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Mateusz Uliński, Adam Żychowski, Micha�l Okulewicz(B), Mateusz Zaborski,
and Hubert Kordulewski

Faculty of Mathematics and Information Science, Warsaw University of Technology,
Warsaw, Poland

M.Okulewicz@mini.pw.edu.pl

Abstract. This paper presents a generalized view on the family of
swarm optimization algorithms. Paper focuses on a few distinct vari-
ants of the Particle Swarm Optimization and also incorporates one type
of Differential Evolution algorithm as a particle’s behavior. Each particle
type is treated as an agent enclosed in a framework imposed by a basic
PSO. Those agents vary on the velocity update procedure and utilized
neighborhood. This way, a hybrid swarm optimization algorithm, con-
sisting of a heterogeneous set of particles, is formed. That set of various
optimization agents is governed by an adaptation scheme, which is based
on the roulette selection used in evolutionary approaches. The proposed
Generalized Self-Adapting Particle Swarm Optimization algorithm per-
formance is assessed a well-established BBOB benchmark set and proves
to be better than any of the algorithms its incorporating.
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1 Introduction

Since its introduction [9] and subsequent modifications [4,18] Particle Swarm
Optimization (PSO) algorithm has attracted many researchers by its simplic-
ity of implementation and easiness of parallelization [13]. PSO has currently a
several standard approaches [4], multiple parameter settings considered to be
optimal [7] and successful specialized approaches [3]. PSO have also been tried
with various topologies [8,17], and unification [16] and adaptation schemes.

This paper brings various population based approaches together, and puts
them in a generalized swarm-based optimization framework (GPSO). The moti-
vation for such an approach comes from the social sciences, where diversity is
seen as a source of synergy [10] and our adaptive approach (GAPSO) seeks an
emergence of such a behavior within a heterogeneous swarm.

The remainder of this paper is arranged as follows. Section 2 introduces PSO
and its adaptive modifications, together with discussing Differential Evolution
(DE) algorithm and its hybridization with PSO. In Sect. 3 general overview of
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the system’s construction is provided. Section 4 describes adaptation scheme and
future system implementation details. Section 5 is devoted to a presentation of
the experimental setup, in particular, the benchmark sets and parametrization
of the methods used in the experiments. Experimental results are presented in
Sect. 6. The last section concludes the paper.

2 Particle Swarm Optimization: Modification and
Hybridization Approaches

This section reviews optimization algorithms used as basic building blocks within
our generalized approach: PSO and DE. Initial paragraphs introduce the basic
forms of the PSO and DE algorithms, while the following summarize the research
on hybridizing those approaches and creating the adaptive swarm optimizers.
Please bear in mind, that in all methods we shall be considering the optimization
problem to be a minimization problem.

Particle Swarm Optimization. PSO is an iterative global optimization meta-
heuristic method utilizing the ideas of swarm intelligence [9,18]. The underlying
idea of the PSO algorithm consists in maintaining the swarm of particles mov-
ing in the search space. For each particle the set of neighboring particles which
communicate their positions and function values to this particle is defined. Fur-
thermore, each particle maintains its current position x and velocity v, as well
as remembers its historically best (in terms of solution quality) visited location.
In each iteration t, ith particle updates its position and velocity, according to
formulas 1 and 2.

Position update. The position is updated according to the following equation:

xi
t+1 = xi

t + vi
t+1. (1)

Velocity update. In a basic implementation of PSO (as defined in [4,18]) velocity
vi
t of particle i is updated according to the following rule:

vi
t+1 = ω · vi

t + c1 · (pi
best − xi

t) + c2 · (neighborsibest − xi
t) (2)

where ω is an inertia coefficient, c1 is a local attraction factor (cognitive coeffi-
cient), pi

best represents the best position (in terms of optimization) found so
far by particle i, c2 is a neighborhood attraction factor (social coefficient),
neighborsibest represents the best position (in terms of optimization) found so
far by the particles belonging to the neighborhood of the ith particle (usually
referred to as gbest or lbest).

Differential Evolution. DE is an iterative global optimization algorithm intro-
duced in [19]. DE’s population is moving in the search space of the objective
function by testing the new locations for each of the specimen created by cross-
ing over: (a) a selected xj solution, (b) solution y(i)

t created by summing up a
scaled difference vector between two random specimen (x(1), x(2)) with a third
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solution (x(i)). One of the most successful DE configurations is DE/rand/1/bin,
where in each iteration t, each specimen xi

t in the population is selected and
mutated by a difference vector between random specimens x(i1)

t and x(i2)
t scaled

by F ∈ R:
y(i)
t = x(i)

t + F × (x(i2)
t − x(i1)

t ) (3)

Subsequently, y
(3)
t is crossed-over with xbest

t by binomial recombination:

ui
t = Binp(xbest

t ,y(i)
t ) (4)

Finally, the new location ui
t replaces original xi

t iff it provides a better solution
in terms of the objective function f :

ui
t =

{
ui
t if f(ui

t) < f(xi
t)

xi
t otherwise (5)

Adaptive PSO Approaches. While a basic version of the PSO algorithm has
many promising features (i.e. good quality of results, easiness of implementation
and parallelization, known parameters values ensuring theoretical convergence)
it still needs to have its parameters tuned in order to balance its exploration vs.
exploitation behavior [24]. In order to overcome those limitations a two–stage
algorithm has been proposed [24]. That algorithm switches from an exploration
stage into an exploitation stage, after the first one seems to be “burned out”
and stops bringing much improvement into the quality of the proposed solution.
Another adaptive approach that has been proposed for the PSO [23], identifies 4
phases of the algorithm: exploration, exploitation, convergence, and jumping out.
The algorithm applies fuzzy logic in order to assign algorithm into one of those
4 stages and adapts its inertia (ω), cognitive (c1) and social (c2) coefficients
accordingly. Finally, a heterogeneous self-adapting PSO has been proposed [14],
but its pool of available behaviors has been limited only to the swarm-based
approaches.

PSO and DE Hybridization. While DE usually outperforms PSO on the
general benchmark tests, there are some quality functions for which the PSO is
a better choice, making it worthwhile to create a hybrid approach [1,20]. Ini-
tial approaches on hybridizing PSO and DE consisted of utilizing DE mutation
vector as an alternative for modifying random particles coordinates, instead of
applying a standard PSO velocity update [5,21]. Another approach [22], con-
sists of maintaining both algorithms in parallel and introducing an information
sharing scheme between them with additional random search procedure. PSO
and DE can also be combined in a sequential way [6,11]. In such an approach
first the standard PSO velocity update is performed and subsequently various
types of DE trials are performed on particle’s pbest location in order to improve
it further.

3 Generalized Particle Swarm Optimization

This article follows the approach set for a social simulation experiment [15], by
generalizing PSO velocity update formula (Eq. (2)) into a following form (with
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I being and indicator function and Nk(ith) being a kth neighborhood of ith
particle):

vi
t+1 = ω · vi

t + c1 · (pi
best − xi

t)

+
|N |∑
k=1

|particles|∑
j=1,j �=i

I(jth ∈ Nk(ith))c′
j,k · (pj

best − xi
t)

+
N∑
k=1

|particles|∑
j=1,j �=i

I(jth ∈ Nk(ith))c′′
j,k · (xj

t − xi
t)

(6)

In that way the social component extends into incorporating data from multiple
neighbors and neighborhoods. The other part of generalization is not imposing
an identical neighborhood structure over all particles, but letting each parti-
cle decide on the form of neighborhood. That way we take advantage of the
agent-like behavior of swarm algorithms, were each individual is making its own
decisions on the basis of simple rules and knowledge exchange (the other par-
ticles do not need to know behavior of a given particle, only its positions and
sampled function values).

Proposed approach would be unfeasible if one would need to set up all c′
j,k’s

and c′′
j,k’s to individual values. Therefore we would rely on existing particles

templates, where either all those coefficients would take the same value or most
of them would be equal to zero. Our approach views c′

j,k and c′′
j,k as functions.

In most cases second index of c coefficients would be omitted, due to the fact
that only a single neighborhood is considered.

In order to test the proposed generalized approach we have implemented five
distinctive types of particles, coming from the following algorithms: Standard
PSO (SPSO), Fully-Informed PSO (FIPSO), Charged PSO (CPSO), Unified
PSO (UPSO), Differential Evolution (DE). Remainder of this section presents
how each approach fits within the proposed GPSO framework.

Standard Particle Swarm Optimization. SPSO particle acts according to
the rules of PSO described in Sect. 2 with a local neighborhood topology (with
size ∈ Z+ being its parameter). Therefore, the I function defining the neighbor-
hood takes a following form:

ISPSO(jth ∈ N(ith)) =

⎧⎪⎨
⎪⎩

1 |i − j| ≤ size

1 |i − j| ≥ |particles| − size

0 ∼
(7)

Particle changes its direction using lbest location. Therefore, all values of c′j’s
and c′′j’s are equal to 0 except the one corresponding to the particle with the
best pbest value in the neighborhood.

c′
j =

{
0 f(pj

best) > f(lbest)
X ∼ U(o, c2) f(pj

best) = f(lbest)
(8)
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Fully-Informed Particle Swarm Optimization. FIPSO particle [12] steers
its velocity to the location designated by all of its neighbors. All the best solu-
tions found so far by the individual particles are considered with weights W
corresponding to the relative quality of those solutions. FIPSO particles uti-
lize a complete neighborhood. Therefore, the indicator function IFIPSO is equal
to 1. The FIPSO particle is parametrized with a single value of an attraction
coefficient c. Individual c′

j ’s (and c1) follow the uniform distribution:

c′
j ∼ U

[
0,

c · W(f(pj
best))

|particles|

]
(9)

Charged Particle Swarm Optimization. CPSO particle has been created
for the dynamic optimization problems [3] and is inspired by the model of an
atom. CPSO recognizes two particle types: neutral and charged. The neutral par-
ticles behave like SPSO particles. Charged particles, have a special component
added to the velocity update equation. An ith charged particle has an additional
parameter q controlling its repulse from other charged particles:

c′′
j,2 = − q2

||xi
t − xj

t ||2
(10)

Charged particles repulse each other, so an individual sub-swarms are formed
(as imposed by the neighborhood), which might explore areas corresponding to
different local optima.

Unified Particle Swarm Optimization. UPSO particle is a fusion of the
local SPSO and the global SPSO [16]. The velocity update formula includes
both lbest and gbest solutions. In order to express that unification of global and
local variants of SPSO the I indicator function takes the following form:

IUPSO(jth ∈ Nk(ith)) =

⎧⎪⎨
⎪⎩

ISPSO k = 1
1 pj

best is gbest ∧ k = 2
0 ∼

(11)

Thus, there are two co-existing topologies of the neighborhood, which justifies
the choice of the general formula for the GPSO (cf. Eq. (6)).

Differential Evolution within the GPSO Framework. While Differential
Evolution (DE) [19] is not considered to be a swarm intelligence algorithm its
behavior might be also fitted within the proposed framework GPSO. The reason
for that is the fact that within the DE (unlike other evolutionary approaches)
we might track a single individual as it evolves, instead of being replaced by its
offspring.

DE/best/1/bin configuration and DE/rand/1/bin configurations are some-
what similar to the PSO with a gbest and lbest approaches, respectfully. The most
important differences between DE and PSO behavior are the fact, that:
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– DE individual always moves from the best found position (pbest in PSO),
while PSO particle maintains current position, regardless of its quality,

– DE individual draws the ’velocity’ (i.e. difference vector) from the global
distribution based on other individuals location, while PSO particle maintains
its own velocity.

Therefore, DE individual i movement might be expressed in the following way:

x(i,t+1)
test = Bin(ωv + (pbest − x(i,t)

test ),gbest) (12)

where v follows a probability distribution based on random individuals’ locations
prand1
best and prand2

best ) and Bin is a binomial cross-over operator.

4 Adaptation Scheme

Different particle types perform differently on various functions. Moreover, differ-
ent phases exists during optimization process. Some particle types perform better
at the beginning, some perform better at the end of optimization algorithm’s exe-
cution. Therefore, optimal swarm composition within GPSO framework should
be designated in real-time. Swarm composition is modified by switching the
behaviors of particles. Principle of work for adaptation scheme forming the
Generalized Self-Adapting Particle Swarm Optimization (GAPSO) is presented
below.

The main idea is to promote particle types that are performing better than
others. Adaptation is based on the quality of success. The adaption utilizes
roulette selection approach with probabilities proportional to success measure.

Let’s assume that we have P particle types. Each particle changes its behavior
every Na iterations. Behavior is chosen according to a list of probabilities (each
corresponding to one of P particles’ types). Each particle has the same vector of
probabilities. At the beginning all probabilities are set to 1

P . Each Na iterations
probabilities vector is changing (adapting) according to the following scheme.

The average value of successes per each particle’s type from the last Na

observations is determined. Value of success zst in iteration t for particle s is
presented in the following equation:

zst = max(0,
f(ps

best) − f(xs
t )

f(ps
best)

) (13)

Let swarmp be a set of p type particles from whole swarm. The average success
ẑp of given swarmp is obtained from Sp ∗ Na values, where Sp is the size of
swarmp. See the following equation:

ẑpt =
1

Sp ∗ Na
∗

T−Na∑
t=T

∑
s∈swarmp

zst (14)

This procedure produces P success values. Let us label them as z1, z2, . . . , zP . Let
Z be sum of given success values: Z =

∑P
p zp. So required vector of probabilities
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is [ z1Z , z2
Z , . . . , zP

Z ]. Better average success induces grater probability of assigning
given behavior to each particle. On top of the described approach an additional
special rule is applied: at least one particle for each behavior has to exists. This
rule prevents behaviors for being excluded from further consideration, as they
might be needed in a latter phase of optimization process.

5 Experiment Setup

The GAPSO algorithm has been implemented in Java1. The project consists
of individual particles behaviors, an adaptation scheme, a restart mechanism,
hill-climbing local optimization procedure for “polishing” the achieved results,
and a port to the test benchmark functions. Tests have been performed on 24
noiseless 5D and 20D test functions from BBOB 2017 benchmark2.

Table 1. Individual algorithms parameters.

Algorithm Parameters settings Reference

SPSO ω : 0.9; c1, c2 : 1.2 [4]

CPSO ω : 0.9; c1, c2 : 1.2 [3]

FIPSO ω : 0.9; c : 4.5 [12]

UPSO ω : 0.9; c1, c2 : 1.2, u : 0.5 [16]

DE crossProb : 0.5; varF : 1.4 [19]

Table 2. Framework parameters.

Parameter Value

Swarm size (S) 30

Number of neighbors (k) 5

Generations (G) 106

Number of PSO types (P ) 5

Generations to adapt (Na) 10

Generations to restart particle (Nrp) 15

Generations to restart swarm (Nrs) 200

Parameters. General GAPSO framework setup has been tuned on a small num-
ber of initial experiments, while the parameters of the individual optimization
agents have been chosen according to the literature. The parameter values are
presented in Tables 1 and 2.

Restarts. In order to fully utilize the algorithms’ potential within each of the
tested methods a particle is restarted if for Nrp iterations at least one of these 2
conditions persisted: (a) particle is its best neighbor, (b) particle has low velocity
(sum of squares of velocities in each direction is smaller than 1). Additionally,
the whole swarm is restarted (each particle that belongs to it is restarted), if
value of best found solution has not changed since Nrs ·D, where D is dimension
of function being optimized.

Local Optimization. Finally (both in GAPSO and individual approaches),
before swarm restart and after the last iteration of the population based algo-
rithms a local hill-climbing algorithm is used for 1000D evaluations, initialized
with the best found solution.

1 https://bitbucket.org/pl-edu-pw-mini-optimization/corpoalgorithm.
2 http://coco.gforge.inria.fr/.

https://bitbucket.org/pl-edu-pw-mini-optimization/corpoalgorithm
http://coco.gforge.inria.fr/
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6 Results

Results of the experiments are presented on the figures generated within BBOB
2017 test framework, showing ECDF plots of optimization targets achieved on
a log scale of objective function evaluations.

Left subplot in Fig. 1 shows efficiency of 5 individual algorithms used in
GAPSO tested independently for 5D functions. It can be observed that DE is
coinciding to optimum faster than each of the PSO approaches. Advantage of
the DE is even more evident for 20D functions (right subplot in Fig. 1).

Fig. 1. Comparison of individual algorithms performance for all functions in 5 and 20
dimensions.

Fig. 2. Comparison of the best (DE) and the worst (FIPSO) individual algorithms
with GAPSO for functions with high conditioning and unimodal in 5D (top) and multi-
modal functions with adequate global structure in 20D (right).

Subsequent charts (see Fig. 2) correspond to experiments carried out on
selected algorithms with specified functions. In particular cases, differences in
the effectiveness of algorithms can be observed. Left subplot in Fig. 2 shows
advantage of DE algorithm in optimizing 5D unimodal functions with high con-
ditioning. While another case, shown in right sublot in Fig. 2, presents FIPSO
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Fig. 3. Average number of particles types in swarm compared with ECDF plot of
individual algorithms performance for 20D Rosenbrock function.

Fig. 4. Average number of particles types in swarm compared with ECDF plot of indi-
vidual algorithms performance for 20D Schaffer function.

as an algorithm performing best for 20D multi-modal functions with adequate
global structure. It can be observed that the proposed GAPSO algorithm remains
competitive with both “clean” approaches.

Figures 3 and 4 present comparison of average number of particle’s behaviors
and efficiency of homogeneous swarms for two selected functions. For Rosen-
brock’s function (Fig. 3) DE swarm is significantly better than other kind of
swarms and GAPSO algorithm adaptation method leads to greater number of
DE particles in swarm. In the case when plain DE performance is worse than
all the PSO-based approaches (see Fig. 4) GAPSO swarm contains significantly
lower number of DE particles. It indicates that the proposed adaptation method
controls the swarm composition according to the particular optimization func-
tion. It also can be observed that the performance of various PSO approaches
is similar, and there is no noticeable difference between number of particles of
particular kind.

Last experiment presents the overall effectiveness of the GAPSO performance
on the whole set of 5D and 20D benchmark functions. Figure 5 presents the
GAPSO results against the best (DE) and worst (FIPSO) performing algorithms.
Results indicate that GAPSO has come out as a more effective approach, even
though its adaptation has been performed during the optimization, and not
beforehand.
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Fig. 5. GAPSO performance compared with the best (DE) and the worst (FIPSO)
individual algorithms for all functions in 5D and 20D.

Table 3. Aggregated results for 15 independent runs on 24 noiseless test functions
from BBOB 2017 benchmark. Number of functions for which given algorithm yielded
best results (in term of average number of function evaluations) is presented in best
columns. Numbers in brackets show how many of results are statistically significantly
better according to the rank-sum test when compared to all other algorithms of the
table with p = 0.05. Target reached is the number of trials that reached the final target:
fopt + 108.

5D 20D

Algorithm Best Target reached Best Target reached

CPSO 2 (0) 217 1 (0) 85

SPSO 1 (0) 221 2 (0) 91

FIPSO 2 (0) 211 4 (0) 83

UPSO 3 (0) 214 3 (0) 87

DE 6 (0) 173 4 (1) 117

GAPSO 10 (0) 172 8 (7) 120

Due to space limitations, Table 3 provides only aggregated results3. GAPSO
obtained best results (in terms of number of function evaluation) for 10 (5D)
and 8 (20D) functions (out of 24), with 7 of those results being statistically
significantly better than individual approaches. None of the other algorithms
were statistically significantly better than GAPSO for any function. These results
show that proposed algorithm not only adapted to reach results as good as the
best individual particles’ types, but also has the ability to outperform them.

Furthermore, GAPSO stability other a different initial behavior probabilities
vectors was examined. 7 types of vectors were considered: uniform (each behav-
ior with the same probability), randomly generated vector and 5 vectors (one
per each behavior) with probability equals 1 to one behavior and 0 for all other.
Standard deviations obtained through all approaches on benchmark functions

3 Detailed outcomes are available at http://pages.mini.pw.edu.pl/∼zychowskia/gapso.

http://pages.mini.pw.edu.pl/~zychowskia/gapso
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were not significantly different than standard deviations for each approach sep-
arately. For all above options just after about 100 generations (10 adaptation
procedures) numbers of particles with particular behaviors were nearly the same.
It shows, that the proposed method’s ability to gaining equilibrium - optimal
behaviors (from the algorithm’s perspective) is independent of the initial state
of behavior probabilities vector.

7 Conclusions and Future Work

The proposed generalized GPSO view on the Particle Swarm Optimization made
it possible to introduce various types of predefined behaviors and neighbor-
hood topologies within a single optimization algorithm. Including an adapta-
tion scheme in GAPSO approach allowed to improve the overall performance
over both DE individuals and PSO particles types on the test set of 24 qual-
ity functions. While the proposed approach remains inferior to algorithms such
as CMA-ES [2], the adaptation scheme correctly promoted behaviors (particles)
performing well on a given type of a function. It remains to be seen if other types
of basic behaviors could be successfully brought into the GAPSO framework and
compete with the state-of-the-art optimization algorithms.

Our future research activities shall concentrate on testing more types of par-
ticles and detailed analysis about their cooperation by observing interactions
between different particles behaviors in each generation. It would be especially
interesting to evaluate a performance of some quasi-Newton method, brought
into the framework of GPSO, as it could utilize the already gathered samples
of the quality (fitness) function. Furthermore, other adaptation and evaluation
schemes can be considered and compared with proposed method.
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