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Abstract. The increasing demands on processing large-scale data from both
industry and academia have boosted the emergence of data-intensive clustering
computing platforms. Among them, Hadoop MapReduce has been widely
adopted in the evolutionary computation community to implement a variety of
parallel evolutionary algorithms, owing to its scalability and fault-tolerance.
However, the recently proposed in-memory Spark clustering computing
framework is more suitable for iterative computing than disk-based MapReduce
and often boosts the speedup by several orders of magnitude. In this paper we
will parallelize three mostly cited versions of particle swarm optimizers on
Spark, in order to solve computationally expensive problems. First we will
utilize the simple but powerful Amdahl’s law to analyze the master-slave model,
that is, we do quantitative analysis based on Amdahl’s law to answer the
question on which kinds of optimization problems the master-slave model could
work well. Then we will design a publicly available Spark-based software
framework which parallelizes three different particle swarm optimizers in a
unified way. This new framework can not only simplify the development
workflow of Spark-based parallel evolutionary algorithms, but also benefit from
both functional programming and object-oriented programming. Numerical
experiments on computationally expensive benchmark functions show that a
super-linear speedup could be obtained via the master-slave model. All the
source code are put at the complementary GitHub project for free access.
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1 Introduction

The increasing demands on processing large-scale data from both industry and aca-
demia have boosted the emergence of new data-intensive clustering computing plat-
forms. Three of the most successful platforms are the disk-based MapReduce
distributed computing paradigm [1–3], the general-purpose GPU heterogeneous com-
puting environment, and the more recently in-memory Spark clustering computing
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framework [4]. They have been successfully used in a variety of fields (e.g., database
[8], machine learning [9], and business intelligence [10]). It is expected by many
researchers from the evolutionary computation (EC) community (e.g., [1, 14, 15]) that
parallelizing evolutionary algorithms (EAs) on these big data-driven clustering com-
puting platforms could be beneficial to solve computationally expensive problems.

However, designing easy-to-use, scalable, portable, efficient parallel evolutionary
algorithms (PEAs) is a non-trivial task. This is mainly due to the fact that we not only
need knowledge of hardware architectures and software platforms, but also need to
carefully make trade-offs among different performance metrics. For instance, given a
fixed number of function evaluations, if a relatively large population size is chosen on
each generation for more powerful parallelization, the slower convergence speed may
be obtained. On the contrary, if a relatively small population size is chosen for faster
convergence, more execution time may be spent. To alleviate such problems, a large
number of PEAs based on these big data-driven computing platforms have been pro-
posed (see [14, 15] for comprehensive surveys).

Among them, both Hadoop MapReduce (e.g., [25, 26]) and GPUs (e.g., [6, 7, 14])
have been widely adopted in the EC field to implement a variety of PEAs. To the best
of our knowledge, however, there is few work attempting to use Spark, the state-of-the-
art in-memory clustering computing platform, to accelerate PEAs. It has been recently
found in [4, 9] that Spark is more suitable for iterative computing than MapReduce and
often boost the speedup by more than one order of magnitude. Considering significant
advantages of Spark over MapReduce, in this paper we will parallelize three highly
cited versions of particle swarm optimizer (i.e., PSO [21], CLPSO [11], and ALCPSO
[18]) based on Spark, in order to solve computationally expensive problems. More
specifically, the main contributions of this paper are two-fold:

1. Inspired by [1, 12], we will utilize the simple but powerful Amdahl’s law to
theoretically analyze the master-slave model for PEAs, that is, we do quantitative
analysis based on the Amdahl’s law, in order to answer the question on which kinds
of problems the master-slave model could work well (see Sect. 3.2 for more
details).

2. We will design a Spark-based software framework parallelizing three highly cited
PSOs. This new framework can not only simplify the development workflow of
Spark-based PEAs, but also benefit from both functional programming and object-
oriented programming (via Scala [22]). The framework is put at the complementary
GitHub project1 for free access. Numerical experiments on computationally
expensive test functions show that a super-linear speedup could be obtained via the
master-slave model.

The rest of the paper is organized as follows. Section 2 gives a brief review of the
state-of-the-art works of PEAs. Section 3 describes Spark, the Amdahl’s law for the
master-salve model, and three Spark-based PSOs. Section 4 conducts numerical
experiments. Section 5 gives conclusions and promising research directions.

1 https://github.com/QiqiDuan257/parallel-pso-spark.
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2 Review

In this section, we will review some state-of-the-art works of PEAs, owing to the limit
of space. For more comprehensive surveys, please refer to [14, 15, 23].

The most representative work on MapReduce-based PEAs may be the work
recently published by Ferrucci et al. [1]. This paper answered a critical research
problem regarding when the MapReduce-based PEAs could execute faster than their
sequential versions. In [1], a disadvantage of MapReduce-based PEAs (i.e., the over-
head caused by communications with the distributed data storage system) was
identified.

Wachowiak et al. [6] parallelized a PSO variant in a heterogeneous clustering
computing environment, where many-core GPUs are used to run data-parallel opera-
tions (e.g., the matrix-matrix multiplication operation) and multi-core CPUs are used to
execute other computationally complex tasks (e.g., complicated nested loops). To
obtain a higher speedup, they used float-point precision rather than double-point pre-
cision in experiments, which may be not suited for real-world applications where high
numerical errors are not allowed. Further, the performance of their algorithm depends
heavily on the execution profiling to these test functions.

In the cloud computing environment, Zhan et al. [5] proposed a double-layered
distributed differential evolution algorithm called Cloudde. The first layer is responsible
for operating multiple independent populations with different parameter settings, while
the second layer is in charge of computationally intensive function evaluations dis-
tributed on multiple virtual machines. The traditional MPI system was applied to
realize Cloudde. Although Cloudde showed good performance on some benchmark
functions, its scalability and fault-tolerance ability have not yet been tested and thus
constitute an open question.

3 Spark-Based Parallel PSOs

This section first compares Spark with other parallel computing technologies. Then
Amdahl’s law is utilized to quantitatively analyze the master-slave model. Finally, a
Spark-based software framework is developed to parallelize three PSOs.

3.1 Comparing Spark with Other Parallel Computing Technologies

Currently, spark is the most active open-source big data project [24]. When compared
with MapReduce and MPI, two main advantages of Spark are presented below:

1. It provides a simple yet powerful abstract data structure called resilient distributed
dataset (RDD) [20], which can utilize distributed RAM efficiently. Conceptually,
RDD can be regarded as an immutable distributed shared memory with implicit data
parallelism and fault tolerance. Spark hides the details of hardware architectures and
communications among nodes, to some extent. With the help of RDD, developers
can focus mainly on the algorithmic logic itself.
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2. It supports over 100 high-level operators and the mix of functional programming
and object-oriented programming, which simplify the development workflow. For
instance, once the function evaluations are finished on different workers, the output
can be reduced to the fitness value by invoking the mapValues method and then
returned to the driver by invoking the collect method.

For iterative computation, Spark often reduces the execution time by several orders
of magnitude when compared with MapReduce [4, 9].

3.2 Amdahl’s Law for the Master-Slave Model

Owing to its simplicity, the master-slave model has been applied to design a variety of
PEAs (e.g. Cloudde [5], PEPNet [13]) over two decades. Empirically, it can perform
well when the fitness evaluation time dominates the total execution time of the algo-
rithm. However, there is a lack of rigorous quantitative analysis on the theoretical upper
bound of the speedup obtained by PEAs based on the master-slave model, except the
early work conducted by Dubreuil et al. [12].

In [12], a complicated mathematical model was proposed to analyze the master-
slave model, which takes some realistic factors (e.g., communication cost, network
latency) into account. However, accurately estimating these parameter values involved
is a non-trivial task in practice. Ferrucci et al. [1] hold that the ideal speedup is equal to
the cluster size. Strictly speaking, the cluster size is a looser upper bound, when
compared with Amdahl’s law. Although they mentioned Amdahl’s law in their paper,
they did not attempt to use it to further analyze PEAs. Their works [1, 12] motivated us
to utilize more general Amdahl’s law to theoretically and empirically explain when and
why the master-slave model could work well, especially under the Spark clustering
computing framework. Inspired by Amdahl’s law, we will show in Sect. 4 when a
super-linear speedup could be obtained by Spark-based PEAs on computationally
intensive continuous benchmark functions.

As stated in Amdahl’s law [19, 27], the speedup obtained via parallelization can be
calculated according to Eq. 1, as presented below.

speedup ¼ 1

s þ 1� sð Þ
p

ð1Þ

For Eq. 1, the numerator is the unit time of the sequential program and the
denominator is the time spent by the parallel program, where (s) is the serial fraction
and (p) is the parallel level. Figure 1 gives a clear description of Amdahl’s law, where
different serial fractions are considered ranging from 50% to 0.005%.

Under the Spark clustering computing environment, p directly corresponds to the
total number of logical cores used for function evaluations (rather than the total number
of slaves). Therefore, we only need to estimate s for the sequential algorithm, which
can be easily done in practice via adding timing. In [27], “it therefore seems reasonable
that there might be a rather even distribution of serial fraction from 0 to 1 over the
entire space of computer applications”. We will validate it in the EC field via analyzing
several commonly used test functions (see Sect. 4.2 for details).
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3.3 Spark-Based PEAs Framework for the Master-Slave Model

In this sub-section, we propose a Spark-based PEAs framework, which can in a unified
way parallelize three highly cited PSO versions (i.e., PSO [21], CLPSO [11], and
ALCPSO [18]) using the master-slave model. For details of these three PSOs, please
refer to their corresponding original papers. For their concrete implementation details,
please refer to the Scala source code on the complementary GitHub project.

This Spark-based PEAs framework is built on a unified interface with three basic
configuration classes and an algorithm base class as parameters. Although sequential
algorithms are also supported in this framework, we focus mainly on the parallelization
of population-based evolutionary algorithms. Three configuration classes are Con-
FuncParams, TestParams, and AlgoParams, respectively. The ConFuncParams class
includes the function name, function dimension, upper and lower search bounds during
optimization, and initial upper and lower search bounds at the beginning stage of the
search. The TestParams class includes the total number of independent tests, and
random seeds to initialize the population. The AlgoParams class includes the popu-
lation size, and the maximum of function evaluations, which can be inherited to cus-
tomize the parameter settings. All algorithm sub-classes inherited from the algorithm
base class have the same method called optimize, which takes as input the function, and
as output the final optimization results. Taking as inputs the function rather than
reference or value is one of very useful and flexible characteristics for functional
programming. The unified interface takes as input two functions, one of which is the
method of the optimization algorithm (i.e., optimize) and another of which is the
function optimized at hand. Such functional programing-based design increases the
scalability and flexibility of the proposed PEAs framework.

To parallelize function evaluations, a simple but resilient data structure built in
Spark (i.e., RDD) is used. First we use the parallelize method of the built-in
SparkContext object to transfer all individuals from the master to slave nodes. For
simplicity, the parallel level is equal to the population size. Then function evaluations
tasks can be started by invoking the built-in mapValues method. Finally, all the fitness
values are returned from different slave nodes to the master by invoking the built-in

Fig. 1. Amdahl’s law [19]. (Different lines correspond to different serial fractions. Note that
parallelization may be useful only for highly parallelizable programs [27].)
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collect method. For more details, please refer to the public Scala source code. Overall,
fulfilling the master-slave model for PEAs is simple and straight under the Spark
clustering computing framework.

4 Numerical Experiments

In this section, we first describe a private Spark clustering computing platform used
here. Then five of most commonly used continuous benchmark functions are empiri-
cally analyzed according the Amdahl’s law. Finally, comparisons between sequential
and parallel PSOs are conducted.

4.1 The Spark Clustering Computing Platform

All numerical experiments were conducted on a private Spark clustering computing
platform with a total of 160 CPU cores, which consists of a master node (i.e., the
driver) and three slave nodes (i.e., the workers). Except that the master node has four
480-GB SSD hard disks working in RAID 1+0 for high-availability, all the nodes have
the same hardware and software configurations, as presented in Table 1. The recom-
mendations from the Spark official website [16] are followed to configure the hardware.
We also give a practical guidance on the online appendix2 to illustrate how to rapidly
and efficiently deploy a private Spark clustering computing platform. Both Matlab and
Scala are also installed on these machines to run sequential algorithms. For Scala, the
third-party numerical processing library (i.e., breeze [17]) is used.

4.2 Analyses of Continuous Benchmark Functions

To compare the performance of different algorithms, five well-known continuous
benchmark functions (i.e., Sphere, Rosenbrock, Rastrigin, Griewank, and Schwefel12)
[18] are used. Because they have different landscape characteristics (e.g., unimodal vs.
multimodal, and no-separable vs. separable) and different time complexities (e.g., linear
vs. quadratic), we can compare their run time on different scenarios.

Table 1. Hardware and software configurations for each node.

Hardware Setting Software Version

Machine Dell® PowerEdge R730 Server OS CentOS 7.3.1611
Architecture 64-bit Spark 2.2.0
CPU 40 Intel® Xeon E5-2640 v4 @ 2.40 GHz Scala 2.11.11
RAM 64 GB Sbt 1.0.1
Hard disk A 960 GB SSD hard disk without RAID Matlab R2016b (glnxa64)
Network 1Gbps LAN Java 1.8.0_131

2 https://github.com/QiqiDuan257/parallel-pso-spark.

Spark Clustering Computing Platform Based Parallel PSOs 429

https://github.com/QiqiDuan257/parallel-pso-spark


To test the performance of PEAs on computationally expensive problems, a
common practice is to use high-dimensional benchmark functions. However, we found
that some high-dimensional benchmark functions may be not computationally
expensive, assuming that for computationally expensive functions the function eval-
uations time should dominate the total execution time. According to the proportion of
the function evaluations (i.e., FEs) time, these five high-dimensional benchmark
functions can be classified empirically into two categories, as presented below:

1. Benchmark functions with a low proportion of the FE time include Sphere,
Rosenbrock, Rastrigin, and Griewank. All of them have a linear time complexity
with the dimension. As we can see from Fig. 2, for PSO, CLPSO, and ALCPSO,
almost all of the proportions of FE are less than 50% even when the dimension
reaches 1e7. According to Amdahl’s law, we can predict that the master-slave
model could only obtain a limited speedup on these functions, which is less than 2
even in the ideal case. In the following parts, we will further validate our afore-
mentioned prediction in Spark.

2. Benchmark functions with a high proportion of the FE time on high dimension
include Schwefel12 with a quadratic time complexity. As shown in Fig. 3, when the
dimension exceeds 1e3, the proportion of the FE time reaches more than 95%.
Based on Amdahl’s law, it can be theoretically estimated that the master-slave
model could show a significant speedup on this function. In the following parts, we
will further prove that even a super-linear speedup can be achieved on this function
in Spark.

Fig. 2. Four benchmark functions with a low proportion of the function evaluations time
varying with function dimensions for PSO, CLPSO, and ALCPSO.
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When using a PEA based on the master-slave model, we may first calculate the
proportion of the FE time on its sequential version, and then estimate the theoretical
speedup through Amdahl’s law. In most cases this speedup may be over-estimated
owing to a variety of overheads in practice (e.g., communication cost, synchronization
barriers, and network latency). However, it is worth noting that we still achieve a
super-linear speedup in some cases, often caused by strong scaling [27].

4.3 Comparisons on Computationally Expensive Functions

We first compare three Spark-based PSOs with their corresponding sequential versions
on the computationally intensive Schwefel12 benchmark function varying function
dimensions from 1e1 to 1e5. To reduce statistical errors, all numerical experiments
were run independently 30 times (except for inefficient sequential versions), and the
average run time was recorded, as shown in Fig. 4. To make fair comparisons, for all
algorithms, the population size and the maximum of function evaluations are set to 100
and 500, respectively. For high-dimensional problems, a relatively large population
size (e.g., 100) is preferred to enhance exploration. Because the total run time of all the
sequential algorithms on high dimensions is unaccepted for the large number of FE, a
relatively small number of FE (i.e., 500) is used here. Other parameter settings of all
algorithms follow the suggestions given in their corresponding original papers. Con-
sidering the repeatability of the experiment, all data and source code are freely avail-
able on the complementary GitHub project.

As we can see from Fig. 4, all three Spark-based PSOs can obtain the significant
speedup on high dimensions, when compared with their corresponding Matlab-based
sequential versions. More specifically, on 1e3, 1e4, and 1e5 dimensions, Spark-based
PSO, CLPSO and ALCPSO achieve the (3x, 41x, 224x), (6x, 50x, 194x), and (5x, 44x,
184x) speedup, respectively. However, on 10 and 100 dimensions, since the com-
munications overheads between the master and all slaves cancel out the speedup
obtained via parallelization, even worse results are obtained.

To test the scalability of the proposed algorithms on the function with the 1e5
dimension, we linearly increased the maximum of FE from 1000 to 5000 with step
1000. To reduce statistical errors, all numerical experiments were run independently 30
times for all three Spark-based parallel PSOs (except for inefficient sequential

Fig. 3. A benchmark function with a high proportion of the function evaluations time.
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contenders), and the average run time was summarized, as presented in Fig. 5. It can be
observed from Fig. 5 that all three parallel PSOs can obtain the super-linear speedup
on this high-dimensional, computationally expensive function. On the contrary, the
time complexities of all three Matlab-based sequential versions linearly rise with the
number of FE. For parallel PSOs, some stability issues raise with the increasing number
of FE, which will be analyzed in Fig. 6.

To further analyze the stability (i.e., fault-tolerance ability) of the proposed parallel
algorithms, we plotted the boxplots of the execution time for all three Spark-based
PSOs in Fig. 6. We can see that there are some outliers, which take approximately up
to 3x times than typical runs. Although more time is spent, the program could

(a) (b)

Fig. 4. Comparisons of run time for Three Spark-based parallel PSOs versus sequential
counterparts on Schwefel12 varying with function dimensions. (Since some lines are condensed
into one single line in the left figure (a) owing to the large magnitude of the y-axis, we enlarge
them in the right figure (b) via logarithmizing the y-axis.)

(a) (b)

Fig. 5. Comparisons of speedup for Spark-based parallel PSOs versus Matlab-based sequential
counterparts on 100000-dimensional Schwefel12 varying with number of function evaluations.
(Note that some lines are condensed into one single line in the left figure (a) owing to the large
magnitude of the y-axis.)
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automatically be recovered from the struggling state which may be caused by the
underlying network instability. In fact, the good fault-tolerance ability of Spark has
been empirically proven in industry [4], which is one advantage over MPI in practice.

4.4 Comparisons on Functions with Linear Time Complexity

We conducted experiments on four high-dimensional yet computationally-cheap
benchmark functions. All experiments were run independently 30 times. For all four
functions, the dimension and maximum of FE are set to 1e5 and 500, respectively. For
all algorithms used here, the population size is set to 100.

Fig. 6. Boxplot of the execution time obtained on 30 independently runs.

Fig. 7. Comparisons of run time on four computationally-cheap benchmark functions.
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As we can see from Fig. 7, three Spark-based parallel PSOs do not obtain any
speedup on computationally-cheap benchmark functions, when compared with their
corresponding sequential counterparts. This is due to the fact that the communication
and synchronization costs among the master and all slaves heavily exceed the paral-
lelization benefit. The “one-size-fits-all” parallelization strategy may not exist.

5 Conclusions and Future Research Directions

In this paper we first analyzed the speedup of PEAs using the master-slave model.
According to Amdahl’s law, we pointed out when the master-slave model could work
well. Then we provided a Spark-based PEAs framework based on which three most
cited PSOs have been parallelized using the master-slave model. The experimental
results showed that a super-linear speedup could be obtained by the proposed parallel
PSOs at least on computationally expensive test functions. However, there are some
open questions which are our future research directions and are presented below:

1. The effectiveness and efficiency of the proposed PEAs need to be further tested on
more realistic optimization problems (e.g. geostatic correction [6]).

2. For data-intensive function evaluations tasks, how do Spark-based PEAs read data
from the distributed file storage system efficiently?
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