75 14,839 14,768 0.5% 0.369

2000 2 0.5 15,297 15,133 1.1% 0.238

2.3 Testing for Statistical Significance

While the results displayed in the heatmaps do not suggest that we should
expect important performance gains from a better initialization, this data does
not answer the question whether the (dis-)advantages are statistically signifi-
cant. We therefore investigate a few selected configurations in more detail, and
use the Wilcoxon rank-sum tests to test for significance. Precisely, we run each
of the four selected configurations (A = 1.2, b = 0.85), (1.3, 0.75), (2.0, 0.5),
and (1.11, 0.66) investigated in [11] 1001 independent times on the OneMax
problem of dimension n ∈ {500, 1000, 2000} and on the LeadingOnes problem
of dimensions n ∈ {100, 250, 500}. For each (function, dimension, configura-
tion) triple we test whether there is a significant difference between the opti-
mization times of the (1 + 1) EAα(A, b, 1/2) and the (1 + 1) EAα(A, b, 1/n).
The results are summarized in Tables 1 and 2. The reported p-values are for

366 C. Doerr and M. Wagner

Table 2. Average running times of the (1+1) EAα(A, b, p0) on LeadingOnes for 1001
independent repetitions and results of the one-sided Wilcoxon rank-sum tests for the
null hypothesis that T (A, b, 1/2) < T (A, b, 1/n).

n A b T (A, b, 1/n) T (A, b, 1/2) (T1/n − T1/2)/T1/n p(1/2 < 1/n)

100 1.11 0.66 4,493 4,508 −0.3% 0.602

100 1.2 0.85 4,125 4,105 0.5% 0.183

100 1.3 0.75 4,141 4,144 −0.1% 0.574

100 2 0.5 4,182 4,245 −1.5% 0.954

250 1.11 0.66 28,348 28,130 0.8% 0.081

250 1.2 0.85 25,386 25,513 −0.5% 0.708

250 1.3 0.75 25,720 25,954 −0.9% 0.884

250 2 0.5 26,142 26,302 −0.6% 0.796

500 1.11 0.66 112,583 113,135 −0.5% 0.882

500 1.2 0.85 102,018 101,605 0.4% 0.082

500 1.3 0.75 102,862 102,903 0.0% 0.528

500 2 0.5 105,329 105,129 0.2% 0.375

the test “T (A, b, 1/2) < T (A, b, 1/n)?”; i.e., small p-values indicate a strong
support for the null hypothesis that the running time distribution of the
(1 + 1) EAα(A, b, 1/2) is dominated by that of the (1 + 1) EAα(A, b, 1/n).
Put differently, a small p-value is a strong evidence for the hypothesis that the
(1 + 1) EAα(A, b, 1/2) is faster than the (1 + 1) EAα(A, b, 1/n). We recall that
the result of the Wilcoxon rank-sum test for the other one-sided null hypothesis
(i.e., the hypothesis that T (A, b, 1/2) > T (A, b, 1/n)) is 1 − p. We highlight in
Tables 1 and 2 p-values that are smaller than 5% or larger than 95%.

We observe that for OneMax the p-values for the one-sided Wilcoxon rank-
sum test are smaller than 0.5 for all tested configurations and problem dimen-
sions, indicating that, if at all, there is a bias supporting the claim that the
(1 + 1) EAα(A, b, 1/2) is faster than the (1 + 1) EAα(A, b, 1/n). For three of the
four configurations the p-values are much larger for problem dimension n = 2000
than for the smaller dimensions. For the configuration (A = 1.11, b = 0.66),
which corresponds to the 1/5-th success rule, the p-value is largest for n = 1000.
We do not have an explanation for this, but did not investigate further as the
value does not indicate a statistically significant difference.

For LeadingOnes, the situation is different. Some p-values are rather large,
and one value even larger then 95%, which suggests that in this setting the
initialization with p0 = 1/n may be more suitable than the initialization p0 =
1/2. We recall, however, from Sect. 2.1 that the average optimal initial value is
rather around 69/100. Note also that the absolute and relative differences in the
running times are all very small.

Sensitivity of Parameter Control wrt Initialization 367

(a) OneMax n = 1000 (b) LeadingOnes n = 250

Fig. 2. Average number of bit flips of the (1 + 1) EAα(A = 2, b = 0.5, p0) in iterations
starting with a parent individual of fitness f(x)

2.4 Visualizing the Mutation Rate Adaptation

Finally, we visualize the evolution of the mutation rate. To this end, we have
tracked for 100 independent runs the number of bits that have been flipped
in each iteration, along with the function value of the corresponding parent.
From this data we compute the average number of bit flips per function value.
These averages are plotted against the optimal mutation strengths kopt,f (n, f(x))
described in Sect. 2.1. Figure 2 summarizes this data. Note that we zoom in both
plots into the interesting initial part of the optimization process.

We observe that the curves for p0 = 1/2 have a better fit with kopt than those
for p0 = 1/n. We also see that for the 1000-dimensional OneMax problem it is
around Om(x) = 560 that the two curves converge. They are indistinguishable
thereafter since the underlying adaptation rule is the same. For LeadingOnes
the two curves do not differ by more than one for all Lo(x)-values greater than
11.

3 Sensitivity of the Self-adjusting (1 + (λ, λ)) GA

We also test the relevance of the initial parameter value for the self-adjusting
(1+(λ, λ)) GA [6,8]. It stores in the memory a current-best solution, creates from
it λ offspring by mutation, and another λ offspring by a biased recombination of
the best of the mutated offspring with its parent. The best recombined offspring
replaces the parent individual if its function value is at least as good.

Using the recommended parametrization p = λ/n and c = 1/λ for the
mutation rate and the crossover bias, respectively, the only parameter of the
(1+(λ, λ)) GA becomes the population size λ. In [8] the following multiplicative
update rule was suggested to control λ: If an iteration was successful, i.e., if
at the end of the iteration we have identified a strictly better search point, we
decrease λ to λ/F . We increase λ to λF 1/4 otherwise. According to experiments
reported in [8] the influence of the update strength F is not very pronounced. In

368 C. Doerr and M. Wagner

Table 3. Results for the self-adjusting (1 + (λ, λ)) GA with different initialization.
Nearly all differences are statistically significant.

n λ0 T KW test p(1 < ln n) p(1 < n) p(ln n < n)

500 1 3, 293 0 0.178 0 0

500 ln n 3, 309

500 n 5, 562

1000 1 6, 715 0 0.004 0 0

1000 ln n 6, 678

1000 n 11, 366

2000 1 13, 716 2.29E−155 0.556 2.49E−105 9.11E−106

2000 ln n 13, 736

2000 n 18, 357

line with common implementations of the 1/5-th success rule and the recommen-
dations given in [6,8], we set F equal to 3/2. The self-adjusting (1 + (λ, λ)) GA
achieves a linear expected running time on OneMax; this is asymptotically
optimal among all possible parameter settings, and strictly better than what
any static parameter choice can achieve [6].

We note that as in the (1+1) EAα, and unlike the experiments reported in [8],
we enforce that at least one bit is flipped in the mutation phase, by sampling
the mutation strength from Bin>0(n, λ/n) instead of Bin(n, λ/n). In addition,
we evaluate a recombined offspring only if it is different from both of its parents.
This can be tested efficiently and avoids useless function evaluations.

To test the influence of the initialization of λ, we perform 1001 runs of the
algorithm on OneMax instances of dimension n ∈ {500, 1000, 2000} with three
different initialization rules: λ0 = 1, λ0 = lnn, and λ0 = n.

As already mentioned and explained in Sect. 1 the average optimization times
vary drastically. To test for statistical significance, we first employ the Kruskal-
Wallis test, which is an extension of the Wilcoxon rank-sum test for more than
two data sets.1 The outcomes of the Kruskal-Wallis test of zero (or effectively
zero) provide strong evidence that the outcomes are not identically distributed.
This is confirmed by the pairwise Wilcoxon rank-sum tests, whose values are
also reported in Table 3.

To visualize the adaptation of λ, we plot in Fig. 3 its evolution in depen-
dence of the Om(x)-value against the asymptotically optimal choice of λopt =

√n/(n − Om(x))� [8] for the n = 1000-dimensional OneMax instance. The
reported values are averages of 100 independent runs. In the middle range
650 < Om(x) < 850 the average parameter values are all very close to the opti-
mal ones. We therefore plot only the averages for the beginning of the optimiza-
tion process, n/2 = 500 < Om(x) ≤ 650, and its end, 850 ≤ Om(x) ≤ n = 1000,

1 We remark that a one-way ANOVA is not applicable as the Shapiro-Wilk normality
test returns that the data is not normally distributed.

Sensitivity of Parameter Control wrt Initialization 369

Fig. 3. Average value of λ per Om(x)-value for the self-adjusting (1 + (λ, λ)) GA
with update strength F = 3/2 and different initial parameter values λ0 on the 1000-
dimensional OneMax problem. Note that the left figure uses a log scale.

respectively. We observe that the curves for λ0 = 1 and λ0 = lnn are indistin-
guishable for Om(x) > 525, while all three curves become indistinguishable for
values Om(x) > 624. We also see that λ = 1 seems to suffice for this initial part,
whereas the asymptotically optimal bound from above suggests to use λ = 2.
In line with the empirical observations made in [6,8] we also see that all curves
track the increase of the optimal λ-value towards the end of the optimization
process very well.

4 Sensitivity of the (1 + λ) EAr/2,2r

In [10] a theoretical analysis of the (1 + λ) EAr/2,2r has been presented for the
OneMax problem. The (1 + λ) EAr/2,2r stores a parameter r and creates in
every iteration half of the offspring by standard bit mutation with mutation rate
r/(2n), while the other offspring are created with mutation rate 2r/n. At the
end of the iteration the value of r is updated as follows. With probability 1/2 it
is replaced randomly by either r/2 or 2r and with the remaining 1/2 probability
it is set to the value that the winning individual of the last iteration has been
created with. Finally, the value r is capped to remain in the interval [1, n/4]. As
in previous sections, we implement this algorithm with the conditional standard
bit mutation that enforces to flip at least one bit.

For the (1 + λ) EAr/2,2r we test two different initializations: r0 = 1 and
r0 = n/4. Because of an efficient implementation, which samples waiting times
instead of actually running the problem on the OneMax function, we can test
the influence of these initial values for the (1+λ) EAr/2,2r on OneMax instances
of much larger dimensions n = 5000 and n = 50 000. We perform tests for
different values of λ: λ = 100, λ = 500, and λ = 1000. The results are summarized
in Table 4. Note here that in contrast to all results presented above we report
the average number of generations until an optimal solution has been evaluated
for the first time, not the number of function evaluations. To obtain the latter,
the G(r)-values need to be multiplied by λ.

370 C. Doerr and M. Wagner

Table 4. Results for the average of 1001 runs of the (1 + λ) EAr/2,2r on OneMax

n λ G(r = 1) G(r = n/4) (Gn/4 − G1)/G1 p(1 > n/4)

5000 100 2,234 2,217 −0.74% 0.1144

5000 500 1,056 1,037 −1.73% 1.97E−22

5000 1000 852 834 −2.04% 3.16E−10

50000 100 63,627 62,666 −1.51% 0.6737

50000 500 65,139 65,722 0.90% 0.6833

50000 1000 62,814 61,567 −1.99% 0.2120

(a) λ = 100 (b) λ = 500

Fig. 4. Average value of r per Om(x)-value for the (1 + λ) EAr/2,2r on the 5000-
dimensional OneMax problem

The Wilcoxon rank-sum single-sided test for G(A, b, r = 1) < G(A, b, r =
n/4) shows a small but significant difference between the two distributions when
n = 5000 for the two larger values of λ. For n = 50 000, however, the difference
is not significant.

We plot again the evolution of the r-values in Fig. 4 and observe that the
curves are quite similar for the two settings.

5 Conclusions and Future Work

We have analyzed the influence of the initialization of success-based multiplica-
tive update schemes on the performance of three different evolutionary algo-
rithms. For all tested settings, we could observe that the parameter values con-
verge very quickly, even if initialized in their extreme points. The different ini-
tialization could nevertheless lead to statistically significant performance gaps.
In the case of the (1+1) EAα and the (1+λ) EAr/2,2r the relative performance
losses of non-optimal initial parameter values are, however, rather small. In the
case of the (1 + (λ, λ)) GA, however, the performance loss could be as large as
69%, suggesting that more care needs to be taken when controlling population
sizes.

Sensitivity of Parameter Control wrt Initialization 371

Extending our results to more complex combinatorial optimization problems
could be a reasonable next step towards the long-term goal of developing a
better understanding of which parameter control schemes to use under which
conditions.

Acknowledgments. We would like to thank Eduardo Carvalho Pinto and Christian
Giessen for providing their implementations of the (1+1) EAα and the (1+(λ, λ)) GA
and the (1 + λ) EAr/2,2r, respectively.

Our work was supported by a public grant as part of the Investissement d’avenir
project, reference ANR-11-LABX-0056-LMH, LabEx LMH and by the Australian
Research Council project DE160100850.

References

1. Aleti, A., Moser, I.: A systematic literature review of adaptive parameter control
methods for evolutionary algorithms. ACM Comput. Surv. 49, 56:1–56:35 (2016)

2. Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.: Model-
based genetic algorithms for algorithm configuration. In: IJCAI 2015, pp. 733–739.
AAAI Press (2015)

3. Bartz-Beielstein, T.: SPOT: an R package for automatic and interactive tun-
ing of optimization algorithms by sequential parameter optimization. CoRR
abs/1006.4645 (2010). http://arxiv.org/abs/1006.4645

4. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates
for the leadingones problem. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 1–10. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15844-5 1

5. Devroye, L.: The compound random search. Ph.D. dissertation, Purdue University,
West Lafayette, IN (1972)

6. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the
(1 + (λ, λ)) genetic algorithm. Algorithmica 80, 1658–1709 (2018)

7. Doerr, B., Doerr, C.: Theory of parameter control mechanisms for discrete black-
box optimization: provable performance gains through dynamic parameter choices.
In: Doerr, B., Neumann, F. (eds.) Theory of Randomized Search Heuristics in
Discrete Search Spaces. Springer, Cham (2018, to appear). https://arxiv.org/abs/
1804.05650

8. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theor. Comput. Sci. 567, 87–104 (2015)

9. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box
analysis. In: GECCO 2016, pp. 1123–1130. ACM (2016)

10. Doerr, B., Gießen, C., Witt, C., Yang, J.: The (1+ λ) evolutionary algorithm with
self-adjusting mutation rate. In: GECCO 2017, pp. 1351–1358. ACM (2017)

11. Doerr, C., Wagner, M.: On the effectiveness of simple success-based parameter
selection mechanisms for two classical discrete black-box optimization benchmark
problems. In: GECCO 2018. ACM (2018, to appear). https://arxiv.org/abs/1803.
01425

12. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Trans. Evol. Comput. 3, 124–141 (1999)

13. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9, 159–195 (2001)

http://arxiv.org/abs/1006.4645
https://doi.org/10.1007/978-3-642-15844-5_1
https://arxiv.org/abs/1804.05650
https://arxiv.org/abs/1804.05650
https://arxiv.org/abs/1803.01425
https://arxiv.org/abs/1803.01425

372 C. Doerr and M. Wagner

14. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

15. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

16. Karafotias, G., Hoogendoorn, M., Eiben, A.: Parameter control in evolutionary
algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19, 167–187 (2015)

17. Lobo, F.J., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary
Algorithms. Studies in Computational Intelligence, vol. 54. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-69432-8

18. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

19. Rechenberg, I.: Evolutionsstrategie. Friedrich Fromman Verlag (Günther Holzboog
KG), Stuttgart (1973)

20. Schumer, M.A., Steiglitz, K.: Adaptive step size random search. IEEE Trans.
Autom. Control 13, 270–276 (1968)

21. Thierens, D.: On benchmark properties for adaptive operator selection. In: Com-
panion Material GECCO 2009, pp. 2217–2218. ACM (2009)

https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-540-69432-8

Tailoring Instances of the 1D Bin Packing
Problem for Assessing Strengths and

Weaknesses of Its Solvers

Ivan Amaya1(B) , José Carlos Ortiz-Bayliss1 ,
Santiago Enrique Conant-Pablos1 , Hugo Terashima-Maŕın1 ,

and Carlos A. Coello Coello2

1 School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
{iamaya2,jcobayliss,sconant,terashima}@itesm.mx

2 CINVESTAV-IPN (Evolutionary Computation Group), Mexico City, Mexico
ccoello@cs.cinvestav.mx

Abstract. Solvers for different combinatorial optimization problems
have evolved throughout the years. These can range from simple strate-
gies such as basic heuristics, to advanced models such as metaheuris-
tics and hyper-heuristics. Even so, the set of benchmark instances has
remained almost unaltered. Thus, any analysis of solvers has been lim-
ited to assessing their performance under those scenarios. Even if this
has been fruitful, we deem necessary to provide a tool that allows for
a better study of each available solver. Because of that, in this paper
we present a tool for assessing the strengths and weaknesses of different
solvers, by tailoring a set of instances for each of them. We propose an
evolutionary-based model and test our idea on four different basic heuris-
tics for the 1D bin packing problem. This, however, does not limit the
scope of our proposal, since it can be used in other domains and for other
solvers with few changes. By pursuing an in-depth study of such tailored
instances, more relevant knowledge about each solver can be derived.

Keywords: 1D bin packing problem · Genetic algorithm
Instance generation

1 Introduction

The Bin Packing Problem (BPP) has been widely studied in the literature [2,3].
Moreover, different kinds of optimization problems can be modelled as BPPs [7].
This has led to a broad array of different solvers for tackling the problem:
from basic low-level heuristics, going through metaheuristics, and even arriv-
ing to high-level solvers known as hyper-heuristics [17]. Even so, instances have

The authors would like to thank CONACyT for the support given through projects
No. 241461 and 221551. They would also like to acknowledge the support from the
Research Group with Strategic Focus in Intelligent Systems, from Tecnológico de
Monterrey.

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 373–384, 2018.
https://doi.org/10.1007/978-3-319-99259-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_30&domain=pdf
http://orcid.org/0000-0002-8821-7137
http://orcid.org/0000-0003-3408-2166
http://orcid.org/0000-0001-6270-3164
http://orcid.org/0000-0002-5320-0773
http://orcid.org/0000-0002-8435-680X

374 I. Amaya et al.

remained mostly stable as solvers have evolved throughout the years. Tailoring
instances to solvers is thus, needed, so that both of them can evolve in tandem.

There has been an effort for creating instances in different fields. For exam-
ple, Martello and Toth [11], introduced a set of instances for the binary Knap-
sack Problem (0/1 KP) with different numbers of items, and a high correlation
between weights and profits of the items. Similarly, Zitzler et al. [19] generated
data for the multi-objective KP using random integers for weights and profits
that has been widely used [6,9,18]. Another example is the OR-Library, which
distributes test data for Operations Research (OR) problems [1]. Yet another
example corresponds to the Mixed Integer Programming Library (MIPLIB) [7],
originally proposed in 1992. The current version dates from 2010 and it covers
several types of domains, including Bin Packing. Other works of interest on this
regard include [10,13,14], which we do not detail here due to space constraints.

We consider that the aforementioned approach deals with the problem reac-
tively: first creates problems and then verifies the performance of solvers. But,
we can change this approach for a proactive one, where we create instances tai-
lored to the attributes of a solver. In this work, we explore the idea of using an
evolutionary-based model for creating such an approach. Our objective is finding
instances where a solver exhibits a desired behavior, allowing for investigations
that revolve around the strengths and weaknesses of such solvers.

This need is not new and it has been explored in recent years. A recurring idea
is to use an ‘intelligent’ generator, based on evolutionary computation, to target
a solver. Some authors have achieved quite interesting results. For example, van
Hemert [4,5] showed how to use an evolutionary algorithm to detect hard to solve
instances in Constraint Satisfaction Problems (CSPs). Smith-Miles et al. [15,16]
focused on intentionally creating instances of the Traveling Salesman Problem
(TSP) that were easy or hard for certain algorithms.

To the best of our knowledge, no prior works have proposed a tool that
allows assessment of the strengths and weaknesses of different solvers, through
an evolutionary approach. Based on that, we asked whether it was possible to
use a genetic algorithm for producing synthetic 1D bin packing instances under
different scenarios. By doing so, we can fill the knowledge gap about instance
tailoring for bin packing problems, while at the same time offering a tool for
facilitating the study of different solvers under a variety of scenarios. This work
contributes by presenting the rationale behind such a tool. Through it, insights
about the elements that allow a solver to excel or fail can be more easily obtained.

This manuscript is organized as follows. Section 2 presents an overview of
different elements related to the research, focusing on the domain we selected
for testing, as well as on the solvers and features of interest. Afterwards, Sect. 3
briefly presents our proposed tool by describing how it operates. We then move
on to summarizing the testing we carried out in Sect. 4. The corresponding data
is given in Sect. 5. We wrap up our manuscript by laying out our conclusions in
Sect. 6.

Tailoring Instances of 1D BPP for Assessing Solvers 375

2 Fundamentals

This section presents some of the fundamental concepts related to our work.
Here, we have restricted our analysis to problems in one dimension, though our
model can be expanded to p dimensions without difficulty.

2.1 The 1D Bin Packing Problem

Bin Packing Problems (BPPs) represent the task of packing a set of items into
containers with a given capacity (known as bins). The objective is to use as few
bins as possible. In the one-dimensional case, objects have a single dimension
(e.g., cost, length, time, etc.). Higher dimensional cases are represented by a
combination of those, though as aforementioned, we limit ourselves to 1D BPPs.
In this work, we consider the dimension of the problem as the length of the item.
Hence, the problem can be stated as:

Given a list of objects, and their lengths, as well as a collection of bins with
fixed size, find the smallest number of bins that can contain all objects.

One-dimensional BPPs represent NP-hard combinatorial optimization prob-
lems, based on the partition problem. Finding the optimal solution is known
to be exponentially difficult. Performance of traditional exact methods, such
as branch and bound, degrade as the problem grows. Thus, other approaches
are required. One of them is to use heuristic methods, representing simple and
purpose-specific strategies that can obtain an approximate solution in a short
enough time.

2.2 Some Solvers of Interest for the 1D Bin Packing Problem

In this work, we focus on a particular case of online BPPs. We consider problems
where information from the whole instance is available, but where packaging is
restricted to the first element, e.g., a production line where packaging is carried
out by a fixed robot at the end of the line. Hence, all of the following heuristics
pack the first item in the list:

– First Fit Heuristic (BP-FF). Find all the bins in which the item fits and
place it into the lowest numbered one.

– Best Fit Heuristic (BP-BF). Find all the bins in which the item fits and
place it in the one that leaves the least free space.

– Worst Fit Heuristic (BP-WF). Place the item in the bin with the most
available space, as long as it fits.

– Almost Worst Fit Heuristic (BP-AWF). Similar to BP-WF, but places
the item in the second emptiest bin (as long as it can hold it).

We want to stress out that if the item does not fit in any bin, a new one is
opened and the item is placed there. Moreover, selecting these heuristics does
not limit the scope of our work. In fact, our proposed model can handle different
solvers as it only requires knowing how it performs for the instance being tailored.

376 I. Amaya et al.

2.3 Some Features for the 1D Bin Packing Problem

Even though our proposed model is featureless, it can be useful to define a set
of features for analyzing the generated instances. We considered some based on
the cost (i.e., length) of elements remaining in the instance [8]: Average length
(AL), Standard deviation of the length (SL), and Ratio of big pieces (RBP, i.e.,
the ratio of elements whose length is above half of the bin capacity).

2.4 Some Performance Measures for the 1D Bin Packing Problem

Based on [12], in this work we adopt three metrics for measuring the perfor-
mance of a solver over a given instance: the number of bins used, the number of
completely filled bins, and the average waste per bin.

Consider this brief example, assuming a bin capacity of 10 and that the
set of items to be packed is: 3, 8, 7, 4, 9, 1, 6, 2. Figure 1 shows the solution with
each heuristic, and the aforementioned performance metrics. The best solution
is given by the best fit heuristic (BP-BF) since it used the least number of bins
and filled them completely. Moreover, by only focusing on the number of bins, it
would seem that the remaining heuristics are equally good. However, the worst
fit heuristic (BP-WF) was unable to completely fill the same number of bins,
and thus represents the worst heuristic. In fact, the remaining two heuristics
(BP-FF and BP-AWF) yield the same solution, so they are tied.

Fig. 1. Solution given by each heuristic, and their performance, for the set of items
given by 3, 8, 7, 4, 9, 1, 6, 2. The number in the upper right corner of each bin represents
their ID.

2.5 Instances Used in This Work

Throughout our work, we only consider custom instances. As will be detailed in
Sect. 4, we tailor these instances so that each solver behaves under the conditions
defined by the user. The dataset is available upon request.

Tailoring Instances of 1D BPP for Assessing Solvers 377

3 The Proposed Approach

In this work, we propose using a genetic algorithm for directly evolving the
parameters of each item in the instance. To do so, a chromosome is represented
by a binary string whose size depends on the number of items in the instance
and on the maximum value for their length. Figure 2 shows an example of two
chromosomes (A and B) with five items each, whose length is given by five
bits. Since we are only interested in providing instances with positive length,
these chromosomes can represent lengths in the range [1, 32]. As can be seen,
repetitions are allowed within the instance.

Fig. 2. Two sample chromosomes (A and B) for generating instances with five items
and with item lengths in the range [1, 32].

To produce an instance, three arguments are required: the capacity of the bin,
C; the number of items for the instance, n; and the maximum length of each item,
li. The process starts with a population of randomly initialized chromosomes.
Afterwards, it keeps evolving guided by an user-defined objective function. This
allows instances to be tailored to different means, therefore representing a pow-
erful tool for studying specific traits of different solvers. As will be shown in
Sect. 4, in this work we show different functions that can be used to guide the
evolution through different paths.

As evolution progresses, chromosomes will change to reflect item lengths
closer to the user requirements. To do so, two new offspring are created at each
iteration, using standard genetic operators of selection, crossover, and mutation.
The two worst chromosomes are then removed from the population so its size is
preserved with each iteration. We want to stress that the number of items, as
well as the capacity of the bin, are not encoded within the chromosome. Thus,
they remain unchanged throughout the whole process.

378 I. Amaya et al.

4 Methodology

Testing was carried out on an Intel Core i7-6700 processor, with 16 GB of
RAM, and running Windows 10 OS. The steady-state GA was tuned through
exploratory experiments, omitted for the sake of space: 200 individuals, muta-
tion rate of 0.01, crossover rate of 1.0 and 25000 generations per run (tops). To
gather our data, we followed a three-stage methodology as described in Fig. 3.

Fig. 3. Methodology followed throughout this work.

4.1 Preliminary Testing

Throughout this first stage, we focus on exploring whether our idea is promis-
ing. Thus, we strive to generate both, easy and hard instances, for each of the
heuristics discussed in Sect. 2.2. For this batch of tests, we created 100 instances
with 50 items each, for every scenario. This represents a total of 800 instances
(8×100). In the first case, we used Eq. (1) to maximize the difference between the
fitness (i.e., the average waste) given by the target heuristic (Fitone) and that
of the best remaining heuristic (min (Fitothers)). In the second case, we used
Eq. (2) to also maximize the distance between the performance of the target
heuristic and the worst of the remaining heuristics (max (Fitothers)).

Fobj = −(min (Fitothers) − Fitone) (1)

Fobj = −(Fitone − max (Fitothers)) (2)

4.2 Initial Testing

Afterwards, we push our idea a bit further and strive to generate bigger instances.
Hence, we demand sets of 100 items. Once again, we create instances for all 8
scenarios (i.e., 4 heuristics and 2 conditions). Moreover, we use our approach
to generate 200 instances per scenario, to analyze the repeatability of our idea.
This leads to a total of 1600 instances during this testing stage.

Tailoring Instances of 1D BPP for Assessing Solvers 379

4.3 Advanced Testing

As a final effort to test our approach, we concentrate on generating a different
kind of instance. This time, we modify the objective function in order to evolve
instances with a maximum difference among solvers, and instances where all
solvers perform the same. In the first case, we use Eq. (3) to maximize the stan-
dard deviation that heuristics exhibit over the instance. Here, Fiti is the fitness
(i.e., the average waste) of every heuristic, Fitavg is the average fitness achieved
by all solvers, and NH is the number of heuristics (i.e., four for this work).

Fobj = −

√
√
√
√
√

NH∑

i=1

(Fiti − Fitavg)2

NH − 1
(3)

In the second one, we use Eq. (4) to search for instances where all solvers
perform equally. Thus, FitBest is the best fitness achieved by all solvers, whilst
FitWorst is the worst one.

Fobj = (FitBest − FitWorst)2 (4)

We pursue this idea to try and identify, based on the features from Sect. 2.3,
the regions in the feature space where it is critical to select an appropriate solver
and regions where it is of no importance. Since the idea is to also explore the
versatility of our model, during this stage we use instances with 100 items each,
and create 100 instances for each of the two scenarios.

5 Experiments and Results

This section presents the most relevant data of our experiments. Because of
space restrictions, we only focus on showing the performance of some heuristics
in terms of average waste. Nonetheless, this does not mean that the other metrics
were unsatisfactory.

5.1 Preliminary Testing

Figure 4 summarizes the average waste of the BP-FF and BP-WF heuristics over
all generated instances. The first row relates to instances that can be efficiently
solved by one heuristic (e.g., BP-FF or BP-WF), but which are poorly solved
by the remaining ones. Similarly, the second row relates to instances poorly
solved by one heuristic and efficiently solved by the remaining ones. In both
cases, our proposed approach successfully tailors instances. In the first case, the
average waste becomes minimum. In the second one, the average waste increases
(sometimes even dramatically, e.g. for BP-WF).

Figure 5(a) shows the center of each set of instances, located at different
positions. Interestingly, easy and hard to solve instances, for a specific heuristic,
exhibit opposing behaviors. For example, increasing the difficulty of instances

380 I. Amaya et al.

(a) FF (Easy) (b) WF (Easy)

(c) FF (Hard) (d) WF (Hard)

Fig. 4. Average waste achieved by the First Fit (FF) and the Worst Fit (WF) heuristics
over the sets of instances generated in the preliminary testing stage. Boxplots reflect
data for 100 instances. Other solvers are omitted due to space restrictions.

for BP-FF, leads to instances whose items are more varied, but which are also
two units longer (on average). Even more, there are 10% more big pieces within
hard instances. Nonetheless, in the case of BP-WF harder instances are those
with fewer big pieces (about 7% less), leading to smaller items (about one unit
on average).

5.2 Initial Testing

Although increasing the number of items in the instance to 100 makes it harder
for our model to generate the instances with the requested behavior, it is still able
to generate quite useful results (Fig. 6). This time around, there are also scenarios
where a solver has virtually no waste at all (e.g., for the best fit heuristic), and
scenarios where a heuristic wastes way more space than other approaches. Even
in those cases where the behavior of the heuristic of interest is not that different
from the others, there are still elements worth remarking. For example, consider
hard-to-solve instances for the best fit heuristic. Even though medians are quite
close, best fit is the only heuristic unable to achieve average waste values below
one.

A plot of the location of the 1600 generated instances, again reveals an inter-
esting pattern (Fig. 5(b)). As in the previous stage, easy and hard instances are

Tailoring Instances of 1D BPP for Assessing Solvers 381

(a) Preliminary stage (b) Initial stage

Fig. 5. Centroid of all instances generated in the preliminary and initial testing stages.
Stars indicate easy-to-solve (E) instances for a specific heuristic and crosses indicate
hard-to-solve (H) instances for a specific heuristic. Data is also shown for instances
with High variation (HV) and Low variation (LV).

located on opposing parts of the feature space. It is also interesting to observe
that changing the difficulty of a heuristic implies relatively the same movement
in the feature space: for the first fit and best fit heuristics, it represents a shift
from right to left and upwards; for the worst fit and almost worst fit, it changes
and now goes from left to right and downwards. Hence, the behaviour from the
previous stage holds. In fact, the ratio of big pieces (RBP) increased from 39%
to 51% for BP-FF, while it decreased from 55% to 41% for BP-WF.

5.3 Advanced Testing

As mentioned in Sect. 3, this stage pushes our approach further by trying out
different objective functions. Figure 7 shows two scenarios of interest: one with
varied performance, and one with the same performance. Once again, our pro-
posed model was able to cope with the situation, evolving instances favorable
for the user needs. Taking into account that the bin capacity was set to 30, we
consider that a gap in heuristic performance of about 10 is quite remarkable.
Moreover, the model was actually able to evolve instances where heuristics had
the exact same behavior, thus representing a region of the feature space where
it is irrelevant to spend resources on determining which heuristic to use. The
centroid of these two sets of instances can be seen in Fig. 5(b). As expected, the
scenario with the highest variation is the one farthest away. This can be explained
since the other scenarios only considered that a given solver was either good or
bad in comparison to the others, but did not seek that the solvers exhibited
a varied performance. Similarly, the set of instances with the lowest variation
is close to the set of hard-to-solve instances for the best fit heuristic. This can
also be explained since, as it was mentioned above, this scenario exhibits a low
variation (with only some instances yielding average waste values below unity).

382 I. Amaya et al.

(a) Best Fit (Easy) (b) Almost Worst Fit (Easy)

(c) Best Fit (Hard) (d) Almost Worst Fit (Hard)

Fig. 6. Average waste achieved by the Best Fit (BF) and the Almost Worst Fit (AWF)
heuristics over all the sets of instances generated in the initial testing stage. Boxplots
reflect data for 200 instances. Other solvers are omitted due to space restrictions.

(a) High Variation (b) Low Variation

Fig. 7. Average waste achieved by all solvers when operating over instances generated
with high variation (a) and with low variation (b).

6 Conclusions

In this work we presented an evolutionary-based model for tailoring instances to
specific needs. The tool we propose may allow for an in-depth study of different
heuristics. It can be used to create instances that exploit heuristic strengths and
weaknesses, so knowledge about when to use each one may be derived. How-
ever, we did not pursue such endeavor here, mainly due to space restrictions.

Tailoring Instances of 1D BPP for Assessing Solvers 383

Nonetheless, we tested our approach by generating over 2500 instances for the
1D Bin Packing Problem, distributed along four different heuristics. Our testing
included scenarios where one solver excels while the others fail, and scenar-
ios where one solver fails while the remaining ones excel. To push our genera-
tion model even further, we included instances where the solvers performed as
diversely as possible, and instances where all solvers performed equally.

Data exhibited interesting elements. For example, we created easy instances
for the first fit heuristic (BP-FF), where the median number of bins was between
7% and 20% lower than for the remaining heuristics. Similarly, the median num-
ber of completely filled bins for BP-FF was over 10% higher than for the second
best heuristic, and about eight times higher than for the worst heuristic. In
some cases results were not as astonishing. But, there was always some bene-
fit. Consider easy-to-solve instances for the worst fit heuristic, and hard-to-solve
instances for the best fit heuristic. In the former, the heuristic allowed for near
zero average waste. In the latter, the heuristic was the only one unable to achieve
near zero average waste. This means that, through our approach, one can find
instances with specific behaviors without the need for exhausting all combina-
tions of elements, nor deriving mathematical expressions that relate the items.

Also worth noting is that as difficulty increases, instance location within
the feature domain shifts. For example, for the first fit and best fit heuristics,
instances shifted from right to left and upwards. However, for the worst fit and
almost worst fit, they migrated from left to right and downwards.

Regarding the final batch of tests, we can conclude that our proposed model
can adapt to different kinds of situations. In this case, it was able to evolve
instances where solvers exhibited a high variation on their performance, gen-
erating gaps of average waste of about 33%. Moreover, it was also able find
configurations where all solvers performed exactly the same, representing the
region of the feature space where it becomes unnecessary to select a specific
heuristic.

References

1. Beasley, J.: OR-library: distributing test problems by electronic mail. J. Oper. Res.
Soc. 41(11), 1069–1072 (1990)

2. Drake, J.H., Swan, J., Neumann, G., Özcan, E.: Sparse, continuous policy repre-
sentations for uniform online bin packing via regression of interpolants. In: Hu, B.,
López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol. 10197, pp. 189–200. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-55453-2 13

3. Gomez, J.C., Terashima-Maŕın, H.: Evolutionary hyper-heuristics for tackling bi-
objective 2D bin packing problems. Genet. Program. Evol. Mach. 19, 151–181
(2017). https://doi.org/10.1007/s10710-017-9301-4

4. van Hemert, J.I.: Evolving binary constraint satisfaction problem instances that
are difficult to solve. In: Proceedings of the 2003 IEEE Congress on Evolutionary
Computation (CEC 2003), pp. 1267–1273. IEEE Press (2003)

5. van Hemert, J.I.: Evolving combinatorial problem instances that are difficult to
solve. Evol. Comput. 14(4), 433–462 (2006)

https://doi.org/10.1007/978-3-319-55453-2_13
https://doi.org/10.1007/s10710-017-9301-4

384 I. Amaya et al.

6. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the
pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

7. Koch, T., et al.: MIPLIB 2010. Math. Program. Comput. 3(2), 103–163 (2011)
8. López-Camacho, E., Terashima-Maŕın, H., Ross, P.: A hyper-heuristic for solving

one and two-dimensional bin packing problems. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2011), pp. 257–258 (2011).
https://doi.org/10.1145/2001858.2002003

9. Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a
survey and a new approach. Int. Trans. Oper. Res. 19(4), 495–520 (2012)

10. Martello, S., Pisinger, D., Vigo, D.: The three-dimensional bin packing problem.
Oper. Res. 48(2), 256–267 (2000)

11. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations. Wiley, Hoboken (1990)

12. Özcan, E., Parkes, A.J.: Policy matrix evolution for generation of heuristics. In:
Proceedings of the 13th Annual Conference on Genetic and Evolutionary Compu-
tation - GECCO 2011, p. 2011 (2011). https://doi.org/10.1145/2001576.2001846

13. Petursson, K.B., Runarsson, T.P.: An evolutionary approach to the discovery of
hybrid branching rules for mixed integer solvers. In: Proceedings - 2015 IEEE
Symposium Series on Computational Intelligence, SSCI 2015, pp. 1436–1443 (2016)

14. Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32(9),
2271–2284 (2005)

15. Smith-Miles, K., van Hemert, J.: Discovering the suitability of optimisation algo-
rithms by learning from evolved instances. Ann. Math. Artif. Intell. 61(2), 87–104
(2011)

16. Smith-Miles, K., van Hemert, J., Lim, X.Y.: Understanding TSP difficulty by learn-
ing from evolved instances. In: Blum, C., Battiti, R. (eds.) LION 2010. LNCS,
vol. 6073, pp. 266–280. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13800-3 29

17. Sosa-Ascencio, A., Terashima-Maŕın, H., Ortiz-Bayliss, J.C., Conant-Pablos, S.E.:
Grammar-based selection hyper-heuristics for solving irregular bin packing prob-
lems. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Con-
ference Companion - GECCO 2016 Companion, pp. 111–112. ACM Press, New
York (2016). https://doi.org/10.1145/2908961.2908970

18. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolu-
tionary algorithm. In: Evolutionary Methods for Design Optimization and Control
with Applications to Industrial Problems, pp. 95–100 (2001)

19. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

https://doi.org/10.1145/2001858.2002003
https://doi.org/10.1145/2001576.2001846
https://doi.org/10.1007/978-3-642-13800-3_29
https://doi.org/10.1007/978-3-642-13800-3_29
https://doi.org/10.1145/2908961.2908970

Machine Learning and Evolutionary
Algorithms

Adaptive Advantage of Learning
Strategies: A Study Through Dynamic

Landscape

Nam Le(B), Michael O’Neill, and Anthony Brabazon

Natural Computing Research and Applications Group,
University College Dublin, Dublin, Ireland

namlehai90@gmail.com

Abstract. Learning can be classified into two categories: asocial learn-
ing, e.g. trial-and-error; and social learning, e.g. imitation learning. The-
ory using mathematical models suggest that social learning should be
combined with asocial learning in a strategic way (called learning rule
or learning strategy), and that that combination should be scrutinised
under different environmental dynamics, to see how advantageous the
learning rule is. More interestingly, learning has been shown to be ben-
eficial to the evolutionary process through the Baldwin Effect. This
paper investigates the adaptive advantage of social learning when com-
bined with asocial learning under a number of environmental variations.
We propose a Dynamic Landscape as well as an algorithm combining
both asocial and social learning in order to test our hypotheses. Exper-
imental results show that if each individual in the population is either
asocial or social, but not both, the average fitness of the population
decreases when the proportion of social learners increases as the envi-
ronment changes. Moreover, a population consisting entirely of asocial
learners outperforms the previous type of population. If every individ-
ual agent in the population can perform both asocial and social learning
depending on a strategic rule, the evolving population outperforms the
two previous populations with respect to average fitness.

Keywords: Social learning · Cultural evolution · Genetic algorithm
Dynamic environment · Baldwin effect

1 Introduction

Evolution and learning are two different ways in which the behavior, and other
traits, of organisms can change in order to adapt to environmental variations.
Evolution is change at the genetic level of a population, while learning, on the
other hand, is change at the phenotypic level of an individual. The idea that
the two forms of adaptation interact and complement each other was once pro-
posed by Baldwin [1], called the Baldwin Effect. Hinton and Nowlan (henceforth

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 387–398, 2018.
https://doi.org/10.1007/978-3-319-99259-4_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_31&domain=pdf

388 N. Le et al.

H&N) presented a computer model to investigate the Baldwin Effect in simula-
tion [2], showing that learning, more specifically asocial learning, facilitates the
evolutionary process and enhances the fitness of the population in a Needle-in-a-
haystack landscape. Their initial success motivated several further studies, such
as [3,4], to show how learning can enhance the evolutionary search.

Generally, learning can be classified into two forms. Asocial (or individual)
learning (IL) – learning by oneself through direct interaction with the environ-
ment, e.g. trial-and-error, and social learning (SL) – learning from others, e.g.
imitation – are two alternative ways for an individual agent to acquire infor-
mation from the environment at the phenotypic level. SL has been observed in
organisms as diverse as primates, birds, fruit flies, and especially humans [5].
Although the use of SL is widespread, understanding when and how individuals
learn from others is a significant challenge. SL is generally less time-consuming,
but relies on information produced by others. So when the environment changes,
the information from others is likely to be outdated and SL becomes maladap-
tive (not adaptive). On the other hand, IL through trial-and-error is costly, but
capable of producing new information when the environment happens to change.

This opens a curious question when an organism should rely on SL rather
than IL, and under which environmental condition social learning would evolve,
or be adaptive. Several theoretical models have shown that individual agents
capable of learning in a strategic way outperform those that are able to learn
individually or socially, but not both [6–8].

The main aim of this paper is to investigate, through computer simulation,
whether organisms should rely on SL or IL, and what the plausible strategy for
an organism could be when the environment changes. We combine evolution and
both forms of learning to see how they behave under a dynamic landscape we
call Dynamic Needle-in-a-hay-stack. This paper is built upon the success of the
previous work in [9]. In the remainder of this paper, we briefly present research
on learning and evolution. Social learning and related concepts are briefly intro-
duced. We in turn describe the experiments we use in this paper. Results are
analysed and discussed, then the conclusion and some future directions are pro-
posed.

2 Background

2.1 Social Learning

SL has been studied in various disciplines, including Cognitive Biology, Evo-
lutionary Psychology, Behavioral Ecology, Cognitive Science and Robotics. In
general, SL covers several mechanisms through which individual organisms learn
from others, such as stimulus enhancement, observational conditioning, imita-
tion, and emulation (please refer to [5,10] for the definition of these mechanisms).
In this study we focus on one of these mechanisms, namely imitation learning. In
this instance of learning, the observer directly copies the behavior of the observed
animal in order to complete a novel task.

Adaptive Advantage of Learning Strategies 389

SL, at first glance, seems to be adaptive at a low cost when individual agents
can acquire information from others without incurring the cost of trial-and-
error learning. Thus, it is plausible to think that SL will result in more effective
learning outcomes. Contrary to this belief, it has been found that agents should
not learn socially all the time [6,11]. It is argued that individual learners produce
new information about the environment, though at a cost. Social learners avoid
this cost by copying the existing behaviors of others, but do not generate new
information. Therefore, it is highly likely that social learners will copy outdated
information when the environment changes, reducing the average fitness of the
population.

Several theoretical models have been proposed to investigate how to use SL
effectively [6–8]. It is said that social learning should be combined with individual
learning in a strategic way in order to have an adaptive advantage. Social learning
strategies consist of rules specifying the way an individual relies on social learning
by answering three questions as follows:

i. When an individual should learn;
ii. From whom they should learn; and
iii. What information should be learned.

The question of when to copy covers the decision as to when to seek social
information. Whom to copy may depend on factors such as the social structure
of the population and the ability of the individual to recognise whether other
individuals are obtaining higher payoffs. Possibilities include the copying of the
most successful individual, copying of kin, or adherence to a social norm by
copying the majority. What to copy considers which behavior or more specifically
what part of that behavior to copy.

In addition to the Who question, the transmission from demonstrators to
observers are classified into three types [12]. The first is vertical transmission –
transmission from parents to their children. The second is oblique transmission
in which cultural traits will be passed to an individual from another individual
from the previous generation but differs from its parent. The last is horizontal
transmission in which an observer learns from a demonstrator in its current
generation. In the scope of this paper, we only use oblique transmission in our
experiments.

2.2 Learning and Evolution in Computer Simulation

H&N presented a classic paper in 1986 [2] to demonstrate an instance of the Bald-
win Effect in computer. We discuss this model in detail for clarity. In H&N’s
model, suppose the task is to find the all-ones target string 111...1 (20 bits).
There is only one correct solution – an individual with configuration exactly
matched with the target string – which has the fitness of 20. All other configura-
tions are wrong and have the same fitness of 1. This forms a Needle-in-a-haystack
landscape whereby an evolutionary search alone cannot find the solution [2].

H&N presented an idea that encodes an individual’s genotype whereby one
part is fixed by genetic-like information, and the other part is plastic which

390 N. Le et al.

allows for learning during the lifetime of the individual. Each individual agent
has a genotype—a string of twenty characters. Each position in a genotype, or
locus, can have three alternative values: ‘0’, ‘1’, and ‘?’. Each locus is randomly
initialized with 25% chance of being assigned a ‘0’, 25% chance of being ‘1’, and
50% chance a ‘?’.

In addition to the above two types of agent (correct or incorrect), there
exists another type of agent – called potential individual – which will be allowed
for life-time learning. The genotype-phenotype mapping is one-to-one and at
birth, each individual has its phenotype string identical to its genotype string.
An individual is potential only if in its initial genotype, every locus excluding
locus with plastic value ‘?’ is matched with corresponding locus in the target
string. In case of H&N’s problem, a potential individual could have its initial
genotype comprising of only ‘1’ and ‘?’. The allele ‘?’ allows for lifetime learning
(or plasticity), over 1000 rounds. On each round, an individual agent is allowed
to do individual learning by changing its allele ‘?’ to either ‘0’ or ‘1’ as the
expressed value. After learning, the fitness of that potential individual agent xi

is calculated as:

f(xi) = 1 +
19(1000 − n)

1000
(1)

in which n is the number of trials required to find the correct combination of
alleles - the all-one string. It can be inferred from the fitness function that the
more trials an agent needs, the lower the fitness it will get. By allowing life-
time learning, H&N showed that learning can create a gradient which facilitates
evolution to search for the solution.

Since the success of H&N’s model, there have been a number of studies
showing that learning can enhance an evolutionary process, especially when the
environment is changing [3,4]. Recently, Le et al. [9] presented a model build-
ing on H&N’s simulation, in which they combine evolution, asocial and social
learning. It was shown that social learning alone fails to search on Needle-in-a-
haystack, but social learning when coupled with individual learning outperforms
individual learning alone with respect to average fitness of the population.

In this paper, we build on the success of the previous simulation in [9],
in which we propose a dynamic version of H&N’s Needle-in-a-haystack to see
how individual learning or social learning behaves under different environmental
dynamics. Experimental designs are discussed in the following section.

3 Experimental Design

3.1 Dynamic Needle-in-a-haystack Landscape

We create a dynamic version of H&N’s landscape called Dynamic Needle-in-
a-haystack, in which we use two parameters to control the dynamics of the
landscape, namely frequency and magnitude of change. The first parameter tells
us after many generations the target (needle) will move to another point in the
landscape, while the latter helps determine the likelihood of change for each
element of the target. Assume that at a generation g the target is all-one (20

Adaptive Advantage of Learning Strategies 391

bits of one), frequency = 10 and magnitude = 0.1 (10%). This informs us that
after 10 generations or at generation g + 10 the target t = 111...1 (20 bits of 1)
is likely to be changed. The magnitude of 0.1 tells us that there are, on average,
20 × 10% = 2 bits in the target that are likely to be modified. For each bit in
the target sequence, a random number is generated and then compared with the
magnitude: if the random value is less than 0.1, the current bit is mutated to
its subtraction from 1 (1 becomes 0, and vice versa). Suppose the new target at
generation g + 10 is t1 = 001...1 (two first bits are changed). There is only one
right sequence of bits that exactly matches the new target t1 and has the fitness
of 20. Otherwise, all other configurations are incorrect and get the same fitness
of 1. This landscape, again, constitutes a Needle-in-a-haystack, but the needle
is moving after a number of generations. That is why we call this landscape
Dynamic Needle-in-a-haystack.

We also call the period when the environment is unchanged the interval of
stability. Therefore, the interval of stability has the same value as the dynamic
frequency.

3.2 Experiment Setup

In this section, we present the experimental setups used in our paper. It is often
said that evolutionary search finds it hard to search in ‘Needle-in-a-haystack’
landscape. Furthermore, it was claimed that an evolutionary search alone failed
in this type of landscape [2]. Le et al. [9] went further to show that an evolu-
tionary search combined with social learning alone also failed to find a solution
in a Needle-in-a-haystack. We conduct three experiments with the parameter
settings, as shown in Table 1.

Table 1. Parameter setting

Parameter Value

Original target 111...1 (20 bits of 1 s)

Genome length 20

Replacement Generational

Generations 50

Population size 1000

Selection Fitness-Proportionate selection

Reproduction Sexual reproduction

Mutation rate 0.01

Fitness function Eq. 1

Maximal learning trials 1000

Frequency 5, 10, 20

Magnitude 0.05, 0.075, 0.1

392 N. Le et al.

We run our experiments through 9 different combinations of frequency and
magnitude. For frequencies 5, 10, 20 there will be 10, 5, and 2 times of change in
the environment, respectively. In case frequency = 5 or 10, generation 50 will see
a change in the environment. It can be understood that the lower the frequency
value, the faster the target will change; the bigger the value of magnitude, the
bigger the change of the target. The environment becomes more dynamic or
harder to cope with by faster changing and bigger magnitude of change, and
vice versa.

Please note that, unlike the so-called memetic algorithm and Lamarckian
Evolution, learning in our experiments only happens at the phenotypic level,
what an individual learns does not change its genotype. The recombination oper-
ators work on the genotypic level, so children may inherit question marks from
their parents.

Setup I: A Population of Individual Learners

The first experimental setup is an evolving population of individual learners only
(as in H&N model), in which an evolutionary search is combined with IL (denoted
EVO+IL). IL performs a local search process by which each ‘?’ allele will guess
its value to be ‘0’ or ‘1’ in each learning trial. The evolutionary algorithm in our
experiment is a genetic algorithm with crossover and mutation (with mutation
rate of 0.01).

Setup II: A Population of Single-Role Learners

In the second experiment setup, we simulate a population of single-role individ-
uals – individuals that are either social learners or individual learners, but not
both (denoted EVO+IL&SL). The reason for this experimental design is that
we are curious to know how social learning or individual learning would evolve
under various environmental dynamics and how they contribute to the average
fitness of the population. Unlike EVO+IL, we have two types of individuals in
the population now. We add one more bit, or gene, called learning mode, which
is either 0 or 1, onto the genome of each individual. If that value is 0, the indi-
vidual is likely to learn individually; conversely, if that value is 1, the individual
is likely to learn socially. A noteworthy point here is that in our landscape, only
potential individuals are able to perform lifetime learning. That means, social
and asocial learners are potential individuals with learning mode equal to 1 and
0, respectively. Learning mode is initialised with 50% at 0 and 50% at 1. It
should be noted that through recombination, the learning mode of a child is set
to be the learning mode of the better individual between its parent. Mutation
does not touch the learning mode of the child.

In order to implement social learning, first we propose the imitation proce-
dure, with pseudo-code described in Algorithm1 below. This presents the process
by which an individual observer imitates the phenotype of its demonstrator. The
imitative process starts by extracting the positions of question marks in the phe-
notype of the observer. For each question mark position, the observer will decide
whether to copy exactly the trait or a mutated version of that trait from the
demonstrator.

Adaptive Advantage of Learning Strategies 393

Algorithm 1. IMITATION
1: function Imitation(observer, demon, fidelity = 1)
2: questions = [] comment: question mark position array

3: for position i ∈ observer.pheno do
4: if i =? then
5: questions.add(i)
6: end if
7: end for
8: for i ∈ questions do
9: observer.pheno(i) = demon.pheno(i)
10: end for
11: end function

At each generation, an asocial agent learns by itself like in EVO+IL model,
whereas a social learner imitates its demonstrator. Every individual agent has
the same demonstrator that is the best individual in terms of fitness from the
previous generation. Because we adopt oblique transmission, there is no SL at
the initial generation.

Experiment III: A Population of Strategic Individuals

The third setup we evolve a population of strategic individuals – individuals that
can perform both SL and IL based on a learning rule (denoted EVO+Strategy).
Unlike EVO+IL&SL, the population now has just one type of individual - strate-
gic individuals. We specify the learning strategy for every individual agent as
follows: At each generation, an agent first looks at its demonstrator (chosen the
same as in EVO+IL&SL), and determines whether to learn from that demon-
strator or not. If the demonstrator is still adaptive in the current generation,
the agent imitates the demonstrator based on Algorithm 1; otherwise, the agent
learns individually. The demonstrator is said to be adaptive in the current envi-
ronment if its phenotype exactly matches with the target in the current environ-
ment. This means every agent determines whether it expresses as an individual
learner or as a social learner based on a given rule. After lifetime learning pro-
cess for each agent, the population goes through selection and reproduction as
in EVO+IL.

4 Results, Analyses, and Explanations

First, we look at the average fitness of the population as a measurement of how
well each simulation performs. All plots are grouped together, sharing the same
labels for x-axis and y-xis as well as the annotation. The results are presented
and discussed in a comparative manner below.

A similar trend can be recognised in Fig. 1 that there is a drop in every
population with all settings at the generation when the environment begins to
change. This is understandable because when the environment changes, a number
of adaptive behaviors from previous generations are no longer fit in the current
generation, reducing the average fitness of the population. By looking at the
behavior of each corresponding line through each row or each column of Fig. 1,

394 N. Le et al.

we can see another shared behavior that the more dynamic, or difficult, the
environment is, the lower the average fitness of the population.

How does each type of population comparatively cope with these environ-
mental dynamics? It is shown that EVO+IL outperforms EVO+IL&SL in all
environmental circumstances. More than that EVO+IL&SL shows its inability
to track the dynamics of the environment as the average fitness goes down to or
much closer to the lowest value of 1 in most cases, except the easiest landscape
(when the environment changes most slowly and the magnitude of change is
smallest) though it just reaches around 2.5 at the end.

Fig. 1. Average fitness over generations. The red, blue, and green dotted-lines for
EVO+IL, EVO+IL&SL, and EVO+Strategy, respectively. (Color figure online)

Remember that EVO+IL&SL evolves a population comprising of both asocial
and social learners, so why does it behave very badly and even worse than the
population with individual learners alone? We have briefly talked of the fact that
SL, though less costly, is ‘information parasitism’ that is unable to produce new
information. When the environment changes, social learners are likely to copy
outdated information in case their demonstrators are no longer adaptive in the

Adaptive Advantage of Learning Strategies 395

current generation. In our experiments, the best individual at generation g is
set to be the demonstrator for all social learners in generation g + 1. Assume
that the environment changes at generation g + 1, the demonstrator becomes
maladaptive. All social learners at generation g + 1 copy maladaptive behavior,
thus becoming maladaptive and get the same lowest fitness of 1 and reducing
the average fitness of the population.

However, the population in EVO+IL&SL is composed of both asocial and
social learners at the initial generation. It is said that individual learners through
trial-and-error are able to track the dynamics in the environment. So why are
individual learners unable to help the population to cope with environmental
dynamics? We hypothesise that in EVO+IL&SL the proportion of asocial learner
decreases to a very small amount so that there are not enough asocial learners
to track the environmental changes.

We know that the imitative process gives social learners an advantage in
terms of time and learning trial required to find the correct solution. While aso-
cial learners have to trial-and-error through a number of trials, social learners
just need to copy all bits from the correct demonstrator’s phenotype to its pheno-
type. Based on our fitness function (Eq. 1), the more the learning trials needed,
the lower the fitness value. Consequently, lower cost gives social learners advan-
tages over asocial learners when the environmental is stable. This argument can
be verified by looking at Fig. 1 as at some initial generations, the average fitness
of EVO+IL&SL is higher than that of EVO+IL during the interval of stability.
Therefore, natural selection will favor social learners during these earlier gener-
ations, individual learners become less dominant and are likely to disappear.

We calculate the frequency of asocial and social learners over generations
to verify this hypothesis. Figure 2 shows that in EVO+IL&SL the frequency
of asocial learner is very low in all cases and tends to go down to zero sooner
when the environment becomes harder. This fits with our above hypothesis. In
addition to the above analyses, remember that in EVO+IL&SL each individual
is initially encoded as either an asocial or a social learner. When social learners
are more likely to be favoured by natural selection, more social learner ‘genes’,
or learning mode 1, occur in the reproductive pool, so that offspring produced
through sexual recombination are more likely to have the learning mode as social
learners. The asocial learner gene becomes less prevalent over time, and in most
cases we see it becomes distinct. That is why as the environment changes, the
population has less asocial learners to track the environment, hence the average
fitness reduces down to the lowest value of 1 in almost all cases.

Conversely, EVO+IL still maintains a higher number of asocial learners than
that of EVO+IL&SL to track environmental variations. That is why EVO+IL
has a higher average fitness than that of EVO+IL&SL in all cases.

One important point to be extracted here is that SL can give a population
advantages when the environment is in a stable interval, whereas IL is much
more powerful at the point when the environment changes. That is why we
have designed the learning rule in EVO+Strategy to make use of the advantages
of both IL and SL. It is easily seen in Fig. 1 that EVO+Strategy outperforms

396 N. Le et al.

other settings in all cases with respect to average fitness. Moreover, during the
interval of stability, EVO+Strategy can reach higher point of average fitness
than EVO+IL, especially in the hardest case (frequency = 5, magnitude = 0.1).

Fig. 2. Frequency of social and asocial learners over generations. Green and blue, red
and black lines show the frequency of asocial and social learners in EVO+IL&SL and
EVO+Strategy, correspondingly. The purple lines represents the frequency of asocial
learners in EVO+IL. (Color figure online)

One plausible explanation for the superiority of EVO+Strategy is that the
learning rule used in EVO+Strategy can exploit the advantage of both IL and
SL. Remember that every individual agent in EVO+Strategy can perform as
either a social learner or an asocial learner. At each generation, each strate-
gic agent checks if its demonstrator is adaptive or not: if adaptive, it imitates
the demonstrator; otherwise the agent learns asocially. By this learning rule,
EVO+Strategy removes the case that agents will learn maladaptive behaviors
like what has been observed in EVO+IL&SL by allowing more asocial learning
in case the environment changes. Moreover, when the environment is in a stable

Adaptive Advantage of Learning Strategies 397

interval, the system now allows for more SL to be expressed to make use of the
advantage of SL over IL, hence the average fitness is remarkably increased.

We also calculate the frequency of social and asocial learners in
EVO+Strategy. It can be observed in Fig. 2 that the frequency of asocial learner
is closer to or becomes zero when the environment is stable. However, at the point
when the environment changes, the frequency of asocial learners increases. The
frequency of social learners, in contrast, goes down at the point when the envi-
ronment changes, reducing the ‘information parasitism’ issue and the problem of
copying outdated information. Furthermore, when there are some asocial learn-
ers to help the population to track the environmental dynamics, the population
is shown to maintains a high proportion of social learners and this percentage
goes higher in every stable interval. Therefore, the average fitness of the popu-
lation increases during every interval of stability. This observation fits with the
description of the system as well as the behavior and analyses we have given
above on the average fitness.

It can also be observed that during the interval of stability, the frequency of
asocial learners in EVO+IL is lower than that of social learners in EVO+Strategy
in all cases. This gives EVO+Strategy an advantage over EVO+IL to maintain
a higher average fitness because social learners can copy correct behaviors at a
lower cost compared to asocial learners during an interval of stability.

5 Conclusion and Future Work

We have set out to understand the role social learning may have on the evolu-
tionary process in various environmental dynamics. For the specific landscape
and the parameter setting used in this paper, experimental results have empir-
ically shown that social learning is more advantageous when the environment
is stable, whereas when the environment happens to change asocial learning is
required to track the environment. A learning rule combining both social and
asocial learning has been designed and the population with a learning strategy
has shown to have a much better adaptive advantage, measured by the average
fitness. Several plausible explanations have been presented in this paper for these
observations.

In the scope of this paper, we have mainly discussed the adaptive advantage
of social learning, asocial learning, and learning strategies in dynamic environ-
ments. The evolution of social learning can also been extracted from our results
and analyses on the frequency of learners. It is suggested to investigate the
question as to how social learning evolves more deeply in future work. It is also
recommended that we use different forms of social transmission, such as vertical
transmission and horizontal transmission.

The learning strategy used in this paper is designed by the system designer.
In future work, we would like to let the individuals themselves evolve their own
learning strategies. One proposal is to create genes controlling a learning strategy
for each individual agent as was done with EVO+IL&SL. Instead of encoding
just one bit for learning mode, we can encode two bits to specify the learning

398 N. Le et al.

rule, whether to be expressed as social or asocial learning. By doing this, we are
able to observe the dynamics of rule changing when the environment changes
over time. The motivation for this is that we want to let evolution to optimise
the learning strategy for each individual agent, as evolution has done for living
organisms, including humans [6].

The paper has empirically verified that social learning should be used in a
savvy way to enhance the behavior of a population, complementing to some
theoretical findings in the trans-disciplinary research on social learning. Future
work will investigate the method and verify the findings in this paper on different
types of problems and landscapes, such as NK-landscape [13] or Artificial Life
and Robotics domains [3,4].

References

1. Baldwin, J.M.: A new factor in evolution. Am. Nat. 30(354), 441–451 (1896)
2. Hinton, G.E., Nowlan, S.J.: How learning can guide evolution. In: Belew, R.K.,

Mitchell, M. (eds.) Adaptive Individuals in Evolving Populations, pp. 447–454.
Addison-Wesley Longman Publishing Co., Inc, Boston (1986)

3. Ackley, D., Littman, M.: Interactions between learning and evolution. In: Langton,
C.G., Taylor, C., Farmer, J.D., Rasmussen, S. (eds.) Artificial Life II, SFI Studies
in the Sciences of Complexity, vol. X, pp. 487–509. Addison-Wesley, Reading (1992)

4. Nolfi, S., Parisi, D., Elman, J.L.: Learning and evolution in neural networks. Adapt.
Behav. 3(1), 5–28 (1994)

5. Heyes, C.M.: Social learning in animals: categories and mechanisms. Biol. Rev.
69(2), 207–231 (1994)

6. Laland, K.N.: Social learning strategies. Learn. Behav. 32, 4–14 (2004)
7. Feldman, M.W., Aoki, K., Kumm, J.: Individual versus social learning: evolution-

ary analysis in a fluctuating environment. Santa Fe Institute, Working Papers
(1996)

8. Wakano, J.Y., Aoki, K., Feldman, M.W.: Evolution of social learning: a mathe-
matical analysis. Theor. Popul. Biol. 66(3), 249–258 (2004)

9. Le, N., O’Neill, M., Brabazon, A.: The Baldwin effect reconsidered through the
prism of social learning. In: IEEE Congress on Evolutionary Computation, CEC
2018, 8–13 Jul forthcoming. IEEE Press, Rio (2018)

10. Hoppitt, W., Laland, K.N.: Social Learning: An Introduction to Mechanisms,
Methods, and Models. Princeton University Press, Princeton (2013)

11. Rogers, A.R.: Does biology constrain culture? Am. Anthropol. 90(4), 819–831
(1988)

12. Richerson, P.J., Boyd, R.: Culture and the Evolutionary Process. University of
Chicago Press, Chicago (1985)

13. Suzuki, R., Arita, T.: Repeated occurrences of the Baldwin effect can guide evo-
lution on rugged fitness landscapes. In: 2007 IEEE Symposium on Artificial Life.
IEEE, April 2007

A First Analysis of Kernels
for Kriging-Based Optimization
in Hierarchical Search Spaces

Martin Zaefferer1(B) and Daniel Horn2

1 Institute of Data Science, Engineering, and Analytics,
TH Köln, Steinmüllerallee 6, 51643 Gummersbach, Germany

martin.zaefferer@th-koeln.de
2 Faculty of Statistics, TU Dortmund University,
Vogelpothsweg 87, 44227 Dortmund, Germany

daniel.horn@tu-dortmund.de

Abstract. Many real-world optimization problems require significant
resources for objective function evaluations. This is a challenge to evolu-
tionary algorithms, as it limits the number of available evaluations. One
solution are surrogate models, which replace the expensive objective.

A particular issue in this context are hierarchical variables. Hierarchi-
cal variables only influence the objective function if other variables sat-
isfy some condition. We study how this kind of hierarchical structure can
be integrated into the model based optimization framework. We discuss
an existing kernel and propose alternatives. An artificial test function is
used to investigate how different kernels and assumptions affect model
quality and search performance.

Keywords: Surrogate model based optimization
Hierarchical search spaces · Conditional variables · Kernel

1 Introduction

When objective function evaluations become expensive, surrogate models may
be employed to reduce the resource consumption in an optimization process.
One challenging issue in this context are conditional or hierarchical variables.
Hierarchical variables are only active (i.e., have an influence on the result) if
other variables fulfill certain conditions. This occurs in many algorithm tuning
problems. For instance, in machine learning algorithms, parameters of an SVM
kernel are only active if that kernel is utilized. Similarly, a variable of a variation
operator in an evolutionary algorithm only has an effect if that operator is actu-
ally used. Such parameters may also occur in engineering problems. For instance,
if a variable defining the amount of energy fed into the system exceeds a certain
level, it may require an additional cooling step which itself has variables.

We require tools to model these cases efficiently. In previous studies, three
alternatives have been employed: Firstly, the hierarchical nature of a variable
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 399–410, 2018.
https://doi.org/10.1007/978-3-319-99259-4_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_32&domain=pdf

400 M. Zaefferer and D. Horn

could be ignored and the data handled by standard modeling methods. This
approach could be suboptimal since the available information on variable activity
is not used. Secondly, a pre-processing step could impute a constant value for
the inactive variables, e.g., the mean, or some lower/upper bound [1–3]. We refer
to this as the imputation approach. Thirdly, the information about hierarchical
variables can be incorporated into the modeling process. It can be be integrated
into the kernel, e.g., the Arc-kernel [4,5]. In other approaches, Gaussian processes
are placed on the leaves of a tree structure that is assumed to represent the
hierarchical dependencies of the variables [6–8].

In this article, we focus on kernels in the context of the third case, and propose
alternatives to the Arc-kernel. We present a numerical comparison based on a
simple test function to verify that the performance of these kernels meets our
expectations. We aim to answer the following research questions:

1. Do kernels have to incorporate knowledge about the search space hierarchy?
2. When should which kernel be used?
3. Does definiteness of the kernel play a role?

We give a short introduction to model based optimization in Sect. 2 and
to Kriging models in Sect. 3. Afterwards, we introduce kernels for hierarchical
search spaces in Sect. 4. We describe our experimental setup in Sect. 5 and ana-
lyze the results in Sect. 6. A final evaluation and outlook on future work is given
in Sect. 7.

2 Surrogate Model-Based Optimization

Let f : X = X1×X2×· · ·×Xd → R be a black-box function with a d-dimensional
input domain and a deterministic output y. Each Xi can either be numeric and
bounded (Xi = [li, ui] ⊂ R) or categorical. We want to solve the optimization
problem (OP) and find the input x∗ = argminx∈X f(x). We assume that evalu-
ations of f are expensive, which limits the number of evaluations severely.

Sequential model-based optimization (SMBO) is a state-of-the-art method for
solving expensive OPs. It is based on the Efficient Global Optimization (EGO)
procedure [9]. First, SMBO samples and evaluates an initial set of candidate
solutions. Then, a surrogate regression model is fitted to the data. The model
is optimized with respect to an infill criterion in order to find a new, promising
candidate x∗. The candidate x∗ is evaluated with f and added to the data
set. This allows to train an improved surrogate model. The procedure iterates
until a stopping criterion is reached, e.g., a budget on the number of function
evaluations. A detailed introduction is given by Bischl et al. in [10].

Four components of the SMBO procedure have to be specified: the gener-
ation of the initial candidate set, the surrogate model, the infill criterion and
the optimizer of the infill criterion. We use Latin Hypercube Sampling (LHS),
Kriging models, the expected improvement criterion and Differential Evolution
(DE) [11]. Our methods can be easily extended to other SMBO variants that
employ kernel-based models.

A First Analysis of Kernels for Kriging-Based Optimization 401

3 Kriging

Frequently, SMBO employs Kriging models, which interpret observations as real-
izations of a Gaussian process. Forrester et al. [12] give a detailed description.
In its core, Kriging models the correlation between observations, e.g., with an
exponential correlation function k(x,x′) = exp(−θ · d(x,x′)). Here, x and x′

are samples, θ is a kernel parameter and d(x,x′) is a distance function, e.g., the
Euclidean distance if x is real valued. The correlation matrix K collects all pair-
wise correlations. Usually, correlation functions should be positive semi-definite
(PSD), i.e., all eigenvalues of K are non-negative. The Kriging predictor is:

ŷ(x) = μ̂ + kTK−1(y − 1μ̂),

where y are the training observations, μ̂ represents the process mean, 1 is a vector
of ones and k is the column vector of correlations between the set of training
samples X and the new sample x. All parameters are usually determined by
Maximum Likelihood Estimation (MLE). Kriging is a popular choice in SMBO
algorithms, as it provides an estimate of the prediction uncertainty:

ŝ2(x) = σ̂2(1 − kTK−1k),

where the process variance σ̂ is also determined by MLE. The estimate ŝ2(x)
can be used to balance exploration and exploitation by computing the Expected
Improvement (EI) of candidate solutions [13]. The EI is a frequently employed
infill criterion, e.g., in EGO [9].

Kriging also allows to deal with noisy data, using the so called nugget effect.
The nugget adds a small constant η > 0 to the diagonal of K. Thus, the otherwise
interpolating Kriging model is able to regress the data, introducing additional
smoothness into the predicted value. The nugget effect may also help to increase
the numerical stability. A re-interpolation approach can be used to avoid that
the nugget effect deteriorates the uncertainty estimate [12].

4 Kernels for Hierarchical Search Spaces

Hierarchical variables can be defined as variables that are only active if other
variables fulfill a condition. An active variable has an impact on the objective
function value. We use the notation of Hutter and Osborne [4]: a function δi(x)
determines whether the i-th variable of x is active (δi(x) = true) or not (false).
In the following, only the per-variable distance di(xi, x

′
i) will be introduced for

each kernel. The combined kernel structure is identical for all cases unless stated
otherwise, i.e., k(x,x′) = exp(−∑d

i=1 di(xi, x
′
i)). We describe an existing kernel

(Arc) and propose four alternatives (Ico, IcoCorrected, Imp, ImpArc).

4.1 The Arc-Kernel

The Arc-kernel proposed by Hutter and Osborne [4] is specifically developed
to handle hierarchical structures. It is based on three assumptions. First, if a

402 M. Zaefferer and D. Horn

hierarchical variable is inactive in two configurations x and x′, then the distance
in that dimension should be zero. Second, if it is active in both configurations,
the distance depends on the respective variable values. Third, if the variable is
only active in one configuration, the distance should be a constant, because no
information is available to compare an inactive with an active variable.

An embedding is required to encode these assumptions in valid distance mea-
sures that yield a PSD kernel. It is for continuous variables [4]:

dArci(xi, x
′
i) =

⎧
⎪⎨

⎪⎩

0, if δi(x) = δi(x′) = false
θi, if δi(x) �= δi(x′)

θi

√
2 − 2 cos(πρi

xi−x′
i

ui−li
), if δi(x) = δi(x′) = true

(1)

The kernel variables θi ∈ R
+ and ρi ∈ [0, 1] are determined by MLE. A respective

measure for categorical variables can be found in [4]. We follow up on [5] and
skip the notion of putting further restrictions on θi to encode lower importance
of lower hierarchical levels as proposed in [4]. Moreover, we use the square of the
distance in the embedded space (i.e., removing the square root in Eq. (1)), since
we also use squared deviations in all other distances.

4.2 Indefinite Conditional Kernel

We propose a simplified alternative to the Arc-kernel:

dIcoi(xi, x
′
i) =

⎧
⎨

⎩

0, if δi(x) = δi(x′) = false
ρi, if δi(x) �= δi(x′)
θidi(xi, x

′
i), if δi(x) = δi(x′) = true

Here, di(xi, x
′
i) is an appropriate default distance (numerical: square deviation

(xi − x′
i)

2, categorical: Hamming distance). The distance parameter ρi ∈ R
+ is

determined by MLE. The kernel follows the same intuitive assumptions as dArc,
but it does not use the complicated cylindrical embedding. This may lead to
indefinite kernel matrices for some data sets or choices of parameters. Due to
this, it will be denoted as the indefinite conditional kernel, or Ico-kernel.

As a variant of the Ico-kernel, the IcoCorrected (IcoCor) kernel is the same
kernel subject to a correction via a spectrum-flip. This transformation of the
eigenspectrum generates PSD kernel matrices from indefinite kernels, cf. [14].
Note, that the nugget effect may also correct issues with definiteness if η is large
enough. Thus, even the uncorrected Ico-kernel can produce a valid model.

4.3 Imputation Kernel

Alternatively, we propose a simple PSD kernel. It is based on a different assump-
tion: If the hierarchical variable is only active in one of two configurations
(δi(x) �= δi(x′)), their distance in that dimension is not assumed to be constant.
Rather, it is assumed that the value of the active configuration does influence the

A First Analysis of Kernels for Kriging-Based Optimization 403

dissimilarity. This is achieved by introducing a kernel parameter against which
the respective active value is compared. Thus,

dImpi(xi, x
′
i) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if δi(x) = δi(x′) = false
θidi(x′

i, ρi), if δi(x) = false �= δi(x′)
θidi(xi, ρi), if δi(x) = true �= δi(x′)
θidi(xi, x

′
i), if δi(x) = δi(x′) = true

where di is again the appropriate default distance (square deviation, Hamming)
and ρi is of the same data type as xi. For real xi, the bounds of xi and ρi can
differ. We use ρi ∈ [li − a, ui + a] ⊂ R with a = 2 ∗ (ui − li). Larger bounds
may be necessary, depending on the problem. Similarly, if xi is categorical ρi can
have one more level (category) than xi, to emulate the case where none of the
other levels is a good replacement. An exponential kernel based on dImpi(xi, x

′
i)

can be proven to be PSD. Using proposition 2 in [4], we only need to show
that there exists a mapping function fi(xi) that maps to a space in which a
valid distance can be used, i.e., dImpi(xi, x

′
i) = di(fi(xi), fi(x′

i)). For dImp, the
mapping function is

fi(xi) =
{

xi if δi(x)
ρi otherwise.

Hence, the resulting kernel based on di(fi(xi), fi(x′
i)) is PSD.

Clearly, this kernel has relations to the imputation approach mentioned in
Sect. 1. Essentially, inactive values are replaced by an imputed value ρi. Instead
of choosing that value a-priori, it is defined as a parameter and determined by
MLE. Hence, it will be denoted as the imputation kernel or Imp-kernel. One
drawback of this kernel is, that if xi is categorical, ρi is also categorical. This
may complicate the MLE procedure. Also, the assumption that some value can
be imputed is less conservative than the assumptions of the Arc-kernel.

4.4 The Imputation-Arc Kernel

When it is unclear whether the Arc- or Imp-kernel is more appropriate, we
suggest a linear combination denoted as the ImpArc-kernel,

kImpArc(x,x′) = exp(−
d∑

i=1

β1,idArci(xi, x
′
i) + β2,idImpi(xi, x

′
i)),

with weights βk,i ∈ R
+ determined by MLE. Other combinations (e.g., Ico-Imp,

Imp-Arc-Ico) are possible. We only test the ImpArc combination, because the
Ico- and Arc-kernel express very similar information. Also, a three-way combi-
nation would require to learn an additional weight β3,i.

5 Experimental Setup

While synthetic, tree-based test functions for hierarchical search spaces have
been proposed by Jenatton et al. [8], they are not able to respect the different

404 M. Zaefferer and D. Horn

definitions and assumptions of our kernels. Hence, we suggest a simple two-
dimensional quadratic function

f(x) = (x1 − d)2 +
{

0 if x1 ≤ c
(x2 − 0.5)2 + b else .

The function’s behavior (see Fig. 1) is defined by the constants b, c and d. The
constant b controls whether the Imp-kernel is a good match, c controls the size
of the active region and d controls the location of the optimum. The function
is influenced by the hierarchical variable x2 only if x1 > c and does have a
discontinuity at x1 = c. For b = 0, the function is continuous at x2 = 0.5. Hence,
the if-else term of f(x) yields identical results if x2 = 0.5 and if δ2(x) = false. In
this case, the assumption of the Imp-kernel is fulfilled, i.e., the kernel definition
matches the problem structure. The Imp-kernel should learn to impute ρ = 0.5.

We identified five situations with different expected performances.

(A) d < c (the optimum is in the inactive region of x2 at x1 = d, x2 ∈ R) and
b = 0 (imputation potentially profitable). The function is unimodal.

(B) d < c (the optimum is in the inactive region at x1 = d, x2 ∈ R) but b > 0
(imputation potentially unprofitable). The function is unimodal.

(C) d > c (the optimum is in the active region at x1 = d, x2 = 0.5) and b = 0
(imputation potentially profitable). The function is bimodal.

(D) d > c (the optimum is in the active region at x1 = d, x2 = 0.5) and b =
0.1 (imputation potentially unprofitable) and b < (c − d)2. The function is
bimodal. The discontinuity at c is not as important, since the optimum is
remote from it.

(E) d > c (the optimum is in the active region at x1 = c, x2 ∈ R) and b =
0.1 (imputation potentially unprofitable) and b > (c − d)2. The function
is bimodal. The discontinuity at c has to be approximated well, since the
optimum is at x1 = c.

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●

b = 0.1, c = 0.4, d = 0.7 b = 0.0, c = 0.6, d = 0.1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x1

x2

0.25

0.50

0.75

1.00
value

Fig. 1. Visualization of the test function, the optimum is marked in yellow. (Color
figure online)

A First Analysis of Kernels for Kriging-Based Optimization 405

Covering all of these five situations, we tested all combinations of the values
b = {0, 0.1}, c = {0.2, 0.4, 0.6, 0.8}, and d = {0.1, 0.3, 0.5, 0.7, 0.9}.

To estimate model quality, we measured the model’s Root Mean Squared
Error (RMSE). The models were trained with 10, the error was estimated
on 1 000 uniform random samples. The Kriging model was trained with the
CEGO package in R [15,16]. It was configured to use the nugget effect and re-
interpolation. The Dividing Rectangles algorithm [17] was chosen to optimize
the model parameters via 200 likelihood evaluations. We used all kernels from
Sect. 4 and a standard exponential kernel with square deviation in each dimen-
sion (which does not incorporate hierarchical information), denoted as the Stan-
kernel.

The same type of model was used in the SMBO algorithm from the CEGO
package. The search was limited to 10 evaluations of f(x), due its low difficulty,
low dimensionality and assumed cost. The search was initialized with three uni-
form random samples. Based on the model, the EI criterion was optimized by
DE [11]. We used the DEoptim package [18] with 10 000 EI evaluations per itera-
tion and used default parameters otherwise. Each experiment was repeated 100
times, with 100 unique random seeds (one per replication). We recorded the dif-
ference between the best found and the optimal function value (suboptimality)
for each replication.

6 Results

First, we analyze the model quality produced by the different kernels. Figure 2
shows the median RMSE value for all parameter constellations and kernels.
Clearly, the fit of the Stan-kernel is inferior to most specialized hierarchical
kernels for almost all parameter constellations, especially if b = 0.1.

If b = 0, the assumption of the Imp-kernel is fulfilled. Hence, both the Imp-
and the ImpArc-kernel produce a better fit than most other kernels. However, for
b = 0.1, the Imp-kernel mostly has the second or third worst performance. Only
the Stan-kernel and sometimes the IcoCorrected-kernel perform worse. The Arc-
and the Ico-kernel achieve very similar performances in most cases, with near-
to-best performance if b = 0.1. The ImpArc-kernel, combining the advantages
of the Arc- and the Imp-kernel, has a good, sometimes best fit in all situation,
for both b ∈ {0, 0.1}. Contrarily, the IcoCorrected-kernel has a rather poor fit
in several cases, sometimes even worse than the Stan-kernel. Overall, differences
between kernels tend to disappear for large values of c, which is to be expected
due to the reduced influence of the hierarchical variable x2.

To get a better understanding of the kernels, we visualize an example for
Situation E with (b, c, d) = (0.1, 0.4, 0.7). Figure 3 shows line plots for the test
function as well as fitted models for all six kernels, trained with ten uniform
random samples. Here, the global optimum is at x1 = c = 0.4, i.e., at the jump
discontinuity. The function value of the global optimum (0.09) is only slightly
better than the value of the local optimum (0.1) at (x1 = 0.7, x2 = 0.5). Hence,
to find the global optimum, it is important to model the discontinuity well.

406 M. Zaefferer and D. Horn

d = 0.1 d = 0.3 d = 0.5 d = 0.7 d = 0.9

b = 0.0
b = 0.1

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0.025

0.050

0.075

0.025

0.050

0.075

c

m
ed

ia
n(
rm

se
)

kernel
Arc

Stan

Ico

IcoCorrected

Imp

ImpArc

Fig. 2. Median RMSE values over 100 replications for all configurations and kernels.

The Stan-kernel is not able to model the discontinuity and therefore tries
to fit a smooth curve to the function. Hence, the Stan-kernel approximates the
optimum poorly. For x1 = 0.5 the model of the Imp-kernel shares the poor
performance of the Stan kernel: It is not able to fit the discontinuity. Still, the fit
is much closer to the true objective function. For x1 = 0.75 the Imp-kernel is able
to fit the discontinuity, but the fit is inferior to the Arc-, Ico- and ImpArc-kernel.
All of them reproduce the discontinuity quite well. However, their approximation
of the function for x1 > c, x2 = 0.75 has a strong offset. While this is not a perfect
fit, it will not necessarily deteriorate optimization performance. The model based
on the IcoCorrected-kernel is able to reproduce the discontinuity, but the jump
is not large enough to identify the optimum at x1 = 0.4.

Next, we analyze the optimization performance. Due to space restrictions,
we present statistical test results that summarize the experimental data. Follow-
ing Demšar [19], we apply Friedman and corresponding post-hoc Nemenyi tests
in order to find significant differences between the kernels, using the function
parameters b, c and d as blocking variables for the tests. We extend Demšar’s
approach, since we do not apply our tests to the median suboptimalities. Instead,
we use the replication identifier as an additional blocking variable. This accounts
for the effect of the initial design. We visualize the test results using ordered
graphs that present a rough order on the kernels.

We start by investigating the combined results of all optimization experi-
ments. With a p-value that is numerically approximating zero (< 10−16), the
Friedman-test indicates that there are significant differences between the differ-
ent kernels. Note, if differences are present p-values tend to be small due to the

A First Analysis of Kernels for Kriging-Based Optimization 407

x2 = 0.50 x2 = 0.75

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.0

0.1

0.2

0.3

0.4

x1

y

kernel
f

Arc

Ico

IcoCor

Imp

ImpArc

Stan

Fig. 3. Example fits of the kernels. Two slice planes are shown for x2 ∈ {0.5, 0.75}.

large number of experiment replications, and differentiating between significant
and relevant differences is an open issue in the analyses of computer experiments.

Figure 4 shows the results of the corresponding Nemenyi-test, including a
graph representation of the test results as well as mean ranks for each kernel.
As expected, the Stan-kernel is clearly outperformed by all other kernels. For
the other kernels, we can identify two groups: The Imp- and the ImpArc-kernel
seem to perform slightly better than the rest. Within each group, there are
no significant differences between the kernels, while tests between kernel from
groups are significant. It is questionable how reliable this result is. We expect
diverse behavior of the kernels in the five situation and the overall performance
is of course influenced by the selection of the specific test instances. Hence, we
will now examine individual tests for situations A to E.

As in the global situation, all Friedman-tests result into very small p-values
(numerically approximating zero). Hence, there is evidence for significant differ-
ences between at least some kernels in each situation. Figure 5 shows the results

Imp
3.20

ImpArc
3.23

Ico
3.40

Arc
3.41

IcoCor
3.41

Stan
4.35

Legend

significant to niveau 10−12

significant to niveau 10−6

significant to niveau 0.01

significant to niveau 0.1

Fig. 4. Ordering of the six kernels with respect to their mean ranks (printed below
each kernel) over all test instances. A path (possibly using multiple edges) between
two kernels denotes a significant difference of the post-hoc Nemenyi test, the directions
of the arrows follows the ordering of the mean ranks.

408 M. Zaefferer and D. Horn

of the post-hoc Nemenyi-tests in all five situations. In situation A and C, the
assumption of the Imp-kernel is fulfilled, since b = 0 allows for imputation. This
is reflected by the results: In both situations A and C the Imp-kernel performs
best. The Imp-kernel outperforms the Arc- and Ico-kernel with a large mar-
gin in situation C. Contrarily, in situation B (unimodal, not imputable) and
E (bimodal, not imputable), where the imputation assumption is violated, the
Imp-kernel performance is inferior. These observations fit to our expectations: b
controls whether or not the Imp-kernel is able to find a good value to impute.

The Arc- and the Ico-kernel have similar results in most situations, except
for situation C. This confirms that these kernels encode similar information,
and it also shows that the indefiniteness of the Ico-kernel does not seem to
impact optimization performance. At least, the indefiniteness is sufficiently well
mitigated by the employed nugget effect.

While performing reasonably well, the ImpArc-kernel never achieves a top
performance. It is usually positioned in the second-best group. This can be
explained by the fact that it attains some middle ground between the kernels

A

Imp
3.01

ImpArc
3.29

Ico
3.35

Arc
3.41

IcoCor
3.90

Stan
4.03

B

Imp
3.52

ImpArc
3.41

Ico
2.89

Arc
3.02

IcoCor
3.55

Stan
4.62

C

Imp
2.28

ImpArc
3.01

Ico
4.18

Arc
3.77

IcoCor
3.64

Stan
4.13

DImp
3.23

ImpArc
3.51

Ico
3.83

Arc
3.80

IcoCor
3.23

Stan
3.40

E

Imp
4.33

ImpArc
3.05

Ico
2.90

Arc
3.28

IcoCor
2.30

Stan
5.15

Legend

significant to niveau 10−12

significant to niveau 10−6

significant to niveau 0.01

significant to niveau 0.1

Fig. 5. Ordering of the kernels in the five situations with respect to their mean ranks
(printed below each kernel) over all test instances. A path (possibly using multiple
edges) between two kernels denotes a significant difference of the post-hoc Nemenyi
test the directions of the arrows follows the ordering of the mean ranks.

A First Analysis of Kernels for Kriging-Based Optimization 409

that it combines. The IcoCorrected-kernel performs poorly in some situations (A,
B, C), but it performs best in situation E. Poor performance may be caused by
inconsistencies in the employed definiteness repair methods. However, it remains
unclear to us why the performance is distinctively better in situation E.

Situation D (bimodal, not imputable) has a rather special behavior. Only
few distinct differences between the kernels can be detected. Moreover, it is the
only situation in which the Stan kernel does not perform in the worst group.
We suggest that this is due to the fact that modeling the discontinuity is not as
important here. The optimum lies in the region where x2 is active, hence it may
even be detrimental to model the discontinuity. That means, if the optimum is far
enough from the discontinuity, it may be helpful to smoothen through the local
optimum that lies at the discontinuity, since this will drive the search towards
the global optimum. This could also explain why the Imp-kernel outperforms
the Arc-kernel in situation D, despite b = 0.1.

7 Conclusion and Outlook

We investigated different kernels for SMBO in hierarchical search spaces, e.g., the
Arc-kernel previously proposed by Hutter and Osborne [4], the Ico-kernel which
is similar, yet indefinite, and the Imp-kernel which attempts to learn suitable
imputed values for inactive variables. We tested both the model quality and the
optimization performance of six kernels, and received consistent results. Hence,
we can answer our research questions and deduct simple recommendations for
choosing a kernel.

1. The hierarchical structure should be incorporated into the kernel.
2. The Imp-kernel should be chosen if it is a-priori known that its assumption

is fulfilled. If the assumption is violated, the Arc- and Ico-kernel are good
choices. Without prior knowledge, the ImpArc-kernel is a sound compromise.

3. We did not observe many significant differences between the Arc- and the
Ico-kernel. The kernels’ definiteness does not seem to have a strong impact.

These result rely on tests with a rather simple test function, and hence have
to interpreted with care. Devising more complex test functions with higher input
dimensions is clearly of interest. But while artificial tests are instructive due to
their controlled behavior, it is not always clear how this translates to real world
problems. Hence, it would be desirable to make tests with real world applications,
such as algorithm tuning.

Furthermore, it would be interesting to let the infill optimizer exploit the
information on variable activity, to avoid searching in inactive areas of the search
space. The same is true for the initialization of the SMBO algorithm. Spreading
a space-filling design in inactive areas is wasteful.

Finally, all discussed distances di(xi, x
′
i) are defined for a single dimension i.

Therefore, we are not limited to a single choice. Rather, different distances can
be chosen for each dimension (e.g., Arc for xi, and Imp for xj �=i).

410 M. Zaefferer and D. Horn

References

1. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA. In: Pro-
ceedings of the 19th International Conference on Knowledge Discovery and Data
Mining. ACM Press (2013)

2. Horn, D., Bischl, B.: Multi-objective parameter configuration of machine learning
algorithms using model-based optimization. In: 2016 IEEE Symposium Series on
Computational Intelligence (SSCI) (2016)

3. Cáceres, L.P., Bischl, B., Stützle, T.: Evaluating random forest models for irace. In:
Proceedings of the Genetic and Evolutionary Computation Conference Companion.
ACM Press (2017)

4. Hutter, F., Osborne, M.A.: A kernel for hierarchical parameter spaces. Technical
report arXiv:1310.5738, arXiv (2013)

5. Swersky, K., Duvenaud, D., Snoek, J., Hutter, F., Osborne, M.: Raiders of the lost
architecture: kernels for Bayesian optimization in conditional parameter spaces. In:
NIPS workshop on Bayesian Optimization in Theory and Practice (2013)

6. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: Advances in Neural Information Processing Systems, vol. 24.
Curran Associates, Inc. (2011)

7. Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: hyperparame-
ter optimization in hundreds of dimensions for vision architectures. In: Proceedings
of the 30th International Conference on Machine Learning, PMLR (2013)

8. Jenatton, R., Archambeau, C., González, J., Seeger, M.: Bayesian optimization
with tree-structured dependencies. In: Proceedings of the 34th International Con-
ference on Machine Learning, PMLR (2017)

9. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

10. Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., Lang, M.: mlrMBO: a
modular framework for model-based optimization of expensive black-box functions.
arXiv preprint arXiv:1703.03373 (2017)

11. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

12. Forrester, A., Sobester, A., Keane, A.: Engineering Design Via Surrogate Mod-
elling. Wiley, Hoboken (2008)

13. Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for
seeking the extremum. In: Towards Global Optimization, North-Holland, vol. 2
(1978)

14. Zaefferer, M., Bartz-Beielstein, T.: Efficient global optimization with indefinite
kernels. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter,
B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 69–79. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45823-6 7

15. Zaefferer, M.: Combinatorial efficient global optimization in R - CEGO v2.2.0
(2017). https://cran.r-project.org/package=CEGO. Accessed 10 Jan 2018

16. Zaefferer, M., Stork, J., Friese, M., Fischbach, A., Naujoks, B., Bartz-Beielstein,
T.: Efficient global optimization for combinatorial problems. In: Proceedings of the
Genetic and Evolutionary Computation Conference. ACM (2014)

17. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without
the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

18. Mullen, K., Ardia, D., Gil, D., Windover, D., Cline, J.: DEoptim: an R package for
global optimization by differential evolution. J. Stat. Softw. 40(6), 1–26 (2011)

19. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

http://arxiv.org/abs/1310.5738
http://arxiv.org/abs/1703.03373
https://doi.org/10.1007/978-3-319-45823-6_7
https://doi.org/10.1007/978-3-319-45823-6_7
https://cran.r-project.org/package=CEGO

Challenges in High-Dimensional
Reinforcement Learning with Evolution

Strategies

Nils Müller and Tobias Glasmachers(B)

Institut für Neuroinformatik, Ruhr-Universität Bochum, Bochum, Germany
{nils.mueller,tobias.glasmachers}@ini.rub.de

Abstract. Evolution Strategies (ESs) have recently become popular for
training deep neural networks, in particular on reinforcement learning
tasks, a special form of controller design. Compared to classic problems in
continuous direct search, deep networks pose extremely high-dimensional
optimization problems, with many thousands or even millions of vari-
ables. In addition, many control problems give rise to a stochastic fitness
function. Considering the relevance of the application, we study the suit-
ability of evolution strategies for high-dimensional, stochastic problems.
Our results give insights into which algorithmic mechanisms of mod-
ern ES are of value for the class of problems at hand, and they reveal
principled limitations of the approach. They are in line with our the-
oretical understanding of ESs. We show that combining ESs that offer
reduced internal algorithm cost with uncertainty handling techniques
yields promising methods for this class of problems.

1 Introduction

Since the publication of DeepMind’s Deep-Q-Learning system [18] in 2015, the
field of (deep) reinforcement learning (RL) [34] is developing at a rapid pace. In
[18] neural networks learn to play classic Atari 2600 games solely from interac-
tion, based on raw (unprocessed) visual input. The approach had a considerable
impact because it demonstrated the great potential of deep reinforcement learn-
ing. Only one year later AlphaGo [8] demystified the ancient game of Go by
beating multiple human world experts. In this rapidly moving field, Evolution
Strategies (ESs) [4,22,30] have gained considerable attention by the machine
learning community when OpenAI promoted them as a “scalable alternative to
reinforcement learning” [17], which spawned several follow-up works [6,9].

Already long before deep RL, controller design with ESs was studied for many
years within the domain of neuroevolution [16,23,24,29,32,33]. The optimiza-
tion of neural network controllers is frequently cast as an episodic RL problem,
which can be solved with direct policy search, for example with an ES. This
amounts to parameterizing a class of controllers, which are optimized to max-
imize reward or to minimize cost, determined by running the controller on the
task at hand, often in a simulator. The value of the state-of-the-art covariance
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 411–423, 2018.
https://doi.org/10.1007/978-3-319-99259-4_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_33&domain=pdf

412 N. Müller and T. Glasmachers

matrix adaptation evolution strategy (CMA-ES) algorithm [22] for this problem
class was emphasized by several authors [16,23]. CMA-ES was even augmented
with an uncertainty handling mechanism, specifically for controller design [14].

The controller design problems considered in the above-discussed papers are
rather low-dimensional, at least compared to deep learning models with up to
millions of weights. CMA-ES is rarely applied to problems with more than 100
variables. This is because learning a full covariance matrix introduces non-trivial
algorithm internal cost and hence prevents the direct application of CMA-ES to
high-dimensional problems. In recent years it turned out that even covariance
matrix adaptation can be scaled up to very large dimensions, as proven by a series
of algorithms [1,11,28,31], either by restricting the covariance matrix to the
diagonal, to a low-rank model, or to a combination of both. Although apparently
promising, none of these approaches was to date applied to the problem of deep
reinforcement learning.

Against this background, we investigate the suitability of evolution strategies
in general and of modern scalable CMA-ES variants in particular for the design of
large-scale neural network controllers. In contrast to most existing studies in this
domain, we approach the problem from an optimization perspective, not from a
(machine) learning perspective. We are primarily interested in how different algo-
rithmic components affect optimization performance in high-dimensional, noisy
optimization problems. Our results provide a deeper understanding of relevant
aspects of algorithm design for deep neuroevolution.

The rest of the paper is organized as follows. After a brief introduction to
controller design we discuss mechanisms of evolution strategies in terms of con-
vergence properties. We carry out experiments on RL problems as well as on
optimization benchmarks, and close with our conclusions.

2 Problems Under Study

General Setting. In this paper, we investigate the utility of evolution strategies
for optimization problems that pose several difficulties at the same time:

– a large number d of variables (high dimension of the search space R
d),

– fitness noise, i.e., the variability of fitness values f(x) when evaluating the
non-deterministic fitness function multiple times in the same point x, and

– multi-modality, i.e., the presence of a large number of local optima.

Additionally, a fundamental requirement of relatively quick problem evaluation
time (typically requiring simulation of real world phenomena) is appropriate.

State-of-the-art algorithms like CMA-ES can handle dimensions of up to
d ≤ 100 with ease. They become painfully slow for d ≥ 1000 due to their time
and memory requirements. In this sense, a high-dimensional problem is charac-
terized by d ≥ 1000. Yet, recent advances led to the successful application of
ESs with a diagonal and/or low-rank model of the covariance matrix to up to
500,000-dimensional (noise-free) problems [28]. Mainly fueled by the reduction of
internal algorithm cost, modern ESs thereby become applicable to new classes of

Challenges in High-Dimensional Reinforcement Learning 413

problems. Deep reinforcement learning problems present such a new challenge,
characterized by a combination of three aspects, namely high search space dimen-
sion, fitness noise, and multi-modality. While neural networks are known to give
rise to highly multi-modal landscapes, several recent studies suggest that many
if not all local optima are of good or even equal quality [27]. Furthermore, the
problem can be addressed effectively with simple generic methods like restarts.
Therefore we focus on the less well understood interaction of noise and high
dimensions. As several components of modern ESs are impaired by uncertainty
and sparsity in sampling, their merit—especially as with increasing dimension
the relative share of function evaluations becomes prevalent in time—needs to
be assessed. To this end, we draw from previous work on uncertainty handling
[3,14,36] in order to face fundamental challenges like a low signal-to-noise ratio.

Despite the greater generality of the described problem setting, a central
motivation for studying the above problem class is controller design. In evolu-
tionary controller design, an individual (a candidate controller) is evaluated in
a Monte Carlo manner, by sampling its performance on a (simulated) task, or
a set of tasks and conditions. Stochasticity caused by random state transitions
and randomized controllers is a common issue. Due to complex and stochas-
tic controller-environment interactions, controller design is considered a difficult
problem, and black-box approaches like ESs are well suited for the task, in par-
ticular, if gradients are not available.

Reinforcement Learning. In reinforcement learning, control problems are typi-
cally framed as stochastic, time-discrete, Markov decision processes (S,A, P·,·(·),
R·(·, ·), γ) with the notion of a (software) agent embedded in an environment.
The agent ought to take an action a ∈ A when presented with a state s ∈ S
of the environment in order to receive a reward (s, s′, a) �→ Rs(s′, a) ∈ R for a
resulting state transition to new state s′ ∈ S in the next time step. An indi-
vidual encodes a (possibly randomized) controller or policy πθ : S → A with
parameters θ ∈ Θ, which is followed by the agent. It is assumed that each
policy yields a constant expected cumulative reward over a fixed number of
actions τ taken when acting according to it, as the state transition probability
(s, s′, a) �→ Ps,a(s′) = Pr(s′ = s′|s = s,a = a), to a successor state s′ is sta-
tionary (time-independent) and depends only on the current state and action
(Markov property), for all s, s′ ∈ S, a ∈ A. This cumulative reward acts as a
fitness measure Fπ : Θ → R, while the policy parameters θ (e.g., weights of
neural networks πθ) are the variables of the problem. Thus, we consider the
(reinforcement learning) optimization problem

min
θ∈Θ

Fπ(θ) = −
∑

s0,...,sτ ∈S

(
τ−1∑

k=0

γkRsk
(sk+1, πθ(sk))

)
·
⎛

⎝
τ−1∏

j=0

Psj ,πθ(sj)(sj+1)

⎞

⎠ ,

where γ ∈ (0, 1] is a discount factor.
Developments in RL demonstrated the merit in utilizing “model-free”

approaches to the design of high-dimensional controllers such as neural

414 N. Müller and T. Glasmachers

Algorithm 1. Generic Evolution Strategy Template
1: initialize λ, m ∈ R

d, σ > 0, C = I
2: repeat
3: repeat
4: for i ← 1, . . . , λ do
5: sample offspring xi ∼ N (m, σ2C)
6: evaluate fitness f(xi) by testing the controller encoded by xi on the task
7: actual optimization: update m
8: step size control: update σ
9: covariance matrix adaptation: update C

10: uncertainty handling, i.e., adapt λ or the number of tests per fitness evaluation
11: until stopping criterion is met
12: prepare restart, i.e., set new initial m, σ, and λ, and reset C ← I
13: until budget is used up
14: return m

networks for solving a variety of tasks previously inaccessible [8,18], as well
as novel frameworks for scaling evolution strategies to CPU clusters [17].

ESs have advantages and disadvantages compared to alternative approaches
like policy gradient methods. Several mechanisms of ESs add robustness to the
search. Modeling distributions over policy parameters as done explicitly in nat-
ural evolution strategies (NES) [7] and also in CMA-ES serves this purpose [12],
and so do problem-agnostic algorithm design and strong invariance properties.
Direct policy search does not suffer from the temporal credit assignment prob-
lem or from sparse rewards [17]. ESs have demonstrated superior exploration
behavior, which is important to avoid a high bias when sampling the environ-
ment [13]. On the contrary, ESs ignore the information contained in individual
state transitions and rewards. This inefficiency can (partly) be compensated by
better parallelism in ESs [17].

3 Evolution Strategies

In this section, we discuss Evolution Strategies (ESs) from a bird’s eye perspec-
tive, in terms of their central algorithmic components, and without resorting to
the details of their implementation. For actual exemplary algorithm instances
with the properties under consideration, we refer to the literature. Algorithm 1
summarizes commonly found mechanisms without going into any details.

ESs enjoy many invariance properties. This is generally considered a sign
of good algorithm design: due to their rank-based processing of fitness values,
they are invariant to strictly monotonically increasing transformations of fitness;
furthermore, they are invariant to translation, rotation, and scaling provided that
the initial distribution is transformed accordingly, and with CMA (see below)
they are even asymptotically invariant under arbitrary affine transformations.

Challenges in High-Dimensional Reinforcement Learning 415

Step Size Control. The algorithms applied to RL problems in [6,9,17] are
designed in the style of non-adaptive algorithms, i.e., applying a mutation dis-
tribution with fixed parameters σ and C, adapting only the center m. This
method is known to converge as slowly as pure random search [21]. Therefore
it is in general imperative to add step size adaptation, which has always been
an integral mechanism since the inception of the method [4,30]. Cumulative
step size adaptation (CSA) is a state-of-the-art method [22]. Step size control
enables linear convergence on scale invariant (e.g., convex quadratic) functions,
and hence locally linear convergence into twice continuously differentiable local
optima [21], which puts ESs into the same class as many gradient-based meth-
ods. It was shown in [35] that convergence of rank-based algorithms cannot be
faster than linear. However, the convergence rate of a step size adaptive ESs is
of the form O(1/(kd)), where d is the dimensionality of the search space and k
is the condition number of the Hessian in the optimum. In contrast, the con-
vergence rate of gradient descent suffers from large k, but is independent of the
dimension d.

Metric Learning. Metric adaptation methods like CMA-ES [5,7,22] improve
the convergence rate to O(1/d) by adapting not only the global step size σ
but also the full covariance matrix C of the mutation distribution. However,
estimating a suitable covariance matrix requires a large number of samples, so
that fast progress is made only after O(d2) fitness evaluations, which is in itself
prohibitive for large d. Also, the algorithm internal cost for storing and updating
a full covariance matrix and even for drawing a sample from the distribution is at
least of order O(d2), which means that modeling the covariance matrix quickly
becomes the computational bottleneck, in particular if the fitness function scales
linear with d, as it is the case for neural networks.

Several ESs for large-scale optimization have been proposed as a remedy
[1,11,20,28,31]. They model only the diagonal of the covariance matrix and/or
interactions in an O(1) to O(log(d)) dimensional subspace, achieving a time and
memory complexity of O(d) to O(d log(d)) per sample. The aim is to offer a rea-
sonable compromise between ES-internal and external (fitness) complexity while
retaining most of the benefits of full covariance matrix adaptation. The LM-
MA-ES algorithm [11] offers the special benefit of adapting the fastest evolving
subspace of the covariance matrix with only O(d) samples, which is a significant
speed-up over the O(d2) sample cost of full covariance matrix learning.

Noise Handling. Evolution strategies can be severely impaired by noise, in par-
ticular when it interferes with step size adaptation. Being randomized algo-
rithms, ESs are capable of tolerating some level of noise with ease. In the easy-
to-analyze multiplicative noise model [26], the noise level decays as we approach
the optimum and hence, on the sphere function f(x) = ‖x‖2, the signal-to-noise
ratio (defined as the systematic variance of f due to sampling divided by the
variance of random noise) oscillates around a positive constant (provided that
step size adaptation works as desired [25], keeping σ roughly proportional to
‖m‖/d). For strong noise, this ratio is small. Then the ES essentially performs

416 N. Müller and T. Glasmachers

a random walk, and a non-elitist algorithm may even diverge. Then CSA is
endangered to converge prematurely [2]. For more realistic additive noise, the
noise variance is (lower bounded by) a positive constant. When converging to
the optimum, σ and hence the signal-no-noise-ratio decays to zero. Therefore
progress stalls at some distance to the optimum. Thus there exists a principled
limitation on the precision to which an optimum can be located. Explicit noise
handling mechanisms like [3,14,36] can be employed to increase the precision,
and even enable convergence, e.g., by adaptively increasing the population size
or the number of independent controller test runs per fitness evaluation. They
adaptively increase the population size or the number of simulation runs per
fitness evaluation, effectively improving the signal-to-noise ratio. The algorithm
parameters can be tuned to avoid premature convergence of CSA. However, the
convergence speed is so slow that in practice additive noise imposes a limit on the
attainable solution precision, even if the optimal convergence rate is attained [3].

Noise in High Dimensions. There are multiple ways in which optimization with
noise and in high dimensions interact. In the best case, adaptation slows down
due to reduced information content per sample, which is the case for metric
learning. The situation is even worse for step size adaptation: for the noise-free
sphere problem, the optimal step size σ is known to be proportional to ‖m‖/d.
Therefore, in the same distance to the optimum and for the same noise strength,
noise handling becomes harder in high dimensions. Then the step size can become
too small, and CSA can converge prematurely [2].

4 Experiments

Most of the theoretical arguments brought forward in the previous section are of
asymptotic nature, while sometimes practice is dominated by constant factors
and transient effects. Also, it remains unclear which of the different effects like
slow convergence, slow adaptation, and the difficulty of handling noise is a critical
factor. In this section, we provide empirical answers to these questions.

Well-established benchmark collections exist in the evolutionary computation
domain, in particular for continuous search spaces [15,19]. Typical questions are
whether an algorithm can handle non-separable, ill-conditioned, multi-modal, or
noisy test functions. However, it is not a priori clear which of these properties
are found in typical controller design problems. For example, the optimization
landscapes of neural networks are not yet well understood. Closing this gap is
far beyond the scope of this paper. Here we pursue a simpler goal, namely to
identify the most relevant factors. More concretely, we aim to understand in
which situation (dimensionality and noise strength) which algorithm component
(as discussed in the previous section) has a significant impact on optimization
performance, and which mechanisms fail to pay off.

To this end, we run different series of experiments on established benchmarks
from the optimization literature and from the RL domain. We have published
code for reproducing all experiments online.1 For ease of comparison, we use
1 https://github.com/NiMlr/High-Dim-ES-RL.

https://github.com/NiMlr/High-Dim-ES-RL

Challenges in High-Dimensional Reinforcement Learning 417

the recently proposed MA-ES algorithm [5] adapting the full covariance matrix,
which was shown empirically to perform very similar to CMA-ES. This choice is
motivated by its closeness to the LM-MA-ES method [11], which learns a low-
rank approximation of the covariance matrix. When disabling metric learning
entirely in these methods, we obtain a rather simple ES with CSA, which we
include in the comparison.

Figure 1 shows the time evolution of the fitness Fπ(θ) (Eq. (2)) on three
prototypical benchmark problems from the OpenAI Gym environment [10], a
collection of RL benchmarks: acrobot, bipedal walker, and robopong. All three
controllers πθ (Eq. (2)) are fully connected deep networks with hidden layer sizes
30-30-10 (acrobot) and 30-30-15-10 (bipedal walker and robopong), giving rise
to moderate numbers of weights around 2,000, depending on the task-specific
numbers of inputs and controls. It is apparent that in all three cases fitness
noise plays a key role.

Figure 2 investigates the scaling of LM-MA-ES and MA-ES with problem
dimension on the bipedal walker task. For the small network considered above,
MA-ES performs considerably worse than LM-MA-ES, not only in wall clock
time (not shown) but also in terms of sample complexity. A similar effect was
observed in [11] for the Rosenbrock problem. This indicates that LM-MA-ES
can profit from its fast adaptation to the most prominent subspace. However,
this effect does not necessarily generalize to other tasks. More importantly, we
see (unsurprisingly) that the performance of both algorithms is severely affected
as d grows.

In order to gain a better understanding of the effect of fitness noise on high-
dimensional controller design, we consider optimization benchmarks. These prob-
lems have the advantage that the optimum is known and that the noise strength
is under our control. Since we are particularly interested in scalable metric learn-
ing, we employ the noisy ellipsoid problem f(x) = f̄(x)+N(x), f̄(x) =

√
xT Hx,

with eigenvalues λi = k
i−1
d−1 of H, and N(x) is the noise. For the multiplicative

case, the range of N(x) is proportional to f̄(x), while for the additive case it is
not.

Among the problem parameters we vary

– problem dimension d ∈ {20, 200, 2000, 20000},
– problem conditioning (k ∈ {100, 102, 106} (sphere, benign ellipsoid, standard

ellipsoid), and
– noise strength (none, multiplicative with various constants of proportionality,

additive).

Figure 3 shows the time evolution of fitness and step size of the different algo-
rithms in these conditions.

The experiments on the noise-free sphere problem show that the speed of
optimization decays with increasing dimension, as predicted by theory [25]: halv-
ing the distance to the optimum requires Θ(d) samples. For this reason, within
the fixed budget of 106 function evaluations, there is less progress in higher
dimensions. For d = 20, 000, the solution quality is still improved by a factor of

418 N. Müller and T. Glasmachers

about 103, which requires the step size to change by the same amount. However,
extrapolating our results we see that in extremely high dimensions the algorithm
is simply not provided enough generations to make sufficient progress in order
to justify step size adaptation. This is in accordance with [6]. A similar effect is
observed for metric learning, which takes Θ(d2) samples for the full covariance
matrix. Even for the still moderate dimension of d = 2, 000, the adaptation pro-
cess is not completed within the given budget. Yet, also during the transitional
phase where the matrix is not yet fully adapted, MA-ES already has an edge
over the simple ES. LM-MA-ES is sometimes better and sometimes worse than
MA-ES. It may profit from the significantly smaller number of parameters in
the low-rank covariance matrix, which allows for faster adaptation, in particular
in high dimensions, where MA-ES does not have enough samples to complete
its learning phase. In any case, its much lower internal complexity allows us to
scale up LM-MA-ES to much higher dimensions.

Fig. 1. Evolution of population average fitness for three reinforcement learning tasks
with LM-MA-ES, averaged over five runs.

Fig. 2. Evolution of fitness or neural networks with different numbers of weights (dif-
ferent hidden layer sizes), for LM-MA-ES (left) and MA-ES (right) on the bipedal
walker task.

In summary, metric adaptation is still useful for problems with a “realistic”
dimension of even very detailed controller design problems in engineering, while
it is too slow for training neural networks with millions of weights, unless the
budget grows at least linear with the number of weights. This in turn requires
extremely fast simulations as well as a large amount of computational hardware
resources.

Noise has a significant impact on the optimization behavior and on the solu-
tion quality. Additive noise implies extremely slow convergence, and indeed we

Challenges in High-Dimensional Reinforcement Learning 419

sp
he

re
be

ni
gn

 e
llip

se
el

lip
se

no noise multiplicative noise 0.005 multiplicative noise 0.025 multiplicative noise 0.125 additive noise 10-6

d=20 d=200 d=2000 d=20000 simple ES LM-MA-ES MA-ES

Fig. 3. Evolution of fitness and step size over function evaluations, averaged over
five independent runs, for three different algorithms and problems (see the legend for
details). Note the logarithmic scale of both axes.

find that all methods stall in this case. Too strong multiplicative noise even
results in divergence. A particularly adversarial effect is that the noise strength
that can be tolerated is at best inversely proportional to the dimension. This
effect nicely shows up in the noisy sphere results. Here, uncertainty handling can
help in principle, since it improves the signal-to-noise adaptively to the needs
of the algorithm, but at the cost of more function evaluations per generation,
which amplifies the effects discussed above.

In the presence of noise, CSA does not seem to work well in low dimensions. In
case of high noise, log(σ) performs a random walk. However, this walk is subject
to a selection bias away from high values, since they improve the signal-to-noise
ratio. Therefore we find extended periods of stalled progress, in particular for
d = 20, accompanied by a random walk of the (far too small) step size. The
effect is unseen in higher dimensions, probably due to the smaller update rate.

We are particularly interested in the interplay between metric adaptation and
noise. It turns out that in all cases where CMA helps (non-spherical problems of
moderate dimension), i.e., where LM-MA-ES and MA-ES outperform the simple
ES, the same holds true for the corresponding noisy problems. We conclude that
metric learning still works well, even when faced with noise in high dimensions.

The influence of noise can be controlled and mitigated with uncertainty han-
dling techniques [3,14,36]. This essentially results in curves similar to the left-
most column of Fig. 3, but with slower convergence, depending on the noise
strength. In controller design, noise handling can be key to success, in particular
if the optimal controller is nearly deterministic, while strong noise is encountered

420 N. Müller and T. Glasmachers

Fig. 4. Fitness and number of re-evaluations (left) step size and standard deviation
of fitness (right), averaged over six runs of LM-MA-ES with and without uncertainty
handling on the bipedal walker task.

during learning. This is a plausible assumption for the bipedal walker task: at an
intermediate stage, the walker falls over randomly depending on minor details
of the environment, resulting in high noise variance, while a controller that has
learned a stable and robust walking pattern achieves good performance with
low variance. Then it is key to handle the early phase by means of uncertainty
handling, which enables the ES to enter the late convergence phase eventually.
Figure 4 displays such a situation for the benign ellipse with d = 100, 000 with
additive noise applied only for function values above a threshold. LM-MA-ES
without uncertainty handling fails, but with uncertainty handling the algorithm
finally reaches the noise-free region and then converges quickly.

Fig. 5. (UH-) LM-MA-ES on the
benign ellipse in d = 100, 000 with
additive noise restricted to f̄(x) >
3.5. LM-MA-ES without uncertainty
handling (blue curve) diverges while
LM-MA-ES with uncertainty handling
approaches the optimum (red curve).
(Color figure online)

Figure 5 shows the effect of uncer-
tainty handling. It yields significantly
more stable optimization behavior in two
ways: 1. it keeps the step size high, avoid-
ing an undesirable decay and hence the
danger of premature convergence or of a
less-robust population, and 2. it keeps the
fitness variance small, which allows the
algorithm to reach better fitness in the
late fine tuning phase. Interestingly, the
ES without uncertainty handling is ini-
tially faster. This can be mitigated by
tuning the initial step size, which anyway
becomes an increasingly important task in
high dimensions, for two reasons: adapta-
tion takes long in high dimensions, and
even worse, a too small initial step size
makes uncertainty handling kick in with-
out need, so that the adaptation takes even longer. The latter might especially
be called for on expensive problems commonly found in RL.

Challenges in High-Dimensional Reinforcement Learning 421

5 Conclusion

We have investigated the utility of different algorithmic mechanisms of evolu-
tion strategies for problems with a specific combination of challenges, namely
high-dimensional search spaces and fitness noise. The study is motivated by a
broad class of problems, namely the design of flexible controllers. Reinforcement
learning with neural networks yields some extremely high-dimensional problem
instances of this type.

We have argued theoretically and also found empirically that many of the
well-established components of state-of-the-art methods like CMA-ES and scal-
able variants thereof gradually lose their value in high dimensions, unless the
number of function evaluations can be scaled up accordingly. This affects the
adaptation of the covariance matrix, and in extremely high-dimensional cases
also the step size. This somewhat justifies the application of very simple algo-
rithms for training neural networks with millions of weights, see [6].

Additive noise imposes a principled limitation on the solution quality. How-
ever, it turns out that adaptation of the search distribution still helps, because
it allows for a larger step size and hence a better signal-to-noise ratio. Unsur-
prisingly, uncertainty handling can be a key technique for robust convergence.

Overall, we find that adaptation of the mutation distribution becomes less
valuable in high dimensions because it kicks in only rather late. However, it
never harms, and it can help even when dealing with noise in high dimensions.
Our results indicate that a scalable modern evolution strategy with step size
and efficient metric learning equipped with uncertainty handling is the most
promising general-purpose technique for high-dimensional controller design.

References

1. Akimoto, Y., Auger, A., Hansen, N.: Comparison-based natural gradient optimiza-
tion in high dimension. In: Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation, pp. 373–380. ACM (2014)

2. Beyer, H.-G., Arnold, D.V.: Qualms regarding the optimality of cumulative path
length control in CSA/CMA-evolution strategies. Evol. Comput. 11(1), 19–28
(2003)

3. Beyer, H.-G., Hellwig, M.: Analysis of the pcCMSA-ES on the noisy ellipsoid
model. In: Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 689–696. ACM (2017)

4. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies-a comprehensive introduction.
Nat. Comput. 1(1), 3–52 (2002)

5. Beyer, H.-G., Sendhoff, B.: Simplify your covariance matrix adaptation
evolution strategy. IEEE Trans. Evol. Comput. 21(5), 746–759 (2017).
https://ieeexplore.ieee.org/document/7875115/

6. Chrabaszcz, P., Loshchilov, I., Hutter, F.: Back to basics: benchmarking canonical
evolution strategies for playing atari. Technical report 1802.08842, arXiv.org (2018)

7. Wierstra, D.: Natural evolution strategies. J. Mach. Learn. Res. 15(1), 949–980
(2014)

https://ieeexplore.ieee.org/document/7875115/
http://arxiv.org/abs/org

422 N. Müller and T. Glasmachers

8. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

9. Such, F., et al.: Deep neuroevolution: genetic algorithms are a competitive alterna-
tive for training deep neural networks for reinforcement learning. Technical report
1712.06567, arXiv.org (2017)

10. Brockman, G., et al.: OpenAI gym. Technical report 1606.01540, arXiv.org (2016)
11. Loshchilov, I., et al.: Limited-memory matrix adaptation for large scale black-box

optimization. Technical report 1705.06693, arXiv.org (2017)
12. Lehman, J., et al.: ES is more than just a traditional finite-difference approximator.

Technical report 1712.06568v2, arXiv.org (2017)
13. Plappert, M., et al.: Parameter space noise for exploration. Technical report

1706.01905v2, arXiv.org (2017)
14. Hansen, N., et al.: A method for handling uncertainty in evolutionary optimization

with an application to feedback control of combustion. IEEE Trans. Evol. Comput.
13(1), 180–197 (2009)

15. Hansen, N., et al.: COCO: a platform for comparing continuous optimizers in a
black-box setting. Technical report 1603.08785, arXiv.org (2016)

16. Geijtenbeek, T., et al.: Flexible muscle-based locomotion for bipedal creatures.
ACM Trans. Graph. (TOG) 32(6), 206 (2013)

17. Salimans, T., et al.: Evolution strategies as a scalable alternative to reinforcement
learning. Technical report 1703.03864, arXiv.org (2017)

18. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

19. Li, X., et al.: Benchmark functions for the CEC 2013 special session and competi-
tion on large-scale global optimization. Gene 7(33), 8 (2013)

20. Sun, Y., et al.: A linear time natural evolution strategy for non-separable func-
tions. In: Conference Companion on Genetic and Evolutionary Computation. ACM
(2013)

21. Hansen, N., Arnold, D.V., Auger, A.: Evolution strategies. In: Kacprzyk, J.,
Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 871–
898. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2 44

22. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
atrategies. Evol. Comput. 9(2), 159–195 (2001)

23. Heidrich-Meisner, V., Igel, C.: Neuroevolution strategies for episodic reinforcement
learning. J. Algorithms 64(4), 152–168 (2009)

24. Igel, C.: Neuroevolution for reinforcement learning using evolution strategies. In:
Congress on Evolutionary Computation, vol. 4, pp. 2588–2595 (2003)

25. Jägersküpper, J.: How the (1+1)-ES using isotropic mutations minimizes positive
definite quadratic forms. Theor. Comput. Sci. 361(1), 38–56 (2006)

26. Jebalia, M., Auger, A.: On multiplicative noise models for stochastic search. In:
Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS,
vol. 5199, pp. 52–61. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-87700-4 6

27. Kawaguchi, K.: Deep learning without poor local minima. In: Advances in Neural
Information Processing Systems, pp. 586–594 (2016)

28. Loshchilov, I.: A computationally efficient limited memory CMA-ES for large scale
optimization. In: Proceedings of the 2014 Annual Conference on Genetic and Evo-
lutionary Computation, pp. 397–404. ACM (2014)

29. Moriarty, D.E., Schultz, A.C., Grefenstette, J.J.: Evolutionary algorithms for rein-
forcement learning. J. Artif. Intell. Res. (JAIR) 11, 241–276 (1999)

http://arxiv.org/abs/org
http://arxiv.org/abs/org
http://arxiv.org/abs/org
http://arxiv.org/abs/org
http://arxiv.org/abs/org
http://arxiv.org/abs/org
http://arxiv.org/abs/org
https://doi.org/10.1007/978-3-662-43505-2_44
https://doi.org/10.1007/978-3-540-87700-4_6
https://doi.org/10.1007/978-3-540-87700-4_6

Challenges in High-Dimensional Reinforcement Learning 423

30. Rechenberg, I.: Evolutionsstrategie-Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution (1973)

31. Ros, R., Hansen, N.: A simple modification in CMA-ES achieving linear time and
space complexity. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C.
(eds.) PPSN 2008. LNCS, vol. 5199, pp. 296–305. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87700-4 30

32. Stanley, K., D’Ambrosio, D., Gauci, J.: A hypercube-based encoding for evolving
large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

33. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

34. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, vol. 1. MIT
press, Cambridge (1998)

35. Teytaud, O., Gelly, S.: General lower bounds for evolutionary algorithms. In:
Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D.,
Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 21–31. Springer, Heidelberg (2006).
https://doi.org/10.1007/11844297 3

36. https://www.researchgate.net/publication/220743287 Uncertainty handling
CMA-ES for reinforcement learning

https://doi.org/10.1007/978-3-540-87700-4_30
https://doi.org/10.1007/11844297_3
https://www.researchgate.net/publication/220743287_Uncertainty_handling_CMA-ES_for_reinforcement_learning
https://www.researchgate.net/publication/220743287_Uncertainty_handling_CMA-ES_for_reinforcement_learning

Lamarckian Evolution of Convolutional
Neural Networks

Jonas Prellberg(B) and Oliver Kramer

University of Oldenburg, Oldenburg, Germany
{jonas.prellberg,oliver.kramer}@uni-oldenburg.de

Abstract. Convolutional neural networks belong to the most successful
image classifiers, but the adaptation of their network architecture to a
particular problem is computationally expensive. We show that an evo-
lutionary algorithm saves training time during the network architecture
optimization, if learned network weights are inherited over generations
by Lamarckian evolution. Experiments on typical image datasets show
similar or significantly better test accuracies and improved convergence
speeds compared to two different baselines without weight inheritance.
On CIFAR-10 and CIFAR-100 a 75 % improvement in data efficiency is
observed.

Keywords: Evolutionary algorithms · Convolutional neural networks
Architecture optimization · Weight inheritance

1 Introduction

Over the last years, deep neural networks and especially convolutional neural
networks (CNN) have become state-of-the-art in numerous application domains.
Their performance is sensitive to the choice of hyperparameters, such as learn-
ing rate or network architecture, which makes hyperparameter optimization an
important aspect of applying neural networks to new problems. However, such
optimization is computationally expensive due to the lengthy training process
that has to be repeated each time a new hyperparameter setting is tested. This
downside applies to optimization by hand as well as to automated approaches,
such as grid search, random search or evolutionary optimization.

Earlier neuroevolution works [1,5,15,16] optimize network architectures
together with the network weights using an evolutionary algorithm (EA). In
recent years though, EAs have mostly been applied to optimize network hyper-
parameters, while the training is performed with backpropagation since it offers
increased efficiency for training the large and deep networks prevalent today.
The usual procedure is as follows: A genotype encodes the network architecture
and corresponding hyperparameters. In a genotype-phenotype process, a net-
work is built from this description and initialized with random weights. Then,
several epochs of backpropagation on a training set adjust the network weights.

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 424–435, 2018.
https://doi.org/10.1007/978-3-319-99259-4_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_34&domain=pdf

Lamarckian Evolution of Convolutional Neural Networks 425

Finally, the network is tested on a validation set and a metric, such as accuracy,
is reported as the genotype’s fitness.

Instead of randomly initializing the network weights before training, it is
also possible to inherit the already learned weights of an ancestor network. This
inheritance of acquired traits is a form of lamarckian evolution which, while
rejected in biology, can prove useful in artificial evolution. In this work, we show
that weight inheritance can drastically increase the data efficiency of an EA that
optimizes neural network architectures.

The remainder of this paper is organized as follows: Sect. 2 presents related
work about approaches that optimize architectures with EAs or use weight inher-
itance in their EAs. Section 3 describes the EA that is used in this paper and
explains how the mutation with weight inheritance works. In Sect. 4 experimen-
tal results are presented and discussed. The paper ends with a conclusion in
Sect. 5.

2 Related Work

Lamarckian evolution describes the idea that traits acquired over the lifetime of
an individual are inherited to its offspring [14]. While rejected in biology, this
approach can be beneficial for artificial evolution when there is a bi-directional
mapping between genotype and phenotype. This allows to encode learned behav-
ior back into the genotype and then apply an EA as usual. For example, Parker
and Bryant [12] and Ku et al. [11] apply lamarckian evolution to neural networks
by directly encoding the network weights in the genotype. This creates a simple
one-to-one mapping between genotype and phenotype.

NEAT [16] is a neuroevolution algorithm that allows to grow neural networks
starting with a minimal network and expanding it through mutation and prin-
cipled crossover between the graphs. Because NEAT operates on single graph
nodes and edges, it has been most successful on problems that can be solved
with small neural networks. However, NEAT has inspired many approaches that
try to extend the concept to evolving graphs of higher-level operations, such as
convolutions.

Desell [3] uses a variant of NEAT to optimize the structure of a CNN that
trains individual networks using backpropagation. An experiment with weight
inheritance was conducted but it was not found to decrease the time necessary to
train a single network to completion. Fernando et al. [4] use a microbial genetic
algorithm to optimize the structure of a DPPN, which is a network that produces
weights for a new network. Weight inheritance was found to improve the MSE in
an image reconstruction experiment. Verbancsics and Harguess [18] test Hyper-
NEAT [15] as a way to train CNNs for image classification. However, results
were mediocre and could be substantially improved using backpropagation.

Kramer [10] uses a (1 + 1)−EA to optimize the hyperparameters defining a
convolutional highway network. Suganuma et al. [17] use a modified (1+λ)−EA
to optimize the structure of a CNN using a Cartesian genetic programming encod-
ing scheme. Both approaches use small populations and only employ mutations
while still achieving good results.

426 J. Prellberg and O. Kramer

Weight inheritance is already employed in other works to varying degrees
and for various reasons. For example, Jaderberg et al. [8] use an EA to optimize
hyperparameters of static networks. It only performs mutations but inherits
weights to mutated offspring. The networks are therefore trained to completion
over multiple steps with potentially different hyperparameters. If one of the
optimized hyperparameters is the learning rate, this effectively trains the network
using a dynamic, evolved learning rate schedule. Instead, our goal is to highlight
the data efficiency gains that come with weight inheritance.

Real et al. [13] use an EA with a very large population size and an unprece-
dented amount of computational resources to optimize the structure of a CNN.
The method uses only mutation and inherits trained network weights through
mutation. Training with backpropagation is performed for about 28 epochs per
fitness evaluation on CIFAR-10 and CIFAR-100 and competitive results are
reached. Furthermore, weight inheritance is shown to improve the test accuracy
that the final network achieves. While their approach is similar to our work, we
strive to keep computational demands low with the goal to reduce requirements
further with the inclusion of weight inheritance.

Unrelated to evolutionary methods, the Net2Net algorithm [2] is an inter-
esting approach to accelerate the sequential training of multiple related models.
Starting from a trained model, it is possible to increase its depth or width while
keeping the represented function the same. This is achieved by choosing the new
weights in such a way that their effects cancel out. The training of the new model
then progresses faster because the initial weights are already very good.

3 Method

To assess the influence of weight inheritance for neural network architecture opti-
mization, design decisions regarding the optimizable hyperparameters and type
of EA must be made. The goal is not to achieve state-of-the-art performance
or find novel architectures but instead to show the advantages of weight inher-
itance. Therefore, we choose to optimize a fairly restricted architecture space
which, however, is still applicable to many problems. This allows the EA to con-
verge fast enough within our hardware resource constraints to make multiple
repetitions of the same experiment feasible for statistical purposes.

The architecture search space is defined by the template presented in Fig. 1. It
is made from stacked building blocks that consist of a convolutional layer followed
by batch normalization [7] and a ReLU activation. The number of building blocks
and the individual number of filters, kernel size and stride of the convolutional
layer in each building block are subject to optimization. We statically append
global average-pooling, a dense layer and a softmax activation function after
the last building block, since experiments are performed specifically on image
datasets.

The optimization is performed by a (1+1)−EA. In contrast to evolutionary
algorithms with larger populations, the necessary computational resources are
modest, but the method is also more prone to getting stuck in local optima in

Lamarckian Evolution of Convolutional Neural Networks 427

Fig. 1. Graph template defining the network architecture search space. Each building
block (shown in blue) has individual hyperparameters filter count fi, kernel size ki and
stride si that have to be optimized by the EA. (Color figure online)

multi-modal problems. To alleviate this, a form of niching is introduced. The
evolutionary algorithm and its mutation operator are presented in more detail
in the following sections.

3.1 Evolutionary Algorithm

Algorithm 1 presents the (1+1)−EA with niching as pseudo-code. An initial net-
work consisting of a single convolutional layer with random filter count, random
kernel size and a stride of one is created. This parent network is optimized by
the EA as follows: First, a random mutation from the set of possible mutations is
applied to the parent to create a child network. Next, the child network’s fitness
is evaluated. This means the network is trained for e epochs and the validation
set accuracy is returned as its fitness. If the child’s fitness is greater than the
parent’s fitness, the child replaces the parent.

Because this algorithm is greedy, it can get stuck in local minima. Therefore,
a niching approach adapted from Kramer [10] is implemented. There is a random
chance η to follow solutions that are initially worse. In such a case, a child, which
has a lower fitness than its parent, is used as the parent network for a recursive
call of the same algorithm. During niching, the mutate-evaluate-select-loop is
repeated k times. When the last loop iteration ends, the best network found
during niching is returned. If this network has a greater fitness than the original
parent, it is selected. Otherwise, optimization proceeds with the original parent.

3.2 Mutation Operator

As mentioned before, the number of building blocks and the number of filters,
kernel size and stride of each convolutional layer are subject to optimization. For
simplicity, all these hyperparameters are chosen from predefined sets:

– Number of building blocks in N

– Filter counts in F = {16, 32, 64, 96, 128, 192, 256}
– Kernel size in K = {1, 3, 5}
– Stride in S = {1, 2}

428 J. Prellberg and O. Kramer

a ← initial network
while termination condition not met do

b ← mutate (a)
if fitness (b) > fitness (a) then

a ← b
else if random() < η and not yet niching then

c ← best network after recursion with b as initial network for k
iterations (niching)
if fitness (c) > fitness (a) then

a ← c
end

end

end
return a

Algorithm 1. (1 + 1) − EA with niching

Mutations are picked randomly from the list below. Each choice has a relative
frequency (indicated by the multiplier in front of the list item) that determines
how much more likely it is to be chosen than the mutation with a relative
frequency of one. The frequencies have been chosen such that the more granular
mutations, which are likely to have a smaller impact on the result, are applied
less often in order to effectively use the available computation time.

– 3× add block : Adds a building block at a random position. The contained
convolutional layer is initialized with a random filter count, random kernel
size and a stride of one.

– 3× remove block : Removes a random building block.
– 2× add filters: Picks a random convolution and sets its filter count to the

next greater value in F .
– 2× remove filters: Picks a random convolution and sets its filter count to the

next lower value in F .
– 2× change kernel size: Picks a random convolution and randomly draws its

kernel size from K.
– 1× change stride: Picks a random convolution and randomly draws its stride

from S.

All random choices within each mutation, such as picking a random convolution
or kernel size, are drawn uniformly at random from the appropriate set.

The mutation operator is forced to modify the network. A history of all pre-
viously evaluated networks is maintained and mutations are repeatedly applied
to the parent network until a network is created that has not been evaluated
before. Furthermore, only networks with at most three convolutions of stride
two are allowed because the image inputs of CIFAR are only 32 × 32 and each
stride-two convolution halves the side lengths.

Lamarckian Evolution of Convolutional Neural Networks 429

3.3 Weight Inheritance

Each network is associated with a set of weights that contains, for example,
kernels and biases for convolutional layers. When creating the initial parent
network, these weights are randomly initialized in an appropriate fashion, e.g.
Glorot [6] initialization. However, once a network has been evaluated its weights
contain useful, learned values. When the mutation operator is applied, most of
these weights are kept intact. The mutations add block, remove block and change
stride do not influence existing weights so that all of them can be reused. The
additional weights that belong to the convolutional and batch-normalization
layers created by add block are randomly initialized. However, the mutations
add filters, remove filters and change kernel size influence the shapes of some
existing weights. For example, since the shape of a convolutional layer’s kernel
depends on its input and output shape, adding filters to a layer also affects the
successive layer. In such cases, the affected weights are randomly reinitialized,
while all other weights are reused.

4 Experiments

Training neural networks for image classification typically takes lots of resources.
Hence, improving data-efficiency would be of great value. Therefore, we choose
to experiment on the standard image benchmarks CIFAR-10 and CIFAR-100.

4.1 Setup

The mutation operator that employs weight inheritance is compared to a muta-
tion operator that randomly reinitializes all network weights after each mutation.
Otherwise, the same EA with the same hyperparameters is used on both datasets.
The niching rate and depth are set to η = 0.1 and k = 5 respectively.

During each fitness evaluation, a network is trained for e epochs and subse-
quently its performance is assessed on the validation set. Choosing e is a trade-off
between evaluation speed and the accuracy of the fitness assessment. If e is very
low, evaluation is fast but networks are not trained to completion. Therefore
the reported fitness will usually be lower than what the network could actually
achieve given enough training time. Consequently, large but accurate networks
have difficulty competing with smaller networks which train faster but might
reach a lower final accuracy. If e is very high, these problems vanish but the
evaluation takes a long time. Since many evaluations are necessary for large
search spaces, this is impractical. Weight inheritance is supposed to offset some
of the problems that come with small choices of e. The EA gets a budget of n
total training epochs as its termination condition. This allows for a comparison of
accuracy in terms of training examples that each experiment has processed. Also,
the choices of n and e together influence how many generations, i.e. mutations,
are possible within the total training epoch budget.

We propose an EA with weight inheritance and e = 4 training epochs per
fitness evaluation. Note that 4 epochs is not sufficient to train networks that

430 J. Prellberg and O. Kramer

work well on CIFAR to completion. The comparison baseline is an EA that does
not use weight inheritance with two different epoch settings. The first baseline,
which will be called baseline I, also uses 4 training epochs per evaluation in order
to allow for a direct comparison. This allows us to show that the algorithm with
weight inheritance is more data efficient and has better final accuracy all else
being equal. The second baseline, which will be referred to as baseline II, uses
e = 16 training epochs per evaluation. This significantly longer training time is
more in line with the traditional approach of optimizing neural network archi-
tectures. It allows us to show that our observations still hold here and we do not
simply trade a lower final accuracy for data efficiency. During evolution the best
network is saved in regular intervals. After the EA finishes, these checkpoints are
trained to completion and evaluated on the test set. We use this to compare test
accuracies at one point during the evolution and after the evolution is finished.

The experiments are repeated 20 times with different random seeds to account
for variance introduced by the randomness that is inherent to the EA and also
the network training. Using the results from these repetitions, we perform sig-
nificance tests using the one-sided Mann-Whitney U test. It was chosen because
the sample sizes are small as each sample requires considerable time to create.

4.2 Training Details

The datasets have been split into a training, validation, and test set which con-
tain 45k, 5k and 10k examples respectively for both CIFAR-10 and CIFAR-100.
During a fitness evaluation, backpropagation is performed on the training set for
e epochs and the validation set accuracy is reported as the network’s fitness. All
training phases are performed using a cross-entropy loss, the Adam [9] optimizer,
a batch size of 512 and a learning rate of 0.001. Adam’s state, i.e. first and second
moment estimates, is not inherited during mutation. The test set is only used
after all experiments have finished to evaluate saved network checkpoints. These
checkpoints are trained to completion using a learning rate schedule: 10−3 until
epoch 10, 10−4 until epoch 20 and 10−5 until epoch 30.

4.3 Results

Figure 2 compares three experimental settings on CIFAR-10 and CIFAR-100
with a total epoch budget of 512. The EA with weight inheritance outper-
forms the comparison baselines that do not use weight inheritance on both
datasets. The accuracy plateau is reached more quickly and higher test accu-
racy is achieved.

For CIFAR-10, weight inheritance experiments reach a mean test accuracy of
85%± 2% after only 128 total training epochs. In comparison, baseline I experi-
ments reach a mean test accuracy of 82%±1% after 512 epochs. This means that
the EA with weight inheritance achieves significantly (p < 0.01) higher accuracy
than baseline I in 75 % less total training epochs. Baseline II experiments reach
a test accuracy of 85%±3% after 512 epochs. This is slightly, though not signifi-
cantly, lower than the test accuracy of the weight inheritance experiments. After

Lamarckian Evolution of Convolutional Neural Networks 431

Fig. 2. Comparison of the EA with weight inheritance and e = 4 epochs against two
baselines without weight inheritance and e ∈ {4, 16} epochs on CIFAR-10 and CIFAR-
100. Each dot represents the best validation accuracy achieved so far during an EA
run at the respective epoch. Each line runs through the mean of the dots that are from
the same experimental setting after the same amount of total epochs. Each box shows
the average test accuracy after training the networks to convergence and the boxplot
whiskers represent one standard deviation. (Color figure online)

512 epochs, the weight inheritance experiments reach a mean test accuracy of
87%±2% which is significantly (p < 0.01) higher than baseline II at 512 epochs.

For CIFAR-100 results look very similar. After 128 epochs, the weight inher-
itance experiments achieve a mean test accuracy of 55% ± 4%. In contrast,
baseline I experiments reach a significantly (p < 0.01) lower mean test accuracy
of 46% ± 3% after 512 epochs. Again, this is an improvement using 75 % less
total training epochs. Baseline II experiments achieve a (not significantly) higher
mean test accuracy of 57% ± 5% after 512 epochs. Running the weight inheri-
tance experiments for all 512 epochs as well results in a mean test accuracy of
61% ± 3% which now is significantly (p < 0.01) higher than baseline II at 512
epochs.

In summary, weight inheritance experiments on CIFAR-10 and CIFAR-100
have shown to achieve significantly (p < 0.01) higher accuracy using a quarter
of the total training epochs when compared to baseline I that uses the same
amount of training epochs per fitness evaluation. Furthermore, final accuracy
after 512 epochs is also significantly (p < 0.01) higher compared to baseline II
experiments which benefited from more training epochs per fitness evaluation.

To get an idea how the evolutionary process modifies the genotypes, consider
Fig. 3. It shows how the genome length, i.e. the number of building blocks in
the corresponding networks, changes over the course of evolution. All EA runs
are initialized with a genotype that contains a single building block. During the
evolutionary process, increasingly larger genotypes are evaluated as they offer
more accuracy than genotypes with fewer building blocks. The weight inheritance
experiments and baseline II both settle around an average of 7 building blocks,
whereas baseline I networks contain an average of 6 building blocks.

Table 1 lists minimum, mean and maximum test accuracies of the CIFAR
experiments for specific checkpoint epochs. When weight inheritance is used,
minimum, mean and maximum accuracies are higher than their baseline

432 J. Prellberg and O. Kramer

Fig. 3. Average (of all EA runs) number of building blocks in the genome during the
optimization process on CIFAR-100

counterparts at all tested checkpoints. None of the results reach state-of-the-
art performance, which was, as already pointed out, not the goal of this work.
Our best evolved network on CIFAR-100 without data augmentation reaches a
test accuracy of 66.1 % after 512 total epochs and required 6× 1010 FLOPS1 to
find. This takes about 1.5 days on a single Nvidia K40 GPU.

Table 1. Test accuracies at the two checkpoints on CIFAR-10 and CIFAR-100

Settings 128 total epochs 512 total epochs

Data Inheritance e Min Mean Max Min Mean Max

C10 Yes 4 79.1 85.0±2.4 89.0 83.3 87.2±1.5 89.3

No 4 68.3 77.6±3.2 81.8 78.9 82.3±1.4 84.2

No 16 32.5 70.4±12.6 85.5 76.6 84.8±3.1 88.9

C100 Yes 4 47.7 55.3±3.8 61.1 56.1 60.7±2.9 66.1

No 4 31.7 40.2±3.8 46.0 39.8 46.1±3.0 52.2

No 16 25.9 41.4±10.3 57.7 46.6 56.7±4.5 63.0

Additional experiments with 10 repetitions each have been performed on the
MNIST and Fashion-MNIST datasets. The results are shown in Fig. 4. On both
datasets, improvements from weight inheritance over its baselines are marginal.
This is expected, as both datasets are easy to solve compared to CIFAR and
can be learned quickly by small networks. Still, there is no deterioration in
performance from using weight inheritance either.

1 The FLOPS estimate for a single network is based on the FLOPS reported by the
TensorFlow profiler to process a single example multiplied by 4 epochs, 98 batches
per epoch and batch size 512. The total FLOPS of the EA run is the sum of the
FLOPS estimates for all networks that were trained during the optimization.

Lamarckian Evolution of Convolutional Neural Networks 433

Fig. 4. Comparison of the EA with weight inheritance and e = 4 epochs against two
baselines without weight inheritance and e ∈ {4, 8} epochs on MNIST and Fashion-
MNIST. See Fig. 2 for an explanation of the plot.

4.4 Discussion

The tradeoff between few and many training epochs per fitness evaluation that
is explained in Sect. 4.1 has a visible effect in Fig. 2. At the beginning of each
experiment, baseline I outperforms baseline II but at some point this relationship
inverts. This is because small networks, which require only few epochs to reach
good accuracy, are still sufficient to increase the validation set accuracy in the
beginning of the experiment. However, at some point larger networks become
necessary to further improve the results. These networks require more training
time, making it easier for the algorithm that trains networks longer during fit-
ness evaluation to progress. Therefore the green and blue graphs intersect. This
happens earlier for CIFAR-100 because it is a harder problem than CIFAR-10.

We have seen weight inheritance experiments consistently outperform their
baselines on CIFAR-10 and CIFAR-100 but could not observe a significant differ-
ence on the MNIST or Fashion-MNIST datasets. We did not find any instances
of our experiments where weight inheritance was harmful, but this need not be
the case generally: Just like in our work, most recent neuroevolution publica-
tions only use mutation operators and refrain from performing crossover. While
this is usually motivated by the difficulty of designing a useful network crossover
operator, crossover might also bring problems with regard to weight inheritance.
Similarly to choosing a bad initialization before starting the training of a net-
work, building a new network from trained parts of different networks could leave
it in a region of the parameter space that is hard to optimize.

5 Conclusion

Evolutionary algorithms show promise as a way to automatically discover appro-
priate network architectures for new problems, but their usefulness is limited
by their enormous computational requirements. Optimizing deep neural network
architectures is computationally expensive because networks have to be retrained
for each fitness evaluation. Therefore, approaches to lower these requirements are
of great value.

434 J. Prellberg and O. Kramer

We show that an evolutionary algorithm with a weight inheritance scheme
generally achieves equal or higher accuracy compared to baselines that do not
use weight inheritance and benefit from more training epochs per fitness eval-
uation. The fitness convergence speed is improved, sometimes making it possi-
ble to drastically reduce the number of total training epochs, while achieving
test accuracies comparable to the baselines. Specifically, on both CIFAR-10 and
CIFAR-100 weight inheritance increases data efficiency by 75 % with comparable
test accuracy. The resulting speedup makes evolutionary algorithms a lot more
viable for application to neural network architecture optimization even on hard
problems. If accuracy is more important than training time, weight inheritance
can also lead to a higher final test accuracy in some cases. Most importantly
though, there has been no instance where weight inheritance was harmful. All
results show either equally good or better results than the baselines. Thus it
seems generally advisable to try the inclusion of weight inheritance schemes
when mutation operators are used for neural network architecture optimization.

A promising research direction for future work will be to explore the interac-
tions between weight inheritance and crossover operators. Also, further decreas-
ing the time necessary for each training step in the evolutionary process is an
important goal. For example, integrating the Net2Net [2] algorithm with the
evolutionary algorithm might offer better results than randomly initializing addi-
tional new weights and allow for even less training steps.

References

1. Baluja, S.: Evolution of an artificial neural network based autonomous land vehicle
controller. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 26(3), 450–463 (1996)

2. Chen, T., Goodfellow, I., Shlens, J.: Net2net: accelerating learning via knowledge
transfer. In: Proceedings of the International Conference on Learning Representa-
tions (ICLR 2016) (2016)

3. Desell, T.: Large scale evolution of convolutional neural networks using volunteer
computing. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion (GECCO 2017), pp. 127–128. ACM, New York (2017). https://
doi.org/10.1145/3067695.3076002

4. Fernando, C., et al.: Convolution by evolution: differentiable pattern producing
networks. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO 2016), pp. 109–116. ACM, New York (2016). https://doi.org/10.
1145/2908812.2908890

5. Garcia-Pedrajas, N., Hervas-Martinez, C., Munoz-Perez, J.: Covnet: a cooperative
coevolutionary model for evolving artificial neural networks. IEEE Trans. Neural
Netw. 14(3), 575–596 (2003). https://doi.org/10.1109/TNN.2003.810618

6. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statistics. Proceed-
ings of Machine Learning Research, vol. 9, pp. 249–256. PMLR, Chia Laguna
Resort, Sardinia, 13–15 May 2010. http://proceedings.mlr.press/v9/glorot10a.html

7. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: Proceedings of the 32nd International Confer-
ence on Machine Learning (ICML 2015), Lille, France, pp. 448–456 (2015)

https://doi.org/10.1145/3067695.3076002
https://doi.org/10.1145/3067695.3076002
https://doi.org/10.1145/2908812.2908890
https://doi.org/10.1145/2908812.2908890
https://doi.org/10.1109/TNN.2003.810618
http://proceedings.mlr.press/v9/glorot10a.html

Lamarckian Evolution of Convolutional Neural Networks 435

8. Jaderberg, M., et al.: Population Based Training of Neural Networks. ArXiv e-
prints, November 2017

9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: The Inter-
national Conference on Learning Representations (ICLR 2015), December 2015

10. Kramer, O.: Evolution of convolutional highway networks. In: Sim, K., Kaufmann,
P. (eds.) EvoApplications 2018. LNCS, vol. 10784, pp. 395–404. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-77538-8 27

11. Ku, K.W.C., Mak, M.W., Siu, W.C.: A study of the Lamarckian evolution of
recurrent neural networks. IEEE Trans. Evol. Comput. 4(1), 31–42 (2000). https://
doi.org/10.1109/4235.843493

12. Parker, M., Bryant, B.D.: Lamarckian neuroevolution for visual control in the
quake ii environment. In: 2009 IEEE Congress on Evolutionary Computation, pp.
2630–2637, May 2009. https://doi.org/10.1109/CEC.2009.4983272

13. Real, E., et al.: Large-scale evolution of image classifiers. In: Proceedings of the
34th International Conference on Machine Learning (ICML 2017) (2017). https://
arxiv.org/abs/1703.01041

14. Sasaki, T., Tokoro, M.: Comparison between Lamarckian and Darwinian evolution
on a model using neural networks and genetic algorithms. Knowl. Inf. Syst. 2(2),
201–222 (2000). https://doi.org/10.1007/s101150050011

15. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolv-
ing large-scale neural networks. Artif. Life 15(2), 185–212 (2009). https://doi.org/
10.1162/artl.2009.15.2.15202

16. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augment-
ing topologies. Evol. Comput. 10(2), 99–127 (2002). https://doi.org/10.1162/
106365602320169811

17. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach
to designing convolutional neural network architectures. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2017), pp. 497–504.
ACM, New York (2017). https://doi.org/10.1145/3071178.3071229

18. Verbancsics, P., Harguess, J.: Image classification using generative neuro evolution
for deep learning. In: 2015 IEEE Winter Conference on Applications of Computer
Vision, pp. 488–493, January 2015. https://doi.org/10.1109/WACV.2015.71

https://doi.org/10.1007/978-3-319-77538-8_27
https://doi.org/10.1109/4235.843493
https://doi.org/10.1109/4235.843493
https://doi.org/10.1109/CEC.2009.4983272
https://arxiv.org/abs/1703.01041
https://arxiv.org/abs/1703.01041
https://doi.org/10.1007/s101150050011
https://doi.org/10.1162/artl.2009.15.2.15202
https://doi.org/10.1162/artl.2009.15.2.15202
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1145/3071178.3071229
https://doi.org/10.1109/WACV.2015.71

Learning Bayesian Networks
with Algebraic Differential Evolution

Marco Baioletti1(B), Alfredo Milani1,3, and Valentino Santucci2

1 Department of Mathematics and Computer Science,
University of Perugia, Perugia, Italy

{marco.baioletti,alfredo.milani}@unipg.it
2 Department of Social and Human Sciences,

University for Foreigners of Perugia, Perugia, Italy
valentino.santucci@unistrapg.it

3 Department of Computer Science, Hong Kong Baptist University,
Kowloon Tong, Hong Kong SAR, China

Abstract. In this paper we introduce DEBN, a novel evolutionary algo-
rithm for learning the structure of a Bayesian Network. DEBN is an
instantiation of the Algebraic Differential Evolution which is designed
and applied to a particular (product) group whose elements encode all
the Bayesian Networks of a given set of random variables. DEBN has
been experimentally investigated on a set of standard benchmarks and
its effectiveness is compared with BFO-B, a recent and effective bacte-
rial foraging algorithm for Bayesian Network learning. The experimental
results show that DEBN largely outperforms BFO-B, thus validating our
algebraic approach as a viable solution for learning Bayesian Networks.

Keywords: Bayesian Networks Learning
Algebraic Differential Evolution

1 Introduction and Related Work

A Bayesian Network (BN) [14] is used to represent in a compact and effective
way a probability distribution of a set of discrete random variables X1, . . . , Xn. A
BN is composed by two different parts. The qualitative component is a directed
acyclic graph (DAG) G in which the nodes are the variables Xi and the edges
denote influences among variables. Given a variable Xi, pa(Xi) is the set of par-
ents of Xi and it contains all the variables Xj connected with an incoming edge
to Xi. For each variable Xi, the quantitative component contains a conditional
probability distribution of Xi with respect to pa(Xi), i.e., the conditional prob-
ability p(Xi = xi|pa(Xi) = cj) for each value xi of Xi and for each combination
cj of values for the variables in pa(Xi).

The problem of learning BNs from empirical data has been extensively stud-
ied during last years [14]. In particular, the problem of learning the structure

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 436–448, 2018.
https://doi.org/10.1007/978-3-319-99259-4_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_35&domain=pdf

Learning Bayesian Networks with Algebraic Differential Evolution 437

(qualitative part) of the network is well investigated, being the problem of learn-
ing the quantitative part much simpler, once the structure is given.

There are three main methodologies to learn the structure of a Bayesian
Network. The first approach is to find conditional independence relations through
statistical tests and to use them to infer the structure (for instance the presence
of arcs), as done in [24]. Another possibility is the constraint-based approach,
for instance dynamic programming [14]. Finally, a third approach is to perform
a search process into a suitable space in order to find the optimal structure
according to a given score metric.

Many score functions have been proposed for this purpose, e.g., K2, BDe,
AIC, BIC and MDL scores [14]. In particular, we focus on the K2 and BDe
scores that, given a BN with DAG structure G and a dataset D, are respectively
defined as follows:

K2(G;D) =
n∏

i=1

qi∏

j=1

(
(ri − 1)!

(Nij + ri − 1)!
·

ri∏

k=1

Nijk!

BDe(G;D) =
n∏

i=1

qi∏

j=1

Γ (N ′
ij)

Γ (N ′
ij + Nij)

·
ri∏

k=1

Γ (N ′
ijk + Nijk)

Γ (N ′
ijk)

where, for each variable Xi, ri is the cardinality of the domain of Xi, qi is
the number of possible value combinations of pa(Xi), and Nijk is the number
of records in D in which Xi takes the k–th value and pa(Xi) take the j–th
combination of values. Besides, the BDe parameters N ′

ijk, for every triple i, j, k,
are usually set to N ′

qiri
, where N ′ is a constant called equivalent sample size which,

in this paper, as in several other works [14], we set to N ′ = 1. Furthermore, for
the sake of computation, the logarithm of the score functions is usually employed.

There have been many attempts to solve the BN learning problem as a com-
binatorial problem and one of the most studied approach is through evolutionary
techniques. Starting from Larrañaga paper [18], which used genetic algorithms,
the most used approach is Ant Colony Optimization, since it uses an incremen-
tal way of building solutions, making the enforcement of acyclicity constraint
easy to manage [10]. Another approach is to employ evolutionary algorithms to
produce good orderings among variables, which are then used as input to other
DAG construction algorithms, like K2 [11,13,26]. Other evolutionary approaches
are based on discrete variants of Particle Swarm Optimization [15,27]. An alter-
native search space is the Partial DAG space [7], which represent in a compact
way an equivalence class of DAGs.

A hybrid approach which combines conditional independence learning with
searching for an optimal structure is [25].

One of the best evolutionary approach to this problem is BFO-B [12,28],
an application of Bacterial Foraging Optimization technique. BFO-B has been
compared to other swarm intelligence and other techniques showing that BFO-B
outperforms all its evolutionary and non-evolutionary competitors.

In this paper we present an Algebraic Differential Evolution algorithm [21,22]
to solve this problem. Differential Evolution (DE) [19] is widely adopted in opti-

438 M. Baioletti et al.

mization problems due to its capacity of self-adapting the search to the fitness
landscape at hand. Although DE has been originally proposed for continuous
problems, in a previous series of papers [1,2,4,5,20,21], we have introduced an
algebraic framework that allows to apply DE to combinatorial problems in which
the search space is a finitely generated group.

In particular, in this paper we propose a novel representation for DAGs which
allows to see the search space of all DAGs of a fixed vertex sets as a product
group. In this way, it is possible to apply Algebraic DE to the BN learning
problem in terms of finding the DAG with the maximum score.

Our algorithm, called DEBN, has been tested on some standard benchmarks
and compared with BFO-B which, to the best of our knowledge, is the state-of-
the-art evolutionary technique for BN learning. The experimental results show
that DEBN largely outperforms BFO-B.

2 Differential Evolution

Differential Evolution (DE) [19] is a simple and powerful evolutionary algorithm
for optimizing non-linear and even non-differentiable real functions f : Rn → R.
Hence, DE evolves a population of N real-valued vectors x1, . . . , xN ∈ R

n by
iteratively applying the three genetic operators: differential mutation, crossover,
and selection.

The differential mutation generates a mutant yi for each target population
individual xi. Though several mutation schemes have been proposed [19], the
original one is denoted by rand/1 and it is computed as

yi = xr1 + F · (xr2 − xr3) (1)

where r1, r2, r3 are three random integers in {1, . . . , N} mutually different among
them and with respect to i, while F > 0 is the scale factor parameter of DE.

For each pair formed by the target individual xi and the mutant yi, the
crossover generates a trial solution zi by recombining xi and yi. The most com-
mon variant is the binomial crossover [19] which generates zi according to

z
(j)
i =

{
y
(j)
i if r1,j ≤ CR or r2 = j

x
(j)
i otherwise

(2)

where: CR is the crossover probability (another parameter of DE), r1,j ∈ [0, 1]
is a random number generated for each dimension j, and r2 ∈ {1, . . . , n} is
randomly generated in order to guarantee that at least one component is inher-
ited from the mutant yi. Note also, that other crossover schemes are available
[8,9,19].

Finally, the most used selection operator compares each target individual xi

with the corresponding trials zi and selects the better between them to enter in
the population of the next generation.

Learning Bayesian Networks with Algebraic Differential Evolution 439

3 Algebraic Framework

Here we provide a concise description of the algebraic framework for evolutionary
computation previously proposed in [3,21]. In particular, our attention has been
mainly focused on ADE, an algebraic version of Differential Evolution, which
obtained state-of-the-art performances on the permutation flow-shop scheduling
problem [21,22]. Note anyway that the framework is rather general and can be
adapted to other evolutionary algorithms [1] and other search spaces.

In principle, our algebraic methodology can be applied to all the combinato-
rial problems whose search space X forms a finitely generated group with respect
to an internal composition � and a set of generators H ⊆ X [16].

Recall that a group (X, �) is finitely generated if there exists a finite subset
H ⊆ X, called generating set, such that any x ∈ X can be decomposed as
x = h1 �h2 � · · ·�hl for some h1, h2, . . . , hl ∈ H. We also denote by |x| the length
of a minimal decomposition of x in terms of H.

The Cayley graph of a finitely generated group is the labeled digraph whose
vertexes are the solutions in X and there exists an arc from x to y labeled by
h ∈ H if and only if y = x � h. Moreover, for all x ∈ X, every (shortest) path
from the neutral element e to x corresponds to a (minimal) decomposition of x,
i.e., if the arc labels in the path are (h1, h2, . . . , hl), then x = h1 � h2 � · · · � hl.

The Cayley graph has an important geometric interpretation. Indeed, any
solution x ∈ X can be seen both as a point, i.e., a vertex in the graph, but also
as a vector because its decomposition is a sequence of generators, i.e., arcs of
a path in the Cayley graph. This dichotomous interpretation allows to define
the operations ⊕,�,� on X in such a way that they simulate the analogous
operations of the Euclidean space.

3.1 Vector-Like Operations

The addition x⊕y is defined as the application of the vector y ∈ X, decomposed
as (h1, h2, . . . , hl), to the point x ∈ X. It can be proved [21] that

x ⊕ y = x � y. (3)

Given x, y ∈ X considered as points, their difference y � x is the vector
(h1, h2, . . . , hl) which are the labels of a path from x to y. In [21] we proved that

y � x = x−1 � y. (4)

Given a ∈ [0, 1] and x ∈ X, the result of the scalar multiplication of x by the
scalar a, denoted by a � x, is defined as

a � x = h1 � h2 � · · · � hk (5)

where (h1, h2, . . . , hl) is a minimal decomposition of x and k = 	a · |x|
. The
operation �, contrarily to ⊕ and �, depends on the particular minimal decom-
position chosen for x. In general there can be multiple minimal decompositions,

440 M. Baioletti et al.

thus � is not uniquely defined. However, since we are designing an evolutionary
algorithm, we consider a random minimal decomposition of x when computing
a � x.

In the following we describe the groups of the permutations and bit-strings,
which will be used later in the paper.

3.2 Permutation Group

The set Sn of the permutations of {1, 2, . . . , n} forms a group, called symmetric
group, with respect to the permutation composition ◦. Given π, ρ ∈ Sn, their
composition π ◦ ρ is defined as the permutation (π ◦ ρ)(j) = π(ρ(j)) for all the
indexes j = 1, . . . , n. Sn is not Abelian (for n ≥ 3) and its neutral element is the
identity permutation ι such that ι(j) = j for all j = 1, . . . , n.

Among the many generating sets of Sn, the simplest one is the set of simple
transpositions

ST = {σi ∈ Sn : 1 ≤ i < n},

where σi corresponds to an adjacent swap between positions i and i+1. Formally:
σi(i) = i + 1, σi(i + 1) = i, and σi(j) = j for j ∈ {1, . . . , n} \ {i, i + 1}.

A random decomposition algorithm for this generating set is the RandBS
procedure, introduced in [21], which produces a random minimal decomposition
of a given permutation by requiring O(n2) computational time. It is worth to
notice that the length of a minimal decomposition of π ∈ Sn is the number of
inversions of π.

We will denote by ⊕p,�p,�p, respectively, the operations ⊕,�,� defined
for Sn.

3.3 Bit-String Group

The set B
m of all the m-length bit-strings forms an Abelian group with respect

to the bitwise XOR operator �. Its neutral element is the all-zeros string 0. Since
x � x = 0 for all x ∈ B

m, the inverse of any x ∈ B
m is itself.

The most obvious generating set for B
m is the set

U = {ui ∈ B
m : ui(i) = 1 and ui(j) = 0 for j = i},

where ui(k) indicates the k-th bit of the string ui.
A random decomposition algorithm for a bit-string b can be easily found by

selecting all the indices i ∈ {1, . . . , m} with b(i) = 1 and disposing them into a
sequence with a random order. Note that the length of a minimal decomposition
of b is just its Hamming weight.

We will denote by ⊕b,�b,�b, respectively, the operations ⊕,�,� defined for
B
m. It is important to notice that ⊕b and �b coincide and both are commutative.

Learning Bayesian Networks with Algebraic Differential Evolution 441

4 Dual Representation of Bayesian Networks

In this section we introduce the representation of BN structures, i.e., DAGs, and
their associated finitely generated group.

A DAG G of n vertices can be represented by a pair (π, b), where π ∈ Sn

and b ∈ B
m with m =

(
n
2

)
.

The bits of b represent the skeleton of G. Let C = {(j, k) : 1 ≤ j < k ≤ n}
be the ordered set of vertex pairs, if the i–th pair of C is (j, k), then there exists
in G an arc from Xj to Xk, or vice versa, if and only if bi = 1.

The permutation π determines the direction of the arcs: if bi = 1, then the arc
goes from Xj to Xk if j appears before k in π, i.e., π−1(j) < π−1(k), otherwise
the arc goes in the opposite direction. Said in other words, π is a topological
order of the variables X1, . . . , Xn.

One of the most important properties of this representation is that any pair
(π, b) represents a DAG. This fact is an apparent advantage of this represen-
tation with respect to other forms (for instance the adjacency matrix) where
constraint must be used to select which combinations correspond to directed
acyclic graph. However, since a DAG can have more than one topological order,
our representation is, in general, a many-to-one representation, i.e., there can be
multiple pairs (π, b) that represent the same DAG.

The set of all the pairs (π, b), such that π ∈ Sn and b ∈ B
m, is the Cartesian

product B = Sn×B
m. Importantly, B can be endowed with the binary operation

∗ defined as
(π, b) ∗ (π′, b′) = (π ◦ π′, b � b′) (6)

where ◦ and � are the group operations for Sn and B
m, respectively. Therefore B

is a group with respect to ∗, namely the product group of Sn and B
m. Its neutral

element is (ι, 0), while the inverse of (π, b) is (π−1, b).
Addition and subtraction on B can now be defined as in Eqs. (3) and (4), by

using the operation ∗ and its related inverse operator.
In order to define the multiplication of a pair (π, b) by a scalar a ∈ [0, 1],

we have to choose a generating set for B. We describe two ways of defining a
generating set for B starting from the generating sets for Sn and for B

m.
The additive generating set A is defined as

A = ST ′ ∪ U ′

where ST ′ = {(σi, 0) : i = 1, . . . , n − 1} and U ′ = {(ι, uj) : j = 1, . . . , m}. Its
cardinality is |A| = n − 1 + m. Note that the generators of ST ′ only influence
the permutation part (since the second component of the element of ST ′ is 0).
Conversely, the generators of U ′ have effect only on the binary part. Using A as
generating set, it is easy to prove that |(π, b)| = |π| + |b|.

A randomized decomposition algorithm for A which produces a random mini-
mal decomposition of (π, b) ∈ B is the following. Given a random minimal decom-
position (σh1 , . . . , σhL

) of π and a random minimal decomposition (uk1 , . . . , ukM
)

of b, then

442 M. Baioletti et al.

– create an empty sequence r of size L + M ,
– choose L random different indices 1 ≤ j1 < · · · < jL ≤ L + M of r,
– assign rjv ← (σhv

, 0) for v = 1, . . . , L,
– fill the M unassigned positions of r with the pairs (ι, ukv

) for v = 1, . . . ,M .

The multiplicative generating set P is defined as

P = (ST × U) ∪ A

whose cardinality is n(m + 1). A minimal decomposition of a pair (π, b) ∈ B in
terms of P is much shorter than a minimal decomposition in terms of A, because
each generator belonging to ST × U affects both the permutation and binary
part.

A minimal decomposition of (π, b) ∈ B can be obtained by pairing the mini-
mal decompositions of π and b. In the general case, a certain number of copies of
the neutral element have to be added to the shorter of the two minimal decom-
positions in order to match the length of the longest one. The generators of A
(also present in P) are useful for this purpose. Using P as generating set, it can
be easily proved that |(π, b)| = max{|π|, |b|}.

A randomized minimal decomposition for (π, b) ∈ B in terms of P is com-
puted as follows. Given a random minimal decomposition (σh1 , . . . , σhL

) of π
and a random minimal decomposition (uk1 , . . . , ukM

) of b, if L < M , then

– create an empty sequence r of size M ,
– choose L random different indices 1 ≤ j1 < · · · < jL < M in r,
– assign rjv ← (σhv

, ukjv
) for v = 1, . . . , L,

– fill the M−L unassigned positions of r with the pairs (ι, ukv
) for v = 1, . . . ,M .

The method works in a similar way when L ≥ M .

5 The Algorithm DEBN

In this section we describe DEBN, the algorithm based on the Algebraic Differ-
ential Evolution for learning Bayesian Networks. It has the same structure of a
classical DE algorithm: its pseudo-code is depicted in Algorithm 1.

Any population individual xi is represented by means of the dual repre-
sentation introduced in Sect. 4, i.e., xi = (πi, bi), where πi ∈ Sn, bi ∈ B

m, and
m =

(
n
2

)
. The individuals are evaluated by means of a BN score function selected

by the user. In this work, K2 and BDe have been considered (see Sect. 1).
Each individual xi = (πi, bi) is randomly initialized by selecting a permuta-

tion πi uniformly at random on Sn, while each bit of bi is set to 1 with probability
2

n−1 , thus that the average number of edges in the BN represented by xi is n.
The discrete differential mutation uses the algebraic operations ⊕, �, � of

B. Moreover, in order to mitigate the diversity loss phenomenon, typical in com-
binatorial spaces, the rand/1 scheme of classical DE has been extended by intro-
ducing a random term as follows:

yi = (xr1 ⊕ t) ⊕ F � (xr2 � xr3), (7)

Learning Bayesian Networks with Algebraic Differential Evolution 443

Algorithm 1. DEBN Pseudo-Code
1: function DEBN
2: Initialize and Evaluate the Population
3: while termination criterion is not met do
4: for i ← 1 to N do
5: yi ← DifferentialMutation(xi, F, pm)
6: zi ← Crossover(xi, yi, CR)
7: Evaluate(zi)

8: for i ← 1 to N do
9: xi ← selection(xi, zi)

10: return the best BN structure found

where, as in Eq. (1), xr1 , xr2 , and xr3 are three random population individual
different to each other and with respect to xi, while F ∈ [0, 1] is the scale factor
parameter.

Furthermore, t ∈ B is randomly generated by means of the pre-mutation
probability pm ∈ (0, 1) such that |t| = k with probability pmk. Operatively, t is
initialized to the neutral element (ι, 0), then, during a loop, a random number
r ∈ [0, 1] is generated and, if r < pm, a suitable randomly selected generator
(from A or P) is applied to t. As soon as r ≥ pm, the loop is stopped and t is
returned.

Two crossover operators are separately applied to the permutation and binary
parts of xi = (πi, bi) and yi = (π′

i, b
′
i), thus obtaining the trial individual zi =

(π′′
i , b′′

i). We have implemented different crossover schemes for the permutation
and binary parts. After preliminary tests we decide to use this combination of
crossover:

π′′ = CY C(πi, π
′
i)

b′′
i = BIN(bi, b′

i, CR)

where CYC is the (parameterless) cycle crossover described in [17], and BIN is
the usual binomial crossover of DE, as defined in Eq. (2).

The generation is then concluded by applying the 1-to-1 selection scheme of
classical DE.

DEBN has also been equipped with a self-adaptive procedure, inspired by
the well known jDE method [6], that allows to self-regulate the three param-
eters pm, F , and CR. Each population individual maintains its own parame-
ter values. Then, independently for each parameter, when mutant and trial are
generated, with probability 0.9, they inherit the value of the target population
individual, otherwise they randomly sample a new value in the allowed range for
the parameter at hand, i.e., [0.1, 1] for F , [0, 1] for CR, and [0.1, 0.3] for pm.

Finally, two implementations of DEBN can be devised, namely DEBN+,
where the operation � is defined with respect to the generating set A, and
DEBN×, which is based on P .

444 M. Baioletti et al.

6 Experimental Results

In this section we describe the experimental results obtained with the implemen-
tation of DEBN algorithm. Experiments have been conducted using 8 popular
BN benchmarks. For each one, we have generated two datasets of different sizes
by using the sampling procedure of the bnlearn R package [23].

The benchmark names are provided in Table 1, where we also report the
dataset sizes, together with the number of nodes and edges of the true networks
from which the datasets are generated. The aim of the experimentation is thus to
try to the recover the original networks by maximizing the K2 and BDe scores,
computed by only looking at the datasets.

Table 1. Datasets

Network Size1 Size2 #vars #edges

Alarm 4000 8000 37 46

Asia 1000 5000 8 8

Barley 5000 10000 48 84

Child 2000 5000 20 25

Hailfinder 5000 10000 56 66

Insurance 3000 6000 27 52

Water 4000 8000 32 66

Win95pts 5000 10000 76 112

Three algorithms have been compared: DEBN+, DEBN×, and the recent
state-of-the-art evolutionary algorithm BFO-B, which has been implemented by
faithfully following the description given in [28]. As indicated by its authors, the
BFO-B parameters have been set to Ns = 4, Nre = 4, Ned = 3, S = 80, Nc = 30,
and Ped = 0.1.

Our DEBN+ and DEBN× only require to set the population size N . After
some preliminary tests (here not reported for the lack of space), we decided to
use N = 50 for both the variants.

In order to choose a fair termination criterion for DEBN, we have observed
that BFO-B performed around 100 000 fitness evaluations in average, so we used
this number of evaluations also for DEBN.

All the three algorithms have been run 20 times per dataset using both
the considered score metrics. Tables 2 and 3 provide the average and best scores
obtained by all the algorithm and considering, respectively, BDe and K2 as score
functions. For each dataset, the best average and maximum scores are indicated
in, respectively, bold and italic.

Tables 2 and 3 clearly show that our proposals largely outperform BFO-
B on almost all the comparisons. The only exceptions are on water 4000 and
water 8000 where BFO-B obtains a better average K2 score. However, in the

Learning Bayesian Networks with Algebraic Differential Evolution 445

Table 2. Results with BDe score

Dataset BFO-B DEBN+ DEBN×
Avg Max Avg Max Avg Max

alarm 4000 −43794.98 −43437.00 −42570.45 −42502.57 −42610.05 −42519.19

alarm 8000 −87576.63 −86859.20 −85234.69 −85086.80 −85209.07 −85087.68

asia 1000 −2310.45 −2310.37 −2310.37 −2310.37 −2310.37 −2310.37

asia 5000 −11394.74 −11394.50 −11394.49 −11394.49 −11394.49 −11394.49

barley 5000 −268201.94 −264423.00 −266737.42 −262211.07 −267429.76 −263562.99

barley 10000 −532904.94 −527937.00 −524224.13 −512050.47 −523856.84 −517022.55

child 2000 −25041.73 −25040.10 −25040.90 −25040.08 −25040.08 −25040.08

child 5000 −61385.42 −61382.90 −61382.93 −61382.93 −61382.93 −61382.93

hailfinder 5000 −251569.15 −250809.00 −249938.90 −249555.91 −249935.54 −249635.38

hailfinder 10000 −503277.10 −499926.00 −497099.00 −496475.76 −496891.03 −496451.81

insurance 3000 −40884.81 −40718.00 −40472.34 −40347.91 −40454.16 −40389.54

insurance 6000 −80903.57 −80495.30 −80146.05 −79966.23 −80109.22 −79960.52

water 4000 −52234.43 −52154.70 −52068.78 −51993.13 −52071.86 −52001.85

water 8000 −103631.50 −103443.00 −103320.64 −103155.90 −103352.41 −103168.28

win95pts 5000 −60481.39 −58908.90 −51460.67 −49924.90 −51348.43 −49440.49

win95pts 10000 −121667.70 −118890.00 −105275.83 −99497.04 −104804.92 −100368.35

Table 3. Results with K2 score

Dataset BFO-B DEBN+ DEBN×
Avg Max Avg Max Avg Max

alarm 4000 −43802.95 −43429.90 −42760.22 −42694.80 −42790.03 −42695.92

alarm 8000 −87576.81 −86298.90 −85451.64 −85301.86 −85573.49 −85318.76

asia 1000 −2289.97 −2289.94 −2289.94 −2289.94 −2289.94 −2289.94

asia 5000 −11373.64 −11373.50 −11373.47 −11373.47 −11373.47 −11373.47

barley 5000 −282797.80 −280376.00 −278009.54 −274887.52 −279218.10 −275726.47

barley 10000 −558264.08 −551764.00 −538313.54 −531544.39 −536969.49 −531683.39

child 2000 −25022.86 −25019.60 −25019.56 −25019.56 −25020.45 −25019.56

child 5000 −61366.06 −61363.50 −61363.76 −61363.55 −61363.76 −61363.55

hailfinder 5000 −252976.70 −251587.00 −250506.92 −250204.53 −250543.04 −250266.94

hailfinder 10000 −506897.80 −504137.00 −497874.99 −497546.61 −497917.03 −497194.28

insurance 3000 −41273.06 −41150.30 −40905.16 −40857.28 −40921.03 −40823.76

insurance 6000 −81655.57 −81088.70 −80868.01 −80642.36 −80905.42 −80707.54

water 4000 −52451.31 −52429.50 −52487.60 −52433.88 −52490.21 −52449.57

water 8000 −103793.35 −103760.00 −103854.43 −103771.33 −103842.66 −103755.88

win95pts 5000 −54866.60 −52726.90 −50442.92 −48932.97 −50852.83 −48509.02

win95pts 10000 −112196.95 −110883.00 −103897.32 −97930.23 −104792.63 −101290.97

446 M. Baioletti et al.

larger BNs hailfinder and win95pts, the score differences are remarkably large
in favor of the DEBN algorithms.

Regarding the comparison between the two DEBNs and considering the BDe
metric, DEBN× obtained better average scores, while DEBN+ shows better peak
performances.

On the other end, considering the K2 metric, DEBN+ is slightly preferable
with respect to DEBN× both in terms of average and peak performances.

7 Conclusions and Future Work

In this paper we have described DEBN, an Algebraic Differential Evolution algo-
rithm [21] for learning the structure of a Bayesian Network (BN). DEBN is based
on a novel BNs representation based on the algebraic concept of product group,
where a DAG is represented by a permutation and a bit-string. Both permuta-
tions and bit-strings are finitely generated groups, hence it is possible to apply
the principles of Algebraic Differential Evolution.

Two variants of DEBN have been proposed and experimentally compared
with BFO-B, one of the best evolutionary algorithms for BN learning. The exper-
imental results clearly show that DEBN largely outperforms BFO-B.

As future lines of research, we will investigate: the use of other generating
sets for the permutation part (see [3]), and the application of the DEBN scheme
to other problems whose solutions are DAGs.

References

1. Baioletti, M., Milani, A., Santucci, V.: Algebraic particle swarm optimization for
the permutations search space. In: Proceedings of 2017 IEEE Congress on Evolu-
tionary Computation (CEC 2017), pp. 1587–1594 (2017). https://doi.org/10.1109/
CEC.2017.7969492

2. Baioletti, M., Milani, A., Santucci, V.: Linear ordering optimization with a combi-
natorial differential evolution. In: Proceedings of 2015 IEEE International Confer-
ence on Systems, Man, and Cybernetics (IEEE SMC 2015), pp. 2135–2140 (2015).
https://doi.org/10.1109/SMC.2015.373

3. Baioletti, M., Milani, A., Santucci, V.: An extension of algebraic differential evo-
lution for the linear ordering problem with cumulative costs. In: Handl, J., Hart,
E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016.
LNCS, vol. 9921, pp. 123–133. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45823-6 12

4. Baioletti, M., Milani, A., Santucci, V.: Automatic algebraic evolutionary algo-
rithms. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds.)
WIVACE 2017. CCIS, vol. 830, pp. 271–283. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78658-2 20

5. Baioletti, M., Milani, A., Santucci, V.: MOEA/DEP: an algebraic decomposition-
based evolutionary algorithm for the multiobjective permutation flowshop schedul-
ing problem. In: Liefooghe, A., López-Ibáñez, M. (eds.) EvoCOP 2018. LNCS, vol.
10782, pp. 132–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77449-7 9

https://doi.org/10.1109/CEC.2017.7969492
https://doi.org/10.1109/CEC.2017.7969492
https://doi.org/10.1109/SMC.2015.373
https://doi.org/10.1007/978-3-319-45823-6_12
https://doi.org/10.1007/978-3-319-45823-6_12
https://doi.org/10.1007/978-3-319-78658-2_20
https://doi.org/10.1007/978-3-319-78658-2_20
https://doi.org/10.1007/978-3-319-77449-7_9
https://doi.org/10.1007/978-3-319-77449-7_9

Learning Bayesian Networks with Algebraic Differential Evolution 447

6. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control
parameters in differential evolution: a comparative study on numerical benchmark
problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

7. Daly, R., Shen, Q.: Learning Bayesian networks equivalence with ant colony opti-
mization. J. Artif. Intell. Res. 35, 391–447 (2009)

8. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art.
IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

9. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution
an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)

10. de Campos, L.M., Fernández-Luna, J.M., Gámez, J.A., Puerta, J.M.: Ant colony
optimization for learning Bayesian networks. Int. J. Approx. Reason. 31(3), 291–
311 (2002)

11. de Campos, L.M., Gámez, J.A., Puerta, J.M.: Learning Bayesian networks by ant
colony optimization: searching in two different spaces. Mathw. Soft Comput. 9(2–
3), 251–268 (2002)

12. Ji, J., Yang, C., Liu, J., Liu, J., Yin, B.: A comparative study on swarm intelli-
gence for structure learning of Bayesian networks. Soft Comput. 21(22), 6713–6738
(2017)

13. Kabli, R., Herrmann, F., McCall, J.: A chain-model genetic algorithm for Bayesian
network structure learning. In: Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation, pp. 1264–1271. ACM (2007)

14. Koller, D., Friedman, N.: Probabilistic Graphical Models Principles and Tech-
niques. MIT Press, Cambridge (2009)

15. Kuo, S.-C., Wang, H.-J.., Wei, H.-Y., Chen, C.-C., Li, S.-T.: Applying MDL in
PSO for learning Bayesian networks. In: 2011 IEEE International Conference on
Fuzzy Systems (FUZZ), pp. 1587–1592. IEEE (2011)

16. Lang, S.: Algebra, vol. 211. Springer, Heidelberg (2002). https://doi.org/10.1007/
978-1-4613-0041-0

17. Larrañaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdarevic, S.: Genetic
algorithms for the travelling salesman problem: a review of representations and
operators. Artif. Intell. Rev. 13(2), 129–170 (1999)

18. Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R.H., Kuijpers, C.M.H.: Struc-
ture learning of Bayesian network by genetic algorithms: a performance analysis
of control parameters. IEEE Trans. Pattern Anal. Mach. Intell. 18(9), 912–926
(1996)

19. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical App-
roach to Global Optimization. Springer, Heidelberg (2005). https://doi.org/10.
1007/3-540-31306-0

20. Santucci, V., Baioletti, M., Milani, A.: An algebraic differential evolution for the
linear ordering problem. In: Proceedings of the Companion Publication of the 2015
Annual Conference on Genetic and Evolutionary Computation (GECCO 2015), pp.
1479–1480. ACM, New York (2015). https://doi.org/10.1145/2739482.2764693

21. Santucci, V., Baioletti, M., Milani, A.: Algebraic differential evolution algorithm for
the permutation flowshop scheduling problem with total flowtime criterion. IEEE
Trans. Evol. Comput. 20(5), 682–694 (2016). https://doi.org/10.1109/TEVC.2015.
2507785

22. Santucci, V., Baioletti, M., Milani, A.: Solving permutation flowshop scheduling
problems with a discrete differential evolution algorithm. AI Commun. 29(2), 269–
286 (2016). https://doi.org/10.3233/AIC-150695

23. Scutari, M.: Learning Bayesian networks with the bnlearn R package. J. Stat.
Softw. 35(3), 1–22 (2010)

https://doi.org/10.1007/978-1-4613-0041-0
https://doi.org/10.1007/978-1-4613-0041-0
https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1145/2739482.2764693
https://doi.org/10.1109/TEVC.2015.2507785
https://doi.org/10.1109/TEVC.2015.2507785
https://doi.org/10.3233/AIC-150695

448 M. Baioletti et al.

24. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian
network structure learning algorithm. Mach. Learn. 65(1), 31–78 (2006)

25. van Dijk, S., van der Gaag, L.C., Thierens, D.: A skeleton-based approach to
learning Bayesian networks from data. In: Lavrač, N., Gamberger, D., Todorovski,
L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 132–143. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39804-2 14

26. Wu, Y., McCall, J.A.W., Corne, D.W.: Two novel ant colony optimization
approaches for Bayesian network structure learning. In: IEEE Congress on Evolu-
tionary Computation, pp. 1–7 (2010)

27. Xing-Chen, H., Zheng, Q., Lei, T., Li-Ping, S.: Learning Bayesian networks struc-
tures with discrete particle swarm optimization algorithm. In: 2007 IEEE Sympo-
sium on Foundations of Computational Intelligence, pp. 47–52 (2007)

28. Yang, C., Ji, J., Liu, J., Liu, J., Yin, B.: Structural learning of Bayesian networks
by bacterial foraging optimization. Int. J. Approx. Reason. 69, 147–167 (2016)

https://doi.org/10.1007/978-3-540-39804-2_14

Optimal Neuron Selection and
Generalization: NK Ensemble Neural

Networks

Darrell Whitley1(B), Renato Tinós2, and Francisco Chicano3

1 Colorado State University, Fort Collins, CO 80523, USA
whitley@colostate.eu

2 University of São Paulo, Ribeirão Preto, SP, Brazil
3 University of Málaga, Málaga, Spain

Abstract. This paper explores how learning can be achieved by turning
on and off neurons in a special hidden layer of a neural network. By posing
the neuron selection problem as a pseudo-Boolean optimization problem
with bounded tree width, an exact global optimum can be obtained to
the neuron selection problem in O(N) time. To illustrate the effectiveness
of neuron selection, the method is applied to optimizing a modified Echo
State Network for two learning problems: (1) Mackey-Glass time series
prediction and (2) a reinforcement learning problem using a recurrent
neural network. Empirical tests indicate that neuron selection results in
rapid learning and, more importantly, improved generalization.

1 Introduction to Optimal Neural Selection

Programmed cell death, also known as neuronal apoptosis, is known to be an
important part of normal brain development and mechanisms behind neuronal
apoptosis have been extensively studied [12,15]. Along with synaptic pruning
[3], neuronal apoptosis helps to shape the size and configuration of different
neural processing centers in the brain. This is also thought to represent a very
basic form of learning. Thus, it is natural to ask what are the benefits of neuron
selection and how might neuron selection be utilized in artificial neural networks.

The proposed method converts a form of the neuron selection problem into
a k-bounded pseudo Boolean optimization problem, with the goal of identify-
ing useful combinations of neurons. A k-bounded pseudo-Boolean optimization
problem [2] can be expressed in the following form:

f(x) =
M∑

i=1

fi(x) (1)

where x ∈ {0, 1}N is a bit vector, each subfunction fi can output any real value,
and fi(x) is evaluated using a subset of k bits drawn from the bit vector x.
Each subfunction fi identifies which bits are the correct inputs to fi. MAX-
kSAT is a classic example of a k-bounded Boolean optimization problem, where
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 449–460, 2018.
https://doi.org/10.1007/978-3-319-99259-4_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_36&domain=pdf

450 D. Whitley et al.

each subfunction fi corresponds to a clause that evaluates to 0 or 1. Spin glass
systems and NK Landscapes are also well known k-bounded pseudo Boolean
optimization problems.

In this paper, we will restrict our attention to neural networks with a single
output neuron that learn a single continuous real valued output; however, the
learning method can generalize to multiple outputs. The bit vector x ∈ {0, 1}N

will be used to indicate if a neuron should be turned on or turned off.
In order to create M subfunctions, the single output neuron is converted

into an ensemble of M output neurons, all of which attempt to learn the same
task. Furthermore, only a subset of other neurons in the neural network (k to
be precise) will be allowed to connect to a particular output neurons. Thus,
optimizing Eq. 1 results in the selection of a subset of neurons from vector x
that contribute in a positive fashion to an ensemble of M outputs attempting
to learn the same task. The neuron selection method proposed here only acts on
the set of neurons that are directly connected to an output neuron.

Each subfunction fi might minimize the mean squared error under supervis-
ing learning, or it might maximize a performance metric in the case of reinforce-
ment learning. Because the problem is posed as a k-bounded pseudo-Boolean
optimization problem, each of the output neurons (corresponding to a subfunc-
tion fi) receives input from only k other neurons. If k neurons were randomly
selected to connect to an output fi, it would probably be necessary to use a
heuristic method to optimize the neuron selection problem. However, there are
advantages to choosing a localized and structured pattern when connecting neu-
rons to outputs. In the current paper, neurons are connected to outputs in such a
way that the neuron selection problem can be solved in O(N) time using dynamic
programming. The resulting solution is globally optimal relative to the starting
architecture, and the input vector x. Obviously, different initial architectures
would nevertheless yield different results.

We apply this new learning method to two problems. The first problem is
the Mackey-Glass time series prediction problem [10]. The second problem is the
reinforcement learning problem of balancing two poles on a cart while providing
only cart position and the two pole angles as input [20]; this configuration makes
it necessary to learn to compute velocity information and makes this classic
control problem much more difficult. For both learning problems, we utilize a
recurrent neural network in the form of an Echo State Network.

Echo State Networks are one form of reservoir computing [13,14]. Reservoir
computing networks use a reservoir of sparsely and recurrently connected artifi-
cal neurons that have randomly generated weighted connections. Both the input
neurons and output neurons are outside of the reservoir. The weights inside of the
reservoir of neurons are not adjusted by learning. To determine which neurons
are useful, learning is typically used to adjust the weights that connect artifi-
cial neurons in the reservoir to the outputs. In our experiments, we use neuron
selection to determine which neurons connected to the reservoir are useful.

For the Mackey-Glass problem, neuron selection improves generalization
using similar computation time when compared to the standard Echo State

NK Echo State Networks 451

Network. For the two pole balancing problem with no velocity inputs, neuron
selection learns more rapidly and produces dramatically better generalization
than any other method that has been reported in the literature. It achieves
these results with no policy iteration and no back propagation. Neuron selection
is the only form of learning that is utilized.

Although we use an Echo State Network as the foundation for our experi-
ments, in principle the same technique might be applied to multi-layered per-
ceptrons or deep learning networks. It therefore provides a new means of auto-
matically configuring a neural network architecture to fit a particular problem.

2 Optimization by Dynamic Programming

We will very briefly outline how and when dynamic programming can used to
optimize k-bounded pseudo-Boolean functions. We construct a Variable Interac-
tion Graph, G, to model the interaction between variables in a k-bound pseudo-
Boolean optimization problem. If two variables xq and xj appear together in
subfunction fi then there is an edge between xq and xj in G. We next define the
concepts of tree width and tree decomposition of a graph [6].

Definition 1. [6] A tree decomposition of any graph G(V,E) is a pair D =
(S, T) where S = {Xi, i ∈ I} is a collection of I subsets of the vertices of G and
T is a tree with one node for each subset in the collection S, such that:

1.
⋃

i∈I Xi = V ,
2. for all the edges (u,w) ∈ E there exists a subset Xi ∈ S such that both u and

w are in Xi,
3. for each vertex v, the set of nodes that contain v, {i|v ∈ Xi}, form a subtree

of T .

The tree width, denoted by w, of the decomposition D = (S, T) is given by
w = maxi∈I (|Xi| − 1).

Dynamic programming can be used to find the global optimum of any pseudo-
Boolean optimization problem (i.e., Eq. 1) in time O(2wN), where w is the tree
width of graph G(V,E) [4] and N is the number of variables. In effect, a tree
decomposition D provides an ordering of the variables and of the subfunctions
so that only w variables are active at a time. A variable is active if it appears
in a subfunction that is currently being probed by dynamic programming. Once
a variable is active, it stays active until a global solution is found for all of the
subfunctions that utilize that variable. In general, for NP-Hard problems (such as
MAXSAT) the runtime cost of dynamic programming is exponential. However,
problems where the tree width is bounded by a constant can be solved in linear
time. Thus, there is an advantage in creating a neuron selection architecture
that limits the size of the tree width of the variable interaction graph. In the
next section we show that if the neuron connections are sufficiently localized and
regular, the tree width is automatically limited in size.

452 D. Whitley et al.

Multi

Network

Layer

or

Reservoir

Multi

Network

Layer

or

Reservoir

Multi

Network

Layer

or

Reservoir
In 1

In 2 In 2 In 2

In 3 In 3 In 3

In 1In 1

Out 1

Out 1.1

Out 1.2

Out 1.3

Out 1.4

Out 1
Weighted

3) The Network After Neuron Selection2) The Same Network with Duplicate Outputs1) A Basic Network with 1 Output

Fig. 1. On the left is a basic network with one output. In the middle figure, the one
output neuron is replaced by an ensemble of output neurons, all with the same target
output and learning objective. Each output neuron in the ensemble is connected to
exactly k = 3 neurons in the probe filter layer (k � N). Normally, there are N neurons
in both the probe filter layer and an ensemble of N outputs. Here, to aid visualization,
there are 6 neurons in the probe filter layer and only 4 outputs in the ensemble (x1

is not adjacent to x6), and k = 3. Each output Out 1.i is different in performance
because it connects to different neurons in the probe filter layer. The neurons of the
probe filter layer are turned on or off by optimizing binary vector x so as to maximize
performance summed across all outputs. In the figure on the right, the black neurons
have been turned off, optimizing x and modifying the architecture. The ensemble of
outputs are again collected into a single output weighted by the relative performance
of each output in the ensemble.

3 Converting a Neural Network into an NK Landscape

One type of pseudo-Boolean optimization problem that automatically controls
for tree width is the Adjacent NK Landscape [11,19]. N refers to the number
of Boolean variables in vector x, M = N is the number of subfunctions, and
k = K + 1 is the number of variables that appear in each subfunction fi. In
an Adjacent NK Landscape, Boolean variable xi appears in subfunction fi as
well as the variables xi+1, xi+2, . . . xi+K . If the Adjacent NK Landscape allows
variables to wrap around such that x1 and xN are adjacent, then the tree width
is 2K. If variables do not wrap and x1 and xN are not adjacent in the Adjacent
NK Landscape, then the tree width is K [21].

We will use Fig. 1 to explain how the neuron selection problem can be
expressed as a k-bounded pseudo-Boolean optimization problem with bounded
tree width. On the left in Fig. 1, we start with a basic neural network with a sin-
gle output neuron. In this example, there are 3 inputs and 1 output. We assume
there is a hidden layer of neurons that feed into the output, or if a reservoir is
used, we create a hidden layer of N neurons that feed into the output. We will
refer to this layer as the probe filter layer. This layer probes the other neurons
in the network that feed into this final hidden layer. The probe filter layer must
directly connect to the output layer.

We will refer to our architecture as an NK Ensemble Network. The NK
Ensemble Network has an ensemble of N outputs, and each output receives inputs
from k neurons in the probe filter layer. All weights in the NK Ensemble Net-
work remain fixed during neuron selection. Only the bit vector x ∈ {0, 1}N is

NK Echo State Networks 453

optimized. If xi = 1, the ith neuron of the probe filter is turned on, i.e., its
activation is used as input for neurons in the output layer connected to it; if
xi = 0, the ith neuron is turned off.

We denote the evaluation of the ith output neuron as fi(x). The subfunction
fi automatically accesses the correct k bits when passed an input of length N .
It is also convenient to assume that fi can take an input of length k or length
N = |x|. For example, assume k = 3 and that fi(x) = fi(011); this means
that k = 3 probe filter neurons feed into output neuron i, but the 1st neuron
(numbering bits left to right) is currently turned off in x. All of the inputs to
fi must be evaluated once (and only once). Thus, for k = 3 we must evaluate
fi(000), fi(001), . . . fi(111). This is done by turning off the correct neurons in
the probe filter layer, then doing an evaluation that processes the training data
just once, or (e.g., for reinforcement learning) a simulation is used to evaluate
the network performance. This means that each subfunction requires 2k presen-
tations of the training data, or 2k performance based evaluations. This needs to
be done for all N subfunctions.

At most 2kN presentations of the training data are needed to convert the neu-
ron selection problem into an Adjacent NK Landscape. For recurrent networks
where the output at time t impacts the input at time t + 1, the total number of
online evaluations will be exactly 2kN ; this represents the worst case runtime
cost, which is still O(N) for fixed k. For other classes of learning problems this
cost might be reduced because subfunction fi might be evaluated simultaneously
and in parallel with other subfunctions (e.g., fi and fi+k do not interact) using
the same presentation of the training data.

Because k is a small constant, each function fi can be expressed as a lookup
table with 2k entries. Dynamic programming can then be done offline because the
neuron selection objective function is now fully captured by the lookup tables.
In practice, we have found that the runtime cost of dynamic programming is less
than 1% of the entire computation for small k (e.g., k ≤ 6) and usually takes
about the same amount of time as a single feed-forward pass over the training
data.

The algorithm for neuron selection follows the 3 illustrations in Fig. 1.

(1) Step 1. Start with a basic network. The weights in the network might be opti-
mized with a weight training algorithm (e.g., back propagation), or weights
might be generated randomly. The network must include a probe filter layer,
and only neurons in the probe filter layer connect to the output.

(2) Step 2. Assume there are N neurons in the probe filter layer: create an
ensemble of N outputs. Let xi reference the ith neuron in the probe filter.
Output neuron “Out 1.i” receives inputs from neurons xi to xi+K . The
performance of output neuron Out1.i is condensed into a single number, Pi,
where fi(x) = Pi. This makes is possible to storage each function fi as a
look-up table of size 2k.

(3) Step 3. Optimize the function: f(x) = 1
N

∑N
i=1 fi(x) using dynamic pro-

gramming. Use the optimal solution x∗ to select neurons in the probe filter

454 D. Whitley et al.

layer. In this formulation we average over the subfunctions but this has no
impact on the form of the optimization problem.

Let z be an input to the neural network. Let Sout.i(z) denote the state of
ensemble output neuron (e.g. Out 1.i in Fig. 1) after input z is propagated
through the network; let Outensemble(z) denote the weighted output obtained
by combining the ensemble:

Outensemble(z) =
1
N

N∑

i=1

αiSout.i(z) where αi =
fi(x∗)

∑N
i=1 fi(x∗)

(2)

The weighting vector α is calculated after optimizing the vector x. Thus αi

depends on the performance associated with fi(x∗) and output neurons with
better results have higher weights.

4 Experimental Results

All of the experiments in this paper use “Echo State Networks” as a foundation.
One motivation for using Echo State Networks is that the neurons in the reservoir
have randomly generated weights. Schiller and Steil [17] show that when gradient
methods are used to train recurrent neural networks, most of the weight changes
occur in the weights that connect to outputs, even if the methods are being used
to change all of the weights in the network. We explore the idea that neural
networks can be trained using little or no weight optimization.

The term “NK Ensemble Network” will be used to denote networks that have
been enhanced by neuron selection.

4.1 Problem One: Mackey-Glass Time Series Prediction

The Mackey-Glass time series problem is a supervised learning problem and a
classic benchmark for chaotic time series prediction. The original Echo State
Network was successfully applied to this problem [10]. The vector of weights
wout in a given output neuron can be trained by solving a system of linear
equations:

yd = Hwout (3)

where H is a matrix composed by the inputs of the output layer for each training
example and yd is the vector of desired values for the output neuron. Equation 3
can be solved [14] by:

wout = (HTH)−1HTyd (4)

In order to avoid numerical instability, a regularization term can be added to
the term inside the parentheses in Eq. 4.

The Echo State Network for this problem has only one input and only one
output. These respectively correspond to the points of the time series at instants
t and t + 1 (the Mackey-Glass time series with delay 17 was used). There are

NK Echo State Networks 455

Fig. 2. The leftmost figure illustrates the performance of the standard echo state net-
work for the Mackey-Glass problem. The rightmost figure illustrates the performance
of the NK ensemble network. In both figures, the desired output is denoted by the
solid blue line, and the actual output is denoted by the dashed red line. The NK echo
state network error is 4 times lower than the standard echo state network. (Color figure
Online)

two hidden layers between the reservoir and the output. The weights associated
with the two hidden layers were obtained using the same weight optimization
reported by Jaeger [10]. The inputs of the neurons of the hidden layer 2 receive
inputs from 90% of the neurons in hidden layer 1. A bias neuron is used. A
linear activation function is used in the neurons of the hidden layer 2 (in order
to apply Eq. 4 to train the output weights) and output layer. The neurons of
the reservoir use the hyperbolic tangent activation function.

The NK Ensemble Network uses exactly the same standard configuration
except an ensemble of N output neurons is used. The second hidden layer func-
tions as the probe filter layer. The weights between the probe filter layer and
the ensemble of outputs are generated randomly, then rescaled so that the sum
of the weights is equal to 1.

The output neurons of the NK Ensemble Network for inputs z are given by:

Sout.i(z) =
N∑

q=1

ws
q,iSq(z)xq (5)

where Sq(z) is the output of neuron q of the probe filter layer for input z, xq

indicates if the neuron q is turned on (1) or off (0), and the scaled weight ws
q,i

is given by:
ws

q,i =
wq,i∑N

j=1 wj,ix(j)
(6)

where wq,i are randomly generated in the interval between 0.0 and 1.0.
The weights of the output neurons are then adapted using Eq. 4 (for each out-

put neuron and each combination given by vector x). Finally, look-up tables are
generated for each subfunction fi. Next, the bit vector x ∈ {0, 1}N is optimized
using dynamic programming.

456 D. Whitley et al.

The initial 1000 time steps of the series are used to stabilize the reservoir
before the training phase for each learning algorithm. The standard Echo State
Network is trained for 2000 time steps of the Mackey-Glass series and tested for
additional 300 points. During the test phase, the input of the network at time t
is given by the output of the network at time t − 1.

Learning for the NK Ensemble Network is broken into three phases. In Phase
1, the weights are adapted for 1800 time steps in exactly the same way in which
they were for the standard Echo State Network. In Phase 2, the subfunctions fi

are generated. Each subfunction is evaluated for 2k configurations, and each con-
figuration is evaluated for 200 time steps. This can be thought of as a validation
phase where the optimization of the probe filter layer corresponds to a type of
model selection. The input of the network at time t is given by the output of the
network at time t−1. In the validation phase, the terms fi are computed by the
mean squared error for the NK Ensemble Network during 200 time steps. The
vector x is then optimized by the dynamic programming procedure; the cost of
the dynamic programming is minimal and less than 1% of the total runtime. In
Phase 3, the NK Ensemble Network is tested for generalization.

Both the standard Echo State Network and the NK Ensemble Network were
allocated 2000 time steps of the data for learning and 1000 time steps for test-
ing. (The 2000 steps for the NK Ensemble network includes the time needs for
dynamic programming.) Both networks used exactly the same reservoir. Both
networks were trained and tested using a sample size of 30. During testing,
generalization was measured by the function:

g =
1

1 − emse

where emse is the mean squared error. g = 1.0 represents perfect generalization.
Both networks yield reasonably good prediction during the first 300 steps of

testing. However, an examination of Fig. 2 shows that the standard Echo State
Network yields poorer performance after time step 300 during the testing phase:
the predictions become increasingly worse with time. The NK Ensemble Network
continues to make good predictions across all of the testing phase. Overall, the
error of the standard Echo State Network is 4 times larger than the error of
the NK Ensemble Network. Thus, the NK Ensemble Network is able to improve
generalization with little or no additional training cost.

4.2 Problem Two: Double Pole Balancing Without Velocity Inputs

The NK Ensemble Network is next tested on the double pole balancing problem
without velocity information [20]. No back propagation was used. No policy
iteration was used. The only form of learning was neuron selection. All of the
weights in the network were generated randomly.

The reservoir utilizes 60 neurons, with recurrent connections between neu-
rons. Each neuron in the reservoir has recurrent connections to 10% of the neu-
rons in the reservoir. All weights and bias of the NK Ensemble Network are

NK Echo State Networks 457

fixed, being randomly generated between [−0.6, 0.6]. After the initialization, the
recurrent weights in each reservoir are scaled with a spectral radius equal to
0.95. All neurons use the hyperbolic tangent function as the activation function.

When no velocity information is provided, this problem is difficult; it has also
been widely studied [5,7–9,18]. The 3 inputs to the artificial neural network at
step t are the scaled cart position and the angles of the two poles:

u(t) = [pc(t)/pmax
c , θ1(t)/θmax

1 , θ2(t)/θmax
2]T

where pc(t) is the cart position, θi(t) is the angle of the i-th pole, and pmax
c and

θmax
i are the maximum allowed values used to scale the inputs between −1 and

+1. All neurons use the hyperbolic tangent function with outputs between -1
and +1 as the sigmoidal squashing function.

The following objective function has been used by a number of researchers
[5,8,9,18].

f = t/tmax + 9fstable

fstable =

{
0, if t < 100

0.75∑t
i=t−100(|xc(i)|+|ẋc(i)|+|θ1(i)|+|θ̇1(i)|) , otherwise,

where t is the number of time steps that the system is successfully controlled
(up to a limit of tmax = 1000 steps).

The output in the problem posed in this paper is continuous, allowing for
greater control. The force (in Newtons) applied to the cart at iteration t when
evaluating the i-th output neuron is given by:

action(t) = 10Sout.i(u(t)) (7)

The state of the neuron selection vector x is included in the calculation of Si

(Eq. 5). The track length is given by pc ∈ [−2.4, 2.4] meters; beyond this range
the cart crashes into the ends of the track. The system must keep both poles
within θi ∈ [−36, 36] degrees of vertical. The function f1 indicates how long
the cart and pole system has avoided a failed state (where a pole falls, or the
cart crashes). An overall evaluation greater than 1.0 generally means that the
system avoided failure for tmax time. However, because tmax = 1000 is small,
a bang-bang control strategy might be learned so that even if the controller
avoids failure for tmax time steps, the system will become increasingly unstable
and eventually fail when the system is run for more than tmax time steps. The
second function fstable indicates the stability of the system during the last 100
time steps if t ≥ 100. A higher value of fstable means that the system is staying
close to the ideal state: close to the center of the track, with small pole angles
close to vertical (zero), and with low velocities.

During learning, the system always starts from the state pc(0) = θ2(0) =
ṗc(0) = θ̇1(0) = θ̇2(0) = 0 and θ1(0) = 4.5◦. The mass of cart is 1 kg, the mass
of pole 1 is 0.1 kg, the mass of pole 2 is 0.01 kg: length of pole 1 equal to 1 m,

458 D. Whitley et al.

length of pole 1 equal to 0.1 m, coefficient of friction of the cart on the track
is 0.0005, the coefficient of friction of the poles equal to 0.000002 [5]. The 4th
order Runge-Kutta method with integration step equal to 0.01 was used.

4.3 Comparative Results

Learning was successful 100% of the time across all experiments. To test gen-
eralization, the final network was evaluated 625 times, each time with different
initial settings for cart position, cart velocity, pole 1 angle, and pole 1 velocity.
The angle and velocity for pole 2 are set to zero. The combination of five dif-
ferent initial settings for each variable is considered: 5, 25, 50, 75, and 95% of a
reduced range of the variables. With 5 settings and 4 variables, 54 = 625. The
evaluation of the generalization test counts the number of positions from which
the system is successfully controlled for 1000 steps. This test of generalization
has been widely used for the last 20 years [5,7–9].

In Table 1, we report results for the NK Ensemble Network for several differ-
ent configurations, as well as previously published results. There appears to be
no new significant results since 2008.

Gomez, Schmidhumber and Miikkulainen [8] have shown that a wide range of
standard reinforcement learning methods do not work well on the problem of bal-
ancing two poles on a cart given no velocity information. They used Q-learning
with a Multi-Layer Perceptron that mapped state-action pairs to Q-values. They
also compared to methods such as Sarsa(λ) with Case Based Function Approxi-
mators as well as Sarsa(λ) with a Cerebellar Model Articulation Controller [16].
They concluded these methods were less effective and less efficient compared
to neuroevolution based methods such as NEAT [18], ESP [7] and CoSyNE [8].
In this paper and the above studies, a continuous output is learned. The most
recent reinforcement work on pole balancing [1] looked at a discrete “bang-bang”
controller and provided velocity information as inputs; this work also did not test
for generalization.

The NK Ensemble Networks included networks with N = 20 and N = 100,
and K = 2, 3, 4, 5. Using just 320 evaluations, the NK Ensemble Networks with
N = 20 and K = 3 yields an average generalization of 304 successes from
the 625 possible start states. This level of generalization is similar to the best
results previously reported in the literature as reported in Table 1. Increasing N
and K improved generalization at the cost of additional evaluations. The best
generalization was achieved by setting N = 100 and K = 4 and then selecting
only the “Top 20” best output neurons (based on αi from Eq. 2) to be included
in the ensemble. This was done at no additional runtime cost. This configuration
used 3200 evaluations, but the NK Ensemble Network was able to successfully
balance the double pole from 490 of the 625 start states on average with a
relatively low standard deviation. These generalization results greatly improve
on results previously reported in the literature. A runtime analysis shows that
99% of the runtime was spent on feedforward evaluations of the neural network;
less than 1% of the time was spent on the dynamic programming optimization.

NK Echo State Networks 459

Table 1. Evaluation results for the NK ensemble network with different values of N
and K. The results are also compared to other results in the literature.

Algorithm Evaluations Generalization

CE 1996, reference [9] 840,000 300
ESP 1999, reference [7] 169,000 289
ESP 2008, reference [8] 26,342 Not Given

NEAT 2002, reference [18] 33,184 286
NEAT 2008, reference [8] 6,929 Not Given

CoSyNE 2008, reference [8] 3,416 Not Given
NK Ensemble Network, N=20, K=2 160 229 ±160 s.d.
NK Ensemble Network, N=20, K=3 320 304 ±154 s.d.
NK Ensemble Network, N=20, K=4 640 321 ±151 s.d.
NK Ensemble Network, N=20, K=5 1,280 377 ±126 s.d.
NK Ensemble Network, N=100, K=2 800 323 ±115 s.d.
NK Ensemble Network, N=100, K=3 1,600 396 ±108 s.d.
NK Ensemble Network, N=100, K=4 3,200 437 ±83 s.d.

NK Ensemble Network, “Top 20” N=100, K=2 800 450 ±79 s.d.
NK Ensemble Network, “Top 20” N=100, K=3 1,600 478 ±56 s.d.
NK Ensemble Network, “Top 20” N=100, K=4 3,200 490 48 s.d.

5 Conclusions

This paper explores the idea that learning can be achieved by turning on and
turning off neurons in an artificial neural system. By posing the neuron selection
problem as a pseudo-Boolean optimization problem with bounded tree width,
an exact global optimum can be obtained to the neuron selection problem in
O(N) time. In this paper neuron selection is empirically evaluated when used in
combination with the Echo State Network. However, the method could be used
with other multi-layer networks. It should also be noted that the NK Ensem-
ble Network does not require significant tuning to achieve the “right network
configuration” in order to learn.

On the Mackey-Glass time series prediction problem the NK Ensemble Net-
work improved generalization and reduced variance across runs compared to the
standard Echo State Network.

The NK Ensemble Network is able to learn the control task of balancing
two poles on a fixed track with no velocity information. Learning was 100%
successful. No back propagation was used. No policy iteration was used. All of
the weights in the network were generated randomly. The only form of learning
was neuron selection. Learning was much faster compared to other algorithms.
But more important, generalization dramatically improved as N and K were
increased, and variance in the generalization results decreased.

References

1. Anderson, C., Elliott, D.: Faster reinforcement learning after pretraining deep net-
works to predict state dynamics. In: International Joint Conference on Neural
Networks (2015)

460 D. Whitley et al.

2. Boros, E., Hammer, P.: Pseudo-boolean programming revisited. Discrete Appl.
Math. 123(1), 155–225 (2002)

3. Chechik, G., Meilijson, I., Ruppin, E.: Neuronal regulation: a mechanism for synap-
tic pruning during brain maturation. Neural Comput. 11(8), 2061–2080 (1999)

4. Crama, Y., Hansen, P., Jaumard, B.: The basic algorithm for pseudo-boolean pro-
gramming revisited. Discrete Appl. Math. 29(2–3), 171–185 (1990)

5. Dürr, P., Mattiussi, C., Floreano, D.: Neuroevolution with analog genetic encoding.
In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D.,
Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 671–680. Springer, Heidelberg
(2006). https://doi.org/10.1007/11844297 68

6. Gao, Y., Culberson, J.: On the treewidth of NK landscapes. In: Cantú-Paz, E.,
et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 948–954. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-45105-6 106

7. Gomez, F., Miikkulainen, R.: Solving non-Markovian control tasks with neuroevo-
lution. In: IJCAI. Morgan Kaufmann (1999)

8. Gomez, F., Schmidhuber, J., Miikkulainen, R.: Accelerated neural evolution
through cooperatively coevolved synapses. J. Mach. Learn. Res. 9, 937–965 (2008)

9. Gruau, F., Whitley, D., Pyeatt, L.: A comparison between cellular encoding and
direct encoding. In: Genetic Programming Conference. Morgan Kaufmann (1996)

10. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and sav-
ing energy in wireless communication. Science 304(5667), 78–80 (2004)

11. Kauffman, S.A.: The Origins of Order: Self-organization and Selection in Evolution.
Oxford University Press, Oxford (1993)

12. Kristiansen, M., Ham, J.: Programmed cell death during neuronal development: the
sympathetic neuron model. Cell Death Differ. (Nature Publishing Group) 21(7),
1025–1035 (2014)

13. Lukoševičius, M.: A practical guide to applying echo state networks. In: Montavon,
G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS,
vol. 7700, pp. 659–686. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-35289-8 36

14. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural
network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

15. Roth, K.A., D’Sa, C.: Apoptosis and brain development. Ment. Retard. Dev. Dis-
abil. Res. Rev. 7, 261–266 (2001)

16. Santamaria, J., Sutton, R., Ram, A.: Experiments with reinforcement learning in
problems with continuous state and actions spaces. Adapt. Behav. 6(2), 163–217
(1998)

17. Schiller, U.D., Steil, J.J.: Analyzing the weight dynamics of recurrent learning
algorithms. Neurocomputing 63, 5–23 (2005)

18. Stanley, K., Miikkulainen, R.: Efficient reinforcement learning through evolving
neural network topologies. In: Genetic and Evolutionary Computation Conference
(GECCO), pp. 569–577, Morgan Kaufmann (2002)

19. Tomassini, M., Verel, S., Ochoa, G.: Complex-network analysis of combinatorial
spaces: the NK landscape case. Phys. Rev. E 78, 066114 (2008)

20. Wieland, A.P.: Evolving neural network controllers for unstable systems. In: Pro-
ceedings of the 1991 International Joint Conference on Neural Networks (IJCNN),
vol. 2, pp. 667–673. IEEE (1991)

21. Wright, A.H., Thompson, R.K., Zhang, J.: The computational complexity of N-K
fitness functions. IEEE Trans. Evolut. Comput. 4(4), 373–379 (2000)

https://doi.org/10.1007/11844297_68
https://doi.org/10.1007/3-540-45105-6_106
https://doi.org/10.1007/978-3-642-35289-8_36
https://doi.org/10.1007/978-3-642-35289-8_36

What Are the Limits of Evolutionary
Induction of Decision Trees?

Krzysztof Jurczuk(B), Daniel Reska, and Marek Kretowski

Faculty of Computer Science, Bialystok University of Technology,
Wiejska 45a, 15-351 Bialystok, Poland

{k.jurczuk,d.reska,m.kretowski}@pb.edu.pl

Abstract. For typical assessment of applying machine learning or data
mining techniques, accuracy and interpretability are usually the most
important elements. However, when the analyst is faced with real con-
temporary big data problems, scalability and efficiency become crucial
factors. Parallel and distributed processing support is often an indispens-
able component of operational solutions.

In the paper, we investigate the applicability of evolutionary induc-
tion of decision trees to large-scale data. We focus on the existing Global
Decision Tree system, which searches the tree structure and tests in one
run of an evolutionary algorithm. Evolved individuals are not encoded,
so the specialized genetic operators and their application schemes are
used. As in most evolutionary data mining systems, every fitness evalu-
ation needs processing the whole training dataset. For high-dimensional
datasets, this operation is very time consuming and to overcome this
deficiency, two acceleration solutions, based on the most promising, lat-
est approaches (NVIDIA CUDA and Apache Spark) are presented. The
fitness calculations are delegated, while the core evolution is unchanged.
In the experimental part, among others, we identify what are dataset
dimensions which can be efficiently processed in the fixed time interval.

Keywords: Evolutionary data mining · Decision trees
Parallel and distributed computing · Spark · GPU · CUDA

1 Introduction

Decision trees [13] are one of the most popular forms of knowledge, which can be
automatically discovered from the learning dataset. Typical induction algorithm
is based on the well-known top-down approach [20]. Such a greedy heuristics,
based on the classical divide and conquer schema, proved to be really fast and
accurate. On the other hand, it can be easily shown that the resulting trees,
even after post-pruning, are very often overgrown and not stable [17].

More global induction methods, especially based on the evolutionary
approaches [2], have emerged recently as interesting alternatives. In this type
of algorithms, a tree structure, all tests in non-terminal nodes and all predic-
tions in leaves are searched simultaneously. Global methods are clearly more
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 461–473, 2018.
https://doi.org/10.1007/978-3-319-99259-4_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_37&domain=pdf

462 K. Jurczuk et al.

computationally complex, but the generated decision trees can be significantly
simpler, without sacrificing the prediction quality. For large-scale data, however,
the potential gains from applying the evolutionary approach may be unachiev-
able, as the population-based and iterative induction can be simply too slow.
Moreover, as in many evolutionary data mining algorithms, the whole training
dataset should reside in memory, since it is extensively reexamined. As a result,
memory constraints may influence the applicability of such methods for larger
datasets.

It is clear that the possible success of evolutionary induction of decision trees
for large-scale data depends on the availability, easiness of use and costs of use of
(parallel or distributed) acceleration solutions. In this paper, we discuss a case
study of boosting one existing evolutionary data mining system: Global Decision
Tree (GDT) [6,15]. It enables induction of various variants of decision trees, but
here only univariate classification trees are considered. The investigations are
focussed on economically reasonable approaches, thus, we restrict the hardware
used to a small computing cluster or a single graphics processor unit (GPU)
accelerator. Two novel parallel and distributed processing solutions are analyzed.
The first solution applies general-purpose computation on GPUs (GPGPU) and
it is based on NVIDIA CUDA [21] framework. The second one is devoted to
computing clusters and it is based on the Apache Spark [24] engine. The limits
and constraints imposed by the studied acceleration techniques are identified.

The rest of the paper is organized as follows. First, two acceleration tech-
niques are briefly introduced and their recent applications are mentioned. Then,
the original GDT system is presented. In Sect. 3 two considered extensions are
detailed. Experimental results are described and discussed in Sect. 4. The paper
is concluded and possible future works are sketched in the last section.

1.1 GPU, CUDA

GPUs of modern graphics cards are equipped with hundreds/thousands of small,
energy-efficient computing units (GPU cores). Each GPU core, though smaller,
simpler and slower than a CPU core, is tuned to be especially efficient at the
basic mathematical operations. This simplicity allows many more GPU cores
to be crammed into a single chip. Moreover, current GPU architectures are
approaching terabytes per second memory bandwidth that, coupled with many
computational units, creates an ideal device for handling multiple tasks in par-
allel and managing workloads efficiently. Thus, not only graphics applications
but also GPGPU have gained in popularity [23].

Compute Unified Device Architecture (CUDA) [21] is a programming inter-
face and parallel platform that has revolutionized GPGPU. Although there are
some alternatives (like OpenCL), CUDA is the most widespread platform. In
CUDA, a GPU is considered as a co-processor to a CPU. It means that a part
of CPU’s tasks can be delegated to the GPU and be processed by thousands
of threads in parallel concurrently to the CPU operations. From a program-
ming perspective, CPU calls a kernel that is a function run on the GPU. Then,
many threads are created to run the function. The threads are hierarchically

What Are the Limits of Evolutionary Induction of Decision Trees? 463

grouped into thread blocks, which are in turn arranged on a grid. The CUDA
GPU memory also has a hierarchical structure [21].

GPGPU is recently widely applied in many computational intelligence meth-
ods [4,9,11]. Application of GPUs in evolutionary data mining usually focuses
on boosting the performance of the evolutionary process which is relatively slow
due to high computational complexity, especially for the large-scale data [5,12].

1.2 Apache Spark

Apache Spark [24] is an open-source distributed computing engine for large-scale
data processing and one of the most widely used tools in the ever-growing Big
Data ecosystem. Spark architecture is based on a concept of Resilient Distributed
Dataset (RDD) - an immutable distributed data structure that provides fault
tolerance and can be processed in parallel using high-level APIs.

The main advantages of Spark are its in-memory computing capabilities for
iterative algorithms and interactive data exploration. Spark processes data in
distributed shared memory model, preferably in the RAM of the cluster nodes.
Furthermore, Spark offers a much broader set of high-level functional-style data
operators that simplify the implementation of distributed applications.

One of the earliest applications of Spark to evolutionary algorithms was pro-
posed by Deng et al. [7], where the population in a differential evolution method
is treated as an RDD and only the fitness evaluation is distributed to workers.
Teijeiro et al. [22] also described a parallel differential evolution, focusing on indi-
vidual’s mutation, in both master-slave and island models. As for evolutionary
data mining approaches using Spark, fuzzy rule-based classifiers were proposed
in [8,18]. In [10] the authors tried to scale a genetic programming solution for
symbolic regression and proposed a fitness evaluation service based on Spark.

2 Global Decision Tree System

The GDT system [6,15] enables induction of several types of decision trees,
depending among others on the type of a predictive task to be solved (classifi-
cation or regression), the permitted test types in nodes (univariate or oblique)
and the prediction types in leaves (single value or model), etc. All variants of
the algorithm share the same typical evolutionary process [16] with an unstruc-
tured, fixed size population (default population size: 64 individuals) and a gen-
erational selection (ranking linear selection and elitist strategy are applied). In
this study, to facilitate understanding and to eliminate less important details,
the authors focus only on the simplest classification binary trees with tests based
on continuous-valued features and without missing data.

2.1 Representation, Initialisation and Termination

Tree-based representation is well-known in genetic programming, where first
attempts at evolving a decision tree were presented by Koza [14]. Following these

464 K. Jurczuk et al.

ideas, in the GDT system, decision trees are not specially encoded and they are
processed in their actual form. In non-terminal nodes, typical inequality tests
with two outcomes are used, but only precalculated candidate thresholds are
considered as potential splits.1

An initial individual is created by applying a simple top-down algorithm to
randomly chosen small sub-samples of the original training data (default: 10%
of the training dataset, but not more than 500 objects), which provides a high
degree of heterogeneity of the initial population and is not computationally com-
plex. Among objects located in the considered node, two objects from different
classes (so-called mixed dipole) are randomly chosen. An effective test that sep-
arates these two objects into subtrees is randomly created, taking into account
only attributes with different feature values. The recursive partitioning is fin-
ished when all training objects in a node are characterized by the same class
or the number of objects in a node is lower than the predefined value (default
value: 5) or the maximum tree depth is reached (default value: 10). Finally, the
resulting tree is post-pruned based on the fitness function.

Evolution terminates when the fitness of the best individual in the population
does not improve during the fixed number of generations (default: 1 000) or the
maximum number of generations is reached (default value: 1 000).

2.2 Genetic Operators

In the GDT system, there are two specialized genetic operators corresponding
to classical mutation applied to a single individual (default probability: 0.8), or
to crossover that recombines two individuals (default probability: 0.2).

A mutation operator begins by randomly choosing the node type (equal prob-
ability of selecting a leaf node or an internal node), but if the mutation of one
type is not possible, the other type is chosen. The ranked list of nodes of the
selected type is created, and a mechanism analogous to the ranking linear selec-
tion is applied to decide which node will be affected. In case of internal nodes,
the ranking takes into account both location (level) of the node in the tree and
the reclassification accuracy of each node, whereas for leaves only the second
factor is considered. It should be noticed that a modification of a test in a root
node affects the whole tree and can have a large impact. On the other hand,
mutating an internal node in the lower parts of the tree has only a local impact.
As a result, nodes on higher levels of the tree are mutated with lower probability
and among nodes on the same level, the reclassification quality is used to sort
them. Less accurate leaves are mutated with higher probability and homogenous
leaves (all training instances from the same class) are not mutated at all.

There are a few possible mutation variants, which can be performed on inter-
nal nodes:

– a test can be modified by shifting a threshold value;
1 A candidate threshold for the given attribute is defined as the midpoint between

such a successive pair of objects in the sequence sorted by the increasing value of
the attribute, in which the objects are characterized by different classes.

What Are the Limits of Evolutionary Induction of Decision Trees? 465

– a test can be replaced by another test existing in a tree or by a new one.
New tests can be created based on randomly chosen dipoles (like in initial
population) or locally searched according to some optimality criteria (this
can be called memetic extension);

– one subtree can be replaced by another subtree from that node;
– a node can be pruned into a leaf.

Considering a mutation of a leaf node, the range of variants is more modest:
a leaf can be just transformed into a subtree.

A crossover operator begins by randomly selecting two trees (and nodes in
each of them) that will be affected. There are a few variants of recombination:

– exchange subtrees, branches or only tests associated with nodes (if possible);
such an exchange can be purely random or can use a mixed dipole as a guide;

– transfer subtrees asymmetrically where the subtree of the first/second indi-
vidual is replaced by a new one that was duplicated from the second/first
individual. The replaced subtree starts in the node denoted as a receiver, and
the duplicated subtree starts in the node denoted as a donor. It is worth to
note that different preferences could be used for choosing donor and receiver
sites: the receiver node should have a high classification error because it is
replaced by the donor node that should have a small value of classification
error as it is duplicated.

For both genetic operators each time a choice of operator variant is random,
but only valid variants are considered. The default probability distribution of
variants is uniform.

2.3 Fitness Function

In most of the data mining system, the first and the most important objective
is to find the predictor with the highest classification quality. The main prob-
lem with such an objective is that there is no possibility to measure classifier
performance in advance. We could only estimate the quality on a given dataset
and typically one can only estimate the classifier performance on the training
dataset. However, it is well known, that due to the over-fitting problem, a classi-
fier which perfectly reclassifies the training dataset usually performs much worse
on unseen objects. The second objective, which is often indicated, is devoted to
the classifier simplicity and it can be expressed by the number of nodes. And
hopefully, putting emphasis also on a classifier simplicity could be a good way
to prevent the over-fitting.

In the GDT system, many forms of the single-objective or multi-objective
fitness function are available. As, in this paper, only univariate classification
trees are considered, the simplest weighted form of the fitness function is used:

Fitness(T) = Accuracy(T) − α ∗ Size(T), (1)

where Accuracy(T) represents the classification quality of the tree T estimated
on the training dataset, Size(T) is the number of nodes in T and α is the user-
supplied parameter (default value: 0.001). The second part of the equation works

466 K. Jurczuk et al.

Fig. 1. Evolutionary induction accelerations: (a) general idea, (b) more details concern-
ing processesing an individual in parallel by blocks/workers (in case of CUDA/SPARK
acceleration) (step I) as well as reducing/merging results (step II).

as a penalty term and helps to mitigate the over-fitting problem. A similar solu-
tion can be identified in the well-known cost-complexity pruning from the CART
system [3]. It should be at least mentioned that the value of the α parameter can
be usually tuned up for a given dataset, especially if the perfect reclassification
cannot be expected, but the parameter tuning is far outside the paper’s scope.

3 Boosted GDT Versions

The general idea of GDT accelerations is illustrated in Fig. 1(a). The following
operations: initialization of the population as well as selection of the individuals
remain unchanged compared to original GDT system. The reason why these
initial steps are not accelerated is that the initial population is created only once
on a small fraction of the dataset. In the evolutionary loop, also other relatively
fast operations like genetic operations (without individual evaluation) are run in
a sequential manner. After successful application of crossover or mutation, there
is a need to evaluate the individuals. It is the most time-consuming operation
since all objects in the training dataset need to be passed through the tree
starting from the root node to an appropriate leaf. Thus, this operation is isolated
and accelerated by one of the two solutions: CUDA- or Spark-based.

3.1 CUDA Based Acceleration

A GPU-based solution begins by sending the whole dataset to the GPU [12]. This
CPU to GPU transfer is done only once and the data is saved in the allocated
space in the global memory. Thus, all objects of the dataset are accessible for
all threads at any time.

The CPU controls the evolutionary induction. The GPU is called to per-
form calculations when there is a need to evaluate an individual after successful
crossover and/or mutation. At first, the affected individual is sent to the GPU

What Are the Limits of Evolutionary Induction of Decision Trees? 467

(Fig. 1(b)). Then, the CPU asks the GPU to take on some of its work. Two
kernel functions are called. The first kernel is called to propagate objects from
the tree root to the leaves. Next, the second kernel function merges informa-
tion about the objects’ location in the leaves, calculates class distributions and
classification errors and finally propagates them from the leaves toward the tree
root. The obtained tree statistics (like coverage, errors) as well as dipoles are
sent back to the CPU that uses them to update the affected individual.

The first kernel function uses the data decomposition strategy (step I in
Fig. 1(b)). At first, the whole dataset is spread into smaller parts that are pro-
cessed by different GPU blocks. Next, in each block, the assigned objects are
further spread over the threads. Each GPU block makes a copy of the evaluated
individual that is loaded into the shared memory. This way the threads process
the same individual in parallel but handle different chunks of the data.

At the end of the first kernel function, in each tree leaf the number of the
objects of each class that reach that particular leaf is stored. However, these
values are spread over GPU blocks. Thus, the second kernel function is called
(step II in Fig. 1(b)). It merges information from multiple copies of the individual
allocated in each GPU block. This operation sums the counters from copies of
the individual, and the total number of objects of each class in each tree leaf
is obtained. Finally, in the second kernel function reclassification errors in each
leaf are calculated. Then, all gathered information: class distribution and errors
are propagated from the leaves towards the root node.

To improve the algorithm’s performance, the CPU does not have a direct
access to the objects that fall into particular nodes of the tree. The propagation
of the instances is performed only on the GPU (in contrast to the sequential ver-
sion). However, some variants of the mutation operator require (object) dipoles
to construct a new test in an internal node. This is why the GPU also provides
the CPU with two objects of each class in each tree node. In the first kernel,
such objects are randomly selected from the objects that reach particular leaves.
In the second kernel function, when the multiple copies of the tree are merged,
among the available objects again two objected are randomly selected. The CPU
using these two objects (of each class in each tree nodes provided by the GPU)
can quickly and easily constitute the desired dipoles.

3.2 Spark Based Acceleration

The proposed Apache Spark-based acceleration relies on the distribution of the
dataset over a Spark cluster and parallelization of its processing, while the rest
of the evolution is unaffected in principle and is realized sequentially.

The Spark-based approach uses a multi-process architecture: while the orig-
inal GDT system is a native C++ application, Spark is written in the Scala
language and its processes run on the Java Virtual Machine (JVM). The Spark
processes consist of a single Driver that dispatches the work to a multiple Work-
ers that run on the cluster worker nodes. Both the Spark Driver and GDT appli-
cations are running on the same machine and utilise named pipes mechanism
for inter-process communication. As a result, the core evolution is performed in

468 K. Jurczuk et al.

GDT process (C++), whereas the distributed object propagation and dipoles
searching procedures, re-implemented in Java, are realized by Spark (JVM).

The proposed approach is based on an implementation described in [19],
which was modified and optimized to accommodate big datasets processing.
The method starts with the loading of the training dataset, which is processed
line-by-line and transformed into an RDD of objects representing packages of
observations (1 000 obs. in a package by default). This “packing” operation is
highly beneficial from the memory usage standpoint, as it reduces the number
of objects in RDD for the given dataset, minimizing the overhead of RDD data
structures. Next, the observation RDD is split into a number of partitions that
are then cached in the cluster memory.

To prevent data skew, the dataset should be split into partitions of even
size and uniformly distributed over the nodes. In our solution, each observation
package is randomly assigned to a group with a numeric ID, where the group
number equals the number of partitions. The partitions number depends on the
data size, with the usual range of 1 to 4 partitions per single worker CPU core.

During the evolution, the GDT process sends a request with a single tree data
to the Spark Driver. During the induction, all observations are passed through
the transferred decision tree and distributions of classes and dipoles in its leaves
are obtained. The parallel processing is realized by typical pair of map-reduce
operations evoked on the grouped RDD (see Fig. 1(b)). Each dataset partition
group emits a locally processed copy of the tree (map(group) → tree) and
the local trees are then reduced into a final result (reduce(tree1, tree2) →
tree3). During the reduction, the class distributions are simply merged, while
the dipoles are reduced implicitly by selecting the dipoles from one of the trees.
Finally, the error calculations and propagation of classes and dipoles in the final
tree are performed and the results are sent back to the GDT process, where the
overall accuracy is estimated. The process ends when the last tree is processed.

4 Experiments

Experimental validation was performed on an artificially generated dataset called
chess with two 2 real-values attributes and objects arranged on a 3 × 3 chess-
board (Fig. 2). It is a dataset for which moderate sized decision trees are induced.
We used the synthetic dataset to scale it freely, unlike real-life datasets. We exam-
ined various numbers of objects, from hundreds of thousands to a few billions.
All presented results correspond to averages of 5–10 runs and were obtained
with a default set of parameters from the sequential version of the GDT system
[6]. As we are focused in this paper only on size and time performance of the
GDT system, results for the classification accuracy are not included. However,
for the tested dataset, the GDT system managed to induce trees with optimal
structures and accuracy about 99% [15].

GPU experiments were performed on a workstation equipped with Intel Xeon
E5-2620 v4 (20 MB Cache, 2.10 GHz), 256 GB RAM, and running Ubuntu 16.04.
The sequential algorithm was implemented in C++ and compiled with gcc 5.4.0.

What Are the Limits of Evolutionary Induction of Decision Trees? 469

Fig. 2. Examples of analyzed chess3x3 dataset variant and the corresponding ideal
structure classification tree.

The GPU-parallelization was implemented in CUDA-C and compiled by nvcc
CUDA 7.5/8.0 [1] (single-precision arithmetic). We tested two NVIDIA GPU
cards: (i) GeForce GTX 780 (3 GB memory, 2 304 cores) and (ii) Pascal P100
(12 GB memory, 3 584 cores). The first GPU card is the consumer line GeForce
GPU, while the second one is the professional-level GPU accelerator that cur-
rently costs about 5 000 $ (almost 10 times more than the first one).

Apache Spark (version 2.2.0) was deployed on a cluster of 18 worksta-
tions with a quad-core Intel Xeon E3-1270 3.4 GHz CPU, 16 GB RAM, running
Ubuntu 16.04 and connected by a Gigabit Ethernet network. 16 worker nodes
were used by Spark executors, one node was dedicated to Spark Master and
HDFS NameNode (Hadoop 2.7.3) and the last node was running Spark Driver
and GDT C++ processes. The experiments were performed on 4, 8 and 16 work-
ers, which corresponds, respectively, to 16, 32 and 64 CPU cores in total.

We are interested in estimating the size of the dataset which can be processed
on the given platform/hardware in fixed amount of time: 1 min, 1 h and 1 day
(Tables 1 and 2). Table 1 concerns the GPU-accelerated solution. We see that
both GPU cards provide a significant boost in training dataset processing. Pascal
P100 is able to handle 1 million of objects in 1 min. In 1 h, the size of the
processed dataset increases to nearly 100 millions of objects.

Comparing GPUs, we see that a cheaper one (GTX 780) gives about twice
worse results than Pascal P100. However, this performance difference decreases
with the increase of the dataset size. In all cases, for the maximum datasets that
can be stored in each GPU memory, the induction does not last longer than 1
day. The time of processing those maximum datasets is included in Table 3.

The scale of the performance improvement is more visible when comparing
the sequential and GPU-accelerated versions of the GDT system. For example,
as regards 1 h, results show that the GPU-supported version is able to handle the
dataset greater by two orders of magnitude (200 000 objects by the sequential
version vs 84 000 000 objects with a support of Pascal P100). Comparing results
of the GPU-based acceleration and OpenMP parallelization using eight CPU
cores, similarly, we see that the first solution wins.

470 K. Jurczuk et al.

Table 1. The maximum size of the chess3x3 dataset variant which can be completely
processed in the given period of time by GPU-accelerated GDT system. In addition,
results for a sequential CPU version as well as an OpenMP parallelization using eight
CPU cores are provided.

GPU card/period 1 min 1 h 1 day

GTX 780 530 000 57 000 000 256 000 000*

Pascal P100 966 000 84 000 000 1 033 000 000*

Sequential CPU 1 200 275 000 3 500 000

OpenMP (8 CPU cores) 45 000 970 000 14 000 000

*The processing time of the maximum datasets (that can be stored
in each GPU memory) was shorter than 1 day, see Table 3.

Table 2. The maximum size of
the chess3x3 dataset variant which
can be completely processed in the
given period of time by Spark-
accelerated GDT system.

Period
number of
workers

1 h 1 day

4 13 000 000 500 000 000

8 20 000 000 1 250 000 000

16 35 000 000 2 500 000 000

Table 3. The maximum size of the chess3x3
dataset which can be completely processed
by the given platform/hardware. Processing
time is also included.

Solution Dataset size Time

GPU GTX 780 256 000 000 5 h

Pascal P100 1 033 000 000 17 h

Spark 4 workers 900 000 000 33 h

8 workers 1 850 000 000 35.5 h

16 workers 3 900 000 000 38 h

Concerning the Spark-based acceleration, we see that Spark deployed on all
16 nodes can process a dataset of 35 millions objects in 1 h period (Table 2). It
is less than the best Pascal P100 GPU result of 84 millions, but within the same
order of magnitude. Furthermore, the 1 min execution time cannot be achieved
due to the framework and networking overhead. The algorithm usually processes
about 80 thousand trees during its execution and the overhead of Spark can be
from 6 to 8 milliseconds for every tree in smaller datasets processed in 1 h. This
gives about 9 min of total overhead for the entire algorithm. In the 24 h period,
however, the datasets are significantly bigger and the framework impact is not
as noticeable. In the end, Spark can process 2.5 billion observations in one day,
outperforming the GPUs due to their memory limitations.

We are also interested in verifying how big datasets are able to be processed in
the given platform/hardware, taking into account available memory restrictions
(see Table 3). Concerning GPU cards, the dataset size is strictly limited by their
global memory sizes. Since GTX 780 is equipped with 4 times less memory than
Pascal P100, it is able to process about 4 times smaller datasets. Pascal P100
handles over than 1 billion objects in less than 1 day. Because of very long
computation time, we did not even try to process these datasets either by the

What Are the Limits of Evolutionary Induction of Decision Trees? 471

sequential version or OpenMP-based parallelization. Each year, NVIDIA releases
new GPUs with faster and larger memory, thus, it is only a matter of short time
when GPU cards with 24, 48, etc. GB of memory appear.

Spark, given its Big Data processing capabilities, excels with bigger datasets.
The maximum dataset processed on the entire cluster has 3.9 billions objects (see
Table 2), which corresponds to 78 GB of raw text data and 96 GB in memory-
cached RDD. The results show datasets that can be processed on the cluster in
stable and efficient manner, without swapping, excessive JVM garbage collection
and with the dataset fully cached in the memory. Technically it is possible to
configure the RDD to “spill” into disk storage if it does not fit completely in
the memory, but this mode of operation results in drastic performance degra-
dation (reading from memory vs reading from disk). Objects in RDD can also
be serialized for space efficiency, but this process also comes with a performance
penalty due to necessary deserialization. We observed over ten-fold slowdown
with serialized objects, but achieved up to 3:1 compression ratio.

The main advantage of Spark is its capability to easily scale with the size of
the cluster. The results in Table 2 show that the size of the dataset can basically
double with twice the number of nodes. The same application can also run
without any modification on a cluster with potentially thousands of nodes.

5 Conclusions

In this paper, we investigate the applicability of evolutionary induction of deci-
sion trees for large-scale data. We show that boosted solutions are able to process
really large-scale data, even up to billions of objects. It is clear that the CUDA-
based acceleration is generally faster but limited by the size of the GPU memory.
On the other hand, the Spark-based solution is preferable if a dataset becomes
huge, in our case exceeds one billion of objects. Moreover, an unmodified Spark
solution can be easily scaled up just by adding more hardware to the cluster.

In this work, we focus on the dataset dimension expressed as a number of
objects. In future works, we would also like to investigate the influence of the
number of features. This could be especially interesting for genomic data where
the number of features is often large. We also plan to extend the GPU-based
solution into a framework where one can easily add more GPUs to distribute
dataset over them and push the data size limit.

Acknowledgments. This work was supported by the grant S/WI/2/18 from BUT
founded by Polish Ministry of Science and Higher Education.

References

1. NVIDIA Developer Zone - CUDA Toolkit Documentation (2018). https://docs.
nvidia.com/cuda/cuda-c-programming-guide/

2. Barros, R.C., Basgalupp, M.P., De Carvalho, A.C., Freitas, A.A.: A survey of evo-
lutionary algorithms for decision-tree induction. IEEE Trans. Syst. Man Cybern.
Part C (Appl. Rev.) 42(3), 291–312 (2012)

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

472 K. Jurczuk et al.

3. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression
Trees. CRC Press, Boca Raton (1984)

4. Cano, A.: A survey on graphic processing unit computing for large-scale data
mining. WIREs: Data Min. Knowl. Discov. 8(1), e1232 (2018)

5. Chitty, D.: Improving the performance of GPU-based genetic programming
through exploitation of on-chip memory. Soft Comput. 20(2), 661–680 (2016)

6. Czajkowski, M., Kretowski, M.: Evolutionary induction of global model trees with
specialized operators and memetic extensions. Inf. Sci. 288, 153–173 (2014)

7. Deng, C., Tan, X., Dong, X., Tan, Y.: A parallel version of differential evolution
based on resilient distributed datasets model. In: Gong, M., Pan, L., Song, T.,
Tang, K., Zhang, X. (eds.) BIC-TA 2015. CCIS, vol. 562, pp. 84–93. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-49014-3 8

8. Ferranti, A., Marcelloni, F., Segatori, A., Antonelli, M., Ducange, P.: A distributed
approach to multi-objective evolutionary generation of fuzzy rule-based classifiers
from big data. Inf. Sci. 415–416, 319–340 (2017)

9. Fonseca, A., Cabral, B.: Prototyping a GPGPU neural network for deep-learning
big data analysis. Big Data Res. 8, 50–56 (2017)

10. Funika, W., Koperek, P.: Towards a scalable distributed fitness evaluation ser-
vice. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski,
J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9573, pp. 493–502. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-32149-3 46

11. Jinjing, L., Qingkui, C., Bocheng, L.: Classification and disease probability pre-
diction via machine learning programming based on multi-gpu cluster mapreduce
system. J. Supercomput. 73(5), 1782–1809 (2017)

12. Jurczuk, K., Czajkowski, M., Kretowski, M.: Evolutionary induction of a decision
tree for large-scale data: a GPU-based approach. Soft Comput. 21(24), 7363–7379
(2017)

13. Kotsiantis, S.B.: Decision trees: a recent overview. Artif. Intell. Rev. 39(4), 261–283
(2013)

14. Koza, J.R.: Concept formation and decision tree induction using the genetic
programming paradigm. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990.
LNCS, vol. 496, pp. 124–128. Springer, Heidelberg (1991). https://doi.org/10.1007/
BFb0029742

15. Kretowski, M., Grzes, M.: Evolutionary induction of mixed decision trees. Int. J.
Data Warehous. Min. (IJDWM) 3(4), 68–82 (2007)

16. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-662-03315-9

17. Murthy, S.K.: Automatic construction of decision trees from data: a multi-
disciplinary survey. Data Min. Knowl. Discov. 2(4), 345–389 (1998)

18. Pulgar-Rubio, F.J., Rivera-Rivas, A.J., Pérez-Godoy, M.D., González, P., Car-
mona, C.J., del Jesus, M.J.: MEFASD-BD: multi-objective evolutionary fuzzy algo-
rithm for subgroup discovery in big data environments - a MapReduce solutioon.
Knowl.-Based Syst. 117, 70–78 (2017)

19. Reska, D., Jurczuk, K., Kretowski, M.: Evolutionary induction of classification
trees on spark. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W.,
Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10841, pp.
514–523. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91253-0 48

20. Rokach, L., Maimon, O.: Top-down induction of decision trees classifiers-a survey.
IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 35(4), 476–487 (2005)

21. Storti, D., Yurtoglu, M.: CUDA for Engineers : An Introduction to High-
Performance Parallel Computing. Addison-Wesley, New York (2016)

https://doi.org/10.1007/978-3-662-49014-3_8
https://doi.org/10.1007/978-3-319-32149-3_46
https://doi.org/10.1007/BFb0029742
https://doi.org/10.1007/BFb0029742
https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.1007/978-3-319-91253-0_48

What Are the Limits of Evolutionary Induction of Decision Trees? 473

22. Teijeiro, D., Pardo, X.C., González, P., Banga, J.R., Doallo, R.: Implementing
parallel differential evolution on spark. In: Squillero, G., Burelli, P. (eds.) EvoAp-
plications 2016. LNCS, vol. 9598, pp. 75–90. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-31153-1 6

23. Yuen, D., Wang, L., Chi, X., Johnsson, L., Ge, W., Shi, Y.: GPU Solutions to
Multi-scale Problems in Science and Engineering. Springer, Berlin (2013). https://
doi.org/10.1007/978-3-642-16405-7

24. Zaharia, M.: Apache spark: a unified engine for big data processing. Commun.
ACM 59(11), 56–65 (2016)

https://doi.org/10.1007/978-3-319-31153-1_6
https://doi.org/10.1007/978-3-319-31153-1_6
https://doi.org/10.1007/978-3-642-16405-7
https://doi.org/10.1007/978-3-642-16405-7

Tutorials and Workshops at PPSN 2018

Tutorials at PPSN 2018

Gisele Lobo Pappa1(B), Michael T. M. Emmerich2, Ana Bazzan3,
Will Browne4, Kalyanmoy Deb5, Carola Doerr6, Marko Ðurasević7, Michael G.

Epitropakis8, Saemundur O. Haraldsson9, Domagoj Jakobovic7, Pascal
Kerschke10, Krzysztof Krawiec11, Per Kristian Lehre12, Xiaodong Li13, Andrei
Lissovoi14, Pekka Malo15, Luis Martí16, Yi Mei4, Juan J. Merelo17, Julian F.

Miller18, Alberto Moraglio19, Antonio J. Nebro20, Su Nguyen21, Gabriela
Ochoa9, Pietro Oliveto14, Stjepan Picek22, Nelishia Pillay23, Mike Preuss10,
Marc Schoenauer24, Roman Senkerik25, Ankur Sinha26, Ofer Shir27,28, Dirk

Sudholt14, Darrell Whitley29, Mark Wineberg30, John Woodward31,
and Mengjie Zhang4

1 Federal University of Minas Gerais, Belo Horizonte, Brazil
glpappa@dcc.ufmg.br

2 Leiden University, Leiden, Netherlands
3 Federal University of Rio Grande do Sul, Porto Alegre, Brazil
4 Victoria University of Wellington, Wellington, New Zealand

5 Michigan State University, East Lansing, USA
6 Sorbonne University, Paris, France

7 University of Zagreb, Zagreb, Croatia
8 University of Patras, Patras, Greece
9 University of Stirling, Stirling, UK

10 University of Müenster, Müenster, Germany
11 Poznan University of Technology, Poznan, Poland

12 University of Birmingham, Birmingham, UK
13 RMIT University, Bundoora, Australia
14 University of Sheffield, Sheffield, UK
15 Aalto University, Helsinki, Finland

16 Universidade Federal Fluminense, Niterói, Brazil
17 University of Granada, Granada, Spain

18 University of York, York, UK
19 University of Exeter, Exeter, UK

20 University of Malaga, Malaga, Spain
21 La Trobe University, Melbourne, Australia

22 TU Delft, Delft, Netherlands
23 University of Pretoria, Pretoria, South Africa

24 Institute for Research in Computer Science and Control, Ile de France, France
25 Tomas Bata University, Zlín, Czech Republic

26 Indian Institute of Management Ahmedabad, Ahmedabad, India
27 Tel-Hai College, Tel Hai, Israel

28 Migal-Galilee Research Institute, Kiryat Shmona, Israel
29 Colorado State University, Fort Collins, USA

30 University of Guelph, Guelph, Canada
31 Queen Mary University of London, London, UK

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 477–489, 2018.
https://doi.org/10.1007/978-3-319-99259-4_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_38&domain=pdf

478 G. L. Pappa et al.

Abstract. PPSN 2018 features a total of 23 free tutorials covering a
broad range of topics in evolutionary computation and related areas.
From theory and methods to applications and computer implementa-
tions, and from introductory to advanced, the PPSN 2018 tutorial pro-
gram offers participants the opportunity to learn more about both well-
established and ongoing research in this field.

1 Welcome from the Tutorial Chairs

PPSN 2018 received a surprisingly large number of high-quality tutorial pro-
posals, from which 23 tutorials were selected for presentation at the conference.
All tutorials are scheduled on the first two days of the conference, which are
exclusively reserved for tutorial presentations and workshops.

The PPSN 2018 tutorial program features a wide range of topics, from theory
to applications and computer implementations. Two hands-on tutorials cover
the implementation of evolutionary algorithms (EAs) in the cloud and in the
jMetal framework. Other tutorials focus on applications in security (cryptology,
anomaly and intrusion detection), software engineering (genetic improvement),
and dynamic scheduling.

In addition to introductory tutorials on mathematical programming, two
genetic programming (GP) variants, learning classifier systems, and multia-
gent systems, a number of advanced techniques also deserve attention. Adaptive
parameter choices, deterministic search operator design in Gray Box Optimiza-
tion, and automated algorithm design with hyper-heuristics are covered, as well
as algorithms for bi-level and multi-modal optimization.

Finally, there is a group of tutorials oriented towards the modelling, analysis
and visualization of search-space structures, fitness landscapes, and evolutionary
algorithm processes and their dynamics. Three tutorials on the theoretical anal-
ysis of population-based EAs, parallel EAs, and GP complete the programme.

We invite all PPSN participants to explore the wide range of topics discussed
in the selected tutorials, and wish them an enjoyable conference!
Gisele L. Pappa and Michael T. M. Emmerich
PPSN 2018 Tutorial Chairs.

2 Tutorial Abstracts

2.1 Adaptive Parameter Choices in Evolutionary Computation

Tutorial Speaker: Carola Doerr, Sorbonne University (France).

Tutorial Abstract: Evolutionary algorithms and other popular black-box opti-
mization techniques are highly parametrized algorithms. To run these algo-
rithms, we typically need to decide upon their population sizes, mutation
strengths, crossover rates, selective pressure, etc. This parametrization allows
to adjust the behavior of the algorithms to the problem at hand. The chosen

Tutorials at PPSN 2018 479

parameter values can have a decisive influence on performance. We thus need to
select them with care.

Unfortunately, the identification of good parameter values still is one of
the most challenging tasks in evolutionary computation. What complicates the
parameter selection problem is the observation that different parameter values
can be optimal in different stages of the optimization process. In the beginning
of an optimization process, for example, one may want to allow for more explo-
ration, while later on we may prefer a more focused search (“exploitation”). This
observation calls for adaptive parameter choices, which automatically adjust the
parameter values to the current state of the optimization process.

Adaptive parameter choices are today standard in continuous optimization.
Quite surprisingly, however, this is not the case in discrete optimization, where
they play only a rather marginal role. A paradigm change towards a more sys-
tematic use of non-static parameter choices is much needed. This tutorial aims
to contribute to this goal, by providing an in-depth discussion of online param-
eter selection techniques. We survey both experimental and theoretical results,
which demonstrate the unexploited potential of non-static parameter choices.

2.2 Applications of Genetic Programming in Dynamic Scheduling

Tutorial Speakers: Domagoj Jakobovic and Marko Ðuraseviæ, University of
Zagreb, Croatia, Yi Mei and Mengjie Zhang, Victoria University of Wellington
(New Zealand) and Su Nguyen, La Trobe University (Australia).

Tutorial Abstract: Scheduling problems are encountered in many real-world
situations and scenarios. In real world, the problem is often dynamic, and unpre-
dicted new jobs arrive in real time. To solve scheduling problems under dynamic
conditions various problem-specific heuristics, called dispatching rules, have been
designed. However, manually designing such heuristics is a difficult and lengthy
process. Therefore, a great deal of research is focused on automatically designing
new scheduling heuristics. Genetic programming is usually the method of choice
for generating new dispatching rules, since in numerous occasions it generated
good dispatching rules for various difficult scheduling environments. The tutorial
will cover recent developments in the automatic generation of dispatching rules,
as well as outline several new research directions in this field, such as multi-
objective heuristic generation, application of ensemble learning methods, con-
struction of surrogate models, etc. The tutorial will help interested researchers
to acquire an overview of this emerging and interesting research area and to
understand the key ideas and challenges for future studies.

2.3 A Small World Hidden in Evolutionary Computation
Techniques

Tutorial Speaker: Roman Senkerik, Tomas Bata University (Czech Republic).

480 G. L. Pappa et al.

Tutorial Abstract: This tutorial represents an insight into an attractive open
research task, which is a novel method for visualizing the dynamics of evolu-
tionary and swarm-based algorithms in the form of networks. The idea is based
on the similarity in interactions between individuals in the metaheuristics algo-
rithms and for example, users of social networks, linking between web pages, etc.
The population is visualized as an evolving complex network that exhibits non-
trivial features. The features like clustering, centralities, communities, and many
more, offer a clear description of the population under evaluation. This tutorial
shows the differences between the types of complex networks used, variations in
building complex networks to capture the population dynamics of evolutionary
algorithms or communication inside swarm-based algorithms, investigation on
the time development of the network. It also shows several successful utilization
of complex networks attributes for the performance improvements through the
adaptive population as well as parameter/strategy control, further the possibility
of controlling the evolution through complex network features.

2.4 Bio-inspired Approaches to Anomaly and Intrusion Detection

Tutorial Speakers: Luis Martí, Universidade Federal Fluminense (Brazil)
and Marc Schoenauer, Institute for Research in Computer Science and Control
(France).

Tutorial Abstract: Intrusion detection systems (IDSs) have gained a substan-
tial attention because of its high-impact safety and security applications. Two
main approaches are used when building those systems: (i) misuse-based and (ii)
anomaly-based detection. While the former focuses on detecting attacks that fol-
low a known pattern or signature, the latter is interested in building a model
representing the system’s nominal behavior while assuming all deviated activi-
ties to be anomalous or intrusions, and, therefore provide a more robust solution.
Bio-inspired approaches have been proposed to address the problem of anomaly-
based intrusion detection, with artificial immune systems (AISs) being the most
recognizable approach of all. However, recent developments in the area of single
and multi-criterion evolutionary computing, adversarial co-evolutionary model-
ing and simulation have served a foundation for novel and better performing
bio-inspired IDS that have yielded competitive results.

This tutorial will present the anomaly detection topic, its peculiarities and
revise the current state of the art on this topic, departing from classical machine
learning approaches, presenting the current state-of-the-art methods and ana-
lyze how and why those methods have been shown to outperform many of the
currently established approaches.

2.5 Cartesian Genetic Programming

Tutorial Speaker: Julian F. Miller, University of York (UK).

Tutorials at PPSN 2018 481

Tutorial Abstract: Cartesian Genetic Programming (CGP) is a well-known
and respected form of Genetic Programming. It uses a very simple integer
address-based genetic representation of a program in the form of a directed
graph. In a number of studies, CGP has been shown to be comparatively effi-
cient to other GP techniques. The classical form of CGP has undergone a num-
ber of developments which have made it more useful, efficient and flexible in
various ways. These include self-modifying CGP (SMCGP), cyclic connections
(recurrent-CGP), encoding artificial neural networks and automatically defined
functions (modular CGP). SMCGP uses functions that cause the evolved pro-
grams to change themselves as a function of time. Recurrent-CGP allows evo-
lution to create programs which contain cyclic, as well as acyclic, connections.
CGP encoded artificial neural networks represent a powerful training method for
neural networks. CGP has been applied successfully to a variety of real-world
problems, such as digital circuit design, visual object recognition and classifica-
tion.

2.6 Cloud-y Evolutionary Algorithms

Tutorial Speaker: J.J. Merelo, University of Granada (Spain).

Tutorial Abstract: This tutorial will describe how cloud computing is a new
paradigm that changes the way applications are designed and deployed, and how
it can be put to use in a scientific computing environment. It will be a practical
tutorial with examples and tools that are used nowadays by companies and
institutions. The examples used will be taken from evolutionary computation,
although its application is widespread.

2.7 Computational Complexity Analysis of Genetic Programming

Tutorial Speaker: Pietro Oliveto and Andrei Lissovoi, University of Sheffield
(UK).

Tutorial Abstract: Genetic Programming is an evolutionary computation
paradigm that aims to evolve computer programs. Compared to the great num-
ber of successful applications of GP that have been reported, the theoretical
understanding of its underlying working principles lags far behind. In particu-
lar, the identification of which classes of computer programs can be provably
evolved efficiently via GP has progressed slowly compared to the understand-
ing of the performance of traditional evolutionary algorithms (EAs) for function
optimisation. The main reason for the slow progress is that the analysis of GP
systems is considerably more involved due to the variable length of programs
compared to the fixed solution representation used in EAs and because under-
standing candidate program quality over all possible inputs is unfeasible. Never-
theless, nowadays it is possible to analyse the time and space complexity of GP
algorithms for evolving proper programs with input/output relationships where

482 G. L. Pappa et al.

the fitness of candidate solutions is evaluated by comparing their accuracy on
input/output samples of a polynomially-sized training set (e.g., Boolean Func-
tions). In this tutorial, we give an overview of the recent results outlining the
techniques used and the challenges involved.

2.8 Evolutionary Algorithms and Hyper-Heuristics

Tutorial Speaker: Nelishia Pillay, University of Pretoria (South Africa).

Tutorial Abstract: Evolutionary algorithms have played a pivotal role in the
advancement of hyper-heuristics. The aim of the tutorial is to firstly provide
an introduction to evolutionary algorithm hyper-heuristics. The tutorial will
examine each of the four categories of hyper-heuristics, namely, selection con-
structive, selection perturbative, generation constructive and generation pertur-
bative, showing how evolutionary algorithms can be used for each type of hyper-
heuristic. A case study will be presented for each type of hyper-heuristic. The
EvoHyp library will be used to demonstrate the implementation of evolutionary
algorithm hyper-heuristics for the case studies. Challenges in the implementa-
tion of evolutionary algorithm hyper-heuristics will be highlighted. An emerging
research direction is using hyper-heuristics for the automated design of compu-
tational intelligence techniques. The tutorial will look at the synergistic rela-
tionship between evolutionary algorithms and hyper-heuristics in this area. The
tutorial will end with a discussion session on future directions in evolutionary
algorithms and hyper-heuristics.

2.9 Evolutionary Bilevel Optimization (EBO): An Emerging Area
for Research and Application in EC

Tutorial Speakers: Kalyanmoy Deb, Michigan State University (USA), Ankur
Sinha, Indian Institute of Management Ahmedabad (India), and Pekka Malo,
Aalto University (Finland).

Tutorial Abstract: Many practical optimization problems are better posed
as hierarchical optimization problems in which different optimization tasks are
put into different levels. The simplest of these hierarchical problems is known as
“Bilevel” optimization problems which contain two levels of optimization tasks
in a nested manner. A solution at the upper level is considered feasible only
if it is optimal to the corresponding lower level problem. These problems are
too complex to be solved using classical optimization methods simply due to the
“nestedness” of one optimization task into another. Evolutionary algorithms pro-
vide amenable ways to address such problems due to their flexibility and ability
to handle constrained search spaces efficiently. In this tutorial, we will introduce
principles of bilevel optimization for both single and multiple objectives, and

Tutorials at PPSN 2018 483

discuss the difficulties in solving such problems in general. A number of appli-
cations of evolutionary bilevel optimization (EBO) will also be highlighted. A
recent review on EBO is available in Sinha et al. (2018).

Sinha, A., Malo, P., and Deb, K. (2018). A Review on Bilevel Optimization: From
Classical to Evolutionary Approaches and Applications. IEEE Transactions on
Evolutionary Computation, Vol 22, No. 2, pp. 276–295.

2.10 Evolutionary Computation and Machine Learning in
Cryptology

Tutorial Speaker: Stjepan Picek, TU Delft (Netherlands).

Tutorial Abstract: Evolutionary Computation (EC) has been successfully
applied to various real-world problems. One domain rich with difficult prob-
lems is cryptology. This tutorial starts with a brief introduction on cryptology
intended for general audience. Next, we examine several topics from cryptology
that are successfully tackled up to now with EC and discuss why those topics
are suitable to apply EC. We discuss the choice of appropriate EC techniques
(GA, GP, CGP, ES, multi-objective optimization) for various problems and eval-
uate on the importance of that choice. We discuss the gap between the crypto
community and EC community and what does it mean for the results. By doing
that, we give a special emphasis on the perspective that cryptology can repre-
sent a source of interesting benchmark problems for EC. We finish with a more
general overview on artificial intelligence applications in security. This tutorial
will present live demos of EC in action when dealing with cryptology problems.

2.11 Exploratory Landscape Analysis

Tutorial Speakers: Pascal Kerschke and Mike Preuss, University of Müenster
(Germany).

Tutorial Abstract: Exploratory Landscape Analysis (ELA) has been con-
ceived as an automated approach for characterizing optimization problems by
extracting – not necessarily intuitively understandable – landscape features,
based on a rather small initial sample from the underlying optimization prob-
lem. Within this tutorial we will introduce the general concept of (automated)
algorithm selection, which is one of the main use cases of ELA, followed by a
presentation of examples from different optimization domains, in which ELA has
successfully been used to improve algorithm selection processes. After present-
ing the general idea of ELA and providing a detailed overview of its status quo
(including recently published extensions), we will show how ELA can improve
our understanding of (a) the characteristics of different problem landscapes, and
(b) the behavior of optimization algorithms, which are executed on these prob-
lems.

484 G. L. Pappa et al.

The remainder of the tutorial will be used for an interactive live-demo, in
which our participants will perform ELA on some continuous optimization prob-
lems.

2.12 Genetic Improvement: Taking Real-World Source Code and
Improving It Using Genetic Programming

Tutorial Speakers: John Woodward, Queen Mary University of London (UK)
and Saemundur O. Haraldsson, University of Stirling (UK).

Tutorial Abstract: Genetic Programming (GP) has been around for 25 years.
Genetic Improvement (GI) is new. GI evolves source code, rather than a simu-
lation of code. In other words, GI operates directly on Java or C, for example,
whereas GP operates on a tiny instruction set defined by the function set and
terminal set. Another fundamental difference is that GI starts with real-world
software, whereas GP typically tries to evolve programs from scratch. These
differences may not seem important; however this subtle difference opens new
possibilities for research. Furthermore we can optimize the physical properties
of code such as power consumption, size of code, bandwidth, and other non-
functional properties, including execution time.

This tutorial is of interest to people with a GP background interested in
applying their techniques to real source code, and software practitioners inter-
ested in using automated techniques to improve software. We will not assume
prior knowledge of GP.

2.13 Introduction to Statistical Modeling of EC Systems and
Experiments: A Visual Approach

Tutorial Speaker: Mark Wineberg, University of Guelph (Canada).

Tutorial Abstract: This tutorial is a follow-up to the statistics tutorial given
at GECCO. While still at an introductory level (attendance of the GECCO
tutorial is not assumed), the material covered is typically found in more upper
year undergraduate courses on statistical modeling. We will move beyond simple
comparisons using T tests, to the understanding and modeling of the underlying
behaviors of various factors that may affect a system, even when those behaviors
are obscured by the noise encountered in a stochastic system. Topics include:
factor models, two factor linear regression confidence bands, multiple regression,
polynomial regression, the relationship to GP-style symbolic regression, post-
hoc analysis, and possibly one-way and multi-way ANOVA, time permitting. As
with the GECCO tutorial, this tutorial takes a very visual approach to statistics;
relying on graphics and animation to provide an intuitive understanding of the
subject, instead of the traditional equations, which cater to only the initiated.

Tutorials at PPSN 2018 485

2.14 Learning Classifier Systems as Learning Cognitive Systems

Tutorial Speaker: Will Browne, Victoria University of Wellington (New
Zealand).

Tutorial Abstract: Learning classifier systems (LCSs) are an often overlooked
class of rule-based machine learning algorithms with a unique and flexible set
of features that sets them apart from other strategies. The original LCS from
40 years ago, CS-1, stood for Cognitive System - One. Subsequently, LCSs have
become powerful evolutionary machine learning techniques, but there is still
much to be gained by exploring their cognitive systems capabilities. The tuto-
rial will begin with a gentle introduction to LCSs based on the recent textbook
‘Introduction to Learning Classifier Systems’, which is co-authored by the pre-
senter. The second part of this tutorial will show examples of Learning Classifier
Systems in terms of cognitive systems. In-depth understanding will be provided
regarding improved perception, representation, transfer learning and embodied
LCSs. Examples will be discussed of solving previously intractable problems in
a human-like manner as well as unique applications in robotics.

2.15 Mathematical Programming as a Complement to Bio-inspired
Optimization

Tutorial Speaker: Ofer Shir, Tel-Hai College and Migal-Galilee Research Insti-
tute (Israel).

Tutorial Abstract: Global optimization of complex models has been for several
decades approached by means of formal algorithms as well as Mathematical
Programming (MP), and simultaneously has been treated by a wide range of
dedicated heuristics - where nature-inspired approaches are placed. These two
branches complement each other, yet practically studied under two independent
CS disciplines. The claim that education within the scope of problem-solving
from nature should encompass basic MP is untenable at present times, and
this tutorial aims at bridging the gap for our scholars and students. The tutorial
comprises two parts. The first part presents the fundamentals of MP. It overviews
mathematical optimization in light of convex optimization versus combinatorial
optimization. It discusses some of the theoretical aspects, such as polyhedra and
the duality theorem. The second part focuses on MP in practice, particularly on
modeling, and covers selected algorithms: Simplex, Ellipsoid, and Branch-and-
Bound. The tutorial is planned for all PPSN participants, assuming no prior
knowledge in mathematical optimization.

2.16 Multiagent Systems and Agent-Based Modeling and
Simulation

Tutorial Speaker: Ana Bazzan, Federal University of Rio Grande do Sul
(Brazil).

486 G. L. Pappa et al.

Tutorial Abstract: Multiagent systems (MAS) and agent-based modeling
and simulation (ABMS) deal with social interactions among intelligent actors
(agents). These two disciplines study neither just physical systems nor agents
in isolation, but the agent as part of a social space.The goal of this tutorial is
twofold: (a) about half of the time will cover basic material about MAS and
ABMS (since this simulation paradigm is highly used by the computational
intelligence community), and hence provide the audience a sense of the basic
principles; and (b) about half of the time will cover the most recent advances
in MAS, including the highly relevant topic of multiagent learning, one of the
obvious interfaces between these two communities, as well evolutionary game
theory.

2.17 Multi-objective Optimization with the jMetal Framework

Tutorial Speaker: Antonio J. Nebro, University of Malaga (Spain).

Tutorial Abstract: jMetal is a Java-based framework for multi-objective opti-
mization with metaheuristics which has become popular in many disciplines
(engineering, economics, bioinformatics, etc.). The journal paper describing
jMetal has more than 775 citations according to Google Scholar, and it has
been used by research groups, industry and academia. In this tutorial, we give a
practical overview of the main jMetal components (algorithms, encodings, prob-
lems, operators, experiments, quality indicators), focusing on how to configure
and run some of the included metaheuristics and also on how to incorporate
new solution representations and problems. We give examples of classical algo-
rithms but also more modern techniques, including preference-based metaheuris-
tics. Special attention will be paid to the definition of experimental studies to
statistically assess the performance of algorithms. The main goal is that the
attendants can replicate all the examples presented, and the material needed to
follow the tutorial will be available in a public repository (https://github.com/
jMetal/PPSN2018Tutorial).

2.18 Next Generation Genetic Algorithms

Tutorial Speaker: Darrell Whitley, Colorado State University (USA).

Tutorial Abstract: New developments in Gray Box Optimization makes it
possible to construct new forms of Genetic Algorithms that do not use ran-
dom mutation or random recombination. Instead, for certain classes of NP Hard
problems, it is possible to exactly compute the location of improving moves in
constant time. In some domains, this makes random mutation obsolete. Deter-
ministic “Partition Crossover” can be applied to optimization problems such
as MAXSAT and the Traveling Salesman Problem. Partition Crossover locally
decomposes a recombination graph into q subgraphs in O(n) time. It can then
identify the best of 2q possible offspring. If the parents are local optima, the

https://github.com/jMetal/PPSN2018Tutorial
https://github.com/jMetal/PPSN2018Tutorial

Tutorials at PPSN 2018 487

offspring are guaranteed to be locally optimal in the largest hyperplane sub-
space containing both parents. Local decomposition has also been used to solve
multiply constrained scheduling problems with unto 1 billion variables.

The book chapter “Next Generation Genetic Algorithms” will accompany the
tutorial.

2.19 Runtime Analysis of Population-Based Evolutionary
Algorithms

Tutorial Speaker: Per Kristian Lehre, University of Birmingham (UK).

Tutorial Abstract: Populations are at the heart of evolutionary algorithms
(EAs). They provide the genetic variation which selection acts upon. A com-
plete picture of EAs can only be obtained if we understand their population
dynamics. A rich theory on runtime analysis of EAs has been developed over
the last 20 years. This theory provides insights into how the performance of EAs
depends on their parameter settings and the characteristics of the underlying
fitness landscapes. Early studies were mostly concerned with EAs without pop-
ulations, such as the (1+ 1) EA. This tutorial introduces recent techniques that
enable runtime analysis of EAs with realistic populations. To illustrate the appli-
cation of these techniques, we consider fundamental questions such as: When are
populations necessary for efficient optimisation? What is the appropriate balance
between exploration and exploitation and how does this depend on relationships
between mutation and selection rates? What determines an EA’s tolerance for
uncertainty?

2.20 Semantic Genetic Programming

Tutorial Speakers: Alberto Moraglio, University of Exeter (UK) and
Krzysztof Krawiec, Poznan University of Technology (Poland).

Tutorial Abstract: Semantic genetic programming is a recent, rapidly growing
trend in Genetic Programming (GP) that aims at opening the ‘black box’ of the
evaluation function and make explicit use of more information on program behav-
ior in the search. In the most common scenario of evaluating a GP program on a
set of input-output examples (fitness cases), the semantic approach characterizes
program with a vector of outputs rather than a single scalar value (fitness). The
past research on semantic GP has demonstrated that the additional informa-
tion obtained in this way facilitates designing more effective search operators.
In particular, exploiting the geometric properties of the resulting semantic space
leads to search operators with attractive properties, which have provably better
theoretical characteristics than conventional GP operators. This in turn leads to
dramatic improvements in experimental comparisons. The aim of the tutorial is
to give a comprehensive overview of semantic methods in genetic programming,

488 G. L. Pappa et al.

illustrate in an accessible way a formal geometric framework for program seman-
tics to design provably good mutation and crossover operators for traditional GP
problem domains, and to analyze rigorously their performance (runtime analy-
sis). A number of realworld applications of this framework will be also presented.
Other promising emerging approaches to semantics in GP will be reviewed. In
particular, the recent developments in the behavioral programming, which aims
at characterizing the entire program behavior (and not only program outputs)
will be covered as well. Current challenges and future trends in semantic GP will
be identified and discussed.

Efficient implementation of semantic search operators may be challenging.
We will illustrate very efficient, concise and elegant implementations of these
operators, which are available for download from the web.

2.21 The Cartography of Computational Search Spaces

Tutorial Speaker: Gabriela Ochoa, University of Stirling (UK).

Tutorial Abstract: The performance of heuristic search algorithms crucially
depends on the underlying fitness landscape structure. Most fitness landscapes
analysis techniques study their local structure; there is a lack of tools to study
instead their global structure, which is known to impact algorithms’ perfor-
mance. This tutorial will describe local optima networks (LONs), a model of
fitness landscapes suited to analyse their global structure by bringing tools from
complex networks. LONs provide new insight into the structural organisation and
the connectivity pattern of a search space. We will cover the relevant definitions,
extraction methodologies, metrics, and visualisation techniques to thoroughly
characterise the global structure of computational search spaces. We will con-
sider the landscapes induced by both evolutionary and local-search algorithms
and will show results on combinatorial problems (binary and permutation spaces)
as well as on computer program search spaces. An interactive demo will allow
attendees to analyse and visualise realistic computational search spaces.

2.22 The Most Recent Advances on Multi-Modal Optimization

Tutorial Speakers: Michael G. Epitropakis, University of Patras (Greece),
Mike Preuss, University of Müenster (Germany), and Xiaodong Li, RMIT Uni-
versity (Australia).

Tutorial Abstract: Multi-Modal optimization (MMO) is currently undergoing
many changes, and becoming established as an active research area that collects
approaches from various domains of operational research, swarm intelligence and
evolutionary computation. Typically MMO strives for delivering multiple opti-
mal (or close to optimal) solutions in a single optimization run. This tutorial
will cover several scenarios and list currently employed and potentially available

Tutorials at PPSN 2018 489

performance measures. Furthermore, many state-of-the-art as well as more clas-
sic MMO methods are compared and put into a rough taxonomy. We will also
discuss recent relevant competitions and their results and outline the possible
future developments in this area. In brief, the tutorial will cover the following
topics (in syllabus form):

– Multi-modal optimization - what for?
– Niching? Biological inspiration and optimization reality
– Towards theory: high-level modelling
– Suggested taxonomy and critical review of methods (with Demos)
– Spotlight: Clustering, multiobjectivization, surrogates and archives
– ‘Measuring and different scenarios’
– Developing challenging competition benchmark function sets
– Discussion on current competition results, and available software
– Expected future developments.

2.23 Theory of Parallel Evolutionary Algorithms

Tutorial Speaker: Dirk Sudholt, University of Sheffield (UK).

Tutorial Abstract: Evolutionary algorithms (EAs) have given rise to many
parallel variants, fuelled by the rapidly increasing number of CPU cores and the
ready availability of computation power through GPUs and cloud computing.
A very popular approach is to parallelize evolution in island models, or coarse-
grained EAs, by evolving different populations on different processors. These
populations run independently most of the time, but they periodically commu-
nicate genetic information to coordinate search. Many applications have shown
that island models can speed up computation time significantly, and that par-
allel populations can further increase solution diversity. However, there is little
understanding of when and why island models perform well, and what impact
fundamental parameters have on performance. This tutorial will give an overview
of recent theoretical results on the runtime of parallel evolutionary algorithms.
These results give insight into the fundamental working principles of parallel
EAs, assess the impact of parameters and design choices on performance, and
contribute to the design of more effective parallel EAs.

Workshops at PPSN 2018

Robin Purshouse1, Christine Zarges2(B), Sylvain Cussat-Blanc3,
Michael G. Epitropakis4, Marcus Gallagher5, Thomas Jansen2,

Pascal Kerschke6, Xiaodong Li7, Fernando G. Lobo8, Julian Miller9,
Pietro S. Oliveto1, Mike Preuss6, Giovanni Squillero10, Alberto Tonda11,
Markus Wagner12, Thomas Weise13, Dennis Wilson3, Borys Wróbel14,

and Aleš Zamuda15

1 University of Sheffield, Sheffield, UK
2 Aberystwyth University, Aberystwyth, UK

c.zarges@aber.ac.uk
3 University of Toulouse, Toulouse, France

4 Lancaster University, Lancaster, UK
5 University of Queensland, Brisbane, Australia

6 University of Münster, Münster, Germany
7 RMIT University, Melbourne, Australia
8 University of Algarve, Faro, Portugal

9 University of York, York, UK
10 Politecnico di Torino, Torino, Italy

11 National Institute of Agronomic Research, Thiverval-Grignon, France
12 University of Adelaide, Adelaide, Australia

13 Hefei University, Hefei, China
14 Adam Mickiewicz University, Poznań, Poland

15 University of Maribor, Maribor, Slovenia

Abstract. This article provides an overview of the 6 workshops held
in conjunction with PPSN 2018 in Coimbra, Portugal. For each work-
shop, we list title, organizers, aim and scope as well as the accepted
contributions.

1 Welcome from the Workshop Chairs

Workshops are an integral part of the conference series on Parallel Problem
Solving From Nature (PPSN). They are intended as forums for presenting and
discussing emerging approaches or critical reflections within a subfield. They
provide an excellent opportunity to meet people with similar interests, to be
exposed to cutting-edge research, and to exchange ideas in an informal setting.

About a year before the main conference, the organizing committee invited
proposals for workshops to be held in conjunction with PPSN 2018. The organiz-
ers of an accepted workshop are responsible for its format, coordination, public-
ity, and technical program. Interactive sessions are encouraged. Most workshop
contributions are short position papers or abstracts rather than full papers.

For PPSN 2018, the workshop chairs considered 8 high-quality workshop
proposals and selected 6 of them for inclusion in the conference program based
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 490–497, 2018.
https://doi.org/10.1007/978-3-319-99259-4_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_39&domain=pdf

Workshops at PPSN 2018 491

on scheduling constraints and synergy with other workshops and tutorials. All
workshops were half-day workshops and were held during the first two days of
the conference, carefully scheduled alongside the accepted tutorial program.

Benchmarking represented a key theme for many workshop sessions, with
topics including on-going advances in benchmarks and methods for multimodal
problems, choice of functions to include in standardized benchmarking studies,
and use of machine learning problems for benchmarking. A further workshop
sought to consider how practice-based considerations can influence the develop-
ment and benchmarking of optimization algorithms. Hybridization of machine
learning with evolutionary computation was also a theme, alongside a considered
look at how to incorporate developmental processes observed in nature into arti-
ficial neural networks. Two of the workshops considered aspects of bridging the
gap between theory and practice in nature-inspired optimization and were asso-
ciated with COST Action CA15140 ‘Improving Applicability of Nature-Inspired
Optimisation by Joining Theory and Practice’ (ImAppNIO)1,2.

Summaries for all workshops are presented in the next section. The total num-
ber of 31 contributions, as well as overview presentations and panel discussions,
demonstrate the sustained popularity of the workshop format and represent a
significant contribution to the overall PPSN conference program. Workshop orga-
nizers were based at 15 different institutions from 9 countries in Asia, Australia,
and Europe and accepted presentations from a diverse set of authors from 20
countries in America, Asia, Australia, and Europe.

We hope that attendees have enjoyed interesting, thought-provoking and
fruitful discussions in the workshops at PPSN 2018!

Robin Purshouse and Christine Zarges
PPSN 2018 Workshop Chairs

2 The Six Workshops

We summarize the content of the workshops at PPSN 2018 as follows:

1. Advances in Multimodal Optimization (Sect. 2.1)
2. Black-Box Discrete Optimization Benchmarking (BB-DOB) (Sect. 2.2)
3. Bridging the Gap Between Theory and Practice in Nature-Inspired Optimiza-

tion (Sect. 2.3)
4. Developmental Neural Networks (Sect. 2.4)
5. Evolutionary Machine Learning (Sect. 2.5)
6. Investigating Optimization Problems from Machine Learning and Data Anal-

ysis (Sect. 2.6)

1 http://imappnio.dcs.aber.ac.uk
2 http://www.cost.eu/COST Actions/ca/CA15140

http://imappnio.dcs.aber.ac.uk
http://www.cost.eu/COST_Actions/ca/CA15140

492 R. Purshouse et al.

2.1 Advances in Multimodal Optimization

Organizers:

– Mike Preuss, University of Münster, Münster, Germany
– Michael G. Epitropakis, Lancaster University, Lancaster, United Kingdom
– Xiaodong Li, RMIT University, Melbourne, Australia

URL: http://www.epitropakis.co.uk/ppsn2018-niching/

Aim and Scope: The workshop attempts to bring together researchers from
evolutionary computation and related areas who are interested in Multi-modal
Optimization. This is a currently forming field, and we aim for a highly interac-
tive and productive meeting that makes a step forward towards defining it. The
Workshop provides a unique opportunity to review the advances in the current
state-of-the-art in the field of Niching methods. Further discussion will deal with
several experimental/theoretical scenarios, performance measures, real-world and
benchmark problem sets and outline the possible future developments in this area.

List of Accepted Contributions
eltiTsrohtuA

M. Epitropakis, X. Li,
M. Preuss

Current State of Multimodal Optimization

H. Ishibuchi Multi-Modal Multi-Objective Optimization:
Test Problems, Algorithms and Performance
Indicators

P. Kerschke Exploiting a Problem’s Multimodality for
Improved Multi-Objective Optimization

2.2 Black-Box Discrete Optimization Benchmarking (BB-DOB)

Organizers:

– Pietro S. Oliveto, University of Sheffield, Sheffield, United Kingdom
– Markus Wagner, University of Adelaide, Adelaide, Australia
– Thomas Weise, Hefei University, Hefei, China
– Borys Wróbel, Adam Mickiewicz University, Poznań, Poland
– Aleŝ Zamuda, University of Maribor, Maribor, Slovenia

URL: http://iao.hfuu.edu.cn/bbdob-ppsn18

Aim and Scope: The aim of BB-DOB is to set up a process that will allow to
achieve a standard methodology for the benchmarking of black-box optimization
algorithms in discrete and combinatorial search spaces. Our long-term aim is to
produce:

http://www.epitropakis.co.uk/ppsn2018-niching/
http://iao.hfuu.edu.cn/bbdob-ppsn18

Workshops at PPSN 2018 493

1. a well-motivated benchmark function testbed
2. an experimental set-up
3. generation of data output for post-processing and
4. presentation of the results in graphs and tables

In this workshop we encourage a discussion concerning which functions should
be included in the benchmarking testbed (i.e., point (1) above). The functions
should capture the difficulties of combinatorial optimization problems in practice
but at the same time be comprehensible such that algorithm behaviors can be
interpreted according to the performance on a given benchmark problem. The
desired search behavior should be clear and algorithm deficiencies understood
in depth. This understanding should lead to the design of improved algorithms.
Ideally (not necessarily for all), the benchmark functions should be scalable with
the problem size and non-trivial in the black-box optimization sense (the function
may be shifted such that the global optimum may be any point). This workshop
is organized in connection with and partly based upon work from COST Action
CA15140 ‘Improving Applicability of Nature-Inspired Optimisation by Joining
Theory and Practice’, supported by COST (European Cooperation in Science
and Technology, see footnotes 1 and 2).

List of Accepted Contributions
eltiTsrohtuA

V. Jacimovic Consensus on Non-Euclidean Manifolds Over
Complex Networks: Optimization Problems
and Benchmark Functions

Q. Yang, J. Zou, G. Ruan,
S. Yang, and J. Zheng

A Dynamic Preference-Based Evolutionary
Multi-Objective Optimization Benchmark
Based on Reference Point?

S. Wasik, M. Antczak,
J. Badura, and A. Laskowski

Optil.io: Online Platform for Benchmarking
Optimization Algorithms

A. Zamuda, G. Hrovat,
E. Lloret, M. Nicolau, and
C. Zarges

Examples Implementing Black-Box Discrete
Optimization Benchmarking Survey for
BB-DOB@GECCO and BB-DOB@PPSN

S. Raggl Discrete Real-world Problems in a Black-Box
Optimization Benchmark

P. Kerschke, J. Bossek, and
H. Trautmann

Analyzing the Impact of Performance
Indicator Parameterizations on the
Assessment of Algorithm Performances

O.M. Shir, C. Doerr, and
T. Bäck

Compiling a Benchmarking Test-Suite for
Combinatorial Black-Box Optimization: A
Position Statement

H. Wang, F. Ye, C. Doerr,
S. van Rijn, and T. Bäck

IOHProfiler: A Benchmarking and Profiling
Tool for Iterative Optimization Heuristics

494 R. Purshouse et al.

2.3 Bridging the Gap Between Theory and Practice
in Nature-Inspired Optimization

Organizers:

– Fernando G. Lobo, University of Algarve, Faro, Portugal
– Thomas Jansen, Aberystwyth University, Aberystwyth, United Kingdom

URL: http://fernandolobo.info/ppsn2018workshop/

Aim and Scope: Nature-inspired search and optimization heuristics have been
used for decades to solve practical problems across different domains. Alongside,
the theoretical understanding of them has been improving substantially, provid-
ing better understanding of what they can and cannot do in terms of solution
quality and runtime. In spite of much improvement from the theoretical perspec-
tive, there is a large gap between theoretical foundations and practical applica-
tions. Theory and practice reinforce each other. Theory is driven by the need
to improve understanding of challenges observed in practice. Likewise, practical
applications can benefit from insights and guidelines derived from theory.

The workshop seeks to bring together researchers interested in the debate on
how to narrow the gap between theory and practice. It is organized in connec-
tion with and partly based upon work from COST Action CA15140 ‘Improving
Applicability of Nature-Inspired Optimisation by Joining Theory and Practice’,
supported by COST (European Cooperation in Science and Technology, see foot-
notes 1 and 2). We hope that this debate will improve the current state of the
field.

List of Accepted Contributions
eltiTsrohtuA

C.M. Fonseca It’s All About the Problem: Some Thoughts
on Nature-Inspired Solver Software
Development

E. Tuba, C.M. Fonseca, and
P. Machado

Towards a Combinatorial Optimization API
for Nature-Inspired Optimization Algorithms

C. Doerr Towards a More Practice-Aware Evaluation
of Iterative Optimization Heuristics

F. Lobo Interplay Between Theory and Practice

2.4 Developmental Neural Networks

Organizers:

– Dennis Wilson, University of Toulouse, Toulouse, France
– Julian Miller, University of York, York, United Kingdom

http://fernandolobo.info/ppsn2018workshop/

Workshops at PPSN 2018 495

– Sylvain Cussat-Blanc, University of Toulouse, Toulouse, France

URL: https://www.irit.fr/devonn/

Aim and Scope: In nature, brains are built through a process of biological
development in which many aspects of the network of neurons and connections
change are shaped by external information received through sensory organs.
Biological development mechanisms such as axon guidance and dendrite prun-
ing have been shown to rely on neural activity. Despite this, most artificial
neural network (ANN) models do not include developmental mechanisms and
regard learning as the adjustment of connection weights, while some that do use
development restrain it to a period before the ANN is used. It is worthwhile
to understand the cognitive functions offered by development and to investigate
the fundamental questions raised by artificial neural development. In this work-
shop, we will explore existing and future approaches that aim to incorporate
development into ANNs. Invited speakers will present their work with neural
networks, both artificial and biological, in the context of development. Accepted
submissions on contemporary work in this field will be presented and we will
hold an open discussion on the topic.

List of Accepted Contributions
eltiTsrohtuA

S. Pautot Keynote Presentation on Neurosciences
J. F. Miller, D.G. Wilson, and
S. Cussat-Blanc

Evolving Programs That Build Neural
Networks for Multiple Problems

J. Stork, M. Zaefferer, and
T. Bartz-Beielstein

Distance-Based Kernels for Surrogate
Model-Based Neuroevolution

Y. Ying, A. Rose, A. Siddique,
and W.N. Browne

Minimum Requirements for an Artificial Rat

D.G. Wilson, S. Cussat-Blanc,
and H. Luga

A Gene Regulatory Network Model for Axon
Guidance

2.5 Evolutionary Machine Learning

Organizers:

– Giovanni Squillero, Politecnico di Torino, Torino, Italy
– Alberto Tonda, National Institute of Agronomic Research, Thiverval-

Grignon, France

URL: https://evolearning.github.io/ppsn18/

Aim and Scope: Evolutionary machine-learning (EML) could be easily defined
as a crossbreed between the fields of evolutionary computation (EC) and machine

https://www.irit.fr/devonn/
https://evolearning.github.io/ppsn18/

496 R. Purshouse et al.

learning (ML). However, as the ‘obvious connection’ between the processes of
learning and evolution has been pointed out by Turing back in 1950, to avoid a
blatant pleonasm, the term is mostly used referring to the integration of well-
established EC techniques and canonical ML frameworks. A first line of research
ascribable to EML predates the recent ML windfall and focuses on using EC
algorithms to optimize frameworks: it included remarkable studies in the 1990s,
such as the attempts to determine optimal topologies for an artificial neural
network using a genetic algorithm. The other way around, a line tackling the use
of ML techniques to boost EC algorithms appeared before 2000. More recently,
scholars are proposing truly hybrid approaches, where EC algorithms are deeply
embedded in frameworks performing ML tasks.

List of Accepted Contributions
eltiTsrohtuA

I. Bonnici, A. Gouäıch, and
F. Michel

Eco-Evolutionary Search in a Metamorph
Learner

B. Doerr, C. Doerr, and
J. Yang

Provably Efficient Search Heuristics by
Learning-Inspired Parameter Control

S. Al-Maliki, E. Lutton,
F. Boué, and F. Vidal

MRI Gastric Images Processing Using a
Multiobjective Fly Algorithm

E. Medvet, A. Bartoli,
A. Ansuini, and F. Tarlao

Observing the Population Dynamics in GE
by Means of the Intrinsic Dimension

Y. Nojima, S. Sakai,
N. Masuyama, and H. Ishibuchi

Multiobjective Evolutionary Classifier Design
Using Class Scores by a Deep Convolutional
Neural Network

C. Pageau, A. Blot, H.H. Hoos,
M.-E. Kessaci, and L. Jourdan

Automatic Design of a Dynamic
Multi-Objective Local Search Algorithm

R. Denysiuk, R. Pinto,
M. F. Costa, L. Costa, and
A. Gaspar-Cunha

Feature Selection Using Multiobjective
Evolutionary Algorithms

D.G. Wilson, K. Harrington,
S. Cussat-Blanc, and H. Luga

Evolving Differentiable Gene Regulatory
Networks

2.6 Investigating Optimization Problems from Machine Learning
and Data Analysis

Organizers:

– Marcus Gallagher, University of Queensland, Brisbane, Australia
– Mike Preuss, University of Münster, Münster, Germany
– Pascal Kerschke, University of Münster, Münster, Germany

URL: https://sites.google.com/view/optml-ppsn18/home

https://sites.google.com/view/optml-ppsn18/home

Workshops at PPSN 2018 497

Aim and Scope: In continuous black-box optimization, there are a number
of benchmark problem sets and competitions. However, the focus has mainly
been on the performance and comparison of algorithms on artificial problems.
The aim of this workshop is to instead make a set of optimization problems
the centre of focus, bringing together researchers to discuss and develop deeper
insights into the structure and difficulty of the problem set, as well as experimen-
tal methodology (including algorithms). Several problem classes (and specific
problem instances) from the area of machine learning and data analysis were
proposed in advance of the workshop submission deadline. Submission of brief
papers that show new insights into the problems, for example via exploratory
landscape analysis, algorithm performance (with a focus on ‘why’) or analysis of
the quality/diversity of solutions present in the problem instances are invited.

List of Accepted Contributions
eltiTsrohtuA

M. Gallagher and S. Saleem Exploratory Landscape Analysis of the
MLDA Problem Set

zoñuM.A.MdnanahZ.H.S Recurrence Quantification Analysis of the
State Space Trajectories of Black-Box
Continuous Optimization Algorithms

M. Gallagher, S. Saleem, S. Van
Ryt, and Y. Qiao

Evaluating Algorithm Performance on the
MLDA Problem Set

Author Index

Aalvanger, G. H. I-146
Abreu, Salvador I-436
Aguirre, Hernán II-181, II-232
Aldana-Montes, José F. I-274, I-298
Amaya, Ivan II-373
Antipov, Denis II-117
Arbonès, Dídac Rodríguez I-512
Arnold, Dirk V. I-16
Ashrafzadeh, Homayoon I-451
Asteroth, Alexander I-500
Auger, Anne I-3

Bäck, Thomas I-54, I-500
Baioletti, Marco II-436
Bakurov, Illya I-41, I-185
Barba-González, Cristóbal I-274, I-298
Barbaresco, Frédéric I-3
Bartashevich, Palina I-41
Bartoli, Alberto I-223
Bartz-Beielstein, Thomas II-220
Bazzan, Ana II-477
Benítez-Hidalgo, Antonio I-298
Bian, Chao II-165
Blot, Aymeric I-323
Bongard, Joshua I-525
Bosman, P. A. N. I-146
Brabazon, Anthony II-387
Brockhoff, Dimo I-3
Browne, Will II-477
Buzdalov, Maxim I-347

Castelli, Mauro I-185
Chen, Gang II-347
Chicano, Francisco II-449
Coello Coello, Carlos A. I-298, I-335, I-372,

II-373
Conant-Pablos, Santiago Enrique II-373
Corus, Dogan II-16, II-67
Cotta, Carlos I-411
Covantes Osuna, Edgar II-207
Cussat-Blanc, Sylvain II-490

Daniels, Steven J. II-296
Daolio, Fabio II-257

Das, Kamalika I-525
De Lorenzo, Andrea I-223
de Sá, Alex G. C. II-308
Deb, Kalyanmoy II-477
Del Ser, Javier I-298
Derbel, Bilel II-181, II-232
Diaz, Daniel I-436
Ding, Boyin I-512
Doerr, Benjamin II-117
Doerr, Carola I-54, II-29, II-360, II-477
Duan, Qiqi I-424
Ðurasević, Marko II-477
Durillo, Juan J. I-298

Eiben, A. E. I-476
Ekárt, Anikó I-236
ElHara, Ouassim Ait I-3
Emmerich, Michael T. M. II-477
Epitropakis, Michael G. II-477, II-490
Everson, Richard M. II-296

Fagan, David I-197
Falcón-Cardona, Jesús Guillermo I-335
Fieldsend, Jonathan E. II-296
Flasch, Oliver II-220
Fontanella, Francesco I-185
Forstenlechner, Stefan I-197
Frahnow, Clemens II-129
Freitas, Alex A. II-308
Friedrich, Tobias I-134

Gallagher, Marcus II-284, II-490
Ganguly, Sangram I-525
García, Marcos Diez II-194
García-Nieto, José I-274, I-298
García-Valdez, J. Mario I-399
Ghasemishabankareh, Behrooz I-69
Glasmachers, Tobias II-411
Göbel, Andreas I-134
Griffiths, Thomas D. I-236

Haasdijk, Evert I-476
Hagg, Alexander I-500
Hansen, Nikolaus I-3

Haqqani, Mohammad I-451
Haraldsson, Saemundur O. II-477
Hart, Emma I-170, I-488
Helsgaun, Keld I-95
Herrmann, Sebastian II-245
Hirsch, Rachel II-55
Hoos, Holger II-271
Horn, Daniel II-399

Igel, Christian I-512
Imada, Ryo I-384
Ishibuchi, Hisao I-249, I-262, I-311, I-384

Jakobovic, Domagoj I-121, II-477
Jansen, Thomas II-153, II-490
Jelisavcic, Milan I-476
Jourdan, Laetitia I-323
Jurczuk, Krzysztof II-461

Karunakaran, Deepak II-347
Kassab, Rami I-3
Kayhani, Arash I-16
Kazakov, Dimitar II-321
Kerschke, Pascal II-477, II-490
Kessaci, Marie-Éléonore I-323
Kodali, Anuradha I-525
Kordulewski, Hubert I-29
Kötzing, Timo II-42, II-79, II-92, II-129
Kramer, Oliver II-424
Krause, Oswin I-512
Krawiec, Krzysztof II-477
Krejca, Martin S. II-79, II-92
Kretowski, Marek II-461

Lagodzinski, J. A. Gregor II-42
Lan, Gongjin I-476
Lardeux, Fréderic I-82
Le, Nam II-387
Legrand, Pierrick I-209
Lehre, Per Kristian II-105, II-477
Lengler, Johannes II-3, II-42
Leporati, Alberto I-121
Li, Xiaodong I-69, I-451, II-477, II-490
Liefooghe, Arnaud II-181, II-232
Lissovoi, Andrei II-477
Liu, Yiping I-262, I-311
Lobo, Fernando G. II-490
López, Jheisson I-436
López, Uriel I-209

López-Ibáñez, Manuel I-323, II-232, II-321
Luong, N. H. I-146

Malo, Pekka II-477
Manoatl Lopez, Edgar I-372
Mariot, Luca I-121
Markina, Margarita I-347
Martí, Luis II-477
Masuyama, Naoki I-262, I-311, I-384
McDermott, James II-334
Medvet, Eric I-223
Mei, Yi II-347, II-477
Melnichenko, Anna II-42
Merelo Guervós, Juan J. I-399, II-477
Miettinen, Kaisa I-274, I-286
Milani, Alfredo II-436
Miller, Julian F. II-477, II-490
Moraglio, Alberto II-194, II-334, II-477
Mostaghim, Sanaz I-41
Mukhopadhyay, Anirban II-55
Müller, Nils II-411
Múnera, Danny I-436

Nagata, Yuichi I-108
Narvaez-Teran, Valentina I-82
Nebro, Antonio J. I-274, I-298, II-477
Neumann, Aneta I-158
Neumann, Frank I-69, I-158, II-141
Nguyen, Phan Trung Hai II-105
Nguyen, Su II-477
Nicolau, Miguel I-197
Nogueras, Rafael I-411
Nojima, Yusuke I-262, I-311, I-384

O’Neill, Michael I-197, II-387
Ochoa, Gabriela II-245, II-257, II-477
Ojalehto, Vesa I-274
Okulewicz, Michał I-29
Oliveto, Pietro S. II-16, II-67, II-477, II-490
Ortiz-Bayliss, José Carlos II-373
Ozlen, Melih I-69

Paechter, Ben I-170
Pappa, Gisele Lobo II-308, II-477
Picek, Stjepan I-121, II-477
Pillay, Nelishia II-477
Pinto, Eduardo Carvalho II-29
Prellberg, Jonas II-424
Preuss, Mike II-477, II-490

500 Author Index

Purshouse, Robin II-490
Pushak, Yasha II-271

Qian, Chao II-165
Quinzan, Francesco I-134

Rahat, Alma A. M. II-296
Reska, Daniel II-461
Rodriguez-Tello, Eduardo I-82
Roijers, Diederik M. I-476
Roostapour, Vahid I-158

Saleem, Sobia II-284
Santucci, Valentino II-436
Schoenauer, Marc II-477
Semet, Yann I-3
Senkerik, Roman II-477
Sergiienko, Nataliia Y. I-512
Shang, Ke I-262, I-311
Sharma, Mudita II-321
Shi, Yuhui I-424
Shir, Ofer II-477
Sinha, Ankur II-477
Squillero, Giovanni II-490
Stone, Christopher I-170
Stork, Jörg II-220
Sudholt, Dirk II-207, II-477
Sun, Lijun I-424
Sutton, Andrew M. II-141
Szubert, Marcin I-525

Tabor, Gavin R. II-296
Tagawa, Kiyoharu I-464
Tanabe, Ryoji I-249
Tanaka, Kiyoshi II-181, II-232
Tang, Ke II-165
Tarlao, Fabiano I-223

Terashima-Marín, Hugo II-373
Thierens, D. I-146
Tinós, Renato I-95, II-449
Tomassini, Marco II-257
Tonda, Alberto II-490
Trujillo, Leonardo I-209

Uliński, Mateusz I-29
Urquhart, Neil I-488

van Rijn, Sander I-54
Vanneschi, Leonardo I-41, I-185
Varadarajan, Swetha II-55
Varelas, Konstantinos I-3
Verel, Sébastien II-181, II-232, II-257

Wagner, Markus I-134, I-512, II-360, II-490
Weise, Thomas II-490
Whitley, Darrell I-95, II-55, II-449, II-477
Wilson, Dennis II-490
Wineberg, Mark II-477
Wood, Ian II-284
Woodward, John II-477
Wróbel, Borys II-490

Yazdani, Donya II-16, II-67
Yu, Xinghuo I-451

Zaborski, Mateusz I-29
Zaefferer, Martin II-220, II-399
Zamuda, Aleš II-490
Zarges, Christine II-153, II-490
Zhang, Hanwei I-359
Zhang, Mengjie II-347, II-477
Zhou, Aimin I-359
Zhou-Kangas, Yue I-286
Żychowski, Adam I-29

Author Index 501

	Preface
	Organization
	Contents – Part II
	Contents – Part I
	Runtime Analysis and Approximation Results
	A General Dichotomy of Evolutionary Algorithms on Monotone Functions
	1 Introduction
	2 Preliminaries and Definitions
	3 Results
	4 Conclusions
	References

	Artificial Immune Systems Can Find Arbitrarily Good Approximations for the NP-Hard Partition Problem
	1 Introduction
	2 Preliminaries
	3 Generalised Worst-Case Instance
	3.1 Hypermutations
	3.2 Ageing

	4 (1+) Approximation Ratios
	4.1 Hypermutations
	4.2 Ageing

	5 Conclusion
	References

	A Simple Proof for the Usefulness of Crossover in Black-Box Optimization
	1 Introduction
	1.1 Selected Theoretical Results on the Benefits of Crossover
	1.2 Our Results

	2 The Greedy (+1) GA
	2.1 The Original Greedy (+1) GA
	2.2 Standard Bit Mutation: Theory vs. Practice
	2.3 The Modified Greedy (+1) GA

	3 Theoretical Investigation
	4 Empirical Evaluation
	5 Conclusions
	References

	Destructiveness of Lexicographic Parsimony Pressure and Alleviation by a Concatenation Crossover in Genetic Programming
	1 Introduction
	2 Preliminaries
	2.1 Crossover
	2.2 Terminology

	3 (1+1) GP with Bloat Control
	4 (1+1) GP Without Bloat Control
	5 Concatenation Crossover GP
	6 Experiments
	7 Conclusion
	References

	Exploration and Exploitation Without Mutation: Solving the Jump Function in (n) Time
	1 Introduction
	2 Background and Basics
	2.1 Jansen's and Wegener's Classic Result

	3 Hybrid Genetic Algorithms
	3.1 Deterministic Crossover: 3-Parent Voting Crossover
	3.2 The Probability of Success (POS) for 3-Parent Voting Crossover
	3.3 A Lower Bound on the Probabilities

	4 Probabilities and Populations
	5 Other Crossover Operators
	6 Conclusions
	References

	Fast Artificial Immune Systems
	1 Introduction
	2 Preliminaries
	3 Fast Hypermutations
	4 Fast Opt-IA
	5 Conclusion
	References

	First-Hitting Times for Finite State Spaces
	1 Introduction
	2 Setting
	2.1 Stochastic Tools

	3 General First-Hitting Times
	4 Limit Distributions and Mixing Times
	References

	First-Hitting Times Under Additive Drift
	1 Drift Theory
	2 Preliminaries
	2.1 Martingale Theorems

	3 Additive Drift
	3.1 Upper Bounds
	3.2 Lower Bound

	4 Variable Drift
	5 Multiplicative Drift
	References

	Level-Based Analysis of the Population-Based Incremental Learning Algorithm
	1 Introduction
	2 Preliminaries
	2.1 Two Problems
	2.2 Population-Based Incremental Learning
	2.3 Level-Based Analysis
	2.4 Other Tools

	3 Runtime Analysis of the PBIL on LeadingOnes
	4 Runtime Analysis of the PBIL on BinVal
	5 Conclusions
	References

	Precise Runtime Analysis for Plateaus
	1 Introduction
	2 Problem Statement
	3 Preliminaries and Notation
	4 The Spectrum of the Transition Matrix
	5 Runtime Analysis
	6 Corollaries
	7 Conclusion
	References

	Ring Migration Topology Helps Bypassing Local Optima
	1 Introduction
	2 Algorithms
	3 Fitness Functions
	3.1 Composite Fitness Function
	3.2 Run Time of LeadingOnes with k-block f

	4 No Migration
	4.1 The (1+1) EA
	4.2 Independent Runs

	5 Complete Topology
	6 Ring Topology
	7 Conclusion
	References

	Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem with Favorably Correlated Weights
	1 Introduction
	2 Algorithms and Problems
	2.1 Single-Objective Optimization
	2.2 Multi-objective Optimization

	3 Structure of the Objective Space
	4 Runtime Analysis of (1+1) EA
	5 Runtime Analysis of GSEMO
	6 Conclusions
	References

	Theoretical Analysis of Lexicase Selection in Multi-objective Optimization
	1 Introduction
	2 Background
	3 Algorithms, Problems, and Definitions
	4 Analysis
	5 Experimental Supplements
	6 Conclusions
	References

	Towards a Running Time Analysis of the (1+1)-EA for OneMax and LeadingOnes Under General Bit-Wise Noise
	1 Introduction
	2 Preliminaries
	2.1 OneMax and LeadingOnes
	2.2 Bit-Wise Noise
	2.3 (1+1)-EA
	2.4 Analysis Tools

	3 The OneMax Problem
	4 The LeadingOnes Problem
	5 Conclusion
	References

	Fitness Landscape Modeling and Analysis
	A Surrogate Model Based on Walsh Decomposition for Pseudo-Boolean Functions
	1 Introduction
	2 Walsh Functions: Background and Related Work
	2.1 Walsh Functions Basics and Evolutionary Computation
	2.2 Surrogate Models for Combinatorial Optimization

	3 Surrogate Model Based on Walsh Functions
	4 Experimental Analysis
	4.1 Experimental Setup and Methodology
	4.2 Training with CG Versus LARS
	4.3 Walsh Versus Kriging
	4.4 Impact of the Walsh Expansion Order

	5 Conclusions
	References

	Bridging Elementary Landscapes and a Geometric Theory of Evolutionary Algorithms: First Steps
	1 Introduction
	2 Fitness Landscapes
	3 Geometric Framework
	4 Elementary Landscapes Theory
	5 Main Results
	6 Discrete Nodal Domains for Uniform Recombination in Boolean Spaces with Hamming Distance: Examples
	7 Conclusions
	References

	Empirical Analysis of Diversity-Preserving Mechanisms on Example Landscapes for Multimodal Optimisation
	1 Introduction
	2 Diversity Mechanisms and Previous Results for TwoMax
	3 Jansen-Zarges Multimodal Function Classes
	4 Experimental Analysis
	4.1 Finding Peaks of Equal Height
	4.2 Finding Peaks with Different Height
	4.3 Escaping from Local Optima

	5 Conclusions
	References

	Linear Combination of Distance Measures for Surrogate Models in Genetic Programming
	1 Introduction
	2 Related Work
	3 A Test Case for SMBO-GP: Bi-level Symbolic Regression
	3.1 Problem Definition
	3.2 Surrogate Model-Based Optimization

	4 Kernels for Bi-level Symbolic Regression
	4.1 Phenotypic Distance
	4.2 Tree Edit Distance
	4.3 Structural Hamming Distance
	4.4 Comparison and Linear Combination of Distances

	5 Case Study
	5.1 Algorithm Tuning
	5.2 Analysis and Discussion

	6 Conclusion and Outlook
	References

	On Pareto Local Optimal Solutions Networks
	1 Introduction
	2 Multi-objective Optimization and mnk-Landscapes
	3 Pareto Local Optimal Solutions Network
	3.1 Definition and Visual Inspection of PLOS-net
	3.2 Definition of PLOS-net Features
	3.3 Exploratory Analysis

	4 PLOS-net Features vs. Search Performance
	4.1 Algorithms and Search Performance
	4.2 Effect of PLOS-net Features on Search Performance
	4.3 Importance of PLOS-net Features on Search Performance

	5 Conclusions
	References

	Perturbation Strength and the Global Structure of QAP Fitness Landscapes
	1 Introduction
	2 The Quadratic Assignment Problem
	3 Algorithms and Definitions
	3.1 Monotonic LON Model
	3.2 Compressed Monotonic LON Model

	4 Experimental Setting
	5 Results
	5.1 Visualisation
	5.2 Structural and Performance Metrics

	6 Conclusion
	References

	Sampling Local Optima Networks of Large Combinatorial Search Spaces: The QAP Case
	1 Introduction
	2 Combinatorial Landscapes
	2.1 The Quadratic Assignment Problem

	3 Obtaining the Local Optima Networks
	3.1 Complex Network Metrics

	4 Sampling Local Optima Networks
	5 Empirical Validation
	6 Conclusions and Future Work
	References

	Algorithm Configuration, Selection, and Benchmarking
	Algorithm Configuration Landscapes:
	1 Introduction
	2 Methods
	2.1 Parameter Response Slices
	2.2 Bootstrap Analysis and Confidence Intervals
	2.3 Tests for Convexity and Uni-modality
	2.4 Identifying ``Interesting'' Parameter Response Slices
	2.5 Counting the Number of Modes (Local Minima)
	2.6 Fitness Distance Analysis

	3 Experimental Setup
	4 Results
	4.1 RQ 1. Uni-modality and Convexity on Instance Sets
	4.2 RQ 2. Uni-modality and Convexity on Individual Instances

	5 Conclusions and Future Work
	References

	A Model-Based Framework for Black-Box Problem Comparison Using Gaussian Processes
	1 Introduction
	2 Existing Frameworks for Problem Characterization and Algorithm Selection
	3 A Model-Based Framework for Problem Comparison
	3.1 Problem Comparison Using Gaussian Processes
	3.2 Gaussian Process Implementation Details
	3.3 Related Work

	4 Experimental Methodology
	5 Results and Discussion
	6 Conclusion
	References

	A Suite of Computationally Expensive Shape Optimisation Problems Using Computational Fluid Dynamics
	1 Introduction
	2 Computational Fluid Dynamics (CFD)
	3 Geometry Representation Methods
	3.1 Catmull-Clark Subdivision Curves
	3.2 Chebyshev Polynomials
	3.3 Monotonic Beta Cumulative Distribution Functions

	4 Single Objective Problems
	4.1 PitzDaily
	4.2 Sharp-Heeled Kaplan Draft Tube

	5 Multi-objective Problem: Heat Exchanger
	6 Conclusion
	References

	Automated Selection and Configuration of Multi-Label Classification Algorithms with Grammar-Based Genetic Programming
	1 Introduction
	2 Related Work
	3 Automatically Selecting Algorithms and Hyper-Parameters for Multi-Label Classification
	3.1 Grammar: A Formal Description of the MLC Search Space
	3.2 From Individual Representation to Individual Evaluation

	4 Experimental Results
	4.1 Evolutionary Behavior
	4.2 The Diversity of the Selected MLC Algorithms

	5 Conclusions and Future Work
	References

	Performance Assessment of Recursive Probability Matching for Adaptive Operator Selection in Differential Evolution
	1 Introduction
	2 Background
	2.1 Adaptive Operator Selection
	2.2 Mutation Strategies in Differential Evolution

	3 Recursive PM (RecPM)
	4 Experimental Analysis
	4.1 Parameter Tuning
	4.2 Comparison of AOS Methods with Different Parameter Settings
	4.3 Comparison of RecPM-AOS with State-of-the-Art Algorithms

	5 Conclusion and Future Work
	References

	Program Trace Optimization
	1 Introduction
	2 Overview of PTO
	2.1 Universal Solution Representation
	2.2 Naming Scheme
	2.3 PTO Software Architecture
	2.4 Related Work

	3 Implicit Operator Design
	3.1 Naming Scheme
	3.2 Search Operators on Named Traces
	3.3 Example: Loops and Matrices
	3.4 Example: Recursion and Expressions
	3.5 Implicit Problem Knowledge

	4 Experiments and Results
	5 Conclusions and Future Work
	References

	Sampling Heuristics for Multi-objective Dynamic Job Shop Scheduling Using Island Based Parallel Genetic Programming
	1 Introduction
	2 Background
	3 Proposed Method
	3.1 Clustering of DJSS Problem Instances
	3.2 Proposed Island Model

	4 Experiment Design
	4.1 Simulation Model
	4.2 Genetic Programming System
	4.3 Island Model

	5 Results and Discussion
	5.1 Analysis

	6 Conclusions
	References

	Sensitivity of Parameter Control Mechanisms with Respect to Their Initialization
	1 Introduction
	2 Sensitivity Analysis for the (1+1) EA
	2.1 Optimal Mutation Rates for OneMax and LeadingOnes
	2.2 Evaluating the Relative Average Improvement
	2.3 Testing for Statistical Significance
	2.4 Visualizing the Mutation Rate Adaptation

	3 Sensitivity of the Self-adjusting (1+(l,l)) GA
	4 Sensitivity of the (1+l) EA (r/2,2r)
	5 Conclusions and Future Work
	References

	Tailoring Instances of the 1D Bin Packing Problem for Assessing Strengths and Weaknesses of Its Solvers
	1 Introduction
	2 Fundamentals
	2.1 The 1D Bin Packing Problem
	2.2 Some Solvers of Interest for the 1D Bin Packing Problem
	2.3 Some Features for the 1D Bin Packing Problem
	2.4 Some Performance Measures for the 1D Bin Packing Problem
	2.5 Instances Used in This Work

	3 The Proposed Approach
	4 Methodology
	4.1 Preliminary Testing
	4.2 Initial Testing
	4.3 Advanced Testing

	5 Experiments and Results
	5.1 Preliminary Testing
	5.2 Initial Testing
	5.3 Advanced Testing

	6 Conclusions
	References

	Machine Learning and Evolutionary Algorithms
	Adaptive Advantage of Learning Strategies: A Study Through Dynamic Landscape
	1 Introduction
	2 Background
	2.1 Social Learning
	2.2 Learning and Evolution in Computer Simulation

	3 Experimental Design
	3.1 Dynamic Needle-in-a-haystack Landscape
	3.2 Experiment Setup

	4 Results, Analyses, and Explanations
	5 Conclusion and Future Work
	References

	A First Analysis of Kernels for Kriging-Based Optimization in Hierarchical Search Spaces
	1 Introduction
	2 Surrogate Model-Based Optimization
	3 Kriging
	4 Kernels for Hierarchical Search Spaces
	4.1 The Arc-Kernel
	4.2 Indefinite Conditional Kernel
	4.3 Imputation Kernel
	4.4 The Imputation-Arc Kernel

	5 Experimental Setup
	6 Results
	7 Conclusion and Outlook
	References

	Challenges in High-Dimensional Reinforcement Learning with Evolution Strategies
	1 Introduction
	2 Problems Under Study
	3 Evolution Strategies
	4 Experiments
	5 Conclusion
	References

	Lamarckian Evolution of Convolutional Neural Networks
	1 Introduction
	2 Related Work
	3 Method
	3.1 Evolutionary Algorithm
	3.2 Mutation Operator
	3.3 Weight Inheritance

	4 Experiments
	4.1 Setup
	4.2 Training Details
	4.3 Results
	4.4 Discussion

	5 Conclusion
	References

	Learning Bayesian Networks with Algebraic Differential Evolution
	1 Introduction and Related Work
	2 Differential Evolution
	3 Algebraic Framework
	3.1 Vector-Like Operations
	3.2 Permutation Group
	3.3 Bit-String Group

	4 Dual Representation of Bayesian Networks
	5 The Algorithm DEBN
	6 Experimental Results
	7 Conclusions and Future Work
	References

	Optimal Neuron Selection and Generalization: NK Ensemble Neural Networks
	1 Introduction to Optimal Neural Selection
	2 Optimization by Dynamic Programming
	3 Converting a Neural Network into an NK Landscape
	4 Experimental Results
	4.1 Problem One: Mackey-Glass Time Series Prediction
	4.2 Problem Two: Double Pole Balancing Without Velocity Inputs
	4.3 Comparative Results

	5 Conclusions
	References

	What Are the Limits of Evolutionary Induction of Decision Trees?
	1 Introduction
	1.1 GPU, CUDA
	1.2 Apache Spark

	2 Global Decision Tree System
	2.1 Representation, Initialisation and Termination
	2.2 Genetic Operators
	2.3 Fitness Function

	3 Boosted GDT Versions
	3.1 CUDA Based Acceleration
	3.2 Spark Based Acceleration

	4 Experiments
	5 Conclusions
	References

	Tutorials and Workshops at PPSN 2018
	Tutorials at PPSN 2018
	1 Welcome from the Tutorial Chairs
	2 Tutorial Abstracts
	2.1 Adaptive Parameter Choices in Evolutionary Computation
	2.2 Applications of Genetic Programming in Dynamic Scheduling
	2.3 A Small World Hidden in Evolutionary Computation Techniques
	2.4 Bio-inspired Approaches to Anomaly and Intrusion Detection
	2.5 Cartesian Genetic Programming
	2.6 Cloud-y Evolutionary Algorithms
	2.7 Computational Complexity Analysis of Genetic Programming
	2.8 Evolutionary Algorithms and Hyper-Heuristics
	2.9 Evolutionary Bilevel Optimization (EBO): An Emerging Area for Research and Application in EC
	2.10 Evolutionary Computation and Machine Learning in Cryptology
	2.11 Exploratory Landscape Analysis
	2.12 Genetic Improvement: Taking Real-World Source Code and Improving It Using Genetic Programming
	2.13 Introduction to Statistical Modeling of EC Systems and Experiments: A Visual Approach
	2.14 Learning Classifier Systems as Learning Cognitive Systems
	2.15 Mathematical Programming as a Complement to Bio-inspired Optimization
	2.16 Multiagent Systems and Agent-Based Modeling and Simulation
	2.17 Multi-objective Optimization with the jMetal Framework
	2.18 Next Generation Genetic Algorithms
	2.19 Runtime Analysis of Population-Based Evolutionary Algorithms
	2.20 Semantic Genetic Programming
	2.21 The Cartography of Computational Search Spaces
	2.22 The Most Recent Advances on Multi-Modal Optimization
	2.23 Theory of Parallel Evolutionary Algorithms

	Workshops at PPSN 2018
	1 Welcome from the Workshop Chairs
	2 The Six Workshops
	2.1 Advances in Multimodal Optimization
	2.2 Black-Box Discrete Optimization Benchmarking (BB-DOB)
	2.3 Bridging the Gap Between Theory and Practice in Nature-Inspired Optimization
	2.4 Developmental Neural Networks
	2.5 Evolutionary Machine Learning
	2.6 Investigating Optimization Problems from Machine Learning and Data Analysis

	Author Index

