
Extending Program Synthesis Grammars
for Grammar-Guided Genetic

Programming

Stefan Forstenlechner(B), David Fagan, Miguel Nicolau, and Michael O’Neill

Natural Computing Research and Applications Group, School of Business,
University College Dublin, Dublin, Ireland
stefan.forstenlechner@ucdconnect.ie,

{david.fagan,miguel.nicolau,m.oneill}@ucd.ie

Abstract. Program synthesis is a problem domain that due to its
importance is tackled by many different fields, one being Genetic
Programming. Two variants, Grammar-Guided Genetic Programming
(G3P) and PushGP, have been applied to a vast general program syn-
thesis benchmark suite and solved a variety of problems although with
varying success rates. While G3P achieved higher success rates on some
problems, PushGP was able to find solutions to more problem instances.
Reason why G3P fails at some problems might be missing functionality
in the grammars or knowledge that has to discovered during the runs. In
this paper the current shortcomings of G3P are analysed and the papers
contributions include an example of extending grammars for program
synthesis, a fairer comparison between PushGP and G3P with a more
similar function set as well as new results on problems that have not
been solved with G3P and one that has not been solved with PushGP.

Keywords: Genetic Programming · Grammar · Program synthesis

1 Introduction

Genetic Programming has shown potential to solve a range of general program
synthesis problems. In contrast to other problem domains like regression where
an approximation of the solution might be acceptable, a partially correct solution
is usually of no use in program synthesis. But for GP to be successful in program
synthesis, the ability to find a correct solution should be high, as practitioners
should not have to be required to run GP multiple times while researchers only
do multiple runs for statistical tests. At the same time, it is essential that GP
can solve a wide range of program synthesis problems rather than special cases.

To this end, a range of difficult or unsolved problems is identified in the
general program synthesis benchmark suite [8], that has been used recently to
test GP on program synthesis, especially with G3P [3] and PushGP [17]. While
G3P was able to achieve a higher percentage of successful solutions found in

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 197–208, 2018.
https://doi.org/10.1007/978-3-319-99253-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_16&domain=pdf


198 S. Forstenlechner et al.

cases it found solutions, PushGP was able to solve more problems at least once
in general.

The focus of this paper lies in identifying differences between the function set
of G3P and PushGP, extending the grammars according to those differences as
well as the identified difficult problems from the benchmark suite and extending
the grammars accordingly. At the same time, the grammars shall stay as general
as possible to be able to use them outside of the context of benchmark problems
and should not be trimmed to “cheat” on any particular problem within the
benchmark suite. As the benchmark suite that has been used so far, proposes to
have an explicit char data type which is currently missing in G3P [3] the possi-
bility of adding it is further investigated. Therefore, the functionality available
in the grammars is not allowed to be extended further than the function set
available to PushGP.

The rest of the paper is structured in the following way. Section 2 summaries
related work on program synthesis. Section 3 describes the benchmark suite used
in the GP community for program synthesis and what problems have been diffi-
cult for GP and particularly for G3P. Afterwards, Sect. 4 describes in what ways
grammars can be extended to overcome the previous shortcomings. The experi-
mental setup used to tackle the benchmark suite is described in Sect. 5 and the
results are compared to previous approaches in Sect. 6. Finally, conclusion and
future work are discussed in Sect. 7.

2 Related Work

Program synthesis problems have been tackled even before GP was used and
many different approaches exist [11]. Nevertheless, GP systems have proven to
be very flexible and successful at doing this. Therefore this paper will focus on
GP systems.

2.1 Grammar-Guided Genetic Programming

Grammar-Guided Genetic Programming [12] is a GP variant that uses grammars
to define the search space. This makes it easy to use and flexible as a grammar
can be defined outside of the GP system instead of restricting GP to a certain
function set. Additionally, it is quite powerful, because any program that can be
generated with the grammar can be found by GP. Grammars also provide the
possibility of adding bias, if necessary. The most famous variants are CFG-GP
by Whigham [19] and grammatical evolution [14].

Forstenlechner et al. [3] proposed a grammar design for GP to tackle gen-
eral program synthesis problems, as mainly bespoken grammars have been used
before to solve program synthesis [13], which can not be reused to solve other
problems. The idea of the grammar design is to have multiple smaller gram-
mars and every grammar contains only the functionality for a single data type.
Additionally, one general grammar exists which contains the structure of the pro-
gram. The benefit of this design is that it is not limited to a single programming



Extending Program Synthesis Grammars for G3P 199

language and depending on the problem at hand a subset of the data types
required to solve the problem can be chosen. Therefore, the design is capable of
solving general purpose program synthesis problems, while the search space can
be kept small by not including unnecessary data types. Functions that require
multiple data types of which some are not available, will be removed from the
grammar automatically when combining the grammars for a chosen problem.

3 General Program Synthesis Benchmark Suite Remarks

A general program synthesis benchmark suite was introduced by Helmuth and
Spector [8]. It provides a variety of problems from introductory computer science
courses. It consists of a total of 29 problems with a description, training and test
set, fitness function and general parameter settings, mainly for PushGP [17],
for every problem. Additionally, every problem requires specific data types to
be available to be solved. A more detailed description is available in form of a
technical report [18], which also contains information about how to generate the
training and test data as well as the instructions available for PushGP.

The two GP systems that have been tested on the benchmark suite are
a G3P by Forstenlechner [3] and PushGP [17]. PushGP is a GP system that
evolves programs in the language Push, which was solely designed for evolution-
ary algorithms. Push uses stacks to store data instead of using variables. It has
a stack for every data type as well as for the code that is executed, which makes
it possible to manipulate the code during runtime.

An additional comparison of systems outside of the GP community, namely
Flash Fill [5] and MagicHaskeller [9], was done on the benchmark suite in [15].
The comparison showed that GP systems are more flexible and more successful
on this benchmark suite, although it should be mentioned that these systems
have been created with other use cases in mind like Flash Fill is used in Microsoft
Excel for string manipulation tasks.

In the initial introduction of the grammar design for program synthesis prob-
lems [3], the functionality was kept to the basics of Python without including
more than was available in PushGP. For example, adding the built-in sum func-
tion from Python would make solving the problem Vector Average fairly easy.

Table 1 shows the results achieved with G3P on the general program syn-
thesis benchmark suite. The results have been taken from [3]. The datasets of
Checksum and Vector Average have been changed since the benchmark suite has
been introduced and a simpler version of Super Anagrams has been used in [3].
The table indicates that G3P with the current grammars has difficulty to solve
problems that require char as a data type. At the moment it only uses string,
most likely because the initial grammars are based on Python which treats char
as string. While a programmer has no difficulty to understand how or when to
use a single character string, it is definitely more complicated for GP to find out
how or when to use it. Adding a char data type could yield better results. Addi-
tionally, PushGP was able to solve more problems from the benchmark suite,
although in many cases with a low success rate. Nevertheless, adding further
functionality could help improve the results of G3P.



200 S. Forstenlechner et al.

Table 1. Results of G3P on the general program synthesis benchmark suite sorted by
successfully found solutions. String and Char column indicate if these data types have
to be used when solving the problem. A * indicates if the data set has been changed,
since the results have been acquired.

N
u
m
b
er
IO

S
m
al
le
st

V
ec

to
rs

S
u
m
m
ed

M
ed

ia
n

S
tr
in
g
L
en

gt
h
s
B
ac

kw
ar

d
s

N
eg

at
iv
e
T
o
Z
er
o

G
ra

d
e

L
as

t
In

d
ex

of
Z
er
o

S
u
p
er

A
n
ag

ra
m
s*

C
ou

nt
O
d
d
s

F
or

L
oo

p
In

d
ex

S
m
al
l
O
r
L
ar
ge

V
ec

to
r
A
ve

ra
ge

*
S
u
m

of
S
qu

ar
es

C
om

p
ar

e
S
tr
in
g
L
en

gt
h
s

S
cr
ab

b
le

S
co

re
E
ve

n
S
qu

ar
e

C
h
ec
ks

u
m
*

C
ol
la
tz

N
u
m
b
er

D
ig
it
s

D
ou

b
le

L
et
te
rs

M
ir
ro
r
Im

ag
e

P
ig

L
at
in

R
ep

la
ce

S
p
ac

e
w
it
h

N
ew

li
n
e

S
yl
la
b
le
s

W
al
li
s
P
i

W
or
d

S
ta
t

X
-W

or
d

L
in
es

Successes 94 94 91 79 68 63 31 22 21 12 8 7 5 3 2 2 1 0 0 0 0 0 0 0 0 0 0 0
String X X X X X X X X X X X X X X
Char X X X X X X X X X X

4 Extending Program Synthesis Grammars

This section describes how the program synthesis grammars from [3] have been
extended to include an additional char data type as well as additional function-
ality to have a fairer comparison to PushGP. Extending the grammar also means
increasing the size of the search space as more programs can be generated from
the grammar. Therefore, the extension of the grammars can also have a negative
effect on the search performance.

4.1 Data Type Char

As shown in Sect. 3, G3P does poorly on problems that require a data type char.
G3P only used string as it mainly relied on Python even though the concepts
can be applied to other languages as well and because a char can be interpreted
as a string of length one. As many problems in the general program synthesis
benchmark suite require to check or manipulate single characters, G3P not using
a char grammar could explain why it currently fails at solving such problems.
While programmers have the intrinsic knowledge that a string consists of char-
acters and a string of length one can be treated similar to a char, GP either
has to discover this knowledge or has to be told a priori. The currently available
grammar data types are bool, integer, float and string, as well as a list version
grammar of each of these data types, plus the new char grammar. A list of char
grammar is currently not included as the benchmark suite does not require it
and strings can be viewed as a list of char. As G3P adds variables of the data
types of every used grammar to the evolved program, including the char gram-
mar makes it very likely that chars are used as opposed to before where G3P
had to find that a string of length one is required.



Extending Program Synthesis Grammars for G3P 201

4.2 Recursion

Recursion is a method of programming where a program calls itself to solve a
smaller instance of the same problem first and uses that solution to solve the
initial problem. Recursion is not an uncommon strategy to tackle problems in
GP [1,20]. In many cases, a recursive solution can be significantly shorter in
terms of code than an iterative program, which might make it easier for GP to
find. PushGP is capable of evolving recursive programs and for a fair comparison
should be part of the grammars for G3P as well.

To allow recursion, a program needs to be able to call itself and a way to
stop the recursion, usually an if condition called guard. As the grammars in
G3P are automatically merged together depending on the required data types,
and the number of input/output variables, as well as there types, a rule for a
recursive call can be generated and added to the grammar. The following is an
example where outputX is replaced with the correct type variable non-terminal
(e.g. <bool var>) and inputX with the correct type (e.g. <bool>):

<output1>’, ’...’, ’<outputN>’ = evolve(’<input1>’, ’...’, ’<inputN>’)’

In a similar way, a return statement can be generated:

’return result1, ..., resultN’

The grammar used to define the control flow (structure.bnf ) already contains
if statements, but it is very likely that it might not be used and the program
gets stuck in an infinite recursion and at some point will throw an error due
to a stack overflow. A problem that occurs with infinite loops as well and was
handled by adding a guard to avoid any additional iterations if a certain limit is
reached. A similar guard is used to avoid infinite recursion. The benefit of using
this mechanism is that evolved programs will not throw an error and return
a value. Therefore, the program will be given a fitness value based on what it
returns instead of a default worst case fitness due to an error.

4.3 List Operations

When the grammars for program synthesis were introduced grammars for lists of
all data types were included but kept to the essential functionality. Items could
be added at the end, inserted or replaced at a specific index or removed. Lists
could be iterated, compared, checked if they are empty and their length could be
determined as well as slicing of lists was possible. Any additional functionality
the algorithm had to find. PushGP offers more functionality out of the box that
can be used, which has been added to the grammars for G3P, like reversing a list,
counting the occurrences of an item, replacing or removing items if a condition is
met etc. All of this functionality could be discovered as well, but as for example
O’Neill et al. [13] showed that GP has difficulties finding a solution to the integer
sorting problem, but by adding a swap function the problem was easily solvable.
As stated before no further functionality has been added, that was not already
available for PushGP as well. At the same time, it should be noted that adding



202 S. Forstenlechner et al.

additional functionality also increases the search space, which can make it more
difficult to find a correct solution. Even though the additional functionality can
make it easier to solve one problem, it can make it more difficult to solve another.
Therefore a decrease of successful solutions found on some problems is to be
expected.

4.4 Additional Methods

Similar to the list operations in the previous section, additional methods were
added to other data types that in general could have been discovered by G3P.
One example that is also often not included for boolean problems is XOR, as it
can be constructed with AND, OR and NOT and can make certain problems like
multiplexer too easy [10]. To be able to have a better comparison between G3P
and PushGP, such methods have been added as well. As there are too many
to mention every single one of them, the reader is referred to the grammars
themselves that are provided online [2] as well as [18]. Again, it should be noted
that the extended grammars do not exceed the functionality that is provided by
PushGP.

5 Experimental Setup

For the experiments, the extended grammars, which are described in the previous
section, are used with the same G3P system as in [3], which is available online
[2] including the extended grammars. The experiments are run on the problems
from the general program synthesis benchmark suite [8]. The parameter settings
are summarized in Table 2. The number of generations is set to 3001. As soon
as a successful solution is found, the run is stopped as GP cannot improve it
anymore. Lexicase selection [6] is used, as it has shown to be the most successful
selection operator with GP on program synthesis problems. Instead of using
a single fitness value for selection, lexicase operates on the fitness values of
every single training cases. It randomly selects a fitness case and selects the best
individual based on that case. In case of a tie, lexicase selection continues with
a subset of individuals that were in this tie and continue to select other training
cases until a single individual is left or until no fitness case is left, in which case
an individual is selected randomly.

6 Results

First the overall performance of G3P with the extended grammars and also
to PushGP. Afterwards, the effect of the extended grammars on the search is
analysed in more detail.

1 200 for Normal IO, Median and Smallest as proposed in [8].



Extending Program Synthesis Grammars for G3P 203

Table 2. Experimental parameter settings

Parameter Setting

Runs 100

Generations 300 (see footnote 1)

Population size 1000

Selection Lexicase

Crossover probability 0.9

Mutation probability 0.05

Elite size 1

Node limit 250

Variables per type 3

Max execution time 1 s

Max Tries 10

6.1 Successful Solutions

Table 3 shows the solutions found for each problem with G3P with extended
grammars for training and test with 100 runs. The results are compared to the
previously achieved successful solutions of G3P from [3]. Of the eight problems
that require a char data type and have not been solved with G3P before, three
have been solved with the extended grammars, namely Pig Latin, Replace Space
with Newline and Syllables. Pig Latin is one that has not been solved with
PushGP either. Additionally, Mirror Image has been solved as well, probably
due to the additional list operations, which was not solved with the G3P with
previous grammars. Table 3 also includes the p-value for the Wilcoxon Rank sum
test on best test fitness of the two grammar approaches and shows a significant
difference for nearly all of the problems. This is not surprising as the grammar
has a massive influence on the search, as a function set has on normal GP.

The results also show that due to the increased search space, which is caused
by the additional functions added to the grammar, the number of successful
solutions decreases for some problems. Three problems, Compare String Lengths,
Even Squares and Vector Average, could not be solved anymore, but the success
rate of the first two was rather small before as well. Especially, Compare String
Lengths is highly overfit as 96 successful solutions were found on test, but none
generalizes on test. This is a problem that occurs on multiple problem instances
and has been noticed before [7].

Even though on the final experiments some problems, even those which
require char as data type are still not solved, in preliminary experiments Check-
sum and Double Letters have been solved with G3P with extended grammars as
well. Even then the success rate was rather small, but theoretically, it has been
found that they can be solved with the extended grammars as well.



204 S. Forstenlechner et al.

Table 3. Successful solutions found with G3P with extended grammars on training and
test with 100 runs as well as increase and decrease to the previous grammars in brack-
ets. The p-value shows if there is a significant difference in the best test performance
between the two different grammars with 0.05 as level of significance. A significant dif-
ference is highlighted in bold. Finally, the results of PushGP on the benchmark suite
from [8] and the difference to G3P with extended grammars in brackets are compared.

G3P PushGP
Problem Name Test Training p-value Test

(0muskcehC +0) 0 (+0) 8.74E-32 0 (+0)
Collatz Numbers 0 (+0) 0 (+0) 0.0991 0 (+0)
Compare String Lengths 0 (–2) 96 (–1) 8.06E-05 7 (+7)

(3sddOtnuoC –9) 4 (–8) 1.81E-15 8 (+5)
(0stigiD +0) 0 (+0) 0.0298 7 (+7)

Double Letters 0 (+0) 0 (+0) 0.0040 6 (+6)
Even Squares 0 (–1) 0 (–1) 0.5683 2 (+2)
For Loop Index 6 (–2) 9 (–11) 0.0006 1 (–5)

(13edarG +0) 63 (–18) 0.1005 4 (–27)
Last Index of Zero 44 (+22) 97 (+43) 5.71E-11 21 (–23)

(95naideM –20) 99 (–1) 0.0039 45 (–14)
Mirror Image 25 (+25) 89 (+38) 3.25E-18 78 (+53)
Negative To Zero 13 (–50) 24 (–42) 9.12E-07 45 (+32)
Number IO 83 (–11) 95 (–5) 1.21E-15 98 (+15)

(3nitaLgiP +3) 4 (+4) 4.02E-25 0 (–3)
Replace Space with Newline 16 (+16) 29 (+29) 5.08E-30 51 (+35)
Scrabble Score 1 (–1) 1 (–4) 0.0008 2 (+1)
Small Or Large 9 (+2) 39 (–12) 0.5493 5 (–4)

(37tsellamS –21) 100 (+0) 9.58E-05 81 (+8)
String Lengths Backwards 18 (–50) 20 (–48) 6.70E-17 66 (+48)
Sum of Squares 5 (+2) 5 (+2) 8.02E-05 6 (+1)
Super Anagrams 0 (+0) 43 (–1) 2.33E-34 0 (+0)

(93selballyS +39) 53 (+53) 4.28E-29 18 (–21)
Vector Average 0 (–16) 0 (–17) 6.94E-32 16 (+16)
Vectors Summed 21 (–70) 28 (–65) 1.84E-23 1 (–20)
Wallis Pi 0 (+0) 0 (+0) 3.03E-24 0 (+0)
Word Stats 0 (+0) 0 (+0) 0.7722 0 (+0)
X-Word Lines 0 (+0) 0 (+0) 2.56E-34 8 (+8)

Finally, Table 3 shows the results of PushGP taken from [8] compared to G3P
with extended grammars. According to [7], PushGP is able to solve Checksum
after the original dataset has been changed. The comparison shows that both
approaches have problems where one method is more capable to find solutions
than the other, but there does not seem to be a clear advantage over one or
the other. Some problems have been solved with PushGP that have currently
not been solved with G3P, but again the success rates of these problems are
very small, below 10, in most cases, which makes a comparison difficult. The low
success rate is an issue that needs to be addressed by both approaches.



Extending Program Synthesis Grammars for G3P 205

6.2 Char Analysis

The grammar for the char data type is used by 10 problems. The grammar
contains a rule <char> with productions for char variables, char constants and
all functions that return a char value. Therefore, checking the percentage of
nodes in individuals shows if GP is making use of the additional data type.
Figure 1 depicts this usage.

Fig. 1. Percentage of <char> nodes in individuals averaged over 100 runs over gener-
ations.

In the initial generation, the percentage of nodes being <char> is nearly
identical for some problems, which is expected as these problems require the
same data types, which means the grammars are nearly identical, except maybe
input and output variables. Therefore the grammar has the same structure and
the same number of possible nodes, which leads to this effect. The percentage
of <char> nodes used may seem small being between 0.5% and 1.5%, but con-
sidering the number of productions available in the grammar, it is rather high.
In case of almost all problems, the usage of <char> nodes is either constant
or increases over time, after a few generations. The only problem that seems
to slowly decrease the usage of <char> nodes is Digits. This can be explained
by how G3P is tackling the problems. While PushGP prints every integer for
Digits, G3P has to return a list of integers as it does not use print statements
and therefore does not necessarily need a char data type.

For some problems, especially Replace Space with Newline, Syllables, Super
Anagrams and Pig Latin, the lines are not as stable as for the other problems.
The reason is that solutions that solve the problem at least for training have
been found and runs are stopped as soon as this happens. Hence, the average
percentage might drop or increase. In most cases, a sudden drop has been found,
which shows that runs that use <char> nodes more often seem to be able to find
a successful solution earlier. This indicates that the char grammar improves the
search for successful solutions.



206 S. Forstenlechner et al.

6.3 Recursion Analysis

The percentage of recursion used can be checked in a similar way as in the
previous section for char. Figure 2 depicts the percentage of recursion nodes
used over generations. The initial percentage is lower than with <char>, because
there is only one recursion production rule in the grammar, whereas <char>
is used by multiple functions. Afterwards, it drops even lower for all problems
and is barely used overall. As explained in Sect. 4.2, to use recursion, a method
needs to be able to call itself and a stopping criterion. At the moment the GP
system can evolve a method to call itself, but at the same time has to evolve a
stopping criterion, which seems to make it too complicated to be used. Without
the stopping criterion, the evolved program runs into an infinite loop, which
leads to a stack overflow or a timeout by the G3P system. A way to improve this
might be to adapt the grammar that a stopping criterion is added to the same
production rule as the recursion to always have both added at the same time.
This could increase the chance to make G3P use recursion to solve problems.

Fig. 2. Percentage of recursion nodes in individuals averaged over 100 runs over gen-
erations.

7 Conclusion and Future Work

The difficulties of solving multiple problems of the general program synthesis
benchmark suite with a grammar design approach [3] have been discussed. As
some of this problems have been solved with another approach before, the func-
tionality of the grammars has been extended in various ways to be closer to pre-
vious approaches, without “cheating” by adding functionality not used before.
An important enhancement of the grammars is that an explicit char grammar
has been added as many problems operate on single characters instead of strings.



Extending Program Synthesis Grammars for G3P 207

Programmers are able to identify such characteristics of a problem easily, while
GP would have to discover such knowledge. As the benchmark suite proposes to
use char as its own data type, this additional information does not give G3P an
unfair advantage when comparing to other systems.

Afterwards, the extended grammars are used to tackle the program synthesis
benchmark suite and the results are compared to the grammar design of [3]. The
results show significant differences for nearly all problems and successful solu-
tions have been found for previously unsolved problems with G3P. One problem,
Pig Latin, has been successfully solved that was not solved by any other app-
roach before. Additionally, a comparison with PushGP has been made, as the
extended grammars are closer in functionality to PushGP as in [3].

Due to the increased search space created by the extended grammars,
a decrease of successful solutions found on previously solved problems was
expected. A way to dynamically adjust the functionality of grammars during
runs could help avoid this problem [16]. Even the success rates of newly solved
problems were rather low. This is a problem not only of G3P, but also of other
approaches, and should be addressed in the future to make program synthe-
sis with GP more usable outside of the research community as well. Current
approaches include smarter operators [4] or post-run simplifications [7], but fur-
ther research is required to increase success rates.

Acknowledgments. This research is based upon works supported by the Science
Foundation Ireland, under Grant No. 13/IA/1850.

References

1. Agapitos, A., Lucas, S.M.: Learning recursive functions with object oriented genetic
programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A.
(eds.) EuroGP 2006. LNCS, vol. 3905, pp. 166–177. Springer, Heidelberg (2006).
https://doi.org/10.1007/11729976 15

2. Forstenlechner, S.: Github repository: HeuristicLab.CFGGP: Provides context
free grammar problems for HeuristicLab (2016). https://github.com/t-h-e/
HeuristicLab.CFGGP. Accessed 22 Mar 2018

3. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: A grammar design pattern
for arbitrary program synthesis problems in genetic programming. In: McDermott,
J., Castelli, M., Sekanina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.) EuroGP 2017.
LNCS, vol. 10196, pp. 262–277. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-55696-3 17

4. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: Semantics-based crossover
for program synthesis in genetic programming. In: Lutton, E., Legrand, P., Par-
rend, P., Monmarché, N., Schoenauer, M. (eds.) EA 2017. LNCS, vol. 10764, pp.
58–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78133-4 5

5. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2011, pp. 317–330. ACM,
New York (2011)

6. Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with
lexicase selection. IEEE Trans. Evol. Comput. 19(5), 630–643 (2015)

https://doi.org/10.1007/11729976_15
https://github.com/t-h-e/HeuristicLab.CFGGP
https://github.com/t-h-e/HeuristicLab.CFGGP
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-78133-4_5


208 S. Forstenlechner et al.

7. Helmuth, T., McPhee, N.F., Pantridge, E., Spector, L.: Improving generalization of
evolved programs through automatic simplification. In: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2017, pp. 937–944. ACM,
Berlin, 15–19 July 2017

8. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceed-
ings of the 2015 on Genetic and Evolutionary Computation Conference, GECCO
15, pp. 1039–1046. ACM, Madrid, 11–15 July 2015

9. Katayama, S.: Recent improvements of MagicHaskeller. In: Schmid, U., Kitzel-
mann, E., Plasmeijer, R. (eds.) AAIP 2009. LNCS, vol. 5812, pp. 174–193. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11931-6 9

10. Keijzer, M., Ryan, C., Murphy, G., Cattolico, M.: Undirected training of run
transferable libraries. In: Keijzer, M., Tettamanzi, A., Collet, P., van Hemert,
J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 361–370. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31989-4 33

11. Kitzelmann, E.: Inductive programming: a survey of program synthesis techniques.
In: Schmid, U., Kitzelmann, E., Plasmeijer, R. (eds.) AAIP 2009. LNCS, vol. 5812,
pp. 50–73. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11931-
6 3

12. McKay, R., Hoai, N., Whigham, P., Shan, Y., O’Neill, M.: Grammar-based genetic
programming: a survey. Genet. Program. Evol. Mach. 11(3–4), 365–396 (2010)

13. O’Neill, M., Nicolau, M., Agapitos, A.: Experiments in program synthesis with
grammatical evolution: a focus on integer sorting. In: 2014 IEEE Congress on
Evolutionary Computation (CEC), pp. 1504–1511, July 2014

14. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in an Arbitrary Language. Kluwer Academic Publishers, Norwell (2003)

15. Pantridge, E., Helmuth, T., McPhee, N.F., Spector, L.: On the difficulty of bench-
marking inductive program synthesis methods. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion, GECCO 2017, pp. 1589–1596.
ACM, New York (2017)

16. Saber, T., Fagan, D., Lynch, D., Kucera, S., Claussen, H., O’Neill, M.: Multi-
level grammar genetic programming for scheduling in heterogeneous networks.
In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., Garćıa-Sánchez, P. (eds.)
EuroGP 2018. LNCS, vol. 10781, pp. 118–134. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-77553-1 8

17. Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution
with the push programming language. Genet. Program. Evol. Mach. 3(1), 7–40
(2002)

18. Helmuth, T., Spector, L.: Detailed problem descriptions for general program syn-
thesis benchmark suite. Technical report, School of Computer Science, University
of Massachusetts Amherst (2015)

19. Whigham, P.A.: Grammatical bias for evolutionary learning. Ph.D. thesis, Univer-
sity of New South Wales, Australia (1996)

20. Yu, T.: A higher-order function approach to evolve recursive programs. In: Yu, T.,
Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice III. GPEM,
pp. 93–108. Springer, Boston (2006). https://doi.org/10.1007/0-387-28111-8 7

https://doi.org/10.1007/978-3-642-11931-6_9
https://doi.org/10.1007/978-3-540-31989-4_33
https://doi.org/10.1007/978-3-642-11931-6_3
https://doi.org/10.1007/978-3-642-11931-6_3
https://doi.org/10.1007/978-3-319-77553-1_8
https://doi.org/10.1007/978-3-319-77553-1_8
https://doi.org/10.1007/0-387-28111-8_7

	Extending Program Synthesis Grammars for Grammar-Guided Genetic Programming
	1 Introduction
	2 Related Work
	2.1 Grammar-Guided Genetic Programming

	3 General Program Synthesis Benchmark Suite Remarks
	4 Extending Program Synthesis Grammars
	4.1 Data Type Char
	4.2 Recursion
	4.3 List Operations
	4.4 Additional Methods

	5 Experimental Setup
	6 Results
	6.1 Successful Solutions
	6.2 Char Analysis
	6.3 Recursion Analysis

	7 Conclusion and Future Work
	References




