
Efficient Recombination in the
Lin-Kernighan-Helsgaun Traveling

Salesman Heuristic

Renato Tinós1(B), Keld Helsgaun2, and Darrell Whitley3

1 Department of Computing and Mathematics, University of São Paulo,
Ribeirão Preto, Brazil
rtinos@ffclrp.usp.br

2 Department of Computer Science, Roskilde University, Roskilde, Denmark
keld@ruc.dk

3 Department of Computer Science, Colorado State University, Fort Collins, USA
whitley@cs.colostate.edu

Abstract. The Lin-Kernighan-Helsgaun (LKH) algorithm is one of the
most successful search algorithms for the Traveling Salesman Problem
(TSP). The core of LKH is a variable depth local search heuristic devel-
oped by Lin and Kernighan (LK). Several improvements have been incor-
porated to LKH along the years. The best results reported in the litera-
ture were obtained by an iterative local search version known as multi-
trial LKH. In multi-trial LKH, solutions generated by soft restarts of
the LK heuristic are recombined using Iterative Partial Transcription
(IPT). We show that IPT can be classified as a partition crossover. Par-
tition crossovers use the features common to the parents to decompose
the evaluation function. Recently, a new generalized partition crossover,
known as GPX2, was proposed for the TSP. We investigate the use of
GPX2 in multi-trial LKH and compare it to multi-trial LKH using IPT.
Results of experiments with 11 large instances of the TSP indicate that
LKH with GPX2 outperforms LKH with IPT in most of the instances,
but not in all of them.

Keywords: Traveling Salesman Problem · Recombination operator
Heuristic search · Evolutionary combinatorial optimization

1 Introduction

The Traveling Salesman Problem (TSP) is one of the most investigated prob-
lems in Optimization [2]. Applications of the TSP can be found in the most
diverse areas, such as Logistics, Bioinformatics, and Planning. Given a complete
weighted graph G(V,E), where V is a set of n vertices (cities) and E contains
edges between every pair of vertices in V , the objective is to find the shortest
Hamiltonian cycle. The evaluation of a solution (tour) x is given by:

f(x) = wxn,x1 +
n−1∑

i=1

wxi,xi+1 (1)

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 95–107, 2018.
https://doi.org/10.1007/978-3-319-99253-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_8&domain=pdf

96 R. Tinós et al.

where wxi,xj
is the weight of the edge between vertices vxi

and vxj
in V .

There are very good exact methods for the TSP, e.g., Concorde [2]. Concorde
solves instances of the symmetric TSP with hundreds of cities in seconds. How-
ever, the TSP is NP-hard and, as a consequence, heuristic methods have been
required for solving large TSP instances. One of the most successful heuristics
for the TSP is the Lin-Kernighan-Helsgaun (LKH) algorithm [4,5]. LKH holds
the record for several large instances of the TSP, some of them with more than
100,000 vertices. The best results of LKH reported in the literature were obtained
by an iterative local search version known as multi-trial LKH. In multi-trial LKH,
solutions generated by soft restarts of the LK heuristic are recombined using an
efficient crossover operator, called Iterative Partial Transcription (IPT).

Recently, a new generalized partition crossover, known as GPX2, was pro-
posed for the TSP [14]. Partition crossovers are deterministic recombination
operators that use the features common to the parents to decompose the evalu-
ation function [17]. The main contributions of this work are two. First, we show
that IPT [10] is a kind of partition crossover. Second, we investigate the use
of GPX2 in multi-trial LKH and compare it with multi-trial LKH using IPT.
Unlike previous works with generalized partition crossovers [3,14], GPX2 is used
here inside LKH. Before, generalized partition crossovers were used to recombine
solutions generated by LKH but the offspring were not reinserted in LKH. Here,
IPT is replaced by GPX2 inside LKH, which results in a different heuristic.

2 LKH Algorithm

LKH is an iterated local-search algorithm based on the Lin-Kernighan heuristic
(LK) [9]. The local search performed by LK is based on k-opt moves. Given a
tour x, a k-opt move replaces k edges from x in order to create a solution y
where f(y) < f(x). A k-opt move is incrementally obtained using basic moves,
e.g., 2-opt, while the cumulative gain remains positive. Some heuristics (e.g.,
limiting the search to a subset of edges to the nearest neighbors of a node) are
adopted in order to reduce the cost of the moves.

LK is an effective local search algorithm; implementations capable of finding
solutions with typical cost 1–2% above the optimum cost were reported in the
literature. A much more effective implementation of LK was reported in [4].
This implementation, called LKH, is able to find optimal solutions for large
TSP instances with very high frequency [5]. Several improvements have been
incorporated to LKH along the years. We present some of them in the following:

– General k-opt moves: In LK, moves are obtained by 2-opt or 3-opt moves
followed by a sequence of 2-opt moves. Non-sequential moves are tried at the
end if the sequential moves did not improve the original solution. LKH-1 [4]
uses 5-opt sequential moves to create the sequence of basic moves. In LKH-
2 [5], the basic moves are k-opt moves where k can be any integer greater than
1 and smaller than n. The moves are sequential, but non-sequential moves
can also be tried during the search.

Efficient Recombination in the LKH Traveling Salesman Heuristic 97

– Partitioning: Large instances of TSP are decomposed into smaller subprob-
lems. Then, the solutions of the subproblems are used to improve the solutions
of the original instance.

– Candidate set criterion: Instead of using the cost of an edge, the α-measure
is used to evaluate the quality of an edge. The α-value of an edge e is computed
as the increase of the cost of a minimum 1-tree when this tree is required to
contain e. By restricting the search to a small number of neighbors of a node
obtained according to a distance based on the α-measure, the time complexity
is reduced.

– Multiple trials: In each run, the local optimum obtained is perturbed in
order to generate a new initial solution for the LK strategy. Each run r of
the multi-trial LKH is composed of t trials (Fig. 1). The use of multiple trials
allows the use of strategies that explore information from different solutions in
order to create a new solution. Three of them are presented in the following.

– Backbone-guided search: Edges of solutions previously obtained in differ-
ent trials compose a set of candidate edges for the current trial.

– Recombination of solutions: Local optima share many partial solutions.
The TSP has a multi-funnel structure, where many edges are common to the
optima located in the same funnel [11]. Recombination operators are generally
used in population meta-heuristics. However, recombination can also be used
to merge solutions generated in different runs of an algorithm, in different
trials of an iterated local search, or generated by different algorithms. In
LKH-2, tours obtained in different trials and runs are recombined using IPT.
Figure 1 shows how recombination is used in multi-trial LKH.

– Genetic Algorithm: Instead of storing only the best current solution, a
population of solutions obtained in different runs can be stored. When the
population size is different from one, a simple genetic algorithm is executed.
For each run, the best solution is stored in the population if its fitness is dif-
ferent from the other solutions in the population. After each run, the stored
solutions are selected and recombined using a variant of the Edge Recombi-
nation Crossover (ERX) [18]. It is important to observe that IPT is still used
as shown in Fig. 1; ERX is used only after the end of each run to recombine
the solutions of the population.

Fig. 1. Multi-trial LKH. The symbol ⊗ indicates a recombination operation.

98 R. Tinós et al.

3 Partition Crossover

Partition crossover (PX) is a deterministic recombination operator that can be
applied in problems where the cost function, f(x), is written as the sum of m
subfunctions fi(x), i.e.:

f(x) =
m∑

i=1

fi(x) (2)

where solution x is given by an n-dimensional vector and m > 0. Suppose that
an offspring z is generated by recombining two solutions x and y. If partition
crossover is employed, then we can write:

f(z) =
∑

i∈Sx

fi(x) +
∑

i∈Sy

fi(y) (3)

where |Sx|+ |Sy| = n. The subsets Sx and Sy contain the indexes of the decision
variables inherited respectively from parents x and y. The decomposition of the
cost function is derived from two properties of partition crossover operators [12]:
(i) the recombination is “respectful”, i.e., the offspring inherits all features that
are common to both parents; (ii) the recombination “transmits alleles”, i.e., the
offspring is composed only of features found in the parents. As a result of the
properties of PX, the evaluation of the offspring is more correlated with the
evaluation of the parents than in traditional recombination operators. Besides,
if the parents are local optima with respect to a local search operator, then the
offspring are guaranteed to be piecewise locally optimal under this local search
operator. It was observed in different applications [13–16] that offspring are also
very often true local optima when PX is employed.

The first step of PX is to remove all the features common to both parents.
In the TSP, the features of a solution represented by x are the edges between
two consecutive cities in x. Define the union graph Gu = Gx ∪ Gy, where the
graphs Gx and Gy represent the parent solutions. The graph G′

u is obtained by
removing the common edges from Gu.

Definition 1. A candidate component is made up of one or more connected
subgraphs of G′

u.

Definition 2. A recombining component is a candidate component such
that: (1) it contains z vertices, where 2x vertices are portals that connect to
other recombining components by common edges, and the remaining z − 2x ver-
tices only connect to vertices inside the recombining component; (2) exactly x
vertices that are portals serve as “entry” points, and x vertices that are portals
serve as “exit” points to other recombining components; (3) the two parent solu-
tions must enter and exit the recombining component at exactly the same entry
and exit vertices.

Inheriting one of the recombining components from one or another parent
does not influence the evaluation of other recombining components. In other

Efficient Recombination in the LKH Traveling Salesman Heuristic 99

words, the recombining components are subsets of features with independent
evaluation. If p recombining components are found, there are 2p different ways
of combining the components to create an offspring. PX selects the best partial
solution (from one or another parent) for each recombining component. Thus,
the best of 2p reachable offspring is found by PX.

Definition 3. A partition crossover is a recombination operator that: (1)
finds recombining components in the graph obtained by removing the common
edges from the union graph Gu; (2) evaluates the cost of the partial solutions
(for each parent) inside each recombining component; (3) generates the offspring
by selecting the best partial solutions (from one or another parent) inside the
recombining parents.

GPX2 is a PX developed for the symmetric TSP. According to the definition
of PXs, IPT can also be classified as a PX operator (see next section). IPT and
GPX2 differ in the way the recombining components are found.

3.1 IPT

IPT [10] works directly on the sequence representation of the tours. IPT searches
for subchains in parents x and y with: (i) the same initial and final cities; (ii)
composed of the same cities, but in different order. According to the PX termi-
nology, the subset of cities in a subchain composes a recombining component.
Each subchain can be independently evaluated. By selecting the best subchains,
the reachable offspring with the best cost is found. The three main steps of IPT,
written according to the definition of recombining components, are:

– Removal of cities connected only to common edges: if a city is con-
nected to the same neighbors in x and y, then it can be removed from the
tours, resulting in reduced sequences.

– Finding recombining components in the reduced sequences: suppose
Nr is the size of the reduced sequences. Let vs(v,x) be a vertex located
s − 1 positions from vertex v in x. Start with s = 4 (that is the mini-
mum size of permutations that are different). For each vertex v ∈ x, verify if
vs(v,x) = vs(v,y), i.e., the subchains have the same initial and final cities.
Subchains in both directions of y must be tested. If the subchains in x and y
are composed of the same cities, then the subset of indices in the subchains
define a recombining component. Repeat, increasing s by 1, while s ≤ Nr/2.

– Creating the offspring: for creating the offspring, select the best subchains
in each recombining component and copy the cities connected only to common
edges from one of the parents.

An example of IPT is presented in Fig. 2. In this example, IPT first finds a
recombining component with 4 cities. The cost of subchain sx1 is smaller than the
cost of sy1 . Thus, the offspring inherits sx1 . Then, it finds another recombining
component with 5 cities. The cost of subchain sy2 is smaller than the cost of sx2 .
Thus, the offspring inherits sy2 . The implementation of IPT in LKH-2 is very
efficient. Despite of the fact that the worst case complexity is O(n2), the average
time is linear in n.

100 R. Tinós et al.

Fig. 2. Examples of recombination by IPT and GPX2. Only the paths between cities
A and K are shown (suppose that, for IPT, Nr > 20). (a) Union graph composed
of parents x (blue solid line) and y (red dashed line). (b) When IPT is applied, two
subchains are identified for each parent. (c) When GPX2 is applied, candidate (con-
nected) components are found after removing the common edges from the union graph.
In this example, two candidate components are recombining components. (d) Offspring
generated by IPT or GPX2. When compared to the parents, the offspring has better
cost. (Color figure online)

3.2 GPX2

GPX1 [3] and GPX2 [14] work in the graph representation of the tours (Fig. 3).
In GPX1, all candidate components linked to other parts of the graph G′

u by
exactly two common edges are recombining components. Edges connecting a
candidate component to other parts of the graph are entries for the tours in this
candidate component. Thus, GPX1 finds only recombining components with two
entries. The rest of the graph also composes a recombining component. Finally,
the offspring is created by selecting, from one or another parent, the paths with
the best cost inside each recombining component.

GPX2 presents 3 enhancements that allows to find much more recombining
components than GPX1. Increasing linearly the number of recombining com-
ponents, p, an exponentially larger number of reachable offspring are exploited.
The enhancements are:

– Exploring vertices of degree-4 as possible points for recombination:
GPX1 explores only common edges as possible connection points between

Efficient Recombination in the LKH Traveling Salesman Heuristic 101

recombining components. In GPX2, a “ghost node” is created for every
degree-4 vertex in Gu. The original and ghost nodes are linked by a com-
mon edge with weight 0. Thus, by removing the common edges in the new
union graph, some vertices of degree-4 in Gu become potential points for
recombination. The number of recombining component is further increased
by exploring both directions for tour y and by using an efficient data structure
(Extended Edge Table) for storing the direct and reverse tours for parent y;

– Exploring candidate components with more than two entries: All
candidate components with 2 entries are recombining components. However,
not all candidate components with more than 2 entries are recombining com-
ponents. In order to test the candidate components, simplified graphs are built
for the path of each parent inside the candidate component. If the simplified
graphs for both parents are equal, then exchanging the paths still results in
a Hamiltonian cycle for the offspring. Another test is executed for the case
where a recombining component is nested inside a candidate component. If,
after removing the already identified recombining components, the number of
entries of the candidate component becomes 2, then the candidate component
is a recombining component;

– Fusing candidate components: Two candidate components that are not
individual recombining components can be fused in order to create a recom-
bining component. Two types of fusion are applied in GPX2. In fusion type
1, the fusion occurs between two candidate components that are neighbors.
Then, the new candidate component is tested in order to verify if it is a
recombining component or not. Cycles of fusion type 1 are repeated nf times,
obtaining each time larger candidate components. In fusion type 2, nested and
intercalated candidate components are fused. Then, it is verified if the result-
ing component has 2 entries after removing the already identified recombining
components. The procedure is repeated nr times.

The time complexity for GPX2 is O(n) [14]. Examples of GPX2 are presented
in Figs. 2 and 3. In Fig. 3, IPT finds 3 recombining components, while GPX2 finds
4 recombining components. As a consequence, IPT finds the best of 23 reachable
offspring, while GPX2 finds the best of 24 reachable offspring. The tour found
by GPX2 in this example is shorter than the tour found by IPT.

4 Results

In the experiments, LKH with IPT (LKH+IPT) is compared to LKH with GPX2
(LKH+GPX2). The version of LKH used is 2.0.81. Here, LKH runs with the
default parameters, except for the number of runs (10 or 50), number of trials
(10 or 1000), and population size (equal to the number of runs). It is important to
observe that, in LKH, the best results found in different runs are not independent

1 In LKH version 2.0.8, tours may be recombined by GPX2 instead of IPT. The code
for LKH version 2.0.8, that allows to reproduce the results presented in this paper,
can be downloaded at http://www.akira.ruc.dk/∼keld/research/LKH/.

http://www.akira.ruc.dk/~keld/research/LKH/

102 R. Tinós et al.

Fig. 3. Examples of recombination by IPT and GPX2. (a) Union graph composed of
parents x (blue solid line) and y (red dashed line). (b) GPX2 identifies 4 recombining
components. Components 1 and 4 have 4 entries each. (c) IPT identifies 3 of the
recombining components found by GPX2: 2, 3, and union of 1 and 4. (c) The offspring
generated by IPT has cost 20. (d) The offspring generated by GPX2 has cost 18. (Color
figure online)

(see Fig. 1). When GPX2 is used in LKH, nf = 3 and nr = 1000 (parameters
used in fusion).

Experiments with 11 instances of four classes of the symmetric TSP are
presented. The 2 instances of Class 1 are artificial instances used in the 8th
DIMACS Implementation Challenge [8]. In E31k0, the locations of 31,623 cities
are uniformly generated in a square of 1,000,000 by 1,000,000 units. In C10k0,
the locations of 10,000 cities consist of clustered points in the same square. LKH
currently holds the records for these instances [7]. The records for the remaining
problems are reported in [1]. The 3 instances in Class 2 (pia3056, dke3097, and
xqe3891) are from the VLSI TSP Collection. The 5 instances in Class 3 (tz6117,
ym7663, ar9152, usa13509, usa115475) are formed using (Euclidean) distance
between cities of different countries. The size n in the instances of classes 2 and
3 is given in the name of the instances. Finally, monalisa100K is an instance of
the Art TSP Collection with n = 100, 000 vertices.

Due to the limitation of space, we only show the results for the experiments
with 1000 trials and 50 runs (Table 2). Table 2 shows the percentage gap to the
cost of the best solutions found in the literature [1,7]; when the cost of the
best solution found by an algorithm is equal to the best result reported in the
literature, the number of runs needed for finding the best result is shown in
parenthesis. Smaller results are better for the percentage gap, number of runs,
and average running time. A summary of the comparison of the best cost found
by the algorithms in all experiments is presented in Table 1.

Efficient Recombination in the LKH Traveling Salesman Heuristic 103

We also tested two versions of LKH where both operators are used. In the
“First IPT and then GPX2” version, GPX2 is applied after IPT. In the “First
GPX2 and then IPT” version, IPT is applied after GPX2. For strategy “First
IPT and then GPX2”, IPT is applied first to recombine the parents. If there is no
improvement, GPX2 is then applied to recombine the parents. Otherwise, i.e.,
IPT generated an improvement, then GPX2 is applied to recombine the first
parent with the offspring generated by IPT. The opposite occurs for strategy
“First GPX2 and then IPT”, i.e., GPX2 is applied first. If an operator A is
applied first and does not improve the best solution, but operator B does, this
means that operator B found recombination opportunities missed by operator
A. The results for those versions for the experiments with 1000 trials are shown
in Table 3. Some observations can be made about the results.

In the experiments with versions “First IPT and then GPX2” and “First IPT
and then GPX2”, GPX2 (applied after IPT) was able to find many recombina-
tion opportunities that improved the best solution in all experiments, except
for instance ar9152 when the number of trials and runs is 10. For example, in
the experiment with “First IPT and then GPX2” version applied to instance
usa13509 when the number of trials and runs is 1000, GPX2 improved 713 times
the best results (Table 3). IPT improved the best result 2358 times in this case.
As IPT was applied first, it is clear that GPX2 found some recombination oppor-
tunities missed by IPT in this case. However, IPT (applied after GPX2) was not
able to find recombination opportunities that improved the best solution, with
exceptions for 2 instances in the experiments with 10 trials and 50 runs, and for
3 instances in the experiments with 1000 trials and 50 runs. The cases where
IPT (applied after GPX2) was able to find recombination opportunities that
improved the best solution can be explained by two main factors: the limit nr

used in fusion type 2 and the fact that there are different ways of finding the
recombining components.

In general, GPX2 found more recombination opportunities that resulted in
improvements of the best solution than IPT (see, for example, the number inside
the parenthesis in Table 3). More efficient recombination generally results in
better performance. When the number of trials and runs is 10, LKH+IPT found
better solutions in experiments with 2 instances, while LKH+GPX2 found better
solutions in experiments with 9 instances (Table 1). When the number of runs
increased (and the number of trials was kept to 10), even better results were
obtained by LKH+GPX2: it found better results for 10 out of 11 instances.
Increasing the number of runs (from 10 to 50) resulted in more recombinations
(Fig. 1); as a consequence, GPX2 found still more recombinations that resulted
in improvements for the best solution.

LKH+GPX2 also resulted in better performance for the experiment with
1000 trials and 50 runs: LKH+GPX2 presented better performance in 8 out
of 11 instances. However, LKH+IPT found better performance 3 times; for
instance pia3056, LKH+IPT was able to find the literature best solution, while
LKH+GPX2 was not. Thus, finding more recombination opportunities does not
guarantee that LKH will perform better. A better solution obtained by recombi-
nation in a trial influences the solutions generated in the subsequent trials and

104 R. Tinós et al.

Table 1. Comparison between LKH+GPX2 and LKH+IPT (regarding the cost of
the best solutions found by the algorithms). For each instance and experiment, the
algorithm with better performance is indicated.

Problem Experiment

10 trials, 10 runs 10 trials, 50 runs 1000 trials, 50 runs

pia3056 LKH+GPX2 LKH+GPX2 LKH+IPT

dke3097 LKH+GPX2 LKH+IPT LKH+GPX2

xqe3891 LKH+GPX2 LKH+GPX2 LKH+IPT

tz6117 LKH+GPX2 LKH+GPX2 LKH+GPX2

ym7663 LKH+GPX2 LKH+GPX2 LKH+GPX2

ar9152 LKH+IPT LKH+GPX2 LKH+GPX2

C10k0 LKH+IPT LKH+GPX2 LKH+IPT

usa13509 LKH+GPX2 LKH+GPX2 LKH+GPX2

E31k0 LKH+GPX2 LKH+GPX2 LKH+GPX2

monalisa100K LKH+GPX2 LKH+GPX2 LKH+GPX2

usa115475 LKH+GPX2 LKH+GPX2 LKH+GPX2

Table 2. Best cost gap (to the cost of the best results found in the literature) and
average running time (in seconds) for LKH+GPX2 and LKH+IPT. The number of
trials is 1000 and the number of runs is 50. The best results are in bold.

Problem Best cost gap (%) Average running time (s)

LKH+IPT LKH+GPX2 LKH+IPT LKH+GPX2

pia3056 0 (run 5) 0.0360 56.01 63.41

dke3097 0 (run 2) 0 (run 1) 61.67 75.83

xqe3891 0 (run 2) 0 (run 3) 80.40 104.65

tz6117 0 (run 29) 0 (run 6) 188.36 237.77

ym7663 0 (run 22) 0 (run 4) 169.47 194.24

ar9152 0.0140 0.0130 723.72 849.78

C10k0 0 (run 16) 0 (run 36) 389.63 406.23

usa13509 0 (run 34) 0 (run 13) 331.73 384.12

E31k0 0.0100 0.0096 1767.79 1713.40

monalisa100K 0.0220 0.0110 19901.08 19061.51

usa115475 0.0360 0.0190 13664.19 13237.47

runs. Recall that, in multi-trial LKH, the current best solution is employed to
generate the soft restarts and the set of candidate edges. Thus, an initial solution
that is not so good can be used by LK in order to generate a promising local
optimum. For instances with 10,000 cities or more, LKH+IPT obtained better
results for only one instance (C10k0). This is a clustered instance; in clustered

Efficient Recombination in the LKH Traveling Salesman Heuristic 105

instances, most of the recombining components have two entries when two local
optima are recombined. Recall that one of the most important properties of
GPX2, when compared to IPT, is that it is able to find recombining components
with more than two entries. If there are not many recombining components with
more than two entries, e.g., in clustered instances, GPX2 and IPT generally have
similar performance.

Despite the better results for the cost of the solutions, LKH+GPX2 gener-
ally resulted in higher mean running times (Tables 2 shows the results for the
experiments with 1000 trials). For the experiments with 1000 trials, LKH+IPT
presented smaller mean time in 8 out of 11 instances (Table 2). LKH+GPX2
presented smaller mean time in the 3 largest instances: E31k0, monalisa100K,
and usa115475.

Table 3. Number of times that both crossovers improved the best solution or only
the second crossover improved the best solution. The number of trials is 1000 and
the number of runs is 50. The results in parenthesis indicate the total number of
improvements generated by the first crossover.

Problem “First IPT, then GPX2” “First GPX2, then IPT”

GPX2 (total for IPT) IPT (total for GPX2)

pia3056 21 (271) 0 (328)

dke3097 44 (342) 0 (383)

xqe3891 68 (361) 0 (417)

tz6117 153 (1256) 0 (1330)

ym7663 221 (1175) 0 (1321)

ar9152 65 (2094) 2 (2003)

C10k0 69 (2277) 0 (2381)

usa13509 713 (2358) 0 (2710)

E31k0 3003 (4036) 0 (5934)

monalisa100K 10997 (3374) 1 (12520)

usa115475 8206 (9981) 12 (13631)

5 Conclusions

Previous versions of multi-trial LKH use only IPT to recombine solutions gener-
ated in different trials and runs. Here, we investigated the use of GPX2 in LKH.
The experimental results indicated that GPX2 finds some recombination oppor-
tunities that are missed by IPT. This impacts the quality of solutions generated
by recombination. However, finding better offspring by recombination does not
necessarily guarantee better performance for the iterative local search; solutions
generated by recombination impacts the soft restarts of multi-trial LKH.

In the experiments with 10 trials and 10 runs, LKH+GPX2 obtained better
results for 9 instances, while LKH+IPT obtained better results for 2 instances.

106 R. Tinós et al.

When the number of runs increased to 50 (and the number of trials was kept
to 10), LKH+GPX2 obtained even better results: LKH+GPX2 obtained better
results for 10 out of 11 instances. Finally, in the experiments with 50 runs and
1000 trials, LKH+GPX2 obtained better results for 8 instances, while LKH+IPT
obtained better performance for 3 instances. Despite the better results for the
cost of the solutions, LKH+IPT generally resulted in smaller mean running
time. For the experiments with 50 runs and 1000 trials, LKH+GPX2 resulted
in smaller mean time only for the three largest instances.

As a consequence of this work, solutions may be now recombined by GPX2
instead of IPT in LKH version 2.0.8 [7]. GPX2 can be easily adapted to asym-
metric TSP. However, when used with LKH, no modifications are needed; the
asymmetric instance is transformed into a symmetric instance twice the size.
Optimizing the running time of LKH+GPX2 is a possible future work. There is
room for improvement: for example, data structures that explore the implemen-
tation of LKH can be proposed. Another future work can be the investigation
of LKH+GPX2 in different routing problems. LKH-3 [6] is a recent extension
of LKH-2 that can be used in constrained TSP and other vehicle routing prob-
lems, e.g., multiple traveling repairman problem and vehicle routing problem
with pickups and deliveries.

References

1. Cook, W.: TSP test data (2009). http://www.math.uwaterloo.ca/tsp/data/index.
html

2. Cook, W.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of
Computation. Princeton University Press, Princeton (2011)

3. Hains, D., Whitley, D., Howe, A.: Revisiting the big valley search space structure
in the TSP. J. Oper. Res. Soc. 62(2), 305–312 (2011)

4. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman
heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

5. Helsgaun, K.: General k-opt submoves for the Lin-Kernighan TSP heuristic. Math.
Program. Comput. 1(2–3), 119–163 (2009)

6. Helsgaun, K.: An extension of the Lin-Kernighan-Helsgaun TSP solver for con-
strained traveling salesman and vehicle routing problems. Roskilde University,
Technical report (2017)

7. Helsgaun, K.: LKH (2018). http://www.akira.ruc.dk/∼keld/research/LKH/
8. Johnson, D., McGeoch, L., Glover, F., Rego, C.: 8th DIMACS implementa-

tion challenge: the traveling salesman problem (2013). http://dimacs.rutgers.edu/
Challenges/TSP/

9. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling sales-
man problem. Oper. Res. 21(2), 498–516 (1973)

10. Möbius, A., Freisleben, B., Merz, P., Schreiber, M.: Combinatorial optimization by
iterative partial transcription. Phys. Rev. E 59(4), 4667–4674 (1999)

11. Ochoa, G., Veerapen, N., Whitley, D., Burke, E.K.: The multi-funnel structure
of TSP fitness landscapes: a visual exploration. In: Bonnevay, S., Legrand, P.,
Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2015. LNCS, vol. 9554, pp.
1–13. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31471-6 1

http://www.math.uwaterloo.ca/tsp/data/index.html
http://www.math.uwaterloo.ca/tsp/data/index.html
http://www.akira.ruc.dk/~keld/research/LKH/
http://dimacs.rutgers.edu/Challenges/TSP/
http://dimacs.rutgers.edu/Challenges/TSP/
https://doi.org/10.1007/978-3-319-31471-6_1

Efficient Recombination in the LKH Traveling Salesman Heuristic 107

12. Radcliffe, N., Surry, P.: Fitness variance of formae and performance predictions.
In: Whitley, D., Vose, M. (eds.) Foundations of Genetic Algorithms, vol. 3, pp.
51–72. Morgan Kaufmann, Burlington (1995)

13. Tinós, R., Whitley, D., Chicano, F.: Partition crossover for pseudo-Boolean opti-
mization. In: Proceedings of FOGA XIII, pp. 137–149 (2015)

14. Tinós, R., Whitley, D., Ochoa, G.: A new generalized partition crossover for the
traveling salesman problem: tunneling between local optima. Submitted to Evolu-
tionary Computation (2018)

15. Tinós, R., Zhao, L., Chicano, F., Whitley, D.: NK hybrid genetic algorithm for
clustering. IEEE Trans. Evol. Comput., 13 p. (2018). https://doi.org/10.1109/
TEVC.2018.2828643

16. Veerapen, N., Ochoa, G., Tinós, R., Whitley, D.: Tunnelling crossover networks for
the asymmetric TSP. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa,
G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 994–1003. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45823-6 93

17. Whitley, D., Hains, D., Howe, A.: Tunneling between optima: partition crossover
for the TSP. In: Proceedings of GECCO 2009, pp. 915–922 (2009)

18. Whitley, D., Starkweather, T., Fuquay, D.: Scheduling problems and traveling sales-
men: the genetic edge recombination operator. In: Proceedings of ICGA 1989, pp.
133–140 (1989)

https://doi.org/10.1109/TEVC.2018.2828643
https://doi.org/10.1109/TEVC.2018.2828643
https://doi.org/10.1007/978-3-319-45823-6_93

	Efficient Recombination in the Lin-Kernighan-Helsgaun Traveling Salesman Heuristic
	1 Introduction
	2 LKH Algorithm
	3 Partition Crossover
	3.1 IPT
	3.2 GPX2

	4 Results
	5 Conclusions
	References

