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Abstract. In recent years, decomposition-based multi-objective evolu-
tionary algorithms (MOEAs) have gained increasing popularity. How-
ever, these MOEAs depend on the consistency between the Pareto front
shape and the distribution of the reference weight vectors. In this paper,
we propose a decomposition-based MOEA, which uses the modified
Euclidean distance (d+) as a scalar aggregation function. The proposed
approach adopts a novel method for approximating the reference set,
based on an hypercube-based method, in order to adapt the reference
set for leading the evolutionary process. Our preliminary results indi-
cate that our proposed approach is able to obtain solutions of a similar
quality to those obtained by state-of-the-art MOEAs such as MOMBI-
II, NSGA-III, RVEA and MOEA/DD in several MOPs, and is able to
outperform them in problems with complicated Pareto fronts.

1 Introduction

Many real-world problems have several (often conflicting) objectives which need
to be optimized at the same time. They are known as Multi-objective Opti-
mization Problems (MOPs) and their solution gives rise to a set of solutions
that represent the best possible trade-offs among the objectives. These solutions
constitute the so-called Pareto optimal set and their image is called the Pareto
Optimal Front (POF). Over the years, Multi-Objective Evolutionary Algorithms
(MOEAs) have become an increasingly common approach for solving MOPs,
mainly because of their conceptual simplicity, ease of use and efficiency.

Decomposition-based MOEAs transform a MOP into a group of sub-
problems, in such a way that each sub-subproblem is defined by a reference
weight point. Then, all these sub-problems are simultaneously solved using a
single-objective optimizer [16]. Because of their effectiveness (e.g., with respect
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to Pareto-based MOEAs1) and efficiency,2 decomposition-based MOEAs have
become quite popular in recent years both in traditional MOPs and in many-
objective problems (i.e., MOPs having four or more objectives).

However, the main disadvantage of decomposition-based MOEAs is that the
diversity of its selection mechanism is led explicitly by the reference weight
vectors (normally the weight vectors are distributed in a unit simplex). This
makes them unable to properly solve MOPs with complicated Pareto fronts
(i.e., Pareto fronts with irregular shapes).

Decomposition-based MOEAs are appropriate for solving MOPs with regu-
lar Pareto front (i.e., those sharing the same shape of a unit simplex). There is
experimental evidence that indicates that decomposition-based MOEAs are not
able to generate good approximations to MOPs having disconnected, degener-
ated, badly-scaled or other irregular Pareto front shapes [2,5].

Here, we propose a decomposition-based MOEA, which adopts the modified
Euclidean distance (d+) as a scalar aggregation function. This approach is able
to switch between a PBI scalar aggregation function and the d+ distance in
order to lead the optimization process. In order to adopt the d+ distance, we
also incorporate an adaptive method for building the reference set. This method
is based on the creation of hypercubes, which uses an archive for preserving good
candidate solutions. We show that the resulting decomposition-based MOEA has
a competitive performance with respect to state-of-the-art MOEAs, and that is
able to properly deal with MOPs having complicated Pareto fronts.

The remainder of this paper is organized as follows. Section 2 provides some
basic concepts related to multi-objective optimization. Our decomposition-based
MOEA is described in Sect. 3. In Sect. 4, we present our methodology and a short
discussion of our preliminary results. Finally, our conclusions and some possible
paths for future research are provided in Sect. 5.

2 Basic Concepts

Formally a MOP in terms of minimization is defined as:

minimize f (x ) := [f1(x ), f2(x ), . . . , fm(x )]T (1)

subject to:
gi(x ) ≤ 0, i = 1, 2, . . . , p (2)

hj(x ) = 0, j = 1, 2, . . . , q (3)

where x = [x1, x2, . . . , xn] is the vector of decision variables, fi : R
n → R,

i = 1, . . . ,m are the objective functions and gi, hj : R
n → R, i = 0, . . . , p,

j = 1, . . . , q are the constraint functions of the problem.

1 It is well-known that Pareto-based MOEAs cannot properly solve many-objective
problems [12].

2 The running time of decomposition-based MOEAs is lower than that of indicator-
based MOEAs [1,9] and reference-based MOEAs [14].
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We also need to provide more details about the IGD+ indicator, which uses
the modified Euclidean distance that we adopt in our proposal. According to
[11], the IGD+ indicator can be described as follows:

IGD+(A,Z) =
1

|Z|

⎛
⎝

|Z|∑
j=1

d+j (z ,a)
p

⎞
⎠

1/p

(4)

where a ∈ A ⊂ R
m, z ∈ Z ⊂ R

m, A is the Pareto front set approximation and
Z is the reference set. d+(a , z ) is defined as:

d+(z ,a) =
√

(max{a1 − z1, 0})2, . . . , (max{am − zm, 0})2. (5)

Therefore, we can see that the set A represents a better approximation to the
real PF when we obtain a lower IGD+ value, if we consider the reference set
as PFTrue. IGD+ was shown to be weakly Pareto complaint, and this indicator
presents some advantages with respect to the original Inverted Generational
Distance (for more details about IGD and IGD+, see [4] and [11] respectively).

3 Our Proposed Approach

3.1 General Framework

Our approach adopts the same structure of the original MOEA/D [16], but we
include some improvements in order to solve MOPs with complicated Pareto
fronts. Our approach has the following features: (1) An archiving process for
preserving candidate solutions which will form the reference set; (2) a method
for adapting the reference set in order to sample uniformly the Pareto front;
and (3) a rule for updating the reference set. Algorithm1 shows the details of
our proposed approach. Our proposed MOEA decomposes the MOP into scalar
optimization subproblems, where each subproblem is solved simultaneously by an
evolutionary algorithm (same as the original MOEA/D). The population, at each
generation, is composed by the best solution found so far for each subproblem.
Each subproblem is solved by using information only from its neighborhood,
where each neighborhood is defined by the n candidate solutions which have
the nearest distance based on the scalar aggregation function. The reference
update process is launched when certain percentage of the evolutionary process
(defined by “UpdatePercent”) is reached. The reference update process starts to
store the non-dominated solutions in order to sample the shape of the Pareto
front. When the cardinality of the set |A| is equal to “ArchiveSize”, the reference
method is launched for selecting the best candidate solutions, which will form the
new reference set. Once this is done, the scalar aggregation function is updated
by choosing the modified Euclidean distance (d+) (see Eq. (4)), and the set A
is cleaned up. The number of allowable updates is controlled by the variable
“maxUpdates”.
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Algorithm 1. General Framework
Input: A MOP, a stopping criterion, N subproblems, a uniform spread of N reference

vectors: λ1 . . . λN , number of solutions in the neighborhood and a scalar aggregation

function (g).

Output: Approximation of the MOP

1: Create each neighborhood for every reference vector: B(i);

2: Generate an initial population randomly (xi, . . . , xN ) ∈ X ;

3: t ← 0;

4: A ← {};
5: while t < genmax do

6: for each B(i) ∈ B do

7: Apply evolutionary operators: Randomly select two parents from B(i) and

create an individual y;

8: Improvement: Apply a problem-specific repair/improvement heuristic on y

to produce y′;
9: for each j ∈ B(i) do

10: if g(F (y′), λj) < g(F (xj), λ
j) then

11: xj ← y′;
12: end if

13: end for

14: Update of Neighboring Solutions: For each index in B(i) ;

15: if t > UpdatePercent then

16: if |A| < ArchiveSize then

17: A ← nonDominated(A ∪ y′);
18: yref ← getNadirPoint(A);

19: end if

20: if |A| == ArchiveSize and Updates < maxUpdates then

21: λ1 . . . λN ← ComputeReferenceSet(A, yref , zsize);

22: g(.) ← d+;

23: A ← {};
24: Updates ← Updates + 1;

25: end if

26: end if

27: end for

28: t ← t + 1;

29: end while

30: Q ← non-Dominated (F (X));

31: return Q, X;

3.2 Archiving Process

As mentioned before, the archive stores non-dominated solutions, up to a maxi-
mum number of solutions defined by the “ArchiveSize” value. When the archive
reaches its maximum capacity, the approximation reference algorithm is exe-
cuted for selecting candidate solutions (these candidate solutions will form the
so-called candidate reference set). After that, the archive is cleaned and the
archiving process continues until reaching a maximum number of updates. The
archiving process is applied after a 60% of the total number of generations. It
is worth mentioning that the candidate reference set is not compatible with the
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weight relation rule3, which implies that it is not possible to use the Tchebycheff
scalar aggregation function for leading the search. However, the PBI function
works because it only requires directions (for more details see [16]).

3.3 Reference Set

In our approach, we aim to select the best candidate points whose directions are
promising (these candidate solutions will sample the Pareto front as uniformly
as possible). The main idea is to apply a density estimator. For this reason, we
propose to use an algorithm based on the hypercube contributions to select a
certain number of reference points from the archive. Algorithm2 provides the
pseudo-code of an approach that is invoked with a set of non-dominated can-
didate points (called A set) and the maximum number of reference points that
we aim to find. The algorithm is organized in two main parts. In the first loop,
we create a set of initial candidate solutions to form the so-called Q set. Thus,
the solutions from A that form part of Q will be removed from A. After that,
the greedy algorithm starts to find the best candidate solutions which will form
the reference set Z. In order to find the candidate reference points, the selec-
tion mechanism computes the hypercube contributions of the current reference
set Q. Once this is done, we remove the ith solution that minimizes the hyper-
cube value and we add a new candidate solution from A to Q. This process
is executed until the cardinality of A is equal to zero. In the line 21 of Algo-
rithm2, we apply the expand and translate operations. A hypercube is generated
by the union of all the maximum volumes covered by a reference point. The ith

maximum volume is described as “the maximum volume generated by a set of
candidate points” (these candidate points are obtained from the archive using a
reference point yref ). The hypercube is computed using Algorithm3. The main
idea of this algorithm is to add all the maximum volumes, which are defined
by the maximum point and the reference point (yref ). When a certain point
is considered to be the maximum point, the objective space is split between m
parts. The maximum point is removed from the set Q. This process is repeated
until Q is empty.

In the first part of Algorithm3, we validate if Q contains one element. If that
is the case, we compute the volume generated by yref and q ∈ Q. Otherwise,
we compute the union of all the maximum hypercubes. In order to apply this
procedure, we find the vector qmax that maximizes the hypercube. Once this
is done, we create m reference points which will form the so-called Y set. For
each reference point from Y, we reduce the set Q into a small subset in order
to form the set Qnew. Once this is done, we proceed to compute recursively the
hypercube value of the new set formed by the subset Qnew and the new reference
point ynew. It is worth noting that this value allows to measure the relationship
among each element of a non-dominated set.

3 The weights of the reference point problem should be
∑m

i=0 λi = 1.
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Algorithm 2. ComputeReferenceSet(A, zsize)
Input: A current non-dominated set A ⊂ R

m and maximum number of reference
points zsize.

Output: Reference point set Z ⊂ R
m with |Z| = zsize

1: yref ← FindMaxV alue(A) + ε;
2: Q ← {};
3: while |Q| < (zsize + 1) do
4: a ← pop(A);
5: Q ⋃{a} ;
6: end while
7: while A! = {} do
8: i ← 0;
9: maxHypercube ← HCB(Q, yref );

10: for each q ∈ Q do
11: ContHyperCube[i] ← maxHypercube − HCB(Q\{q}, yref );
12: i ← i + 1;
13: end for
14: imin ← argmin ContHyperCube;
15: Q\{qimin};
16: a ← pop(A);
17: Q ⋃{a};
18: end while
19: Z ← {};
20: for each q ∈ Q do
21: Z ⋃{q ∗ ε − l};
22: end for
23: return Z;

4 Experimental Results

We compare the performance of our approach with respect to that of four state-
of-the-art MOEAs: MOEA/DD [13], NSGA-III [5], RVEA [2], and MOMBI-II
[9]. These MOEAs had been found to be competitive in MOPs with a vari-
ety of Pareto front shapes. MOEA/DD [13] is an extension of MOEA/D which
includes the Pareto dominance relation to select candidate solutions and is able
to outperform the original MOEA/D, particularly in many-objective problems
having up to 15 objectives. NSGA-III [5] uses a distributed set of reference points
to manage the diversity of the candidate solutions, with the aim of improving
convergence. The Reference Vector Guided Evolutionary Algorithm (RVEA) [2]
provides very competitive results in MOPs with complicated Pareto fronts. Many
Objective Meta-heuristic Based on the R2 indicator (MOMBI) [8] adopts the use
of weight vectors and the R2 indicator, and both mechanisms lead the optimiza-
tion process. MOMBI is very competitive but it tends to lose diversity in high
dimensionality. This study includes an improved version of this approach, called
MOMBI-II [9].
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Algorithm 3. HCB(Q, yref )
Input: A current set Q ⊂ R

m and a reference point yref

Output: Hypercube value
1: if |Q| = 1 then
2: return vol(Q, yref );
3: end if
4: V olList ← {};
5: for each p ∈ Q′ do
6: V olList

⋃{vol(p, yref )};
7: end for
8: imax ← argmax V olList;
9: qmax ← Q[imax] ;

10: Y ← SplitReferencePoint (qmax, yref );
11: Q ← Q\{qmax};
12: hypercube ← 0;
13: for each ynew ∈ Y do
14: Qnew ← CoverPoints (Q,ynew);
15: hypercube ← hypercube + HCB(Qnew,ynew);
16: end for
17: return hypercube + max(V olList);

4.1 Methodology

For our comparative study, we decided to adopt the Hypervolume indicator, due
to this indicator is able to assess both convergence and maximum spread along
the Pareto front. The reference points used in our preliminary study are shown
in Table 1.

Table 1. Reference points used for the hypervolume indicator

Problem Reference point Problem Reference point

DTLZ1 (1, 1, 1) VNT1 (5, 6, 5)

DTLZ2-6 (2, 2, 2) VNT2 (5, −15, −11)

DTLZ7 (2, 2, 7) VNT3 (9, 18, 5)

MAF1-3 (2, 2, 2) WFG1 (3, 5, 7)

MAF4 (3, 5, 9) WFG2 (2, 4, 7)

MAF5 (9, 5, 3) WFG3 (2, 3, 7)

We aimed to study the performance of our proposed approach when solving
MOPs with complicated Pareto front shapes. For this reason, we selected 18
test problems with a variety of representative Pareto front shapes from some
well-known and recently proposed test suites: the DTLZ [7], the WFG [10], the
MAF [3] and the VNT test suites [15].
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4.2 Parameterization

In the MAF and DTLZ test suites, the total number of decision variables is given
by n = m + k − 1, where m is the number of objectives and k was set to 5 for
DTLZ1 and MAF1, and to 10 for DTLZ2-6, and MAF2-5. The number of decision
variables in the WFG test suite was set to 24, and the position-related parameter
was set to m−1. The distribution indexes for the Simulated Binary crossver and
the polynomial-based mutation operators [6] adopted by all algorithms, were
set to: ηc = 20 and ηm = 20, respectively. The crossover probability was set
to pc = 0.9 and the mutation probability was set to pm = 1/L, where L is
the number of decision variables. The total number of function evaluations was
set in such a way that it did not exceed 60,000. In MOEA/DD, MOMBI-II
and NSGA-III, the number of weight vectors was set to the same value as the
population size. The population size N is dependent on H. For this reason, for
all test problems, the population size was set to 120 for each MOEA. In RVEA,
the rate of change of the penalty function and the frequency to conduct the
reference vector adaptation were set to 2 and 0.1, respectively. Our approach
was tested using a PBI scalar aggregation function and the modified Euclidean
distance (d+). The maximum number of elements allowed in the archive was set
to 500 and the maximum number of reference updates was set to 5.

4.3 Discussion of Results

Table 2 shows the average hypervolume values of 30 independent executions of
each MOEA for each instance of the DTLZ, VNT, MAF and WFG test suites,
where the best results are shown in boldface and grey-colored cells contain the
second best results. The values in parentheses show the variance for each prob-
lem. We adopted the Wilcoxon rank sum test in order to compare the results
obtained by our proposed MOEA and its competitors at a significance level
of 0.05, where the symbol “+” indicates that the compared algorithm is sig-
nificantly outperformed by our approach. On the other hand, the symbol “−”
means that MOEA/DR is significantly outperformed by its competitor. Finally,
“≈” indicates that there is no statistically significant difference between the
results obtained by our approach and its competitor.

As can be seen in Table 2, our MOEA was able to outperform MOMBI-II,
RVEA, MOEA/DD, and NSGA-III in seven instances and in several other cases,
it obtained very similar results to those of the best performer. We can see that
our approach outperformed its competitors in MOPs with degenerate Pareto
fronts (DTLZ5-6 and VNT2-3). In this study, MOMBI-II is ranked as the second
best overall performer, because it was able to outperform its competitors in four
cases. It is worth mentioning that all the adopted MOEAs are very competitive
because the final set of solutions obtained by them has similar quality in terms
of the hypervolume indicator.

Figures 1, 2, 3 and 4 show a graphical representation of the final set of solu-
tions obtained by each MOEA. On the MOPs with inverted Simplex-like Pareto
fronts, our algorithm had a good performance (see Fig. 1). Figures 1a to e show
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Table 2. Performance comparison among several MOEAs using the average hypervol-
ume values obtained from 30 independent executions solving 18 benchmark problems
for 3 objectives.

MOMBI-II RVEA MOEA/DD NSGA-III MOEA/DR

DTLZ1 0.96622 ( 0.000001 ) + 0.66911 ( 0.000152 ) + 0.97379 ( 0.000000 ) ≈ 0.96256 ( 0.001064 ) + 0.97265 ( 0.000007 )
DTLZ2 7.36755 ( 0.000028 ) + 7.42224 ( 0.000000 ) ≈ 7.42234 ( 0.000000 ) ≈ 7.41893 ( 0.000000 ) + 7.42684 ( 0.000143 )
DTLZ3 7.38843 ( 0.000084 ) - 7.40582 ( 0.000084 ) - 7.4118 ( 0.000047 ) - 7.38048 ( 0.000258 ) - 7.26131 ( 0.000248 )
DTLZ4 7.3593 ( 0.036144 ) - 7.42226 ( 0.000000 ) - 7.42224 ( 0.000000 ) - 7.10506 ( 0.227356 ) ≈ 7.10433 ( 1.093691 )
DTLZ5 6.00978 ( 0.000000 ) + 5.9632 ( 0.000369 ) + 6.02456 ( 0.000062 ) + 5.84002 ( 0.05518 ) + 6.10349 ( 0.000002 )
DTLZ6 5.79608 ( 0.00523 ) + 5.13815 ( 0.016264 ) + 5.6037 ( 0.006442 ) + 5.49135 ( 0.023354 ) + 5.84857 ( 0.003765 )
DTLZ7 13.37473 ( 0.000091 ) - 13.0605 ( 1.283746 ) - 12.99409 ( 0.015542 ) ≈ 13.32733 ( 0.002554 ) - 12.37989 ( 0.181549 )
VNT1 61.44939 ( 0.000533 ) + 60.51323 ( 0.011862 ) + 60.55111 ( 0.021176 ) + 61.19214 ( 0.011932 ) + 61.88114 ( 0.512056 )
VNT2 7.79702 ( 0.000001 ) + 7.7712 ( 0.000368 ) + 7.80468 ( 0.000037 ) 7.77446 ( 0.000935 ) + 7.84291 ( 0.000554 )
VNT3 15.11767 ( 0.000262 ) + 15.03082 ( 0.000422 ) + 15.06016 ( 0.000114 ) + 15.12629 ( 0.000502 ) + 15.15149 ( 6.685422 )
MAF1 5.44926 ( 0.000019 ) - 5.37408 ( 0.000659 ) + 5.37139 ( 0.00009 ) + 5.4129 ( 0.000875 ) - 5.3986 ( 0.013358 )
MAF2 5.08952 ( 0.000056 ) 5.1583 ( 0.000058 ) ≈ 5.11373 ( 0.000003 ) + 5.09758 ( 0.000043 ) + 5.14115 ( 0.000105 )
MAF3 7.90637 ( 0.000043 ) - 7.91154 ( 0.004847 ) - 7.64261 ( 1.915744 ) + 7.89441 ( 0.00452 ) - 7.82731 ( 0.000558 )
MAF4 84.87316 ( 0.151259 ) - 83.53436 ( 29.511151 ) - 51.80943 ( 1120.296924 ) + 83.73257 ( 1.377427 ) - 75.81219 ( 4.084039 )
MAF5 95.97704 ( 52.294491 ) + 96.66782 ( 53.122845 ) + 96.95207 ( 0.017991 ) + 88.72762 ( 237.475764 ) + 98.26977 ( 44.804422 )
WFG1 50.38691 ( 7.353216 ) - 51.68413 ( 5.001739 ) - 41.77398 ( 7.334821 ) + 44.95726 ( 10.36034 ) ≈ 43.02462 ( 6.595565 )
WFG2 48.72516 ( 12.06217 ) - 51.14414 ( 0.045119 ) - 44.23925 ( 3.146579 ) + 48.14747 ( 12.622738 ) - 46.87356 ( 1.171321 )
WFG3 24.28138 ( 0.007298 ) - 22.12339 ( 0.086504 ) - 21.04349 ( 0.178677 ) - 23.54542 ( 0.037132 ) - 16.85662 ( 0.76122 )

that the solutions produced by all the MOEAs adopted have a good coverage
of the corresponding Pareto fronts. However, the solutions of MOMBI-II and
NSGA-III are not distributed very uniformly, while the solutions of RVEA and
MOEA/DD are distributed uniformly but their number is apparently less than
their population size. On MOPs with badly-scaled Pareto fronts, our approach
was able to obtain the best approximation (see Fig. 2). Figures 2a to e show that
the solutions produced by all the MOEAs adopted are distributed very uniformly.
On MOPs with degenerate Pareto fronts, it is clear that the winner in this cate-
gory is our algorithm since the solutions of NSGA-III, RVEA and MOEA/DD are
not distributed very uniformly, and they were not able to converge (see Fig. 3).
On MOPs with disconnected Pareto fronts, our approach did not perform better
than the other MOEAs. The reason is probably that the evolutionary operators
were not able to generate solutions in the whole objective space, which makes
the approximations produced by our approach to converge to a single region.
Figure 4 shows that RVEA was able to obtain the best approximation in DTLZ7
since its approximation is distributed uniformly along the Pareto front.
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Fig. 1. Graphical representation of the final set of solutions obtained by each MOEA
on MAF1 with 3 objectives
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Fig. 2. Graphical representation of the final set of solutions obtained by each MOEA
on MAF5 with 3 objectives
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Fig. 3. Graphical representation of the final set of solutions obtained by each MOEA
on DTLZ6 with 3 objectives
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Fig. 4. Graphical representation of the final set of solutions obtained by each MOEA
on DTLZ7 with 3 objectives

5 Conclusions and Future Work

We have proposed a decomposition-based MOEA for solving MOPs with differ-
ent Pareto front shapes (i.e. those having complicated Pareto front shapes). The
core idea of our proposed approach is to adopt the modified Euclidean distance
(d+) as a scalar aggregation function. Additionally, our proposal introduces a
novel method for approximating the reference set, based on an hypercube-based
method, in order to adapt the reference set to address the evolutionary process.
Our results show that our method for adapting the reference point set improves
the performance of the original MOEA/D. As can be observed, the reference set
is of utmost importance since our approach leads its search process using a set of
reference points. Our preliminary results indicate that our approach is very com-
petitive with respect to MOMBI-II, RVEA, MOEA/DD and NSGA-III, being
able to outperform them in seven benchmark problems. Based on such results,
we claim that our proposed approach is a competitive alternative to deal with
MOPs having complicated Pareto front shapes. As part of our future work, we
are interested in studying the sensitivity of our proposed approach to its param-
eters. We also intend to improve its performance in those cases in which it was
not the best performer.
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