
Anne Auger · Carlos M. Fonseca
Nuno Lourenço · Penousal Machado
Luís Paquete · Darrell Whitley (Eds.)

 123

LN
CS

 1
11

01

15th International Conference
Coimbra, Portugal, September 8–12, 2018
Proceedings, Part I

Parallel Problem Solving
from Nature – PPSN XV

Lecture Notes in Computer Science 11101

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Anne Auger • Carlos M. Fonseca
Nuno Lourenço • Penousal Machado
Luís Paquete • Darrell Whitley (Eds.)

Parallel Problem Solving
from Nature – PPSN XV
15th International Conference
Coimbra, Portugal, September 8–12, 2018
Proceedings, Part I

123

Editors
Anne Auger
Inria Saclay
Palaiseau
France

Carlos M. Fonseca
University of Coimbra
Coimbra
Portugal

Nuno Lourenço
University of Coimbra
Coimbra
Portugal

Penousal Machado
University of Coimbra
Coimbra
Portugal

Luís Paquete
University of Coimbra
Coimbra
Portugal

Darrell Whitley
Colorado State University
Fort Collins, CO
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-99252-5 ISBN 978-3-319-99253-2 (eBook)
https://doi.org/10.1007/978-3-319-99253-2

Library of Congress Control Number: 2018951432

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

During September 8–12, 2018, researchers from all over the world gathered in
Coimbra, Portugal, for the 15th International Conference on Parallel Problem Solving
from Nature (PPSN XV). Far more than a European event, this biennial meeting has
established itself among the most important and highly respected international con-
ferences in nature-inspired computation worldwide since its first edition in Dortmund
in 1990. These two LNCS volumes contain the proceedings of the conference.

We received 205 submissions from 44 countries. An extensive review process
involved over 200 reviewers, who evaluated and reported on the manuscripts. All
papers were assigned to at least three Program Committee members for review. A total
of 745 review reports were received, or over 3.6 reviews on average per manuscript.
All review reports were analyzed in detail by the Program Chairs. Where there was
disagreement among reviewers, the Program Chairs also evaluated the papers them-
selves. In some cases, discussion among reviewers with conflicting reviews was pro-
moted with the aim of making as accurate and fair a decision as possible. Overall, 79
manuscripts were selected for presentation and inclusion in the proceedings, which
represents an acceptance rate just below 38.6%. This makes PPSN 2018 the most
selective PPSN conference of the past 12 years, and reinforces its position as a major,
high-quality evolutionary computation scientific event.

The meeting began with an extensive program of 23 tutorials and six workshops
covering a wide range of topics in evolutionary computation and related areas,
including machine learning, statistics, and mathematical programming. Tutorials
offered participants the opportunity to learn more about well-established, as well as
more recent, research, while workshops provided a friendly environment where new
ideas could be presented and discussed by participants with similar interests.

In addition, three distinguished invited speakers delivered keynote addresses at the
conference. Ahmed Elgammal (Rutgers University, USA), Francis Heylighen (Vrije
Universiteit Brussel, Belgium), and Kurt Mehlhorn (Max Planck Institute for Infor-
matics, Saarbrücken, Germany) spoke on advances in the area of artificial intelligence
and art, foundational concepts and mechanisms that underlie parallel problem solving
in nature, and models of computation by living organisms, respectively.

We thank the authors of all submitted manuscripts, and express our appreciation to
all the members of the Program Committee and external reviewers who provided
thorough evaluations of those submissions. We thank the keynote speakers, tutorial
speakers, and workshop organizers for significantly enriching the scientific program
with their participation. To all members of the Organizing Committee and local
organizers, we extend our deep gratitude for their dedication in preparing and running
the conference. Special thanks are due to the University of Coimbra for hosting the
conference and, in particular, to INESC Coimbra, CISUC, the Department of Infor-
matics Engineering, the Department of Mathematics, and the International Relations
Unit, for their invaluable contribution to the organization of this event, and to the

sponsoring institutions for their generosity. Finally, we wish to personally thank Carlos
Henggeler Antunes for his unconditional support.

September 2018 Anne Auger
Carlos M. Fonseca

Nuno Lourenço
Penousal Machado

Luís Paquete
Darrell Whitley

VI Preface

Organization

PPSN 2018 was organized by INESC Coimbra and CISUC, and was hosted by the
University of Coimbra, Portugal. Established in 1290, the University of Coimbra is the
oldest university in the country and among the oldest in the world. It is a UNESCO
World Heritage site since 2013.

Organizing Committee

General Chairs

Carlos M. Fonseca University of Coimbra, Portugal
Penousal Machado University of Coimbra, Portugal

Honorary Chair

Hans-Paul Schwefel TU Dortmund University, Germany

Program Chairs

Anne Auger Inria Saclay, France
Luís Paquete University of Coimbra, Portugal
Darrell Whitley Colorado State University, USA

Workshop Chairs

Robin C. Purshouse University of Sheffield, UK
Christine Zarges Aberystwyth University, UK

Tutorial Chairs

Michael T. M. Emmerich Leiden University, The Netherlands
Gisele L. Pappa Federal University of Minas Gerais, Brazil

Publications Chair

Nuno Lourenço University of Coimbra, Portugal

Local Organization Chair

Pedro Martins University of Coimbra, Portugal

Webmasters

Catarina Maçãs University of Coimbra, Portugal
Evgheni Polisciuc University of Coimbra, Portugal

Steering Committee

David W. Corne Heriot-Watt University Edinburgh, UK
Carlos Cotta Universidad de Malaga, Spain
Kenneth De Jong George Mason University, USA
Agoston E. Eiben Vrije Universiteit Amsterdam, The Netherlands
Bogdan Filipič Jožef Stefan Institute, Slovenia
Emma Hart Edinburgh Napier University, UK
Juan Julián Merelo Guervós Universidad de Granada, Spain
Günter Rudolph TU Dortmund University, Germany
Thomas P. Runarsson University of Iceland, Iceland
Robert Schaefer University of Krakow, Poland
Marc Schoenauer Inria, France
Xin Yao University of Birmingham, UK

Keynote Speakers

Ahmed Elgammal Rutgers University, USA
Francis Heylighen Vrije Universiteit Brussel, Belgium
Kurt Mehlhorn Max Planck Institute for Informatics, Germany

Program Committee

Youhei Akimoto Shinshu University, Japan
Richard Allmendinger University of Manchester, UK
Dirk Arnold Dalhousie University, Canada
Asma Atamna Inria, France
Anne Auger Inria, France
Dogan Aydin Dumlupinar University, Turkey
Jaume Bacardit Newcastle University, UK
Helio Barbosa Laboratório Nacional de Computação Científica, Brasil
Thomas Bartz-Beielstein Cologne University of Applied Sciences, Germany
Heder Bernardino Universidade Federal de Juiz de Fora, Brasil
Hans-Georg Beyer Vorarlberg University of Applied Sciences, Austria
Mauro Birattari Université Libre de Bruxelles, Belgium
Christian Blum Spanish National Research Council, Spain
Peter Bosman Centrum Wiskunde & Informatica, The Netherlands
Pascal Bouvry University of Luxembourg, Luxembourg
Juergen Branke University of Warwick, UK
Dimo Brockhoff Inria and Ecole Polytechnique, France
Will Browne Victoria University of Wellington, New Zealand
Alexander Brownlee University of Stirling, Scotland
Larry Bull University of the West of England, England
Arina Buzdalova ITMO University, Russia
Maxim Buzdalov ITMO University, Russia
Stefano Cagnoni University of Parma, Italy
David Cairns University of Stirling, Scotland

VIII Organization

Mauro Castelli Universidade Nova de Lisboa, Portugal
Wenxiang Chen Colorado State University, USA
Ying-Ping Chen National Chiao Tung University, Taiwan
Marco Chiarandini University of Southern Denmark, Denmark
Francisco Chicano University of Málaga, Spain
Miroslav Chlebik University of Sussex, UK
Sung-Bae Cho Yonsei University, South Korea
Alexandre Chotard Inria, France
Carlos Coello Coello CINVESTAV-IPN, Mexico
Dogan Corus University of Nottingham, UK
Ernesto Costa University of Coimbra, Portugal
Carlos Cotta University of Málaga, Spain
Kenneth De Jong George Mason University, USA
Antonio Della Cioppa University of Salerno, Italy
Bilel Derbel University of Lille, France
Benjamin Doerr École Polytechnique, France
Carola Doerr Sorbonne University, Paris, France
Marco Dorigo Université Libre de Bruxelles, Belgium
Johann Dréo Thales Research & Technology, France
Rafal Drezewski AGH University of Science and Technology, Poland
Michael Emmerich Leiden University, The Netherlands
Andries Engelbrecht University of Pretoria, South Africa
Anton Eremeev Omsk Branch of Sobolev Institute of Mathematics,

Russia
Katti Faceli Universidade Federal de São Carlos, Brasil
João Paulo Fernandes University of Coimbra, Portugal
Pedro Ferreira University of Lisbon, Portugal
José Rui Figueira University of Lisbon, Portugal
Bogdan Filipic Jožef Stefan Institute, Slovenia
Steffen Finck Vorarlberg University of Applied Sciences, Austria
Andreas Fischbach Cologne University of Applied Sciences, Germany
Peter Fleming University of Sheffield, UK
Carlos M. Fonseca University of Coimbra, Portugal
Martina Friese Cologne University of Applied Sciences, Germany
Marcus Gallagher University of Queensland, Australia
José García-Nieto University of Málaga, Spain
Antonio Gaspar-Cunha University of Minho, Portugal
Mario Giacobini University of Torino, Italy
Tobias Glasmachers Institut für Neuroinformatik, Germany
Roderich Gross University of Sheffield, UK
Andreia Guerreiro University of Coimbra, Portugal
Jussi Hakanen University of Jyväskylä, Finland
Hisashi Handa Kindai University, Japan
Julia Handl University of Manchester, UK
Jin-Kao Hao University of Angers, France
Emma Hart Napier University, UK
Nikolaus Hansen Inria, France

Organization IX

Verena Heidrich-Meisner Christian-Albrechts-Universität zu Kiel, Germany
Carlos Henggeler Antunes University of Coimbra, Portugal
Hisao Ishibuchi Southern University of Science and Technology, China
Christian Jacob University of Calgary, Canada
Domagoj Jakobovic University of Zagreb, Croatia
Thomas Jansen Aberystwyth University, Wales
Yaochu Jin University of Surrey, England
Laetitia Jourdan University of Lille, France
Bryant Julstrom St. Cloud State University, USA
George Karakostas McMaster University, Canada
Graham Kendall University of Nottingham, UK
Timo Kötzing Hasso-Plattner-Institut, Germany
Krzysztof Krawiec Poznan University of Technology, Poland
Martin Krejca Hasso-Plattner-Institut, Germany
Algirdas Lančinskas Vilnius University, Lithuania
William Langdon University College London, England
Frederic Lardeux University of Angers, France
Jörg Lässig University of Applied Sciences Zittau/Görlitz,

Germany
Per Kristian Lehre University of Birmingham, UK
Johannes Lengler ETH Zurich, Switzerland
Arnaud Liefooghe University of Lille, France
Andrei Lissovoi University of Sheffield, UK
Giosuè Lo Bosco Università di Palermo, Italy
Fernando Lobo University of Algarve, Portugal
Daniele Loiacono Politecnico di Milano, Italy
Manuel López-Ibáñez University of Manchester, UK
Nuno Lourenço University of Coimbra, Portugal
Jose A. Lozano University of the Basque Country, Spain
Gabriel Luque University of Málaga, Spain
Thibaut Lust Sorbonne University, France
Penousal Machado University of Coimbra, Portugal
Jacek Mańdziuk Warsaw University of Technology, Poland
Vittorio Maniezzo University of Bologna, Italy
Elena Marchiori Radboud University, The Netherlands
Giancarlo Mauri University of Milano-Bicocca, Italy
James McDermott University College Dublin, Republic of Ireland
Alexander Melkozerov Tomsk State University of Control Systems and

Radioelectronics, Russia
J. J. Merelo University of Granada, Spain
Marjan Mernik University of Maribor, Slovenia
Silja Meyer-Nieberg Universität der Bundeswehr München, Germany
Martin Middendorf University of Leipzig, Germany
Kaisa Miettinen University of Jyväskylä, Finland
Edmondo Minisci University of Strathclyde, Scotland
Gara Miranda University of La Laguna, Spain
Marco A. Montes De Oca “clypd, Inc.”, USA

X Organization

Sanaz Mostaghim Otto von Guericke University Magdeburg, Germany
Boris Naujoks Cologne University of Applied Sciences, Germany
Antonio J. Nebro University of Málaga, Spain
Ferrante Neri De Montfort University, England
Frank Neumann University of Adelaide, Australia
Phan Nguyen University of Birmingham, UK
Miguel Nicolau University College Dublin, Republic of Ireland
Kouhei Nishida Shinshu University, Japan
Michael O’ Neill University College Dublin, Republic of Ireland
Gabriela Ochoa University of Stirling, Scotland
Pietro S Oliveto University of Sheffield, UK
José Carlos Ortiz-Bayliss Tecnológico de Monterrey, Mexico
Ben Paechter Napier University, UK
Gregor Papa Jožef Stefan Institute, Slovenia
Gisele Pappa Universidade Federal de Minas Gerais, Brasil
Luis Paquete University of Coimbra, Portugal
Andrew J. Parkes University of Nottingham, UK
Margarida Pato Universidade de Lisboa, Portugal
Mario Pavone University of Catania, Italy
David Pelta University of Granada, Spain
Martin Pilat Charles University in Prague, Czech Republic
Petr Pošík Czech Technical University in Prague, Czech Republic
Mike Preuss University of Münster, Germany
Robin Purshouse University of Sheffield, UK
Günther Raidl Vienna University of Technology, Austria
William Rand North Carolina State University, USA
Khaled Rasheed University of Georgia, USA
Tapabrata Ray University of New South Wales, Australia
Eduardo Rodriguez-Tello CINVESTAV-Tamaulipas, Mexico
Günter Rudolph TU Dortmund University, Germany
Andrea Roli University of Bologna, Italy
Agostinho Rosa University of Lisbon, Portugal
Jonathan Rowe University of Birmingham, UK
Thomas Runarsson University of Iceland, Iceland
Thomas A. Runkler Siemens Corporate Technology, Germany
Conor Ryan University of Limerick, Republic of Ireland
Frédéric Saubion University of Angers, France
Robert Schaefer AGH University of Science and Technology, Poland
Andrea Schaerf University of Udine, Italy
Manuel Schmitt ALYN Woldenberg Family Hospital, Israel
Marc Schoenauer Inria, France
Oliver Schuetze CINVESTAV-IPN, Mexico
Eduardo Segredo Napier University, UK
Martin Serpell University of the West of England, England
Roberto Serra University of Modena and Reggio Emilia, Italy
Marc Sevaux Université de Bretagne-Sud, France
Shinichi Shirakawa Yokohama National University, Japan

Organization XI

Kevin Sim Napier University, UK
Moshe Sipper Ben-Gurion University of the Negev, Israel
Jim Smith University of the West of England, England
Christine Solnon Institut National des Sciences Appliquées de Lyon,

France
Sebastian Stich EPFL, Switzerland
Catalin Stoean University of Craiova, Romania
Jörg Stork Cologne University of Applied Sciences, Germany
Thomas Stützle Université Libre de Bruxelles, Belgium
Dirk Sudholt University of Sheffield, UK
Andrew Sutton University of Minnesota Duluth, USA
Jerry Swan University of York, UK
Ricardo H. C. Takahashi Universidade Federal de Minas Gerais, Brasil
El-Ghazali Talbi University of Lille, France
Daniel Tauritz Missouri University of Science and Technology, USA
Jorge Tavares Microsoft, Germany
Hugo Terashima Tecnológico de Monterrey, Mexico
German Terrazas Angulo University of Nottingham, UK
Andrea Tettamanzi University Nice Sophia Antipolis, France
Lothar Thiele ETH Zurich, Switzerland
Dirk Thierens Utrecht University, The Netherlands
Renato Tinós University of São Paulo, Brasil
Alberto Tonda Institut National de la Recherche Agronomique, France
Heike Trautmann University of Münster, Germany
Leonardo Trujillo Instituto Tecnológico de TIjuana, Mexico
Tea Tusar Jožef Stefan Institute, Slovenia
Nadarajen Veerapen University of Stirling, UK
Sébastien Verel Université du Littoral Côte d’Opale, France
Markus Wagner University of Adelaide, Australia
Elizabeth Wanner Aston University, UK
Carsten Witt Technical University of Denmark, Denmark
Man Leung Wong Lingnan University, Hong Kong
John Woodward Queen Mary University of London, UK
Ning Xiong Mälardalen University, Sweden
Shengxiang Yang De Montfort University, UK
Gary Yen Oklahoma State University, USA
Martin Zaefferer Cologne University of Applied Sciences, Germany
Ales Zamuda University of Maribor, Slovenia
Christine Zarges Aberystwyth University, UK

Additional Reviewers

Matthew Doyle
Yue Gu
Stefano Mauceri
Aníl Özdemir
Isaac Vandermuelen

XII Organization

Invited Talks

The Shape of Art History in the Eyes
of the Machine

Ahmed Elgammal

Art and Artificial Intelligence Laboratory, Rutgers University

Advances in Artificial Intelligence are changing things around us. Is art and creativity
immune from the perceived AI takeover? In this talk I will highlight some of the
advances in the area of Artificial Intelligence and Art. I will argue about how inves-
tigating perceptual and cognitive tasks related to human creativity in visual art is
essential for advancing the fields of AI and multimedia systems. On the other hand,
how AI can change the way we look at art and art history.

The talk will present results of recent research activities at the Art and Artificial
Intelligence Laboratory at Rutgers University. We investigate perceptual and cognitive
tasks related to human creativity in visual art. In particular, we study problems related
to art styles, influence, and the quantification of creativity. We develop computational
models that aim at providing answers to questions about what characterizes the
sequence and evolution of changes in style over time. The talk will also cover advances
in automated prediction of style, how that relates to art history methodology, and what
that tells us about how the machine sees art history. The talk will also delve into our
recent research on quantifying creativity in art in regard to its novelty and influence, as
well as computational models that simulate the art-producing system.

Self-organization, Emergence and Stigmergy:
Coordination from the Bottom-up

Francis Heylighen

Evolution, Complexity and Cognition Group,
Center Leo Apostel, Vrije Universiteit Brussel

The purpose of this presentation is to review and clarify some of the foundational
concepts and mechanisms that underlie parallel problem solving in nature. A problem
can be conceived as a tension between the present, “unfit” state and some fit state in
which the tension would be relaxed [2]. Formulated in terms of dynamic systems, the
solution is then a fitness peak, a potential valley, or most generally an attractor in the
state space of the system under consideration. Solving the problem means finding a
path that leads from the present state to such an attractor state. This spontaneous
descent of a system into an attractor is equivalent to the self-organization of the
components or agents in the system, meaning that the agents mutually adapt so as to
achieve a stable interaction pattern. The interaction between agents can be conceived as
a propagation of challenges: a challenge is a state of tension that incites an agent to act
so as to reduce the tension. That action, however, typically creates a new challenge for
one or more neighboring agents, who act in turn, thus creating yet further challenges.
The different actions take place in parallel, producing a “wave” of activity that prop-
agates across the environment. Because of the general relaxation dynamics, this activity
eventually settles in an attractor. The stability of the resulting global configuration
means that the different agents have now “coordinated” their actions into a synergetic
pattern: a global “order” has emerged out of local interactions [1]. Such
self-organization and “natural problem solving” are therefore in essence equivalent.
Two mechanisms facilitate this process: (1) order from noise [4] notes that injecting
random variation accelerates the exploration of the state space, and thus the discovery
of deep attractors; (2) stigmergy means that agents leave traces of their action in a
shared medium. These traces challenge other agents to build further on the activity.
They function like a collective memory and communication medium that facilitates
coordination without requiring either top-down control or direct agent-to-agent com-
munication [3].

References

1. Heylighen, F.: The science of self-organization and adaptivity. Encycl. Life Support Syst.
5(3), 253–280 (2001)

2. Heylighen, F.: Challenge Propagation: towards a theory of distributed intelligence and the
global brain. Spanda J. V(2), 51–63 (2014)

3. Heylighen, F.: Stigmergy as a universal coordination mechanism I: definition and compo-
nents. Cogn. Syst. Res. 38, 4–13 (2016). https://doi.org/10.1016/j.cogsys.2015.12.002

4. Von Foerster, H.: On self-organizing systems and their environments. In: Self-organizing
Systems, pp. 31–50 (1960)

Self-organization, Emergence and Stigmergy: Coordination from the Bottom-up XVII

https://doi.org/10.1016/j.cogsys.2015.12.002

On Physarum Computations

Kurt Mehlhorn

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken

Let c be a positive vector in R
m, let A 2 R

n�m and b 2 R
n. Consider

minimize cT j f j subject to Af ¼ b: ð1Þ

The solution is a feasible f of minimum weighted 1-norm. The Physarum dynamics
operates on a state x 2 R

m
[0. The state evolves according to the system of differential

equations
_x ¼ q� x;

where q is the minimum energy feasible solution, i.e.,

q ¼ argminf
X

e

ref
2
e j Af ¼ b

()
and re ¼ ce=xe: ð2Þ

In [1] it is shown that the dynamics (2) converges to an optimal solution of (1).
Previously, this was known for the special case of the undirected shortest path problem
[2–4]; here A is the node-arc incidence matrix of a directed graph and b is the demand
vector. Further work can be found in [8–11].

The theoretical investigation of the Physarum dynamics was motivated by wet-lab
experiments [5]. The theoretical model was introduced by [6], and convergence for the
case of parallel links was shown in [7].

References

1. Becker, R., Bonifaci, V., Karrenbauer, A., Kolev, P., Mehlhorn, K.: Two results on slime
mold computations (2017). CoRR abs/1707.06631. https://arxiv.org/abs/1707.06631

2. Bonifaci, V., Mehlhorn, K., Varma, G.: Physarum can compute shortest paths. J. Theor.
Biol. 309, 121–133 (2012). http://arxiv.org/abs/1106.0423

3. Bonifaci, V.: Physarum can compute shortest paths: a short proof. Inf. Process. Lett. 113(1–2),
4–7 (2013)

4. Bonifaci, V.: A revised model of fluid transport optimization in physarum polycephalum.
CoRR abs/1606.04225 (2016)

5. Nakagaki, T., Yamada, H., Tóth, A.: Maze-solving by an amoeboid organism. Nature 407,
470 (2000)

6. Tero, A., Kobayashi, R., Nakagaki, T.: A mathematical model for adaptive transport network
in path finding by true slime mold. J. Theor. Biol., 553–564 (2007)

7. Miyaji, T., Ohnishi, I.: Physarum can solve the shortest path problem on riemannian surface
mathematically rigourously. Int. J. Pure Appl. Math. 47, 353–369 (2008)

https://arxiv.org/abs/1707.06631
http://arxiv.org/abs/1106.0423

8. Ito, K., Johansson, A., Nakagaki, T., Tero, A.: Convergence properties for the Physarum
solver (2011). arXiv:1101.5249v1

9. Straszak, D., Vishnoi, N.K.: IRLS and slime mold: Equivalence and convergence (2016).
CoRR abs/1601.02712

10. Straszak, D., Vishnoi, N.K.: On a natural dynamics for linear programming. In: ITCS,
p. 291. ACM, New York (2016)

11. Straszak, D., Vishnoi, N.K.: Natural algorithms for flow problems. In: SODA, pp.
1868–1883 (2016)

On Physarum Computations XIX

Contents – Part I

Numerical Optimization

A Comparative Study of Large-Scale Variants of CMA-ES 3
Konstantinos Varelas, Anne Auger, Dimo Brockhoff, Nikolaus Hansen,
Ouassim Ait ElHara, Yann Semet, Rami Kassab,
and Frédéric Barbaresco

Design of a Surrogate Model Assisted (1 + 1)-ES . 16
Arash Kayhani and Dirk V. Arnold

Generalized Self-adapting Particle Swarm Optimization Algorithm 29
Mateusz Uliński, Adam Żychowski, Michał Okulewicz,
Mateusz Zaborski, and Hubert Kordulewski

PSO-Based Search Rules for Aerial Swarms Against Unexplored Vector
Fields via Genetic Programming . 41

Palina Bartashevich, Illya Bakurov, Sanaz Mostaghim,
and Leonardo Vanneschi

Towards an Adaptive CMA-ES Configurator . 54
Sander van Rijn, Carola Doerr, and Thomas Bäck

Combinatorial Optimization

A Probabilistic Tree-Based Representation for Non-convex Minimum
Cost Flow Problems . 69

Behrooz Ghasemishabankareh, Melih Ozlen, Frank Neumann,
and Xiaodong Li

Comparative Study of Different Memetic Algorithm Configurations
for the Cyclic Bandwidth Sum Problem . 82

Eduardo Rodriguez-Tello, Valentina Narvaez-Teran,
and Fréderic Lardeux

Efficient Recombination in the Lin-Kernighan-Helsgaun Traveling
Salesman Heuristic . 95

Renato Tinós, Keld Helsgaun, and Darrell Whitley

Escherization with a Distance Function Focusing on the Similarity
of Local Structure . 108

Yuichi Nagata

Evolutionary Search of Binary Orthogonal Arrays . 121
Luca Mariot, Stjepan Picek, Domagoj Jakobovic, and Alberto Leporati

Heavy-Tailed Mutation Operators in Single-Objective
Combinatorial Optimization . 134

Tobias Friedrich, Andreas Göbel, Francesco Quinzan,
and Markus Wagner

Heuristics in Permutation GOMEA for Solving the Permutation Flowshop
Scheduling Problem. 146

G. H. Aalvanger, N. H. Luong, P. A. N. Bosman, and D. Thierens

On the Performance of Baseline Evolutionary Algorithms on the Dynamic
Knapsack Problem . 158

Vahid Roostapour, Aneta Neumann, and Frank Neumann

On the Synthesis of Perturbative Heuristics for Multiple Combinatorial
Optimisation Domains . 170

Christopher Stone, Emma Hart, and Ben Paechter

Genetic Programming

EDDA-V2 – An Improvement of the Evolutionary Demes
Despeciation Algorithm . 185

Illya Bakurov, Leonardo Vanneschi, Mauro Castelli,
and Francesco Fontanella

Extending Program Synthesis Grammars for Grammar-Guided
Genetic Programming . 197

Stefan Forstenlechner, David Fagan, Miguel Nicolau,
and Michael O’Neill

Filtering Outliers in One Step with Genetic Programming 209
Uriel López, Leonardo Trujillo, and Pierrick Legrand

GOMGE: Gene-Pool Optimal Mixing on Grammatical Evolution 223
Eric Medvet, Alberto Bartoli, Andrea De Lorenzo, and Fabiano Tarlao

Self-adaptive Crossover in Genetic Programming:
The Case of the Tartarus Problem . 236

Thomas D. Griffiths and Anikó Ekárt

XXII Contents – Part I

Multi-objective Optimization

A Decomposition-Based Evolutionary Algorithm for Multi-modal
Multi-objective Optimization . 249

Ryoji Tanabe and Hisao Ishibuchi

A Double-Niched Evolutionary Algorithm and Its Behavior
on Polygon-Based Problems . 262

Yiping Liu, Hisao Ishibuchi, Yusuke Nojima, Naoki Masuyama,
and Ke Shang

Artificial Decision Maker Driven by PSO: An Approach for Testing
Reference Point Based Interactive Methods . 274

Cristóbal Barba-González, Vesa Ojalehto, José García-Nieto,
Antonio J. Nebro, Kaisa Miettinen, and José F. Aldana-Montes

A Simple Indicator Based Evolutionary Algorithm for Set-Based
Minmax Robustness . 286

Yue Zhou-Kangas and Kaisa Miettinen

Extending the Speed-Constrained Multi-objective PSO (SMPSO)
with Reference Point Based Preference Articulation. 298

Antonio J. Nebro, Juan J. Durillo, José García-Nieto,
Cristóbal Barba-González, Javier Del Ser, Carlos A. Coello Coello,
Antonio Benítez-Hidalgo, and José F. Aldana-Montes

Improving 1by1EA to Handle Various Shapes of Pareto Fronts. 311
Yiping Liu, Hisao Ishibuchi, Yusuke Nojima, Naoki Masuyama,
and Ke Shang

New Initialisation Techniques for Multi-objective Local Search:
Application to the Bi-objective Permutation Flowshop 323

Aymeric Blot, Manuel López-Ibáñez, Marie-Éléonore Kessaci,
and Laetitia Jourdan

Towards a More General Many-objective Evolutionary Optimizer 335
Jesús Guillermo Falcón-Cardona and Carlos A. Coello Coello

Towards Large-Scale Multiobjective Optimisation with a Hybrid
Algorithm for Non-dominated Sorting . 347

Margarita Markina and Maxim Buzdalov

Tree-Structured Decomposition and Adaptation in MOEA/D 359
Hanwei Zhang and Aimin Zhou

Use of Reference Point Sets in a Decomposition-Based Multi-Objective
Evolutionary Algorithm . 372

Edgar Manoatl Lopez and Carlos A. Coello Coello

Contents – Part I XXIII

Use of Two Reference Points in Hypervolume-Based Evolutionary
Multiobjective Optimization Algorithms. 384

Hisao Ishibuchi, Ryo Imada, Naoki Masuyama, and Yusuke Nojima

Parallel and Distributed Frameworks

Introducing an Event-Based Architecture for Concurrent and Distributed
Evolutionary Algorithms . 399

Juan J. Merelo Guervós and J. Mario García-Valdez

Analyzing Resilience to Computational Glitches in Island-Based
Evolutionary Algorithms . 411

Rafael Nogueras and Carlos Cotta

Spark Clustering Computing Platform Based Parallel Particle Swarm
Optimizers for Computationally Expensive Global Optimization 424

Qiqi Duan, Lijun Sun, and Yuhui Shi

Weaving of Metaheuristics with Cooperative Parallelism 436
Jheisson López, Danny Múnera, Daniel Diaz, and Salvador Abreu

Applications

Conditional Preference Learning for Personalized and Context-Aware
Journey Planning . 451

Mohammad Haqqani, Homayoon Ashrafzadeh, Xiaodong Li,
and Xinghuo Yu

Critical Fractile Optimization Method Using Truncated Halton Sequence
with Application to SAW Filter Design . 464

Kiyoharu Tagawa

Directed Locomotion for Modular Robots with Evolvable Morphologies 476
Gongjin Lan, Milan Jelisavcic, Diederik M. Roijers, Evert Haasdijk,
and A. E. Eiben

Optimisation and Illumination of a Real-World Workforce Scheduling
and Routing Application (WSRP) via Map-Elites . 488

Neil Urquhart and Emma Hart

Prototype Discovery Using Quality-Diversity . 500
Alexander Hagg, Alexander Asteroth, and Thomas Bäck

Sparse Incomplete LU-Decomposition for Wave Farm Designs Under
Realistic Conditions. 512

Dídac Rodríguez Arbonès, Nataliia Y. Sergiienko, Boyin Ding,
Oswin Krause, Christian Igel, and Markus Wagner

XXIV Contents – Part I

Understanding Climate-Vegetation Interactions in Global Rainforests
Through a GP-Tree Analysis . 525

Anuradha Kodali, Marcin Szubert, Kamalika Das, Sangram Ganguly,
and Joshua Bongard

Author Index . 537

Contents – Part I XXV

Contents – Part II

Runtime Analysis and Approximation Results

A General Dichotomy of Evolutionary Algorithms on Monotone Functions . . . 3
Johannes Lengler

Artificial Immune Systems Can Find Arbitrarily Good Approximations
for the NP-Hard Partition Problem . 16

Dogan Corus, Pietro S. Oliveto, and Donya Yazdani

A Simple Proof for the Usefulness of Crossover in Black-Box Optimization. . . 29
Eduardo Carvalho Pinto and Carola Doerr

Destructiveness of Lexicographic Parsimony Pressure and Alleviation
by a Concatenation Crossover in Genetic Programming 42

Timo Kötzing, J. A. Gregor Lagodzinski, Johannes Lengler,
and Anna Melnichenko

Exploration and Exploitation Without Mutation: Solving the Jump
Function in HðnÞ Time . 55

Darrell Whitley, Swetha Varadarajan, Rachel Hirsch,
and Anirban Mukhopadhyay

Fast Artificial Immune Systems . 67
Dogan Corus, Pietro S. Oliveto, and Donya Yazdani

First-Hitting Times for Finite State Spaces . 79
Timo Kötzing and Martin S. Krejca

First-Hitting Times Under Additive Drift . 92
Timo Kötzing and Martin S. Krejca

Level-Based Analysis of the Population-Based Incremental
Learning Algorithm . 105

Per Kristian Lehre and Phan Trung Hai Nguyen

Precise Runtime Analysis for Plateaus . 117
Denis Antipov and Benjamin Doerr

Ring Migration Topology Helps Bypassing Local Optima 129
Clemens Frahnow and Timo Kötzing

Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem
with Favorably Correlated Weights . 141

Frank Neumann and Andrew M. Sutton

Theoretical Analysis of Lexicase Selection in Multi-objective Optimization. . . . 153
Thomas Jansen and Christine Zarges

Towards a Running Time Analysis of the (1+1)-EA for OneMax and
LeadingOnes Under General Bit-Wise Noise . 165

Chao Bian, Chao Qian, and Ke Tang

Fitness Landscape Modeling and Analysis

A Surrogate Model Based on Walsh Decomposition
for Pseudo-Boolean Functions . 181

Sébastien Verel, Bilel Derbel, Arnaud Liefooghe, Hernán Aguirre,
and Kiyoshi Tanaka

Bridging Elementary Landscapes and a Geometric Theory
of Evolutionary Algorithms: First Steps . 194

Marcos Diez García and Alberto Moraglio

Empirical Analysis of Diversity-Preserving Mechanisms on Example
Landscapes for Multimodal Optimisation . 207

Edgar Covantes Osuna and Dirk Sudholt

Linear Combination of Distance Measures for Surrogate Models
in Genetic Programming . 220

Martin Zaefferer, Jörg Stork, Oliver Flasch,
and Thomas Bartz-Beielstein

On Pareto Local Optimal Solutions Networks . 232
Arnaud Liefooghe, Bilel Derbel, Sébastien Verel, Manuel López-Ibáñez,
Hernán Aguirre, and Kiyoshi Tanaka

Perturbation Strength and the Global Structure of QAP Fitness Landscapes . . . 245
Gabriela Ochoa and Sebastian Herrmann

Sampling Local Optima Networks of Large Combinatorial Search Spaces:
The QAP Case . 257

Sébastien Verel, Fabio Daolio, Gabriela Ochoa, and Marco Tomassini

Algorithm Configuration, Selection, and Benchmarking

Algorithm Configuration Landscapes: More Benign Than Expected? 271
Yasha Pushak and Holger Hoos

XXVIII Contents – Part II

A Model-Based Framework for Black-Box Problem Comparison
Using Gaussian Processes . 284

Sobia Saleem, Marcus Gallagher, and Ian Wood

A Suite of Computationally Expensive Shape Optimisation Problems
Using Computational Fluid Dynamics . 296

Steven J. Daniels, Alma A. M. Rahat, Richard M. Everson,
Gavin R. Tabor, and Jonathan E. Fieldsend

Automated Selection and Configuration of Multi-Label Classification
Algorithms with Grammar-Based Genetic Programming. 308

Alex G. C. de Sá, Alex A. Freitas, and Gisele L. Pappa

Performance Assessment of Recursive Probability Matching
for Adaptive Operator Selection in Differential Evolution. 321

Mudita Sharma, Manuel López-Ibáñez, and Dimitar Kazakov

Program Trace Optimization . 334
Alberto Moraglio and James McDermott

Sampling Heuristics for Multi-objective Dynamic Job Shop Scheduling
Using Island Based Parallel Genetic Programming 347

Deepak Karunakaran, Yi Mei, Gang Chen, and Mengjie Zhang

Sensitivity of Parameter Control Mechanisms with Respect
to Their Initialization . 360

Carola Doerr and Markus Wagner

Tailoring Instances of the 1D Bin Packing Problem for Assessing
Strengths and Weaknesses of Its Solvers . 373

Ivan Amaya, José Carlos Ortiz-Bayliss,
Santiago Enrique Conant-Pablos, Hugo Terashima-Marín,
and Carlos A. Coello Coello

Machine Learning and Evolutionary Algorithms

Adaptive Advantage of Learning Strategies: A Study Through
Dynamic Landscape . 387

Nam Le, Michael O’Neill, and Anthony Brabazon

A First Analysis of Kernels for Kriging-Based Optimization
in Hierarchical Search Spaces . 399

Martin Zaefferer and Daniel Horn

Challenges in High-Dimensional Reinforcement Learning
with Evolution Strategies . 411

Nils Müller and Tobias Glasmachers

Contents – Part II XXIX

Lamarckian Evolution of Convolutional Neural Networks 424
Jonas Prellberg and Oliver Kramer

Learning Bayesian Networks with Algebraic Differential Evolution 436
Marco Baioletti, Alfredo Milani, and Valentino Santucci

Optimal Neuron Selection and Generalization: NK Ensemble
Neural Networks . 449

Darrell Whitley, Renato Tinós, and Francisco Chicano

What Are the Limits of Evolutionary Induction of Decision Trees? 461
Krzysztof Jurczuk, Daniel Reska, and Marek Kretowski

Tutorials and Workshops at PPSN 2018

Tutorials at PPSN 2018 . 477
Gisele Lobo Pappa, Michael T. M. Emmerich, Ana Bazzan,
Will Browne, Kalyanmoy Deb, Carola Doerr, Marko Ðurasević,
Michael G. Epitropakis, Saemundur O. Haraldsson,
Domagoj Jakobovic, Pascal Kerschke, Krzysztof Krawiec,
Per Kristian Lehre, Xiaodong Li, Andrei Lissovoi, Pekka Malo,
Luis Martí, Yi Mei, Juan J. Merelo, Julian F. Miller, Alberto Moraglio,
Antonio J. Nebro, Su Nguyen, Gabriela Ochoa, Pietro Oliveto,
Stjepan Picek, Nelishia Pillay, Mike Preuss, Marc Schoenauer,
Roman Senkerik, Ankur Sinha, Ofer Shir, Dirk Sudholt, Darrell Whitley,
Mark Wineberg, John Woodward, and Mengjie Zhang

Workshops at PPSN 2018 . 490
Robin Purshouse, Christine Zarges, Sylvain Cussat-Blanc,
Michael G. Epitropakis, Marcus Gallagher, Thomas Jansen,
Pascal Kerschke, Xiaodong Li, Fernando G. Lobo, Julian Miller,
Pietro S. Oliveto, Mike Preuss, Giovanni Squillero, Alberto Tonda,
Markus Wagner, Thomas Weise, Dennis Wilson, Borys Wróbel,
and Aleš Zamuda

Author Index . 499

XXX Contents – Part II

Numerical Optimization

A Comparative Study of Large-Scale
Variants of CMA-ES

Konstantinos Varelas1,2(B), Anne Auger1, Dimo Brockhoff1,
Nikolaus Hansen1, Ouassim Ait ElHara1, Yann Semet3,

Rami Kassab2, and Frédéric Barbaresco2

1 Inria, RandOpt team, CMAP, École Polytechnique, Palaiseau, France
{konstantinos.varelas,anne.auger,dimo.brockhoff,nikolaus.hansen,

ouassim.elHara}@inria.fr
2 Thales LAS France SAS - Limours, Limours, France

3 Thales Research Technology, Palaiseau, France
yann.semet@thalesgroup.com

Abstract. The CMA-ES is one of the most powerful stochastic numer-
ical optimizers to address difficult black-box problems. Its intrinsic
time and space complexity is quadratic—limiting its applicability with
increasing problem dimensionality. To circumvent this limitation, differ-
ent large-scale variants of CMA-ES with subquadratic complexity have
been proposed over the past ten years. To-date however, these variants
have been tested and compared only in rather restrictive settings, due
to the lack of a comprehensive large-scale testbed to assess their per-
formance. In this context, we introduce a new large-scale testbed with
dimension up to 640, implemented within the COCO benchmarking plat-
form. We use this testbed to assess the performance of several promising
variants of CMA-ES and the standard limited-memory L-BFGS. In all
tested dimensions, the best CMA-ES variant solves more problems than
L-BFGS for larger budgets while L-BFGS outperforms the best CMA-ES
variant for smaller budgets. However, over all functions, the cumulative
runtime distributions between L-BFGS and the best CMA-ES variants
are close (less than a factor of 4 in high dimension).

Our results illustrate different scaling behaviors of the methods,
expose a few defects of the algorithms and reveal that for dimension
larger than 80, LM-CMA solves more problems than VkD-CMA while
in the cumulative runtime distribution over all functions the VkD-CMA
dominates LM-CMA for budgets up to 104 times dimension and for all
budgets up to dimension 80.

1 Introduction

The CMA-ES is a stochastic derivative-free optimization algorithm, recognized
as one of the most powerful optimizers for solving difficult black-box optimiza-
tion problems, i.e., non-linear, non quadratic, non-convex, non-smooth, and/or
noisy problems [6]. Its intrinsic complexity in terms of memory and internal com-
putational effort is quadratic in the dimensionality, n, of the black-box objective
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 3–15, 2018.
https://doi.org/10.1007/978-3-319-99253-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_1&domain=pdf
https://github.com/numbbo/coco

4 K. Varelas et al.

function to be solved, denoted in a generic manner as: f : x ∈ R
n �→ R. This com-

plexity restricts its application when the number n of variables is in the order of
a few hundred. For this reason, different “large”-scale variants of CMA-ES have
been introduced over the past ten years. They all aim at a sub-quadratic space
and time complexity [3,7,9,11,12,14,15]. The common feature of the variants
is to restrict the model of the covariance matrix and provide a sparse represen-
tation that can be stored, sampled and updated in O(n × m) operations with
m � n. Yet the approaches to do so are quite different. On the one-hand, the
seminal limited memory BFGS, L-BFGS [10], inspired the introduction of the
limited memory CMA (LM-CMA, [11,12]) where the main idea is to approxi-
mate at iteration t � m the sum over t terms composing the covariance matrix
by a sum over m terms. This same approach is used in the RmES algorithm
[9]. On the other-hand, the sep-CMA [14] and VkD-CMA [3] algorithms enforce
a predefined structure of the covariance matrix (for instance diagonal for the
sep-CMA) and project at each iteration the updated matrix onto the restricted
space.

After designing a novel algorithm, the next step is to assess its performance
and compare it with its competitors. This benchmarking step is crucial but
is known to be non-trivial and tedious. For this reason, during the past ten
years, an important effort went into the development of the COCO platform to
introduce a thorough benchmarking methodology and to automatize the tedious
benchmarking process [4]. With COCO, algorithms are put at a standardized
test and performance assessment is greatly facilitated as users can download and
compare datasets of 180+ previously benchmarked algorithms.1

Yet so far, the testbeds provided with COCO are not suitable for benchmark-
ing large-scale algorithms. One bottleneck with the current suite is the use of full
orthogonal matrices with n2 coefficients in the definition of many of the func-
tions which makes the computation too expensive for thorough benchmarking
studies. For this reason, it was proposed to replace these matrices by orthogonal
matrices with a sparse structure: permuted block-diagonal matrices [1]. We uti-
lize this idea to introduce a large-scale test suite with search space dimensions
from 20 up to 640.

In this context, the main contributions of this paper are (i) the introduc-
tion of a large-scale testbed within the COCO framework and (ii) the com-
parative review and performance assessment of the currently most promising
large-scale variants of CMA-ES and their comparison to the well established
L-BFGS algorithm. Besides the general performance quantification and compar-
ison, the benchmarking allows to identify defects of the algorithms or of their
implementations (that shall be fixed in the near future).

1 All raw datasets are available for download at http://coco.gforge.inria.fr/doku.php?
id=algorithms while already postprocessed results are available (without the need
to install COCO) at http://coco.gforge.inria.fr/ppdata-archive.

https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/numbbo/coco
http://coco.gforge.inria.fr/doku.php?id=algorithms
http://coco.gforge.inria.fr/doku.php?id=algorithms
https://github.com/numbbo/coco
http://coco.gforge.inria.fr/ppdata-archive

A Comparative Study of Large-Scale Variants of CMA-ES 5

2 The bbob-Largescale COCO Testbed

Performance assessment is a crucial part of algorithm design and an impor-
tant aspect when recommending algorithms for practical use. Choosing a rep-
resentative testbed and setting up an assessment methodology are non-trivial
and tedious. Hence, it is desirable to automatize the assessment in a standard-
ized benchmarking process. In recent years, the Comparing Continuous Optimiz-
ers platform (COCO, [4]) has been developed particularly for this purpose and
became a quasi-standard in the optimization community in the case of medium-
scale unconstrained black-box optimization. The specific aspects of the COCO
platform are: (i) a quantitative performance assessment by reporting runlengths
which results in a budget-free experimental setting, (ii) fully scalable test func-
tions in standard dimensions 2–40, (iii) full automation of the experiments with
example code in C/C++, Java, MATLAB/Octave, python, and R, (iv) the avail-
ability of (pseudo-random) instances of parametrized functions which allow to
naturally compare deterministic and stochastic algorithms, (v) extensive post-
processing functionalities to visualize and analyze the experimental data, and
finally, (vi) a large amount of publicly available results to compare with (from
running, so far, 180+ algorithm implementations).

Each test problem in the COCO platform comes in the form of instances
which are constructed in an “onion-style” through basic pseudo-random trans-
formations of a raw function: f(x) = H1 ◦ . . .◦Hk1(fraw(T1 ◦ . . .◦Tk2(x))), where
fraw is the underlying raw function—usually the simplest representative of the
function class (like the sphere function with optimum in zero). The Ti : Rn → R

n

are search space transformations and Hi : R → R are function value transforma-
tions. Examples of the former are rotations of the search space or translations of
the optimum. An example of the latter are strictly increasing (monotone) func-
tions. The transformations applied to the raw function are actually (pseudo)-
random, rendering an instance of a parametrized transformation [4].

All currently available test suites of COCO such as the noiseless, single-
objective bbob suite with its 24 functions [5] are scalable in the problem dimen-
sion and could be used for benchmarking in a large-scale setting. However,
their internal computation scales quadratically with the dimension due to the
search space rotations applied in most functions—rendering the experiments in
higher dimension too costly to be practicable. Also, real-world problems in higher
dimension will, most likely, not have quadratically many degrees of freedom. In
consequence, artificial test functions, that aim at capturing the typical real-world
challenges, shall likely also not have quadratically many internal parameters.

In [1], the authors therefore suggest search space rotations that have linear
internal computation costs by being less “rich” than the rotation matrices of the
standard bbob test suite. Full rotation matrices R are replaced by a sequence
of three matrices PleftBPright in which Pleft and Pright are permutation matrices
(with exactly one “1” per row and column) and B is an orthogonal block-diagonal
matrix. The permutation matrices Pleft and Pright are constructed by ns so-called
truncated uniform swaps [1]: Each swap chooses a first variable i uniform at
random and the second variable within the vicinity of the first variable, i.e.,

https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/numbbo/coco

6 K. Varelas et al.

uniformly at random within the set {lb(i), . . . , ub(i)} with lb(i) = max(1, i − rs)
and ub(i) = min(n, i + rs) and where rs is a parameter indicating the distance
range between the two swapped variables. The computation of PleftBPright can
be done in linear time, see [1] for details.

In this paper, we introduce the new large-scale variant of the standard bbob
test suite of COCO, denoted as bbob-largescale, based on the above ideas.
Implemented in the COCO platform2, it is built on the same 24 raw functions
of bbob with the default dimensions 20, 40, 80, 160, 320, and 640—the first
two overlapping with the original bbob suite for compatibility and consistency
reasons. The full rotation matrices of the bbob suite are replaced by the above
construction of permutation and block matrices. Following the recommendations
of [1], we chose to do ns = n swaps with a range of rs = �n/3	 and to have all
blocks of the same size of min {40, n} except for the last, possibly smaller block.

One additional change concerns functions with distinct axes: three of the bbob
functions, namely the Discus, the Sharp Ridge and the Bent Cigar function, have
been modified in order to have a constant proportion of distinct axes when the
dimension increases [1].

All function instances have their (randomly chosen) global optimum in
[−5, 5]n and for all but the linear function also the entire (hyper-)ball of radius 1
with the optimum as center lies within this range. Except for the Schwefel, Schaf-
fer, Weierstrass, Gallagher and Katsuura functions, the function value is cor-
rected by min {1, 40/n} to make the target values comparable over a large range
of dimensions. The optimal function value offset is randomly drawn between
−1000 and 1000.

Compared to the CEC’08 testbed [17], the bbob-largescale test suite
has a wider range of problems and difficulties, allows to investigates scaling,
applies various regularity-breaking transformations and provides pseudo-random
instances to compare naturally deterministic and stochastic algorithms.

3 The CMA-ES Algorithm and Some Large-Scale
Variants

We introduce in this section the CMA-ES algorithm and give then an overview of
large-scale variants that have been introduced in recent years, with an emphasis
on the variants that are later empirically investigated.

3.1 The (μ/μw , λ)-CMA-ES

The (μ/μw, λ)-CMA-ES algorithm samples λ ≥ 2 candidate solutions from a
multivariate normal distribution N (mt, σt

2Ct) where the mean mt ∈ R
n is the

incumbent solution, σt is a scalar referred to as step-size and Ct ∈ R
n×n is a

positive definite covariance matrix. The algorithm adapts mean, step-size and

2 The source code of the new test suite (incl. adaptations in COCO’s postprocessing)
can be found in the devel-LS-development branch of the COCO Github page.

https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/numbbo/coco/tree/786e3135d860ec4ef932858ad6217f3f5a94ee29
https://github.com/numbbo/coco

A Comparative Study of Large-Scale Variants of CMA-ES 7

covariance matrix so as to learn second order information on convex-quadratic
functions. The CMA-ES is hence a stochastic counterpart of quasi-Newton meth-
ods like the BFGS algorithm [10].

The sampling of the candidate solutions (xi
t)1≤i≤λ is typically done by com-

puting the eigen-decomposition of the covariance matrix as Ct = BtD2
tB

�
t where

Bt contains an orthonormal basis of eigenvectors, and Dt is a diagonal matrix
containing the square roots of the corresponding eigenvalues. The square root
of Ct is computed as C1/2

t = BtDtB�
t and used for sampling the candidate

solutions as xi
t = mt + σtC

1/2
t zi

t with zi
t ∼ N (0, I), where N (0, I) denotes a

multivariate normal distribution with mean zero and covariance matrix identity.
The eigendecomposition has a complexity of O (

n3
)

but is done only every O(n)
evaluations (lazy-update) reducing the complexity of the sampling to O(n2).

The candidate solutions are then evaluated on f and ranked from the best to
the worse, f(x1:λ

t) ≤ . . . ≤ f(xλ:λ
t). Mean, step-size and covariance matrix are

then updated using the ranked solutions. More precisely the new mean equals
mt+1 =

∑μ
i=1 wixi:λ

t where μ (typically) equals �λ/2	 and wi are weights satis-
fying w1 ≥ w2 ≥ . . . ≥ wμ > 0. Two mechanisms exist to update the covariance
matrix, namely the rank-one and rank-mu update. The rank one update adds
the rank-one matrix pc

t+1[p
c
t+1]

� to the current covariance matrix, where pc
t+1 is

the evolution path and defined as pc
t+1 = (1 − cc)pc

t +
√

cc (2 − cc) μeff (mt+1 −
mt)/σt, with μeff = 1/

∑μ
i=1 w2

i and cc < 1. The rank-mu update adds the
matrix Cμ

t+1 =
∑μ

i=1 wizi:λ
t [zi:λ

t]� with zi:λ
t = (xi:λ

t − mt)/σt such that overall
the update of the covariance matrix reads

Ct+1 = (1 − c1 − cμ)Ct + c1pc
t+1[p

c
t+1]

� + cμC
μ
t+1 (1)

where c1, cμ belong to (0, 1). The step-size is updated using the Cumulative
step-size adaptation (CSA) that utilizes an evolution path cumulating steps
of the mean in the isotropic coordinate system with principal axes of Ct:
pσ

t+1 = (1 − cσ)pσ
t +

√
cσ (2 − cσ) μeffC

− 1
2

t
mt+1−mt

σt
, where cσ < 1 and compares

the length of the evolution path with its expected length under random selection
in order to increase the step-size when the first is larger, or decrease it other-
wise. The update of the step-size reads σt+1 = σt exp(dσ

cσ
(‖pσ

t+1‖/E[‖N (0, I)‖]))

with dσ > 0. Remark that the computation of C− 1
2

t is immediate via C− 1
2

t =
BtD−1

t B�
t (it is done at the same time than the eigendecomposition of Ct every

O(n) iterations with a complexity of O(n3)).

Cholesky-CMA. An alternative to the previous algorithm was proposed in [16].
Instead of using the eigendecomposition of the covariance matrix to sample can-
didate solutions, it uses a decomposition of Ct as Ct = AtA�

t . Indeed assume
that At is known, then sampling xt

i as mt + σtAtzi
t with zi

t ∼ N (0, I) results
in a vector following N (mt, σ

2
tCt). When At is lower (or upper) triangular the

decomposition is unique and called Cholesky factorization. However, in [16] the
term Cholesky factorization is used without assuming that the matrix At is tri-
angular. We will continue to use Cholesky-CMA for the ensuing algorithm to be
consistent with the previous algorithm name.

8 K. Varelas et al.

The key idea for the Cholesky-CMA is that instead of adapting the covariance
matrix Ct, the Cholesky factor At is directly updated (and hence sampling
does not require factorization a matrix). The method solely conducts the rank-
one update of the covariance matrix, Ct+1 = (1 − c1)Ct + c1pc

t+1[p
c
t+1]

�, by
updating the matrix At such that Ct+1 = At+1A�

t+1. Indeed, let vt+1 be defined
implicitly via Atvt+1 = pc

t+1, then the update of At reads

At+1 =
√

1 − c1At +
√

1 − c1

‖vt+1‖2

(√
1 +

c1

1 − c1
‖vt+1‖2 − 1

)
pc

t+1vt+1
� , (2)

if vt+1 �= 0 and At+1 =
√

1 − c1At if vt+1 = 0 (see [16, Theorem 1]). A simi-
lar expression holds for the inverse A−1

t+1 (see [16, Theorem 2]). Sampling of a
multivariate normal distribution using the Cholesky factor still requires O(n2)
operations due to the matrix-vector multiplication. However, the Cholesky-CMA
has been used as foundation to construct numerically more efficient algorithms as
outlined below. Recently, a version of CMA using Cholesky factorization enforc-
ing triangular shapes for the Cholesky factors has been proposed [8].

3.2 Large-Scale Variants of CMA-ES

The quadratic time and space complexity of CMA-ES (both the original and
Cholesky variant) becomes critical with increasing dimension. This has moti-
vated the development of large-scale variants with less rich covariance models,
i.e., with o(n2) parameters. Reducing the number of parameters reduces the
memory requirements and, usually, the internal computational effort, because
fewer parameters must be updated. It also has the advantage that learning rates
can be increased. Hence, learning of parameters can be achieved in fewer num-
ber of evaluations. Given the model is still rich enough for the problem at hand,
this further reduces the computational costs to solve it in particular even when
the f -computation dominates the overall costs. Hence, in the best case scenario,
reducing the number of parameters from n2 to n reduces the time complexity to
solve the problem from n2 to n if f -computations dominate the computational
costs and from n4 to n2 if internal computations dominate.

We review a few large-scale variants focussing on those benchmarked later
in the paper.

sep-CMA-ES [14]. The separable CMA-ES restricts the full covariance matrix to
a diagonal one and thus has a linear number of parameters to be learned. It loses
the ability of learning the dependencies between decision variables but allows to
exploit problem separability. The sep-CMA-ES achieves linear space and time
complexity.

VkD-CMA-ES [2,3]. A richer model of the covariance matrix is used in the VkD-
CMA-ES algorithm where the eligible covariance matrices are of the form Ct =
Dt(I+VtV�

t)Dt where Dt is a n-dimensional positive definite diagonal matrix
and Vt = [v1

t . . .vk
t] where vi

t ∈ R
n are orthogonal vectors [3]. The parameter k

ranges from 0 to n − 1: when k = 0 the method recovers the separable CMA-ES

A Comparative Study of Large-Scale Variants of CMA-ES 9

while for k = n−1 it recovers the (full)-CMA-ES algorithm. The elements of Ct+1

are determined by projecting the covariance matrix updated by CMA-ES given
in (1) denoted as Ĉt+1 onto the set of eligible matrices. This projection is done by
approximating the solution of the problem argmin

(D,V)

‖D
(
I + VV�

)
D − Ĉt+1‖F

where ‖ · ‖F stands for the Frobenius norm. This projection can be computed
without computing Ĉt+1. The space complexity of VkD-CMA-ES is O (nr) and
the time complexity is O (nr max (1, r/λ)), where r = k + μ + λ + 1. Note that
the algorithm exploits both the rank-one and rank-mu update of CMA-ES as
the projected matrices result from the projection of the matrix Ĉt+1 updated
with both updates.

A procedure for the online adaptation of k has been proposed in [2]. It tracks
in particular how the condition number of the covariance matrix varies with
changing k. The variant with the procedure of online adaptation of k as well
as with fixed k = 2 is benchmarked in the following. The VkD-CMA algorithm
uses Two Point Adaptation (TPA) to adapt the step-size. The TPA is based on
the ranking difference between two symmetric points around the mean along the
previous mean shift.

The limited-memory (LM) CMA [11,12]. The LM-CMA is inspired by the gradi-
ent based limited memory BFGS method [10] and builds on the Cholesky CMA-
ES. If A0 = I, setting a =

√
1 − c1 and bt =

√
1−c1

‖vt+1‖2

(√
1 + c1

1−c1
‖vt+1‖2 − 1

)
,

then (2) can be re-written as At+1 = atI +
∑t

i=1 at−ibi−1pc
iv

�
i . This latter

equation is approximated by taking m elements in the sum instead of t. Ini-
tially, m was proposed to be fixed to O(log(n)). Later, better performance has
been observed with m in the order of

√
n [11], imposing O(n3/2) computational

cost. Sampling can be done without explicitly computing At+1 and the resulting
algorithm has O(mn) time and space complexity. The choice of the m elements
of the sum to approximate At+1 seems to be essential. In L-BFGS the last m
iterations are taken while for LM-CMA the backward Nsteps × k iterations for
k = 0, . . . , m − 1 are considered (that is we consider the current iteration, the
current iteration minus Nsteps and so on). The parameter Nsteps is typically equal
to n. Since Atvt+1 = pc

t+1, the inverse factor A−1
t is employed for the computa-

tion of vt+1, but an explicit computation is not needed, similarly as for At. To
adapt the step-size, the LM-CMA uses the population success rule (PSR) [12].

A variant of LM-CMA was recently proposed, the LM-MA, which is how-
ever not tested here because (i) the code is not available online and (ii) the
performance of LM-MA seems not to be superior to LM-CMA [13].

The RmES [9]. The idea for the RmES algorithm is similar to the LM-
CMA algorithm. Yet, instead of using the Cholesky-factor, the update of Ct

is considered. Similarly as for LM-CMA, if C0 = I and solely the rank-one
update is used for CMA-ES we can write the update as Ct = (1 − c1)

m I +
c1

∑m
i=1 (1 − c1)

m−i p̂c
i p̂

c�
i . In RmES, m terms of the sum are considered and

m = 2 is advocated. Additionally, like in LM-CMA, the choice of terms entering
the sum is by maintaining a temporal distance between generations. Sampling

10 K. Varelas et al.

of new solutions is done from the m vectors without computing the covariance
matrix explicitly. The RmES adapts the step-size similarly to PSR.

A main difference to LM-CMA is that RmES is formulated directly on the
covariance matrix, thus an inverse Cholesky factor is not needed. This does not
improve the order of complexity, though, which is O(mn) as in LM-CMA.

The presented algorithms do not of course form an exhaustive list of proposed
methods for large-scale black-box optimization. We refer to [13] for a more thor-
ough state-of-the-art and point out that our choice is driven by variants that
currently appear to be the most promising or by variants like sep-CMA, impor-
tant to give baseline performance.

4 Experimental Results

We assess the performance of implementations of the algorithms presented in the
previous section on the bbob-largescale suite. We are particularly interested to
identify the scaling of the methods, possible algorithm defects, and to quantify
the impact of population size. Because we benchmark algorithm implementa-
tions, as opposed to mathematical algorithms, observations may be specific to
the investigated implementation only.

Experimental Setup. We run the algorithms sep-CMA, LM-CMA, VkD-CMA,
RmES on the default bbob test suite in dimensions 2, 3, 5, 10 and on the proposed
bbob-largescale suite implemented in COCO. Additionally, we run the limited
memory BFGS, L-BFGS, still considered as the state-of-the-art algorithm for
gradient based optimization [10]. Gradients are estimated via finite-differences.

For VkD-CMA, the Python implementation from pycma, version 2.6.0, was
used, for sep-CMA the version from sites.google.com/site/ecjlmcma, and for L-
BFGS the optimization toolbox of scipy 0.12.1. We consider two versions of LM-
CMA provided by the author at sites.google.com/site/ecjlmcma and .../lmcmaeses

related to the articles [12] denoted LM-CMA’14 and [11] denoted LM-CMA. The
implementation of RmES was kindly provided by its authors [9].

Experiments were conducted with default3 parameter values of each algo-
rithm and a maximum budget of 5 · 104n. Automatic restarts are conducted
once a default stopping criterion is met until the maximum budget is reached.
For each function, fifteen instances are presented. For the first run and for all
(automatic) restarts, the initial point was uniform at random between [−4, 4]n

for all algorithms, while the initial step-size was set to 2 for all CMA variants.
For LM-CMA, sep-CMA and RmES, population sizes of 4 + �3 log n	,

2n + �10/n	 and 10n were tested and the experiments were conducted for the
same budget and instances. A suffix P2 (P10) is used to denote the respective
algorithms. For VkD-CMA, a second experiment has been run where the number
of vectors was fixed to k = 2, denoted as V2D-CMA.

3 Except L-BFGS, where the factr parameter was set to 1.0 for very high precision.

https://github.com/numbbo/coco
https://github.com/CMA-ES/pycma
https://sites.google.com/site/ecjlmcma
https://www.scipy.org
https://sites.google.com/site/ecjlmcma
https://sites.google.com/site/lmcmaeses

A Comparative Study of Large-Scale Variants of CMA-ES 11

Fig. 1. Bootstrapped ECDF of the number of objective function evaluations divided
by dimension (FEvals/D) for 51 targets in 10[−8..2] for all functions in 40-D (left) and
320-D.

Fig. 2. Scaling graphs: Average Runtime (aRT) divided by dimension to reach a target
of 10−8 versus dimension for selected functions. Light symbols give the maximum
number of evaluations from the longest trial divided by dimension.

Performance assessment. We measure the number of function evaluations to
reach a specified target function value, denoted as runtime, RT. The average
runtime, aRT, for a single function and target value is computed as the sum of
all evaluations in unsuccessful trials plus the sum of runtimes in all successful
trials, both divided by the number of successful trials. For Empirical Cumulative
Distribution Functions (ECDF) and in case of unsuccessful trials, runtimes are
computed via simulated restarts [4] (bootstrapped ECDF). The success rate is
the fraction of solved problems (function-target pairs) under a given budget as
denoted by the y-axis of ECDF graphs. Horizontal differences between ECDF
graphs represent runtime ratios to solve the same respective fraction of problems
(though not necessarily the same problems) and hence reveal how much faster
or slower an algorithm is.

Overview. A complete presentation of the experimental results is available at
cocoexprm.gforge.inria.fr. Figure 1 presents for each algorithm the runtime dis-
tribution aggregated over all functions. Overall, the distributions look surpris-
ingly similar in particular in larger dimension. After 5·104n evaluations in 320-D,
between 30% (sepCMA) and 46% (LMCMA) of all problems have been solved.
In all dimensions, for a restricted range of budgets, the success rate of L-BFGS is
superior to all CMA variants. The picture becomes more diverse with increasing
budget where L-BFGS is outperformed by CMA variants. We emphasize that
even domination over the entire ECDF does not mean that the algorithm is

http://cocoexprm.gforge.inria.fr

12 K. Varelas et al.

Fig. 3. Bootstrapped ECDF of the number of objective function evaluations divided
by dimension (FEvals/D) for 51 targets in 10[−8..2] for the ellipsoid function in 20-D
and 640-D.

faster on every single problem, because runtimes are shown in increasing order
for each algorithm, hence the order of problems as shown most likely differs.

Up to a budget of 104n, the performance similarity between LM-CMA and
RmES is striking. The performance is almost identical on the Sphere, Ellipsoid,
Linear Slope and Sum of Different Powers functions in dimensions equal or
larger to 20. On the Bent Cigar function in dimensions greater or equal to 80
and for a budget larger than 104n, LM-CMA is notably superior to RmES.

Scaling with dimension. Fig. 2 shows the average runtime scaling with dimension
on selected functions. On the separable Ellipsoid for n ≥ 20 sep-CMA with
population size ≥ 2n (not shown in Fig. 2) and VkD scale worse than linear.
Starting from dimension 20, LM-CMA and RmES show runtimes of aRT ≈
2–7×104n. With default population size, sep-CMA performs overall best and is
for n ≥ 20 even more than twenty times faster than L-BFGS. The latter scales
roughly quadratically for small dimensions and (sub-)linear (with a much larger
coefficient) for large dimensions. This behavior is a result of a transition when
the dimension exceeds the rank (here 10) of the stored matrix. On the linear
function, algorithms scale close to linear with a few exceptions. With population
size 2n + �10/n	 or larger (not shown in Fig. 2), the scaling becomes worse in
all cases (which means a constant number of iterations is not sufficient to solve
the “linear” problem). In particular, sep-CMA reveals in this case a performance
defect due to a diverging step-size (which disappears with option ’AdaptSigma’:

’CMAAdaptSigmaTPA’), as verified with single runs. On both Rosenbrock functions,
L-BFGS scales roughly quadratically.

Restricting the model. The particular case of the ill-conditioned non-separable
ellipsoidal function in Fig. 3 illustrates interesting results: in 20D, VkD-CMA
solves the function, i.e. reaches the best target value faster (by a factor of 10
at least) than any other method. In 640-D any other CMA variant with default
parameter values except sep-CMA outperforms it.

On the Ellipsoid function only VkD-CMA scales quadratically with the
dimension. All other algorithms either scale linearly or do not solve the prob-
lem for larger dimension. On the Discus function (with a fixed proportion of

http://cocoexprm.gforge.inria.fr/Second_Experiments/LBFGS_LMCMA_LMCMA_RmES_SepCM_VkD_V2D_et_al__/pprldmany-single-functions/pprldmany_f001_160D.svg
http://cocoexprm.gforge.inria.fr/Second_Experiments/LBFGS_LMCMA_LMCMA_RmES_SepCM_VkD_V2D_et_al__/pprldmany-single-functions/pprldmany_f010_160D.svg
http://cocoexprm.gforge.inria.fr/Second_Experiments/LBFGS_LMCMA_LMCMA_RmES_SepCM_VkD_V2D_et_al__/pprldmany-single-functions/pprldmany_f005_160D.svg
http://cocoexprm.gforge.inria.fr/Second_Experiments/LBFGS_LMCMA_LMCMA_RmES_SepCM_VkD_V2D_et_al__/pprldmany-single-functions/pprldmany_f014_160D.svg
http://cocoexprm.gforge.inria.fr/Second_Experiments/LBFGS_LMCMA_LMCMA_RmES_SepCM_VkD_V2D_et_al__/pprldmany-single-functions/pprldmany_f012_160D.svg
http://cocoexprm.gforge.inria.fr/Second_Experiments/LBFGS_LMCMA_LMCMA_LMCMA_LMCMA_RmES_RmES-_et_al/ppfigs_f002.svg
http://cocoexprm.gforge.inria.fr/Second_Experiments/LBFGS_LMCMA_LMCMA_LMCMA_LMCMA_RmES_RmES-_et_al/ppfigs_f005.svg
http://cocoexprm.gforge.inria.fr/Second_Experiments/LBFGS_LMCMA_LMCMA_RmES_SepCM_VkD_V2D_et_al__/ppfigs_f010.svg
http://cocoexprm.gforge.inria.fr/Second_Experiments/LBFGS_LMCMA_LMCMA_RmES_SepCM_VkD_V2D_et_al__/pprldmany-single-functions/pprldmany_f011_320D.svg

A Comparative Study of Large-Scale Variants of CMA-ES 13

Fig. 4. Bootstrapped ECDF of the number of objective function evaluations divided by
dimension (FEvals/D) for 51 targets in 10[−8..2] for the group of multimodal functions
with adequate structure in 40-D (left), 160-D (middle) and 320-D (right).

short axes), VkD-CMA slows down before to reach the more difficult targets
and exhausts the budget. An unusual observation is that LM-CMA performs
considerably better on the Attractive Sector function in the smallest and largest
dimensions. We do not see this effect on LM-CMA’14, where the choice of the
number of the direction vectors is smaller and random. Thus, these effects indi-
cate the importance of properly choosing m [12]. Even though the covariance
matrix model provided by VkD-CMA is richer, the method is outperformed by
RmES and LM-CMA, e.g. on the Discus and Ellipsoid functions in dimension
greater than 80. This suggests that k is adapted to too large values thereby
impeding the learning speed of the covariance matrix.

Fixed versus adapted k. In order to investigate the effect of k-adaptation, we
compare VkD-CMA with adaptive and fixed k = 2. Only in few cases the latter
shows better performance. This is in particular true for the intrinsically not
difficult to solve Attractive Sector function, indicating that the procedure of k
adaptation could impose a defect.

Impact of population size. In Fig. 4, the effect of larger populations is illus-
trated for the multimodal functions with adequate global structure. The CMA
variants with default population size and L-BFGS are clearly outperformed,
solving less than half as many problems. That is, increased population size vari-
ants reach better solutions. Yet, the overall performance drops notably with
increasing dimension. As expected, on the weakly-structured multimodal func-
tions f20-f24, larger populations do not achieve similar performance improve-
ments.

5 Discussion and Conclusion

This paper has (i) introduced a novel large-scale testbed for the COCO platform
and (ii) assessed the performance of promising large-scale variants of CMA-ES
compared to the quasi-Newton L-BFGS algorithm. We find that in all dimen-
sions, L-BFGS generally performs best with lower budgets and is outperformed

http://cocoexprm.gforge.inria.fr/Second_Experiments/LBFGS_LMCMA_LMCMA_RmES_SepCM_VkD_V2D_et_al__/ppfigs_f006.svg
http://cocoexprm.gforge.inria.fr/Second_Experiments/LBFGS_LMCMA_LMCMA_RmES_SepCM_VkD_V2D_et_al__/pprldmany-single-functions/pprldmany_f011_320D.svg
http://cocoexprm.gforge.inria.fr/Second_Experiments/LBFGS_LMCMA_LMCMA_RmES_SepCM_VkD_V2D_et_al__/pprldmany-single-functions/pprldmany_f010_160D.svg
http://cocoexprm.gforge.inria.fr/Second_Experiments/LBFGS_LMCMA_LMCMA_RmES_SepCM_VkD_V2D_et_al__/pprldmany-single-functions/pprldmany_f006_160D.svg
https://github.com/numbbo/coco

14 K. Varelas et al.

by CMA variants as the budget increases. On multi-modal functions with global
structure, CMA-ES variants with increased population size show the expected
decisive advantage over L-BFGS. For larger dimension, the performance on these
multi-modal functions is however still unsatisfying. The study has revealed some
potential defects of algorithms (k-adaptation in VkD-CMA on the Attractive
Sector, Ellipsoid and Discus) and has confirmed the impact and criticality of
the choice of the m parameter in LM-CMA. The VkD-CMA that appears to be
a more principled approach and includes a diagonal component and the rank-
μ update of the original CMA-ES, overall outperforms LM-CMA and RmES
in smaller dimension, while LM-CMA overtakes for the large budgets in larger
dimensions. On single functions, the picture is more diverse, suggesting possible
room for improvement in limited memory and VkD-CMA approaches.

Acknowledgement. The PhD thesis of Konstantinos Varelas is funded by the French
MoD DGA/MRIS and Thales Land & Air Systems.

References

1. Ait ElHara, O., Auger, A., Hansen, N.: Permuted orthogonal block-diagonal trans-
formation matrices for large scale optimization benchmarking. In: Genetic and
Evolutionary Computation Conference (GECCO 2016), pp. 189–196. ACM (2016)

2. Akimoto, Y., Hansen, N.: Online model selection for restricted covariance matrix
adaptation. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G.,
Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 3–13. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45823-6 1

3. Akimoto, Y., Hansen, N.: Projection-based restricted covariance matrix adapta-
tion for high dimension. In: Genetic and Evolutionary Computation Conference
(GECCO 2016), pp. 197–204. Denver, USA, July 2016

4. Hansen, N., Auger, A., Mersmann, O., Tušar, T., Brockhoff, D.: COCO: A
platform for comparing continuous optimizers in a black-box setting (2016).
arXiv:1603.08785

5. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimiza-
tion benchmarking 2009: Noiseless functions definitions. Research Report RR-6829,
INRIA (2009)

6. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

7. Knight, J.N., Lunacek, M.: Reducing the space-time complexity of the CMA-ES.
In: Genetic and Evolutionary Computation Conference (GECCO 2007), pp. 658–
665. ACM (2007)

8. Krause, O., Arbonès, D.R., Igel, C.: CMA-ES with optimal covariance update and
storage complexity. In: NIPS Proceedings (2016)

9. Li, Z., Zhang, Q.: A simple yet efficient evolution strategy for large scale black-box
optimization. IEEE Trans. Evol. Comput. (2017, accepted)

10. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale opti-
mization. Math. Program. 45(3), 503–528 (1989)

11. Loshchilov, I.: LM-CMA: an alternative to L-BFGS for large scale black-box opti-
mization. Evol. Comput. 25, 143–171 (2017)

https://doi.org/10.1007/978-3-319-45823-6_1
http://arxiv.org/abs/1603.08785

A Comparative Study of Large-Scale Variants of CMA-ES 15

12. Loshchilov, I.: A computationally efficient limited memory CMA-ES for large scale
optimization. In: Genetic and Evolutionary Computation Conference (GECCO
2014), pp. 397–404 (2014)

13. Loshchilov, I., Glasmachers, T., Beyer, H.: Limited-memory matrix adaptation for
large scale black-box optimization. CoRR abs/1705.06693 (2017)

14. Ros, R., Hansen, N.: A simple modification in CMA-ES achieving linear time and
space complexity. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C.
(eds.) PPSN 2008. LNCS, vol. 5199, pp. 296–305. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87700-4 30

15. Sun, Y., Gomez, F.J., Schaul, T., Schmidhuber, J.: A linear time natural evolution
strategy for non-separable functions. CoRR abs/1106.1998 (2011)

16. Suttorp, T., Hansen, N., Igel, C.: Efficient covariance matrix update for variable
metric evolution strategies. Mach. Learn. 75(2), 167–197 (2009)

17. Tang, K., et al.: Benchmark functions for the CEC 2008 special session and com-
petition on large scale global optimization (2007)

https://doi.org/10.1007/978-3-540-87700-4_30

Design of a Surrogate Model Assisted
(1+1)-ES

Arash Kayhani and Dirk V. Arnold(B)

Faculty of Computer Science, Dalhousie University,
Halifax, Nova Scotia B3H 4R2, Canada
Arash.Kayhani@dal.ca, dirk@cs.dal.ca

Abstract. Surrogate models are employed in evolutionary algorithms
to replace expensive objective function evaluations with cheaper though
usually inaccurate estimates based on information gained in past itera-
tions. Implications of the trade-off between computational savings on the
one hand and potentially poor steps due to the inaccurate assessment of
candidate solutions on the other are generally not well understood. We
study the trade-off in the context of a surrogate model assisted (1 + 1)-
ES by considering a simple model for single steps. Based on the insights
gained, we propose a step size adaptation mechanism for the strategy
and experimentally evaluate it using several test functions.

1 Introduction

Surrogate models have been proposed as an approach for evolutionary algo-
rithms (EAs) to deal with optimization problems where each evaluation of the
objective function requires a considerable amount of time or incurs a significant
cost. Surrogate models are built using information on candidate solutions that
have been evaluated previously using the true objective function. Evaluating a
new candidate solution using a surrogate model yields a potentially inaccurate
estimate of its true objective function value at a much lower cost than would
be incurred in the exact evaluation. Surrogate modelling is useful if the benefit
of reduced cost outweighs the potentially poorer steps made due to the inexact
evaluation of candidate solutions.

Numerous approaches for incorporating surrogate models in EAs exist and
have been comprehensively surveyed by Jin [8] and Loshchilov [11]. Algorithms
usually are heuristic in nature, and potential consequences of design decisions are
not always well understood. Most recent work on surrogate model assisted EAs
considers relatively sophisticated algorithms. Strategies usually are evaluated
by comparing the approach that uses surrogate modelling techniques with a
corresponding algorithm that does not. A potential pitfall in such comparisons
arises in connection with the use of large populations: if an algorithm for a
given optimization problem uses a larger than optimal population size, then
efficiency can be gained simply by using a trivial surrogate modelling approach
that classifies a fraction of candidate solutions as poor, at no computational cost.
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 16–28, 2018.
https://doi.org/10.1007/978-3-319-99253-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_2&domain=pdf

Design of a Surrogate Model Assisted (1 + 1)-ES 17

Clearly, the computational savings in this case are due to the effective reduction
of the population size rather than to surrogate modelling.

We contend that it is desirable to develop an improved understanding of the
potential implications of the use of surrogate modelling techniques, and that such
an understanding can be gained by analyzing the behaviour of surrogate model
assisted EAs using simple test functions that allow comparing the performance of
the algorithms against a well established baseline. The contributions of this paper
are as follows: after briefly reviewing related work in Sect. 2, in Sect. 3 we propose
a simple model for surrogate model assisted EAs and use it to study the single-
step behaviour of a surrogate model assisted (1 + 1)-ES1 on quadratic sphere
functions. We then use the insights gained to propose a step size adaptation
mechanism for that algorithm in Sect. 4, and we evaluate its performance using
several test functions. Section 5 concludes with a brief discussion and future
work.

2 Related Work

The use of surrogate models in EAs can be traced back to the 1980s. Both Jin
[8] and Loshchilov [11] present comprehensive surveys of the development of the
field. Notable strategies include, though are not limited to, the Gaussian Process
Optimization Procedure (GPOP) by Büche et al. [4] and the Local Meta-Model
Covariance Matrix Adaptation Evolution Strategy (lmm-CMA-ES) by Kern
et al. [9]. GPOP iterates the optimization of a Gaussian process based model of
the objective using CMA-ES [7] and the subsequent evaluation and addition of
the solution obtained to the training set. With computational cost determined by
the number of (exact) objective function evaluations required to reach the opti-
mal solution to within some target accuracy, Büche et al. [4] report a speed-up by
a factor between four and five compared to CMA-ES on quadratic sphere func-
tions and on Schwefel’s function, and smaller speed-ups on Rosenbrock’s func-
tion. lmm-CMA-ES use locally weighted regression models in connection with an
approximate ranking procedure within the CMA-ES. With full quadratic models,
Kern et al. [9] report a speed-up by a factor between two and eight compared to
CMA-ES on unimodal functions, including the quadratic sphere, Schwefel’s func-
tion, and Rosenbrock’s function. More recent surrogate model assisted CMA-ES
variants include the Surrogate-Assisted Covariance Matrix Adaptation Evolu-
tion Strategy (s∗ACM-ES) by Loshchilov et al. [13] as well as several further
algorithms surveyed and compared by Pitra et al. [14].

It is interesting to note that when considering unimodal test functions and
comparing with relatively sophisticated black box optimization algorithms such
as CMA-ES, the speed-ups reported as a result of using surrogate models appear
to be a small factor (usually less than eight, frequently no larger than four), irre-
spective of the dimension of the problem. While larger speed-ups can be achieved
when using surrogate models that perfectly fit the functions being optimized
(e.g., quadratic models for optimizing quadratic functions), this observation is
1 See Hansen et al. [6] for evolution strategy terminology.

18 A. Kayhani and D. V. Arnold

not altogether unexpected in light of the performance bounds for black box
optimization algorithms derived by Teytaud and Gelly [17].

A further interesting observation is that surrogate model assisted EAs tend to
be relatively complicated and combine multiple heuristics for good performance.
Notably, no surrogate model assisted version of the (1+1)-ES can be found in the
literature. A seeming exception proposed by Chen and Zou [5] is not invariant
to translations of the coordinate system — a property considered crucial for
solving general unconstrained optimization problems — and does not include a
mechanism for the adaptation of its step size. The Model Assisted Steady-State
Evolution Strategy (MASS-ES) by Ulmer et al. [18] is a (μ + λ)-ES that can in
principle be run with μ = λ = 1, but was not designed with those settings in mind
and it is unclear whether its step size adaptation approach is effective under those
conditions. Given the relative efficiency of the (1+1)-ES for unimodal black box
problems and the relatively large body of knowledge regarding its convergence
properties on convex functions, we argue that it is natural to ask to what degree
the algorithm can be accelerated through the use of surrogate models, and how
its step size can be adapted successfully.

3 Analysis

In order to gain a better understanding of potential implications of the use of
surrogate models in EAs, in this section, we employ a simple model for the use of
surrogate models. Specifically, we propose that an EA have the options of either
evaluating a candidate solution accurately, at the cost of one objective function
call, or of obtaining an inaccurate estimate of the solution’s objective function
value at vanishing cost. For simplicity, we assume that the inaccurate objective
function value is a Gaussian random variable with a mean that coincides with
the candidate solution’s exact objective function value and some variance that
models the accuracy of the surrogate model. As a result, techniques previously
employed for the analysis of the behaviour of evolution strategies in the presence
of Gaussian noise become applicable (see [1] and references therein). It would be
straightforward to extend the analysis to biased surrogate models (i.e., models
where the distribution mean differs from the exact objective function value).
Models with a skew distribution of estimation errors could likely be considered
based on analyses of the effects of non-Gaussian noise on the performance of
evolution strategies (see [2]). Also not directly addressed in the present work
are comparison based surrogate models. Loshchilov et al. [12] persuasively argue
for such models in order to preserve invariance properties of comparison based
optimization algorithms. We expect that an analysis analogous to what follows
can be performed for such models.

We consider minimization of the quadratic sphere function f : Rn → R with
f(x) = xTx using a surrogate model assisted (1 + 1)-ES, where throughout
this section the simple model described above substitutes for a “true” surrogate
model. We initially consider a single iteration of the strategy and defer the
discussion of step size adaptation until Sect. 4. The algorithm in each iteration
generates single offspring candidate solution y = x + σz, where x ∈ R

n is

Design of a Surrogate Model Assisted (1 + 1)-ES 19

the best candidate solution obtained so far and is referred to as the parent,
z ∈ R

n is a standard normally distributed random vector, and σ > 0 is a step
size parameter the adaptation of which is to be discussed below. The strategy
uses the surrogate model to obtain an estimate fε(y) of the objective function
value that according to the above assumptions is a random variable with mean
f(y) and some standard deviation σε > 0. Better surrogate models result in
smaller values of σε. If fε(y) > f(x) (i.e., if the surrogate model suggests that
the offspring candidate solution is inferior to the parent), then y is discarded
and the strategy proceeds to the next iteration; otherwise it computes f(y)
at the cost of one objective function call and replaces x with y if and only if
f(y) < f(x) (i.e., if the offspring candidate solution truly is superior to the
parent). In the terminology of Loshchilov [11] this procedure can be considered
a natural implementation of preselection in the (1 + 1)-ES.

The expected step of the strategy can be studied by using a decomposition
of z first proposed by Rechenberg [15]. Vector z is written as the sum of two
components: one in direction of the negative gradient direction −∇f(x) and the
other orthogonal to that. Due to symmetry, the length of the former component
is standard normally distributed; the squared length of the latter is governed by
a χ2-distribution with n − 1 degrees of freedom. The mean of that distribution
is n − 1 and its coefficient of variation tends to zero as n increases. Referring to
δ = n(f(x) − f(y))/(2R2), where R = ‖x‖, as the normalized fitness advantage
of y over its parent, and introducing normalized step size σ∗ = nσ/R, it follows

δ =
n

2R2

(
xTx − (x + σz)T(x + σz)

)
=

n

2R2

(−2σxT z − σ2‖z‖2)

n→∞= σ∗z1 − σ∗2

2
, (1)

where z1 = −xTz/R is a standard normally distributed random variable repre-
senting the length of the component of z in the direction of −∇f(x) and n→∞=
denotes convergence in distribution. Moreover, introducing σ∗

ε = nσε/(2R2), the
estimated normalized fitness advantage (i.e., the normalized fitness advantage
estimated by using the surrogate model to evaluate y) is δε = δ + σ∗

ε zε, where
zε is standard normally distributed.

From the above, the estimated normalized fitness advantage is normally dis-
tributed with mean −σ∗2/2 and variance σ∗2 + σ∗2

ε and thus has probability
density

pδε
(y) =

1
√

2π(σ∗2 + σ∗2
ε)

exp

(

−1
2

(
y + σ∗2/2

)2

σ∗2 + σ∗2
ε

)

. (2)

Moreover, the probability density of z1 conditional on the estimated normalized
fitness advantage δε can be obtained as2

pz1|δε
(z | y) =

√
σ∗2 + σ∗2

ε√
2πσ∗

ε

exp

(

−1
2

(
(σ∗2 + σ∗2

ε)z − σ∗(y + σ∗2/2)
)2

(σ∗2 + σ∗2
ε)σ∗2

ε

)

. (3)

2 Detailed derivations of Eqs. (3), (4), (5), and (6) can be found in a separate document
at web.cs.dal.ca/~dirk/PPSN2018addendum.pdf.

20 A. Kayhani and D. V. Arnold

As y is evaluated using the objective function if and only if it appears superior
to the parent based on the surrogate model, we write peval = Prob[δε > 0] for
the probability of making a call to the objective function. From Eq. (2),

peval = Prob [δε > 0] =
∫ ∞

0

pδε
(y) dy

= Φ

(
−σ∗2/2

√
σ∗2 + σ∗2

ε

)

, (4)

where Φ(·) denotes the cumulative distribution function of the standard normal
distribution. Due to the accounting for computational costs, peval represents the
expected cost per iteration of the algorithm. Similarly, as y replaces x if and only
if δε > 0 and δ > 0, we write pstep = Prob[δε > 0 ∧ δ > 0] for the probability of
the offspring replacing the parent. From Eqs. (2) and (3),

pstep = Prob [δε > 0 ∧ δ > 0] =
∫ ∞

0

pδε
(y)

∫ ∞

σ∗/2

pz1|δε
(z | y) dz dy

=
1√
2π

∫ ∞

σ∗/2

e−z2/2 Φ

(
σ∗z − σ∗2/2

σ∗
ε

)
dz (5)

as δ > 0 is equivalent to z1 > σ∗/2. Finally, the expected value of the normalized
change in objective function value

Δ =

{
δ if δε > 0 and δ > 0
0 otherwise

from one iteration to the next can be computed as

E [Δ] =
∫ ∞

0

pδε
(y)

∫ ∞

σ∗/2

(
σ∗z − σ∗2

2

)
pz1|δε

(z | y) dz dy

=
1√
2π

∫ ∞

σ∗/2

(
σ∗z − σ∗2

2

)
e−z2/2 Φ

(
σ∗z − σ∗2/2

σ∗
ε

)
dz . (6)

Equations (4), (5), and (6) describe the behaviour of the algorithm for n → ∞
and can serve as approximations for finite but not too small n.

If a step size adaptation mechanism and surrogate modelling approach are in
place such that the distributions of σ∗ and σ∗

ε are independent of the iteration
number, then the algorithm converges in expectation linearly with dimension-
normalized rate of convergence

c = −n

2
E

[
log

(
f(xt+1)
f(xt)

)]
= −n

2
E

[
log

(
1 − 2Δ

n

)]
, (7)

where subscripts denote iteration number. However, the rate of convergence does
not account for computational cost as costs are incurred only in those iterations

Design of a Surrogate Model Assisted (1 + 1)-ES 21

Fig. 1. Expected single step behaviour of the surrogate model assisted (1+1)-ES with
unbiased Gaussian surrogate error. The solid lines represent results obtained analyti-
cally in the limit n → ∞. The dots show values observed experimentally for n = 10
(crosses) and n = 100 (circles). The dotted line in the left hand plot illustrates the
corresponding relationship for the (1 + 1)-ES without surrogate model assistance.

where a call to the objective function is made. We thus use η = c/peval (nor-
malized rate of convergence per objective function call) as performance measure
and refer to it as the expected fitness gain. For n → ∞ the logarithm in Eq. (7)
can be linearized and the expected fitness gain is simply η = E[Δ]/peval.

We define noise-to-signal ratio ϑ = σ∗
ε /σ∗ as a measure for the quality of

the surrogate model relative to the step size of the algorithm and in Fig. 1 plot
the evaluation rate peval, the false positive rate pfalse = 1 − pstep/peval (i.e.,
the probability of a candidate solution that is deemed superior by the surro-
gate model to be inferior to the parent according to the true objective func-
tion), and the expected fitness gain against the normalized step size. The lines
show results obtained from Eqs. (4), (5), and (6). The dots show correspond-
ing values observed in experiments with unbiased Gaussian surrogate error for
n ∈ {10, 100} that have been obtained by averaging over 107 iterations. Devia-
tions of the experimental measurements from values obtained in the limit n → ∞
are considerable primarily for large normalized step size and small noise-to-signal
ratio.

It can be seen from Fig. 1 that for given noise-to-signal ratio, the evaluation
rate of the algorithm decreases with increasing step size. For very small steps, one
out of every two steps is deemed successful by the surrogate model; with larger
steps, the algorithm becomes more “selective” when deciding whether to obtain
an exact objective function value for a candidate solution. At the same time,

22 A. Kayhani and D. V. Arnold

Fig. 2. Optimal normalized step size and resulting expected fitness gain of the surrogate
model assisted (1 + 1)-ES plotted against the noise-to-signal ratio. The solid lines
represent results obtained analytically in the limit n → ∞. The dots show values
observed experimentally for n = 10 (crosses) and n = 100 (circles). The dotted lines
represent the optimal values for the (1 + 1)-ES without surrogate model assistance.

except for the case of zero noise-to-signal ratio, the false positive rate increases
with increasing step size. The effect on the expected fitness gain (that accounts
for computational costs) is such that for ϑ > 0 the gain peaks at a finite value
of σ∗. With increasing noise-to-signal ratio, the expected fitness gain decreases.
For ϑ → ∞ the surrogate model becomes useless and the corresponding rela-
tionship for the (1 + 1)-ES without surrogate model assistance first derived by
Rechenberg [15] is recovered (dotted line in the left hand plot in Fig. 1). That
strategy achieves a maximal expected fitness gain of 0.202 at a normalized step
size of σ∗ = 1.224. For moderate values of ϑ, the surrogate model assisted algo-
rithm is capable of achieving much larger expected fitness gain values at larger
step sizes (e.g., for ϑ = 1.0, the maximal achievable expected fitness gain is 0.548
and is achieved at a normalized step size of σ∗ = 1.905). For ϑ = 0 (i.e., a per-
fect surrogate model), both the optimal normalized step size and the expected
fitness gain with increasing step size tend to infinity. However, it is important
to keep in mind that the analytical results have been derived in the limit of
n → ∞ and merely are approximations in the finite-dimensional case. Figure 2
illustrates the dependence of the optimal normalized step size on the noise-to-
signal ratio derived in the limit n → ∞ and shows values of the expected fitness
gain achieved with that step size, both derived analytically for n → ∞ and
measured experimentally for n ∈ {10, 100}. In the finite-dimensional cases the
speed-up achieved through surrogate model assistance for small noise-to-signal
ratios appears to top out between four and five for n = 10 and between six and
seven for n = 100. Notice that these values are roughly in line with speed-ups
reported for surrogate model assisted CMA-ES variants mentioned in Sect. 2.

4 Step Size Adaptation and Experiments

In this section we propose a step size adaptation mechanism for the surro-
gate model assisted (1 + 1)-ES. We then evaluate the algorithm by using a

Design of a Surrogate Model Assisted (1 + 1)-ES 23

Fig. 3. Single iteration of the surrogate model assisted (1 + 1)-ES.

Gaussian Process surrogate model in place of the simple model for surrogate
models employed in Sect. 3 and applying it to several test functions.

The step size of the (1+1)-ES is commonly adapted using the 1/5th rule pro-
posed by Rechenberg [15]. That rule stipulates that the step size of the strategy
can be adapted based on the “success rate” (i.e., the probability of the par-
ent being replaced by the offspring candidate solution). If this rate exceeds one
fifth then the step size is increased; if it is below one fifth then the step size is
decreased. An ingenious implementation of that rule has been proposed by Kern
et al. [10]: rather than approximating the success rate by counting successes over
a number of iterations, increase the step size by multiplication with e0.8/D in
each iteration where the offspring is successful; decrease it by multiplication with
e−0.2/D whenever the parent prevails. Constant D controls the magnitude of the
step size updates and according to Hansen et al. [6] can be set to

√
1 + n. If

one out of every five offspring generated is successful, then the step size updates
cancel each other out on average and the logarithm of the step size remains
unchanged. If the success rate exceeds one fifth, then increasing updates occur
more frequently and the step size will systematically increase and vice versa.

The one-fifth rule is not suitable for the adaptation of the step size of the
surrogate model assisted (1+1)-ES. From Fig. 1, there is no single value of either
the evaluation rate or the false positive rate (both of which are observable) such
that optimal values of the expected fitness gain are obtained near those rates,
for all values of the noise-to-signal ratio that the strategy may operate under.
However, we suggest that the step size can be adapted by considering a combi-
nation of those rates and propose the algorithm shown in Fig. 3. Nonnegative
constants c1, c2, and c3 remain to be determined below. The algorithm decreases
the step size (potentially by differing rates) if the offspring candidate solution is
rejected either based on the objective function value estimate provided by the

24 A. Kayhani and D. V. Arnold

Fig. 4. False positive rate of the surrogate model assisted (1+1)-ES plotted against the
evaluation rate. The solid line represents the optimally performing strategy under the
conditions from Sect. 3, the dotted line the solution of Eq. (8) for c1 = 0.05, c2 = 0.2,
c3 = 0.6.

surrogate model or on the exact value returned by the objective function; it is
increased if the offspring candidate solution is successful.

To choose values for the constants in the algorithm in Fig. 3, consider Fig. 4.
The solid line in that plot has been obtained by using Eq. (6) to numerically
determine the optimal normalized step size for values of the noise-to-signal ratio
that vary from the very small to the very large. Corresponding values of the eval-
uation rate and the false positive rate were then obtained from Eqs. (4) and (5)
and plotted against each other to obtain the solid curve in the plot. Considering
the algorithm in Fig. 3, the step size will be unchanged in expectation if

− (1 − peval)c1 − pevalpfalsec2 + peval(1 − pfalse)c3 = 0. (8)

The solution of Eq. (8) defines a branch of a hyperbola that is shown with a
dotted line in Fig. 4 for the case that c1 = 0.05, c2 = 0.2, and c3 = 0.6. If the
combination of evaluation rate and false positive rate falls above the dotted line,
then the logarithm of the step size will decrease in expectation; if it falls below,
then the step size will increase. One could attempt to tune parameters c1, c2, and
c3 to better match the solid curve in the figure. However, the likely inaccuracy
of the simple model for surrogate models employed in Sect. 3 may render such
efforts futile. For example, biased surrogate models would result in a shift of the
solid curve either to the left or to the right.

In order to test the step size adaptation mechanism thus proposed, we use a
set of five ten-dimensional test problems: sphere functions f(x) = (xTx)α/2 for
α ∈ {1, 2, 3} that we refer to as linear, quadratic, and cubic spheres, Schwefel’s
Problem 1.2 with f(x) =

∑n
i=1(

∑i
j=1 xj)2 (a convex quadratic function with

condition number of the Hessian approximately equal to 175.1; see [16]), and

Design of a Surrogate Model Assisted (1 + 1)-ES 25

Table 1. Median test results.

Median number of objective function calls Speed-up

Without model assistance With model assistance

Linear sphere 1270 503 2.5

Quadratic sphere 673 214 3.1

Cubic sphere 472 198 2.4

Schwefel’s function 2367 1503 1.6

Quartic function 4335 1236 3.5

f(x) =
∑n−1

i=1 [β(xi+1 −x2
i)

2 +(1−xi)2] (see [3]). For β = 100 the latter function
is the Rosenbrock function, the condition number of the Hessian of which at
the optimizer exceeds 3,500, making it tedious to solve without adaptation of
the shape of the mutation distribution. We use β = 1 instead, resulting in the
condition number of the Hessian at the optimizer being 49.0, and we refer to
it as the quartic function. The optimal function value for all problems is zero.
We conduct 101 runs for each problem, both for the surrogate model assisted
(1+1)-ES and for the strategy that does not use model assistance. For surrogate
models, as Büche et al. [4], we employ Gaussian processes. We use a squared
exponential kernel and for simplicity set the length scale parameter of that kernel
to 8σ

√
n, where σ is the step size parameter of the evolution strategy. The

training set consists of the 40 most recently evaluated candidate solutions. The
surrogate model assisted algorithm does not start to use surrogate models until
after iteration 40. All runs are initialized by sampling the starting point from
a Gaussian distribution with zero mean and unit covariance matrix and setting
the initial step size to σ = 1. Runs are terminated when a solution with objective
function value below 10−8 has been found.

Histograms showing the numbers of objective function calls used to solve
the test problems to within the required accuracy are shown in the top row
of Fig. 5, with median values represented in Table 1. The speed-up reported in
the table is the median number of function evaluations used by the algorithm
without surrogate model assistance divided by the corresponding number used by
the surrogate model assisted (1+1)-ES. Speed-ups observed are between 1.6 for
Schwefel’s function and 3.5 for the quartic function. Despite the simplicity of the
surrogate models, the speed-up of 3.1 observed for the quadratic sphere function
is not far below the maximal speed-up between four and five expected from
Fig. 2. Speed-ups observed for the linear and cubic sphere functions are below
that observed for the quadratic sphere, suggesting that the Gaussian process
based models are more accurate for the latter than for the former. Encouragingly,
the simple step size adaptation mechanism proved successful in all runs.

Convergence graphs for the median runs are shown in the middle row of Fig. 5.
Eventually linear convergence appears to be achieved in all runs. The bottom row
of the figure shows values of the relative model error |f(y)−fε(y)|/|f(y)−f(x)|,
where x and y are parent and offspring candidate solutions, respectively,

26 A. Kayhani and D. V. Arnold

Fig. 5. Top row: Histograms showing the numbers of objective function calls used to
solve the five test problems. Middle row: Convergence graphs for the median runs.
Bottom row: Relative model error measured in the median runs.

observed in the median runs. The bold line in the centre of the plots represents
the relative model error smoothed logarithmically by computing its convolution
with a Gaussian kernel with a width of 40. We interpret the constancy of the
smoothed curves as evidence that the algorithm operates under a relatively con-
stant noise-to-signal ratio. Logarithmically averaging the relative model error
across the median runs yields values between 0.786 and 0.989 for four of the five
test problems, and a value of 1.292 for Schwefel’s function.

5 Conclusions

To conclude, we have proposed unbiased Gaussian distributed noise as a model
for surrogate modelling approaches. Using the model, we have presented an anal-
ysis of the behaviour of a surrogate model assisted (1+1)-ES on quadratic sphere
functions. Based on that model we have proposed a step size adaptation mech-
anism for the surrogate model assisted (1 + 1)-ES and numerically evaluated it
using a set of test functions. The mechanism successfully adapted the step size
in all runs generated.

In future work, we will employ more sophisticated and possibly comparison
based surrogate modelling approaches. Further goals include the development of
adaptive approaches for setting the parameters c1, c2, and c3 of the step size
adaptation mechanism and the evaluation of the approach in the context of a
(1 + 1)-ES with covariance matrix adaptation.

Design of a Surrogate Model Assisted (1 + 1)-ES 27

Acknowledgements. This research was supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

References

1. Arnold, D.V.: Noisy Optimization with Evolution Strategies. Kluwer, Dordrecht
(2002)

2. Arnold, D.V., Beyer, H.-G.: A general noise model and its effects on evolution
strategy performance. IEEE Trans. Evol. Comput. 10(4), 380–391 (2006)

3. Auger, A., Hansen, N., Perez Zerpa, J.M., Ros, R., Schoenauer, M.: Experimental
comparisons of derivative free optimization algorithms. In: Vahrenhold, J. (ed.)
SEA 2009. LNCS, vol. 5526, pp. 3–15. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-02011-7 3

4. Büche, D., Schraudolph, N.N., Koumoutsakos, P.: Accelerating evolutionary algo-
rithms with Gaussian process fitness function models. IEEE Trans. Syst. Man
Cybern. B Cybern. Part C 35(2), 183–194 (2005)

5. Chen, Y., Zou, X.: Performance analysis of a (1+1) surrogate-assisted evolutionary
algorithm. In: Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2014.
LNCS, vol. 8588, pp. 32–40. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-09333-8 4

6. Hansen, N., Arnold, D.V., Auger, A.: Evolution strategies. In: Kacprzyk, J.,
Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 871–
898. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2 44

7. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

8. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future
challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)

9. Kern, S., Hansen, N., Koumoutsakos, P.: Local meta-models for optimization using
evolution strategies. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós,
J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 939–948.
Springer, Heidelberg (2006). https://doi.org/10.1007/11844297 95

10. Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.:
Learning probability distributions in continuous evolutionary algorithms – a com-
parative review. Nat. Comput. 3(1), 77–112 (2004)

11. Loshchilov, I.: Surrogate-Assisted Evolutionary Algorithms. PhD thesis, Université
Paris Sud - Paris XI (2013)

12. Loshchilov, I., Schoenauer, M., Sebag, M.: Comparison-based optimizers need
comparison-based surrogates. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 364–373. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15844-5 37

13. Loshchilov, I., Schoenauer, M., Sebag, M.: Intensive surrogate model exploitation
in self-adaptive surrogate-assisted CMA-ES. In: Genetic and Evolutionary Com-
putation Conference – GECCO 2013, pp. 439–446. ACM Press (2013)

14. Pitra, Z., Bajer, L., Repický, J., Holena, M.: Overview of surrogate-model versions
of covariance matrix adaptation evolution strategy. In: Genetic and Evolutionary
Computation Conference Companion, pp. 1622–1629. ACM Press (2017)

15. Rechenberg, I.: Evolutionsstrategie - Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Friedrich Frommann Verlag, Stuttgart
(1973)

https://doi.org/10.1007/978-3-642-02011-7_3
https://doi.org/10.1007/978-3-642-02011-7_3
https://doi.org/10.1007/978-3-319-09333-8_4
https://doi.org/10.1007/978-3-319-09333-8_4
https://doi.org/10.1007/978-3-662-43505-2_44
https://doi.org/10.1007/11844297_95
https://doi.org/10.1007/978-3-642-15844-5_37

28 A. Kayhani and D. V. Arnold

16. Schwefel, H.-P.: Numerical Optimization of Computer Models. Wiley, Hoboken
(1981)

17. Teytaud, O., Gelly, S.: General lower bounds for evolutionary algorithms. In:
Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D.,
Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 21–31. Springer, Heidelberg (2006).
https://doi.org/10.1007/11844297 3

18. Ulmer, H., Streichert, F., Zell, A.: Model-assisted steady-state evolution strategies.
In: Cantú-Paz, E. (ed.) GECCO 2003. LNCS, vol. 2723, pp. 610–621. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6 72

https://doi.org/10.1007/11844297_3
https://doi.org/10.1007/3-540-45105-6_72

Generalized Self-adapting Particle Swarm
Optimization Algorithm

Mateusz Uliński, Adam Żychowski, Micha�l Okulewicz(B), Mateusz Zaborski,
and Hubert Kordulewski

Faculty of Mathematics and Information Science, Warsaw University of Technology,
Warsaw, Poland

M.Okulewicz@mini.pw.edu.pl

Abstract. This paper presents a generalized view on the family of
swarm optimization algorithms. Paper focuses on a few distinct vari-
ants of the Particle Swarm Optimization and also incorporates one type
of Differential Evolution algorithm as a particle’s behavior. Each particle
type is treated as an agent enclosed in a framework imposed by a basic
PSO. Those agents vary on the velocity update procedure and utilized
neighborhood. This way, a hybrid swarm optimization algorithm, con-
sisting of a heterogeneous set of particles, is formed. That set of various
optimization agents is governed by an adaptation scheme, which is based
on the roulette selection used in evolutionary approaches. The proposed
Generalized Self-Adapting Particle Swarm Optimization algorithm per-
formance is assessed a well-established BBOB benchmark set and proves
to be better than any of the algorithms its incorporating.

Keywords: Particle Swarm Optimization
Self-adapting metaheuristics

1 Introduction

Since its introduction [9] and subsequent modifications [4,18] Particle Swarm
Optimization (PSO) algorithm has attracted many researchers by its simplic-
ity of implementation and easiness of parallelization [13]. PSO has currently a
several standard approaches [4], multiple parameter settings considered to be
optimal [7] and successful specialized approaches [3]. PSO have also been tried
with various topologies [8,17], and unification [16] and adaptation schemes.

This paper brings various population based approaches together, and puts
them in a generalized swarm-based optimization framework (GPSO). The moti-
vation for such an approach comes from the social sciences, where diversity is
seen as a source of synergy [10] and our adaptive approach (GAPSO) seeks an
emergence of such a behavior within a heterogeneous swarm.

The remainder of this paper is arranged as follows. Section 2 introduces PSO
and its adaptive modifications, together with discussing Differential Evolution
(DE) algorithm and its hybridization with PSO. In Sect. 3 general overview of
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 29–40, 2018.
https://doi.org/10.1007/978-3-319-99253-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_3&domain=pdf

30 M. Uliński et al.

the system’s construction is provided. Section 4 describes adaptation scheme and
future system implementation details. Section 5 is devoted to a presentation of
the experimental setup, in particular, the benchmark sets and parametrization
of the methods used in the experiments. Experimental results are presented in
Sect. 6. The last section concludes the paper.

2 Particle Swarm Optimization: Modification and
Hybridization Approaches

This section reviews optimization algorithms used as basic building blocks within
our generalized approach: PSO and DE. Initial paragraphs introduce the basic
forms of the PSO and DE algorithms, while the following summarize the research
on hybridizing those approaches and creating the adaptive swarm optimizers.
Please bear in mind, that in all methods we shall be considering the optimization
problem to be a minimization problem.

Particle Swarm Optimization. PSO is an iterative global optimization meta-
heuristic method utilizing the ideas of swarm intelligence [9,18]. The underlying
idea of the PSO algorithm consists in maintaining the swarm of particles mov-
ing in the search space. For each particle the set of neighboring particles which
communicate their positions and function values to this particle is defined. Fur-
thermore, each particle maintains its current position x and velocity v, as well
as remembers its historically best (in terms of solution quality) visited location.
In each iteration t, ith particle updates its position and velocity, according to
formulas 1 and 2.

Position update. The position is updated according to the following equation:

xi
t+1 = xi

t + vi
t+1. (1)

Velocity update. In a basic implementation of PSO (as defined in [4,18]) velocity
vi
t of particle i is updated according to the following rule:

vi
t+1 = ω · vi

t + c1 · (pi
best − xi

t) + c2 · (neighborsibest − xi
t) (2)

where ω is an inertia coefficient, c1 is a local attraction factor (cognitive coeffi-
cient), pi

best represents the best position (in terms of optimization) found so
far by particle i, c2 is a neighborhood attraction factor (social coefficient),
neighborsibest represents the best position (in terms of optimization) found so
far by the particles belonging to the neighborhood of the ith particle (usually
referred to as gbest or lbest).

Differential Evolution. DE is an iterative global optimization algorithm intro-
duced in [19]. DE’s population is moving in the search space of the objective
function by testing the new locations for each of the specimen created by cross-
ing over: (a) a selected xj solution, (b) solution y(i)

t created by summing up a
scaled difference vector between two random specimen (x(1), x(2)) with a third

Generalized Self-adapting Particle Swarm Optimization Algorithm 31

solution (x(i)). One of the most successful DE configurations is DE/rand/1/bin,
where in each iteration t, each specimen xi

t in the population is selected and
mutated by a difference vector between random specimens x(i1)

t and x(i2)
t scaled

by F ∈ R:
y(i)
t = x(i)

t + F × (x(i2)
t − x(i1)

t) (3)

Subsequently, y
(3)
t is crossed-over with xbest

t by binomial recombination:

ui
t = Binp(xbest

t ,y(i)
t) (4)

Finally, the new location ui
t replaces original xi

t iff it provides a better solution
in terms of the objective function f :

ui
t =

{
ui
t if f(ui

t) < f(xi
t)

xi
t otherwise (5)

Adaptive PSO Approaches. While a basic version of the PSO algorithm has
many promising features (i.e. good quality of results, easiness of implementation
and parallelization, known parameters values ensuring theoretical convergence)
it still needs to have its parameters tuned in order to balance its exploration vs.
exploitation behavior [24]. In order to overcome those limitations a two–stage
algorithm has been proposed [24]. That algorithm switches from an exploration
stage into an exploitation stage, after the first one seems to be “burned out”
and stops bringing much improvement into the quality of the proposed solution.
Another adaptive approach that has been proposed for the PSO [23], identifies 4
phases of the algorithm: exploration, exploitation, convergence, and jumping out.
The algorithm applies fuzzy logic in order to assign algorithm into one of those
4 stages and adapts its inertia (ω), cognitive (c1) and social (c2) coefficients
accordingly. Finally, a heterogeneous self-adapting PSO has been proposed [14],
but its pool of available behaviors has been limited only to the swarm-based
approaches.

PSO and DE Hybridization. While DE usually outperforms PSO on the
general benchmark tests, there are some quality functions for which the PSO is
a better choice, making it worthwhile to create a hybrid approach [1,20]. Ini-
tial approaches on hybridizing PSO and DE consisted of utilizing DE mutation
vector as an alternative for modifying random particles coordinates, instead of
applying a standard PSO velocity update [5,21]. Another approach [22], con-
sists of maintaining both algorithms in parallel and introducing an information
sharing scheme between them with additional random search procedure. PSO
and DE can also be combined in a sequential way [6,11]. In such an approach
first the standard PSO velocity update is performed and subsequently various
types of DE trials are performed on particle’s pbest location in order to improve
it further.

3 Generalized Particle Swarm Optimization

This article follows the approach set for a social simulation experiment [15], by
generalizing PSO velocity update formula (Eq. (2)) into a following form (with

32 M. Uliński et al.

I being and indicator function and Nk(ith) being a kth neighborhood of ith
particle):

vi
t+1 = ω · vi

t + c1 · (pi
best − xi

t)

+
|N |∑
k=1

|particles|∑
j=1,j �=i

I(jth ∈ Nk(ith))c′
j,k · (pj

best − xi
t)

+
N∑
k=1

|particles|∑
j=1,j �=i

I(jth ∈ Nk(ith))c′′
j,k · (xj

t − xi
t)

(6)

In that way the social component extends into incorporating data from multiple
neighbors and neighborhoods. The other part of generalization is not imposing
an identical neighborhood structure over all particles, but letting each parti-
cle decide on the form of neighborhood. That way we take advantage of the
agent-like behavior of swarm algorithms, were each individual is making its own
decisions on the basis of simple rules and knowledge exchange (the other par-
ticles do not need to know behavior of a given particle, only its positions and
sampled function values).

Proposed approach would be unfeasible if one would need to set up all c′
j,k’s

and c′′
j,k’s to individual values. Therefore we would rely on existing particles

templates, where either all those coefficients would take the same value or most
of them would be equal to zero. Our approach views c′

j,k and c′′
j,k as functions.

In most cases second index of c coefficients would be omitted, due to the fact
that only a single neighborhood is considered.

In order to test the proposed generalized approach we have implemented five
distinctive types of particles, coming from the following algorithms: Standard
PSO (SPSO), Fully-Informed PSO (FIPSO), Charged PSO (CPSO), Unified
PSO (UPSO), Differential Evolution (DE). Remainder of this section presents
how each approach fits within the proposed GPSO framework.

Standard Particle Swarm Optimization. SPSO particle acts according to
the rules of PSO described in Sect. 2 with a local neighborhood topology (with
size ∈ Z+ being its parameter). Therefore, the I function defining the neighbor-
hood takes a following form:

ISPSO(jth ∈ N(ith)) =

⎧⎪⎨
⎪⎩

1 |i − j| ≤ size

1 |i − j| ≥ |particles| − size

0 ∼
(7)

Particle changes its direction using lbest location. Therefore, all values of c′j’s
and c′′j’s are equal to 0 except the one corresponding to the particle with the
best pbest value in the neighborhood.

c′
j =

{
0 f(pj

best) > f(lbest)
X ∼ U(o, c2) f(pj

best) = f(lbest)
(8)

Generalized Self-adapting Particle Swarm Optimization Algorithm 33

Fully-Informed Particle Swarm Optimization. FIPSO particle [12] steers
its velocity to the location designated by all of its neighbors. All the best solu-
tions found so far by the individual particles are considered with weights W
corresponding to the relative quality of those solutions. FIPSO particles uti-
lize a complete neighborhood. Therefore, the indicator function IFIPSO is equal
to 1. The FIPSO particle is parametrized with a single value of an attraction
coefficient c. Individual c′

j ’s (and c1) follow the uniform distribution:

c′
j ∼ U

[
0,

c · W(f(pj
best))

|particles|

]
(9)

Charged Particle Swarm Optimization. CPSO particle has been created
for the dynamic optimization problems [3] and is inspired by the model of an
atom. CPSO recognizes two particle types: neutral and charged. The neutral par-
ticles behave like SPSO particles. Charged particles, have a special component
added to the velocity update equation. An ith charged particle has an additional
parameter q controlling its repulse from other charged particles:

c′′
j,2 = − q2

||xi
t − xj

t ||2
(10)

Charged particles repulse each other, so an individual sub-swarms are formed
(as imposed by the neighborhood), which might explore areas corresponding to
different local optima.

Unified Particle Swarm Optimization. UPSO particle is a fusion of the
local SPSO and the global SPSO [16]. The velocity update formula includes
both lbest and gbest solutions. In order to express that unification of global and
local variants of SPSO the I indicator function takes the following form:

IUPSO(jth ∈ Nk(ith)) =

⎧⎪⎨
⎪⎩

ISPSO k = 1
1 pj

best is gbest ∧ k = 2
0 ∼

(11)

Thus, there are two co-existing topologies of the neighborhood, which justifies
the choice of the general formula for the GPSO (cf. Eq. (6)).

Differential Evolution within the GPSO Framework. While Differential
Evolution (DE) [19] is not considered to be a swarm intelligence algorithm its
behavior might be also fitted within the proposed framework GPSO. The reason
for that is the fact that within the DE (unlike other evolutionary approaches)
we might track a single individual as it evolves, instead of being replaced by its
offspring.

DE/best/1/bin configuration and DE/rand/1/bin configurations are some-
what similar to the PSO with a gbest and lbest approaches, respectfully. The most
important differences between DE and PSO behavior are the fact, that:

34 M. Uliński et al.

– DE individual always moves from the best found position (pbest in PSO),
while PSO particle maintains current position, regardless of its quality,

– DE individual draws the ’velocity’ (i.e. difference vector) from the global
distribution based on other individuals location, while PSO particle maintains
its own velocity.

Therefore, DE individual i movement might be expressed in the following way:

x(i,t+1)
test = Bin(ωv + (pbest − x(i,t)

test),gbest) (12)

where v follows a probability distribution based on random individuals’ locations
prand1
best and prand2

best) and Bin is a binomial cross-over operator.

4 Adaptation Scheme

Different particle types perform differently on various functions. Moreover, differ-
ent phases exists during optimization process. Some particle types perform better
at the beginning, some perform better at the end of optimization algorithm’s exe-
cution. Therefore, optimal swarm composition within GPSO framework should
be designated in real-time. Swarm composition is modified by switching the
behaviors of particles. Principle of work for adaptation scheme forming the
Generalized Self-Adapting Particle Swarm Optimization (GAPSO) is presented
below.

The main idea is to promote particle types that are performing better than
others. Adaptation is based on the quality of success. The adaption utilizes
roulette selection approach with probabilities proportional to success measure.

Let’s assume that we have P particle types. Each particle changes its behavior
every Na iterations. Behavior is chosen according to a list of probabilities (each
corresponding to one of P particles’ types). Each particle has the same vector of
probabilities. At the beginning all probabilities are set to 1

P . Each Na iterations
probabilities vector is changing (adapting) according to the following scheme.

The average value of successes per each particle’s type from the last Na

observations is determined. Value of success zst in iteration t for particle s is
presented in the following equation:

zst = max(0,
f(ps

best) − f(xs
t)

f(ps
best)

) (13)

Let swarmp be a set of p type particles from whole swarm. The average success
ẑp of given swarmp is obtained from Sp ∗ Na values, where Sp is the size of
swarmp. See the following equation:

ẑpt =
1

Sp ∗ Na
∗

T−Na∑
t=T

∑
s∈swarmp

zst (14)

This procedure produces P success values. Let us label them as z1, z2, . . . , zP . Let
Z be sum of given success values: Z =

∑P
p zp. So required vector of probabilities

Generalized Self-adapting Particle Swarm Optimization Algorithm 35

is [z1Z , z2
Z , . . . , zP

Z]. Better average success induces grater probability of assigning
given behavior to each particle. On top of the described approach an additional
special rule is applied: at least one particle for each behavior has to exists. This
rule prevents behaviors for being excluded from further consideration, as they
might be needed in a latter phase of optimization process.

5 Experiment Setup

The GAPSO algorithm has been implemented in Java1. The project consists
of individual particles behaviors, an adaptation scheme, a restart mechanism,
hill-climbing local optimization procedure for “polishing” the achieved results,
and a port to the test benchmark functions. Tests have been performed on 24
noiseless 5D and 20D test functions from BBOB 2017 benchmark2.

Table 1. Individual algorithms parameters.

Algorithm Parameters settings Reference

SPSO ω : 0.9; c1, c2 : 1.2 [4]

CPSO ω : 0.9; c1, c2 : 1.2 [3]

FIPSO ω : 0.9; c : 4.5 [12]

UPSO ω : 0.9; c1, c2 : 1.2, u : 0.5 [16]

DE crossProb : 0.5; varF : 1.4 [19]

Table 2. Framework parameters.

Parameter Value

Swarm size (S) 30

Number of neighbors (k) 5

Generations (G) 106

Number of PSO types (P) 5

Generations to adapt (Na) 10

Generations to restart particle (Nrp) 15

Generations to restart swarm (Nrs) 200

Parameters. General GAPSO framework setup has been tuned on a small num-
ber of initial experiments, while the parameters of the individual optimization
agents have been chosen according to the literature. The parameter values are
presented in Tables 1 and 2.

Restarts. In order to fully utilize the algorithms’ potential within each of the
tested methods a particle is restarted if for Nrp iterations at least one of these 2
conditions persisted: (a) particle is its best neighbor, (b) particle has low velocity
(sum of squares of velocities in each direction is smaller than 1). Additionally,
the whole swarm is restarted (each particle that belongs to it is restarted), if
value of best found solution has not changed since Nrs ·D, where D is dimension
of function being optimized.

Local Optimization. Finally (both in GAPSO and individual approaches),
before swarm restart and after the last iteration of the population based algo-
rithms a local hill-climbing algorithm is used for 1000D evaluations, initialized
with the best found solution.

1 https://bitbucket.org/pl-edu-pw-mini-optimization/corpoalgorithm.
2 http://coco.gforge.inria.fr/.

https://bitbucket.org/pl-edu-pw-mini-optimization/corpoalgorithm
http://coco.gforge.inria.fr/

36 M. Uliński et al.

6 Results

Results of the experiments are presented on the figures generated within BBOB
2017 test framework, showing ECDF plots of optimization targets achieved on
a log scale of objective function evaluations.

Left subplot in Fig. 1 shows efficiency of 5 individual algorithms used in
GAPSO tested independently for 5D functions. It can be observed that DE is
coinciding to optimum faster than each of the PSO approaches. Advantage of
the DE is even more evident for 20D functions (right subplot in Fig. 1).

Fig. 1. Comparison of individual algorithms performance for all functions in 5 and 20
dimensions.

Fig. 2. Comparison of the best (DE) and the worst (FIPSO) individual algorithms
with GAPSO for functions with high conditioning and unimodal in 5D (top) and multi-
modal functions with adequate global structure in 20D (right).

Subsequent charts (see Fig. 2) correspond to experiments carried out on
selected algorithms with specified functions. In particular cases, differences in
the effectiveness of algorithms can be observed. Left subplot in Fig. 2 shows
advantage of DE algorithm in optimizing 5D unimodal functions with high con-
ditioning. While another case, shown in right sublot in Fig. 2, presents FIPSO

Generalized Self-adapting Particle Swarm Optimization Algorithm 37

Fig. 3. Average number of particles types in swarm compared with ECDF plot of
individual algorithms performance for 20D Rosenbrock function.

Fig. 4. Average number of particles types in swarm compared with ECDF plot of indi-
vidual algorithms performance for 20D Schaffer function.

as an algorithm performing best for 20D multi-modal functions with adequate
global structure. It can be observed that the proposed GAPSO algorithm remains
competitive with both “clean” approaches.

Figures 3 and 4 present comparison of average number of particle’s behaviors
and efficiency of homogeneous swarms for two selected functions. For Rosen-
brock’s function (Fig. 3) DE swarm is significantly better than other kind of
swarms and GAPSO algorithm adaptation method leads to greater number of
DE particles in swarm. In the case when plain DE performance is worse than
all the PSO-based approaches (see Fig. 4) GAPSO swarm contains significantly
lower number of DE particles. It indicates that the proposed adaptation method
controls the swarm composition according to the particular optimization func-
tion. It also can be observed that the performance of various PSO approaches
is similar, and there is no noticeable difference between number of particles of
particular kind.

Last experiment presents the overall effectiveness of the GAPSO performance
on the whole set of 5D and 20D benchmark functions. Figure 5 presents the
GAPSO results against the best (DE) and worst (FIPSO) performing algorithms.
Results indicate that GAPSO has come out as a more effective approach, even
though its adaptation has been performed during the optimization, and not
beforehand.

38 M. Uliński et al.

Fig. 5. GAPSO performance compared with the best (DE) and the worst (FIPSO)
individual algorithms for all functions in 5D and 20D.

Table 3. Aggregated results for 15 independent runs on 24 noiseless test functions
from BBOB 2017 benchmark. Number of functions for which given algorithm yielded
best results (in term of average number of function evaluations) is presented in best
columns. Numbers in brackets show how many of results are statistically significantly
better according to the rank-sum test when compared to all other algorithms of the
table with p = 0.05. Target reached is the number of trials that reached the final target:
fopt + 108.

5D 20D

Algorithm Best Target reached Best Target reached

CPSO 2 (0) 217 1 (0) 85

SPSO 1 (0) 221 2 (0) 91

FIPSO 2 (0) 211 4 (0) 83

UPSO 3 (0) 214 3 (0) 87

DE 6 (0) 173 4 (1) 117

GAPSO 10 (0) 172 8 (7) 120

Due to space limitations, Table 3 provides only aggregated results3. GAPSO
obtained best results (in terms of number of function evaluation) for 10 (5D)
and 8 (20D) functions (out of 24), with 7 of those results being statistically
significantly better than individual approaches. None of the other algorithms
were statistically significantly better than GAPSO for any function. These results
show that proposed algorithm not only adapted to reach results as good as the
best individual particles’ types, but also has the ability to outperform them.

Furthermore, GAPSO stability other a different initial behavior probabilities
vectors was examined. 7 types of vectors were considered: uniform (each behav-
ior with the same probability), randomly generated vector and 5 vectors (one
per each behavior) with probability equals 1 to one behavior and 0 for all other.
Standard deviations obtained through all approaches on benchmark functions

3 Detailed outcomes are available at http://pages.mini.pw.edu.pl/∼zychowskia/gapso.

http://pages.mini.pw.edu.pl/~zychowskia/gapso

Generalized Self-adapting Particle Swarm Optimization Algorithm 39

were not significantly different than standard deviations for each approach sep-
arately. For all above options just after about 100 generations (10 adaptation
procedures) numbers of particles with particular behaviors were nearly the same.
It shows, that the proposed method’s ability to gaining equilibrium - optimal
behaviors (from the algorithm’s perspective) is independent of the initial state
of behavior probabilities vector.

7 Conclusions and Future Work

The proposed generalized GPSO view on the Particle Swarm Optimization made
it possible to introduce various types of predefined behaviors and neighbor-
hood topologies within a single optimization algorithm. Including an adapta-
tion scheme in GAPSO approach allowed to improve the overall performance
over both DE individuals and PSO particles types on the test set of 24 qual-
ity functions. While the proposed approach remains inferior to algorithms such
as CMA-ES [2], the adaptation scheme correctly promoted behaviors (particles)
performing well on a given type of a function. It remains to be seen if other types
of basic behaviors could be successfully brought into the GAPSO framework and
compete with the state-of-the-art optimization algorithms.

Our future research activities shall concentrate on testing more types of par-
ticles and detailed analysis about their cooperation by observing interactions
between different particles behaviors in each generation. It would be especially
interesting to evaluate a performance of some quasi-Newton method, brought
into the framework of GPSO, as it could utilize the already gathered samples
of the quality (fitness) function. Furthermore, other adaptation and evaluation
schemes can be considered and compared with proposed method.

References

1. Araújo, T.D.F., Uturbey, W.: Performance assessment of PSO, DE and hybrid
PSODE algorithms when applied to the dispatch of generation and demand. Int.
J. Electrical Power Energy Syst. 47(1), 205–217 (2013)

2. Beyer, H.G., Sendhoff, B.: Simplify your covariance matrix adaptation evolution
strategy. IEEE Trans. Evol. Comput. 21(5), 746–759 (2017)

3. Blackwell, T.: Particle swarm optimization in dynamic environments. In: Yang, S.,
Ong, Y.S., Jin, Y. (eds.) Evolutionary Computation in Dynamic and Uncertain
Environments. SCI, vol. 51, pp. 29–49. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-49774-5 2

4. Clerc, M.: Standard particle swarm optimisation (2012)
5. Das, S., Abraham, A., Konar, A.: Particle swarm optimization and differential evo-

lution algorithms: technical analysis, applications and hybridization perspectives.
Advances of Computational Intelligence in Industrial Systems. SCI, vol. 116, pp.
1–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78297-1 1

6. Epitropakis, M., Plagianakos, V., Vrahatis, M.: Evolving cognitive and social expe-
rience in particle swarm optimization through differential evolution: a hybrid app-
roach. Inf. Sci. 216, 50–92 (2012)

https://doi.org/10.1007/978-3-540-49774-5_2
https://doi.org/10.1007/978-3-540-49774-5_2
https://doi.org/10.1007/978-3-540-78297-1_1

40 M. Uliński et al.

7. Harrison, K.R., Ombuki-Berman, B.M., Engelbrecht, A.P.: Optimal parameter
regions for particle swarm optimization algorithms. In: 2017 IEEE Congress on
Evolutionary Computation (CEC), pp. 349–356. IEEE (2017)

8. Janson, S., Middendorf, M.: A hierarchical particle swarm optimizer and its adap-
tive variant. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 35(6), 1272–1282
(2005)

9. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, vol. IV, pp. 1942–1948 (1995)

10. Köppel, P., Sandner, D.: Synergy by Diversity: Real Life Examples of Cultural
Diversity in Corporation. Bertelsmann-Stiftung, Gütersloh (2008)

11. Liu, H., Cai, Z., Wang, Y.: Hybridizing particle swarm optimization with differen-
tial evolution for constrained numerical and engineering optimization. Appl. Soft
Comput. 10(2), 629–640 (2010)

12. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler,
maybe better. IEEE Tran. Evol. Comput. 8(3), 204–210 (2004)

13. Mussi, L., Daolio, F., Cagnoni, S.: Evaluation of parallel particle swarm optimiza-
tion algorithms within the CUDA architecture. Inf. Sci. 181(20), 4642–4657 (2011)

14. Nepomuceno, F.V., Engelbrecht, A.P.: A self-adaptive heterogeneous pso for real-
parameter optimization. In: 2013 IEEE Congress on Evolutionary Computation,
pp. 361–368. IEEE, June 2013

15. Okulewicz, M.: Finding an optimal team. In: FedCSIS Position Papers, pp. 205–210
(2016)

16. Parsopoulos, K.E., Vrahatis, M.N.: Unified particle swarm optimization for solving
constrained engineering optimization problems. In: Wang, L., Chen, K., Ong, Y.S.
(eds.) ICNC 2005. LNCS, vol. 3612, pp. 582–591. Springer, Heidelberg (2005).
https://doi.org/10.1007/11539902 71

17. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell.
1(1), 33–57 (2007)

18. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In:
Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998. LNCS,
vol. 1447, pp. 591–600. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0040810

19. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

20. Thangaraj, R., Pant, M., Abraham, A., Bouvry, P.: Particle swarm optimization:
hybridization perspectives and experimental illustrations. Appl. Math. Comput.
217(12), 5208–5226 (2011)

21. Zhang, W.J., Xie, X.F.: DEPSO: hybrid particle swarm with differential evolution
operator. In: SMC 2003 Conference Proceedings. 2003 IEEE International Confer-
ence on Systems, Man and Cybernetics. Conference Theme - System Security and
Assurance (Cat. No.03CH37483). vol. 4, pp. 3816–3821. IEEE (2003)

22. Zhang, C., Ning, J., Lu, S., Ouyang, D., Ding, T.: A novel hybrid differential evo-
lution and particle swarm optimization algorithm for unconstrained optimization.
Oper. Res. Lett. 37(2), 117–122 (2009)

23. Zhan, Z.-H., Zhang, J., Li, Y., Chung, H.H.: Adaptive particle swarm optimization.
IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(6), 1362–1381 (2009)

24. Zhuang, T., Li, Q., Guo, Q., Wang, X.: A two-stage particle swarm optimizer.
In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on
Computational Intelligence). vol. 2, pp. 557–563. IEEE, June 2008

https://doi.org/10.1007/11539902_71
https://doi.org/10.1007/BFb0040810
https://doi.org/10.1007/BFb0040810

PSO-Based Search Rules for Aerial
Swarms Against Unexplored Vector
Fields via Genetic Programming

Palina Bartashevich1(B), Illya Bakurov2, Sanaz Mostaghim1,
and Leonardo Vanneschi2

1 Faculty of Computer Science, University of Magdeburg, Magdeburg, Germany
{palina.bartashevich,sanaz.mostaghim}@ovgu.de

2 NOVA IMS, Universidade Nova de Lisboa, 1070-312 Lisbon, Portugal
{ibakurov,lvanneschi}@novaims.unl.pt

Abstract. In this paper, we study Particle Swarm Optimization (PSO)
as a collective search mechanism for individuals (such as aerial micro-
robots) which are supposed to search in environments with unknown
external dynamics. In order to deal with the unknown disturbance, we
present new PSO equations which are evolved using Genetic Program-
ming (GP) with a semantically diverse starting population, seeded by
the Evolutionary Demes Despeciation Algorithm (EDDA), that general-
izes better than standard GP in the presence of unknown dynamics. The
analysis of the evolved equations shows that with only small modifica-
tions in the velocity equation, PSO can achieve collective search behavior
while being unaware of the dynamic external environment, mimicking the
zigzag upwind flights of birds towards the food source.

Keywords: Particle swarm optimization · Vector fields · Semantics
Genetic Programming · EDDA

1 Introduction

This paper considers the Vector Field PSO (VF-PSO) algorithm [2], which is
supposed to be used as a collective search mechanism for a swarm of aerial
micro-robots acting under the influence of external unknown dynamics (such
as wind) performed by vector fields. The main challenge is that the external
dynamics of the environment are unknown to the swarm. As a result, due to the
influence of unknown external factors, the velocity vectors of the individuals (e.g.
robots) are constantly influenced by the external dynamics, and therefore the
whole process of the collective search is misled. A previous study [2] suggested
the use of a multi-swarm approach and collection of information about unknown
dynamics by an explorer population, while another swarm, called optimizer, uses
this information to correct their movements during the search process. However,
maintaining explorers in some environments might not be possible, e.g. sensors

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 41–53, 2018.
https://doi.org/10.1007/978-3-319-99253-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_4&domain=pdf

42 P. Bartashevich et al.

not working under certain conditions, or loss of the connection between explorers
and optimizers, so they can not access the collected information (which is a
realistic assumption for aerial robotic systems).

The goal of this paper is to find out whether it is possible to obtain a reason-
ably good approximation of the global optimal solution using only PSO equa-
tions in complete unawareness of the vector fields structure without explorer
population, and how such velocity equations (further denoted as VFPS) should
be designed in order to show the collective resistance to the unknown external
dynamics. To answer these questions, we refer to previous research [1], which has
only investigated the possibility of evolving such particle swarm equations using
Geometric Semantic Genetic Programming (GSGP) [13]. GSGP has recently
attracted much attention in the GP community due to its operators which in
contrast to the traditional ones tend to be more effective as they induce a uni-
modal error surface for any supervised learning problem [21]. However, in [1] it
was indicated that using pure GSGP for evolving new PSO equations is not as
efficient as using standard Genetic Programming (GP), while the mixture of the
GSGP and GP mutation operators was shown to be beneficial to produce high-
quality individuals in the presence of unknown dynamics. The mixture of the
above mentioned mutation operators in [1] was simulated by the Evolutionary
Demes Despeciation Algorithm (EDDA) [20].

In this work, we use the findings of [1] to generate better VFPS equations,
which are more robust to the unknown external dynamics than the standard
PSO velocity equation. The study performed in this paper differs from [1], as
the key aspect of the current work is the analysis and study of the evolved equa-
tions themselves and not of the evolutionary process of getting these equations.
Besides, for the evolution of the equations, we use standard GP with EDDA on
its top only as initialization technique to seed a better GP run.

So far, several applications of the GP to evolve new search algorithms have
been already studied in the literature. The Extended Particle Swarms (XPSO)
project [5,11,15,16] demonstrated that by using GP it is possible to auto-
matically evolve new PSO algorithms that perform better than standard ones
designed by humans. Besides the framework of the XPSO project, some work
regarding the evolution of PSO structures was also carried out by Dioşan
and Oltean in [6,7]. Several studies have also applied GP to investigate other
population-based metaheuristic optimizations apart from PSO: for instance,
Runka et al. [17] and Taveres et al. [18] applied GP to evolve probabilistic rules
used in Ant Colony optimization [8] to update its pheromone trails, and Di Chio
et al. [4] used GP to evolve particle swarm equations for group-foraging problems
in the simulation of behavioral ecology problems.

The paper is organized as follows. We describe the background about EDDA
and VF-PSO in Sect. 2. In Sect. 3, we replicate and provide more detailed descrip-
tions of the semantics introduced in [1] that allows us to use EDDA for the
evolution of VFPS equations. Section 4 presents the experimental settings and
Sect. 5 along with Sect. 6 discusses the obtained VFPS equations. The paper is
concluded in Sect. 7.

PSO-Based Search Rules for Aerial Swarms 43

2 Background

Evolutionary Demes Despeciation Algorithm. EDDA [20] is developed as
a biologically inspired semantics-based initialization technique for GSGP to cre-
ate not only a syntactically but also a semantically diverse starting population.
According to EDDA, the initial population is seeded with good quality individ-
uals that have been previously evolved for few generations in other populations
(called demes). For instance, a population of N individuals will be composed
of the best individuals found by N different demes, which are evolved indepen-
dently by using different operators. In [20] EDDA was applied to seed GSGP
runs, which generated solutions with comparable or even better generalization
ability and of significantly smaller size compared to traditional GSGP, where part
of the demes was evolved using operators of standard GP, while the another using
GSGP. However, according to [21], with only Geometric Semantic mutation (fur-
ther denoted as GSM) it is already possible to obtain the same performance as
using GSGP with both crossover and mutation operators and in some cases even
outperform it. Thus, in this paper we use EDDA to seed standard GP, where
the GSGP part of EDDA demes is evolved using only GSM in order to keep the
individuals of reasonable size. A definition of the term semantics used in this
paper is described in Sect. 3, taking into account the fact that we are developing
an application aimed at evolving search algorithms.

Vector Field PSO. VF-PSO is a collective search mechanism based on the
movement of a population of particles, motivated by the real case scenario of
aerial micro-robots, acting in an n-dimensional search space S under the influ-
ence of unknown dynamic conditions (e.g. wind influence). It performs a varia-
tion of the standard PSO algorithm [10], which is based on two simple rules for
updating the particles i velocity vi(t) and its corresponding position xi(t) ∈ S
at time step t:

xi(t + 1) = xi(t) + vi(t + 1) +
K∑

k=0

V F (gk) (1)

vi(t + 1) = wvi(t) + c1φ1(xpbest
i (t) − xi(t)) + c2φ2(xg(t) − xi(t)) (2)

The only difference from standard PSO is the additional term in Eq. 1, which
incorporates vector fields V F to induce the unknown external conditions in the
search space S. According to the definition, a vector field is a function that takes
any point in the space x ∈ S and assigns a vector V F (x) to it: x �→ V F (x). In
a discrete setting, a vector field is defined on the grid of cells {gk}Mk=1 ∈ G ⊂ S,
where for each cell gk, k ∈ {1..M} an associated vector exists as a piecewise
constant field V F (gk). Following this, the sum of vectors at K << M cells,
which particle i intersects along the movement from its previous position xi(t)
to the next xi(t + 1), is added to the current position of the particle to simulate
the drift in Eq. 1, where xi(t) ∈ g0 and xi(t + 1) ∈ gK . More description on the
other terms used in the equations described above is provided in the first part
of the following Sect. 3.

44 P. Bartashevich et al.

3 Semantics for VFPS Evolution in EDDA

As for the evolution of VFPS equations in this work we use standard GP, but
with EDDA for the initialization, we have to take into consideration that EDDA
uses in the evolution part of the demes which is evolved by GSM. Thus, we
have to introduce corresponding semantics. In order to do this, in this section
we extend and provide more detailed description of the semantics for VFPS
evolution, which was first introduced in [1].

Referring to Pawlak et al. [14], in GP semantics is typically contextualized
within a specific programming task that is to be solved in a given program set P .
Thus, in order to introduce the definition of semantics used in this paper, we
have to define what the program set P and the programming task are in our
case.

Program Set. In our case, we consider GP individuals as acceleration vectors ai

of the Eq. 2, where ai(t) = vi(t + 1) − wvi(t). To define the program set P , we
must specify the set of terminal symbols T and the set of primitive functions F
used to code this type of individual, i.e. ai.

According to Eq. 2, an acceleration function ai can be considered as a com-
position of three atomic elements: the current positions of the particles xi, the
local best positions of the particles xpbest

i and the global best of the swarm xg.
These three elements are part of the terminal set T . Furthermore, we are also
interested in the “old” velocity vector of the particle, i.e. vi(t), in the sense of
frictional force and its possible combinations with constants, like in air drag or
fluid friction. According to Long et al. [12], for small particles air resistance is
approximately proportional to their velocities vi and can be expressed in the
form: F drag = −bvi or F drag = −bv2

i , where b is a constant that depends on the
properties of the particular type of air or fluid. Additionally, we also consider
the center of the swarm xc and its diversity σx in the terminal set, as in [15],
along with the limited set of permissible constants C ∈ {−0.5, 0.5}, as well as
a set of random vectors R(0, 1), each of which contains uniformly distributed
numbers different for each dimension, within the range [0, 1]. So, our terminal
set is: T = {xi,vi,x

pbest
i ,xg,xc , σx, C,R(0, 1)}, where xi is the current position

of the particle i, vi is its “old” velocity, xpbest
i is the best location previously

visited by particle i, xg is the best location visited by the entire swarm and σx

is the average distance of each particle xi to the center of mass xc .
It is worth pointing out that Eq. 2 contains two different random vectors φ1

and φ2, which are reflected in the terminal set T by the set of random vec-
tors R(0, 1). The role of φ1 and φ2 in PSO is to diversify the particles, keeping
them from moving exactly towards the global xg and personal best xpbest

i posi-
tions. On the other hand, previous studies [3,9,22] showed that the iterated
multiplication of random factors φ1 and φ2 can also lead to delay in conver-
gence and attraction to inappropriate directions, dissimilar direction changes in
different vectors and, as the result, to a limitation in the particle movements.

Moreover, among all the evolved acceleration equations reported by Poli et
al. [5,15,16], only one has three different random vectors – R1,R2,R3. This

PSO-Based Search Rules for Aerial Swarms 45

equation is: R1(xg − xi) − 0.75R2R1xix
2
g − 0.25R3R2R1xixg. All the other

provided individuals have mostly none or only one random vector R. Considering
that the probability of more frequent usage of random vectors in constructing
VFPS equations by means of GSM is increased due to the larger size of the
evolved individuals, we limit the number of different random vectors in the ter-
minal set up to three: {R1,R2,R3} ∈ R(0, 1).

Function set is introduced as: F = {+,−, ∗, sin�, cos�, 〈·, ·〉,×, LF}, where,
given vectors e1 = (e11, e

2
1) and e2 = (e12, e

2
2), ∗ is the element-by-element mul-

tiplication of two vectors, i.e. as the result we get another vector e1 ∗ e2 =
(e11 ∗ e12, e

2
1 ∗ e22); 〈·, ·〉 is the dot product of two vectors, i.e. the result is a scalar

equal to 〈e1,e2〉 = e11 ∗ e12 + e21 ∗ e22; × is the cross product of two vectors, i.e. the
result is a scalar equal to e1 × e2 = ||e1|| ∗ ||e2|| ∗ sin�(e1,e2), where ||e1|| =√

(e11)2 + (e21)2 is the magnitude of the corresponding vector; cos� is a cosine
of the angle between two vectors calculated as cos�(e1,e2) = e1·e2

||e1||∗||e2|| , so

sin�(e1,e2) =
√

1 − cos�(e1,e2)2; and, finally, LF performs a logistic function
applied to each component of the vector e, i.e. LF (e) = (1

1+exp(−e1) ,
1

1+exp(−e2)).

Programming Task. According to the definition in [14], the programming
task, usually denoted as (FC, f), is defined by a set of fitness cases FC ⊆ X ×O
and a fitness function f : S → R≥0. A fitness case FC is a pair consisting in
a program input in ∈ X and a corresponding output out ∈ O. In this sense,
FC represents the training set of the programming task. Figure 1 describes the
programming task used in this paper. In our case, fitness case FC represents

Fig. 1. Semantics sp of the individual p on a problem class FC represented as a vector
of average outputs calculated for each of the problem instances {cj}dj=1 := FC within
r runs, where Swarml denotes the fixed initial population within the corresponding
run for all problem instances. Fitness function f p of individual p is performed as the
average of the elements in its semantics vector sp.

46 P. Bartashevich et al.

a certain optimization function h(x − c) : Rn → R, where c is a corresponding
optimum solution. As an input for the program pi, we consider a d-dimensional
vector {cj}dj=1 ∈ R

n, cj
= ci
= 0 of different global optimal solutions, repre-
senting a class of shifted functions FC := {h(x − cj)}dj=1. So, an output is the
vector of respective function values at the global best position xg

j found using
pi : cj �→ h(xg

j − cj),∀j ∈ {1, .., d}. Evaluation of pi inside VF-PSO lasts for r

runs on each element of the input vector {cj}dj=1. The average of the outputs

within runs avgj =
r∑
1

pi(cj),∀j ∈ {1, .., d} defines the elements of the vector spi
,

which represents a point in the semantic space S and the semantics of an indi-
vidual pi on a problem class FC. Without loss of generality, in this paper we
considered problem classes, whose function values at the global optimum are
equal to zero (see Sect. 4). Thus, as the target is a zero vector t ∈ R

d, the fitness
for individual pi in our case is the average of the elements of its semantics spi

:
fpi

= 1
d

∑d
k=1[spi

(k) − t(k)] = 1
d

∑d
k=1 spi

(k).

4 Experimental Study

The objective of the experimental study is to evolve and to analyze new VFPS
equations which are able to find the approximate global optimum solution
in total unawareness of the external dynamics. Before discussing the experi-
mental results, let us briefly present the experimental settings.

Experimental VF-PSO Settings. Following [2,5,15,16], in our experiments
we consider the following problem classes: FC1−Sphere, FC2−Rosenbrock and
FC3 − Ackley. As in [2], the vector fields are considered in the two-dimensional
search space S : [−15.0, 15.0] × [−15.0, 15.0] and their function descriptions can
be found in Table 1. Every problem instance was considered in combination with
each of the five vector fields (VF). Additionally, we also consider the case without
vector field (denoted further as VF0). Given that the influence of the considered
vector fields is weaker near the origin of the Cartesian system (see the vector
fields descriptions in Table 1), we shifted the global optimum for each of the
problem instances to the left upper corner of the search space S, namely to the
region Ω : [−11.0,−9.0] × [9.0, 11.0]. We define d = 10 problem instances in
each problem class FCi : {hi(x − cj)}dj=1, where cj is a random vector from

Table 1. Function descriptions of the vector fields

“Cross” V F 1(x1, x2) = (x2, x1)

“Rotation” V F 2(x1, x2) = (−x2, x1)

“Sheared” V F 3(x1, x2) = (x1 + x2, x2)

“Wave” V F 4(x1, x2) = (− sin(x2), cos(x1 · x2 − x2
1))

“Tornado” V F 5(x1, x2) = (−x1 − x2, x1)

PSO-Based Search Rules for Aerial Swarms 47

the given interval Ω and hi(x) is the objective function of the corresponding
problem class FCi. In the training set, we use VF-PSO with 10 particles, whose
initial positions are chosen uniformly at random in the whole search space S.
Initial velocity is set to 0. The components of the velocity vector are constrained
within v ∈ [−2.0,+2.0]. The inertia weight w is equal to 0.6. Acceleration coef-
ficients are C1, C2 = 1. Each VFPS has been run for Nmax = 30 iterations on
each problem instance for r = 5 times. In the testing phase, the number of runs
was increased up to r = 100 with Nmax = 50 each. The population was enlarged
up to 20 particles and the global optimal solution was fixed at c = (−10.0, 10.0)
for all problem classes. The results of the testing phase are reported in Sect. 6
and compared in terms of the best function values obtained during the all iter-
ations, and the success rate, which indicates the percentage of runs, where this
fitness is smaller than a certain threshold ε by the end of the search process. We
used ε = 0.1.

Experimental EDDA and GP Settings. For EDDA we used 100 demes,
each of which containing 100 individuals. The individuals in each deme were
themselves initialized by means of the ramped half-and-half method, with max-
imum initial depth equal to 3. After initialization, each deme was left to evolve
for 5 generations using a given set of genetic operators. In EDDA, m% of demes
use GSM (GSGP demes), while the remaining (100 − m%) use standard genetic
operators (GP demes). In our experiments, we test m ∈ {25, 50, 75}. A maximum
depth limit of 5 is imposed only during the evolution of the GP demes, while
in the main evolutionary process (MEP) this limit was enlarged to 11. After 5
generations, the best individual is selected and copied into the population that
constitutes the MEP. The mutation step ms of GSM in the GSGP demes was
randomly generated with uniform probability in [0,1] at each mutation event,
following [19]. The codomain of the possible outputs of the randomly generated
trees in GSM was bounded in [0, 1] by wrapping them inside a logistic function,
as in [19]. To select parents for variation, tournaments of 5% of the population
size were used and survival was elitist, as it always copied the best individual
into the next population. While evolving VFPS in the GP demes and in MEP,
the probability of applying crossover and mutation was set to 0.9 and 0.1 respec-
tively.

5 Evolved VFPS

In this section, we present and discuss the best 5 force VFPS equations, that we
were able to evolve, in terms of the performance on the training set. All these
equations were obtained using EDDA-50% as an initialization technique, and
standard GP in the main evolutionary process.

VFPS1 was evolved on the “Sphere-VF1” (Cross) problem:

ai = R1(x
pbest
i − xi) + σ2

x(xg − xi) (3)

48 P. Bartashevich et al.

Interestingly, it has a similar structure to the acceleration of the standard PSO
(i.e. both cognition and social components are present), but with divergence
factor for the deterministic social component. Thus, when the particles are too
sparse in a swarm, the social component has more weight, so the particles are
more attracted by the global best position than by the personal best local ones.
On the other hand, when the particles are denser, the influence of the social
component in the swarm decreases and the particles are more attracted by their
respective local best position, reproducing local search behavior.

VFPS2 was evolved on the “Sphere-VF1” (Cross) problem:

ai = (R1 + (xg − xi))〈xpbest
i + vi,x

pbest
i + vi〉 (4)

It includes a separate independent random component, which is added to the
deterministic social component, while their sum is weighted by the squared
length value of (xpbest

i + vi) vector, obtained as its dot product by itself.
VFPS3 was evolved on the “Sphere-VF3” (Sheared) problem:

ai = σx

(
(xpbest

i − xi) + (vi + σx)(xg − xi)
)

(5)

This equation is interesting, because it is completely deterministic, and both
cognition and social components are present, as in standard PSO. Similarly
to VFPS1, it contains a divergence factor, but contrarily to VFPS1, this factor
influences both the cognition and social components.

VFPS4 was evolved on the “Sphere-VF1” (Cross) problem:

ai = R1(x
pbest
i − xi) + R2(σx + R2)(xg − xi) (6)

It contains two random standard PSO components, along with a divergence
factor for the social component. It is expected to behave similarly to VFPS1, but
with the difference that its behavior should be more like the one of standard PSO
when the swarm has a high density (i.e. small σx values).

VFPS5 was evolved on the “Sphere-VF1” (Cross) problem

ai = 〈xi, 0.5σx〉((xpbest
i − xi) + xc + σxx

g) (7)

Contrarily to the other reported equations, it is completely deterministic and
contains both the center and the spread of the swarm.

6 Analysis and Discussion of the Evolved VFPS

Median values over 100 runs and corresponding standard errors obtained by
these five VFPS equations during the test phase, and the ones obtained by stan-
dard PSO, are reported in Table 2. The Kolmogorov-Smirnov non-parametric
test has been performed to analyze the statistical significance under the alter-
native hypothesis that VFPS and PSO results are drawn from the same distri-
bution, with significance level p = 0.05. The results of the success rate for each

PSO-Based Search Rules for Aerial Swarms 49

VFPS are shown in Table 3. As can be seen from Table 2, most of the obtained
median fitness values for the reported evolved equations (denoted in each row of
Table 2 as -PS) under the influence of vector fields (each column from VF1-VF5
of the corresponding objective function) are significantly smaller than those ones
obtained by standard PSO equation (first row of Table 2 for every column from
VF1-VF5). Standard PSO is extremely bad under considered vector fields influ-
ence with medium fitnesses >>1 along with almost everywhere a 0% success rate
in Table 3. While the median fitnesses of the evolved VFPS are mostly <1 with
more than a 50% success rate on Sphere function and a non-zero success rate
on other objective functions under any of the considered VF influence. The only
exception is the results obtained on VF4, where PSO is the best performant for
Ackley problem, and second best in Sphere and Rosenbrock, with a 100% success
rate under VF4 conditions for almost all problems. This particular observation
is due to the vector field characteristic, i.e. the values of VF4 according to its
description in Table 1 are within [−1, 1], which perform rather small disturbances
in comparison to magnitude of other VFs. Tables 2 and 3 reveal that the evolved
VFPS equations can obtain reasonably good approximation of global optimal
solution in contrast to standard PSO velocity rule in total unawareness of the
external disturbance.

Table 2. Median and standard error (in brackets) over 100 runs of fitness values found
by each VFPS (denoted as -PS) in five vector fields (VF1-VF5) on Sphere, Rosenbrock
and Ackley. VF0 indicates the case without vector field. Best results in bold. An asterisk
indicates statistical significance (p < 0.05) between a result obtained by VFPS and PSO
according to non-parametric Kolmogorov-Smirnov test.

The particles behavior of all the VFPS presented above tend to be resis-
tant to the hard disturbances on unimodal objective functions. Such behavior is
obtained since almost all reported VFPS were evolved on the Sphere problem
class under VF “Cross” (see Sect. 5), which is characterized by high intensity
vectors redirecting away from the goal. Considering that, according to the find-
ings of previous studies [2], the other considered VFs are not so challenging
as VF “Cross”, the evolved VFPS are expected to almost always be success-
ful on the Sphere landscape, regardless of the VF type under which they are
considered. The results of Tables 2 and 3 confirm this expectation. Moreover,

50 P. Bartashevich et al.

Table 3. Success rate (in %) for 5 evolved VFPS (denoted as -PS) over 100 runs. Best
results on each of the VF within considered objective function are in bold.

Sphere Rosenbrock Ackley
VF0 VF1 VF2 VF3 VF4 VF5 VF0 VF1 VF2 VF3 VF4 VF5 VF0 VF1 VF2 VF3 VF4 VF5

PSO 100 3 1 3 100 4 99 0 0 0 100 0 100 0 0 0 53 0
-PS1 100 53 53 73 100 52 99 10 7 11 100 3 100 1 1 1 61 0
-PS2 86 77 88 93 82 89 13 24 15 20 24 17 3 0 3 1 2 0
-PS3 100 97 69 82 100 100 98 47 10 17 95 34 99 5 0 0 26 17
-PS4 100 5 9 41 100 11 100 1 0 3 100 4 100 0 0 1 55 1
-PS5 92 94 88 90 94 91 19 13 30 25 18 17 5 0 0 1 2 3

while analyzing the particles trajectories of the evolved VFPS, one can con-
sider that the particles which are initially placed at the lower left corner of the
search space, can now reproduce very “straightforward” movements towards the
goal in contrast to standard PSO (as an example see Fig. 2) on all problems,
despite their landscape structure. That might seem to be beneficial on Ackley,
preventing the particles from getting trapped in multiple local optima and mov-
ing faster towards the region with the globally optimal solution. However, due
to the strong resistance of the evolved VFPS to any appeared disturbance near
the goal, they cannot reach the exact global solution (as supposed on Sphere),
being misled by the inherited resistant behavior to the local optima surrounding
the global one. This is reflected by the high values in Table 3 and the low ones in
Table 2. The only exception might be VFPS3 (evolved on “Sphere-Sheared”),
which performs quite well in case of VF5 in comparison to the other VFPS. And,
according to its results for the Sphere and Rosenbrock problems, VFPS3 seems
to be a good all-rounder. Characterized by small intensity vectors in the region
around the optimal solution, evolution under “Sheared” VF made the structure
of VFPS3 able to seek the particles towards the goal. On Rosenbrock-VFs, in
certain cases VFPS are able to obtain a reasonable approximation of the global
optimal solution. As mostly VFPS are based on the swarm diversity, getting
into the valley region of Rosenbrock, particles start producing more local search
behavior. However, constant redirections by VF prevent them from convergence
to their local best solutions, so that they are more likely to reach the global
optimum.

It is also worth pointing out that, when we observe the trajectories (e.g. in
Fig. 2), the VFPS particles, being able to move against the flow, produce zigzag
movements (i.e. in Fig. 2a and b), i.e. they behave similarly to a sailboat, which
cannot travel directly into the wind but uses a zigzag pattern to move against
it, while usual PSO particles are just blown away by the flow (Fig. 2c). This is
an interesting finding, considering that such behavior is also typical for birds
such as the albatross, which perform a zigzag upwind search in response to odor
cues towards the food source [23]. Such behavior is mostly obtained by VFPS1
(Fig. 2a). As soon as the particles are gathered together, they start to reproduce
oscillating behavior near the best found by them point, moving together back
and forth.

PSO-Based Search Rules for Aerial Swarms 51

-15 -10 -5 0 5 10 15

x

-15

-10

-5

0

5

10

15
yy

x

(a) VFPS1

-15 -10 -5 0 5 10 15

x

-15

-10

-5

0

5

10

15

yy

x

(b) VFPS4

-15 -10 -5 0 5 10 15

x

-15

-10

-5

0

5

10

15

yy

 x

y

(c) PSO

Fig. 2. Trajectories of the particles (in blue) starting from the same initial positions
on “Ackley-Cross” obtained by VFPS1, VFPS4 and PSO in (a-c). A five-pointed red
snowflake at (−10, 10) indicates the unknown target (global optimum). Red arrows
show the most characteristic general direction of the particles movement at certain
regions. (Color figure online)

7 Conclusions and Future Work

Analysis of the evolved programs has demonstrated that with small modifications
in the velocity rule, PSO can achieve solid collective search behavior in total
unawareness of external dynamics, mimicking trajectories of the zigzag upwind
birds flights towards the food source. These findings deepen our understanding
on the swarm dynamics in the presence of external influence (performed in this
study by vector fields) and may shed light on the underlying mechanism of
information exchange in natural swarms under dynamic unknown stimuli (e.g.
wind), which might find its further applications for outdoor swarm robotics
systems. In the future, we plan to increase the functional and terminal sets of the
GP system and to test it on other (i.e. non-PSO) metaheuristic algorithms. Also,

52 P. Bartashevich et al.

we intend to implement our system using a parallel and distributed framework,
in order to improve the speed of the overall calculations.

References

1. Bartashevich, P., Bakurov, I., Mostaghim, S., Vanneschi, L.: Evolving PSO algo-
rithm design in vector fields using geometric semantic GP. In: Proceedings of the
ACM Genetic and Evolutionary Computation Conference (GECCO 2018), Kyoto,
July 2018, 2 p. (To appear)

2. Bartashevich, P., Grimaldi, L., Mostaghim, S.: PSO-based search mechanism in
dynamic environments: swarms in vector fields. In: 2017 IEEE Congress on Evo-
lutionary Computation, pp. 1263–1270 (2017)

3. Clerc, M.: Stagnation analysis in particle swarm optimization or what happens
when nothing happens. Technical report (2006)

4. Di Chio, C., Di Chio, P.: Group-foraging with particle swarms and genetic program-
ming. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I.
(eds.) EuroGP 2007. LNCS, vol. 4445, pp. 331–340. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71605-1 31

5. Di Chio, C., Poli, R., Langdon, W.B.: Evolution of force-generating equations for
PSO using GP. In: Proceedings of the 2005 AI*IA Workshop on Evolutionary
Computation (2005)

6. Dioşan, L., Oltean, M.: Evolving the structure of the particle swarm optimization
algorithms. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906,
pp. 25–36. Springer, Heidelberg (2006). https://doi.org/10.1007/11730095 3

7. Diosan, L., Oltean, M.: What else is the evolution of PSO telling us? J. Artif. Evol.
Appl. 1, 1–12 (2008)

8. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput.
Intell. Mag. 1, 28–39 (2006)

9. Erskine, A., Herrmann, J.M.: Critical Dynamics in Particle Swarm Optimization.
CoRR (2014)

10. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers
Inc., San Francisco (2001)

11. Langdon, W.B., Poli, R.: Evolving problems to learn about particle swarm opti-
misers and other search algorithms. IEEE Trans. Evol. Comput. 11(5), 561–578
(2007)

12. Lyle, N.L., Howard, W.: The velocity dependence of aerodynamic drag: a primer
for mathematicians. Math. Assoc. Am. 106, 127–135 (1999)

13. Moraglio, A., Krawiec, K.: Semantic genetic programming. In: Proceedings of the
Companion Publication of the 2015 Annual Conference on Genetic and Evolution-
ary Computation, pp. 603–627. ACM (2015)

14. Pawlak, T.P., Wieloch, B., Krawiec, K.: Review and comparative analysis of geo-
metric semantic crossovers. Genet. Program. Evolvable Mach. 16, 351–386 (2015)

15. Poli, R., Di Chio, C., Langdon, W.B.: Exploring extended particle swarms: a
genetic programming approach. In: Proceedings of the 7th Annual Conference on
Genetic and Evolutionary Computation, New York, USA, pp. 169–176 (2005)

16. Poli, R., Langdon, W.B., Holland, O.: Extending particle swarm optimisation via
genetic programming. In: Keijzer, M., Tettamanzi, A., Collet, P., van Hemert,
J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 291–300. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31989-4 26

https://doi.org/10.1007/978-3-540-71605-1_31
https://doi.org/10.1007/11730095_3
https://doi.org/10.1007/978-3-540-31989-4_26

PSO-Based Search Rules for Aerial Swarms 53

17. Runka, A.: Evolving an edge selection formula for ant colony optimization. In:
Proceedings of the 11th Annual Conference on Genetic and Evolutionary Compu-
tation, pp. 1075–1082. ACM (2009)

18. Tavares, J., Pereira, F.B.: Evolving strategies for updating pheromone trails: a case
study with the TSP. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.)
PPSN 2010. LNCS, vol. 6239, pp. 523–532. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15871-1 53

19. Vanneschi, L.: An introduction to geometric semantic genetic programming. In:
Schütze, O., Trujillo, L., Legrand, P., Maldonado, Y. (eds.) NEO 2015. SCI, vol.
663, pp. 3–42. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44003-
3 1

20. Vanneschi, L., Bakurov, I., Castelli, M.: An initialization technique for geometric
semantic GP based on demes evolution and despeciation. In: 2017 IEEE Congress
on Evolutionary Computation, pp. 113–120 (2017)

21. Vanneschi, L., Silva, S., Castelli, M., Manzoni, L.: Geometric semantic genetic
programming for real life applications. In: Riolo, R., Moore, J.H., Kotanchek, M.
(eds.) Genetic Programming Theory and Practice XI. GEC, pp. 191–209. Springer,
New York (2014). https://doi.org/10.1007/978-1-4939-0375-7 11

22. Wilke, D.N., Kok, S., Groenwold, A.A.: Comparison of linear and classical velocity
update rules in particle swarm optimization: notes on scale and frame invariance.
Int. J. Numer. Methods Eng. 70(8), 985–1008 (2007)

23. Wyatt, T.: Pheromones and Animal Behavior: Chemical Signals and Signatures.
Cambridge University Press, Cambridge (2014)

https://doi.org/10.1007/978-3-642-15871-1_53
https://doi.org/10.1007/978-3-642-15871-1_53
https://doi.org/10.1007/978-3-319-44003-3_1
https://doi.org/10.1007/978-3-319-44003-3_1
https://doi.org/10.1007/978-1-4939-0375-7_11

Towards an Adaptive CMA-ES
Configurator

Sander van Rijn1(B) , Carola Doerr2, and Thomas Bäck1

1 LIACS, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
{s.j.van.rijn,t.h.w.baeck}@liacs.leidenuniv.nl

2 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, Paris, France
Carola.Doerr@mpi-inf.mpg.de

Abstract. Recent work has shown that significant performance gains
over state-of-the-art CMA-ES variants can be obtained by a recom-
bination of their algorithmic modules. It seems plausible that further
improvements can be realized by an adaptive selection of these config-
urations. We address this question by quantifying the potential perfor-
mance gain of such an online algorithm selection approach. In particular,
we study the advantage of structurally adaptive CMA-ES variants on the
functions F1, F10, F15, and F20 of the BBOB test suite. Our research
reveals that significant speedups might be possible for these functions.
Quite notably, significant performance gains might already be possible
by adapting the configuration only once. More precisely, we show that
for the tested problems such a single configuration switch can result
in performance gains of up to 22%. With such a significant indication
for improvement potential, we hope that our results trigger an intensi-
fied discussion of online structural algorithm configuration for CMA-ES
variants.

Keywords: Continuous black-box optimization · CMA-ES
Online algorithm configuration

1 Introduction

Black-box optimization algorithms are an important field of research due to their
direct applicability to many problems and their long success history. Many differ-
ent algorithms are continuously being developed, each with its own performance
characteristics to make it better suited to certain problems or problem classes.

Such optimizers typically use online adaptation of parameters such as step
size or population size. A common one is the CMA-ES by Hansen et al. [5] and
its (B)IPOP derivatives [1,7]. This adaptation behavior allows a single algorithm
to behave differently at different points in time during the optimization process,
usually trying to transition from exploration to exploitation.

When using specific optimizers that are tailored to the specific features of
the optimization problem at hand, the efficiency is typically improved. Such
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 54–65, 2018.
https://doi.org/10.1007/978-3-319-99253-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_5&domain=pdf
http://orcid.org/0000-0001-6159-041X

Towards an Adaptive CMA-ES Configurator 55

algorithms provide improved convergence rate and/or quality of the final solu-
tion found for these problems, but often perform worse than average on other
problems. This limits their general applicability and makes it less likely that
non-specialists will be aware that the tailored algorithm exists as an option for
their particular problem. Furthermore, this also means that many algorithmic
variants are not commonly combined with each other, as they are only compared
with standard algorithms upon their introduction.

In an effort to explore more of this underlying algorithm combination space,
a modular CMA-ES implementation for eleven such variants has been proposed
in [12]. This framework easily allows for 4 608 different combinations to be tested
and compared, as has been done in [12,13].

In this paper we consider the potential of adaptive structural configurations.
That is, we regard an online selection of the most suitable of the 4 608 config-
urations. In a nutshell, adaptive structural configurations allow to use at every
stage of the optimization process the configuration that is most suitable for it.
This way, we can in particular switch from a configuration that performs well
during the earlier stages of optimization to one that is more suitable in the later
parts. Imagine for example the optimization process of the multi-modal Rastri-
gin function. The search has to avoid many local optima at first, but effectively
only has to solve the Sphere problem once the area of the global optimum has
been identified.

Fig. 1. Sketch of adaptive configuration. Sketched performance profiles of two opti-
mizers and an adaptive performance profile based on the profiles of optimizers 1 and
2. The vertical line indicates the transition from using optimizer 1’s behavior to that
of optimizer 2. Horizontal lines indicate the required budget to reach the final target
for optimizer 2 and the adaptive optimizer. The gained improvement is the difference
between these two lines.

Specifically we analyze the potential speed-up that can be gained by simulat-
ing such configuration switches using the convergence history of 4 608 CMA-ES-
based algorithms. Figure 1 illustrates how we can simulate the potential improve-
ment of using adaptive configurations based on existing performance data. In

56 S. van Rijn et al.

Sect. 2 we give a short introduction of the modular CMA-ES framework that is
used to create the 4 608 CMA-ES configurations. Section 3 defines the procedure
applied to calculate the potential speed-up, with Sect. 4 discussing the results.
Finally, Sect. 5 concludes this paper and lists some potential avenues for future
research.

2 Modular CMA-ES

The modular CMA-ES framework [12] has been developed to facilitate the test-
ing and exploration of arbitrary combinations of algorithmic variations of the
CMA-ES. In the following, such algorithmic variations are called configurations.
Each configuration is built-up of eleven different modules that can be enabled or
disabled independently of each other. As two of the possible modules have three
options rather than two, this allows for 29 · 32 = 4608 different possible configu-
rations. A list of the modules used in this framework is provided in Table 1. For
any further implementation details, see [12].

Table 1. Overview of the available ES modules in the modular CMA-ES framework.
For most of these modules the only available options are off and on, encoded by the
values 0 and 1. For quasi-Gaussian sampling and increasing population, the additional
option is encoded by the value 2. The entries in row 9, recombination weights, specify
the formula for calculating each weight wi.

Module name 0 (default) 1 2

1 Active Update [10] off on -

2 Elitism (μ, λ) (μ + λ) -

3 Mirrored Sampling [4] off on -

4 Orthogonal Sampling [14] off on -

5 Sequential Selection [4] off on -

6 Threshold Convergence [11] off on -

7 TPA [6] off on -

8 Pairwise Selection [2] off on -

9 Recombination Weights
log(μ+ 1

2)− log(i)
∑

j wj

1
μ

-

10 Quasi-Gaussian Sampling [3] off Sobol Halton

11 Increasing Population [1,7] off IPOP BIPOP

3 Data Processing

3.1 Generation and Pre-processing of the Data

We quantify the theoretical potential of adaptive configuration selection for the
four functions F1, F10, F15, and F20 from the BBOB benchmark suite [9], and

Towards an Adaptive CMA-ES Configurator 57

for each of these functions we focus on dimensions 5 and 20. Each function is cho-
sen to represent one of the four subgroups from the BBOB suite. For generating
and preprocessing the performance data, the following steps are executed:

Step 1: Generation of runtime data for each of the 4 608 configurations.
For each (F = function, d = dimension) pair we collect running time data from
5 independent runs on 5 different instances, resulting in a total of 25 runs. The
BBOB test suite stores the function value of a best-so-far search point after
every improvement. The allocated budget is 104 ·d per run. Since we collect data
for each of the 4 608 configurations, this gives us about 4 GB of running time
data for each (F, d) pair.

Step 2: Computation of average hitting times AHT. Following the logic
of BBOB, we compute an average hitting time for each of the Γ = 51 tar-
get precisions {102.0, 101.8, . . . , 10−7.8, 10−8.0}, defined as φi = 102−(i−1)·0.2,
i ∈ {1, 2, . . . , Γ}. For every function F , dimension d, configuration C, and target
precision φ this is done as follows: Let 0 ≤ s ≤ 25 be the number of successful
runs, i.e., the number of runs of configuration C that have reached the target
precision φ on the (F, d) pair. The first point in time in which the function has
been at most φ is referred to as the first hitting time. When s = 25, i.e., when
all runs have been successful, the average hitting time AHT(F, d, C, φ) is sim-
ply the average of the hitting times. As we will usually fix the function F and
dimensionality d, we write AHT(C, φ) as a shorthand for AHT(F, d, C, φ). When
s < 25, at least one of the runs was not able to reach φ and the AHT is set to
∞. The reasons for this are explained in Sect. 3.3.

Step 3: Computation of segmented average hitting time sAHT. We
next compute from the AHT(C, φ) values an indicator for the performance of
the different configurations in the function value segments Si = (φi−1, φi]. For
each i ∈ {1, . . . , Γ} let φi be the i-th target precision, with φ0 = ∞ such that
Segment S1 = (∞, 102). This segmented average hitting time of configuration C
in segment Si for function, dimension pair (F, d) is defined as

sAHT(C, i) = AHT(C, φi) − AHT(C, φi−1) (1)

i.e., difference in average hitting times. We can assume that sAHT(C, i) ≥ 0
since the average hitting time is monotonically increasing by construction:

∀i : AHT(C, φi) ≤ AHT(C, φi+1).

3.2 Constructing Optimal Adaptive Configurations

The full convergence behavior of a configuration C towards final target φΓ can
be defined based on the sAHT measure defined above:

AHT(C, φΓ) =
Γ∑

i=1

sAHT(C, i). (2)

58 S. van Rijn et al.

Maximally Adaptive. We can adapt Eq. (2) to replace any static configuration
C by a sequence of configurations C = {C1, C2, . . . , CΓ }:

AHT(C, φΓ) =
Γ∑

i=1

sAHT(Ci, i). (3)

Under the assumption that the performance of Ci on section Si is independent
of Ci’s behavior up to target φi−1, we can then pick this sequence C such that

Copt = {Ci | i ∈ {1, . . . , Γ}, Ci = arg min
C

(sAHT(C, i))} (4)

then we can guarantee by construction that

AHT(Copt, φΓ) ≤ AHT(C, φΓ) (5)

for any sequence C of configurations.
In other words, this means that we consider Copt to be an algorithm that

chooses its internal configuration for each segment Si to be precisely the config-
uration Ci that has the smallest sAHT for that segment.

Single Split. Naturally, this maximally adaptive algorithm is practically quite
infeasible for various reasons. However, by restricting our choice of C we can
create a more feasible alternative that still outperforms any single original con-
figuration C.

Let C be a sequence (C1, C2, . . . , CΓ) such that: Ci = C1 ∀i ∈ {1, . . . , s} and
Ci = CΓ ∀i ∈ {s+1, . . . , Γ}, where 1 < s < Γ is the split index. This represents
an adaptive approach where a single configuration switch occurs during the
runtime, namely when reaching φs. For a given split s, we can then find C1 and
CΓ that minimize the AHT for their respective sequence of segments.

By repeating this for all possible splits, an optimal split s with corresponding
configurations C1 and CΓ can be computed from the dataset. By appropriating
the argmin notation, we can write this as follows:

(C1, CΓ , s) = arg min
C1,CΓ ,s

(
s∑

i=1

sAHT(C1, φi) +
Γ∑

i=s+1

sAHT(CΓ , φi)

)
(6)

or in terms of AHT:

(C1, CΓ , s) = arg min
C1,CΓ ,s

(AHT(C1, φs) + (AHT(CΓ , φΓ) − AHT(CΓ , φs))) (7)

In words: we consider an adaptive algorithm that is split at the end of segment
Si, such that configuration C1 performs best for S1, . . . , Si and CΓ performs best
for Si+1, . . . , SΓ and their combined AHT is minimal again. In the worst case
scenario, C1 = CΓ and we do not get any improvement.

Towards an Adaptive CMA-ES Configurator 59

3.3 Discarding Partially Successful Configurations

As mentioned in Sect. 3.1, we deliberately choose to ignore any configuration that
was not successful in all 25 runs for the desired target value φ. This absolves
us of the associated uncertainty at the cost of reducing the effective size of our
dataset. Otherwise, we would run into problems with the previously defined
(s)AHT measure using the two most likely options of dealing with unsuccessful
runs: ignoring and penalizing.

Ignoring Unsuccessful Runs. If we were to ignore missing values caused by
unsuccessful runs and simply average over all available individual hitting times,
we can easily end up with negative sAHT values, as shown in Fig. 2.

Fig. 2. Example of non-monotonicity causing negative sAHT values. The original,
monotonically increasing data, consists of four runs, one of which is not successful
for targets 4 and up. If an average is taken of all valid data points, the unsuccessful
run increases the average for targets 0–3, but the average drops once the unsuccessful
run is no longer taken into account. The difference, or sAHT, between targets 3 and 4
becomes negative in this case.

ERT/Simulated AHT. Methods such as simulated AHT or Estimated Run-
ning Time (ERT) as defined in [8] have been introduced to incorporate these
unsuccessful runs into the AHT. These methods artificially increase the hitting
time by substituting the unsuccessful runs with (multiples of) the maximum
evaluation budget to account for the uncertainty of success. Although this is
very useful when considering a configuration’s performance from start to fin-
ish, the penalty can be ignored when we only consider the performance between
given targets.

Figure 3 shows how this can happen. In this figure, two otherwise equal opti-
mizers 1 and 2 are penalized for an unsuccessful run, each after reaching a differ-
ent intermediate target. When applying the construction of Eq. (6), the optimal
point to switch will be at the vertical line, i.e. before optimizer 1 is penalized,
but after optimizer 2 is. This way, the penalty is completely avoided by the
adaptive configuration sequence. The resulting AHT then indicates that a large
performance improvement is possible, while this not the case.

60 S. van Rijn et al.

Fig. 3. Adaptive optimizer omits penalties for unsuccessful runs. This figure shows a
sketch of two optimizers that both incur a penalty for having unsuccessful runs, shown
by a jump in the number of evaluations. The vertical line indicates a single configuration
switch. As the penalties occur at either side of the switch, the adaptive optimizer avoids
the penalty.

4 Results

4.1 Maximally Adaptive

Results for the maximally adaptive strategy are listed in Table 2, where the
relative improvement is calculated as 1−Adaptive/Static. Static refers to a non-
adaptive configuration C = (C1, C2, . . . , CΓ) where C1 = C2 = . . . = CΓ . They
show improvements ranging from 11 up to 47%. It must be noted, however, that,
given the budget of 104 · d, 5d F20, 20d F15 and 20d F20 have not reached the
final target of 10−8. The listed results are only up to the listed target φ.

Although the results are impressive, they seem unreliable. After all, CMA-ES
performs rather well on the sphere function as-is, so an expected speed-up of 47%
for 5d F1 is unrealistic. The explanation for this lies in the fact that CMA-ES
are still stochastic processes. If we have a number of configurations that perform
similarly over the entire runtime, some local variance is to be expected. As the
size of each segment Si decreases, we end up cherry-picking sAHT values that
are small by chance rather than because of inherent information they contain.

Having said this, these results still provide an upper bound for the improve-
ment that may be obtained by making better use of the available structural
configuration space.

4.2 Single Split

Table 3 lists the results when only considering a single configuration switch.
Potential improvement ranges from 3 up to 22% in this case. The reached targets
are the same as for the maximally adaptive method. Convergence behavior of
these results is shown in Figs. 4 and 5.

For the easiest F1 functions, these improvements are much smaller than in
the maximally adaptive setting: 6.9% versus 47.1% and 3% versus 16.6% for
5d and 20d F1, respectively. This much lower improvement combined with the
convergence behavior as shown in Fig. 4 supports the explanation that these

Towards an Adaptive CMA-ES Configurator 61

Table 2. Results of only successful configurations. The Static and Adaptive columns
indicate the AHT values. Column φ lists the smallest target values for which the shown
AHT values were obtained. Relative improvement r is calculated as 1−Adaptive/Static.

d F φ Static Adaptive r Static C

5 1 10−8.0 412.00 218.05 0.471 00 110 011 010

5 10 10−8.0 1437.08 832.00 0.421 11 000 110 022

5 15 10−8.0 14812.72 9220.80 0.378 00 110 011 011

5 20 10−0.2 14535.16 10951.92 0.247 01 010 101 022

20 1 10−8.0 1269.05 1058.45 0.166 00 110 110 021

20 10 10−8.0 16565.48 11135.00 0.328 00 001 000 010

20 15 100.6 45279.08 26249.16 0.420 00 111 000 001

20 20 100.2 14476.76 12829.40 0.114 00 010 001 022

improvements for F1 are most likely due to random variance. When comparing
the representations for 20d F1 for example, we can see that the best normal
configuration is the same as that for the second part of the optimization process,
and that the configuration for the first part only differs in the final module: IPOP
instead of BIPOP, which should not make difference when optimizing the sphere
function F1.

For more difficult functions such as 5d F10 and F15 however, the single
split method already shows a large potential improvement of over a third to a
half of the upper bound established by the maximally adaptive method. The
improvement is clearly visible in the convergence behavior. The convergence
of the first part follows that of a rather successful configuration, which does
not perform best overall, while for the second part, the behavior of a different
configuration is followed. This second configuration may take longer to exhibit
this beneficial search behavior, but because of the switch, we can disregard this
initial delay and use its good performance in the latter half of the optimization
process to (significantly) beat the best static configuration.

On the other hand, the results for 5d F20, 20d F15 and 20d F20 are not
very informative as most target values are not reached. For these functions, even
higher budgets are required for CMA-ES-based optimizers to reach the target
value of 10−8.

4.3 Discussion

As already noted in Sect. 4.1, because the data has been created by a stochastic
process, measurement uncertainty has to be taken into account. Although we
have tried to reduce its influence by using an average over 25 runs and discarding
any AHT values for which not all 25 were successful, some variance remains. This
is very visible in the analysis of F1 (sphere function).

The results of 5d F10 (see Fig. 4) shows a very clear knee-point at the split,
after which all three original configurations start performing better, i.e. needing

62 S. van Rijn et al.

Table 3. Results of only successful configurations. The Static and Adaptive columns
indicate the AHT values. Relative improvement r is calculated as 1−Adaptive/Static.
Split indicates the target value φi after which we switch from one configuration to
the other. The final three columns and CΓ show the representation for the static best
configuration and the configurations C1, CΓ that make up the first and second part of
the adaptive approach, respectively. This representation can be decoded using Table 1.

d F Static Adaptive r Split Static C C1 CΓ

5 1 412.00 383.70 0.069 10−2.2 00 110 011 010 10 110 111 020 00 110 011 011

5 10 1437.08 1207.12 0.160 100.2 11 000 110 022 01 001 110 120 01 101 000 012

5 15 14812.72 11524.24 0.222 100.4 00 110 011 011 00 110 000 001 00 001 011 011

5 20 14535.16 11628.36 0.200 100.0 01 010 101 022 01 110 011 011 00 100 001 021

20 1 1269.05 1231.40 0.030 10−3.8 00 110 110 021 00 110 110 022 00 110 110 021

20 10 16565.48 15003.72 0.094 101.8 00 001 000 010 00 011 000 011 00 001 101 011

20 15 45279.08 42020.80 0.072 100.8 00 111 000 001 00 111 000 001 00 101 000 011

20 20 14476.76 12942.96 0.106 100.4 00 010 001 022 11 100 111 001 00 010 001 022

Fig. 4. Convergence behavior of configurations listed in Table 3. These plots show
AHT(F, d, C, φ), the average number of evaluations required for a configuration C to
reach a target value φ. The vertical line indicates the location of the optimal split. The
convergence labeled Adaptive consist of the behavior of configuration C1 before the
split, and the behavior of configuration CΓ afterwards. If none of the configurations
were successful in all 25 runs, there is no data for those convergence targets φ.

Towards an Adaptive CMA-ES Configurator 63

Fig. 5. Convergence behavior of configurations listed in Table 3. These plots show
AHT(F, d, C, φ), the average number of evaluations required for a configuration C to
reach a target value φ. The vertical line indicates the location of the optimal split. The
convergence labeled Adaptive consist of the behavior of configuration C1 before the
split, and the behavior of configuration CΓ afterwards. If none of the configurations
were successful in all 25 runs, there is no data for those convergence targets φ.

fewer evaluations to reach the next targets. This change in performance is not
the same however, which is exploited by the adaptive configuration, confirming
the intuition motivating this research.

A practical caveat, however, is that a fast but less successful configuration
such as ‘part 1’ in 5d F15 as seen in Fig. 5 may reach its best target value φ by
exploiting a local optimum that is not necessarily close to the global optimum.
In such cases, continuing the search with a different configuration will not result
in the speed-up demonstrated in this paper, but rather in a slow-down as the
algorithm would have to escape the local optimum, if possible at all, before
finding the global optimum on its own.

5 Conclusion and Future Work

In this paper we have shown that it is possible to empirically determine upper
bounds for the possible speed-up when considering structurally adaptive CMA-
ES-based optimization algorithms. The results support the idea that improve-
ments of 5–20% are already viable when switching algorithm configuration only
once during the optimization process. We hope this research will inspire further
investigation into online structural adaptation of optimization algorithms.

64 S. van Rijn et al.

However, the assumption that is required for the presented interpretation
(see before Eq. (4)) is non-trivial. As the internal state of CMA-ES-based opti-
mizers is highly dependent on the search history, there is no guarantee that
the performance will correctly continue after an actual configuration switch. An
important next step is then to run some of the identified adaptive configurations
to evaluate their actual performance. This should be done on white-box versions
of the used benchmark functions so the switch can be performed at the identi-
fied optimal intermediate target. In this paper, we intentionally focused on the
data-driven analysis, and investigating the above-mentioned setting will be the
next step towards understanding and exploiting adaptive configurations.

Additionally, the process described in this paper can also be further improved
with statistical analysis of the (s)AHT values that are used to determine hypo-
thetical performance of the adaptive configurations. E.g. for the sphere function
F1, such analysis will give an indication of whether the improvement is due to
random variance in the data or due to actual differences in convergence behavior.

Acknowledgements. The authors would like to thank Hao Wang for his participation
in the discussions leading up to this work.

References

1. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing pop-
ulation size. In: 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp.
1769–1776, September 2005. https://doi.org/10.1109/CEC.2005.1554902

2. Auger, A., Brockhoff, D., Hansen, N.: Mirrored sampling in evolution strategies
with weighted recombination. In: Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, GECCO 2011, pp. 861–868. ACM, New
York (2011). https://doi.org/10.1145/2001576.2001694

3. Auger, A., Jebalia, M., Teytaud, O.: Algorithms (X, sigma, eta): quasi-random
mutations for evolution strategies. In: Talbi, E.-G., Liardet, P., Collet, P., Lut-
ton, E., Schoenauer, M. (eds.) EA 2005. LNCS, vol. 3871, pp. 296–307. Springer,
Heidelberg (2006). https://doi.org/10.1007/11740698 26

4. Brockhoff, D., Auger, A., Hansen, N., Arnold, D.V., Hohm, T.: Mirrored sam-
pling and sequential selection for evolution strategies. In: Schaefer, R., Cotta, C.,
Ko�lodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 11–21. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5 2

5. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in
evolution strategies: the covariance matrix adaptation. In: Proceedings of IEEE
International Conference on Evolutionary Computation, pp. 312–317, May 1996.
https://doi.org/10.1109/ICEC.1996.542381

6. Hansen, N.: CMA-ES with Two-Point Step-Size Adaptation. arXiv:0805.0231 [cs],
May 2008

7. Hansen, N.: Benchmarking a BI-population CMA-ES on the BBOB-2009 function
testbed. In: Proceedings of the 11th Annual Conference Companion on Genetic
and Evolutionary Computation Conference: Late Breaking Papers, GECCO 2009,
pp. 2389–2396. ACM, New York (2009). https://doi.org/10.1145/1570256.1570333,
http://doi.acm.org/10.1145/1570256.1570333

https://doi.org/10.1109/CEC.2005.1554902
https://doi.org/10.1145/2001576.2001694
https://doi.org/10.1007/11740698_26
https://doi.org/10.1007/978-3-642-15844-5_2
https://doi.org/10.1109/ICEC.1996.542381
http://arxiv.org/abs/0805.0231
https://doi.org/10.1145/1570256.1570333
http://doi.acm.org/10.1145/1570256.1570333

Towards an Adaptive CMA-ES Configurator 65

8. Hansen, N., Auger, A., Brockhoff, D., Tuar, D., Tuar, T.: COCO: Performance
Assessment. arXiv:1605.03560 [cs], May 2016

9. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization
benchmarking 2009: experimental setup. Report, INRIA (2009). https://hal.inria.
fr/inria-00362649/document

10. Jastrebski, G.A., Arnold, D.V.: Improving evolution strategies through active
covariance matrix adaptation. In: 2006 IEEE International Conference on Evolu-
tionary Computation, pp. 2814–2821 (2006). https://doi.org/10.1109/CEC.2006.
1688662

11. Piad-Morffis, A., Estvez-Velarde, S., Boluf-Rhler, A., Montgomery, J., Chen, S.:
Evolution strategies with thresheld convergence. In: 2015 IEEE Congress on Evo-
lutionary Computation (CEC), pp. 2097–2104, May 2015. https://doi.org/10.1109/
CEC.2015.7257143

12. van Rijn, S., Wang, H., van Leeuwen, M., Bäck, T.: Evolving the structure of evo-
lution strategies. In: 2016 IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 1–8, December 2016. https://doi.org/10.1109/SSCI.2016.7850138

13. van Rijn, S., Wang, H., van Stein, B., Bäck, T.: Algorithm configuration
data mining for CMA evolution strategies. In: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2017, pp. 737–744. ACM,
New York (2017). https://doi.org/10.1145/3071178.3071205, http://doi.acm.org/
10.1145/3071178.3071205

14. Wang, H., Emmerich, M., Bäck, T.: Mirrored orthogonal sampling with pair-
wise selection in evolution strategies. In: Proceedings of the 29th Annual
ACM Symposium on Applied Computing, SAC 2014, pp. 154–156. ACM,
New York (2014). https://doi.org/10.1145/2554850.2555089, http://doi.acm.org/
10.1145/2554850.2555089

http://arxiv.org/abs/1605.03560
https://hal.inria.fr/inria-00362649/document
https://hal.inria.fr/inria-00362649/document
https://doi.org/10.1109/CEC.2006.1688662
https://doi.org/10.1109/CEC.2006.1688662
https://doi.org/10.1109/CEC.2015.7257143
https://doi.org/10.1109/CEC.2015.7257143
https://doi.org/10.1109/SSCI.2016.7850138
https://doi.org/10.1145/3071178.3071205
http://doi.acm.org/10.1145/3071178.3071205
http://doi.acm.org/10.1145/3071178.3071205
https://doi.org/10.1145/2554850.2555089
http://doi.acm.org/10.1145/2554850.2555089
http://doi.acm.org/10.1145/2554850.2555089

Combinatorial Optimization

A Probabilistic Tree-Based
Representation for Non-convex
Minimum Cost Flow Problems

Behrooz Ghasemishabankareh1(B), Melih Ozlen1, Frank Neumann2,
and Xiaodong Li1

1 School of Science, RMIT University, Melbourne, Australia
{behrooz.ghasemishabankareh,melih.ozlen,xiaodong.li}@rmit.edu.au

2 School of Computer Science, The University of Adelaide, Adelaide, Australia
frank.neumann@adelaide.edu.au

Abstract. Network flow optimisation has many real-world applications.
The minimum cost flow problem (MCFP) is one of the most common net-
work flow problems. Mathematical programming methods often assume
the linearity and convexity of the underlying cost function, which is not
realistic in many real-world situations. Solving large-sized MCFPs with
nonlinear non-convex cost functions poses a much harder problem. In this
paper, we propose a new representation scheme for solving non-convex
MCFPs using genetic algorithms (GAs). The most common represen-
tation scheme for solving the MCFP in the literature using a GA is
priority-based encoding, but it has some serious limitations including
restricting the search space to a small part of the feasible set. We intro-
duce a probabilistic tree-based representation scheme (PTbR) that is far
superior compared to the priority-based encoding. Our extensive exper-
imental investigations show the advantage of our encoding compared to
previous methods for a variety of cost functions.

Keywords: Representation scheme · Genetic algorithm
Minimum cost flow problem · Mixed integer nonlinear programming

1 Introduction

Network flow problems have numerous applications in electrical and power net-
works, telecommunication, road and rail networks, and airline services [2]. Dif-
ferent types of network flow problems exist, e.g., the shortest path problem, the
maximum flow problem, the assignment problem, the transportation problem,
and the minimum cost flow problem (MCFP), among which MCFP is one of
the most general cases with applications such as distribution problems, optimal
loading of a Hopping aeroplane and the racial balancing of schools [2].

MCFPs can be formulated and solved by Linear Programming (LP) tech-
niques, when the underlying cost function is linear or can be approximated by a
linear function [17]. However, many real-world MCFPs are nonlinear and require
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 69–81, 2018.
https://doi.org/10.1007/978-3-319-99253-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_6&domain=pdf

70 B. Ghasemishabankareh et al.

formulation using a nonlinear cost function, instead of a linear approximation.
For example, in a transportation problem, the nonlinearity of a cost function is
due to the economy of scale phenomenon, which occurs when cost per unit of
the transportation flow decreases with an increasing amount of the total flow [7].
Many studies suggest the appropriateness of employing nonlinear cost functions
in the network design problems [4,15].

Some attempts have been made in using genetic algorithms (GAs) to solve the
network flow problems [1,7,13]. Among these works, the representation scheme
plays a critical role in their success. Several representation schemes exist for
the network flow problems such as variable-length encoding [19], fixed-length
encoding [3], and priority-based representation (PbR) [16]. The most common
representation scheme for solving MCFPs is PbR [8]. PbR scheme has been
used to solve the shortest path problems, the transportation problems, as well
as the network design problems [8,13,16]. Although PbR is widely used for
solving network flow problems, it has some serious drawbacks (when dealing with
MCFP), most noticeably its restriction on any search algorithm from reaching
some parts of the feasible search space (see Sect. 2 for details).

To counteract the above limitations, in this paper we propose a probabilis-
tic tree-based representation (PTbR) for solving nonlinear non-convex MCFP
instances using the GA. The PTbR allows all possible feasible solutions to be
generated, instead of being restricted to a small part of the feasible region (e.g.,
PbR scheme). This paper first examines the capabilities of PTbR and compare
it with that of the PbR scheme. Then a comparative study is carried out on the
performance of the GA employing these two different representation schemes on
a set of 35 benchmark instances. This paper has the following contributions:
(1) proposing a novel representation scheme (PTbR) to deal with MCFP; (2)
providing a close examination between PTbR and PbR to find out which one
is more effective for handling MCFPs; (3) conducting extensive experiments to
compare the performance of the PTbR-based GA (PtGA) variants with the PbR-
based GA (PrGA) for solving non-convex MCFP instances. We also compare our
results with those of the mathematical solver packages.

The rest of the paper is structured as follows: Sect. 2 gives the preliminaries
and Sect. 3 describes our proposed probabilistic tree-based representation and
the GA employing PTbR scheme for solving MCFPs. The experimental studies
are presented in Sects. 4 and 5 provides the conclusion.

2 Preliminaries

This section describes the problem definition, the PbR, and finally discusses the
drawbacks of PbR. Let G(N,A) be a network consisting of a set N of n nodes
and a set A of m directed arcs. The maximum and minimum amount of flow on
each arc (i, j) are equal to uij and 0, respectively. b(i) denotes the amount of sup-
ply or demand for source or sink node. b(i) > 0 denotes that node i is a supply
node and b(i) < 0 shows that node i is a demand node with a demand of −b(i)
and b(i) = 0 denotes the transshipment node i. Figure 1 shows an example of the

A Probabilistic Tree-Based Representation for Non-convex MCFP 71

Fig. 1. An example of the MCFP (n = 5, m = 7).

MCFP with n = 5 nodes and m = 7 arcs, which has one supplier node (b(1) = 10)
and one demand node (b(5) = −10). In this example, we aim to satisfy the demand
by sending all supplies through the network while minimising the total cost. The
integer flow on an arc (i,j) is represented by xij and the associated cost for the
flow (xij) is denoted by fij(xij). The formulation of the MCFP is as follows [2]:

Minimise : z(x) =
∑

(i,j)∈A

fij(xij), (1)

s.t.
∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji = b(i) ∀ i ∈ N, (2)

0 ≤ xij ≤ uij ∀ (i, j) ∈ A, (3)

xij ∈ Z ∀ (i, j) ∈ A, (4)

where Eq. 1 minimises the total cost through the network. Equation 2 is a flow bal-
ance constraint which states the difference between the total outflow (first term)
and the total inflow (second term). The flow on each arc should be between an
upper bound and zero (Eq. 3), and finally all the flow values are integer numbers
(Eq. 4). In this paper we consider the following assumptions for the MCFP: (1)
the network is directed; (2) there are no two or more arcs with the same tail and
head in the network; (3) the single-source single-sink MCFP is considered; (4) the
total demands and supplies in the network are equal, i.e.,

∑n
i=1 b(i) = 0.

2.1 Priority-Based Representation

Priority-based representation (PbR) is the most commonly-used representation
method for MCFPs [8]. In order to represent a candidate solution for an MCFP,
PbR lets the number of genes to be equal to n and the value of each gene
is generated randomly between 1 and n, which represents the priority of each
node for constructing a path among all possible nodes [8]. Figure 2a illustrates
the PbR chromosome for the network presented in Fig. 1. In order to obtain a
feasible solution, a two-phase decoding procedure is followed. In phase I, a path is

72 B. Ghasemishabankareh et al.

Fig. 2. The PbR chromosome and its corresponding solution.

Fig. 3. A feasible solution that PbR fails to represent (for the network in Fig. 1).

generated based on the priorities and the maximum possible flow is sent through
the generated path in phase II. After sending the flow on the network, the upper
bound (uij), supply and demand should be updated. If the supply/demand is
not equal to 0, the next path should be generated. The above procedure repeats
until all demands are satisfied. Figure 2b presents a feasible solution for the given
chromosome in Fig. 2a.

Although PbR has been commonly used in the network flow problems, it has
some limitations in representing the full extent of the feasible space for MCFP.
Figure 3 shows an example (for the network presented in Fig. 1) that PbR is
unable to represent. Here the first path is generated as follows: 1 → 2 → 4 → 5.
Since in Path1 after node 1, node 2 is selected, it shows that node 2 has a higher
priority than node 3. Hence, if arc (1, 2) is not saturated, PbR will not allow any
flow to be sent through arc (1, 3), essentially blocking this possibility completely
(Fig. 3, Path2). This means that PbR is unable to represent a potential feasible
solution such that the flow would go through arc (1, 3) (as shown in Fig. 3).
Another limitation for PbR is that each time a path is generated, we are supposed
to send the maximum possible amount on the generated path. These limitations
would restrict a search algorithm from reaching the full extent of the feasible
space.

3 Proposed Method

Representation plays a critical role before applying an optimisation algorithm,
and this applies to GA too. In this section we first propose a probabilistic tree-
based representation (PTbR) scheme for solving MCFPs, which alleviates the
deficiency of using PbR. Then we describe the GA employing PTbR for solving
MCFP instances.

3.1 Probabilistic Tree-Based Representation

To counteract the above-mentioned limitations of the PbR, we propose the PTbR
scheme, where a probability tree is adopted to represent a potential MCFP

A Probabilistic Tree-Based Representation for Non-convex MCFP 73

Fig. 4. Probability tree and its corresponding PTbR for the network in Fig. 1.

solution. Unlike the PbR scheme which is restricted to a small part of the feasible
space, the PTbR is able to represent all possible feasible solutions. Figure 4a
shows an example of the probability tree for the network presented in Fig. 1.
Here, the probability of each successor node to be selected is defined on each
branch.

The tree structure can be converted to a chromosome with several sub-
chromosomes. Figure 4b shows the PTbR chromosome converted from the
probability tree presented in Fig. 4a. The PTbR chromosome has n − 1 sub-
chromosomes (Sub.Ch) and the value of each gene is a random number between
0 and 1 which is then accumulated to 1 in each sub-chromosome. In order to
obtain a feasible solution from PTbR, in phase I, a path is first constructed,
and then a feasible flow is sent through the constructed path in phase II. For
example, to obtain a feasible solution for the chromosome in Fig. 4b, we gener-
ate the first path from node i = 1 (Sub.Chi=1). A random number is generated
in [0,1] (rand = 0.2), and since 0 ≤ rand = 0.2 ≤ 0.6, we move through arc
(1,2) and node 2 is selected. From node 2 (Sub.Chi=2) another random number
is generated (0.09 ≤ rand = 0.85 ≤ 1) and the selected successor node is 4.
From node 4 the only available node is 5. Hence, the following path is generated:
1 → 2 → 4 → 5.

In Phase II, we attempt to send a feasible flow through the generated path.
First the capacity of the generated path is defined (U = min{u12 = 10, u24 =
7, u45 = 8} = 7). Then, there are three possible approaches to send a feasible flow
on the generated path: (1) send a random flow between 1 and U (random(R));
(2) send a flow 1-by-1 (one-by-one (O)); (3) send the maximum possible amount
of the flow on the generated path (maximum(M)), which is the same as PbR.
In the above example, we follow the first approach (random(R)) and after cal-
culating U = 7, we send a random flow in [1, 7] (e.g., flow = 6) and the network,
supply and demand are updated. Since the demand has not been fully met (i.e.,
not equal to 0 yet), the above procedure is repeated.

74 B. Ghasemishabankareh et al.

Fig. 5. A feasible solution generated based on the PTbR chromosome in Fig. 4b.

Figure 5 shows a feasible solution for the chromosome presented in Fig. 4b.
Note that in Fig. 5, after generating Path1, although arc (1,2) is not saturated,
the second path picks node 3 as the successor of node 1, unlike the PbR. This
example illustrates that PTbR allows all potential solutions to be generated
probabilistically, instead of being restricted by using PbR.

3.2 Genetic Algorithm with PTbR

This section describes the GA employing the new representation scheme PTbR
for solving MCFPs, i.e., PtGA. The key distinction between the PtGA and the
PbR-based GA (PrGA) is that PrGA employs the PbR [8]. This PtGA can be
described by the following procedure:

Initialisation: First a population with pop size individuals (chromosomes) is
randomly generated. The process of creating a chromosome based on the PTbR
is explained in Subsect. 3.1.

Crossover and Mutation: In order to explore the feasible region, crossover and
mutation operators are applied to create the new offspring at each generation.
For PtGA, a two-point crossover operation is applied, where two blocks (sub-
chromosomes) of the selected chromosome (parents) are first randomly selected.
Then, two parents swapping the selected sub-chromosomes to generate new off-
spring. To perform mutation for PtGA, first a random parent is selected and the
randomly chosen sub-chromosome is regenerated to create a new offspring.

Fitness Evaluation and Selection: For each chromosome in the popula-
tion, after finding a feasible solution (x) by applying the decoding procedure
for PTbR, the value of cost function is evaluated using the following equation:
Minimize : z(x) =

∑n
i=1

∑n
j=1 f(xij). After calculating the fitness values for

all individuals in the population, the tournament selection procedure is applied
to select individuals for the next generation.

Termination Criteria: The termination criteria for the PtGA are as follows:
(1) no further fitness value improvement in the best individual of the population
for β successive iterations; (2) the maximum number of function evaluations
(NFEs) reached. If any of the above conditions is satisfied first, the algorithm
stops and the best solution (x∗) and its corresponding cost function value are
reported.

Note that for PrGA, it is common to employ a weight mapping crossover
(WMX) and inversion mutation [8]. The termination criteria can be the same
for both PrGA and PtGA.

A Probabilistic Tree-Based Representation for Non-convex MCFP 75

4 Experimental Studies

This section first describes the MCFP instances and cost functions that have
been adopted, followed by some discussion about the mathematical solver pack-
ages used in our experiments. We then describe the parameter settings, exper-
imental comparisons and result analysis on the performances of PrGA, PtGA,
and mathematical solvers in solving these MCFP instances.

Since our focus is to solve nonlinear non-convex MCFP, we adopt a set of
nonlinear non-convex cost functions which are commonly-used in the literature
[9,10,14]. Michalewicz et al. [14] categorised the nonlinear cost functions as (1)
piece-wise linear cost functions; (2) multimodal (nonlinear non-convex) cost func-
tions; (3) smooth cost functions which are mostly used for Operations Research
(OR) problems. In this paper we chose the nonlinear non-convex and arc-tangent
approximation of the piece-wise linear cost functions from [9,10,14] to evaluate
the performances of PrGA and PtGA. The formulation of these functions are as
follows [9,10,14]:

F1 : f(xij) = cij
(
arctan(PA(xij − S))/π + 0.5 + arctan(PA(xij − 2S))/π + 0.5+

arctan(PA(xij − 3S))/π + 0.5 + arctan(PA(xij − 4S))/π + 0.5+

arctan(PA(xij − 5S))/π + 0.5
)
.

(5)

F2 : f(xij) = cij
(
(xij/S)(arctan(PBxij)/π + 0.5) + (1 − xij/S)(arctan(PB(xij − S))/π + 0.5)+

(xij/S − 2)(arctan(PB(xij − 2S))/π + 0.5)
)
.

(6)
F3 : f(xij) = 100 × cij

(
xij(sin

(5πxij

4S

)
+ 1.3)

)
. (7)

Note that cij is non-negative coefficient, PA and PB are set to 1000 and S
is set to 2 for F1, and 5 for F2 and F3, respectively [10]. All cost func-
tions F1, F2 and F3 are illustrated in Fig. 6. A set of 35 single-source single-
sink MCFP instances is randomly generated with different number of nodes
(n = {5, 10, 20, 40, 80, 120, 160}) and presented in Table 1 (No. denotes the
instance number, and each instance has n nodes and m arcs). Note that, for
each node size (n), five different networks are randomly generated. The number
of supply/demand for nodes 1/n are set to q = 20/−20 in the test instances up to
20 nodes and for all other test problems supply/demand are set to q = 30/− 30.

Fig. 6. Shapes of different cost functions.

76 B. Ghasemishabankareh et al.

Table 1. A set of 35 randomly generated single-source single-sink MCFP instances.

No. n m No. n m No. n m No. n m No. n m No. n m No. n m
1

5

8 6

10

24 11

20

114 16

40

369 21

80

1484 26

120

3419 31

160

4882
2 8 7 34 12 98 17 385 22 1406 27 3166 32 4718
3 8 8 32 13 105 18 373 23 1560 28 3326 33 4986
4 9 9 27 14 99 19 406 24 1353 29 3212 34 4835
5 8 10 29 15 101 20 406 25 1526 30 2911 35 5130

This paper focuses on solving nonlinear non-convex MCFPs, which could be
considered as mixed integer nonlinear programming (MINLP) problems. How-
ever, only very few mathematical solver packages exist for solving MINLP prob-
lems, such as CPLEX, Couennn, Baron, LINDOGlobal and AlphaECP [5,12,18].
Some of these solvers have serious limitations. For instance, CPLEX is only
capable of solving quadratic optimisation problems, BARON cannot handle the
trigonometric functions sin(x), cos(x), while Couenne is not able to handle the
arctangent function [5]. Among these solvers, AlphaECP and LINDOGlobal are
able to handle general MINLPs [12,18]. As a result, we choose to compare our
PtGA and PrGA results with those of LINDOGlobal and AlphaECP.

4.1 Parameter Settings

Both PrGA and PtGA are implemented in MATLAB on a PC with Intel(R)
Core(TM) i7-6500U 2.50 GHz processor with 8 GB RAM and run 30 times for
each problem instance. In order to solve MCFP instances using mathematical
solvers, AlphaECP is applied through a high level mathematical language gen-
eral algebraic modelling system (GAMS) [11] and LINDOGlobal [12] is applied
directly on all problem instances.

The parameter settings for the PrGA are as follows: maximum number
of iterations (Itmax = 200), population size (pop size = min{n × 10, 300}),
crossover rate (Pc = 0.95), mutation rate (Pm = 0.3) and maximum num-
ber of function evaluations (NFEs = 100,000). The parameter settings for the
PtGA are Itmax = 200, pop size = min{n × 5, 300}, Pc = 0.95, Pm = 0.3
and NFEs = 100,000. The pop size value depends on the number of nodes (n)
and increases for the larger networks and the Pm = 0.3 value decreases linearly
in each iteration. If the results are not improved in β = 30 successive itera-
tions for PrGA or PtGA, the algorithm is terminated. The run time limit for
LINDOGlobal and AlphaECP is set to 3600 seconds (s). Other parameters for
AlphaECP and LINDOGlobal are set as default settings.

4.2 Results and Analysis

As mentioned in the procedure of PTbR, after finding a path, there are three
possible ways to send the flow over the generated path, i.e., send possible flow (1)
randomly (R), (2) one-by-one (O), or (3) by a maximum possible amount (M).

A Probabilistic Tree-Based Representation for Non-convex MCFP 77

Table 2. Results for cost function F1.

No. n m PtGA-R PtGA-O PTGA-M PrGA LINDOGlobal AlphaECP ht mean std t mean std t mean std t mean std t’ OBJ t’ OBJ
1

5

8 5 30.1752 7.29E-15 12 30.1752 7.29E-15 3 30.1752 7.29E-15 7 30.1752 7.29E-15 1 30.1752 1 30.1752 0
2 8 5 32.2126 0.00E+00 13 32.2126 0.00E+00 3 32.2126 0.00E+00 7 32.2126 0.00E+00 2 32.2126 1 32.2126 0
3 8 5 33.0507 7.29E-15 15 33.0507 7.29E-15 4 33.0507 7.29E-15 6 33.0507 7.29E-15 1 33.0507 1 33.0507 0
4 9 5 33.1016 7.29E-15 13 33.1016 7.29E-15 4 33.1016 7.29E-15 7 33.1016 7.29E-15 1 33.1016 1 33.1016 0
5 8 6 40.3756 2.19E-14 15 40.3756 2.19E-14 3 40.3756 2.19E-14 6 40.3756 2.19E-14 1 40.3756 1 40.3756 0
6

10

24 45 29.2974 2.08E-01 76 29.1682 8.03E-02 42 29.2961 9.99E-02 32 30.0343 3.16E-05 3600 29.135 268 30.021 -1
7 34 57 19.8109 2.03E-01 88 20.1956 3.09E-01 45 20.7775 2.94E-01 42 24.1056 6.01E-01 3600 19.5957 3600 20.184 -1
8 32 48 23.4834 1.16E-01 85 23.6681 1.46E-01 37 24.0765 2.34E-01 28 25.3353 1.39E-01 3600 23.3061 350 24.018 -1
9 27 48 26.1797 2.31E-01 69 26.2407 1.52E-01 34 26.4196 7.96E-02 29 28.3965 2.01E-01 3600 25.9165 525 25.929 -1
10 29 49 19.8438 9.12E-02 68 20.2202 2.30E-01 34 21.4404 1.55E-01 32 23.3819 2.95E-01 3600 19.6325 740 19.6325 -1
11

20

114 160 8.8767 4.60E-01 172 10.9784 4.74E-01 178 13.0274 7.23E-01 153 15.8245 2.03E-01 3600 8.3929 3600 7.0800 -1
12 98 141 11.7898 2.18E-01 167 12.4354 3.02E-01 156 13.2006 4.27E-01 160 15.4705 2.40E-01 3600 11.5964 3600 11.372 -1
13 105 213 8.2120 4.40E-01 239 9.619 5.36E-01 191 10.7931 4.36E-01 133 11.7116 4.25E-01 3600 7.0803 3600 6.4935 -1
14 99 187 10.1773 3.85E-01 227 11.3854 7.18E-01 202 12.881 6.11E-01 175 15.1102 9.30E-01 3600 10.5551 3600 10.7775 1
15 101 132 14.9139 3.17E-01 191 15.5517 5.14E-01 104 16.5822 7.43E-01 154 18.4694 5.16E-01 3600 13.8717 3600 13.6730 -1
16

40

369 340 1.6119 3.08E-01 437 3.1972 4.35E-01 362 4.1695 5.34E-01 411 6.6595 7.00E-01 3600 0.4433 3600 5.366 -1
17 385 316 3.5652 4.57E-01 376 4.853 4.95E-01 285 6.0036 3.92E-01 407 10.1381 8.84E-01 3600 4.9674 3600 10.375 1
18 373 393 0.5091 3.26E-01 523 1.9296 4.46E-01 406 3.0951 7.99E-01 432 5.1361 1.09E+00 3600 0.1937 3600 4.717 -1
19 406 330 0.8437 3.93E-01 370 3.22 6.36E-01 279 6.5308 4.73E-01 342 10.684 6.18E-01 3600 0.2118 3600 2.298 -1
20 406 359 3.5742 4.14E-01 435 6.177 6.60E-01 320 9.1484 6.27E-01 360 12.2394 7.58E-01 3600 8.7013 3600 2.7180 -1
21

80

1484 336 0.7333 2.71E-04 401 0.8181 1.67E-01 375 2.3523 7.75E-01 459 3.2517 1.32E+00 3600 NF 3600 5.703 1
22 1406 326 0.6737 4.90E-04 336 0.806 1.56E-01 369 2.2178 4.64E-01 506 5.4074 1.03E+00 3600 NF 3600 4.982 1
23 1560 279 0.8085 3.36E-04 361 1.6541 4.84E-01 278 4.128 8.63E-01 429 5.6396 9.22E-01 3600 NF 3600 7.476 1
24 1353 342 0.6585 3.50E-04 464 1.793 5.88E-01 354 4.3911 7.70E-01 779 8.1006 1.32E+00 3600 NF 3600 4.18 1
25 1526 322 0.7628 3.39E-04 394 1.0477 3.20E-01 302 2.7758 5.56E-01 583 5.0059 1.11E+00 3600 NF 3600 8.642 1
26

120

3419 725 1.0924 5.37E-04 725 2.8201 3.69E-01 711 5.525 4.39E-01 877 8.5144 1.17E+00 3600 NF 3600 6.585 1
27 3166 728 1.0818 9.44E-04 805 2.4484 3.89E-01 624 4.9784 6.08E-01 754 7.6565 1.16E+00 3600 NF 3600 2.103 1
28 3326 892 1.0152 6.75E-04 893 2.3935 3.03E-01 636 5.0317 6.01E-01 906 7.5819 7.76E-01 3600 NF 3600 13.321 1
29 3212 748 1.0532 7.88E-04 877 2.5385 5.05E-01 673 5.2673 6.27E-01 777 10.2727 1.74E+00 3600 NF 3600 3.414 1
30 2911 774 0.9446 4.06E-04 828 2.0145 4.28E-01 697 4.2784 6.21E-01 817 7.5239 1.37E+00 3600 NF 3600 4.297 1
31

160

4882 837 12.2598 2.55E+00 914 14.5003 4.81E-01 950 15.6057 5.54E-01 922 13.8152 2.74E-01 3600 NF 3600 14.18 1
32 4718 961 6.1413 1.42E+00 919 15.6089 9.73E-01 952 17.0593 7.89E-01 927 14.6681 9.81E-01 3600 NF 3600 10.578 1
33 4986 902 8.5483 1.21E+00 912 16.2194 6.18E-01 947 17.2818 8.47E-01 1345 15.1022 7.50E-01 3600 NF 3600 14.45 1
34 4835 853 6.3798 1.01E+00 1064 11.199 4.81E-01 1067 12.1144 6.70E-01 942 10.3464 4.48E-01 3600 NF 3600 14.1422 1
35 5130 994 10.6176 1.22E+00 1068 19.7703 7.79E-01 1081 20.5212 8.59E-01 896 18.9247 5.97E-01 3600 NF 3600 15.043 1

Table 3. Results for cost function F2.

No. n m PtGA-R PtGA-O PTGA-M PrGA LINDOGlobal AlphaECP ht mean std t mean std t mean std t mean std t’ OBJ t’ OBJ
1

5

8 4 7.525 1.82E-15 8 7.525 1.82E-15 2 7.525 1.82E-15 5 7.525 2.92E-15 1 7.525 1 7.525 0
2 8 5 8.65 0.00E+00 12 8.7085 1.56E-01 3 8.65 0.00E+00 5 8.65 0.00E+00 1 8.65 1 8.65 0
3 8 4 8.225 3.65E-15 8 8.225 3.65E-15 2 8.225 3.65E-15 5 8.225 3.65E-15 1 8.225 1 8.225 0
4 9 5 9.925 1.82E-15 14 10.1713 3.84E-01 3 9.925 1.82E-15 5 9.925 1.82E-15 1 9.925 1 9.925 0
5 8 5 11.375 5.47E-15 10 11.375 5.47E-15 2 11.375 5.47E-15 6 11.375 5.47E-15 1 11.375 1 11.375 0
6

10

24 34 11.0999 1.82E-15 41 12.3986 5.47E-15 33 11.5073 5.26E-01 22 12.2462 2.76E-01 90 11.05 230 12.054 -1
7 34 28 11.185 1.10E-01 37 11.2515 9.10E-02 17 11.0976 8.46E-02 25 11.3236 3.65E-15 360 11.014 310 11.024 -1
8 32 40 10.8903 1.09E-01 54 11.1688 1.09E-01 25 11.0155 5.40E-02 21 11.2944 3.65E-15 580 10.725 431 12.224 -1
9 27 26 11.3939 3.65E-15 36 11.3939 3.65E-15 20 11.3990 1.55E-02 26 11.8862 9.16E-02 610 11.3939 581 12.774 0
10 29 42 9.8438 1.03E-01 56 10.4882 7.34E-02 22 10.0002 1.30E-01 23 9.9807 1.57E-01 840 9.7293 743 9.7293 -1
11

20

114 127 9.8945 3.65E-15 171 10.7446 1.05E-02 90 10.6551 8.82E-02 159 10.5488 1.18E-01 3600 9.8945 3600 12.054 0
12 98 134 11.4485 0.00E+00 190 11.5245 2.89E-02 101 11.5641 4.27E-02 157 11.595 4.56E-02 3600 11.4485 3600 11.653 0
13 105 99 10.8133 3.65E-15 113 10.8133 3.65E-15 87 10.8133 2.32E-05 161 11.1547 4.77E-02 3600 10.8133 3600 10.8932 0
14 99 119 10.3787 0.00E+00 115 10.3787 0.00E+00 91 10.3787 0.00E+00 168 10.7202 1.88E-01 3600 10.3787 3600 11.209 0
15 101 115 10.7386 3.65E-15 123 10.7386 3.65E-15 94 10.7386 3.65E-15 172 10.759 6.63E-03 3600 10.7386 3600 10.828 0
16

40

369 348 9.7242 3.65E-15 395 13.8021 2.75E-01 281 10.9094 2.19E-02 372 10.9402 1.35E-02 3600 9.7242 3600 10.973 0
17 385 368 10.4645 2.27E-01 427 12.0613 3.25E-01 232 10.5797 9.81E-02 373 10.8525 1.16E-01 3600 11.1484 3600 11.244 1
18 373 490 9.4592 1.82E-15 537 13.9817 2.84E-01 348 11.0849 4.99E-02 381 11.1263 1.69E-02 3600 9.4592 3600 11.213 0
19 406 299 9.5696 1.82E-15 348 14.144 1.01E-01 230 10.8622 1.34E-01 379 11.1395 7.01E-02 3600 9.5696 3600 11.294 0
20 406 314 10.0842 1.82E-15 424 13.2452 3.54E-01 221 10.908 1.29E-01 372 11.0853 1.38E-01 3600 10.0842 3600 11.219 0
21

80

1484 323 10.4395 1.88E-01 364 14.4468 2.41E-01 243 10.6247 1.77E-02 325 10.7098 4.24E-02 3600 13.6678 3600 10.589 1
22 1406 326 11.4700 1.43E-01 396 14.4949 4.10E-02 250 11.5366 1.76E-02 369 11.5842 2.24E-02 3600 13.6122 3600 13.982 1
23 1560 249 9.3868 1.01E-02 360 14.4684 8.50E-02 209 10.6202 1.55E-02 395 10.6933 3.05E-02 3600 9.5945 3600 10.603 1
24 1353 364 10.9509 2.92E-01 510 14.8001 5.86E-02 286 11.0069 2.04E-02 343 11.135 5.69E-02 3600 12.2486 3600 12.623 1
25 1526 332 9.8808 6.44E-01 340 14.7078 1.23E-01 250 10.6271 4.95E-02 400 10.7367 5.29E-02 3600 9.9196 3600 14.412 0
26

120

3419 645 11.5658 2.21E-01 699 14.8154 7.21E-02 603 11.9241 2.23E-02 670 12.0306 3.47E-02 3600 NF 3600 10.568 -1
27 3166 555 11.8297 8.19E-01 617 15.1228 1.32E-01 402 11.9766 5.31E-02 595 12.1168 5.61E-02 3600 NF 3600 12.861 1
28 3326 670 11.9377 1.62E-01 716 15.1615 8.53E-02 461 12.1081 4.14E-02 467 12.2275 5.72E-02 3600 NF 3600 12.038 1
29 3212 745 11.8559 4.17E-03 864 15.3256 7.73E-02 396 12.1214 4.13E-02 791 12.2555 6.60E-02 3600 11.8478 3600 12.028 -1
30 2911 731 12.5460 1.59E-01 699 15.3006 7.35E-02 478 12.7238 4.79E-02 877 12.7510 6.14E-02 3600 14.2069 3600 16.797 1
31

160

4882 989 11.4402 3.48E-01 1004 26.5183 5.87E-01 914 16.903 5.39E-01 908 18.4306 7.00E-01 3600 NF 3600 12.4545 1
32 4718 946 12.0739 2.05E-01 1021 28.0915 5.06E-01 999 19.0685 5.14E-01 912 20.5485 1.07E+00 3600 NF 3600 11.435 -1
33 4986 846 12.0254 3.27E-01 929 28.4358 6.94E-01 912 18.9474 6.31E-01 914 20.4764 1.01E+00 3600 NF 3600 12.241 1
34 4835 916 11.6837 1.78E-01 1029 25.521 4.70E-01 1005 16.7851 7.29E-01 994 18.3083 7.24E-01 3600 NF 3600 11.884 1
35 5130 995 12.1966 9.78E-01 1122 30.2795 6.41E-01 1082 19.7566 6.03E-01 951 21.2144 7.46E-01 3600 NF 3600 12.691 1

This creates three different variants of the PTbR-based GA, namely PtGA-R,
PtGA-O, and PtGA-M respectively.

To compare the effectiveness of these representation methods, we evaluate
these variants, as well as PrGA using a set of 35 MCFP instances. Tables 2, 3
and 4 present the results of PtGA-R, PtGA-O, PtGA-M, PrGA, LINDOGlobal,
and AlphaECP on a total of 35 test problems using cost functions F1, F2, F3. The
std and t (for PrGA and PtGA) denote the standard deviation of the results and
the average of running time in seconds respectively, and the mean represents the
average of cost function values over 30 runs. The t′ and OBJ for LINDOGlobal

78 B. Ghasemishabankareh et al.

Table 4. Results for cost function F3.

No. n m PtGA-R PtGA-O PTGA-M PrGA LINDOGlobal AlphaECP ht mean std t mean std t mean std t mean std t’ OBJ t’ OBJ
1

5

8 5 114.3819 7.29E-14 11 114.3819 7.29E-14 3 114.3819 7.29E-14 9 114.3819 7.29E-14 1 114.3819 1 114.3819 0
2 8 6 111.8675 0.00E+00 14 111.8675 0.00E+00 4 111.8675 0.00E+00 9 111.8675 0.00E+00 1 111.8675 1 111.8675 0
3 8 7 138.2576 0.00E+00 16 138.2576 0.00E+00 3 138.285 0.00E+00 6 138.285 0.00E+00 1 138.2576 1 142.79 0
4 9 7 107.3083 0.00E+00 14 107.3083 0.00E+00 3 120.0322 5.83E-14 6 123.3197 2.92E-14 1 107.3083 1 123.32 0
5 8 6 150.9943 2.92E-14 15 150.9943 2.92E-14 3 150.9943 2.92E-14 7 150.9943 2.92E-14 1 150.9943 1 150.9943 0
6

10

24 66 106.7312 1.44E+00 108 107.7509 2.18E+00 43 118.2249 5.35E-01 41 135.3015 1.87E+00 3600 104.5113 332 141.64 -1
7 34 36 81.7436 3.64E-01 69 85.7071 3.81E+00 39 89.5549 7.08E+00 32 117.8976 1.06E+01 3600 80.97226 431 108.13 -1
8 32 49 89.4711 1.47E+00 65 88.569 6.40E-01 36 90.3497 2.08E+00 33 131.963 6.02E-01 3600 86.41261 491 135.434 -1
9 27 45 112.2958 1.31E+00 74 115.9811 4.28E+00 37 114.265 1.58E+00 27 152.5404 1.28E+00 3600 110.3257 288 133.92 -1
10 29 49 90.1242 8.41E-01 78 90.2275 8.48E-01 39 90.4574 1.21E+00 35 104.8298 8.38E+00 3600 88.05281 333 135.81 -1
11

20

114 90 69.7972 1.25E+00 163 105.9186 8.93E-01 81 103.9751 3.76E+00 86 103.4472 4.32E+00 3600 66.6795 3600 102.375 -1
12 98 111 79.5198 5.91E-01 194 116.2849 4.75E-01 79 116.3386 5.97E+00 78 122.6103 3.04E+00 3600 79.3041 3600 92.146 0
13 105 137 96.3334 2.15E+00 234 123.3836 2.84E+00 137 120.5739 1.11E+00 93 116.6993 5.49E+00 3600 90.1959 3600 137.339 -1
14 99 92 79.4689 0.00E+00 213 103.5296 1.40E+00 86 99.9841 3.27E+00 80 115.5684 1.98E+00 3600 79.4689 3600 115.578 0
15 101 145 82.9519 1.56E+00 199 108.6625 1.11E+00 99 111.233 2.93E+00 75 115.2218 2.27E+00 3600 78.4144 3600 116.503 -1
16

40

369 299 75.7446 6.09E-01 384 119.4979 4.80E+00 323 105.1299 2.87E+00 223 108.7354 3.66E+00 3600 77.1499 3600 145.164 1
17 385 253 89.9066 3.16E-01 396 108.3421 1.07E+00 241 111.1345 2.21E+00 294 119.3059 3.82E+00 3600 90.1749 3600 148.655 1
18 373 203 83.1843 3.89E+00 582 133.7859 3.33E+00 433 106.883 4.90E+00 215 93.0854 3.19E+00 3600 79.8989 3600 90.777 -1
19 406 282 72.447 5.14E-01 355 119.7419 4.45E+00 231 99.0947 3.44E+00 285 103.488 2.99E+00 3600 73.0978 3600 92.443 1
20 406 288 65.1725 4.73E-01 359 127.004 3.93E+00 277 102.8105 6.24E+00 201 109.9314 3.55E+00 3600 65.0667 3600 117.312 0
21

80

1484 325 83.9645 1.85E+00 404 138.502 5.27E+00 296 109.589 1.40E+00 336 107.3701 2.04E+00 3600 90.1854 3600 124.549 1
22 1406 238 93.3544 1.13E+00 332 128.5883 6.91E+00 246 109.0366 1.42E+00 347 108.2733 2.49E+00 3600 93.4224 3600 129.357 0
23 1560 296 106.1091 3.03E+00 304 143.037 2.91E+00 243 112.9184 1.57E+00 272 111.1676 1.20E+00 3600 148.6104 3600 107.493 0
24 1353 261 63.7182 4.32E-01 464 134.5088 7.03E+00 331 108.1399 2.83E+00 314 94.7708 5.95E+00 3600 65.3662 3600 132.307 1
25 1526 365 59.5713 2.19E-14 293 134.002 6.85E+00 241 101.3695 7.98E+00 335 106.9928 5.50E+00 3600 59.5713 3600 125.508 0
26

120

3419 544 86.9299 1.93E+00 595 130.1538 2.76E+00 491 84.2045 2.36E+00 686 89.0996 3.92E+00 3600 NF 3600 91.267 1
27 3166 464 55.0274 1.79E+00 475 129.6023 2.81E+00 437 83.2053 3.92E+00 544 87.5812 5.25E+00 3600 66.009 3600 92.576 1
28 3326 530 80.7884 8.00E+00 693 131.3889 3.27E+00 535 88.2298 5.87E-01 685 88.4319 5.24E-01 3600 NF 3600 80.755 0
29 3212 486 84.6939 5.19E+00 566 133.1519 2.59E+00 528 90.2997 5.19E-01 535 89.1701 4.72E-01 3600 NF 3600 136.381 1
30 2911 481 89.7215 1.09E+00 525 136.358 4.51E+00 455 90.4635 1.55E+00 582 95.9605 6.85E+00 3600 NF 3600 102.4492 1
31

160

4882 885 80.6756 5.27E+00 994 257.169 5.66E+00 631 145.3273 6.83E+00 907 158.2989 1.14E+01 3600 145.654 3600 98.52.90 1
32 4718 835 82.8948 9.12E+00 944 270.3601 8.35E+00 651 156.9115 8.70E+00 895 174.8577 9.43E+00 3600 144.216 3600 123.975 1
33 4986 910 80.4273 5.40E+00 1006 266.059 6.02E+00 694 159.3669 5.94E+00 800 170.5026 1.20E+01 3600 NF 3600 117.75 1
34 4835 992 82.432 3.75E+00 946 247.8246 4.70E+00 740 143.5167 7.49E+00 949 158.1368 9.00E+00 3600 NF 3600 102.685 1
35 5130 988 88.063 4.01E+00 1040 272.3081 5.92E+00 856 162.7781 7.43E+00 917 181.6462 9.77E+00 3600 173.679 3600 117.999 1

Table 5. The Friedman test’s results for PtGA-R, PtGA-O, PtGA-M and PrGA.

p-value Mean column ranks

PtGA-R PtGA-O PtGA-M PrGA

F1 0.000E+00 16.49 34.13 50.94 60.43

F2 0.000E+00 18.99 59.27 32.69 51.05

F3 0.000E+00 16.28 54.94 41.05 49.72

and AlphaECP (exact methods) denote the running time and the cost function
value, respectively. “NF” denotes that the mathematical solver cannot find any
feasible solution in the time limit of an hour (3600 s). The best cost function
value for each instance is presented in boldface.

To carry out a comprehensive comparison among PtGA-R, PtGA-O, PtGA-
M, and PrGA, we use Friedman test [6]. For each function (F1, F2 and F3) we
perform the Friedman test with the significance level set to 0.05, and the results
are shown in Table 5. Since the p-values in all three functions are almost zero
(less than 0.05), there are overall statistically significant differences between
the mean ranks of the algorithms (PtGA-R, PtGA-O, PtGA-M and PrGA).
The mean column rank values of the PtGA-R is less than those of the PtGA-
O, PtGA-M and PrGA (Table 5) which indicates that PtGA-R’s performance is
better than those of the other GA variants. It is clearly evident that the superior
performance of the PrGA-R comes from utilising PTbR in its procedure and
sending a random possible flow.

We also compare the performance of PtGA-R with LINDOGlobal and
AlphaECP by applying a one-sample t-test with the significance level set to
0.05. After performing the one-sample t-test, if PtGA-R has statistically better
or worse performance than that of the mathematical solvers, the parameter h is

A Probabilistic Tree-Based Representation for Non-convex MCFP 79

Fig. 7. Convergence graphs for PtGA, PrGA, LINDOGlobal and AlphaECP.

set to 1 and −1 respectively, otherwise h is set to 0. The last column of Tables 2,
3 and 4 presents the value of h for all instances.

For cost function F1, Table 2 shows that PtGA-R has better performance on
all instances with n = {80,120,160} compared with that of PtGA-O, PtGA-M,
PrGA, LINDOGlobal and AlphaECP. Furthermore, LINDOGlobal fails to find
any feasible solutions when the problem size is increased (n = {80,120,160}). For
F2, Table 3 shows that on 28 out of 35 instances (80%), the PtGA-R has equal
or better performance than the two mathematical solvers.

With regard to cost function F3, Table 4 shows that even on instances 3
and 4 (small-sized instances), PrGA failed to find the optimal solutions due
to the limitations of PbR in searching the feasible region, which is consistent
with our analysis in Subsect. 2.1. In all large-sized instances (n = {80,120,160}),
the PtGA-R has similar or better performance than that of the mathematical
solvers.

Figure 7 shows the convergence graphs of PtGA-R, PtGA-O, PtGA-M, PrGA
and the mathematical solvers for large-sized instances on F2 and F3. Since LIN-
DOGlobal is not able to find any feasible solution for all large-sized problems
on F1, we are not able to provide the convergence graph for that cost function.
As shown in Fig. 7, PtGA-R converges to a good solution faster than other GA
variants as well as LINDOGlobal and AlphaECP. Based on Fig. 7, LINDOGlobal
cannot find any feasible solution after about 1000 s. Once a solution is found,
mathematical solvers (specially LINDOGlobal) are not able to improve it.

5 Conclusion

This paper has proposed a new encoding scheme called probabilistic tree-based
representation (PTbR) for more effective handling of MCFPs. We examine the
commonly-used priority-based representation (PbR), and compare it with PTbR
to demonstrate that PTbR is superior to PbR for solving MCFPs. To validate our
analysis on these representation schemes, the PTbR-based GA (i.e., PtGA) and
PbR-based GA (i.e., PrGA) are evaluated over a set of 35 single-source single-
sink network instances with up to five thousand variables. The experimental

80 B. Ghasemishabankareh et al.

results demonstrate that PtGA with a random flow (i.e., PtGA-R) has better
performance than PrGA on all problem instances. In addition, PtGA-R has
also been shown to produce better solutions and have better efficiency than
mathematical solvers such as LINDOGlobal and AlphaECP when considering
the large-sized instances. For future research, one can focus on solving large-
sized real-world MCFP using the proposed representation method.

References

1. Abdelaziz, M.: Distribution network reconfiguration using a genetic algorithm with
varying population size. Electr. Power Syst. Res. 142, 9–11 (2017)

2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications, pp. 4–6. Prentice Hall, Upper Saddle River (1993)

3. Aiello, G., La Scalia, G., Enea, M.: A multi objective genetic algorithm for the
facility layout problem based upon slicing structure encoding. Expert Syst. Appl.
39(12), 10352–10358 (2012)

4. Amiri, A.S., Torabi, S.A., Ghodsi, R.: An iterative approach for a bi-level competi-
tive supply chain network design problem under foresight competition and variable
coverage. Transp. Res. Part E: Logist. Transp. Rev. 109, 99–114 (2018)

5. Burer, S., Letchford, A.N.: Non-convex mixed-integer nonlinear programming: a
survey. Surv. Oper. Res. Manag. Sci. 17(2), 97–106 (2012)

6. Derrac, J., Garćıa, S., Molina, D., Herrera, F.: A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

7. Fontes, D.B., Gonçalves, J.F.: Heuristic solutions for general concave minimum
cost network flow problems. Networks 50(1), 67–76 (2007)

8. Gen, M., Cheng, R., Lin, L.: Network Models and Optimization: Multiobjective
Genetic Algorithm Approach. Springer, London (2008). https://doi.org/10.1007/
978-1-84800-181-7

9. Klanšek, U.: Solving the nonlinear discrete transportation problem by minlp opti-
mization. Transport 29(1), 1–11 (2014)

10. Klanšek, U., Pšunder, M.: Solving the nonlinear transportation problem by global
optimization. Transport 25(3), 314–324 (2010)

11. Lastusilta, T., et al.: GAMS MINLP solver comparisons and some improvements to
the AlphaECP algorithm. In: Process Design and Systems Engineering Laboratory,
Department of Chemical Engineering Division for Natural Sciences and Technology,
Abo Akademi University, Abo, Finland (2011)

12. Lin, Y., Schrage, L.: The global solver in the LINDO API. Optim. Methods Softw.
24(4–5), 657–668 (2009)

13. Lotfi, M., Tavakkoli-Moghaddam, R.: A genetic algorithm using priority-based
encoding with new operators for fixed charge transportation problems. Appl. Soft
Comput. 13(5), 2711–2726 (2013)

14. Michalewicz, Z., Vignaux, G.A., Hobbs, M.: A nonstandard genetic algorithm for
the nonlinear transportation problem. ORSA J. Comput. 3(4), 307–316 (1991)

15. Reca, J., Mart́ınez, J., López-Luque, R.: A new efficient bounding strategy applied
to the heuristic optimization of the water distribution networks design. In: Congress
on Numerical Methods in Engineering CMN (2017)

16. Tari, F.G., Hashemi, Z.: A priority based genetic algorithm for nonlinear trans-
portation costs problems. Comput. Ind. Eng. 96, 86–95 (2016)

https://doi.org/10.1007/978-1-84800-181-7
https://doi.org/10.1007/978-1-84800-181-7

A Probabilistic Tree-Based Representation for Non-convex MCFP 81

17. Vegh, L.A.: A strongly polynomial algorithm for a class of minimum-cost flow
problems with separable convex objectives. SIAM J. Comput. 45(5), 1729–1761
(2016)

18. Westerlund, T., Pörn, R.: Solving pseudo-convex mixed integer optimization prob-
lems by cutting plane techniques. Optim. Eng. 3(3), 253–280 (2002)

19. Zhang, Y.H., Gong, Y.J., Gu, T.L., Li, Y., Zhang, J.: Flexible genetic algorithm:
a simple and generic approach to node placement problems. Appl. Soft Comput.
52, 457–470 (2017)

Comparative Study of Different Memetic
Algorithm Configurations for the Cyclic

Bandwidth Sum Problem

Eduardo Rodriguez-Tello1(B) , Valentina Narvaez-Teran1 ,
and Fréderic Lardeux2

1 CINVESTAV – Tamaulipas, Km. 5.5 Carretera Victoria-Soto La Marina,
87130 Victoria, Tamaulipas, Mexico

{ertello,mnarvaez}@tamps.cinvestav.mx
2 LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France

frederic.lardeux@univ-angers.fr

Abstract. The Cyclic Bandwidth Sum Problem (CBSP) is an NP-Hard
Graph Embedding Problem which aims to embed a simple, finite graph
(the guest) into a cycle graph of the same order (the host) while mini-
mizing the sum of cyclic distances in the host between guest’s adjacent
nodes. This paper presents preliminary results of our research on the
design of a Memetic Algorithm (MA) able to solve the CBSP. A total
of 24 MA versions, induced by all possible combinations of four selec-
tion schemes, two operators for recombination and three for mutation,
were tested over a set of 25 representative graphs. Results compared with
respect to the state-of-the-art top algorithm showed that all the tested
MA versions were able to consistently improve its results and give us
some insights on the suitability of the tested operators.

Keywords: Cyclic Bandwidth Sum Problem · Memetic algorithms
Graph Embedding Problems

1 Introduction

Graph Embedding Problems (GEP) are combinatorial problems which aim to
find the most suitable way to embed a guest graph G into a host graph H [3,5].
An embedding is a labeling of the vertices of G by using the vertices of H.
The Cyclic Bandwidth Sum Problem [2] can be formally defined as follows. Let
G = (V,E) be a finite undirected (guest) graph of order n and Cn a cycle (host)
graph with vertex set |VH | = n and edge set EH . Given an injection ϕ : V → VH ,
representing an embedding of G into Cn, the cyclic bandwidth sum (the cost)
for G with respect to ϕ is defined as:

Cbs(G,ϕ) =
∑

(u,v)∈E

|ϕ(u) − ϕ(v)|n, (1)

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 82–94, 2018.
https://doi.org/10.1007/978-3-319-99253-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_7&domain=pdf
http://orcid.org/0000-0002-0333-0633
http://orcid.org/0000-0003-2071-9568
http://orcid.org/0000-0002-0907-7886

Comparative Study of Different MA Configurations for the CBSP 83

where |x|n = min{ |x|, n − |x| } (with 1 ≤ |x| ≤ n − 1) is called the cyclic
distance, and the label associated to vertex u is denoted ϕ(u).

Then, the CBSP consists of finding the optimal embedding ϕ∗, such that
Cbs(G,ϕ∗) is minimum, i.e., ϕ∗ = arg minϕ∈Φ{Cbs(G,ϕ)} with Φ denoting the
set of all possible embeddings.

The CBSP is an NP-Hard problem originally studied by Yuang [16]. Most
of the work reported in the literature has focused on theoretical research about
calculating (or at least approximating) the optimal solution for some well-known
graph topologies. Some of the topologies addressed by the reported exact for-
mulas [2] are paths, cycles, wheels, k-th powers of cycles and complete bipartite
graphs. For the Cartesian products of two graphs (when those graphs are paths,
cycles or complete graphs) upper bounds have been reported in [9]. The relation
of the CBSP with the Bandwidth Sum Problem1 (BSP) was also studied [2].
Given the relevant applications of this problem on VLSI designs [1,15], code
design [7], simulation of network topologies for parallel computer systems [12],
scheduling in broadcasting based networks [11], signal processing over networks
[6] and compressed sensing in sensor networks [10], it has recently caught atten-
tion in the combinatorial optimization and operation research areas.

Theoretical formulations are useful to estimate optimal values, but they say
little about how to algorithmically construct optimal embeddings, or at least
near optimal solutions. This resulted in the development of two approximated
algorithms devised to solve the CBSP: General Variable Neighborhood Search
(GVNS) [14] and a greedy heuristic denominated as Mach [6].

GVNS algorithm applies Reduced Variable Neighborhood Search (RVNS)
to improve its initial solution, which consist of a lexicographical embedding.
The properly said GVNS phase includes six perturbation operators and two
neighborhoods. When dealing with path, cycle, star and wheel topologies of
order n ≤ 200 GVNS was able to achieve optimal results as well as solutions
under the theoretical upper bounds for Cartesian products of order n ≤ 64 and
graphs of the Harwell-Boeing collection of order n ≤ 199.

Mach is a two phase greedy heuristic algorithm. In the first phase the guest
graph G is partitioned into disjoint paths by a depth first search mechanism
guided by the Jaccard index [8] as a similarity criterion between vertices. Since
Jaccard index measures the similarity between vertices neighborhoods, vertices
with common neighbors are likely to be included near each other in the same
path. In the second phase a solution is incrementally built up by merging the
paths. The longer path is added to the solution, then a greedy strategy is imple-
mented to determine where in the partial solution the remaining paths should be
inserted. It was experimentally shown that Mach consistently improves the solu-
tion quality achieved by GVNS, as well as the running time. Therefore, Mach
is currently considered as the best-known algorithm to solve the CBSP.

Our approach consists in studying a combination of genetic and local search
inspired operators implemented into a Memetic Algorithm to solve the general

1 BSP is the problem of embedding a graph into a path while minimizing the sum of
linear distances between embedded vertices.

84 E. Rodriguez-Tello et al.

case of the CBSP. We worked with four selection schemes, two recombination
mechanisms, three mutation schemes and one survival strategy. The 24 possible
combinations of operators (MA versions) were duly tested.

Our experiments over a set of 25 topologically diverse representative instances
allowed us to obtain significantly improved results with respect to the state-of-
the-art top algorithm. We also obtained some insights about the effectiveness of
some of the tested operators for helping solving the CBSP.

The rest of this work is organized as follows. MA main routine and operator
implementations are described in Sect. 2. Our experimental methodology and
the results of the comparisons among the 24 implemented MA versions with
respect to the literature results are shown and discussed in Sect. 3. Finally, the
conclusions of this work and further research directions are presented in Sect. 4.

2 Memetic Algorithms for the CBSP

Algorithm 1 describes the main framework common to all our MA versions. Pop-
ulation P contains μ individuals. At each generation we chose from P couples of
individuals for recombination by crossover. Then, the resulting individuals are
mutated and extra perturbations of their chromosomes are performed by inver-
sion. Local search is applied only to the best individual Pbest in the surviving
population P , in order to accelerate the computational time expended in each
generation. Furthermore, as it is described in Sect. 2.4, the mutation operators
also incorporate certain local search operations.

Although o′′ is the individual added to the offspring population O, we also
compare the fitness corresponding to previous states of its chromosome (o and o′)
with the best historically found solution g, in order to avoid losing any possible
improvement, even if o and o′ are not actually in O. The historically best found
solution record g is kept independently of the populations P and O.

2.1 Solution Encoding and Initialization

The potential solutions were turned into chromosomes by the permutation encod-
ing. An individual is represented as Pi = (ϕi, ρi, fi) where ϕi and ρi are two
representations of the same embedding: ϕi(u) stands for the label associated
to vertex u (i.e., the vertex in the host graph associated to vertex u). ρi(u′)
denotes the vertex in G having the label u′ (i.e., the vertex hosted in vertex u′);
and fi = f(ϕi, G) is the fitness of the individual assessed by the fitness func-
tion which corresponds to (1). Whenever a change occurs in ϕi it is reflected in
ρi and vice-versa. All individuals in population P are initialized by the assign-
ment of random permutations to their chromosomes. With exception of insertion
mutation, all of our operators work primarily over ϕi.

2.2 Selection

We will denote S as a multiset containing the individuals for mating. Since we
use the Cbs values as fitness values and CBSP is a minimization problem, the

Comparative Study of Different MA Configurations for the CBSP 85

Algorithm 1. Memetic Algorithm
1: P ← initializePopulation(P , μ)
2: O ← ∅
3: t ← 1
4: g ← Pbest

5: repeat
6: for i ← 1 to μ do
7: Pa, Pb ← selection(P)
8: o ← crossover(Pa, Pb, probc)
9: o′ ← mutation(o, probm)

10: o′′ ← inversion(o′, probi)
11: O ← O ∪ o′′

12: g ← fitter individual among current g, o, o′ and o′′

13: end for
14: P ← survival(P, O)
15: O ← ∅
16: Pbest ← localsearch(Pbest, tries)
17: g ← fitter individual among current g and Pbest

18: until stop criterion is met
19: return g

individuals with lower Cbs values are actually the fittest ones. Therefore, in the
case of stochastic and roulette selections we performed a min-max normalization
of the fitness values. Then, for each individual its expected value was calculated
based on its normalized fitness.

Stochastic selection is performed by adding to S as many copies of each
individual as the integer part of its expected value indicates. Then, the floating
point parts are used to probabilistically determine whether or not to add an
additional copy.

In roulette selection the expected values serve as an indicator of the size of the
section corresponding to each individual in the roulette. We pick 2μ individuals
by spinning the roulette 2μ times. The higher the expected values, the bigger
the section and the higher chances for the individual to be chosen.

Random selection is rather simple, it just picks 2μ individuals from P , with
replacement. Binary tournament performs 2μ tournament rounds. At each round
the individual with the lower Cbs value is chosen. So, when implementing random
or binary tournament selections there is neither need for normalization nor for
expected values.

2.3 Crossover

Two permutation specialized crossover operators were implemented: cyclic [13]
and order-based crossover [4]. An offspring is created as follows. First, a cou-
ple of individuals from S is picked with replacement. Each couple can produce
only one offspring. It is probabilistically decided if this individual is created by
recombination, with probability probc, or if it is a copy of the fitter individual
in the selected couple.

86 E. Rodriguez-Tello et al.

Cyclic crossover operates by computing the cycles between both parent chro-
mosomes. The individual inherits, alternately, one cycle from one of the parents
and one from the other. By doing this, the operator produces a new permutation
in which the absolute positions of each of its genes is preserved with respect to
one of the parents, and therefore implicit mutations are avoided.

Order-based crossover picks a random segment of genes from one parent indi-
vidual and inherits it directly to the offspring. Then, the rest of genes of the
offspring are assigned in the same order as they appeared in the other parent.
This operator balances the preserving of absolute positions of the permutation
elements and their relative order. It introduces implicit mutations, but within a
limited scope.

2.4 Mutation

Keeping the population diverse is necessary to avoid premature convergence.
Diversification is provided by mutation, introducing new genetic material into
the population. Mutation works by probabilistically altering some of the genes
of an individual. We tested three existing mutation schemes for permutations:
insertion, reduced 3-swap and cumulative swap.

Insertion mutation operates over ρi (see Sect. 2.1). By manipulating ρi, inser-
tion models the process of reallocating the guest vertex embedded at the host
vertex u′ to the vertex v′, while displacing the embedded vertices between u′ and
v′. Both host vertices u′ and v′ are randomly chosen. Given the cyclic nature of
the embeddings for the CBSP, there are actually two sections of vertices that can
be considered to be the section in between u′ and v′: one section implies clock-
wise displacements and the other counterclockwise displacements. The insertion
mutation will affect only the smaller section, i.e., the one with fewest vertices,
which corresponds to the minimum length path between u′ and v′ in Cn. Figure 1
illustrates this by representing ρi as a cyclic permutation in order to reflect the
cyclic nature of the embedding it encodes. As it can be inferred, any change in
ρi must be properly reflected in ϕi by updating the labels, i.e., host vertices of
the guest vertices embedded in the affected section.

Reduced 3-swap mutation picks three random vertices. The labels of those
nodes are exchanged in every possible way, giving as a result five new solutions.
The individual is then replaced by the best of those solutions, even if its fitness
is worse than the current one. This can be seen as a subneighborhood from the
3-swap neighborhood, i.e., all solutions at Hamming distance equal to three from
the current solution.

Cumulative swap performs n/2 iterations (steps). At each iteration, with
probability probc a pair of random vertices is picked. It is evaluated if the fitness
of the individual would be improved by exchanging the labels of those vertices. If
so, the labels are actually exchanged. Cumulative swap can be seen as a random
up-hill walk of limited length.

One of the differences in the application of one or other mutation scheme is
the role of the mutation probability probm. In the case of reduced 3-swap and
insertion, the mutation probability acts at individual level, i.e., it is decided only

Comparative Study of Different MA Configurations for the CBSP 87

(a) Counterclockwise dis-
placements for u′ = 5 and
v′ = 9.

(b) Clockwise displace-
ments for u′ = 5 and
v′ = 9.

(c) Clockwise displace-
ments for u′ = 9 and
v′ = 5.

(d) Counterclockwise dis-
placements for u′ = 9 and
v′ = 5.

Fig. 1. Insertion mutation. Numbers represent the vertices of permutation ρi. Example
in Fig. 1(a) corresponds to counterclockwise insertion when u′ < v′, performing 5 steps.
Also for u′ < v′, clockwise insertion will perform 7 steps, as shown in Fig. 1(b), therefore
counterclockwise insertion is preferred. For u′ > v′, clockwise insertion will perform 5
steps, while 7 steps will be required by counterclockwise insertion.

once per generation if an individual will be mutated or not. Meanwhile, in cumu-
lative swap little probabilistic mutations occur up to n/2 times per individual.
From this follows that, when using insertion or reduced 3-swap mutations some
individuals will remain unchanged, approximately 1 − probm · μ. The mutated
individuals will present variable size mutations in the case of insertion, and uni-
form size mutations (exactly 3) in the case of reduced 3-swap. In cumulative swap
it is likely that all individuals will mutate, but the amount of genes affected will
vary within the population.

2.5 Inversion

The inversion phase is independent of the mutation one. In a similar way to
the reduced 3-swap and insertion mutations, it is probabilistically applied at

88 E. Rodriguez-Tello et al.

(a) Clockwise inversion. (b) Counterclockwise inver-
sion.

Fig. 2. Inversion over ϕi, numbers represent the permutation labels. In Fig. 2(a) a
clockwise inversion between vertices u = 10 and v = 4 would perform two exchanges
of labels. Figure 2(b) shows the respective counterclockwise inversion which performs
three exchanges of labels, therefore clockwise inversion is preferred.

individual level, so some individuals could remain unchanged. Given the nature
of this operator, the number of changed genes in the affected individuals will
be variable. Inversion operator consists in selecting two random vertices, and
reversing the order of appearance of the labels in the section between them
(inclusively). This is achieved by consecutive exchanges in the ϕi representation.
In Fig. 2, ϕi is represented as a cyclic permutation to illustrate this process.
Similarly to insertion, the cyclic feature of CBSP embeddings is considered,
and inversion can operate clockwise or counterclockwise, preferring always the
option implying the minimal number of exchanges.

2.6 Survival Strategy

The survival strategy applied was (μ + λ). All individuals in populations P and
O are merged and sorted in nondecreasing order according with their fitness
values. Then, the first μ individuals are chosen to become the parent population
P for the next generation.

2.7 Local Search

Local search is applied only to the best individual in the survivor population.
The neighborhood employed was the one induced by the 2-swap operator, i.e., all
solutions resulting from swapping the labels of two vertices in ϕi. It is visited in a
random order, using the first-improvement move strategy. The local search phase
ends when a local optimum is reached or after a maximal number of iterations
was performed (tries).

Comparative Study of Different MA Configurations for the CBSP 89

Table 1. Input parameter values for the MA algorithms.

Parameter Value Parameter Value

Population size μ 20 Inversion rate probi 0.240

Crossover rate probc 0.788 Local search iterations tries 10

Mutation rate probm 0.543 Evaluation function calls T 4.0E+08

3 Experimental Results

We experimented with the full set of 24 MA versions corresponding to all the
possible combinations of operators, with a maximal number (T) of calls to the
fitness function as stop criterion. A set of 25 topologically diverse and repre-
sentative instances (see Table 3) belonging to three different types was used:
Cartesian products, paths and cycles, and Harwell-Boeing graphs. All the MA
versions were tested using a fixed set of parameter values (Table 1) obtained
from the literature and from our a priori experiments using the irace R package
for automatized algorithm tuning. Details on this matter are no included here
due to the space limitations, but they are available online.2

For comparing the algorithms in terms of solution quality the overall relative
root mean square error (O-RMSE) was computed for R = 31 runs, with respect
to the best-known solutions for the |T | = 25 tested instances, see (2). Those
solutions were provided either by Mach or by any of our 24 memetic algorithms.
The O-RMSE among all instances t ∈ T was calculated as:

O-RMSE =
1

|T |
∑

t∈T
100%

√√√√
(R∑

r=1

(
Cbsr(t) − Cbs∗(t)

Cbs∗(t)

)2)
/R, (2)

where Cbsr(t) is the best solution quality achieved by the algorithm at execution
r, and Cbs∗(t) is the best-known quality solution for instance t ∈ T . An O-RMSE
equal to 0% means the algorithm achieved the best known solution quality in
all the R executions, and therefore it is the preferred value.

We also performed statistical significance analysis by the following method-
ology. The normality of data distributions was evaluated by the Shapiro-Wilk
test. Bartlett’s test was implemented to determine whether the variances of the
normally distributed data were homogeneous or not. ANOVA test was applied
in the case variance homogeneity was present and Welch’s t parametric tests on
the contrary. Meanwhile, Kruskal-Wallis test was implemented for non-normal
data. In all cases the significance level considered was 0.05.

In order to identify the combination of operators corresponding to the dif-
ferent memetic algorithms we assigned keys to the tested operators, then those
keys were used to construct a unique MA configuration identifier. The operator
keys are a) for selection: stochastic (S1), roulette (S2), random (S3) and binary

2 http://www.tamps.cinvestav.mx/∼ertello/cbsp-ma.php.

http://www.tamps.cinvestav.mx/~ertello/cbsp-ma.php

90 E. Rodriguez-Tello et al.

Table 2. Results for the 24 MA tested versions.

Algorithm Op. configuration O-RMSE (%) Avg. ex. time (s) Gbest time (s)

1 MA-10 S2 C2 M1 5.297 87.434 19.886

2 MA-22 S4 C2 M1 5.637 87.133 20.623

3 MA-16 S3 C2 M1 5.854 86.427 19.954

4 MA-04 S1 C2 M1 5.945 87.569 19.728

5 MA-19 S4 C1 M1 6.030 86.911 17.741

6 MA-13 S3 C1 M1 6.609 86.230 17.942

7 MA-07 S2 C1 M1 6.693 87.238 18.808

8 MA-01 S1 C1 M1 6.715 87.339 18.587

9 MA-05 S1 C2 M2 10.022 85.434 21.414

10 MA-17 S3 C2 M2 10.065 84.391 23.983

11 MA-23 S4 C2 M2 10.237 85.064 22.840

12 MA-11 S2 C2 M2 10.583 85.353 22.958

13 MA-14 S3 C1 M2 10.626 84.556 22.129

14 MA-02 S1 C1 M2 11.092 85.573 22.103

15 MA-08 S2 C1 M2 11.383 85.523 21.973

16 MA-20 S4 C1 M2 11.389 85.223 21.235

17 MA-06 S1 C2 M3 12.749 97.562 24.883

18 MA-12 S2 C2 M3 12.872 97.463 24.396

19 MA-18 S3 C2 M3 13.182 96.630 23.779

20 MA-24 S4 C2 M3 13.449 97.210 25.685

21 MA-09 S2 C1 M3 14.116 97.191 23.832

22 MA-03 S1 C1 M3 14.285 97.305 23.219

23 MA-21 S4 C1 M3 15.067 96.952 22.853

24 MA-15 S3 C1 M3 15.077 96.377 24.367

25 Mach N/A 21.050 2.09 N/A

tournament (S4); b) for crossover: cyclic (C1) and order-based (C2); and c) for
mutation: insertion (M1), reduced 3-swap (M2) and cumulative swap (M3). Since
all versions consider only (μ + λ) as survival strategy there is no need to assign
a key for it.

Table 2 presents our algorithms ranked according to their performance in
terms of solution quality. Mach, which ranked last after all the MA, is also
included as reference. Table 2 includes the rank of the algorithm (#), the con-
figuration of genetic operators, the associated O-RMSE value, the average total
running time (in seconds) and the average time in which the reported best found
solution was reached by the algorithm. Since Mach is a constructive approach,
only its average total time is reported.

Comparative Study of Different MA Configurations for the CBSP 91

The results in Table 2 suggest that the recombination and mutation schemes
are more decisive than the selection, since the former operators induce the most
remarkable grouping, indicated by the dashed lines. Despite algorithms includ-
ing order-based crossover being better performing than their counterparts imple-
menting cyclic crossover, it is the mutation operator the one having the higher
influence over the final solution quality reached by the MA. Focusing on O-
RMSE values, we found that the wider performance gap (of almost 5% O-RMSE)
is observed between the algorithms implementing insertion mutation (M1) and
the rest, while the gap between cyclic crossover (C1) or order-based crossover
(C2) rarely surpasses 1%. From Table 2 it can be inferred that the top 3 MA
configurations are quite similar in solution quality, total running time and time
to find their best solution. The statistical significance analysis showed that, for
the instance set being tested, our top 3 MA configurations are statistically indis-
tinguishable from each other in terms of solution quality. This is not surprising
since they differ only in the selection scheme. Moreover, the three of them are
able to provide better solutions than Mach. Even the worst performing of our
MA versions (MA-15) can provide better solutions than Mach. MA-15 has a
O-RMSE value of 15.077%, meanwhile the O-RMSE of Mach surpasses 20%.

Although all the Memetic Algorithms take longer time than Mach, it is
worth noting that Mach solution quality cannot be improved by employing a
longer running time. It is also observable that all of our algorithms stopped
finding improving solutions at an early stage of their total running time. Since
there are some instances for which the optimal solutions or upper bounds were
not always reached, this may be an indicator of premature convergence. While
mutation and inversion are diversification mechanisms their effect may be diluted
by the survival strategy. Once a locally optimal individual is reached, it will
remain in the population in next generations and its genes are likely to keep
proliferating in the population, until a fitter individual appears. Meanwhile, the
less fit individuals will disappear from the population and diversity may be lost
in preference of individuals becoming (probably) a locally optimal solution.

Table 3 presents the results of MA-10, the one with the best performance,
compared with the state of the art. Only Mach is considered for the comparison,
since it has been experimentally shown better than GVNS [6]. For each of the
25 instances in the set we present its number of vertices (|V |), number of edges
(|E|), density (d = 2|E|/|V |(|V |− 1)) and value of the optimum or upper bound
(UB/Opt∗). Those values were assessed according to the graph topology: upper
bound formula for the Cartesian products [9]; optimal value formula (marked
by the symbol ∗) for path, cycle, wheel and k-th power of cycle topologies [2,9],
and the general graph upper bound formula [9] for the Harwell-Boeing graphs.

Our best MA is compared to Mach [6], including the minimal of the solution
cost values (Best) found among 31 executions, average and standard deviation
of the those values (Std), and average time to reach the reported solutions. The
last column (MA-10/Mach) corresponds to the result of the statistical signifi-
cance test performed. Instances where MA-10 results present improvements with
statistical significance with respect to those achieved by Mach are indicated by

92 E. Rodriguez-Tello et al.

Table 3. Performance comparison of our best performing MA (MA-10), with respect
to the state-of-the-art method.

Graph |V | |E| d UB/

Opt∗
Mach MA-10 (S2 C2 M1) MA-10/

MachBest Avg Std T Best Avg Std T

p9p9 81 144 0.04 720 944 1254.77 183.07 0.00 516 585.68 96.65 3.51 +

c9c9 81 162 0.05 873 991 1283.65 131.95 0.01 873 961.52 85.73 6.30 +

p9c9 81 153 0.05 7434 794 794.00 0.00 0.00 745 805.81 73.38 5.62 �

p9k9 81 396 0.12 7362 1728 1728.00 0.00 0.01 1728 1728.00 0.00 1.13 �

c9k9 81 405 0.13 7434 1809 1809.00 0.00 0.01 1809 1809.00 0.00 0.68 �

k9k9 81 648 0.20 8370 9454 9533.32 43.63 0.02 8280 8605.81 270.05 21.87 +

path100 100 99 0.02 99∗ 99 99.00 0.00 0.00 99 99.00 0.00 7.48 �

cycle100 100 100 0.02 100∗ 100 100.00 0.00 0.00 100 144.65 56.29 5.13 −
wheel100 100 198 0.04 2600∗ 2600 2600.00 0.00 0.01 2600 2633.42 45.94 11.71 −
cPow100-10 100 1000 0.20 5500∗ 5598 5703.74 68.71 0.04 5500 5500.00 0.00 11.89 +

cPow100-2 100 200 0.04 300∗ 300 302.52 2.42 0.00 300 385.16 155.97 5.16 �

can 24 24 68 0.25 425 220 255.03 16.01 0.01 182 182.00 0.00 0.18 +

ibm32 32 90 0.18 743 493 540.35 22.94 0.01 405 411.84 8.18 1.84 +

bcspwr01 39 46 0.06 460 102 115.58 8.53 0.01 98 102.58 5.82 4.80 +

bcsstk01 48 176 0.16 2156 1157 1339.74 111.74 0.02 936 954.45 13.43 21.32 +

bcspwr02 49 59 0.05 737 158 176.23 20.03 0.02 148 151.94 5.93 10.53 +

curtis54 54 124 0.09 1705 448 633.61 89.46 0.03 411 422.90 20.66 8.54 +

will57 57 127 0.08 1841 408 436.55 45.42 0.04 335 345.29 21.55 0.60 +

impcol b 59 281 0.16 4215 2462 2838.13 242.00 0.07 1822 1829.74 9.90 0.16 +

ash85 85 219 0.06 4708 1232 1422.16 142.17 0.14 919 1036.58 89.64 22.89 +

nos4 100 247 0.05 6237 1181 1397.48 222.87 0.07 1031 1031.00 0.00 6.03 +

bcspwr03 118 179 0.03 5325 766 926.90 76.74 0.25 664 713.19 53.72 14.67 +

can 292 292 1124 0.03 82333 23288 25703.48 1678.87 7.13 15763 18982.10 2148.92 75.81 +

bcsstk06 420 3720 0.04 391532 65017 84469.87 8027.79 30.83 55140 67875.65 10377.12 177.82 +

impcol d 425 1267 0.01 134935 25677 35355.19 4596.68 13.48 12232 15932.90 3170.52 71.47 +

Note: The overall winner MA-10 scored 18 victories (+), 2 defeats (−), and 5 ties (�).

the + symbol, meaning a victory for MA-10. The contrary case, a defeat for
MA-10, is marked with the − symbol. Results with no statistical significant
difference are counted as ties and marked with the � symbol. The best known
solution for each instance is highlighted in bold.

For most of the tested instances MA-10 is able to consistently produce sig-
nificantly better solutions with respect to those furnished by Mach. Our only
defeats correspond to graphs for which Mach is specially suitable to solve: highly
regular topologies with low densities, such as cycles and paths. However, MA-10
shows dominance for regular topologies with growing densities (see Cartesian
products) and more general graphs, such as Harwell-Boeing graphs. It is also
noticeable that our algorithm reached solutions with CBS values under the the-
oretical upper bounds (or equal to the optimal know values) for all instances.

4 Conclusions and Future Work

A set of 24 different MA configurations for solving the CBSP was evaluated. The
experiments presented revealed that the top three MA configurations, which are

Comparative Study of Different MA Configurations for the CBSP 93

statistically indistinguishable from each other, can provide significantly better
results than Mach [6] for 18 out of 25 tested instances. Furthermore, the best MA
version (MA-10) achieved optimal results for the 5 instances with known exact
solution values. For the remaining 20 instances with unknown exact optimal
values, MA-10 was able to establish 18 new upper bounds and to equal 2 other.

Confirming the presence of premature convergence in our MA, as well as iden-
tify its causes, are certainly interesting future research topics. Exploring other
alternatives for the survival strategy, as well as using Mach as an initialization
operator, could be promising directions to improve the performance our MA. It
is also interesting to consider the implementation of automatic schemes allowing
the algorithm to self-adapt its own operators, instead of defining them from the
beginning of the search.

Acknowledgments. The second author acknowledges support from CONACyT
through a scholarship to pursue graduate studies at CINVESTAV-Tamaulipas.

References

1. Bhatt, S.N., Leighton, F.T.: A framework for solving VLSI graph layout prob-
lems. J. Comput. Syst. Sci. 28(2), 300–343 (1984). https://doi.org/10.1016/0022-
0000(84)90071-0

2. Chen, Y., Yan, J.: A study on cyclic bandwidth sum. J. Comb. Optim. 14(2),
295–308 (2007). https://doi.org/10.1007/s10878-007-9051-y

3. Chung, F.R.K.: Labelings of graphs (Chap. 7). In: Beineke, L.W., Wilson, R.J.
(eds.) Selected Topics in Graph Theory, vol. 3, pp. 151–168. Academic Press, Cam-
bridge (1988)

4. Davis, L.: Applying adaptive algorithms to epistatic domains. In: Proceedings of
the 9th IJCAI, vol. 1, pp. 162–164. Morgan Kaufmann Publishers Inc., San Fran-
cisco (1985)

5. Diaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput.
Surv. 34(3), 313–356 (2002). https://doi.org/10.1145/568522.568523

6. Hamon, R., Borgnat, P., Flandrin, P., Robardet, C.: Relabelling vertices according
to the network structure by minimizing the cyclic bandwidth sum. J. Complex
Netw. 4(4), 534–560 (2016). https://doi.org/10.1093/comnet/cnw006

7. Harper, L.: Optimal assignment of numbers to vertices. J. SIAM 12(1), 131–135
(1964). https://doi.org/10.1137/0112012

8. Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11(2),
37–50 (1912). https://doi.org/10.1111/j.1469-8137.1912.tb05611.x

9. Jianxiu, H.: Cyclic bandwidth sum of graphs. Appl. Math. J. Chin. Univ. 16(2),
115–121 (2001). https://doi.org/10.1007/s11766-001-0016-0

10. Li, Y., Liang, Y.: Compressed sensing in multi-hop large-scale wireless sensor net-
works based on routing topology tomography. IEEE Access 6, 27637–27650 (2018).
https://doi.org/10.1109/ACCESS.2018.2834550

11. Liberatore, V.: Multicast scheduling for list requests. In: Proceedings of the
21st Annual Joint Conference of the IEEE Computer and Communications Soci-
eties, vol. 2, pp. 1129–1137. IEEE (2002). https://doi.org/10.1109/INFCOM.2002.
1019361

https://doi.org/10.1016/0022-0000(84)90071-0
https://doi.org/10.1016/0022-0000(84)90071-0
https://doi.org/10.1007/s10878-007-9051-y
https://doi.org/10.1145/568522.568523
https://doi.org/10.1093/comnet/cnw006
https://doi.org/10.1137/0112012
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1007/s11766-001-0016-0
https://doi.org/10.1109/ACCESS.2018.2834550
https://doi.org/10.1109/INFCOM.2002.1019361
https://doi.org/10.1109/INFCOM.2002.1019361

94 E. Rodriguez-Tello et al.

12. Monien, B., Sudborough, I.H.: Embedding one interconnection network in another.
In: Tinhofer, G., Mayr, E., Noltemeier, H., Syslo, M.M. (eds.) Computational
Graph Theory, vol. 7, pp. 257–282. Springer, Vienna (1990). https://doi.org/10.
1007/978-3-7091-9076-0 13

13. Oliver, I., Smith, D., Holland, J.: A study of permutation crossover operators on the
traveling salesman problem. In: Proceedings of the 2nd International Conference
on Genetic Algorithms and Their Application, pp. 224–230. L. Erlbaum Associates
Inc., Hillsdale (1987)

14. Satsangi, D., Srivastava, K., Gursaran, S.: General variable neighbourhood search
for cyclic bandwidth sum minimization problem. In: Proceedings of the Students
Conference on Engineering and Systems, pp. 1–6. IEEE Press, March 2012. https://
doi.org/10.1109/SCES.2012.6199079

15. Ullman, J.D.: Computational Aspects of VLSI. Computer Science Press, Rockville
(1984)

16. Yuan, J.: Cyclic arrangement of graphs. In: Graph Theory Notes of New York, pp.
6–10. New York Academy of Sciences (1995)

https://doi.org/10.1007/978-3-7091-9076-0_13
https://doi.org/10.1007/978-3-7091-9076-0_13
https://doi.org/10.1109/SCES.2012.6199079
https://doi.org/10.1109/SCES.2012.6199079

Efficient Recombination in the
Lin-Kernighan-Helsgaun Traveling

Salesman Heuristic

Renato Tinós1(B), Keld Helsgaun2, and Darrell Whitley3

1 Department of Computing and Mathematics, University of São Paulo,
Ribeirão Preto, Brazil
rtinos@ffclrp.usp.br

2 Department of Computer Science, Roskilde University, Roskilde, Denmark
keld@ruc.dk

3 Department of Computer Science, Colorado State University, Fort Collins, USA
whitley@cs.colostate.edu

Abstract. The Lin-Kernighan-Helsgaun (LKH) algorithm is one of the
most successful search algorithms for the Traveling Salesman Problem
(TSP). The core of LKH is a variable depth local search heuristic devel-
oped by Lin and Kernighan (LK). Several improvements have been incor-
porated to LKH along the years. The best results reported in the litera-
ture were obtained by an iterative local search version known as multi-
trial LKH. In multi-trial LKH, solutions generated by soft restarts of
the LK heuristic are recombined using Iterative Partial Transcription
(IPT). We show that IPT can be classified as a partition crossover. Par-
tition crossovers use the features common to the parents to decompose
the evaluation function. Recently, a new generalized partition crossover,
known as GPX2, was proposed for the TSP. We investigate the use of
GPX2 in multi-trial LKH and compare it to multi-trial LKH using IPT.
Results of experiments with 11 large instances of the TSP indicate that
LKH with GPX2 outperforms LKH with IPT in most of the instances,
but not in all of them.

Keywords: Traveling Salesman Problem · Recombination operator
Heuristic search · Evolutionary combinatorial optimization

1 Introduction

The Traveling Salesman Problem (TSP) is one of the most investigated prob-
lems in Optimization [2]. Applications of the TSP can be found in the most
diverse areas, such as Logistics, Bioinformatics, and Planning. Given a complete
weighted graph G(V,E), where V is a set of n vertices (cities) and E contains
edges between every pair of vertices in V , the objective is to find the shortest
Hamiltonian cycle. The evaluation of a solution (tour) x is given by:

f(x) = wxn,x1 +
n−1∑

i=1

wxi,xi+1 (1)

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 95–107, 2018.
https://doi.org/10.1007/978-3-319-99253-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_8&domain=pdf

96 R. Tinós et al.

where wxi,xj
is the weight of the edge between vertices vxi

and vxj
in V .

There are very good exact methods for the TSP, e.g., Concorde [2]. Concorde
solves instances of the symmetric TSP with hundreds of cities in seconds. How-
ever, the TSP is NP-hard and, as a consequence, heuristic methods have been
required for solving large TSP instances. One of the most successful heuristics
for the TSP is the Lin-Kernighan-Helsgaun (LKH) algorithm [4,5]. LKH holds
the record for several large instances of the TSP, some of them with more than
100,000 vertices. The best results of LKH reported in the literature were obtained
by an iterative local search version known as multi-trial LKH. In multi-trial LKH,
solutions generated by soft restarts of the LK heuristic are recombined using an
efficient crossover operator, called Iterative Partial Transcription (IPT).

Recently, a new generalized partition crossover, known as GPX2, was pro-
posed for the TSP [14]. Partition crossovers are deterministic recombination
operators that use the features common to the parents to decompose the evalu-
ation function [17]. The main contributions of this work are two. First, we show
that IPT [10] is a kind of partition crossover. Second, we investigate the use
of GPX2 in multi-trial LKH and compare it with multi-trial LKH using IPT.
Unlike previous works with generalized partition crossovers [3,14], GPX2 is used
here inside LKH. Before, generalized partition crossovers were used to recombine
solutions generated by LKH but the offspring were not reinserted in LKH. Here,
IPT is replaced by GPX2 inside LKH, which results in a different heuristic.

2 LKH Algorithm

LKH is an iterated local-search algorithm based on the Lin-Kernighan heuristic
(LK) [9]. The local search performed by LK is based on k-opt moves. Given a
tour x, a k-opt move replaces k edges from x in order to create a solution y
where f(y) < f(x). A k-opt move is incrementally obtained using basic moves,
e.g., 2-opt, while the cumulative gain remains positive. Some heuristics (e.g.,
limiting the search to a subset of edges to the nearest neighbors of a node) are
adopted in order to reduce the cost of the moves.

LK is an effective local search algorithm; implementations capable of finding
solutions with typical cost 1–2% above the optimum cost were reported in the
literature. A much more effective implementation of LK was reported in [4].
This implementation, called LKH, is able to find optimal solutions for large
TSP instances with very high frequency [5]. Several improvements have been
incorporated to LKH along the years. We present some of them in the following:

– General k-opt moves: In LK, moves are obtained by 2-opt or 3-opt moves
followed by a sequence of 2-opt moves. Non-sequential moves are tried at the
end if the sequential moves did not improve the original solution. LKH-1 [4]
uses 5-opt sequential moves to create the sequence of basic moves. In LKH-
2 [5], the basic moves are k-opt moves where k can be any integer greater than
1 and smaller than n. The moves are sequential, but non-sequential moves
can also be tried during the search.

Efficient Recombination in the LKH Traveling Salesman Heuristic 97

– Partitioning: Large instances of TSP are decomposed into smaller subprob-
lems. Then, the solutions of the subproblems are used to improve the solutions
of the original instance.

– Candidate set criterion: Instead of using the cost of an edge, the α-measure
is used to evaluate the quality of an edge. The α-value of an edge e is computed
as the increase of the cost of a minimum 1-tree when this tree is required to
contain e. By restricting the search to a small number of neighbors of a node
obtained according to a distance based on the α-measure, the time complexity
is reduced.

– Multiple trials: In each run, the local optimum obtained is perturbed in
order to generate a new initial solution for the LK strategy. Each run r of
the multi-trial LKH is composed of t trials (Fig. 1). The use of multiple trials
allows the use of strategies that explore information from different solutions in
order to create a new solution. Three of them are presented in the following.

– Backbone-guided search: Edges of solutions previously obtained in differ-
ent trials compose a set of candidate edges for the current trial.

– Recombination of solutions: Local optima share many partial solutions.
The TSP has a multi-funnel structure, where many edges are common to the
optima located in the same funnel [11]. Recombination operators are generally
used in population meta-heuristics. However, recombination can also be used
to merge solutions generated in different runs of an algorithm, in different
trials of an iterated local search, or generated by different algorithms. In
LKH-2, tours obtained in different trials and runs are recombined using IPT.
Figure 1 shows how recombination is used in multi-trial LKH.

– Genetic Algorithm: Instead of storing only the best current solution, a
population of solutions obtained in different runs can be stored. When the
population size is different from one, a simple genetic algorithm is executed.
For each run, the best solution is stored in the population if its fitness is dif-
ferent from the other solutions in the population. After each run, the stored
solutions are selected and recombined using a variant of the Edge Recombi-
nation Crossover (ERX) [18]. It is important to observe that IPT is still used
as shown in Fig. 1; ERX is used only after the end of each run to recombine
the solutions of the population.

Fig. 1. Multi-trial LKH. The symbol ⊗ indicates a recombination operation.

98 R. Tinós et al.

3 Partition Crossover

Partition crossover (PX) is a deterministic recombination operator that can be
applied in problems where the cost function, f(x), is written as the sum of m
subfunctions fi(x), i.e.:

f(x) =
m∑

i=1

fi(x) (2)

where solution x is given by an n-dimensional vector and m > 0. Suppose that
an offspring z is generated by recombining two solutions x and y. If partition
crossover is employed, then we can write:

f(z) =
∑

i∈Sx

fi(x) +
∑

i∈Sy

fi(y) (3)

where |Sx|+ |Sy| = n. The subsets Sx and Sy contain the indexes of the decision
variables inherited respectively from parents x and y. The decomposition of the
cost function is derived from two properties of partition crossover operators [12]:
(i) the recombination is “respectful”, i.e., the offspring inherits all features that
are common to both parents; (ii) the recombination “transmits alleles”, i.e., the
offspring is composed only of features found in the parents. As a result of the
properties of PX, the evaluation of the offspring is more correlated with the
evaluation of the parents than in traditional recombination operators. Besides,
if the parents are local optima with respect to a local search operator, then the
offspring are guaranteed to be piecewise locally optimal under this local search
operator. It was observed in different applications [13–16] that offspring are also
very often true local optima when PX is employed.

The first step of PX is to remove all the features common to both parents.
In the TSP, the features of a solution represented by x are the edges between
two consecutive cities in x. Define the union graph Gu = Gx ∪ Gy, where the
graphs Gx and Gy represent the parent solutions. The graph G′

u is obtained by
removing the common edges from Gu.

Definition 1. A candidate component is made up of one or more connected
subgraphs of G′

u.

Definition 2. A recombining component is a candidate component such
that: (1) it contains z vertices, where 2x vertices are portals that connect to
other recombining components by common edges, and the remaining z − 2x ver-
tices only connect to vertices inside the recombining component; (2) exactly x
vertices that are portals serve as “entry” points, and x vertices that are portals
serve as “exit” points to other recombining components; (3) the two parent solu-
tions must enter and exit the recombining component at exactly the same entry
and exit vertices.

Inheriting one of the recombining components from one or another parent
does not influence the evaluation of other recombining components. In other

Efficient Recombination in the LKH Traveling Salesman Heuristic 99

words, the recombining components are subsets of features with independent
evaluation. If p recombining components are found, there are 2p different ways
of combining the components to create an offspring. PX selects the best partial
solution (from one or another parent) for each recombining component. Thus,
the best of 2p reachable offspring is found by PX.

Definition 3. A partition crossover is a recombination operator that: (1)
finds recombining components in the graph obtained by removing the common
edges from the union graph Gu; (2) evaluates the cost of the partial solutions
(for each parent) inside each recombining component; (3) generates the offspring
by selecting the best partial solutions (from one or another parent) inside the
recombining parents.

GPX2 is a PX developed for the symmetric TSP. According to the definition
of PXs, IPT can also be classified as a PX operator (see next section). IPT and
GPX2 differ in the way the recombining components are found.

3.1 IPT

IPT [10] works directly on the sequence representation of the tours. IPT searches
for subchains in parents x and y with: (i) the same initial and final cities; (ii)
composed of the same cities, but in different order. According to the PX termi-
nology, the subset of cities in a subchain composes a recombining component.
Each subchain can be independently evaluated. By selecting the best subchains,
the reachable offspring with the best cost is found. The three main steps of IPT,
written according to the definition of recombining components, are:

– Removal of cities connected only to common edges: if a city is con-
nected to the same neighbors in x and y, then it can be removed from the
tours, resulting in reduced sequences.

– Finding recombining components in the reduced sequences: suppose
Nr is the size of the reduced sequences. Let vs(v,x) be a vertex located
s − 1 positions from vertex v in x. Start with s = 4 (that is the mini-
mum size of permutations that are different). For each vertex v ∈ x, verify if
vs(v,x) = vs(v,y), i.e., the subchains have the same initial and final cities.
Subchains in both directions of y must be tested. If the subchains in x and y
are composed of the same cities, then the subset of indices in the subchains
define a recombining component. Repeat, increasing s by 1, while s ≤ Nr/2.

– Creating the offspring: for creating the offspring, select the best subchains
in each recombining component and copy the cities connected only to common
edges from one of the parents.

An example of IPT is presented in Fig. 2. In this example, IPT first finds a
recombining component with 4 cities. The cost of subchain sx1 is smaller than the
cost of sy1 . Thus, the offspring inherits sx1 . Then, it finds another recombining
component with 5 cities. The cost of subchain sy2 is smaller than the cost of sx2 .
Thus, the offspring inherits sy2 . The implementation of IPT in LKH-2 is very
efficient. Despite of the fact that the worst case complexity is O(n2), the average
time is linear in n.

100 R. Tinós et al.

Fig. 2. Examples of recombination by IPT and GPX2. Only the paths between cities
A and K are shown (suppose that, for IPT, Nr > 20). (a) Union graph composed
of parents x (blue solid line) and y (red dashed line). (b) When IPT is applied, two
subchains are identified for each parent. (c) When GPX2 is applied, candidate (con-
nected) components are found after removing the common edges from the union graph.
In this example, two candidate components are recombining components. (d) Offspring
generated by IPT or GPX2. When compared to the parents, the offspring has better
cost. (Color figure online)

3.2 GPX2

GPX1 [3] and GPX2 [14] work in the graph representation of the tours (Fig. 3).
In GPX1, all candidate components linked to other parts of the graph G′

u by
exactly two common edges are recombining components. Edges connecting a
candidate component to other parts of the graph are entries for the tours in this
candidate component. Thus, GPX1 finds only recombining components with two
entries. The rest of the graph also composes a recombining component. Finally,
the offspring is created by selecting, from one or another parent, the paths with
the best cost inside each recombining component.

GPX2 presents 3 enhancements that allows to find much more recombining
components than GPX1. Increasing linearly the number of recombining com-
ponents, p, an exponentially larger number of reachable offspring are exploited.
The enhancements are:

– Exploring vertices of degree-4 as possible points for recombination:
GPX1 explores only common edges as possible connection points between

Efficient Recombination in the LKH Traveling Salesman Heuristic 101

recombining components. In GPX2, a “ghost node” is created for every
degree-4 vertex in Gu. The original and ghost nodes are linked by a com-
mon edge with weight 0. Thus, by removing the common edges in the new
union graph, some vertices of degree-4 in Gu become potential points for
recombination. The number of recombining component is further increased
by exploring both directions for tour y and by using an efficient data structure
(Extended Edge Table) for storing the direct and reverse tours for parent y;

– Exploring candidate components with more than two entries: All
candidate components with 2 entries are recombining components. However,
not all candidate components with more than 2 entries are recombining com-
ponents. In order to test the candidate components, simplified graphs are built
for the path of each parent inside the candidate component. If the simplified
graphs for both parents are equal, then exchanging the paths still results in
a Hamiltonian cycle for the offspring. Another test is executed for the case
where a recombining component is nested inside a candidate component. If,
after removing the already identified recombining components, the number of
entries of the candidate component becomes 2, then the candidate component
is a recombining component;

– Fusing candidate components: Two candidate components that are not
individual recombining components can be fused in order to create a recom-
bining component. Two types of fusion are applied in GPX2. In fusion type
1, the fusion occurs between two candidate components that are neighbors.
Then, the new candidate component is tested in order to verify if it is a
recombining component or not. Cycles of fusion type 1 are repeated nf times,
obtaining each time larger candidate components. In fusion type 2, nested and
intercalated candidate components are fused. Then, it is verified if the result-
ing component has 2 entries after removing the already identified recombining
components. The procedure is repeated nr times.

The time complexity for GPX2 is O(n) [14]. Examples of GPX2 are presented
in Figs. 2 and 3. In Fig. 3, IPT finds 3 recombining components, while GPX2 finds
4 recombining components. As a consequence, IPT finds the best of 23 reachable
offspring, while GPX2 finds the best of 24 reachable offspring. The tour found
by GPX2 in this example is shorter than the tour found by IPT.

4 Results

In the experiments, LKH with IPT (LKH+IPT) is compared to LKH with GPX2
(LKH+GPX2). The version of LKH used is 2.0.81. Here, LKH runs with the
default parameters, except for the number of runs (10 or 50), number of trials
(10 or 1000), and population size (equal to the number of runs). It is important to
observe that, in LKH, the best results found in different runs are not independent

1 In LKH version 2.0.8, tours may be recombined by GPX2 instead of IPT. The code
for LKH version 2.0.8, that allows to reproduce the results presented in this paper,
can be downloaded at http://www.akira.ruc.dk/∼keld/research/LKH/.

http://www.akira.ruc.dk/~keld/research/LKH/

102 R. Tinós et al.

Fig. 3. Examples of recombination by IPT and GPX2. (a) Union graph composed of
parents x (blue solid line) and y (red dashed line). (b) GPX2 identifies 4 recombining
components. Components 1 and 4 have 4 entries each. (c) IPT identifies 3 of the
recombining components found by GPX2: 2, 3, and union of 1 and 4. (c) The offspring
generated by IPT has cost 20. (d) The offspring generated by GPX2 has cost 18. (Color
figure online)

(see Fig. 1). When GPX2 is used in LKH, nf = 3 and nr = 1000 (parameters
used in fusion).

Experiments with 11 instances of four classes of the symmetric TSP are
presented. The 2 instances of Class 1 are artificial instances used in the 8th
DIMACS Implementation Challenge [8]. In E31k0, the locations of 31,623 cities
are uniformly generated in a square of 1,000,000 by 1,000,000 units. In C10k0,
the locations of 10,000 cities consist of clustered points in the same square. LKH
currently holds the records for these instances [7]. The records for the remaining
problems are reported in [1]. The 3 instances in Class 2 (pia3056, dke3097, and
xqe3891) are from the VLSI TSP Collection. The 5 instances in Class 3 (tz6117,
ym7663, ar9152, usa13509, usa115475) are formed using (Euclidean) distance
between cities of different countries. The size n in the instances of classes 2 and
3 is given in the name of the instances. Finally, monalisa100K is an instance of
the Art TSP Collection with n = 100, 000 vertices.

Due to the limitation of space, we only show the results for the experiments
with 1000 trials and 50 runs (Table 2). Table 2 shows the percentage gap to the
cost of the best solutions found in the literature [1,7]; when the cost of the
best solution found by an algorithm is equal to the best result reported in the
literature, the number of runs needed for finding the best result is shown in
parenthesis. Smaller results are better for the percentage gap, number of runs,
and average running time. A summary of the comparison of the best cost found
by the algorithms in all experiments is presented in Table 1.

Efficient Recombination in the LKH Traveling Salesman Heuristic 103

We also tested two versions of LKH where both operators are used. In the
“First IPT and then GPX2” version, GPX2 is applied after IPT. In the “First
GPX2 and then IPT” version, IPT is applied after GPX2. For strategy “First
IPT and then GPX2”, IPT is applied first to recombine the parents. If there is no
improvement, GPX2 is then applied to recombine the parents. Otherwise, i.e.,
IPT generated an improvement, then GPX2 is applied to recombine the first
parent with the offspring generated by IPT. The opposite occurs for strategy
“First GPX2 and then IPT”, i.e., GPX2 is applied first. If an operator A is
applied first and does not improve the best solution, but operator B does, this
means that operator B found recombination opportunities missed by operator
A. The results for those versions for the experiments with 1000 trials are shown
in Table 3. Some observations can be made about the results.

In the experiments with versions “First IPT and then GPX2” and “First IPT
and then GPX2”, GPX2 (applied after IPT) was able to find many recombina-
tion opportunities that improved the best solution in all experiments, except
for instance ar9152 when the number of trials and runs is 10. For example, in
the experiment with “First IPT and then GPX2” version applied to instance
usa13509 when the number of trials and runs is 1000, GPX2 improved 713 times
the best results (Table 3). IPT improved the best result 2358 times in this case.
As IPT was applied first, it is clear that GPX2 found some recombination oppor-
tunities missed by IPT in this case. However, IPT (applied after GPX2) was not
able to find recombination opportunities that improved the best solution, with
exceptions for 2 instances in the experiments with 10 trials and 50 runs, and for
3 instances in the experiments with 1000 trials and 50 runs. The cases where
IPT (applied after GPX2) was able to find recombination opportunities that
improved the best solution can be explained by two main factors: the limit nr

used in fusion type 2 and the fact that there are different ways of finding the
recombining components.

In general, GPX2 found more recombination opportunities that resulted in
improvements of the best solution than IPT (see, for example, the number inside
the parenthesis in Table 3). More efficient recombination generally results in
better performance. When the number of trials and runs is 10, LKH+IPT found
better solutions in experiments with 2 instances, while LKH+GPX2 found better
solutions in experiments with 9 instances (Table 1). When the number of runs
increased (and the number of trials was kept to 10), even better results were
obtained by LKH+GPX2: it found better results for 10 out of 11 instances.
Increasing the number of runs (from 10 to 50) resulted in more recombinations
(Fig. 1); as a consequence, GPX2 found still more recombinations that resulted
in improvements for the best solution.

LKH+GPX2 also resulted in better performance for the experiment with
1000 trials and 50 runs: LKH+GPX2 presented better performance in 8 out
of 11 instances. However, LKH+IPT found better performance 3 times; for
instance pia3056, LKH+IPT was able to find the literature best solution, while
LKH+GPX2 was not. Thus, finding more recombination opportunities does not
guarantee that LKH will perform better. A better solution obtained by recombi-
nation in a trial influences the solutions generated in the subsequent trials and

104 R. Tinós et al.

Table 1. Comparison between LKH+GPX2 and LKH+IPT (regarding the cost of
the best solutions found by the algorithms). For each instance and experiment, the
algorithm with better performance is indicated.

Problem Experiment

10 trials, 10 runs 10 trials, 50 runs 1000 trials, 50 runs

pia3056 LKH+GPX2 LKH+GPX2 LKH+IPT

dke3097 LKH+GPX2 LKH+IPT LKH+GPX2

xqe3891 LKH+GPX2 LKH+GPX2 LKH+IPT

tz6117 LKH+GPX2 LKH+GPX2 LKH+GPX2

ym7663 LKH+GPX2 LKH+GPX2 LKH+GPX2

ar9152 LKH+IPT LKH+GPX2 LKH+GPX2

C10k0 LKH+IPT LKH+GPX2 LKH+IPT

usa13509 LKH+GPX2 LKH+GPX2 LKH+GPX2

E31k0 LKH+GPX2 LKH+GPX2 LKH+GPX2

monalisa100K LKH+GPX2 LKH+GPX2 LKH+GPX2

usa115475 LKH+GPX2 LKH+GPX2 LKH+GPX2

Table 2. Best cost gap (to the cost of the best results found in the literature) and
average running time (in seconds) for LKH+GPX2 and LKH+IPT. The number of
trials is 1000 and the number of runs is 50. The best results are in bold.

Problem Best cost gap (%) Average running time (s)

LKH+IPT LKH+GPX2 LKH+IPT LKH+GPX2

pia3056 0 (run 5) 0.0360 56.01 63.41

dke3097 0 (run 2) 0 (run 1) 61.67 75.83

xqe3891 0 (run 2) 0 (run 3) 80.40 104.65

tz6117 0 (run 29) 0 (run 6) 188.36 237.77

ym7663 0 (run 22) 0 (run 4) 169.47 194.24

ar9152 0.0140 0.0130 723.72 849.78

C10k0 0 (run 16) 0 (run 36) 389.63 406.23

usa13509 0 (run 34) 0 (run 13) 331.73 384.12

E31k0 0.0100 0.0096 1767.79 1713.40

monalisa100K 0.0220 0.0110 19901.08 19061.51

usa115475 0.0360 0.0190 13664.19 13237.47

runs. Recall that, in multi-trial LKH, the current best solution is employed to
generate the soft restarts and the set of candidate edges. Thus, an initial solution
that is not so good can be used by LK in order to generate a promising local
optimum. For instances with 10,000 cities or more, LKH+IPT obtained better
results for only one instance (C10k0). This is a clustered instance; in clustered

Efficient Recombination in the LKH Traveling Salesman Heuristic 105

instances, most of the recombining components have two entries when two local
optima are recombined. Recall that one of the most important properties of
GPX2, when compared to IPT, is that it is able to find recombining components
with more than two entries. If there are not many recombining components with
more than two entries, e.g., in clustered instances, GPX2 and IPT generally have
similar performance.

Despite the better results for the cost of the solutions, LKH+GPX2 gener-
ally resulted in higher mean running times (Tables 2 shows the results for the
experiments with 1000 trials). For the experiments with 1000 trials, LKH+IPT
presented smaller mean time in 8 out of 11 instances (Table 2). LKH+GPX2
presented smaller mean time in the 3 largest instances: E31k0, monalisa100K,
and usa115475.

Table 3. Number of times that both crossovers improved the best solution or only
the second crossover improved the best solution. The number of trials is 1000 and
the number of runs is 50. The results in parenthesis indicate the total number of
improvements generated by the first crossover.

Problem “First IPT, then GPX2” “First GPX2, then IPT”

GPX2 (total for IPT) IPT (total for GPX2)

pia3056 21 (271) 0 (328)

dke3097 44 (342) 0 (383)

xqe3891 68 (361) 0 (417)

tz6117 153 (1256) 0 (1330)

ym7663 221 (1175) 0 (1321)

ar9152 65 (2094) 2 (2003)

C10k0 69 (2277) 0 (2381)

usa13509 713 (2358) 0 (2710)

E31k0 3003 (4036) 0 (5934)

monalisa100K 10997 (3374) 1 (12520)

usa115475 8206 (9981) 12 (13631)

5 Conclusions

Previous versions of multi-trial LKH use only IPT to recombine solutions gener-
ated in different trials and runs. Here, we investigated the use of GPX2 in LKH.
The experimental results indicated that GPX2 finds some recombination oppor-
tunities that are missed by IPT. This impacts the quality of solutions generated
by recombination. However, finding better offspring by recombination does not
necessarily guarantee better performance for the iterative local search; solutions
generated by recombination impacts the soft restarts of multi-trial LKH.

In the experiments with 10 trials and 10 runs, LKH+GPX2 obtained better
results for 9 instances, while LKH+IPT obtained better results for 2 instances.

106 R. Tinós et al.

When the number of runs increased to 50 (and the number of trials was kept
to 10), LKH+GPX2 obtained even better results: LKH+GPX2 obtained better
results for 10 out of 11 instances. Finally, in the experiments with 50 runs and
1000 trials, LKH+GPX2 obtained better results for 8 instances, while LKH+IPT
obtained better performance for 3 instances. Despite the better results for the
cost of the solutions, LKH+IPT generally resulted in smaller mean running
time. For the experiments with 50 runs and 1000 trials, LKH+GPX2 resulted
in smaller mean time only for the three largest instances.

As a consequence of this work, solutions may be now recombined by GPX2
instead of IPT in LKH version 2.0.8 [7]. GPX2 can be easily adapted to asym-
metric TSP. However, when used with LKH, no modifications are needed; the
asymmetric instance is transformed into a symmetric instance twice the size.
Optimizing the running time of LKH+GPX2 is a possible future work. There is
room for improvement: for example, data structures that explore the implemen-
tation of LKH can be proposed. Another future work can be the investigation
of LKH+GPX2 in different routing problems. LKH-3 [6] is a recent extension
of LKH-2 that can be used in constrained TSP and other vehicle routing prob-
lems, e.g., multiple traveling repairman problem and vehicle routing problem
with pickups and deliveries.

References

1. Cook, W.: TSP test data (2009). http://www.math.uwaterloo.ca/tsp/data/index.
html

2. Cook, W.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of
Computation. Princeton University Press, Princeton (2011)

3. Hains, D., Whitley, D., Howe, A.: Revisiting the big valley search space structure
in the TSP. J. Oper. Res. Soc. 62(2), 305–312 (2011)

4. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman
heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

5. Helsgaun, K.: General k-opt submoves for the Lin-Kernighan TSP heuristic. Math.
Program. Comput. 1(2–3), 119–163 (2009)

6. Helsgaun, K.: An extension of the Lin-Kernighan-Helsgaun TSP solver for con-
strained traveling salesman and vehicle routing problems. Roskilde University,
Technical report (2017)

7. Helsgaun, K.: LKH (2018). http://www.akira.ruc.dk/∼keld/research/LKH/
8. Johnson, D., McGeoch, L., Glover, F., Rego, C.: 8th DIMACS implementa-

tion challenge: the traveling salesman problem (2013). http://dimacs.rutgers.edu/
Challenges/TSP/

9. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling sales-
man problem. Oper. Res. 21(2), 498–516 (1973)

10. Möbius, A., Freisleben, B., Merz, P., Schreiber, M.: Combinatorial optimization by
iterative partial transcription. Phys. Rev. E 59(4), 4667–4674 (1999)

11. Ochoa, G., Veerapen, N., Whitley, D., Burke, E.K.: The multi-funnel structure
of TSP fitness landscapes: a visual exploration. In: Bonnevay, S., Legrand, P.,
Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2015. LNCS, vol. 9554, pp.
1–13. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31471-6 1

http://www.math.uwaterloo.ca/tsp/data/index.html
http://www.math.uwaterloo.ca/tsp/data/index.html
http://www.akira.ruc.dk/~keld/research/LKH/
http://dimacs.rutgers.edu/Challenges/TSP/
http://dimacs.rutgers.edu/Challenges/TSP/
https://doi.org/10.1007/978-3-319-31471-6_1

Efficient Recombination in the LKH Traveling Salesman Heuristic 107

12. Radcliffe, N., Surry, P.: Fitness variance of formae and performance predictions.
In: Whitley, D., Vose, M. (eds.) Foundations of Genetic Algorithms, vol. 3, pp.
51–72. Morgan Kaufmann, Burlington (1995)

13. Tinós, R., Whitley, D., Chicano, F.: Partition crossover for pseudo-Boolean opti-
mization. In: Proceedings of FOGA XIII, pp. 137–149 (2015)

14. Tinós, R., Whitley, D., Ochoa, G.: A new generalized partition crossover for the
traveling salesman problem: tunneling between local optima. Submitted to Evolu-
tionary Computation (2018)

15. Tinós, R., Zhao, L., Chicano, F., Whitley, D.: NK hybrid genetic algorithm for
clustering. IEEE Trans. Evol. Comput., 13 p. (2018). https://doi.org/10.1109/
TEVC.2018.2828643

16. Veerapen, N., Ochoa, G., Tinós, R., Whitley, D.: Tunnelling crossover networks for
the asymmetric TSP. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa,
G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 994–1003. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45823-6 93

17. Whitley, D., Hains, D., Howe, A.: Tunneling between optima: partition crossover
for the TSP. In: Proceedings of GECCO 2009, pp. 915–922 (2009)

18. Whitley, D., Starkweather, T., Fuquay, D.: Scheduling problems and traveling sales-
men: the genetic edge recombination operator. In: Proceedings of ICGA 1989, pp.
133–140 (1989)

https://doi.org/10.1109/TEVC.2018.2828643
https://doi.org/10.1109/TEVC.2018.2828643
https://doi.org/10.1007/978-3-319-45823-6_93

Escherization with a Distance Function
Focusing on the Similarity of Local

Structure

Yuichi Nagata(B)

Tokushima University, 2-24, Shinkura-cho, Tokushima 770-8501, Japan
nagata@is.tokushima-u.ac.jp

Abstract. The Escherization problem is that, given a goal figure, find
a closed figure that is as close as possible to the goal figure and tiles
the plane. In the Koizumi and Sugihara’s formulation for the Escher-
ization problem, the tile and goal shapes are represented as polygons
whose similarity is evaluated by the Procrustes distance. In this paper,
we incorporate a new distance function into their formulation, aiming
at finding more satisfiable tile shapes. The proposed distance function
successfully picks up tile shapes that are intuitively similar to the goal
shape even when they are somewhat different from the goal shape in
terms of the Procrustes distance. Due to the high computational cost for
solving the formulated problem, we develop a tabu search algorithm to
tackle this problem.

Keywords: Escher tiling · Tiling · Similarity measure

1 Introduction

A tiling refers to any pattern that covers the plane without any gaps or overlap.
The Dutch artist M. C. Escher is famous for creating many artistic tilings, each
of which consists of a few recognizable (especially one) figures such as animals.
Such tiling is now called Escher tiling and it is a very intellectual task to design
artistic Escher tilings while satisfying the constraints imposed to realize tiling.

As an attempt to automatically generate Escher tilings, Kaplan and Salesin
[5] introduced the following optimization problem. Given a closed plane figure
S (goal figure), find a closed figure T such that (i) T is as close as possible to
S, and (ii) copies of T fit together to form a tiling of the plane. This problem
is called the Escherization problem named after Escher. Koizumi and Sugihara
[6] showed that when both tile and goal shapes are represented as polygons, the
Escherization problem can be formulated as an eigenvalue problem.

Several enhancements to the Koizumi and Sugihara’s formulation have been
proposed. Imahori and Sakai [3] parameterized tile shapes (polygons) in a more
flexible way, which creates a great deal of flexibility in the possible tile shapes
(extended Koizumi and Sugihara’s formulation). It requires, however, a consid-
erable computational effort to solve the Escherization problem formulated with
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 108–120, 2018.
https://doi.org/10.1007/978-3-319-99253-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_9&domain=pdf

Escherization with a Distance Function Focusing 109

this extension and they developed a local search algorithm for this problem. In
the original Koizumi and Sugihara’s formulation, the Procrustes distance [7] was
introduced to measure the similarity between the tile and goal shapes. Imahori
et al. [4], however, suggested that the Procrustes distance does not necessarily
reflect an intuitive similarity between the two shapes. To handle this issue, they
introduced weights to the Procrustes distance to emphasize the similarity with
important parts of the goal figure. The idea of the weighted Procrustes distance,
however, has not been incorporated into the extended Koizumi and Sugihara’s
formulation due to the heavy computational cost of calculating the weighted
Procrustes distance.

In this paper, we propose another similarity measure (distance function),
which captures the similarity of local structures between the tile and goal shapes,
to successfully evaluate an intuitive similarity between them. We incorporate this
similarity measure into the extended Koizumi and Sugihara’s formulation and
apply a tabu search algorithm [9] to the Escherization problem obtained.

2 Related Work

We first explain basic knowledge of tiling and then explain the Koizumi and
Sugihara’s formulation of the Escherization problem along with extended studies.

2.1 Isohedral Tilings

A monohedral tiling is one in which all the tiles are the same shape. If a monohe-
dral tiling has a repeating structure, this tiling is called isohedral. There are 93
different types of isohedral tilings [1], which are individually referred to as IH1,
IH2, . . . , IH93. Figure 1 illustrates an example of an isohedral tiling belonging
to IH47 with a few technical terms. A tiling vertex is a point where at least three
tiles meet. A tiling edge is a boundary surface where exactly two tiles meet.
A tiling polygon is the polygon formed by connecting the tiling vertices of a tile.

For each IH type, the nature of tile shapes can be represented by a template
[8]. A template represents a tiling polygon from which all possible tile shapes are
obtained by deforming the tiling edges and moving the tiling vertices under the
constraints specified by the template. For example, Fig. 1 illustrates a template
of IH47; this template means that the tiling polygon is a quadrilateral consisting
of two opposite J edges that are parallel to one another and two independent
S edges. There are four types of tiling edges (types J, S, U, and I) and it is
convenient to express these types with colored arrowheads as illustrated in Fig. 1
(only types J and S are shown). These types are closely related to how the
tiles are fitted to each other, and a template also gives information about the
adjacency relationship between the tiles.

According to the adjacency relationship, four types of tiling edges can be
deformed in the following ways (see also Fig. 1). A type J edge can be deformed
in any arbitrary fashion, but the corresponding J edge must also be deformed
into the same shape. A type S edge must be symmetric with respect to the

110 Y. Nagata

Tiling edge

Tiling vertex

Tiling polygon
F F

F F

Fig. 1. Example of an isohedral tiling (left), and the template of IH47 (right) where J
and S edges are indicated by single arrowheads and facing arrowheads, respectively.

k1

h(1)=1

h(2) h(3)

h(4)

k1

k2

k3

Fig. 2. Template of IH47 for a specific
assignment of the points to the tiling
edges (left), and an example of a tile
shape (right).

IH4 IH5k1 k1

k2 k3

k4k5

k1 k1

k2 k2

k3k4

Fig. 3. Templates of IH4 and IH5. Two
opposite J edges marked with ∧ are
parallel to one another.

midpoint. A type U edge must be symmetric with respect to a line through the
midpoint and orthogonal to it. A type I edge must be a straight line.

2.2 Koizumi and Sugiharas’s Formulation and Its Extension

Koizumi and Sugihara [6] modeled the tile shape as a polygon of n points. In
this case, the template of IH47 is represented as shown in Fig. 2, where exactly
one point must be placed at each of the tiling vertices (black circles) and the
remaining points are placed on the tiling edges (white circles). This template
represents possible arrangements of the n points; the n points can be moved as
illustrated in Fig. 2. Koizumi and Sugihara originally placed the same number
of points on every tiling edge. After that, Imahori et al. [3] extended this model
to assign different numbers of points on the tiling edges (extended Koizumi and
Sugihara’s formulation). We denote the numbers of points placed on the tiling
edges as k1, k2, · · · as illustrated in Fig. 2.

Let the n points on the template be indexed clockwise by 1, 2, . . . , n, starting
from one of the tiling vertices. We represent the tile shape as a 2n-dimensional
vector u = (x1, x2, . . . , xn, y1, y2, . . . , yn)�, where (xi, yi)� is the coordinates of
the ith point in the xy-plane. We will also denote (xi, yi)� as ûi. We refer to the
tile shape (polygon) specified by u as U . The values of vector u are constrained
so that the tile shape U is consistent with the template selected. For example,
if we select IH47, the values of vector u must satisfy the following equation:

Escherization with a Distance Function Focusing 111

⎧
⎨

⎩

ûh(1)+i − ûh(1) = ûh(4)−i − ûh(4) (i = 1, . . . , k1 + 1)
ûh(2)+i − ûh(2) = −(ûh(3)−i − ûh(3)) (i = 1, . . . , �k2+1

2 �)
ûh(4)+i − ûh(4) = −(ûn+1−i − ûh(1)) (i = 1, . . . , �k3+1

2 �)
, (1)

where h(s) (s = 1, . . . , 4) is the index of the sth tiling vertex as shown in Fig. 2.
Equation (1) is a homogeneous system of linear equations and is represented

by
Au = 0, (2)

where A is a m′ × 2n matrix (m′ < 2n). Let b1, b2, . . . , bm be the orthonormal
basis of Ker(A). A general solution of Eq. (2) is then given by

u = ξ1b1 + ξ2b2 + · · · + ξmbm = Bξ, (3)

where B = (b1, b2, . . . , bm) is a 2n × m matrix and ξ = (ξ1, ξ2, . . . , ξm)� is a
parameter vector. In fact, tile shapes for every isohedral tilings can be parame-
terized in the form of Eq. (3), where the matrix B depends on the assignment
of the n points to the tiling edges as well as isohedral type.

In the Koizumi and Sugihara’s formulation, the goal figure is also repre-
sented as a polygon of n points and their coordinates are represented by a
2n-dimensional vector w = (xw

1 , xw
2 , . . . , xw

n , yw
1 , yw

2 , . . . , yw
n)�, where (xw

i , yw
i)�

is the coordinates of the ith point of the goal polygon. We will also denote
(xw

i , yw
i)� as ŵi. We refer to the goal shape (polygon) specified by w as W . To

measure the similarity between the two polygons U and W , they employed the
Procrustes distance [7]. Let us first, however, explain a more simple but essen-
tially the same distance measure for the ease of understanding. We refer to this
distance measure as the normal distance in this paper. The square of the normal
distance between the two polygons U and W is defined by

d2(U,W) = ‖u − w‖2 =
n∑

i=1

‖ûi − ŵi‖2, (4)

where ‖·‖ is the Euclidean norm.
When the normal distance is used, from Eqs. (3) and (4), the Escherization

problem can be formulated as the following unconstrained optimization problem:

minimize: ‖Bξ − w‖2. (5)

This is a least-squares problem and the solution is given by ξ∗ =
(B�B)−1

B�w = B�w with the minimum value −ξ∗�ξ∗ + w�w. The opti-
mal tile shape u∗ is then obtained by u∗ = Bξ∗.

When calculating the normal distance between the two polygons, we need to
consider the n different numbering for the goal polygon W by shifting the first
point for the numbering. Therefore, we define wj (j = 1, 2, . . . , n) in the same
way as w by renumbering the index of the n points such that the jth point (in
the original index) becomes the first point.

Let I be a set of the indices for the isohedral types and Ki a set of all
possible configurations for the assignment of the n points to the tiling edges for an

112 Y. Nagata

isohedral type i. For example, K47 = {(k1, k2) | 0 ≤ k1, 0 ≤ k2, 2k1 +k2 ≤ n−4}
whereas k3 is determined by k3 = n − 4 − (2k1 + k2) (see Fig. 2). Because the
matrix B depends on i ∈ I and k ∈ Ki, we denote it as Bik. Let J = {1, 2, . . . , n}
be a set of the indices of the first point for the n different numbering of the goal
polygon. If we try to perform the exhaustive search, we need to compute

min
ξ∈Rm

‖Bikξ − wj‖2 = −ξ∗
ikj

�ξ∗
ikj + w�w, (6)

for all combinations of i ∈ I, k ∈ Ki, and j ∈ J , where ξ∗
ikj = B�

ikwj .
For each i ∈ I and k ∈ Ki, it takes O(n3) time to compute Eq. (6) for all

values of j ∈ J because it takes O(n3) time for computing Bik and O(n2) time for
computing B�

ikwj (for each value of j). However, the order of Ki reaches O(n3)
for IH5 and IH6 and O(n4) for IH4, and it requires a considerable computational
time to perform the exhaustive search. Figure 3 shows the templates of IH4 and
IH5. To alleviate this problem, Imahori and Sakai [4] proposed a local search
algorithm to search for only promising configurations in Ki, which has succeeded
in finding better tile shapes than the original Koizumi and Sugihara’s method.

Finally, we mention the difference between the Procrustes distance and the
normal distance. For some isohedral types including IH47 and IH4, exactly the
same result is obtained with either distance measure. For some isohedral types,
however, the Procrustes distance must be used because the templates can only
parameterize tile shapes facing in a specific direction. For example, the two
adjacent J edges in the template of IH5 (see Fig. 3) are parameterized such that
they make equal and opposite angles with the y-axis. The Procrustes distance
calculates the normal distance after rotating U so that the normal distance
between U and W is minimized. When the Procrustes distance is used, the
Escherization problem can be reduced to an eigenvalue problem, which can be
solved in O(n2) time [4]. We use only the normal distance to explain the original
Koizumi and Sugihara’s formulation [6], the subsequent studies [2–4], and the
proposed method for the ease of understanding and due to space limitations.

2.3 The Weighted Normal Distance

The normal distance Eq. (4) seems to be the most natural similarity measure
between two polygons. Imahori et al. [4], however, suggested that the normal
distance does not necessarily reflect intuitive similarity between two polygons.
The main cause is that in many cases goal figures have important parts that char-
acterize their shapes and they assigned weights to the points on the important
parts of the goal polygon to emphasize the similarity with these parts.

Let ki (i = 1, 2, . . . , n) be a positive weight assigned to the ith point of the
goal polygon W . The weighted normal distance is then defined by

d2w(U,W) =
n∑

i=1

ki‖ûi − ŵi‖2 = u�Gu − 2w�Gu + w�Gw, (7)

Escherization with a Distance Function Focusing 113

where G is the 2n × 2n diagonal matrix whose diagonal elements are
k1, k2, . . . , kn, k1, k, . . . , kn. When the weighted normal distance is used, from
Eqs. (3) and (7), the Escherization problem is formulated as follows:

minimize: ξ�B�GBξ − 2w�GBξ + w�Gw. (8)

3 Proposed Method

We propose a new distance function to evaluate intuitive similarity between two
polygons and incorporate it into the extended Koizumi and Sugihara’s formula-
tion. We try to solve the formulated problem using tabu search (TS) [9] to search
for as many configurations k ∈ Ki as possible for each isohedral type i ∈ I.

3.1 The Proposed Similarity Measure

As expressed by Eqs. (4) and (7), in order to shorten the (weighted) normal
distance, the points of the tile polygon U must be close to the corresponding
points of the goal polygon W . In contrast, we focus on the similarity of the
relative positional relationship of adjacent points between two polygons. The
proposed distance function is defined as follows:

d2a(U,W) =
n∑

i=1

ki‖(ûi+1 − ûi) − (ŵi+1 − ŵi)‖2, (9)

where n + 1 represents 1 and ki is the weight. We refer to the proposed distance
as the (weighted) adjacent difference (AD) distance.

In the right side of Fig. 4, we can see a typical example of a tile polygon (red
line) that is determined to be very similar to the goal polygon “bat” under the
AD distance but is not so under the normal distance. The middle of the figure
shows the opposite situation. Compared to the tile shape in the middle of the
figure, the tile shape in the right side does not so much overlap with the goal
polygon, but it seems to be intuitively more similar to the goal polygon than the
former one. The reason is that local shapes of the contours of the wings and ears
are well preserved in the right side figure even though overall shape is distorted
(e.g., the vertical width of the wings is getting narrower). As exemplified in this
example, even if the global structure is somewhat distorted, it would be better to
actively preserve local structures of the goal shape to search for more satisfiable
tile shapes. The AD distance is designed assuming such a situation.

It is also possible to assign weights to edges of the goal polygon W and ki in
Eq. (9) is the weight assigned to the edge between ith and (i + 1)th points. In
fact, Eq. (9) can be expressed by the same matrix representation as the right side
of Eq. (7), where G is a 2n × 2n symmetric tridiagonal matrix whose non-zero
elements are defined as follows:

⎧
⎨

⎩

gi,i = gi+n,i+n = ki + ki+1

gi,i+1 = gi+n,i+1+n = −ki
gi+1,i = gi+1+n,i+n = −ki

, (10)

114 Y. Nagata

goal polygon normal distance AD distance

Fig. 4. Goal polygon “bat” and tile shapes that are very close to the goal polygon
under the normal distance and the AD distance, respectively.

where 2n + 1 means 1. We should note that the matrix G depends on the first
point for the numbering of the goal polygon j (∈ J) (this also applies to the case
where the weighted normal distance is used) because the indices of the weighted
edges must be also shifted depending on the numbering. Therefore, we define
Gj (j = 1, 2, . . . , n) in the same way as Eq. (10), by renumbering the index such
that the jth point (in the original index) becomes the first point.

3.2 The Extended Koizumi and Sugihara’s Formulation with the
AD Distance

The weighted normal distance Eq. (7) and the AD distance Eq. (9) have the same
matrix representation and the Escherization problem using the AD distance
is also formulated by Eq. (8). When the AD distance is incorporated into the
extended Koizumi and Sugihara’s formulation, we need to solve the following
optimization problem:

minimize: ξ�B�
ikGjBikξ − 2wj

�GjBikξ + wj
�Gjwj , (11)

for all combinations of i ∈ I, k ∈ Ki, and j ∈ J .
Let us consider Eq. (8) again instead of Eq. (11) for simplicity (indices i, k,

and j are omitted). The solution ξ∗ to Eq. (8) is obtained by solving the equation
B�GBξ = B�Gw (the minimum is −ξ∗�ξ∗ + w�w). However, as explained
later, the matrix B�GB is rank deficient (when the AD distance is used) and
we find the solution in the following way, which is essentially the same as in [4].
First, a set of column vectors b1, b2, . . . , bm (see Eq. (3)) are linearly transformed
into b′

1, b
′
2, . . . , b′

m ′ such that b′
i
�

Gb′
j = δij (the Kronecker delta function) for

i, j ∈ {1, 2, . . . ,m′} (as explained later, m′ = m−2). Such a set of column vectors
can be obtained in O(n3) time by using the Gram-Schmidt orthogonalization
process with an inner product defined as <x,y> = x�Gy. Let a matrix B′

be defined as B′ = (b′
1, b

′
2, . . . , b′

m ′) and the tile shape U be parameterized by
u = B′ξ. Because B′�GB′ becomes an identity matrix, the solution to Eq. (8)
(B is replaced with B′ in this case) is obtained by ξ∗ = B′�Gw. Note that when
the AD distance is used, m′ = m−2 because the matrix G is rank deficient by 2.
Therefore, the degree of freedom for parameterizing tile shapes is also reduced.
Intuitively, this is because the value of the AD distance does not depends on the
position of the center of gravity of U (it does not determined uniquely).

Escherization with a Distance Function Focusing 115

The matrix B′ depends on i (∈ I) and k (∈ Ki). In addition, unlike in the
case of the matrix B, B′ depends on j (∈ J). Therefore, we denote the matrix
B′ as B′

ikj when specifying the indices i, k, and j. For each i ∈ I and k ∈ Ki, it
takes O(n4) time for solving the optimization problem Eq. (11) (i.e., computing
ξ∗

ikj = B′
ikj

�
Gjwj) for all values of j because it takes O(n3) time for computing

B′
ikj . Note that if the weight is not introduced, B′

ikj does not depend on j and
it takes O(n3) time in the same situation. Remember that when the normal
distance is used, this computational cost is O(n3) (see Sect. 2.2). Therefore, it
is computationally more difficult to search for many configurations k ∈ Ki for
each isohedral type i ∈ I, compared to the case of the normal distance. This also
applies to the case where the weighted normal distance is used, and therefore
the weighted normal distance was not incorporated into the extended Koizumi
and Sugihara’s formulation.

3.3 A Tabu Search Algorithm

It requires a considerable computation time to solve the optimization problem
Eq. (11) for all possible combinations of i ∈ I, k ∈ Ki, and j ∈ J and we propose
a TS algorithm to search for only promising configurations among them. The
basic idea is similar to the local search algorithm [4] developed for the extended
Koizumi and Sugihara’s formulation with the normal distance (Eq. (6)), but we
propose a TS algorithm here to enhance the performance. Compared to the case
of the normal distance, however, the required computational cost is significantly
increased and we need to reduce the computational cost.

The TS algorithm is performed for each isohedral type i ∈ I. In the TS
algorithm, the solution candidate represents a configuration (k, j) and its objec-
tive value is given by −ξ∗

ikj
�ξ∗

ikj + w�w (the minimum of Eq. (11)). We define
the neighborhood as a set of configurations (k′, j′) given by the combinations of
j′ ∈ {j, j ± 1} and k′ that is obtained by incrementing (or decrementing) the
number of points assigned to two tiling edges in all possible ways. For example,
if we select IH47 (see Fig. 2), for the current k = (k1, k2), possible values of k′ are
(k1 ± 1, k2 ∓ 2, k3), (k1, k2 ± 1, k3 ∓ 1), (k1 ± 1, k2, k3 ∓ 2) (actually k3 is omitted
because k3 is obtained as n − 4 − 2k1 − k2).

Algorithm 1 depicts the TS algorithm. We denote the current solution (k, j)
and its neighborhood as x and N (x), respectively. Before starting the iterations,
the current solution x and the current best solution xbest are initialized with
a randomly generated solution (line 1). At each iteration, the best non-tabu
solution x′ (we define tabu solutions later) is selected from the neighborhood
N (x) (line 3). In addition, the aspiration criterion is considered, where a solution
that improves the current best solution xbest is always regarded as a non-tabu
solution as an exception. The current solution x and current best solution xbest

(if necessary) are then updated by x′ (line 4). Iterations are repeated until the
number of iterations reaches a given maximum number iterMax (lines 2 and 5).
Finally, the current best solution xbest is returned (line 7).

We explain how to define tabu solutions with an example where k is repre-
sented as (k1, k2, k3, k4). Let the current solution be denoted as (k1, k2, k3, k4; j).

116 Y. Nagata

If the current solution is replaced with the selected solution (k′
1, k2, k

′
3, k4; j

′),
two pairs of (k′

1, j
′) and (k′

3, j
′) are stored in the tabu list during the subsequent

T iterations. At each iteration, when a neighbor solution (k1, k′
2, k

′
3, k4; j

′) is
obtained from the current solution (k1, k2, k3, k4; j), this solution is regarded as
a tabu-solution if both (k′

2, j
′) and (k′

3, j
′) exists in the tabu list.

Algorithm 1. Tabu-Search(isohedral type i)
1: Set the solution x randomly, set xbest := x, and iter no := 0;
2: while (iter no ≤ iterMax) do
3: Select a best non-tabu solution x′ ∈ N (x) (aspiration criterion is considered);
4: Update x := x′ and xbest := x′ (if x′ is better than xbest);
5: Set iter no := iter no + 1;
6: end while
7: return xbest;

We mention the main difference between the proposed TS and the local
search used in [4]. In [4], the solution candidate was represented by only k and
it was evaluated by testing the n different values for j. Its computational effort
is O(n3) when using the normal distance. On the other hand, however, it takes
O(n4) time in the same situation when the weighted AD distance is used because
it takes O(n3) time for each value of j. In our observation, the optimal value of j
for the value of k tends to continuously change with the change of k. Therefore,
it is reasonable to restrict the search range of j around the current value of j in
the neighborhood as in the proposed TS algorithm. Therefore, we have decided
to include the variable j in the solution x.

Although there are 93 isohedral types, it is enough to consider only 10 isohe-
dral types (IH1, IH2, IH3, IH4, IH5, IH6, IH7, IH8, IH21, IH28) for the optimiza-
tion because the remaining 83 types are approximately obtained by assigning no
point to tiling edges in the 10 isohedral types. In our observation, good tile shapes
are mostly obtained with IH4, IH5, and IH6 because other isohedral types do
not have enough flexibility to represent tile shapes (e.g., most tiling edges have
the same shape). We therefore consider only the three isohedral types IH4, IH5,
IH6 for the optimization. In fact, the order of Ki is equal to or greater than
O(n3) only for these isohedral types.

Through preliminary experiments, the parameters of the TS algorithm were
determined as follows: T = 50 and iterMax = 100, where we set the value of
iterMax to a small value since it was better to repeat the TS algorithm from
different initial solutions rather than to continue one trial for a long time. We
define one set of trials as 60 runs of the TS algorithm during which the top 20
tile shapes (including non-local minima) found are stored.

4 Experimental Results

We implemented the proposed TS algorithm in C++ and executed the program
code on a Ubuntu 14.04 Linux PC with Intel Core i7-4790@3.60 GHz CPU.

Escherization with a Distance Function Focusing 117

We applied one set of trials of the TS algorithm to the three goal figures hip-
pocampus (n = 59), bird (n = 60), and spider (n = 126) using each of the four
distance functions (normal distance, weighted normal distance, AD distance,
and weighted AD distance). The execution time of one set of TS algorithm were
about 50s (normal and AD distances) and 140s (weighted normal and weighted
AD distances) for the goal polygon bird and about 400s (normal and AD dis-
tances) for the goal polygon spider.

Figure 5 shows the three goal polygons followed by the intuitively best tile
shapes obtained with the four distance functions. Note that the top tile shape
in terms of the distance value do not necessarily the best one form an intuitive
point of view, and we selected the intuitively best one among the top 20 tile
shapes for each distance function, where the numbers in parentheses indicate
the ranking in terms of distance values. The tile shapes are drawn with red
lines on the points of the goal polygons (black points). When the (weighted)
AD distance is used, the position of the center of gravity of the tile shape is not
determined (see Sect. 3.2) and we put the tile such that the normal distance is
minimized. When the weighted normal distance and the weighted AD distance
are used, the weighted values were all set to four and the weighted points or the
both ends of the weighted edges are drawn in green. In addition, Fig. 6 presents
three tilings generated from the tile shapes shown on the right side of Fig. 5.

We first discuss the results for hippocampus. From the definition, when the
normal distance is used, the resulting tile shape seems to be most overlapped
with the goal polygon, but differences in some local structures are conspicuous.
By using the weighted normal distance, the difference in the weighted part (head)
is getting smaller. When using the AD distance, although the obtained tile shape
does not so much overlap the goal polygon (compared to the normal distance
case), local structures of the goal polygon are well maintained. The obtained tile
shape seems to be intuitively quite similar to the goal polygon, except for the
problem that the width of the head part is shortened and the neck is too thin.
By introducing weights to the AD distance, the local shape of the head part is
getting similar to that of the goal polygon and the aforementioned problem in
the AD distance is somewhat improved.

Next, we discuss the results for bird. The tile shape obtained with the normal
distance seems to be most overlapped with the goal polygon, but the difference
in the foot part is conspicuous. Therefore, we assigned weights to the foot part as
well as the beak part for the weighted normal distance. However, no particular
improvement is found when the weighted normal distance is used. In contrast
to the (weighted) normal distance, when using the AD distance, not only the
overall structure but also the local structures (especially the foot part) are well
maintained. By introducing weights to the AD distance, only the local shape of
the beak parts is slightly improved.

Next, we discuss the results for spider, which is a pretty challenging goal
figure. Since it was difficult to determine appropriate weight points and edges,
only the normal and AD distances were tested. We can see that the tile shape
obtained with the AD distance seems to be intuitively more similar to the goal

118 Y. Nagata

Hippocampus normal(14) weighed normal(14) AD(4) weighted AD(3)

Bird normal(5) weighed normal(4) AD(2) weighted AD(12)

Spider normal(3) AD(11)

Fig. 5. The goal polygons and tile shapes obtained with the four distance functions.
(Color figure online)

figure than that with the normal distance. The main reason is that the shape
of each leg is well preserved, although the positions of the bases of the legs are
different from those of the goal figure.

We also mention the problem of the AD distance. Compared to the normal
distance, tile shapes obtained with the AD distance are rich in variety and many
undesirable tile shapes are also included in the top 20 tile shapes. The reason for
this is that the value of the AD distance may be small even if overall tile shape
is fairly distorted from the goal shape. In the present situation, a satisfiable tile
shape is obtained when the global structure happens to be similar to that of
the goal figure to some extent. In such a case, we can find a very satisfiable tile
shape which cannot be obtained with the (weighted) normal distance.

Escherization with a Distance Function Focusing 119

Fig. 6. Tilings generated from the tile shapes on the right side of Fig. 5. (Color figure
online)

5 Conclusion

We have proposed a new distance function (AD distance), which captures the
similarity of local structures between the two shapes. When the AD distance
is incorporated into the (extended) Koizumi and Sugihara’s formulation of the
Escherization problem, tile shapes obtained actively preserve local structures of
the goal shape even if the global structure is sacrificed. Experimental results
showed that it is better to positively preserve local structures of the goal shape
by allowing the global structure to deform (if the degree of deformation is not
very large), in order to obtain intuitively satisfiable tile shapes. Due to the high
computational cost of the exhaustive search for the formulated Escherization
problem, we developed a TS algorithm for solving this problem, which made it
possible to obtain satisfiable tile shapes in a reasonable computational time.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number
17K00342.

References

1. Grünbaum, B., Shephard, G.: Tilings and Patterns. A Series of Books in the Math-
ematical Sciences (1989)

2. Imahori, S., Sakai, S.: A local-search based algorithm for the Escherization problem.
In: Proceedings of the IEEE International Conference on Industrial Engineering and
Engineering Management, pp. 151–155 (2012)

3. Imahori, S., Sakai, S.: A local-search based algorithm for the Escher-like tiling prob-
lem. IPSJ SIG Technical reports, vol. 2013-AL-144, no.14 (2013 in Japanese)

4. Imahori, S., Kawade, S., Yamakata, Y.: Escher-like tilings with weights. In:
Akiyama, J., Ito, H., Sakai, T. (eds.) JCDCGG 2015. LNCS, vol. 9943, pp. 132–142.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48532-4 12

5. Kaplan, C.S., Salesin, D.H.: Escherization. In: Proceedings of the 27th Annual Con-
ference on Computer Graphics and Interactive Techniques, pp. 499–510 (2000)

6. Koizumi, H., Sugihara, K.: Maximum eigenvalue problem for Escherization. Graph.
Comb. 27(3), 431–439 (2011)

https://doi.org/10.1007/978-3-319-48532-4_12

120 Y. Nagata

7. Werman, M., Weinshall, D.: Similarity and affine invariant distances between 2D
point sets. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 810–814 (1995)

8. Kaplan, C.S.: Introductory Tiling Theory for Computer Graphics. Synthesis Lec-
tures on Computer Graphics and Animation. Morgan & Claypool Publishers, San
Rafael (2009)

9. Glover, F., Lagunab, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht
(1997)

Evolutionary Search of Binary
Orthogonal Arrays

Luca Mariot1(B), Stjepan Picek2, Domagoj Jakobovic3, and Alberto Leporati1

1 DISCo, Università degli Studi di Milano-Bicocca,
Viale Sarca 336/14, 20126 Milano, Italy

{luca.mariot,alberto.leporati}@unimib.it
2 Cyber Security Research Group, Delft University of Technology,

Mekelweg 2, Delft, The Netherlands
S.Picek@tudelft.nl

3 Faculty of Electrical Engineering and Computing,
University of Zagreb, Unska 3, Zagreb, Croatia

domagoj.jakobovic@fer.hr

Abstract. Orthogonal Arrays (OA) represent an interesting breed of
combinatorial designs that finds applications in several domains such
as statistics, coding theory, and cryptography. In this work, we address
the problem of constructing binary OA through evolutionary algorithms,
an approach which received little attention in the combinatorial designs
literature. We focus on the representation of a feasible solution, which we
encode as a set of Boolean functions whose truth tables are used as the
columns of a binary matrix, and on the design of an appropriate fitness
function and variation operators for this problem. We finally present
experimental results obtained with genetic algorithms (GA) and genetic
programming (GP) on optimizing such fitness function, and compare the
performances of these two metaheuristics with respect to the size of the
considered problem instances. The experimental results show that GP
outperforms GA at handling this type of problem, as it converges to an
optimal solution in all considered problem instances but one.

Keywords: Orthogonal arrays · Genetic algorithms
Genetic programming · Boolean functions

1 Introduction

The field of combinatorial designs provides an interesting source of problems
for heuristic optimization techniques. Depending on the size of the support set
and the particular nature of the balancedness constraints, the two main research
questions addressed in combinatorial design theory are the following:

1. Existence: Does a design with a particular set of parameters (i.e., support
set, balancedness constraints) exist?

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 121–133, 2018.
https://doi.org/10.1007/978-3-319-99253-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_10&domain=pdf

122 L. Mariot et al.

2. Construction: Once the existence question for a specified kind of design is
positively answered, is there an efficient method to generate its instances?

Since the existence question of a design can always be cast as a combinato-
rial optimization problem [2], it follows that the use of heuristic techniques can
contribute to the above research questions in a twofold way: first, by providing
concrete examples of designs with specific parameters, hence answering the exis-
tence question in positive; second, once the existence question has been settled,
by providing another method for efficiently constructing designs.

Despite this, the amount of literature devoted to the use of heuristic opti-
mization techniques for constructing combinatorial designs is rather limited (see
Chapter 6 of [2] for a concise survey). This is especially true for the case of orthog-
onal arrays (OA), which represent one of the most interesting breeds of combi-
natorial designs, due to their numerous applications in other research domains
such as the design of experiments, error-correcting codes and cryptography [11].
Indeed, one can find only the papers by Safadi et al. [9] and Wang et al. [12] that
deal with the construction of mixed-level orthogonal arrays (MOA), respectively
through genetic algorithms (GA) and simulated annealing (SA). Nonetheless,
MOA represent a very specific kind of OA, and to the best of our knowledge
there are no works in the literature addressing the heuristic design of classic OA
through evolutionary algorithms.

The aim of this paper is to begin filling this gap by considering the construc-
tion of orthogonal arrays through evolutionary algorithms (EAs), in particular
genetic algorithms and genetic programming (GP). Beside its potential impact
in other domains mentioned above, this research is also interesting from the evo-
lutionary computing point of view. As a matter of fact, evolving OA through
evolutionary heuristics requires to define suitable encodings and variation opera-
tors, which could find applications also in other optimization problems. Addition-
ally, depending on the difficulty of converging to an optimal solution, designing
OA could also represent an interesting benchmark problem for new evolutionary
algorithms and optimization heuristics, as well as for more established ones.

Since the present work is the first one in this line of research, we consider
in particular the modeling aspects of the optimization problem, focusing on the
encodings for the feasible solutions and the design of variation operators to evolve
them. For this reason, we begin by tackling the case of binary orthogonal arrays,
since this allows us to represent the candidate solutions of our problem as sets
of Boolean functions. More specifically, we take the truth tables of such Boolean
functions as the columns of a binary matrix, which actually corresponds to the
phenotype of a candidate solution. On the other hand, the genotype is either a
set of binary strings for GA or a set of Boolean trees for GP.

In order to evaluate the candidate solutions evolved by GA and GP, we design
a fitness function based on the Minkowski distance that measures the deviation
of a binary matrix from being an orthogonal array having specified parameters,
with the goal of minimizing it. In the case of GA, we also exploit a basic property
of orthogonal arrays to design ad-hoc crossover and mutation operators, which
ensure that the Boolean functions composing an individual are balanced, thus

Evolutionary Search of Binary Orthogonal Arrays 123

reducing the resulting search space. For GP, we incorporate this property as an
additional penalty factor in the fitness function, since there is no straightforward
way to design GP variation operators that enforce the balancedness constraint
at the tree level.

We compute the size of the search spaces respectively explored by GA and
GP in terms of the number of variables of the Boolean functions and the columns
of the binary matrices involved, showing that the resulting search spaces cannot
be exhaustively enumerated already for Boolean functions of n = 4 variables and
k = 8 columns.

The experimental results show that GP largely outperforms GA at evolving
binary OA, even though the latter actually explores a smaller search space. As a
matter of fact, GA is able to find orthogonal arrays defined by up to 8 Boolean
functions of 4 variables, while GP arrives one step further by obtaining also
orthogonal arrays composed of 16 functions of 5 variables. This performance dif-
ference is analogous to the findings reported in [5], where the authors observed
that GP outperforms GA in the generation of cellular automata defining orthog-
onal Latin squares, which are a type of combinatorial designs closely connected
with orthogonal arrays. Consequently, the present work brings additional empiri-
cal evidence that GP is a better metaheuristic at handling optimization problems
related to combinatorial designs.

2 Basic Definitions

We begin by giving the basic definition of orthogonal arrays, following the nota-
tion used by Hedayat et al. [3]:

Definition 1. Let S be a finite set of s symbols (called the support set) and let
N, k, t, λ ∈ N with 0 ≤ t ≤ k. An N × k matrix A with entries from S is an
orthogonal array with s levels, k columns, strength t, and index λ (for short, an
OA(N, k, s, t)) if in each submatrix of N rows and t columns each t-uple over S
occurs exactly λ times.

Clearly, if A is an OA(N, k, s, t), then it follows that λ = N/st.
This is the reason why the parameter λ is usually omitted from the specifi-

cation of an OA.
A basic property of orthogonal arrays of strength t is that they satisfy the

balancedness constraint also for smaller strengths, as shown in [3]:

Theorem 1. Let A be an OA(N, k, s, t) with λ = N/st. Then, A is also an
OA(N, k, s, t − i) with λ = N/st−i for all 1 ≤ i < t.

An OA without repeated rows is called simple. If S = {0, 1} (i.e., the symbol
set is the Boolean alphabet), then the OA is called binary.

Simple binary OA have an important application in defining the support
of correlation-immune Boolean functions, which play an important role in the
design of countermeasures for side-channel attacks [1].

Finally, we give a basic definition of Boolean functions and their truth tables:

124 L. Mariot et al.

Definition 2. A Boolean function of n variables is a mapping f : Fn
2 → F2.

Assuming that the vector of F
n
2 are lexicographically ordered, the truth table

associated to f is the 2n-bit vector Ω(f) defined as follows:

Ω(f) = (f(0, 0, · · · , 0), f(0, 0, · · · , 1), · · · f(1, 1, · · · , 1)). (1)

In particular, a Boolean function f : Fn
2 → F2 is called balanced if the number

of zeros in its truth table (and thus also the number of ones) equals 2n−1.
We can now formulate the combinatorial optimization problem which we

will investigate in the rest of this work. We represent the columns of binary
orthogonal arrays with the truth tables of a set of Boolean functions. This can
be formally stated as follows:

Problem 1. Let n, k, t ∈ N. Find k Boolean functions of n variables f1, · · · fk :
F
n
2 → F2 such that the matrix

A = [Ω(f1)�, Ω(f2)�, · · · , Ω(fk)�] (2)

is an OA(2n, k, 2, t), with λ = 2n−t.

In other words, solving Problem 1 requires finding a set of k Boolean functions of
n variables whose truth tables, when put one next to the other, form the columns
of an orthogonal array with N = 2n rows, k columns, 2 levels, and strength t.

3 Specification of GA and GP

3.1 Solutions Encoding

Since Problem 1 requires finding a set of k Boolean functions whose truth tables
form an OA(2n, k, 2, t), the encoding of the feasible solutions can be reduced to
an appropriate representation of sets of Boolean functions which can be easily
handled by evolutionary algorithms. Depending on the underlying heuristic (GA
or GP), we adopted the following approaches:

1. GA encoding : The chromosome c of an individual is defined as follows:

c = (b1, · · · , bk),

where, for all i ∈ {1, · · · , k}, bi ∈ F
2n

2 is a bitstring of length 2n that represents
the truth table of the i-th Boolean function fi : Fn

2 → F2 composing a feasible
solution. The GA crossover and mutation operators are applied component-
wise on each bitstring bi.

2. GP encoding : The chromosome c in this case is defined as:

c = (T1, · · · Tk),

where, for all i ∈ {1, · · · , k}, Ti is a Boolean tree which encodes a Boolean
function of n variables, using a given set of Boolean operators. In particular,

Evolutionary Search of Binary Orthogonal Arrays 125

the 2n-bit string representing the i-th column of the array is determined by
evaluating Ti for all possible input combinations on the leaf nodes, and taking
the corresponding outputs of the function as the values computed at the root
node. Similar to the GA encoding case, the GP variation operators are applied
component-wise for each tree in the chromosome of an individual (or in a pair
of individuals, in the case of tree crossover).

3.2 Fitness Function

Once a suitable chromosome encoding has been designed, one needs to define
a fitness function to determine how good the candidate solutions produced by
an evolutionary algorithm are with respect to the optimal ones. In our case, an
optimal solution is defined as a set of k Boolean functions whose truth tables form
the columns of a binary orthogonal array. Hence, a preliminary idea could be
to determine, for each possible subset of t columns of a candidate solution, how
many t-uples are repeated more than λ times, and then minimize this deviation
over all possible subsets of t columns.

Let us formalize the discussion above. Given a set of k Boolean functions
f1, · · · , fk : F

n
2 → F2, let A be the 2n × k matrix formed by placing side by

side the transpose of the truth tables Ω(f1), · · · , Ω(fk) ∈ F
2n

2 . Additionally, let
I = {i1, · · · , it} be a subset of t indices, with 1 ≤ ij ≤ k for all j ∈ {1, · · · , t},
and let AI denote the 2n×t submatrix obtained by considering only the columns
of A specified by the indices of I. For all binary t-uples x ∈ F

t
2, let AI [x] denote

the number of occurrences of x in AI , and define the λ-deviation of x as:

δ(AI , x) = |λ − AI [x]| . (3)

Then, given p ∈ N, we define the p-deviation of AI as:

Δ(AI)p =

⎛
⎝ ∑

x∈F
t
2

δ(AI , x)p

⎞
⎠

1
p

. (4)

In particular, one may notice that Eq. (4) corresponds to the Minkowski
distance (or Lp distance) between the vector Λ = (λ, · · · , λ) and the vector
(AI [(0, · · · , 0)], · · · AI [(1, · · · , 1)]).

We can now define the fitness function for our optimization problem, which
amounts to the sum of the deviations of all possible N × t submatrices of A:

fitp(A) =
∑

I⊆[k]:|I|=t

Δ(AI)p. (5)

Clearly, if A is an orthogonal array with the required parameters, then fitp(A) =
0. As a consequence, the optimization objective is to minimize fitp.

126 L. Mariot et al.

3.3 Variation Operators

Recall from Theorem 1 that any OA of strength t is also an OA for all strengths
i < t. Considering the extreme case where i = 1, this means that for each column
of the array we must see every symbol of the support set equally often. Since
in our problem we are considering binary OA where the number of rows equals
N = 2n, it follows that each column of an optimal solution must be composed
of 2n−1 zeros and 2n−1 ones or, equivalently, that the corresponding Boolean
function of n variables must be balanced.

We can exploit this fact to reduce the size of the search space of feasible
solutions explored by our GA. In fact, since we are interested only in sets of k
balanced Boolean functions, we can adopt variation operators that preserve their
balancedness. To this end, we employ a slightly modified version of the crossover
operator originally proposed by Millan et al. [6]. In particular, let p1 and p2 be
two balanced bitstrings. Then, we generate a balanced offspring chromosome c
using the following procedure:

Balanced-Crossover(p1, p2))
Initialization: Set two counters cnt0 and cnt1 to zero.
Loop: Until all positions in the offspring chromosome c have been filled:

1. Sample a random position i ∈ {1, · · · , 2n} (without replacement)
2. If one of the two counters is equal to 2n−1, then set c[i] to the opposite

value (i.e., 1 if cnt0 = 2n−1 or 0 if cnt1 = 2n−1)
3. Otherwise, randomly choose between p1[i] and p2[i] and copy the corre-

sponding value in c[i], increasing the relevant counter.
Output: Return c

As one can observe, our crossover operator uses two counters to keep track
of the number of zeros and ones in the child chromosome during its generation.
Until these two counters are less than half of the chromosome length, a random
position is sampled and the gene to be copied is randomly selected from one of
the two parents. Then, when one of the two counters reaches the 2n−1 threshold,
all remaining positions in the child are filled with the opposite value. This ensures
that the child chromosome is also balanced.

Regarding the mutation operator, we opted for a simple swap-based oper-
ator. More precisely, each column composing an individual is mutated with a
small probability by swapping two bits in it, so that the balancedness of the cor-
responding Boolean function is preserved. In particular, the swap is performed
between two random positions holding different values, in order to produce a
mutated individual which differs from the original one.

On the contrary, for GP there is no straightforward way to design crossover
and mutation operators which ensure that the resulting trees map to the bal-
anced Boolean functions. Hence, in this case we chose to employ classic GP vari-
ation operators, specifically simple tree crossover, uniform crossover, size fair,
one-point, and context preserving crossover [8] (selected at random) and subtree
mutation. Additionally, we considered the balancedness constraint at the fitness

Evolutionary Search of Binary Orthogonal Arrays 127

function level, using a penalty factor. In particular, let δ0,1(i) = |#0 − #1| be
the absolute value of the difference between the number of ones and the number
of zeros in the i-th column of a binary array A. Then, the new fitness function
minimized by GP equals:

fitp(A) =
∑

I⊆[k]:|I|=t

Δ(AI)p +
k∑

i=1

δ0,1(i). (6)

4 Analysis of the Search Space

We now give some basic combinatorial remarks that allow us to compute the sizes
of the solution spaces. By taking into account the bare statement of Problem 1,
one can see that the number of feasible solutions depends only on the number
of columns k composing the array and on the number of variables n of the
Boolean functions whose truth tables represent those columns. The number of
Boolean functions of n variables is 22

n

, since it equals the number of bitstrings
of length 2n, which are in one-to-one correspondence with the truth tables of
such functions. Hence, it follows that the number of ways one can choose a set
of k Boolean functions of n variables is given by

Fn,k =
(

22
n

k

)
, (7)

which corresponds to the size of the search space Fn,k induced by Problem 1.
Indeed Fn,k is actually a subset of the search space explored by our GP algo-
rithm. This is due to the fact that different Boolean trees evolved by GP can
be semantically equivalent (i.e. evaluate to the same truth table, such as x and
NOT (NOT (x))).

On the contrary, the search space explored by our GA coincides the set of
binary 2n ×k matrices whose columns are balanced, or equivalently to the space
of all subsets of k balanced Boolean functions of n variables. The number of
balanced Boolean functions of n variables is

BALn =
(

2n

2n−1

)
, (8)

since it is equal to the number of bitstrings of length 2n that include 2n−1 ones.
Thus, the number of combinations of k balanced n-variable Boolean functions is

Gn,k =
(BALn

k

)
=

((
2n

2n−1

)
k

)
, (9)

which gives the size of the search space explored by GA.
A natural question that arises is up to which values of the parameters n and

k the two sets Fn,k and Gn,k are amenable to exhaustive search. Table 1 reports
the corresponding sizes for increasing values of n, along with the dimensions of
the spaces of all Boolean functions and balanced functions of n variables.

128 L. Mariot et al.

Table 1. Search space sizes with respect to n and k.

n N k Bn BALn Fn,k Gn,k

2 4 2 16 6 120 15

3 8 4 256 70 1.7 · 108 916 895

4 16 8 65 536 12 870 8.4 · 1033 1.8 · 1028

5 32 16 4.2 · 109 6.0 · 108 6.4 · 10140 1.3 · 10127

From Table 1, one can see that the sizes of the two search spaces grow very
quickly with respect to the number of variables of the Boolean functions involved,
and that exhaustive enumeration is already unfeasible for n ≥ 4 variables.

5 Experiments

5.1 Problem Instances

Table 2 reports the problem instances on which we run our GA and GP heuris-
tics. In particular, each row of the table reports the number of variables n of
the involved Boolean functions, the number of rows N = 2n of the OA, the
number of columns k, the strength t, and the index λ. In the rest of this section,
we refer to a problem instance by (N, k, t, λ). We selected these instances from
the orthogonal array library published by Sloane [10]. We chose these particular
parameters combinations since they contain both instances that can be exhaus-
tively enumerated (those with n = 3, which we used for tuning our algorithms)
and the smallest instances that are not amenable to exhaustive search.

Table 2. OA parameters/problem instances

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

n 3 3 3 3 3 4 4 5 5 6

N 8 8 8 8 16 16 16 32 32 64

k 4 4 5 7 8 8 15 16 31 32

t 2 3 2 2 2 3 2 3 2 3

λ 2 1 2 2 4 2 4 4 8 8

5.2 Evolutionary Algorithms Parameters

As mentioned in Sect. 3.1, the GP encoding uses elementary Boolean operators
to build one or more trees, each representing an independent Boolean function,
whereas the corresponding Boolean variables are used as terminals. The function
set in our experiments comprise the binary operators AND, OR, XOR, XNOR,

Evolutionary Search of Binary Orthogonal Arrays 129

and the unary operator NOT . Additionally, we include the function IF , which
takes three arguments and returns the second one if the first one evaluates to
true, and the third one otherwise. The maximum tree depth is varied depending
on the number of Boolean variables, which determines the number of rows of the
target orthogonal array.

Regarding the population size, we set it to 500 individuals for GP and 50
for GA. The reason for this difference is that after performing some prelimi-
nary experiments, we observed that using larger population size in GA did not
improve its performance. For the selection process, we employed a steady-state
selection with a 3-tournament operator for both GA and GP, that in each iter-
ation randomly selects three individuals for the tournament and eliminates the
worst one. A new individual is created immediately by crossing over the remain-
ing two from the tournament, which then undergoes mutation respectively with
probability 0.5 in GP and 0.2 in GA.

Concerning the fitness function, after some preliminary tuning tests we
observed that using the Minkowski distance with p = 2 yielded the best results,
hence we adopted fit2 for all subsequent experiments. Likewise, we set the ter-
mination condition for both GA and GP to 500 000 fitness evaluations after
observing from a preliminary round of experiments that optimal solutions are
mostly found before reaching this number of evaluations. Finally, each experi-
ment is repeated 30 times.

5.3 Results

Table 3 presents the results for genetic algorithms and genetic programming in
the form of success rate (in percentages) of finding an optimal solution, i.e., an
orthogonal array with given properties. We denote by GPd a GP experiment
where the maximum tree depth is d. It can be observed that GP outperforms
by far GA at converging to an optimal solution. As a matter of fact, GA is able
to generate OA only up to 16 rows and 8 columns, with the (16, 8, 3, 2) problem
instance having a very low success rate. On the contrary, GP was able to find
an optimal solution at least once in all instances but one (the last row with
orthogonal array of 64 rows and 32 columns). Similar to GA, one can see greatly
differing success rates depending on the size of the problem instance. We varied
the maximum tree depth parameter to determine the conditions under which GP
is able to produce an optimal solution. It can be seen that having the maximum
tree depth equal to the number of variables n is enough to obtain an orthogonal
array. Reasonably, the problem becomes much harder to solve also for GP when
the number of variables and the number of trees (i.e., array columns) grow.

Table 4 shows the basic statistical indicators for the fitness of the best indi-
viduals found by GA and GP for every considered problem instance, as well as
the average time needed to either obtain an optimal solution, or terminate the
run after 500 000 evaluations. In the GA case, we did not experiment with the
(64, 32, 3, 8) combination, since as remarked above GA could not even converge
on the smaller instances with 32 rows. These results are based on GP experiments
with the largest maximum tree depth in every configuration.

130 L. Mariot et al.

Table 3. GP and GA success rates for different problem sizes. Success rates are rounded
to the nearest integer.

Exp. Heuristic

GA GP2 GP3 GP4 GP5

(8, 4, 2, 2) 100 100 100 - -

(8, 4, 3, 1) 100 100 100 - -

(8, 5, 2, 2) 100 100 100 - -

(8, 7, 2, 2) 87 0 100 - -

(16, 8, 2, 4) 27 100 100 100 -

(16, 8, 3, 2) 3 0 100 97 -

(16, 15, 2, 4) 0 0 90 93 -

(32, 16, 3, 4) 0 - 6 10 -

(32, 31, 2, 8) 0 - 0 2 -

(64, 32, 3, 8) - - 0 0 0

Table 4. Statistical indicators for GA and GP (largest max tree depth for GP).

Exp. GA GP

min avg std max time (s) min avg std max time (s)

(8, 4, 2, 2) 0 0 0 0 <1 0 0 0 0 <1

(8, 4, 3, 1) 0 0 0 0 <1 0 0 0 0 <1

(8, 5, 2, 2) 0 0 0 0 <1 0 0 0 0 <1

(8, 7, 2, 2) 0 0.533 1.38 4 7 0 0 0 0 1

(16, 8, 2, 4) 0 2.333 1.75 6 38 0 0 0 0 1

(16, 8, 3, 2) 0 39.96 10.9 57.41 110 0 0.565 3.09 16.97 13

(16, 15, 2, 4) 52 65.4 6.41 80 147 0 0.533 2.03 8 48

(32, 16, 3, 4) 1 174 1 266 43.4 1 349 1 995 0 83.72 41.5 135.8 1 212

(32, 31, 2, 8) 654 684 14.5 714 1 125 0 32 13.9 64 692

(64, 32, 3, 8) - - - - - 18 812 19 159 116 19 355 15 308

The data are consistent with those reported in Table 3, indicating that GP
has far better performances than GA on all problem instances, under the same
number of fitness evaluations.

6 Conclusions and Perspectives

In this paper, we considered how evolutionary algorithms can be used to evolve
binary orthogonal arrays. To that end, we formulated the combinatorial opti-
mization problem as the search of a set of k Boolean functions of n variables

Evolutionary Search of Binary Orthogonal Arrays 131

whose truth tables must be the columns of a binary OA with specified parame-
ters. We chose GA and GP as heuristics to solve this problem, each working on
a specific solution encoding for the candidate solutions of the problem.

The results show genetic programming greatly outperforming genetic algo-
rithms. Interestingly, for all instances but one (the largest), GP is able to find at
least one successful solution. On the other hand, GA managed to solve at least
once only 6 instances out of the 10 considered, with lower success rates than
GP. This experimental finding is interesting, as it contrasts with the fact that
GA actually explored a smaller search space than that of GP, since the former
evolved only sets of balanced Boolean functions. This observation is somewhat
analogous to what has been reported by Mariot et al. in [5], where GP also out-
performed GA at evolving orthogonal Latin squares based on cellular automata,
even though also in that case GA was exploring the smaller search space of
pairwise-balanced Boolean functions. Considering also our findings, this seems
to indicate that GP is a better optimization heuristic at handling problems
related to combinatorial designs. Moreover, since there is no other work in the
literature concerning the heuristic construction of binary OA, the results that
we obtained in our experiments could represent a first baseline of comparison for
future research in this domain, for example by investigating the performances
of other evolutionary optimization methods like discrete PSO [4] or Cartesian
GP [7], which already proved useful to evolve balanced Boolean functions.

More generally, an interesting question pertains the comparison between our
evolutionary approach and other non-heuristic methods to construct OA already
known in the relevant literature. In particular, one can observe that most of
the existing constructions of OA are based on algebraic methods, which usually
leverages on finite fields and coding theory (see for example [3]). However, it is
necessary to remark that a straightforward comparison between our heuristics
and these algebraic methods is not possible, due to the great differences that the
two approaches adopt to generate OA. Indeed, our heuristic approach casts the
problem in terms of optimization: starting from a population of candidate solu-
tions which most likely do not contain an optimal solution, evolve them until an
OA is obtained. On the contrary, algebraic methods usually work by construct-
ing new OA starting from previously existing ones, which have already been
obtained through other constructions and/or exhaustive search. This the case,
for example, of the juxtaposition construction or the X4 construction surveyed
in [3]. As a consequence, barely looking at the size of the OA produced by our
GA and GP would bring to the conclusion that our approach is no match for
the more established algebraic constructions, since the latter manage to create
significantly bigger OA (as one can see for example in Sloane [10]. However, an
important aspect to remark is that most of the known algebraic constructions
arise from linear error-correcting codes, thus yielding linear orthogonal arrays.
This basically means that each row in the OA is a linear combination of the
remaining rows. Hence, these methods do not provide for a great diversity, and
the OA produced by them are actually a subset of all possible OA. On the con-
trary, our optimization approach does not assume any linearity constraint on
the optimal solutions, hence it can generate a wider variety of OA.

132 L. Mariot et al.

Considering the above remarks, it appears natural that the main direction for
future research is to improve the performances of GA and GP over larger problem
instances, in order to obtain binary OA of higher dimensions. To this end, one
could adopt a different fitness function that yields a smoother fitness landscape
over the search space of candidate solutions. A possible idea to accomplish this
would be to define fitness functions based on Theorem 3.30 in [3], which shows
that a binary matrix is a binary OA of strength t if and only if its Walsh-
Hadamard transform vanishes for all subsets of rows having at most i ≤ t nonzero
entries.

A second direction would be to start from an OA with a certain number k of
columns, and then incrementally add columns which still satisfy the balancedness
constraints with the previous ones, thus yielding a larger OA. In this case, GA
and GP would work on a single Boolean function at a time, possibly making
convergence easier on larger problem instances.

Acknowledgments. This work has been supported in part by Croatian Science Foun-
dation under the project IP-2014-09-4882.

References

1. Carlet, C., Guilley, S.: Correlation-immune boolean functions for easing counter
measures to side-channel attacks. Algebraic Curves Finite Fields: Cryptograph.
Other Appl. 16, 41–70 (2014)

2. Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs. CRC Press,
Boca Raton (2006)

3. Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays: Theory and Appli-
cations. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4612-1478-6

4. Mariot, L., Leporati, A.: Heuristic search by particle swarm optimization of boolean
functions for cryptographic applications. In: Genetic and Evolutionary Computa-
tion Conference, Companion Material Proceedings , GECCO 2015, Madrid, Spain,
11–15 July 2015, pp. 1425–1426 (2015)

5. Mariot, L., Picek, S., Jakobovic, D., Leporati, A.: Evolutionary algorithms for the
design of orthogonal latin squares based on cellular automata. In: Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO 2017, Berlin,
Germany, 15–19 July 2017, pp. 306–313 (2017)

6. Millan, W., Clark, A., Dawson, E.: Heuristic design of cryptographically strong
balanced boolean functions. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 489–499. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054148

7. Picek, S., Jakobovic, D., Miller, J.F., Batina, L., Cupic, M.: Cryptographic boolean
functions: one output, many design criteria. Appl. Soft Comput. 40, 635–653 (2016)

8. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming
(2008). http://lulu.com and freely available at http://www.gp-field-guide.org.uk.
(With contributions by J.R. Koza)

9. Safadi, R., Wang, R.: The use of genetic algorithms in the construction of
mixed multilevel orthogonal arrays. Technical report, Olin Corp Cheshire CT Olin
Research Center (1992)

https://doi.org/10.1007/978-1-4612-1478-6
https://doi.org/10.1007/BFb0054148
https://doi.org/10.1007/BFb0054148
http://lulu.com
http://www.gp-field-guide.org.uk

Evolutionary Search of Binary Orthogonal Arrays 133

10. Sloane, N.J.: A library of orthogonal arrays. Fixed-level arrays with more than
three levels: OA 16(4.2) (2007)

11. Stinson, D.R.: Combinatorial Designs: Constructions and Analysis. Springer, Hei-
delberg (2007). https://doi.org/10.1007/b97564

12. Wang, R., Safadi, R.: Generating mixed multilevel orthogonal arrays by simu-
lated annealing. In: Page, C., LePage, R. (eds.) Computing Science and Statis-
tics, pp. 557–560. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-
2856-1 100

https://doi.org/10.1007/b97564
https://doi.org/10.1007/978-1-4612-2856-1_100
https://doi.org/10.1007/978-1-4612-2856-1_100

Heavy-Tailed Mutation Operators
in Single-Objective Combinatorial

Optimization

Tobias Friedrich1,2, Andreas Göbel1(B), Francesco Quinzan1,
and Markus Wagner2

1 Hasso Plattner Institute, Potsdam, Germany
{andreas.goebel,francesco.quinzan}@hpi.de
2 University of Adelaide, Adelaide, Australia

Abstract. A core feature of evolutionary algorithms is their mutation
operator. Recently, much attention has been devoted to the study of
mutation operators with dynamic and non-uniform mutation rates. Fol-
lowing up on this line of work, we propose a new mutation operator and
analyze its performance on the (1+1) Evolutionary Algorithm (EA). Our
analyses show that this mutation operator competes with pre-existing
ones, when used by the (1+1) EA on classes of problems for which results
on the other mutation operators are available. We present a “jump”
function for which the performance of the (1+1) EA using any static
uniform mutation and any restart strategy can be worse than the per-
formance of the (1+1) EA using our mutation operator with no restarts.
We show that the (1+1) EA using our mutation operator finds a (1/3)-
approximation ratio on any non-negative submodular function in polyno-
mial time. This performance matches that of combinatorial local search
algorithms specifically designed to solve this problem.

Finally, we evaluate experimentally the performance of the (1+1) EA
using our operator, on real-world graphs of different origins with up to
∼37 000 vertices and ∼1.6 million edges. In comparison with uniform
mutation and a recently proposed dynamic scheme our operator comes
out on top on these instances.

Keywords: Mutation operators · Minimum vertex cover problem
Submodular functions maximization

1 Introduction

One of the simplest and most studied evolutionary algorithm is the (1+1) EA
[4,17,20] (see Algorithm 1). A key procedure of the (1+1) EA that affects its
performance is the mutation operator, i.e., the operator that determines at each
step how the potential new solution is generated. In the past several years there

A full version of this paper is available at http://arxiv.org/abs/1805.10902.

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 134–145, 2018.
https://doi.org/10.1007/978-3-319-99253-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_11&domain=pdf
http://arxiv.org/abs/1805.10902

Heavy-Tailed Mutation Operators 135

has been a huge effort, both from a theoretical and an experimental points of
view, towards understanding how this parameter influences the performance of
the (1+1) EA and towards deciding which is the optimal way of choosing this
parameter (e.g., see [5,6]).

The most common mutation operator on n-bit strings is the static uniform
mutation operator. This operator, unifp, flips each bit of the current solution
independently with probability p(n). This probability, p(n), is called static muta-
tion rate and remains the same throughout the run of the algorithm. The most
common choice for p(n) is 1/n; thus, mutated solutions differ in expectation in
1-bit from their predecessors. Witt [21] shows that this choice of p(n) is opti-
mal for all pseudo-Boolean linear functions. Doerr et al. [2] further observe that
changing p(n) by a constant factor can lead to large variations of the overall
run-time of the (1+1) EA. They also show the existence of functions for which
this choice of p(n) is not optimal.

Static mutation rates are not the only ones studied in literature. Jansen et al.
[13] propose a mutation rate which at time step t flips each bit independently
with probability 2(t−1) mod (�log2 n�−1)/n. Doerr et al. [3] observe that this muta-
tion rate is equivalent to a mutation rate of the form α/n, with α drawn uniformly
at random (u.a.r.) from the set {2(t−1) mod (�log2 n�−1) | t ∈ {1, . . . , �log2 n�}}.

Doerr et al. [3] notice that the choice of p(n) = 1/n is a result of over-
tailoring the mutation rates to commonly studied simple unimodal problems.
They propose a non-static mutation operator fmutβ , which chooses a mutation
rate α ≤ 1/2 from a power-law distribution at every step of the algorithm. Their
analysis shows that for a family of “jump” functions introduced below, the run-
time of the (1+1) EA yields a polynomial speed-up over the optimal time when
using fmutβ .

Recently, Friedrich et al. [10] propose a new mutation operator. Their oper-
ator cMut(p) chooses at each step with constant probability p to flip 1-bit of
the solution chosen uniformly at random. With the remaining probability 1 − p,
the operator chooses k ∈ {2, . . . , n} uniformly at random and flips k bits of the
solution chosen uniformly at random. This operator performs well in optimizing
pseudo-Boolean functions, as well as combinatorial problems such as the mini-
mum vertex cover and the maximum cut. Experiments suggest that this operator
outperforms the mutation operator of Doerr et al. [3] when run on functions that
exhibit large deceptive basins of attraction, i.e., local optima whose hamming
distance from the global optimum is in Θ(n).

Inspired by the recent results of Doerr et al. [3] and Friedrich et al. [10] we
propose the mutation operator pmutβ that mutates n-bit string solutions as fol-
lows. At each step, pmutβ chooses k ∈ {1, . . . , n} from a power-law distribution.
Then k bits of the current solution are chosen uniformly at random and then
flipped. During a run of the (1+1) EA using pmutβ , the majority of mutations
consist of flipping a small number of bits, but occasionally a large number, of
up to n bit flips can be performed. In comparison to the mutations of fmutβ , the
mutations of pmutβ have a considerably higher likelihood of performing larger
than (n/2)-bit jumps. A visualization of these probabilities is shown in Fig. 1.
Our results can be summarized as follows.

136 T. Friedrich et al.

Run-Time Comparison on Artificial Landscapes. In Sect. 3.1 we show
that the (1+1) EA using pmutβ manages to find the optimum of any function
within exponential time. When run on the OneMax function, the (1+1) EA with
pmutβ finds the optimum solution in expected polynomial time.

In Sect. 3.2 we consider the problem of maximizing the n-dimensional jump
function, first introduced by Droste et al. [4].

Jump(m,n)(x) =
{

m + |x|1 if |x|1 ≤ n − m or |x|1 = n;
n − |x|1 otherwise;

We show that for any value of the parameters m,n with m constant or n −
m, the expected run time of the (1+1) EA using pmutβ remains polynomial.
This is not the case for the (1+1) EA using unifp, for which Droste et al. [4]
showed a run time of Θ(nm + n log n) in expectation. Doerr et al. [3] are able
to derive polynomial bounds for the expected run-time of the (1+1) EA using
their mutation operator fmutβ , but in their results limit the jump parameter to
m ≤ n/2.

Optimization of Submodular Functions and Experiments. In Sect. 5 we
examine the performance of the (1+1) EA with pmutβ on submodular functions.
Submodular functions arise in the analysis of various optimization problems.
Examples include: maximum facility location problems [1], maximum cut and
maximum directed cut [11], restricted SAT instances [12]. Submodular functions
are also found in AI in connection with probabilistic fault diagnosis problems
[14,15].

Submodular functions exhibit additional properties in some cases, such as
symmetry and monotonicity. These properties can be exploited to derive run
time bounds for local randomized search heuristics such as the (1+1) EA. In
particular, Friedrich and Neumann [9] give run time bounds for the (1+1) EA
and GSEMO on this problem, assuming either monotonicity or symmetry.

We show (Sect. 5.1) that the (1+1) EA with pmutβ on any non-negative,
submodular function gives a 1/3-approximation within polynomial time. This
result matches the performance of the local search heuristic of Feige et al. [7]
designed to target non-negative, submodular functions in particular. An example
of a natural non-negative submodular function that is neither symmetric nor
monotone is the utility function of a player in a combinatorial auction (see
e.g. [16]).

In Sect. 5.2 we apply our general upper bound to the maximum directed
cut problem. Unlike the results of Friedrich et al. [10] we consider graphs with
weighted edges, and our run-time bound does not depend on the maximum
outdegree.

Finally, we evaluate the performance of the (1+1) EA on the maximum
directed cut problem using pmutβ experimentally, on real-world graphs of differ-
ent origins, and with up to ∼37 000 vertices and ∼1.6 million edges. Our experi-
ments show that pmutβ outperforms unifp and fmutβ on those instances.

Heavy-Tailed Mutation Operators 137

Algorithm 1. General framework for the (1+1) EA
Choose initial solution x ∈ {0, 1}n uniformly at random;
while convergence criterion not met do

y ← Mutation(x) for given mutation operator;
if f(y) ≥ f(x) then

x ← y;

return x;

2 Algorithms and Setting

2.1 The (1+1) Evolutionary Algorithm and Mutation Rates

In this paper we look at the run time of the simple (1+1) Evolutionary Algo-
rithm under various configurations. This algorithm requires a bit-string of fixed
length n as input. An offspring is then generated by the mutation operator,
an operator that resembles asexual reproduction. The fitness of the solution is
then computed and the less desirable result is discarded. This algorithm is elitist
in the sense that the solution quality never decreases throughout the process.
Pseudo-code for the (1+1) EA is given in Algorithm1.

In the (1+1) EA the offspring generated in each iteration depends on the
mutation operator. The standard choice for the Mutation(·) is to flip each bit
of an input string x = (x1, . . . , xn) independently with probability 1/n. In a
slightly more general setting, the mutation operator unifp(·) flips each bit of x
independently wit probability p/n, where p ∈ [0, n/2]. We refer to the parameter
p as mutation rate.

Uniform mutations can be further generalized, by sampling the mutation
rate p ∈ [0, n/2] at each step according to a given probability distribution.
We assume this distribution to be fixed throughout the optimization process.
Among this class of mutation rates, is the power-law mutation fmutβ of Doerr
et al. [3]. fmutβ chooses the mutation rate according to a power-law distribution
on [0, 1/2] with exponent β. More formally, denote with X the r.v. (random
variable) that returns the mutation rate at a given step. The power-law operator
fmutβ uses a probability distribution Dβ

n/2 s.t. Pr (X = k) = Hβ
n/2k

−β , where

Hβ
� =

∑�
j=1

1
jβ . The Hβ

� s are known in the literature as generalized harmonic
numbers. Interestingly, generalized harmonic numbers can be approximated with
the Riemann Zeta function as lim�→+∞ Hβ

� = ζ(β), with ζ(·) the Riemann Zeta
function. In particular, harmonic numbers Hβ

n/2 are always upper-bounded by a
constant, for increasing problem size and for a fixed β > 1.

2.2 Non-uniform Mutation Rates

In this paper we consider an alternative approach to the non-uniform
mutation operators described above. For a given probability distribution
P = [1, . . . , n] −→ R the proposed mutation operator samples an element

138 T. Friedrich et al.

Algorithm 2. The mutation operator pmutβ(x)

y ← x;

choose k ∈ [1, . . . , n] according to distribution Dβ
n;

flip k-bits of y chosen uniformly at random;
return y;

1e 30

1e 22

1e 14

1e 06

0 25 50 75 100

colour

1.5

2.5

3.5

Mutation(−)
pmutβ , β = 3.5

pmutβ , β = 2.5

pmutβ , β = 1.5

fmutβ , β = 3.5
fmutβ , β = 2.5
fmutβ , β = 1.5

hamming distance H(x, y) between any two points x, y ∈ {0, 1}100

P
r
(y

=
M
u
ta
ti
on

(x
))

Fig. 1. A visualization of the probability Pr (y = Mutation(x)), for any two points x, y ∈
{0, 1}n w.r.t. the Hamming distance H (x, y), for problem size n = 100 and for β =
1.5, 2.5, 3.5. We consider the case Mutation = pmutβ and Mutation = fmutβ . Note that
the y-axis follows a logarithmic scale.

k ∈ [1, . . . , n] according to the distribution P , and flips exactly k-many bits
in an input string x = (x1, . . . xn), chosen uniformly at random among all possi-
bilities. This framework depends on the distribution P , which we always assume
fixed throughout the optimization process.

Based on the results of Doerr et al. [3], we study a specialization of our non-
uniform framework that uses a distribution of the form P = Dβ

n. We refer to this
operator as pmutβ , and pseudocode is given in Algorithm2. This operator uses
a power-law distribution on the probability of performing exactly k-bit flips in
one iteration. That is, for x ∈ {0, 1}n and all k ∈ {1, . . . , n},

Pr
(H (

x, pmutβ(x)
)

= k
)

= (Hβ
n)−1k−β (1)

We remark that with this operator, for any two points x, y ∈ {0, 1}n, the prob-
ability Pr

(
y = pmutβ(x)

)
only depends on their hamming distance H (x, y).

Although both operators, fmutβ and pmutβ , are defined in terms of a power-
law distribution their behavior differs. A visualization of this can be seen in
Fig. 1. We note that, for any choice of the constant β > 1 and all x ∈ {0, 1}n,
Pr (H (x, fmutβ(x)) = 0) > 0, while Pr

(H (
x, pmutβ(x)

)
= 0

)
= 0. We discuss

the advantages and disadvantages of these two operators in Sects. 3 and 4.

Heavy-Tailed Mutation Operators 139

3 Artificial Landscapes

3.1 General Bounds and the OneMax Function

In this section we derive a general upper-bound on the run time of the (1+1) EA
using the mutation operator pmutβ on any fitness function f : {0, 1}n −→ R. It
is well-known that the (1+1) EA using uniform mutation on any such fitness
function has expected run time at most nn. This upper-bound is tight, in the
sense that there exists a function f s.t. the expected run time of the (1+1) EA
using uniform mutation to find the global optimum of f is Ω(nn). For a discussion
on these bounds see Droste et al. [4]. Doerr et al. [3] prove that on any fitness
function f : {0, 1}n −→ R the (1+1) EA using the mutation operator fmutβ has

run time at most O
(
Hβ

n/22
nnβ

)
. Similarly, we derive a general upper-bound on

the run time of the (1+1) EA using mutation pmutβ .

Lemma 1. On any fitness function f : {0, 1}n −→ R the (1+1) EA with muta-
tion pmutβ finds the optimum solution after expected O (

Hβ
nen/enβ

)
fitness eval-

uations, with the constant implicit in the asymptotic notation independent of β.

We consider the OneMax function, defined as OneMax(x1, . . . , xn) = |x|1 =∑n
j=1 xj . This simple linear function of unitation returns the number of ones

in a pseudo-Boolean input string. The (1+1) EA with mutation operators unifp
and fmutβ finds the global optimum after O (n log n) fitness evaluations (see
[3,4,17]). It can be easily shown that the (1+1) EA with mutation operator
pmutβ achieves similar performance on this instance.

Lemma 2. The (1+1) EA with mutation pmutβ finds the global optimum of the
OneMax after expected O (

Hβ
nn log n

)
fitness evaluations, for all β > 1 and with

the constant implicit in the asymptotic notation independent of β.

Lemma 2 can be proved using the fitness level method outlined in Wegener [20].
The (1+1) EA with mutation pmutβ performs a single chosen bit-flip with prob-
ability at least (Hβ

nn)−1 and the expected time for such an event to occur is
Hβ

nn.

3.2 A Comparison with Static Uniform Mutations

Recall the definition of the jump function from the introduction. For 1 < m < n
this function exhibits a single local maximum and a single global maximum. The
first parameter of Jump(m,n) determines the hamming distance between the
local and the global optimum, while the second parameter denotes the size of
the input. We present a general upper-bound on the run time of the (1+1) EA
on Jump(m,n) with mutation operator pmutβ . Then, following the footsteps of
Doerr et al. [3], we compare the performance of pmutβ with static mutation
operators on jump functions for all m ≤ n/2.

140 T. Friedrich et al.

Lemma 3. Consider a jump function f = Jump(m,n) and denote with
Tpmutβ (f) the expected run time of the (1+1) EA using the mutation pmutβ
on the function f . Tpmutβ (f) = Hβ

n

(
n
m

) O (
mβ

)
, were the constant implicit in the

asymptotic notation is independent of m and β.

Note that the upper-bound on the run time given in Lemma3 yields polynomial
run time on all functions Jump(m,n) with m constant for increasing problem
size and also with n − m constant for increasing problem size.

Following the analysis of Doerr et al. [3], we can compare the run time of the
(1+1) EA with mutation pmutβ with the (1+1) EA with uniform mutations, on
the jump function Jump(m,n) for m ≤ n/2.

Corollary 4. Consider a jump function f = Jump(m,n) with m ≤ n/2 and
denote with Tpmutβ (f) the run time of the (1+1) EA using the mutation pmutβ
on the function f . Similarly, denote with Topt(f) the run time of the (1+1) EA
using the best possible static uniform mutation on the function f . Then it holds
Tpmutβ (f) ≤ cmβ−0.5 Hβ

n Topt(f), for a constant c independent of m and β.

The result above holds because Doerr et al. [3] prove that the best possible
optimization time for a static mutation rate a function f = Jump(m,n) with
m ≤ n/2 is lower-bounded as 1/2nm/mm (n/(n − m))n−m ≤ Topt(f).

4 An Application to the Minimum Vertex Cover Problem

In this section, we study the minimum vertex cover problem (MVC): Given a
graph G = (V,E) with n vertices, find a minimal subset U ⊆ V such that each
edge in E is incident to at least one vertex in U . Following Friedrich et al. [8], we
approach MVC by minimizing the functions (u(x), |x|1) in lexicographical order,
where u(x) is the number of uncovered edges.

Lemma 5. On any graph G = (V,E), the (1+1) EA with mutation pmutβ
finds a not necessarily minimum vertex cover after expected O (

Hβ
nn log n

)
fitness

evaluations.

This lemma follows from Friedrich et al. [8, Theorems 1 and 2] and (1) for k = 1.
The (1 + 1) EA using unifp as a mutation operator, when solving MVC on

complete bipartite graphs, does not find the global optimum within polynomial
time. Consider the complete bipartite graph G = (V,E) with partitions V1, V2

of size m and n − m respectively, where 0 < m < n/2. The expected run time
of the (1 + 1) EA using unifp on this instance is at least Ω

(
mnm−1 + n log n

)
.

For m ≤ n/3 the (1 + 1) EA using mutation fmutβ finds the global optimum

of MVC after at most O
(
Hβ

n/2n
β2m

)
fitness evaluations in expectation and for

m ≥ n/3 after at most O
(
Hβ

n/2n
β2n

)
fitness evaluations in expectation. For a

discussion on these run time bounds see Friedrich et al. [8] and Doerr et al. [3].

Theorem 6. On any complete bipartite graph G = (V,E), the (1+1) EA using
mutation pmutβ finds a solution to the MVC after expected O (

Hβ
n (n log n + nβ)

)
fitness evaluations.

Heavy-Tailed Mutation Operators 141

5 Maximizing Submodular Functions

5.1 A General Upper-Bound

Consider a finite set V and a function f : 2V −→ R. We say that f is submodular
if for all U,W ⊆ V , f(U) + f(W) ≥ f(U ∪ W) + f(U ∩ W). We consider the
problem of maximizing a non-negative submodular function, with the (1+1) EA
using the mutation operator pmutβ . This problem is APX-complete. That is,
this problem is NP-hard and does not admit a polynomial time approximation
scheme (PTAS), unless P = NP.

We prove that the (1+1) EA with mutation pmutβ is a (1/3 − ε/n)-
approximation algorithm for the problem of maximizing a submodular function.
In our analysis we assume neither monotonicity nor symmetry. We approach this
problem by searching for (1 + α)-local optima, which we define below.

Definition 7. Let f : 2V −→ R≥0 be any submodular function. A set S ⊆ V is
a (1 + α)-local optimum if it holds (1 + α)f(S) ≥ f(S\{u}) for all u ∈ S, and
(1 + α)f(S) ≥ f(S ∪ {v}) for all v ∈ V \S, for a constant α > 0.

The definition given above is useful in the analysis because it can be proved
that either (1+α)-local optima or their complement always yield a good approx-
imation of the global maximum.

Theorem 8. Consider a non-negative submodular function f : 2V −→ R≥0 over
a set of cardinality |V | = n and let S be a (1+ε/n2)-local optimum. Then either
S or V \S is a (1/3 − ε/n)-approximation of the global maximum.

We remark that Theorem 8 as we present it is implicit in the proof of Theorem
3.4 in Feige et al. [7]. Also, it is possible to construct examples of submodular
functions that exhibit (1 + ε/n2)-local optima with arbitrarily bad approxima-
tion ratios. Thus, (1 + ε/n2)-local optima alone do not yield any approximation
guarantee with respect to the global maximum, unless the valuation oracle is
symmetric.

We can use Theorem 8 to estimate the run time of the (1+1) EA using muta-
tion pmutβ to maximize a given submodular function. Intuitively, it is always
possible to find a (1 + ε/n2)-local optimum in polynomial time using single bit-
flips. It is then possible to compare the approximate local solution S with its
complement V \S by flipping all bits in one iteration.

Theorem 9. Let f : 2V −→ R≥0 be a non-negative submodular function over a
set of cardinality |V | = n. Then the (1+1) EA with mutation pmutβ finds a (1/3−
ε/n)-approximation of the global maximum after expected O (

1
εn3 log

(
n
ε

)
+ nβ

)
fitness evaluations.

5.2 An Application to the Maximum Directed Cut Problem

Let G = (V,E) be a graph, together with a weight function w : E �−→ R≥0 on
the edges. We assume the weights to be non-negative. We consider the problem

142 T. Friedrich et al.

of finding a subset U ⊆ V of nodes such that the sum of the weights on the
outer edges of U is maximal. This problem is the maximum directed cut prob-
lem (Max-Di-Cut) and is a known to be NP-complete. In contrast to Friedrich
and Neumann [9], our analysis considers both directed and undirected graphs,
although it might be possible to obtain improved bounds on undirected graphs.
Furthermore, unlike Friedrich et al. [10] our run-time bound does not depend on
the size of the maximum cut in G.

We first define the cut function.

Definition 10. Let G = (V,E) be a graph together with a non-negative weight
function w : E −→ R≥0. For each subset of nodes U ⊆ V , consider the set
Δ(U) = {(e1, e2) ∈ E : e1 ∈ U and e2 /∈ U} of all edges leaving U . We define
the cut function f : 2V −→ R≥0 as f(U) =

∑
e∈Δ(U) w(e).

Since we require the weights to be non-negative, the cut function is also non-
negative. For any graph G = (V,E) the corresponding cut function is always sub-
modular and, in general, non-monotone (see e.g. [7,9]). If a graph G is directed,
then the corresponding cut function needs not be symmetric. Using Theorem9,
we derive the following upper-bound on the run time.

Corollary 11. Let G = (V,E) be a graph of order n together with a non-
negative weight function w : E �−→ R≥0. Then the (1+1) EA with mutation
pmutβ is a (1/3 − ε/n)-approximation algorithm for the Max-Di-Cut on G. Its
expected optimization time is O (

1
εn3 log

(
n
ε

)
+ nβ

)
.

5.3 Experiments on Large Real Graphs

For our experimental investigations, we select the 123 large instances used by
Wagner et al. [19]. The number of vertices ranges from about 400 to over 6
million and the number of edges ranges from about 1000 to over 56 million. All
123 instances are available online [18].

The instances vary widely in their origin. For example, we include 14 collabo-
ration networks (ca-*, from various sources such as Citeseer and also Hollywood
productions), 14 web graphs (web-*, showing the state of various subsets of the
internet at particular points in time), five infrastructure networks (inf-*), six
interaction networks (ia-*, e.g. about email exchange), 21 general social net-
works (soc-*, e.g., Delicious, LastFM, Youtube) and 44 subnets of Facebook
(socfb-*, mostly from different American universities). We take these graphs
and run Algorithm1 with different mutation operators: fmutβ and pmutβ with
β ∈ {1.5, 2.5, 3.5} and unif1. The solution representation is based on vertices and
we initialize uniformly at random. Each edge has a weight of 1.

We perform 100 independent runs (100 000 evaluations each) with an overall
computation budget of 72 h per mutation-instance pair. Out of the initial 123
instances 67 finish their 100 repetitions per instance within this time limit.1

1 Source categories of the 67 instances: 2x bio-*, 6x ca-*, 5x ia-*, 2x inf-*, 1x soc-*,
40x socfb-*, 4x tech-*, 7x web-*. The largest graph is socfb-Texas84 with 36 364
vertices and 1 590 651 edges.

Heavy-Tailed Mutation Operators 143

Table 1. Average ranks (based on mean cut size) at t = 10 000 and t = 100 000
iterations (lower is better). Our pmutβ approaches perform best at both budgets. unif1
or fmut1.5 have the worst average rank. The colors correspond to the average rank of
a scheme (colder colors are better).

-8
%

-4
%

0

67 instances sorted alphabetically

ga
p
to

hi
gh

es
t
av

er
ag

e
cu

t
si
ze

(0
%

=
be

st
)

fmut1.5
fmut2.5
fmut3.5
pmut1.5
pmut2.5
pmut3.5
unif1

Fig. 2. Distance of average cut size to best average of the seven approaches.

We will report on these 67 in the following, and we will use the average cut size
achieved in the 100 runs as the basis for our analyses.

First, we rank the seven approaches based on the average cut size achieved
in 100 independent runs (best rank is 1, worst rank is 7). Table 1 shows the
average rank achieved by the seven different mutation approaches across the 68
instances. It is obvious that unif1 is among the worst. pmutβ clearly performs
best, however, while pmutβ with β = 1.5 performs best at 10 000 iterations,
pmutβ with β = 3.5 performs best when the budget is 100 000 iterations.

Across the 67 instances, the achieved cut sizes vary significantly (see Fig. 2
and Table 2). For example, the average gap between the worst and the best
approach is 46% at 10 000 iterations and it still is 8.1% at 100 000 iterations. Also,
when we compare the best fmutβ and pmutβ configurations (as per Table 2), then
we can see that (i) pmutβ is better or equal to fmutβ , and (ii) the performance
advantage of pmutβ over fmutβ is 2.2% and 1.3% on average, with a maximum
of 4.8% and 6.4% (i.e., for 10 000 and 100 000 evaluations).

144 T. Friedrich et al.

Table 2. Summary of cut-size differences. “Total” refers to the gap between the best
and worst performing mutation out of all seven. The two highlighted pairs compare
the best fmutβ and pmutβ values listed in Table 1.

t = 10k t = 100k

Total pmut1.5 vs fmut1.5 Total pmut3.5 vs fmut3.5

Min gap 0.3% 0.3% 0.0% 0.0%

Mean gap 12.2% 2.2% 2.1% 1.3%

Max gap 46.0% 4.8% 8.1% 6.4%

6 Discussion

In the pursuit of optimizers for complex landscapes that arise in industrial prob-
lems, we have identified a new mutation operator. This operator allows for good
performance of the classical (1+1) EA when optimizing not only simple artifi-
cial test functions, but the whole class of non-negative submodular functions.
As submodular functions find applications in a variety of natural settings, it is
interesting to consider the potential utility of our operator as a building block for
optimizers of more complex landscapes, where submodularity can be identified
in parts of these landscapes.

Acknowledgements. The authors would like to thank Martin Krejca for giving his
advice on one of the proofs, and Karen Seidel for proof-reading the paper.

References

1. Ageev, A.A., Sviridenko, M.: An 0.828-approximation algorithm for the uncapaci-
tated facility location problem. Discrete Appl. Math. 93(2–3), 149–156 (1999)

2. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters
even when optimizing monotonic functions. Evol. Comput. 21(1), 1–27 (2013)

3. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
GECCO, pp. 777–784 (2017)

4. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoret. Comput. Sci. 276(1–2), 51–81 (2002)

5. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)

6. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computation. Natural
Computing Series. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
662-05094-1

7. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular
functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

8. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating
covering problems by randomized search heuristics using multi-objective models.
Evol. Comput. 18(4), 617–633 (2010)

9. Friedrich, T., Neumann, F.: Maximizing submodular functions under matroid con-
straints by evolutionary algorithms. Evol. Comput. 23(4), 543–558 (2015)

https://doi.org/10.1007/978-3-662-05094-1
https://doi.org/10.1007/978-3-662-05094-1

Heavy-Tailed Mutation Operators 145

10. Friedrich, T., Quinzan, F., Wagner, M.: Escaping large deceptive basins of attrac-
tion with heavy mutation operators. In: GECCO (2018, accepted). https://hpi.de/
friedrich/docs/paper/GECCO18.pdf

11. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM
42(6), 1115–1145 (1995)

12. H̊astad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)
13. Jansen, T., Wegener, I.: Real royal road functions-where crossover provably is

essential. Discrete Appl. Math. 149(1–3), 111–125 (2005)
14. Krause, A., Guestrin, C.: Near-optimal observation selection using submodular

functions. In: AAAI, pp. 1650–1654 (2007)
15. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular

maximization under matroid and knapsack constraints. In: STOC, pp. 323–332
(2009)

16. Lehmann, B., Lehmann, D.J., Nisan, N.: Combinatorial auctions with decreasing
marginal utilities. Games Econ. Behav. 55(2), 270–296 (2006)

17. Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing.
In: PPSN, pp. 15–26 (1992)

18. Rossi, R.A., Ahmed, N.K.: The Network Data Repository with Interactive Graph
Analytics and Visualization (Website) (2015). http://networkrepository.com

19. Wagner, M., Friedrich, T., Lindauer, M.: Improving local search in a minimum
vertex cover solver for classes of networks. In: CEC, pp. 1704–1711 (2017)

20. Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Orejas, F., Spirakis,
P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 64–78. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5 6

21. Witt, C.: Worst-case and average-case approximations by simple randomized search
heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp.
44–56. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31856-9 4

https://hpi.de/friedrich/docs/paper/GECCO18.pdf
https://hpi.de/friedrich/docs/paper/GECCO18.pdf
http://networkrepository.com
https://doi.org/10.1007/3-540-48224-5_6
https://doi.org/10.1007/978-3-540-31856-9_4

Heuristics in Permutation GOMEA
for Solving the Permutation Flowshop

Scheduling Problem

G. H. Aalvanger1, N. H. Luong2, P. A. N. Bosman2, and D. Thierens1(B)

1 Institute of Information and Computing Sciences,
Universiteit Utrecht, Utrecht, The Netherlands

d.thierens@uu.nl
2 Centre for Mathematics and Computer Science (CWI),

Amsterdam, The Netherlands

Abstract. The recently introduced permutation Gene-pool Optimal
Mixing Evolutionary Algorithm (GOMEA) has shown to be an effective
Model Based Evolutionary Algorithm (MBEA) for permutation prob-
lems. So far, permutation GOMEA has only been used in the context of
Black-Box Optimization (BBO). This paper first shows that permuta-
tion GOMEA can be improved by incorporating a constructive heuristic
to seed the initial population. Secondly, the paper shows that hybridiz-
ing with job swapping neighborhood search does not lead to consis-
tent improvement. The seeded permutation GOMEA is compared to
a state-of-the-art algorithm (VNS4) for solving the Permutation Flow-
shop Scheduling Problem (PFSP). Both unstructured and structured
instances are used in the benchmarks. The results show that permuta-
tion GOMEA often outperforms the VNS4 algorithm for the PFSP with
the total flowtime criterion.

1 Introduction

Recently, Bosman et al. [2] introduced the permutation Gene-pool Optimal Mix-
ing Evolutionary Algorithm (GOMEA), a model-based evolutionary algorithm
which is able to solve permutation problems from a Black-Box Optimization
(BBO) perspective. Permutation GOMEA has been tested on the Permutation
Flowshop Scheduling Problem (PFSP) with the total flowtime (TFT) criterion.
In these tests, permutation GOMEA outperformed GM-EDA [3] another per-
mutation model-based evolutionary algorithm. In order to improve permutation
GOMEA further, we should shift from a BBO perspective to a White-Box per-
spective. In this paper we study the effect of seeding the initial population with
solutions from a constructive heuristic, and we look at hybridizing permutation
GOMEA with neighborhood search heuristics.

Section 2 briefly introduces permutation GOMEA. After this we explain the
PFSP and benchmark instances and performance measures in Sect. 3. Construc-
tive heuristics for the PFSP are given in Sect. 4.1, along with some experiments
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 146–157, 2018.
https://doi.org/10.1007/978-3-319-99253-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_12&domain=pdf

Heuristics in Permutation GOMEA for Solving the PFSP 147

on the effectiveness of these heuristics. In Sect. 4.3 we do the same for improve-
ment heuristics for the PFSP. Finally, we compare the permutation GOMEA -
seeded with a constructive heuristic - with VNS4, a state-of-the-art algorithm
for solving the PFSP in Sect. 5. Section 6 concludes this paper.

2 Permutation GOMEA

2.1 Solution and Model Encoding

Permutation GOMEA encodes solutions using a random-key encoding [2]. A
permutation of n variables is encoded as r = (r1, · · · rn), where each random key
ri ∈ [0, 1]. The position of variable i in the permutation is equal to the position
of ri when r is sorted in ascending order. Multiple random key encodings can
encode the same permutation. For example, r1 = (0.34, 0.56, 0.21) and r2 =
(0.72, 0.93, 0.12) both encode x = (3, 1, 2).

2.2 Model Building

The model used in permutation GOMEA is a linkage tree that models depen-
dencies between problem variables in a hierarchical manner [9]. The root of the
linkage tree is a set with all variables. Each node is recursively split up, ending in
leaves containing only a single variable. Variables grouped in a node are assumed
to be dependent, so optimal mixing can improve solutions effectively.

In permutation GOMEA, the linkage tree is built in each generation anew,
by merging nodes starting at the bottom of the tree. The two sets i and j are
merged which have the strongest dependency δ(I, J). For two variables i and j,
the dependency is composed of two factors: δ(i, j) = δ1(i, j) · δ2(i, j). The first
dependency factor is based on relative-ordering information in the population
and is calculated using the entropy of the probability that variable i is before
variable j in the population:

δ1(i, j) = 1 − Entropy(pi,j). (1)

The second dependency factor uses the average squared distance in random
key values of variable i and j:

δ2(i, j) = 1 − 1
n

n−1∑

k=0

(rki − rkj)2. (2)

This results in a symmetric dependency measure between two variables,
where high values indicate a high dependency. We can extend the dependency
measure to calculate the dependency between two sets, by taking the average
pairwise dependency of the variables in the sets:

δ(I, J) =
1

|I| · |J |
∑

i∈I

∑

j∈J

δ(i, j). (3)

148 G. H. Aalvanger et al.

2.3 Optimal Mixing

To generate new solutions, permutation GOMEA uses Gene-pool Optimal Mix-
ing (GOM) [9]. For each solution, permutation GOMEA takes every set in the
linkage tree as a crossover mask. The values of the masked variables are then
substituted by values from a random donor solution. For example, solution
r1 = (0.2, 0.3, 0.6, 0.5) is changed using crossover mask (x1, x2, x4) and donor
r2 = (0.9, 0.5, 0.1, 0.7) to r′

1 = (0.9,0.5, 0.6,0.7). If such a change is not strictly
improving a solution, the substitution is reverted. Thanks to the random keys
encoding, optimal mixing always results in a feasible permutation.

If a solution is not improved using any crossover mask, permutation GOMEA
will ‘force’ improvements using the best known solution so far. In this Forced
Improvement (FI) phase, permutation GOMEA repeats optimal mixing but the
best known solution is used as donor, instead of a random one. In order to
improve convergence changes are accepted when they do not decrease the quality
of the solution. FI is also entered if the best overall solution has not changed for
10 + 10 · log n generations (denoted with variable NIS = true in Algorithm 1).

With a probability of 0.1, permutation GOMEA will ‘scale’ the random keys
before substitution. Here, the values to substitute are scaled to a new interval.
For example, scaling random keys (0.9, 0.5, 0.7) to the interval [0.3, 0.5] results in
(0.5, 0.3, 0.4). Scaling allows permutation GOMEA to move a group of variables
closer together in the permutation. Also, the random key diversity is improved
in the population. Random key diversity is also ensured by re-encoding. After
the GOM phase of permutation GOMEA, each random key gets a new value,
while retaining the order of the random keys.

2.4 Population Sizing Scheme

When implemented, permutation GOMEA would look like the pseudocode in
Algorithm 1. However, one needs to specify the population size before running the
algorithm. Therefore, permutation GOMEA incorporates an exponential popu-
lation sizing scheme [2]. In this scheme, a population is started with size nbase.
Every four times this population is evaluated, a population with size 2 · nbase

is evaluated once. This pattern recurses, so population i is evaluated four times
as often as population i + 1. Using such a scheme, no population size has to
be estimated. When a population is converged, no evaluations are performed
anymore for that population, allowing permutation GOMEA to evaluate more
in the other populations.

3 Permutation Flowshop Scheduling Benchmark

The PFSP is concerned with finding the optimal solution for scheduling J jobs
on M machines. Each job requires M operations, which should be performed
sequentially, starting on machine 1 and finishing on machine M (the Flowshop
property). Operations cannot be interrupted, but a job can be delayed when its

Heuristics in Permutation GOMEA for Solving the PFSP 149

Result: A good/optimal solution with respect to fitness function f
Pop ← rand Pop(n) ;
while ¬termination criterion do

LT ← build LT (Pop) ; // Model-building

foreach receiver ∈ Pop do
receiver∗ ← receiver;
improved ← False;
foreach set ∈ LinkageTree do // Gene-pool Optimal Mixing

donor ← Random(Pop);
child ← Donaterescale(receiver∗, set, donor, Rand(0, 1) < 0.1);
if f(child) ≥ f(receiver∗) then

receiver∗ ← child;
if f(child) > f(receiver∗) then

improved ← True;

if ¬improved ∨ NIS then // Forced Improvement

foreach set ∈ LinkageTree do
child ←
Donaterescale(receiver∗, set, best solution, Rand(0, 1) < 0.1);
if f(child) ≥ f(receiver∗) then

receiver∗ ← child;
break

receiver = Reencode(receiver∗) // Re-encoding

return best solution from Pop

Algorithm 1. GOMEA outline

operations are not performed immediately after each other. Any solution can
be seen as a permutation of jobs, since each machine has to process the jobs in
the same order (the Permutation property). In three field notation, the PFSP is
denoted by F |prmu|γ, where γ refers to the objective function that is used for
optimizing the schedule. Here, we consider the total flowtime (TFT) criterion,
which is defined as the sum of completion times of all jobs:

TFT (π) =
J∑

i=1

c(πi,M). (4)

The completion times of all jobs can be calculated using the equations in (5) in
O(J · M) time. For the TFT criterion, the PFSP is NP-hard when M > 1.

c(π1, 1) = p(π1, 1)
c(π1, j) = c(π1, j − 1) + p(π1, j) for j = 2 · · · M
c(πi, 1) = c(πi−1, 1) + p(πi, 1) for i = 2 · · · J
c(π1, 1) = max{c(πi−1, j), c(πi, j − 1)} + p(π,j),

for i = 2 · · · J ; for j = 2 · · · M.

(5)

Here, p(πi, j) is the processing time of job πi on machine j. The completion time
of job πi on machine j (i.e., c(πi, j)) is the duration from when job πi is started
on the first machine until job πi is finished on machine j.

150 G. H. Aalvanger et al.

3.1 Problem Instances

Taillard Instances
For the PFSP, the most often used benchmark set is developed by Taillard

[7]. This benchmark set can be divided in 12 (J ×M) sets with 10 instances each
(See Table 1). The instances are a selection of the hardest randomly generated
instances. Here, instances for which simple metaheuristics do not often find the
same solution or where the solution is far from a lower bound are considered to
be hard.
Structured Instances

Aalvanger [1] introduced a new set of benchmarks for testing algorithms
on structured instances. The benchmark set contains the three types of struc-
tured instances as described by Watson [10]: Job-correlated (JC), Machine-
correlated (MC) and Mixed-correlated (MXC) instances (see Fig. 1). In job-
correlated instances, processing times are dependent on the job and not on the
machines. Therefore the processing times of operations in one job are related.
In machine-correlated instances the structure goes the other way around. Here,
processing times on one machine are related, while processing times within one
job are unrelated. Mixed-correlated instances are equal to Machine-correlated
instances, but here the relative ranks of processing times within each machine
are job-dependent.

Fig. 1. Job processing time for three types of structured PFSP instances.

For each of the three correlation types, four (J × 20) sets are generated
(See underlined in Table 1). For each instance size, 1100 instances are generated,
with varying values for correlation: α ∈ {0.0, 0.1 · · · 1.0}. For α = 0.0, instances
reflect the way Taillard instances are generated, higher values introduce more
correlation. For α = 1.0, every task in a job/machine has the same processing
time.

3.2 Comparing Results

To compare algorithms for PFSP, the Relative Percentage Deviation (RPD) is
often used. The RPD describes the relative distance to the best known upper

Heuristics in Permutation GOMEA for Solving the PFSP 151

Table 1. Sizes of the Taillard PFSP instances, for underlined sizes structured instances
are available.

J = 20 J = 50 J = 100 J = 200 J = 500

M = 5 20 × 5 50 × 5 100 × 5

M = 10 20 × 10 50 × 10 100 × 10 200 × 10

M = 20 20 × 20 50 × 20 100 × 20 200 × 20 500 × 20

bound (UB) of an instance and the result of the algorithm RES. The RPD is
calculated by

RPD(RES) =
100 · (RES − UB)

UB
. (6)

RPD values are best used when the upper bound is very close to the opti-
mal solution. An RPD value of 0.0 then means that the optimal solution has
been found. Over a set of runs, the average or median RPD is often reported
(ARPD/MRPD). In our results, we also report the average over the MRPDs of
multiple instances (AMRPD).

We use the Mann-Whitney-U test to check for a significant difference between
two algorithms. Unless reported otherwise, we use sample sizes of 20 per instance
to find MRPD values. AMRPD values are found over 10 instances with the same
size. For significance tests we use a significance level of p < 0.05.

4 Heuristics for the PFSP

4.1 Constructive Heuristics

For the TFT criterion, Liu and Reeves have introduced the LR(x) heuristic [6],
which can generate up to J schedules, depending on the parameter x. LR(x)
builds a schedule from the front to the back, using the following three steps:

1. Sort all jobs according to the index function.
2. Create x partial schedules with the top-x jobs scheduled first. Extend the par-

tial schedules by iteratively adding the best job according to the re-evaluated
index function.

3. Select the best schedule generated in step 2).

The index function for adding job i after the last job k in the partial schedule
consists of two components:

1. A weighted total machine idle time, penalizing the time the machines wait
between job k and job i. Idle time on the first machines is punished more
than idle time on the last machines.

2. The artificial total flow time, is the sum of the completion time of job i plus
the completion time of an artificial job representing the unscheduled jobs.

152 G. H. Aalvanger et al.

Fig. 2. Seeding with the LR heuristics: amount of seeds vs. solution quality after
50,000,000 fitness evaluations.

4.2 Constructive Heuristics Seeding: Results

For the LR heuristic we have tested the effect of seeding solutions in the initial
populations of permutation GOMEA. Figure 2 shows that for most instances -
especially the larger ones - more seeds result in better solutions. This holds for
both structured and unstructured instances. An interesting observation is the
effect of single-solution seeding. Here, the dominant new solution can misguide
optimal mixing, leading to worse solutions.

Heuristics in Permutation GOMEA for Solving the PFSP 153

Fig. 3. Hybrid GOMEA performance with respect to the probability of local search
for Taillard (T) and structured (S) instances (α = 0.3)

4.3 Improvement Heuristics

For the PFSP with the TFT criterion, various improvement heuristics exist.
Each of these improvement heuristics are based on two fundamental permu-
tation neighborhoods: job insertion and job swap. The swap heuristic takes
two jobs and swaps them in a permutation. The insertion heuristic takes one
job and puts it in another place in the permutation. Both heuristics have a
neighbor-space that is quadratic in the amount of jobs and take O(J · M) time
to compute the fitness of a neighbor. In permutation GOMEA an improvement
heuristic is most effectively applied when a solution has changed in the GOM
phase. For permutation GOMEA solving the PFSP with the TFT criterion, the
swap heuristic was shown to have the most potential, especially on instances
with a few machines (for more details see [1]). Figure 3 shows for structured
(mixed-correlation) and unstructured instances how permutation GOMEA per-
forms when this improvement heuristic is applied with some probability Prls.
Clearly, the use of the neighborhood search does not improve the effectiveness of
permutation GOMEA within the given computational time budget. Apparently
the extensive search already executed by the Gene-pool Optimal Mixing process
does not benefit anymore from the classical swap neighborhood exploration.

5 Permutation GOMEA vs. VNS4 Iterated Local Search

The previous section showed that permutation GOMEA can best be enhanced by
seeding the initial population with solutions constructed with the LR heuristic.
Adding local search to improve each solution after the gene-pool mixing process
does not result in consistent improvements on all instances, and is therefore

154 G. H. Aalvanger et al.

Table 2. Quality of pGOMEA and VNS4 on Taillard instances.

not applied in this section. To see how well permutation GOMEA performs in
comparison with a well tested Iterated Local Search heuristic for the PFSP,
we compare it with VNS4, a Variable Neighborhood Search algorithm which
uses an optimal form of combining the insertion heuristic and swap heuristic
in order to solve the PFSP with the TFT criterion [4]. VNS4 was the most
successful algorithm in a study of six different ways to combine the two most used
neighborhoods in the literature used for the permutation flowshop scheduling
problem with total flowtime criterion, namely job interchange and job insertion.
VNS4 turned out to be the most effective of the six variable neighborhood search
algorithms. VNS4 was also compared to a state-of-the-art evolutionary approach
which it outperformed on most of the benchmark instances.

VNS4 is started from a solution generated by the LR constructive heuristic.
First, VNS4 fully explores the job interchange neighborhood until no further
improvement is possible. Then, a single iteration of the job insertion neigh-
borhood search is executed. If this iteration improves the current solution, the
algorithm resumes the interchange neighborhood search. When a local optimum
common to both neighborhoods has been reached within the computational time
limit, VNS4 executes a random walk to escape from the region of attraction of
this local optimum. The random walk consists of k random job insertion moves.
Iterated Local Search is sensitive to the length of the perturbation size. Exper-
imental results show that VNS4’s performance degrades when the perturbation

Heuristics in Permutation GOMEA for Solving the PFSP 155

Table 3. Quality of pGOMEA and VNS4 on structured instances.

size is less than 14 or greater than 18 random job insertion moves [4]. The results
with 14 ≤ k ≤ 18 produce very similar results, but k = 14 has the lowest RPD
median, so this value is shown here in the Tables with experimental results.

Table 2 shows the MRPD values on Taillard problem instances for VNS4 and
permutation GOMEA when both algorithms are run for 400 ·J ·M milliseconds.
This stopping criterion is the same as used in recent works of [5,8,11] which
were all included in the comparison in [4].

The best solution in the Table is marked bold and if the other solution
performs significantly worse, its cell is marked grey. The results show that in
most cases permutation GOMEA outperforms VNS4 significantly, in a number
of cases there is no statistically significant difference, and in only a few instances
VNS4 outperforms permutation GOMEA.

156 G. H. Aalvanger et al.

Secondly, we have tested permutation GOMEA and VNS4 on multiple struc-
tured instances with size 100 × 20. For these problems we have run the algorithms
for 400 · (1 − α) · J · M seconds, as structure makes the problems easier. Table 3
shows the results for three types of structured instances and three α values.

The results show for job-correlated instances that permutation GOMEA
always outperforms the VNS4 algorithm. The type of structure apparently suits
permutation GOMEA best, while VNS4 cannot benefit from an easier fitness
landscape. The machine-correlated instances with a high amount of structure
(α ≥ 0.4) are however easier for VNS4. When machine and job correlation
are mixed, the PFSP is best solved using permutation GOMEA. Permutation
GOMEA finds solutions with MRPD values lower than 0.5, showing that struc-
tured instances are easier than the standard Taillard instances.

An interesting question is why permutation GOMEA does not outperform
VNS4 for the machine-correlated instances with a high amount of structure?
Apparently, permutation GOMEA does not fully capture the structure in the
machine-related instances. The most likely explanation is that this structure is
not represented well enough in the distance measure used to build the linkage
tree. Further research into the relation between the structure in specific problem
instances and the type of structure searched for by GOMEA using different
distance measures is needed to answer this question.

6 Conclusions

Previous work has shown how the Gene-pool Optimal Mixing Evolutionary Algo-
rithm can be applied to permutation problems like the PFSP by representing
solutions with the random-key encoding. Each generation GOMEA builds a link-
age tree in order to capture structure in the set of solutions. This linkage tree can
also be looked upon as an adaptive neighborhood learned by GOMEA to explore
new solutions. In this paper we have investigated how the use of constructive
heuristics and neighborhood search might improve on the Black-Box approach
of permutation GOMEA. Results showed that adding neighborhood search does
not consistently improve the performance. However, seeding the initial popula-
tion of GOMEA by solutions generated by the constructive LR heuristic was
shown to be an effective technique. We have experimentally compared permu-
tation GOMEA - seeded with the constructive heuristic LR - with the highly
successful VNS4 algorithm for unstructured and structured Permutation Flow-
shop Scheduling problems. VNS4 is an Iterated Local Search algorithm using a
variable neighborhood that combines the job insertion neighborhood with the
job swap neighborhood.

For the unstructured Taillard instances, GOMEA almost always outper-
forms VNS4. Also for the job correlated structured instances and for the mixed
job/machine correlated instances GOMEA outperforms VNS4. Only for machine
correlated structured instances with a high amount of structure (α ≥ 0.4), VNS4
outperforms permutation GOMEA.

As a general conclusion, this paper has shown that the use of a multi-solution
constructive heuristic to seed the initial population of permutation GOMEA

Heuristics in Permutation GOMEA for Solving the PFSP 157

leads to an effective model-based evolutionary algorithm. It has also been shown
that adding neighborhood search algorithms does not always result in more
efficient results given a fixed computational time budget.

References

1. Aalvanger, G.: Incorporating domain knowledge in permutation gene-pool optimal
mixing evolutionary algorithms. Master’s thesis. Utrecht University, The Nether-
lands (2017). https://dspace.library.uu.nl/handle/1874/353005

2. Bosman, P.A., Luong, N.H., Thierens, D.: Expanding from discrete Cartesian to
permutation gene-pool optimal mixing evolutionary algorithms. In: Proceedings of
the Genetic and Evolutionary Computation Conference, pp. 637–644. ACM (2016)

3. Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A.: Extending distance-based
ranking models in estimation of distribution algorithms. In: 2014 IEEE Congress
on Evolutionary Computation, CEC, pp. 2459–2466, July 2014

4. Costa, W.E., Goldbarg, M.C., Goldbarg, E.G.: New VNS heuristic for total flow-
time flowshop scheduling problem. Expert Syst. Appl. 39(9), 8149–8161 (2012)

5. Jarboui, B., Eddaly, M., Siarry, P.: An estimation of distribution algorithm for min-
imizing the total flowtime in permutation flowshop scheduling problems. Comput.
Oper. Res. 36, 2638–2646 (2009)

6. Liu, J., Reeves, C.R.: Constructive and composite heuristic solutions to the p||∑Ci

scheduling problem. EJOR 132(2), 439–452 (2001)
7. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2),

278–285 (1993)
8. Tasgetiren, M.F., Pan, Q.-K., Suganthan, P.N., Chen, A.H.-L.: A discrete artificial

bee colony algorithm for the permutation flow shop scheduling problem with total
flowtime criterion. In: Proceedings of the IEEE World Congress on Computational
Intelligence, WCCI-2010, pp. 137–144. IEEE (2010)

9. Thierens, D., Bosman, P.A.: Optimal mixing evolutionary algorithms. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference, pp. 617–624 (2011)

10. Watson, J.-P., Barbulescu, L., Whitley, L.D., Howe, A.E.: Contrasting structured
and random permutation flow-shop scheduling problems. INFORMS J. Comput.
14(2), 98–123 (2002)

11. Xu, X., Xu, Z., Gu, X.: An asynchronous genetic local search algorithm for the per-
mutation flowshop scheduling problem with total flowtime minimization. Expert
Syst. Appl. 38, 7970–7979 (2011)

https://dspace.library.uu.nl/handle/1874/353005

On the Performance of Baseline
Evolutionary Algorithms on the Dynamic

Knapsack Problem

Vahid Roostapour(B), Aneta Neumann, and Frank Neumann

Optimisation and Logistics, School of Computer Science,
The University of Adelaide, Adelaide, Australia

vahid.roostapour@adelaide.edu.au

Abstract. Evolutionary algorithms are bio-inspired algorithms that can
easily adapt to changing environments. In this paper, we study single-
and multi-objective baseline evolutionary algorithms for the classical
knapsack problem where the capacity of the knapsack varies over time.
We establish different benchmark scenarios where the capacity changes
every τ iterations according to a uniform or normal distribution. Our
experimental investigations analyze the behavior of our algorithms in
terms of the magnitude of changes determined by parameters of the cho-
sen distribution, the frequency determined by τ and the class of knapsack
instance under consideration. Our results show that the multi-objective
approaches using a population that caters for dynamic changes have a
clear advantage on many benchmarks scenarios when the frequency of
changes is not too high.

1 Introduction

Evolutionary algorithms [1] have been widely applied to a wide range of combi-
natorial optimization problems. They often provide good solutions to complex
problems without a large design effort. Furthermore, evolutionary algorithms and
other bio-inspired computing have been applied to many dynamic and stochastic
problems [2,3] as they have the ability to easily adapt to changing environments.

Most studies for dynamic problems so far focus on dynamic fitness func-
tions [4]. However, in real-world applications the optimization goal, such as max-
imizing profit or minimizing costs, often does not change. Instead, resources to
achieve this goal change over time and influence the quality of solutions that can
be obtained. In the context of continuous optimization, dynamically changing
constraints have been investigated in [2,5]. Theoretical investigations for com-
binatorial optimization problems with dynamically changing constraints have
recently been carried out [6,7]. The goal of this paper is to contribute to this
research direction from an experimental perspective.

In this paper, we investigate evolutionary algorithms for the knapsack prob-
lem where the capacity of the knapsack changes dynamically. We design a bench-
mark set for the dynamic knapsack problem. This benchmark set builds on clas-
sical static knapsack instances and varies the constraint bound over time. The
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 158–169, 2018.
https://doi.org/10.1007/978-3-319-99253-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_13&domain=pdf

On the Performance of Baseline Evolutionary Algorithms 159

change in the constraint bound is done randomly every τ iterations, where τ is a
parameter determining the frequency of changes. The magnitude of a change is
either chosen according to a uniform distribution in an interval [−r, r], where r
determines the magnitude of changes. Furthermore, we examine changes accord-
ing to the normal distribution N (0, σ2) with mean 0 and standard deviation
σ. Here σ is used to determine the magnitude of changes and large values of σ
make larger changes more likely. We investigate different approaches analyzed
theoretically with respect to their runtime behavior in [7]. The algorithms that
we consider are a classical (1+1) EA and multi-objective approaches that are
able to store infeasible solutions as part of the population in addition to feasible
solutions. Furthermore, the range of feasible and infeasible solutions stored in
the multi-objective algorithms can be set based on the anticipated change of the
constraint bound.

In our experimental investigations, we start by examining the knapsack prob-
lem where all weights are set to one and vary the constraint bound. This matches
the setting of the optimization of a linear function with a dynamic uniform
constraint analyzed in [7]. Our experimental results match the theoretical ones
obtained in this paper and show that the multi-objective approaches using a
population to cater for dynamic changes significantly reduce the offline error
that occurred during the run of the algorithms. For the general setting, we
investigate different classes of knapsack problem, such as with uniformly cho-
sen weights and profits and bounded strongly correlated instances. We examine
the behaviour of the algorithms while varying the frequency and magnitude of
changes. Our results show that the (1+1) EA has an advantage over the multi-
objective algorithms when the frequency of changes is high. In this case, the
population of the multi-objective approaches is slower to adapt to the changes
that occur. On the other hand, a lower frequency of changes plays in favor of
the multi-objective approaches, if the weights and profits are not correlated to
make the instances particularly difficult to solve.

The outline of the paper is as follows: Sect. 2 introduces the problem def-
inition and three algorithms we studied; the dynamic knapsack problem and
experimental setting is presented in Sect. 3; in Sect. 4 we analyze the experimen-
tal results in detail, and a conclusion follows in Sect. 5.

2 Preliminaries

In this section, we define the Knapsack Problem (KP) and further notations
used in the rest of this paper. We present (1+1) EA and two multi-objective
algorithms called MOEA and MOEA D that are considered in this paper.

2.1 Problem Definition

We investigate the performance of different evolutionary algorithms on the KP
under dynamic constraint. There are n items with profits {p1, . . . , pn} and
weights {w1, . . . , wn}. A solution x is a bit string of {0, 1}n which has the overall

160 V. Roostapour et al.

Algorithm 1. (1+1) EA
1 x ← previous best solution;
2 while stopping criterion not met do
3 y ← flip each bit of x independently with probability of 1

n
;

4 if f1+1(y) ≥ f1+1(x) then
5 x ← y;

weight w(x) =
∑n

i=1 wixi and profit p(x) =
∑n

i=1 pixi. The goal is to compute
a solution x∗ = arg max{p(x) | x ∈ {0, 1}n ∧w(x) ≤ C} of maximal profit which
has weight at most C.

We consider two types of this problem based on the consideration of the
weights. Firstly, we assume that all the weights are one and uniform dynamic
constraint is applied. In this case, the limitation is on the number of items chosen
for each solution and the optimal solution is to pick C items with the highest
profits. Next, we consider the general case where the profits and weights are
linear integers under linear constraint on the weight.

2.2 Algorithms

We investigate the performance of three algorithms in this paper. The initial
solution for all these algorithms is a solution with items chosen uniformly at
random. After a dynamic change to constraint C happens, all the algorithms
update the solution(s) and start the optimization process with the new capacity.
This update is addressing the issue that after a dynamic change, current solu-
tions may become infeasible or the distance of its weight from the new capacity
become such that it is not worth to be kept anymore. (1+1) EA (Algorithm 1)
flips each bit of the current solution with the probability of 1

n as the mutation
step. Afterward, the algorithm chooses between the original solution and the
mutated one using the value of the fitness function. Let pmax = maxn

i=1 pi be
the maximum profit among all the items. The fitness function that we use in
(1+1) EA is as follows:

f1+1(x) = p(x) − (n · pmax + 1) · ν(x)

where ν(x) = max {0, w(x) − C} is the constraint violation of x. If x is a feasible
solution, then w(x) ≤ C and ν(x) = 0. Otherwise, ν(x) is the weight distance of
w(x) from C.

The algorithm aims to maximize f1+1 which consists of two terms. The first
term is the total profit of the chosen items and the second term is the applied
penalty to infeasible solutions. The amount of penalty guarantees that a fea-
sible solution always dominates an infeasible solution. Moreover, between two
infeasible solutions, the one with weight closer to C dominates the other one.

The other algorithm we consider in this paper is a multi-objective evo-
lutionary algorithm (Algorithm 2), which is inspired by a theoretical study

On the Performance of Baseline Evolutionary Algorithms 161

Algorithm 2. MOEA
1 Update C;
2 S+ ← {z ∈ S+ ∪ S−|C < w(z) ≤ C + δ};
3 S− ← {z ∈ S+ ∪ S−|C − δ ≤ w(z) ≤ C};
4 if S+ ∪ S− = ∅ then
5 q ← best previous solution;

6 if C < w(q) ≤ C + δ then
7 S+ ← {q} ∪ S+;
8 else if C − δ ≤ w(q) ≤ C then
9 S− ← {q} ∪ S−;

10 while a change happens do
11 if S+ ∪ S− = ∅ then
12 Initialize S+ and S− by Repair(q,δ,C);
13 else
14 choose x ∈ S+ ∪ S− uniformly at random;
15 y ← flip each bit of x independently with probability 1

n
;

16 if (C < w(y) ≤ C + δ) ∧ (�p ∈ S+ : p �MOEA y) then
17 S+ ← (S+ ∪ {y}) \ {z ∈ S+|y 	MOEA z};

18 if (C − δ ≤ w(y) ≤ C) ∧ (�p ∈ S− : p �MOEA y) then
19 S− ← (S− ∪ {y}) \ {z ∈ S−|y 	MOEA z};

on the performance of evolutionary algorithms in the reoptimization of lin-
ear functions under dynamic uniform constraints [7]. Each solution x in the
objective space is a two-dimensional point fMOEA(x) = (w(x), p(x)). We say
solution y dominates solution x w.r.t. fMOEA, denoted by y �MOEA x, if
w(y) = w(x) ∧ f(1+1)(y) ≥ f(1+1)(x).

According to the definition of �MOEA, two solutions are comparable only if
they have the same weight. Note that if x and y are infeasible and comparable,
then the one with higher profit dominates. MOEA uses a parameter denoted by
δ, which determines the maximum number of individuals that the algorithm is
allowed to store around the current C. For any weight in [C − δ, C + δ], MOEA
keeps a solution. The algorithm prepares for the dynamic changes by storing
nearby solutions, even if they are infeasible as they may become feasible after
the next change. A large δ, however, causes a large number of solutions to be
kept, which reduces the probability of choosing anyone. Since the algorithm
chooses only one solution to mutate in each iteration, this affects the MOEA’s
performance in finding the optimal solution.

After each dynamic change, MOEA updates the sets of solutions. If a change
occurs such that all the current stored solutions are outside of the storing range,
namely [C − δ, C + δ], then the algorithm consider the previous best solution as
the initial solution and uses the Repair function (Algorithm 3), which behaves
similar to (1+1) EA, until a solution with weight distance δ from C is found.

162 V. Roostapour et al.

Algorithm 3. Repair
input : Initial solution q, δ, C
output: S+ and S− such that |S+ ∪ S−| = 1

1 while |S+ ∪ S−| = 0 do
2 y ← flip each bit of q independently with probability of 1

n
;

3 if f1+1(y) ≥ f1+1(q) then
4 q ← y;
5 if C < w(q) ≤ C + δ then
6 S+ ← {q} ∪ S+;
7 else if C − δ ≤ w(q) ≤ C then
8 S− ← {q} ∪ S−;

Algorithm 4. MOEA D (Dominance and Selection)
14 choose x ∈ S+ ∪ S− uniformly at random;
15 y ← flip each bit of x independently with probability 1

n
;

16 if (C < w(y) ≤ C + δ) ∧ (�p ∈ S+ : p �MOEA D y) then
17 S+ ← (S+ ∪ {y}) \ {z ∈ S+|y 	MOEA D z};

18 if (C − δ ≤ w(y) ≤ C) ∧ (�p ∈ S− : p �MOEA D y) then
19 S− ← (S− ∪ {y}) \ {z ∈ S−|y 	MOEA D z};

To address the slow rate of improvement of MOEA caused by a large δ, we
defined a new dominance procedure. We use the standard definition of dominance
in multi-objective optimization and say that solution y dominates solution x,
denoted by �MOEA D, if w(y) ≤ w(x) ∧ p(y) ≥ p(x). This new algorithm, called
MOEA D, is obtained by replacing lines 14–19 of Algorithm 2 with Algorithm 4.
It should be noticed that if y is an infeasible solution then it is only compared
with other infeasible solutions and if y is feasible it is only compared with other
feasible solutions. MOEA D keeps fewer solutions than MOEA and overall the
quality of the kept solutions is higher, since they are not-dominated by any other
solution in the population.

3 Benchmarking for the Dynamic Knapsack Problem

In the following section, the dynamic version of KP used for the experiments
is described, and we explain how the dynamic changes occur during the opti-
mization process. In addition, the dynamic benchmarks and the experimental
settings are presented.

3.1 The Dynamic Knapsack Problem

In the dynamic version of KP considered in this paper, the capacity dynamically
changes during the optimization with a preset frequency factor denoted by τ .

On the Performance of Baseline Evolutionary Algorithms 163

Fig. 1. Examples for constraint bound C over 10000 generations with τ = 100 using
uniform and normal distributions. Initial value C = 4815.

A change happens every τ generations, i.e., the algorithm has τ generations to
find the optimum of the current capacity and to prepare for the next change.
In the case of uniformly random alterations, the capacity of next interval is
achieved by adding a uniformly random value in [−r, r] to C. Moreover, we
consider another case in which the amount of the changes is chosen from the
Gaussian distribution N (0, σ2). Figure 1 illustrates how dynamic changes from
different distributions affect the capacity. Note that the scales of the subfigures
are not the same. For example, the total change after 100 dynamic changes
under N (0, 1002) is less than 1000 (Fig. 1a) while the capacity reached almost
45000 with dynamic changes under U(−10000, 10000) (Fig. 1d). This indicates
that there are different types of challenges, resulting from the dynamic changes
that the algorithms must consider.

The combination of different distributions and frequencies brings interesting
challenges for the algorithms. In an environment where the constraint changes
with a high frequency, the algorithms have less time to find the optimal solution,
hence, it is likely that an algorithm which tries to improve only one solution will
perform better than another algorithm that needs to optimize among several
solutions. Furthermore, the uniform distribution guarantees upper and lower
bounds on the magnitude of the changes. This property could be beneficial for
the algorithms which keep a number of solutions in each generation, which they
do get ready and react faster after a dynamic change. If the changes happen
under a normal distribution, however, there is no strict bound on the value of
any particular change, which means it is not easy to predict which algorithms
will perform better in this type of environment.

164 V. Roostapour et al.

3.2 Benchmark and Experimental Setting

In this experiment we use eli101 benchmarks, which were originally generated
for Traveling Thief Problem [8], ignoring the cities and only using the items.
The weights and profits are generated in three different classes. In Uncorre-
lated (uncorr) instances, the weights and profits are integers chosen uniformly
at random within [1, 1000]. Uncorrelated Similar Weights (unc-s-w) instances
have uniformly distributed random integers as the weights and profits within
[1000, 1010] and [1, 1000], respectively. Finally, there is the Bounded Strongly
Correlated (bou-s-c) variations which result in the hardest instances and comes
from the bounded knapsack problem. The weights of this instance are chosen
uniformly at random within [1, 1000] and the profits are set according to the
weights within the weights plus 100. In addition, in Sect. 4.1, where the weights
are one, we set all the weights to one and consider the profits as they are in
the benchmarks. The initial capacity in this version is calculated by dividing
the original capacity by the average of the profits. Dynamic changes add a value
to C each τ generations. Four different situations in terms of frequencies are
considered: high frequent changes with τ = 100, medium frequent changes with
τ = 1000, τ = 5000 and low frequent changes with τ = 15000.

In the case that weights are 1, the value of dynamic changes are chosen
uniformly at random within the interval [−r, r], where r = 1 are r = 10. In
the case of linear weights, when changes are uniformly random, we investigate
two values for r: r = 2000, 10000. Also, changes from normal distribution is
experimented for σ = 100, σ = 500.

We use the offline errors to compute the performance of the algorithms.
In each generation, we record error ei = p(x∗

i) − p(xi) where x∗
i and xi are

the optimal solution and the best achieved feasible solution in generation i,
respectively. If the best achieved solution is infeasible, then we have ei = C −
w(x), which is negative. The final error for m generations would be

∑m
i=1 ei/m.

The benchmarks for dynamic changes are thirty different files. Each file con-
sists of 100000 changes, as numbers in [−r, r] generated uniformly at random.
Similarly, there are thirty other files with 100000 numbers generated under the
normal distribution N (0, σ2). The algorithms start from the beginning of each
file and pick the number of change values from the files. Hence, for each setting,
we run the algorithms thirty times with different dynamic change values and
record the total offline error of each run.

In order to establish a statistical comparison of the results among different
algorithms, we use a multiple comparisons test. In particularity, we focus on the
method that compares a set of algorithms. For statistical validation we use the
Kruskal-Wallis test with 95% confidence. Afterwards, we apply the Bonferroni
post-hoc statistical procedures that are used for multiple comparisons of a control
algorithm against two or more other algorithms. For more detailed descriptions
of the statistical tests we refer the reader to [9].

Our results are summarized in the Tables 1, 2 and 3. The columns represent
the algorithms (1+1) EA, MOEA, MOEA D, with the corresponding mean value
and standard deviation. Note, X(+) is equivalent to the statement that the

On the Performance of Baseline Evolutionary Algorithms 165

algorithm in the column outperformed algorithm X, and X(−) is equivalent
to the statement that X outperformed the algorithm in the given column. If
the algorithm X does not appear, this means that no significant difference was
observed between the algorithms.

4 Experimental Results

In this section we describe the initial settings of the algorithms and analyze
their performance using the mentioned statistical tests. The initial solution for
all the algorithms is a pack of items which are chosen uniformly at random. Each
algorithm initially runs for 10000 generations without any dynamic change. After
this, the first change is introduced, and the algorithms run one million further
generations with dynamic changes in every τ generations. For the multi-objective
algorithms, it is necessary to initially provide a value for δ. These algorithms keep
at most δ feasible solutions and δ infeasible solutions, to help them efficiently
deal with a dynamic change. When the dynamic changes come from U(−r, r), it
is known that the capacity will change at most r. Hence, we set δ = r. In case
of changes from N (0, σ2), δ is set to 2σ, since 95% of values will be within 2σ of
the mean value. Note that a larger δ value increases the population size of the
algorithms and there is a trade-off between the size of the population and the
speed of algorithm in reacting to the next change.

4.1 Dynamic Uniform Constraint

In this section, we validate the theoretical results against the performance of
(1+1) EA and Multi-Objective Evolutionary Algorithm. Shi et al. [7] state that
the multi-objective approach performs better than (1+1) EA in reoptimizing the
optimal solution of dynamic KP under uniform constraint. Although the MOEA
that we used in this experiment is not identical to the multi-objective algorithm
studied previously by Shi et al. [7] and they only considered the reoptimiza-
tion time, the experiments show that multi-objective approaches outperform
(1+1) EA in the case of uniform constraints (Table 1). An important reason for
this remarkable performance is the relation between optimal solutions in different
weights. In this type of constraint, the difference between the optimal solution
of weight w and w + 1 is one item. As a result of this, keeping non-dominated
solutions near the constrained bound helps the algorithm to find the current
optimum more efficiently and react faster after a dynamic change.

Furthermore, according to the results, there is no significant difference
between using MOEA and MOEA D in this type of KP. Considering the exper-
iments in Sect. 4.2, a possible reason is that the size of population in MOEA
remains small when weights are one. Hence, MOEA D, which stores fewer items
because of its dominance definition, has no advantage in this manner anymore.
In addition, the constraint is actually on the number of the items. Thus, both
definitions for dominance result the same in many cases.

166 V. Roostapour et al.

Table 1. The mean, standard deviation values and statistical tests of the offline error
for (1+1) EA, MOEA, MOEA D based on the uniform distribution with all the weights
as one.

n r τ (1+1) EA (1) MOEA (2) MOEA D (3)

Mean St Stat Mean St Stat Mean St Stat

uncor 100 5 100 4889.39 144.42 2(−), 3(−) 1530.00 120.76 1(+) 1486.85 123.00 1(+)

100 5 1000 1194.23 86.52 2(−), 3(−) 44.75 8.96 1(+) 46.69 8.51 1(+)

unc-s-w 100 5 100 4990.80 144.87 2(−), 3(−) 1545.36 115.15 1(+) 1500.07 106.70 1(+)

100 5 1000 1160.23 130.32 2(−), 3(−) 41.90 6.13 1(+) 43.06 7.22 1(+)

bou-s-c 100 5 100 13021.98 780.76 2(−), 3(−) 4258.53 580.77 1(+) 4190.55 573.13 1(+)

100 5 1000 3874.76 911.50 2(−), 3(−) 177.62 83.16 1(+) 175.14 80.73 1(+)

4.2 Dynamic Linear Constraint

In this section, we consider the same algorithms in more difficult environments
where weights are arbitrary under dynamic linear constraint. As it is shown
in Sect. 4.1, the multi-objective approaches outperform (1+1) EA in the case
that weights are one. Now we try to answer the question: Does the relationship
between the algorithms hold when the weights are arbitrary?

The data in Table 2 shows the experimental results in the case of dynamic
linear constraints and changes under a uniform distribution. It can be observed
that (as expected) the mean of errors decreases as τ increases. Larger τ values
give more time to the algorithm to get closer to the optimal solution. Moreover,
starting from a solution which is near to the optimal for the previous capacity,
can help to speed up the process of finding the new optimal solution in many
cases.

We first consider the results of dynamic changes under the uniform distribu-
tion. We observe in Table 2 that unlike with uniform constraint, in almost all the
settings, MOEA has the worst performance of all the algorithms. The first reason
for this might be that items selected in optimal solutions with close weights are
also close in terms of Hamming distance. In other words, when weights are one,
we can achieve the optimal solution for weight w by adding an item to the opti-
mal solution for weight w − 1 or by deleting an item from the optimal solution
for w + 1. However, in case of arbitrary weights, the optimal solutions of weight
w and w + d could have completely different items, even if d is small. Another
reason could be the effect of having a large population. A large population may
cause the optimization process to take longer and it could get worse because
of the definition of �MOEA, which only compares solutions with equal weights.
If s is a new solution and there is no solution with w(s) in the set of existing
solutions, MOEA keeps s whether s is a good solution or not, i.e., regardless of
whether it is really a non-dominated solution or whether it would be dominated
by other solutions in the set. This comparison also does not consider if s has any
good properties to be inherited by the next generation. Moreover, putting s in

On the Performance of Baseline Evolutionary Algorithms 167

the set of solutions decreases the probability of choosing any other solution, even
those solutions that are very close to the optimal solution. As it can be seen in
the Table 2, however, there is only one case in which MOEA beat the (1+1) EA:
when the weights are similar, and the magnitude of changes are small (2000),
which means the population size is also small (in comparison to 10000), and
finally τ is at its maximum to let the MOEA to use its population to optimize
the problem.

Although MOEA does not perform very well in instances with gen-
eral weights, the multi-objective approach with a better defined dominance,
MOEA D, does outperform (1+1) EA in many cases. We compare the perfor-
mance of (1+1) EA and MOEA D below.

Table 2. The mean, standard deviation values and statistical tests of the offline error
for (1+1) EA, MOEA, MOEA D based on the uniform distribution.

When changes are smaller, it can be seen in Table 2 that the mean of offline
errors of MOEA D is smaller than (1+1) EA. The dominance of MOEA D is
such that only keeps the dominant solutions. When a new solution is found, the
algorithm removes solutions that are dominated by it and keeps it only if it is
not dominated by the any other one. This process improves the quality of the
solutions by increasing the probability of keeping a solution beneficial to future
generations. Moreover, it reduces the size of the population significantly. Large
changes to the capacity, however, makes the MOEA D keep more individuals,
and it is in this circumstance that (1+1) EA may perform better than MOEA D.

When r = 10000, MOEA D does not have significantly better results in
all cases unlike in the case of r = 2000, and in most of the situations it per-
forms as well as (1+1) EA. In all high frequency conditions where τ = 100, the

168 V. Roostapour et al.

(1+1) EA has better performance. It may be caused by MOEA D needing more
time to optimize a population with a larger size. Moreover, when the magnitude
of changes is large, it is more likely that a new change will force MOEA D to
remove all of its stored individuals and start from scratch.

We now study the experimental results that came from considering the
dynamic changes under the normal distribution (Table 3). The results confirm
that (1+1) EA is faster with more frequent changes. Skipping the case with
uncorrelated similar weights and frequent changes, MOEA D has always been
the best algorithm in terms of performance and MOEA has been the worst.

Table 3. The mean, standard deviation values and statistical tests of the offline error
for (1+1) EA, MOEA, MOEA D based on the normal distribution.

The most notable results occur in the case with uncorrelated similar weights.
(1+1) EA outperforms both other algorithms in this instance. This happens
because of the value of δ and the weights of the instances. δ is set to 2σ in the
multi-objective approaches and the weights of items are integers in [1001, 1010]
in this type of instance. (1+1) EA is able to freely get closer to the optimal
solutions from both directions, while the multi-objective approaches are only
allowed to consider solutions in range of [C − δ, C + δ]. In other words, it is
possible that there is only one solution in that range or even no solution. Hence,
multi-objective approaches have no advantage in this type of instances according
to the value of δ and weights of the items, and in fact, may have a disadvantage.

5 Conclusions and Future Work

In this paper we studied the evolutionary algorithms for the KP where the
capacity dynamically changes during the optimization process. In the introduced

On the Performance of Baseline Evolutionary Algorithms 169

dynamic setting, the frequency of changes is determined by τ . The magnitude
of changes is chosen randomly either under the uniform distribution U(−r, r)
or under the normal distribution N (0, σ2). We compared the performance of
(1+1) EA and two multi-objective approaches with different dominance defi-
nitions (MOEA, MOEA D). Our experiments in the case of weights set to one
verified the previous theoretical studies for (1+1) EA and MOEA [7]. It is shown
that the multi-objective approach, which uses a population in the optimization,
outperforms (1+1) EA. In addition, we considered the algorithms in the case of
general weights for different classes of instances with a variation of frequencies
and magnitudes. Our results illustrated that MOEA does not perform well in the
general case due to its dominance procedure. However, MOEA D, which bene-
fits from a population with a smaller size and non-dominated solutions, beats
(1+1) EA in most cases. On the other hand, in the environments with highly fre-
quent changes, (1+1) EA performs better than the multi-objective approaches.
In such cases, the population slows down MOEA D in reacting to the dynamic
change.

Acknowledgment. This work has been supported through Australian Research
Council (ARC) grant DP160102401.

References

1. Eiben, A., Smith, J.: Introduction to Evolutionary Computing, 2nd edn. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-662-44874-8

2. Nguyen, T., Yao, X.: Continuous dynamic constrained optimization: the challenges.
IEEE Trans. Evol. Comput. 16(6), 769–786 (2012)

3. Rakshit, P., Konar, A., Das, S.: Noisy evolutionary optimization algorithms - a
comprehensive survey. Swarm Evol. Comput. 33, 18–45 (2017)

4. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey
of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)

5. Ameca-Alducin, M.-Y., Hasani-Shoreh, M., Neumann, F.: On the use of repair meth-
ods in differential evolution for dynamic constrained optimization. In: Sim, K., Kauf-
mann, P. (eds.) EvoApplications 2018. LNCS, vol. 10784, pp. 832–847. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-77538-8 55

6. Pourhassan, M., Gao, W., Neumann, F.: Maintaining 2-approximations for the
dynamic vertex cover problem using evolutionary algorithms. In: Proceedings of
the Genetic and Evolutionary Computation Conference, pp. 903–910. ACM (2015)

7. Shi, F., Schirneck, M., Friedrich, T., Kötzing, T., Neumann, F.: Reoptimization
times of evolutionary algorithms on linear functions under dynamic uniform con-
straints. In: Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 1407–1414. ACM (2017)

8. Polyakovskiy, S., Bonyadi, M.R., Wagner, M., Michalewicz, Z., Neumann, F.: A
comprehensive benchmark set and heuristics for the traveling thief problem. In:
Proceedings of Conference on Genetic and Evolutionary Computation, pp. 477–484.
ACM (2014)

9. Corder, G.W., Foreman, D.I.: Nonparametric Statistics for Non-Statisticians: A
Step-by-Step Approach. Wiley, Hoboken (2009)

https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/978-3-319-77538-8_55

On the Synthesis of Perturbative
Heuristics for Multiple Combinatorial

Optimisation Domains

Christopher Stone(B), Emma Hart, and Ben Paechter

School of Computing, Edinburgh Napier University, Scotland, UK
{c.stone,e.hart,b.paechter}@napier.ac.uk

Abstract. Hyper-heuristic frameworks, although intended to be cross-
domain at the highest level, rely on a set of domain-specific low-level
heuristics at lower levels. For some domains, there is a lack of avail-
able heuristics, while for novel problems, no heuristics might exist. We
address this issue by introducing a novel method, applicable in multi-
ple domains, that constructs new low-level heuristics for a domain. The
method uses grammatical evolution to construct iterated local search
heuristics: it can be considered cross-domain in that the same grammar
can evolve heuristics in multiple domains without requiring any modifica-
tion, assuming that solutions are represented in the same form. We eval-
uate the method using benchmarks from the travelling-salesman (TSP)
and multi-dimensional knapsack (MKP) domain. Comparison to existing
methods demonstrates that the approach generates low-level heuristics
that outperform heuristic methods for TSP and are competitive for MKP.

1 Introduction

The hyper-heuristic method was first introduced in an attempt to raise the gen-
erality at which search methodologies operate [2]. One of the main motivations
was to produce a method that was cheaper to implement and easier to use
than problem specific special purpose methods, while producing solutions of
acceptable quality to an end-user in an appropriate time-frame. Specifically, it
aimed to address a concern that the practical impact of search-based optimi-
sation techniques in commercial and industrial organisations had not been as
great as might have been expected, due to the prevalence of problem-specific
or knowledge-intensive techniques, which were inaccessible to the non-expert or
expensive to implement.

The canonical hyper-heuristic framework introduces a domain barrier that
separates a general algorithm to choose heuristics from a set of low-level heuris-
tics. The low-level heuristics are specific to a particular domain, and may be
designed by hand, relying on intuition or human-expertise [2], or can be evolved
by methods such as Genetic Programming [14]. The success of the high-level
heuristic is strongly influenced by the number and the quality of the low-level
heuristics available. Given a new problem domain that does not map well to
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 170–182, 2018.
https://doi.org/10.1007/978-3-319-99253-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_14&domain=pdf

On the Synthesis of Perturbative Heuristics 171

well-studied domains in the literature, it can be challenging to find a suitable
set of low-level heuristics to utilise with a hyper-heuristic. Although this can
be addressed through evolving new heuristics [1], this process requires in-depth
understanding of the problem and effort designing a specialist algorithm to evolve
the heuristic. We propose to address this by introducing a method of creating
new heuristics that is cross-domain, that is, the method can be used without
modification to create heuristics in multiple domains, assuming a common prob-
lem representation.

As a step towards raising the generality of creating low-level heuristics, we
focus on domains that can be mapped to a graph-based representation. This
includes obvious applications such as routing and scheduling [14], as well as
many less obvious ones including packing problems [11] and utility maximisation
in complex negotiations [12]. We describe a novel method using grammatical
evolution that produces a set of local-search heuristics for solving travelling-
salesperson (TSP) problems, and another for multi-dimensional knapsack (MKP)
problems. In each case, an identical grammar is used to evolve heuristics that
modifies a permutation representing a TSP or MKP problem. The grammar
is trained on a small subset of randomly generated instances in each case and
shown to produce competitive results on benchmarks when compared to human
design heuristics and almost as good as specially design meta-heuristics.

This research lays the foundation for a paradigm shift in designing heuristics
for combinatorial optimisation domains in which no heuristics currently exist, or
those domains in which hyper-heuristic methods would benefit from additional
low-level heuristics. The approach significantly reduces the burden on human
experts, as it only requires that the problem can be represented as a graph,
with no further specialisation, and does not require a large database of training
examples. The contributions are threefold: (1) it describes a novel grammar that
generates mutation operators that perturb a permutation via partial permuta-
tions and inversions; (2) the grammar is trained to produce single instances of
new ‘move’ operators using a very small set of randomly generated instances
from each problem domain; (3) it demonstrates that competitive results can be
obtained from a generic grammar, even when using a representation that is not
necessarily considered the most natural for a domain.

2 Background

Hyper-Heuristics are class of algorithms that explore the space of heuristics
rather than the space of solutions, and have found application in a broad range of
combinatorial optimisation domains [2]. As previously mentioned, the core idea
is to create a generic algorithm that selects and applies heuristics, separated by a
domain-barrier from a subset of low-level domain-specific heuristics. Most initial
work focused on development of the generic controlling algorithms [2]. More
recent attention has focused on the role of the low-level heuristics themselves.
Low-level heuristics fall into two categories [2]. Constructive heuristics build a
solution from scratch, adding an element at a time, e.g. [14]. On the other hand,

172 C. Stone et al.

perturbative heuristics modify an existing solution, e.g. re-ordering elements in
a permutation [4] or modifying genes [2].

In many practical domains, hand-designed low-level heuristics are readily
available, e.g. [2]. However, a tranche of research has focused on generation of new
heuristics, typically using methods from Genetic Programming [1], Grammatical
Evolution [8,13] and Memetic Algorithms [6]. Specifically in the domain of per-
turbative heuristics, GP approaches to generating novel local search heuristics
for satisfiability testing were proposed by [2]. Grammatical Evolution is applied
to evolve new local-search heuristics for 1d-bin packing in [2,7]. It is also worth
mentioning the progress made in cross-domain optimisation thanks to HyFlex
[9]: however, note that here the controlling hyper-heuristics are cross-domain but
the framework still relies on pools of domain specific low-level heuristics.

Despite some success in the areas just described, we note that in each case,
the function and terminal nodes used in GP or the grammar specification in
GE are specifically tailored to a single domain. While clearly specialisation is
likely to be beneficial, it can require significant expertise and investment in
algorithm design. For a practitioner, such knowledge is unlikely to be available,
and for new domains, this may be time-consuming even for an expert. Therefore,
we are motivated to design a general-purpose method that is capable—without
modification—of producing heuristics in multiple domains. While we do not
expect such a generator to compete with specialised heuristics or meta-heuristics,
we evaluate whether the approach can be used as a “quick and dirty” method of
generating a heuristic that produces an acceptable quality solution in multiple
domains.

3 Method

Our generator makes use of Grammatical Evolution [10] for the production of
new heuristics. In particular we specify one grammar and this single grammar is
used to produce heuristics in two different domains. Our method can be described
by three fundamental steps:

– Represent the problem-domain of interest as an ordering problem.
– Use Grammatical Evolution to breed heuristics that perturb the order of

a solution, using a small training set of examples. The new heuristics are
evaluated according their effectiveness as a mutation operator in an iterated
local-search algorithm.

– Re-use the evolved heuristics on unseen instances from the same domain.

3.1 Grammatical Evolution

Grammatical Evolution (GE) is a population based evolutionary computation
approach used to construct sequence of symbols in an arbitrary language defined
by a BNF grammar. A BNF Grammar consist of a set of production rules com-
posed of terminal and non-terminal nodes. The production rules are used to

On the Synthesis of Perturbative Heuristics 173

substitute the non-terminal nodes with other nodes, which can be both non-
terminal or terminal nodes, repeatedly until a whole sequence of terminal nodes
is composed. Each non terminal node has its own set of production rules. Codons
(represented as a single integer) specify which specific production rule should be
chosen at each step.

We use GE to evolve a Python program that takes a sequence (i.e a permu-
tation) as an input and returns a modified version of the same sequence (permu-
tation) with the same length. Our implementation uses the GE library described
by Fenton et al. [5]. This version of GE proved to be accessible, straightforward
to reuse, and is the most recent version of GE. A detailed description of the
complete implementation can be found in [5]. The code is also open-source and
available on github1. The main implementation details relevant to this work are
as follows:

Genome: Fenton’s implementation uses a linear genome representation that is
encoded as a list of integers (codons). The mapping between the genotype and
the phenotype is actuated by the use of the modulus operator on the value of the
codon, i.e. Selectednode = c mod n, where c is the integer value of the codon to
be mapped and n is the number of options available in the specific production
rule.

Mutation: An integer flip at the level of the codons is used. One of the codons
that has been used for the phenotype is changed each iteration and substituted
with a completely new codon.

Crossover: Variable one-point crossover, where the crossing point between 2
individuals is chosen randomly.

Replacement: Generational replacement strategy with elitism 1, i.e one genome
is guaranteed to stay in the pool on the next generation.

3.2 Grammar and Mechanics of the Operator

The operator constructed by our grammar can be thought of as a form of k-opt,
that is configurable and includes extra functions to determine where to break a
sequence. The formulation and implementation is vertex centric instead of edge
centric. The mechanics of the algorithm are as follows:

Number of Cuts: This determines in how many places a sequence will be cut
creating (k − 1) subsequences where k is the number of cuts. The number of
possible loci of the cuts is equal to n + 1, where n is the number of vertices (the
sequence can be cut both before the first element and after the last element).

Location of Cuts: The grammar associates a strategy to each cut that will
determine the location of the specific cut. A strategy may contain a reference
location such as the ends of the sequence or subsequence, a specific place in
the sequences or a random location. The reference can be used together with

1 https://github.com/PonyGE/PonyGE2.

https://github.com/PonyGE/PonyGE2

174 C. Stone et al.

Fig. 1. (A) Example of a sequence with one cut and a probability mass function that
will decide the loci of the second cut. (B) Both cuts now shown (C) final set of subse-
quences after k-cuts

a probability distribution that determines the chances of any given location to
be the place of the next cut. These probability distributions de facto regulate
the length of each subsequence. Two probability distributions can be selected
by the grammar: a discretised triangular distribution and a negative binomial
distribution. An example can be seen in Fig. 1A and B.

After the cutting phase the subsequences are given symbols with S being
always the leftmost subsequence and E being the rightmost subsequence such as
in Fig. 1C. The start and end sequences (S,E) are never altered by the evolved
operator which only acts on the sequences labelled α-β in Fig. 1C. Note that
subsequences may be empty. This can happen if the leftmost cut is on the left of
the first element (leaving S empty), if the rightmost cut is after the last element
(leaving E empty) or if two different cuts are applied in the same place.

Permutation of the Subsequence: After cutting the sequence the subse-
quences becomes the units of a new sequence. The grammar can specify if the
subsequence will be reordered to a specific permutation (including the identity,
i.e no change) or to a random permutation. An example can be seen in Fig. 2a.

Inversion of the Subsequences: The grammar specifies whether the order of
each specific subsequence should be reversed or if the reversing should be decided
randomly for each subsequence each iteration.

Iteration Effect: Another component of the grammar is the iteration effect
which may associate a specific function that regulate the change in the initial
cutting location at each iteration. We have specified four types of effect: random,
which means that the starting location of the first cut will be random; oscillate
that makes the starting position move in a wave like manner and returns to the

On the Synthesis of Perturbative Heuristics 175

(a) Subsequence permutation (b) Subsequence inversion

Fig. 2. Example perturbations of the subsequences produced by the grammar

initial loci after a number of iterations; step simply moves one step on the right
of the previous starting position and finally none which has no effect.

3.3 Problem Domains and Training Examples

We apply the grammar in two problem domains. The Travelling Salesman Prob-
lem (TSP) is one of the most studied problems in combinatorial optimisation,
in which a tour passing by all points must be minimised. Due to the fact that
it is naturally encoded as an ordering problem represented by a permutation it
plays the role of base case for our experiments.

The Multidimensional Knapsack Problem (MKP) is another of the most stud-
ied problem in combinatorial optimisation with applications in budgeting, pack-
ing and cutting problems. In this case the profit from items selected among a
collection must be maximised while respecting the constraints of the knapsack.
This problem is chosen as in its typical form, it is not represented as ordering
problem. However, a formulation based on chains and graphs was recently intro-
duced in [15]. The goal here is to demonstrate that the approach can produce
acceptable heuristics from a generic representation, without requiring the expert
knowledge required to formulate a problem-specific approach.

A set of heuristics is evolved in each domain, using a set of example training
instances in each case. It is well known that having better training instances leads
to better outcomes [2]. However, as the ultimate goal of this work is produce a
system that can produce acceptable heuristics in an unknown domain in which
good training examples might not be available (or in an existing domain in which
we cannot predict characteristics of future problems) we synthesise a random set
of training instances in each case. Parameters of the synthesisers are given in
Table 1. 5 TSP instances are synthesised using a uniform random distribution.
Each instance has 100 cities placed in a 2D Euclidean plane. For MKP, each of 5
instances has 100 objects with 10 constraints. Each constraint is a sample from
a uniform random distribution between 0 and 100. The profits of each object are
taken from a normal distribution with mean equal to the sum of the constraints
and standard deviation 50. The constraints of the knapsack are sampled from a
normal distribution with mean 2500 and standard deviation 300. We recognise
that real-instances are unlikely to be uniformly distributed; our implementation
therefore represents the worst-case scenario in which the system can be evolved.

176 C. Stone et al.

Fig. 3. Grammar used to produce the local search operator

4 Experiments

Training Phase: One-point local-search heuristics are generated using an off-
line learning approach. The system is applied separately to each domain, but
uses an identical grammar in both. At each iteration of the GE, each heuristic
in the population is applied within a hill-climbing algorithm to each of the 5
training instances starting from an randomly initialised solution. The hill-climber
runs for x iterations with an improvement only acceptance criteria. For TSP,
x = 1000 and for MKP, x = 2500 (based on initial experimentation). The fitness
at the end-point is averaged over the 5 instances and assigned to the heuristic
(i.e. distance for TSP and profit for MKP). Experiments are repeated in each
domain 10 times, with a new set of 5 problems generated for each run. The
best performing heuristic from each run is retained, creating an ensemble of 10
heuristics as a result. All the parameters of the synthesisers are give in Table 1a
while the GE parameters are in Table 1b.

Testing Phase: The generated ensemble is tested on benchmark instances from
the literature. For TSP, we use 19 problems taken from the TSPlib. MKP heuris-
tics are tested on at total of 54 problems from 6 benchmark datasets from the
OR-library. Each of the 10 heuristics is applied 5 times to each problem for 105

iterations, starting from a randomly initialised solution, using an improvement
only acceptance criteria (hill-climber). We record the average performance of
each heuristic over 5 runs, as well as the best, and the worst.

For TSP, we compare the results with 50 runs per instance of a classic two opt
algorithm2, chosen as a commonly used example of high-performing local-search
heuristic. For MKP, the vast majority of published results use meta-heuristic
approaches. We compare with two approaches from [3], the Chaotic Binary Par-
ticle Swarm Optimisation with Time Varying Acceleration Coefficient (CBPSO),

2 Using the R package TSPLIB.

On the Synthesis of Perturbative Heuristics 177

and an improved version of this algorithm that includes a self-adaptive check
and repair operator (SACRO CBPSO), the most recent and highest-performing
methods in MKP optimisation. Both algorithms use problem specific knowledge:
a penalty function in the former, and a utility ratio estimation function in the
latter, with a binary representation for their solution. Both are allocated a con-
siderably larger evaluation budget than our experiments. The heuristics evolved
using our approach would not be expected to outperform these approaches—
however, we wish to investigate whether the approach can produce solutions
within reasonable range of known optima that would be acceptable to a practi-
tioner requiring a quick solution.

Table 1. Experimental parameters

Parameter Value

Number of cities 100
Cities distribution type Uniform
Cities distribution range 0-100

Number of objects 100
Number of constraints 10

Object constraints distribution Uniform
Object constraints range 0-100
Object profit distribution Normal

Object profit mean Sum of constraints

Object profit deviation 50
Knapsack constraints dist. Normal
Knapsack constraints mean 2500

Knapsack constraints deviation 300

(a) Problem synthesisers

Parameter Value

Generations 80
Population 100
Mutation int flip

Crossover Prob. 0.80
Crossover type one point
Max initial tree 10
Max tree depth 17
Replacement generational

Tournament size 2

(b) Grammatical Evolution

5 Results and Analysis

We refer to our algorithm as HHGE in all reported results. Table 3 shows the best,
worst and median performance of the evolved heuristics and the two-opt based
algorithm for TSP. With the exception of a single case, the evolved heuristics
perform better in term of best, worst and median results. For each instance,
we apply a Wilcoxon Rank-sum test on the 50 pairs of samples, and provide a
p-value in the rightmost column. Improvements are statistically significant at
the 5% level in all cases.

Results for MKP are reported in Table 2, averaged over 10 heuristics in each
case. Note that despite the simplistic nature of our approach—a hill-climber with
an evolved mutation operator—our approach out-performs CBSPO in 22 out of

178 C. Stone et al.

Table 2. Generated heuristics vs specialised meta-heuristics from [3]. Highlighted val-
ues for HHGE indicate where it outperforms CBPSO. SACRO-BPSO performs best in
all instances

Instance HHGE Optima CBPSO SACRO-BPSO

Best Worst Average Median Best Average Best Average

hp1 3418 3385 3410.56 3418 3418 3418 3403.9 3418 3413.38

hp2 3186 2997 3171.54 3186 3186 3186 3173.61 3186 3184.74

pb1 3090 3057 3083.32 3090 3090 3090 3079.74 3090 3086.78

pb2 3186 3114 3179.88 3186 3186 3186 3171.55 3186 3186

pb4 95168 90961 93515.54 93897 95168 95168 94863.67 95168 95168

pb5 2139 2085 2120.06 2130.5 2139 2139 2135.6 2139 2139

pb6 776 641 733.12 735.5 776 776 758.26 776 776

pb7 1035 983 1018.9 1025 1035 1035 1021.95 1035 1035

pet2 87061 78574 85409.32 87061 87061 - - - -

pet3 4015 3165 3955.8 4015 4015 - - - -

pet4 6120 5440 6040.2 6110 6120 - - - -

pet5 12400 12090 12363.1 12400 12400 - - - -

pet6 10618 10107 10592.1 10604 10618 - - - -

pet7 16537 15683 16504.48 16537 16537 - - - -

sento1 7772 7491 7706.92 7749.5 7772 7772 7635.72 7772 7769.48

sento2 8722 8614 8691.02 8704 8722 8722 8668.47 8722 8722

weing1 141278 135673 140619.36 141278 141278 141278 141226.8 141278 141278

weing2 130883 118035 128542.94 130712 130883 130883 130759.8 130883 130883

weing3 95677 77897 93099.5 94908 95677 95677 95503.93 95677 95676.39

weing4 119337 100734 117811.56 119337 119337 119337 119294.2 119337 119337

weing5 98796 78155 95912 98475.5 98796 98796 98710.4 98796 98796

weing6 130623 117715 129452.56 130233 130623 130623 130531.3 130623 130623

weing7 1095382 1088277 1093583.14 1093595 1095445 1095382 1084172 1095382 1094349

weing8 624319 525663 606175.12 613070 624319 624319 597190.6 624319 622079.9

weish01 4554 4298 4494.34 4530 4554 4554 4548.55 4554 4554

weish02 4536 4164 4485.12 4536 4536 4536 4531.88 4536 4536

weish03 4115 3707 3963.08 3985 4115 4115 4105.79 4115 4115

weish04 4561 3921 4385.5 4455 4561 4561 4552.41 4561 4561

weish05 4514 3754 4265.56 4479.5 4514 4514 4505.89 4514 4514

weish06 5557 5238 5503.16 5538 5557 5557 5533.79 5557 5553.75

weish07 5567 5230 5496.56 5542 5567 5567 5547.83 5567 5567

weish08 5605 5276 5534.82 5597.5 5605 5605 5596.16 5605 5605

weish09 5246 4626 5062.24 5128 5246 5246 5232.99 5246 5246

weish10 6339 5986 6244.82 6314 6339 6339 6271.84 6339 6339

weish11 5643 5192 5522.18 5631.5 5643 5643 5532.15 5643 5643

weish12 6339 5951 6217.14 6322.5 6339 6339 6231.5 6339 6339

weish13 6159 5780 6032.28 6056 6159 6159 6120.38 6159 6159

weish14 6954 6581 6827.9 6852 6954 6954 6837.77 6954 6954

weish15 7486 7113 7391 7445.5 7486 7486 7324.55 7486 7486

weish16 7289 6902 7154.82 7159.5 7289 7289 7288.7 7289 7288.7

weish17 8633 8506 8609 8633 8633 8633 8547.71 8633 8633

weish18 9580 9310 9527 9560.5 9580 9580 9480.86 9580 9578.46

weish19 7698 7272 7505.3 7527 7698 7698 7528.55 7698 7698

weish20 9450 9117 9381.32 9430 9450 9450 9332.11 9450 9450

weish21 9074 8655 8972.9 9025 9074 9074 8948.22 9074 9074

weish22 8947 8466 8814.7 8871 8947 8947 8774.2 8947 8936.92

weish23 8344 7809 8202.06 8217.5 8344 8344 8165 8344 8344

weish24 10220 9923 10154.54 10185.5 10220 10220 10106.28 10220 10219.7

weish25 9939 9667 9872.48 9909.5 9939 9939 9826.57 9939 9939

weish26 9584 9175 9434.92 9473 9584 9584 9313.87 9584 9584

weish27 9819 9244 9652.3 9671 9819 9819 9607.54 9819 9819

weish28 9492 8970 9328.52 9347.5 9492 9492 9123.26 9492 9492

weish29 9410 8794 9217.28 9279 9410 9410 9025.5 9410 9410

weish30 11191 10960 11135.64 11161 11191 11191 10987.21 11191 11190.12

On the Synthesis of Perturbative Heuristics 179

Table 3. Comparison between evolved heuristics and classic two-opt. For each instance
we compute the Wilcoxon Rank-sum test using 50 pairs of samples

HHGE 2-opt

Best Worst Median Best Worst Median Ranksum
p-value

berlin52 7793 8825 8170 7741 9388 8310 0.0033

ch130 6418 7108 6722 6488 7444 6984 0.0030

d198 16256 17033 16651 16400 18213 17291 �0.001

eil101 674 739 702 680 749 709 0.0073

eil51 435 484 456 442 494 473 �0.001

eil76 563 616 593 583 628 611 �0.001

kroA150 28109 31473 29344 29223 31994 30509 �0.001

kroA200 31470 34528 32634 31828 35170 32893 0.0005

kroB150 27028 30283 28767 28114 30941 29134 �0.001

kroB200 31315 35319 33029 31509 35077 33422 0.0455

kroC100 21418 24353 22885 22953 25503 23977 �0.001

kroD100 21817 24405 23233 22772 26428 23430 �0.001

kroE100 22660 25509 24178 23012 26695 24216 0.0021

lin105 14675 16965 15642 14966 17057 16191 �0.001

pr107 45547 50313 47560 47597 51932 50002 0.0001

pr144 58847 68722 61534 59058 67272 64660 0.0002

pr152 75615 81458 78073 77307 81850 79964 �0.001

pr226 81811 96484 86244 83566 101582 91512 0.0021

u159 44826 51353 47461 45297 51505 48124 0.1276

54 instances when considering average performance3. SACRO-BPSO (currently
the best available meta-heuristic) performs better across the board, as expected.

In Table 4 we compare the Average Success Rate (ASR) across all instances
group by dataset against the results presented by [3] on 2 versions of SACRO
algorithms and an additional fish-swarm method. In [3], ASR is calculated as
the number of times the global optima was found for each instance divided by
the number of trials. For HHGE, we define a trial as successful if at least one of
the 10 heuristics found the optima in the trial, and repeat this 5 times. It can
be seen that the results are comparable to those of specialised algorithms, and
in fact outperform these methods on Weing and HP sets.

3 We do not provide statistical significance information as the PSO results, which
are reported directly from [3], use a population based approach and vastly different
number of evaluations.

180 C. Stone et al.

Table 4. Comparison with latest specialised meta-heuristics (PSO) from the literature:
a fish-swarm algorithm IbAFSA and the two most recent SACRO algorithms, results
taken directly from [3]

Problem Set Instances ASR

IbAFSA BPSO–TVAC CBPSO–TVAC HHGE

Sento 2 1.000 0.9100 0.9100 0.90

Weing 8 0.7875 0.7825 0.7838 0.80

Weish 30 0.9844 0.9450 0.9520 0.907

Hp 2 0.9833 0.8000 0.8600 1.00

Pb 6 1.000 0.9617 0.9517 0.967

Pet 6 na na na 1.00

6 Conclusions

We have presented a method based on grammatical evolution for generating per-
turbative low-level heuristics for multiple problem domains that is cross-domain:
the same grammar generates heuristics for a domain that can be represented as
an ordering problem. The method was demonstrated on two specific domains,
TSP (a natural ordering problem) and MKP. We have compared the synthesised
heuristics with a specialised human-designed heuristic in the TSP domain where
the synthesised heuristic outperformed the well-known 2-opt heuristic. In the
MKP domain, we compared the generated heuristics against two of the latest
specialised meta-heuristics. The heuristics outperform one of these methods, and
are at least comparable to the best method. We also note that the ensemble of
10 generated heuristics demonstrate high success rates in finding known optima
when each heuristic is applied several times.

The approach represents the first steps towards increasing the cross-domain
nature of hyper-heuristics: current approaches tend to focus on the high-level
hyper-heuristic as cross-domain, while relying on specialised low-level heuristics
below the domain barrier. Our approach extends existing work by also making
methods for the automated generation of low-level heuristics cross-domain, with-
out requiring specialist human-expertise. The proposed approach is applicable
to a subset of domains that can be represented as ordering problems. While we
believe this subset is large, it clearly does not include all domains. However, the
same approach could be generalised to develop a portfolio of modifiable gram-
mars, each addressing a broad class of problems.

Recall that in each case, HHGE was trained using a very small, uniformly
generated set of instances, and in the case of MKP, applied to a non-typical
representation, yet still provides acceptable results. We believe this fits with
the original intention of hyper-heuristics, i.e. to provide quick and acceptable
solutions to a range of problems with minimal effort. Although specialised rep-
resentations and large sets of specialised training instances undoubtedly have

On the Synthesis of Perturbative Heuristics 181

their place in producing very high-quality results when required, these results
demonstrate that a specialised representation is not strictly necessary and can
be off-set by an appropriate move-operator.

Reproducibility

The code used for the experiments and for the analysis of the results is available
at https://github.com/c-stone2099/HHGE-PPSN2018.

References

1. Bader-El-Den, M., Poli, R.: Generating SAT local-search heuristics using a GP
hyper-heuristic framework. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoe-
nauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 37–49. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-79305-2 4

2. Edmund, K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res.
Soc. 64(12), 1695–1724 (2013)

3. Chih, M.: Self-adaptive check and repair operator-based particle swarm optimiza-
tion for the multidimensional knapsack problem. Appl. Soft Comput. 26, 378–389
(2015)

4. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a
sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp.
176–190. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44629-X 11

5. Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hemberg, E., O’Neill,
M.: PonyGE2: grammatical evolution in python. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion, pp. 1194–1201. ACM (2017)

6. Krasnogor, N., Gustafson, S.: A study on the use of “self-generation” in memetic
algorithms. Nat. Comput. 3(1), 53–76 (2004)

7. Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: From grammars
to parameters: automatic iterated greedy design for the permutation flow-shop
problem with weighted tardiness. In: Nicosia, G., Pardalos, P. (eds.) LION 2013.
LNCS, vol. 7997, pp. 321–334. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-44973-4 36

8. Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: Grammar-based
generation of stochastic local search heuristics through automatic algorithm con-
figuration tools. Comput. Oper. Res. 51, 190–199 (2014)

9. Ochoa, G., et al.: HyFlex: a benchmark framework for cross-domain heuristic
search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp.
136–147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29124-
1 12

10. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4),
349–358 (2001)

11. Pferschy, U., Schauer, J.: The knapsack problem with conflict graphs. J. Graph
Algorithms Appl. 13(2), 233–249 (2009)

12. Robu, V., Somefun, D.J.A., La Poutré, J.A.: Modeling complex multi-issue nego-
tiations using utility graphs. In: Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 280–287. ACM
(2005)

https://github.com/c-stone2099/HHGE-PPSN2018
https://doi.org/10.1007/978-3-540-79305-2_4
https://doi.org/10.1007/3-540-44629-X_11
https://doi.org/10.1007/978-3-642-44973-4_36
https://doi.org/10.1007/978-3-642-44973-4_36
https://doi.org/10.1007/978-3-642-29124-1_12
https://doi.org/10.1007/978-3-642-29124-1_12

182 C. Stone et al.

13. Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: Grammatical evolution hyper-heuristic
for combinatorial optimization problems. Strategies 3, 4 (2012)

14. Sim, K., Hart, E.: A combined generative and selective hyper-heuristic for the vehi-
cle routing problem. In: Proceedings of the Genetic and Evolutionary Computation
Conference 2016, pp. 1093–1100. ACM (2016)

15. Stone, C., Hart, E., Paechter, B.: Automatic generation of constructive heuristics
for multiple types of combinatorial optimisation problems with grammatical evo-
lution and geometric graphs. In: Sim, K., Kaufmann, P. (eds.) EvoApplications
2018. LNCS, vol. 10784, pp. 578–593. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-77538-8 40

https://doi.org/10.1007/978-3-319-77538-8_40
https://doi.org/10.1007/978-3-319-77538-8_40

Genetic Programming

EDDA-V2 – An Improvement
of the Evolutionary Demes
Despeciation Algorithm

Illya Bakurov1, Leonardo Vanneschi1, Mauro Castelli1(B),
and Francesco Fontanella2

1 NOVA Information Management School (NOVA IMS),
Universidade Nova de Lisboa, Campus de Campolide, 1070-312 Lisbon, Portugal

{ibakurov,lvanneschi,mcastelli}@novaims.unl.pt
2 Dipartimento di Ingegneria Elettrica e dell’Informazione (DIEI),
Università di Cassino e del Lazio Meridionale, Cassino, FR, Italy

fontanella@unicas.it

Abstract. For any population-based algorithm, the initialization of the
population is a very important step. In Genetic Programming (GP), in
particular, initialization is known to play a crucial role - traditionally,
a wide variety of trees of various sizes and shapes are desirable. In this
paper, we propose an advancement of a previously conceived Evolution-
ary Demes Despeciation Algorithm (EDDA), inspired by the biological
phenomenon of demes despeciation. In the pioneer design of EDDA, the
initial population is generated using the best individuals obtained from a
set of independent subpopulations (demes), which are evolved for a few
generations, by means of conceptually different evolutionary algorithms
- some use standard syntax-based GP and others use a semantics-based
GP system. The new technique we propose here (EDDA-V2), imposes
more diverse evolutionary conditions - each deme evolves using a distinct
random sample of training data instances and input features. Experi-
mental results show that EDDA-V2 is a feasible initialization technique:
populations converge towards solutions with comparable or even better
generalization ability with respect to the ones initialized with EDDA, by
using significantly reduced computational time.

Keywords: Initialization algorithm · Semantics · Despeciation

1 Introduction

Initialization of the population is the first step of Genetic Programming (GP).
John Koza proposed three generative methods of the initial population - Grow,
Full and Ramped Half-and-Half (RHH) [7]. All of them consist in constructing
trees in an almost random fashion and vary only in the doctrine which guides
the process. Since the RHH method is a mixture of both the Full and Grow
methods, it allows the production of trees of various sizes and shapes and it was
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 185–196, 2018.
https://doi.org/10.1007/978-3-319-99253-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_15&domain=pdf

186 I. Bakurov et al.

frequently used in many applications. The emergence of new geometric semantic
operators [8], which introduce semantic awareness into Genetic Programming
(GP), strengthened the importance of semantics-awareness in GP. Semantics
was considered as a fundamental factor for the success of the evolutionary search
process, leading to the definition of initialization algorithms [2,3] that aimed at
increasing semantic diversity in the initial GP population. These studies clearly
showed the importance of semantics in this part of the evolutionary process.
Other contributions had already recognized that an initial population charac-
terized by a high diversity increases the effectiveness of GP, bestowing a wider
exploration ability on the process [7,12]. With the aim of directly searching
in the semantic space, Moraglio and colleagues introduced Geometric Semantic
Genetic Programming (GSGP) [8], which rapidly raised an impressive interest
in the GP community - in part, because of its interesting property of inducing a
fitness landscape characterized by the absence of locally suboptimal solutions for
any problem consisting in matching sets of input data into known targets [13]. In
GSGP, standard crossover and mutation variation operators are replaced with
so-called geometric semantic operators, that have precise effects on the semantics
of the trees, from now on, called individuals. After the emergence of Geometric
Semantic Operators (GSOs), a conceptually distinct sub-field aiming at investi-
gating the properties of GSGP was born inside the GP community. As a result,
new techniques were proposed to favor the search process of GSGP, making it
more efficient. In the context of the initialization process, Pawlak and Kraw-
iec introduced semantic geometric initialization [10] and Oliveira and colleagues
introduced the concept of dispersion of solutions, for increasing the effectiveness
of geometric semantic crossover [9]. Following this research track, in 2017, we
proposed a new initialization method which mimics the evolution of demes, fol-
lowed by despeciation, called Evolutionary Demes Despeciation Algorithm [14].
In summary, our idea consisted in seeding the initial population of N individu-
als with good quality individuals that have been evolved, for few a generations,
in N independent subpopulations (demes), by means of conceptually different
evolutionary algorithms. In this system, n% of demes use standard GP and the
remaining (100−n)% use GSGP. After evolving one deme, the best individual is
extracted to seed the initial population in the Main Evolutionary Process (MEP).
The work presented in this paper improves the previously proposed initializa-
tion method, EDDA, by including even more adverse evolutionary conditions in
each deme. In summary, in our advancement of the EDDA method, which we
will from now on call, EDDA-V2, every deme evolves using a distinct random
sample of training data instances and input features.

This document is organized as follows: In Sect. 2 we recall basic concepts
related to GSGP. Section 3 describes the previous and new EDDA variants,
showing their differences. Section 4 presents the experimental study. Section 5
discusses the experimental results. Finally, Sect. 6 concludes the work summa-
rizing its contribution.

EDDA-V2 – An Improvement of the EDDA 187

2 Geometric Semantic Genetic Programming

The term semantics, in the GP community, refers to the vector of output values
produced by evaluating an individual on a set of training instances [15]. Under
this definition, a GP individual can be seen as a point in a multi-dimensional
semantic space, where the number of dimensions is equal to the number of fit-
ness cases. In standard GP, variation operators produce an offspring by making
syntactic manipulation of the parent trees, in the hope that such manipulation
will result in a semantics which is closer to the target one. The term Geomet-
ric Semantic Genetic Programming (GSGP) designates a GP variant in which
syntactic-based GP operators - crossover and mutation - are replaced with so-
called Geometric Semantic Operators (GSOs). GSOs introduce semantic aware-
ness in the search process and induce a unimodal fitness landscape in any super-
vised problem where the fitness function can be defined as a distance between a
solution and the target. GSOs, introduced in [8], raised an impressive interest in
the GP community [16] because of their attractive property of directly search-
ing the space of underlying semantics of the programs. In this paper, we report
the definition of the GSOs for real functions domains, because we used them in
our experimental phase. For applications that consider other types of data, the
reader is referred to [8].

Geometric semantic crossover (GSC) generates, as the unique offspring of
parents T1, T2 : Rn → R, the expression TXO = (T1·TR)+((1−TR)·T2), where TR

is a random real function whose output values range in the interval [0, 1]. Anal-
ogously, geometric semantic mutation (GSM) returns, as the result of the muta-
tion of an individual T : Rn → R, the expression TM = T + ms · (TR1 − TR2),
where TR1 and TR2 are random real functions with codomain in [0, 1] and ms is a
parameter called mutation step. In their work, Moraglio and colleagues show that
GSOs create an offspring of significantly larger size with respect to standard GP
operators. This makes the fitness evaluation unacceptably slow and considerably
constrains practical usability of the GSGP system. To overcome this limitation
a possible workaround was proposed in [5], with an efficient implementation of
GSOs that makes them usable in practice. This is the implementation used in
this work.

3 Evolutionary Demes Despeciation Algorithm

In this paper, we propose an advancement of a previously conceived initialization
technique, Evolutionary Demes Despeciation Algorithm (EDDA) [14], inspired
by the biological concepts of demes evolution and despeciation. In biology, demes
are local populations, or subpopulations, of polytypic species that actively inter-
breed with one another and share distinct gene pools [17]. The term despeci-
ation indicates the combination of demes of previously distinct species into a
new population [11]. Albeit not so common in nature, despeciation is a well-
known biological phenomenon, and in some cases, it leads to a fortification of
the populations. The main idea of EDDA consists in seeding the initial popula-
tion of N individuals with good quality individuals that have been evolved, for

188 I. Bakurov et al.

a few generations, in N independent subpopulations (demes), on which distinct
evolutionary conditions were imposed. Concretely, demes are evolved by means
of conceptually different evolutionary algorithms - n% of demes are evolved by
means of GSGP, while the remaining (100 − n)% use standard GP - and dis-
tinct - mostly randomly generated - parameter sets. The experimental results
presented in [14] have shown the effectiveness of EDDA. In particular, in all the
benchmark problems taken into account, the search process, whose population
was initialized with EDDA, ended with solutions with higher, or at least com-
parable, generalization ability, but with significantly smaller size than the ones
found by GSGP using the traditional RHH generative method to initialize the
population. In the remaining part of the paper, we will refer to EDDA with the
term EDDA-V1.

The advancement we propose in this work, denominated as EDDA-V2,
imposes even more adverse evolutionary conditions. Concretely, each deme is
evolved using not only a different evolutionary algorithm and parameter set but
also a distinct random sample of training data instances and input features. In
the following pseudo-code, the distinctive algorithmic features of EDDA-V2 in
comparison to EDDA-V1 are presented in bold.

Fig. 1. Pseudo-code of the EDDA-n% system, in which demes are left to evolve for m
generations.

As one can see from the pseudo-code reported in Fig. 1, EDDA-V2 uses a
different subset of the training instances in each deme, as well as different input
features. We claim is that the presence of demes with different fitness cases

EDDA-V2 – An Improvement of the EDDA 189

and input features should increase the diversity of the initial population, with
individuals that are focused on different areas of the semantic space. As a final
result of the search process, we would expect a model with an increased general-
ization ability with respect to GSGP initialized with EDDA-V1 and RHH. As a
side effect, using only a percentage of the training instances and input features
can be beneficial for reducing the computational effort when a vast amount of
training data is available.

4 Experimental Study

4.1 Test Problems

To assess the suitability of EDDA-V2 as a technique for initializing a popula-
tion, three real-life symbolic regression problems were considered. Two of them
- Plasma Protein Binding level (PPB), and Toxicity (LD50) - are problems from
the drug discovery area and their objective is to predict the value of a pharma-
cokinetic parameter, as a function of a set of molecular descriptors of potential
new drugs. The third benchmark is the Energy problem, where the objective is
to predict the energy consumption in particular geographic areas and on par-
ticular days, as a function of some observable features of those days, including
meteorological data. Table 1 reports, for each one of these problems, the number
of input features (variables) and data instances (observations) in the respective
datasets. The table also reports a bibliographic reference for every benchmark,
where a more detailed description of these datasets is available.

Table 1. Description of the benchmark problems. For each dataset, the number of fea-
tures (independent variables) and the number of instances (observations) were reported.

Dataset # Features # Instances

Protein plasma binding level (PPB) [1] 626 131

Toxicity (LD50) [1] 626 234

Energy [6] 8 768

4.2 Experimental Settings

During the experimental study, we compared the performance of EDDA-V2
against EDDA-V1. The performance are evaluated by considering the quality
of the solution obtained at the end of the evolutionary process considering pop-
ulations initialized with EDDA-V1 and EDDA-V2. Additionally, to consolidate
results of our previous work, we also included the GSGP evolutionary algorithm
that uses the traditional RHH initialization algorithm. Table 2 reports, in the
first column, the main parametrization used for every initialization algorithm
(columns two, three and four). The first line in the table contains the number of
generations after initialization.

190 I. Bakurov et al.

Table 2. Parametrization used in every initialization algorithm.

Parameters RHH EDDA.V1 EDDA.V2

1 # generations 2750 {2250, 1250} {2250, 1250}
2 # generations/deme - {5, 15} {5, 15}
3 # demes - 100 100

4 % GSGP demes - {0, 25, 50, 75, 100} {0, 25, 50, 75, 100}
5 % sampled instances - - {25, 50, 75}
6 % sampled features - - {25, 50, 75}

For each experiment, any considered initialization algorithm was used to cre-
ate 100 initial individuals, later evolved by means of GSGP evolutionary process
for a given number of generations. In order to ensure comparability of results, all
the studied systems performed the same number of fitness evaluations - includ-
ing, in particular, demes evolution in both EDDA variants. In our experiments,
there are 275000 fitness evaluations per run, independently on initialization tech-
nique. Every deme, regardless of EDDA variant and parametrization, was ini-
tialized by means of the traditional RHH algorithm with 100 individuals, later
evolved for some generations. Whenever the traditional RHH was used, tree ini-
tialization was performed with a maximum initial depth equal to 6 and no upper
limit to the size of the individuals was imposed during the evolution. Depend-
ing on the number of iterations used for demes evolution in EDDA variants,
the number of generations after despeciation may vary. For example, if, in a
given experiment, demes are evolved for 5 generations, then the number of gen-
erations after despeciation will be 2250. Similarly, if demes are evolved for 15
generations, then the number of generations after despeciation will be 1250. For
both previously mentioned cases, the number of fitness evaluations per run is
275000.

The function set we considered in our experiments was {+,−, ∗, /}, where /
was protected as in [7]. Fitness was calculated as the Root Mean Squared Error
(RMSE) between predicted and expected outputs. The terminal set contained
the number of variables corresponding to the number of features in each dataset.
Tournament selection of size 5 was used. Survival was elitist as it always copied
the best individual into the next generation. As done in [4], the probability of
applying GSC and GSM is dynamically adapted during the evolutionary process
where the crossover rate is p and the mutation rate is 1 − p. Following [16], the
mutation step ms of GSM was randomly generated, with uniform probability
in [0, 1], at each mutation event.

For all the considered test problems, 30 independent runs of each studied
system were executed. In each one of these runs, the data was split into a training
and a test set, where the former contains 70% of the data samples selected
randomly with uniform distribution, while the latter contains the remaining
30% of the observations. For each generation of every studied system, the best
individual on the training set has been considered, and its fitness (RMSE) on

EDDA-V2 – An Improvement of the EDDA 191

the training and test sets was stored. For simplicity, from now on, we will refer
to the former as training error and to the latter as test error or unseen error.

5 Results

This section presents the results obtained in the experimental phase. In par-
ticular, the section aims at highlighting the differences in terms of perfor-
mance between the two EDDA variants taken into account and GSGP. For
each benchmark, we considered four different parameterizations of EDDA-
V1 and EDDA-V2. We denote each parametrization by using the quadruple
%GSGP MATURITY %INSTANCES %FEATURES, where the first term
corresponds to the percentage of individuals in each deme evolved by means of
GSGP, the maturity (i.e., the number of generations the individuals are evolved),
the percentage of instances in the dataset and, finally, the percentage of input

2.5

5.0

7.5

10.0

12.5

0 1000 2000
Generations

Un
se

en
 er

ror

5

10

0 1000 2000
Generations

Tr
ai

ni
ng

 e
rro

r

2.5

5.0

7.5

10.0

12.5

0 1000 2000
Generations

Un
se

en
 er

ror

5

10

0 1000 2000
Generations

Tr
ai

ni
ng

 e
rro

r

)b()a(

2.5

5.0

7.5

10.0

12.5

0 1000 2000
Generations

Un
se

en
 er

ror

5

10

0 1000 2000
Generations

Tr
ai

ni
ng

 e
rro

r

2.5

5.0

7.5

10.0

12.5

0 1000 2000
Generations

Un
se

en
 er

ror

5

10

0 1000 2000
Generations

Tr
ai

ni
ng

 e
rro

r

)d()c(

Fig. 2. Evolution of the (median) best fitness on the training (insets image) and test
sets for the energy benchmark and the following parameterizations: (a) 50 5 25 25;
(b) 50 15 50 50; (c) 50 5 75 75; (d) 50 5 50 50. The legend for all the plots is:

EDDA−V1 EDDA−V2 RHH

192 I. Bakurov et al.

features considered. The results reported in this section consider values of these
four parameters that were randomly selected from the values reported in Table 2.
This allows analyzing the performance of EDDA-2 across different problems and
parameterizations. Results of the experimental phase are reported from Figs. 2,
3 and 4. Each plot displays the generalization error (i.e., the fitness on unseen
instances) and contains an inset showing the training fitness. Considering the
training fitness, one can notice the same evolution of the fitness in all the con-
sidered benchmarks. EDDA-V1, in particular, is the best performer followed by
EDDA-V2 and GSGP. Focusing on the two EDDA variants, these results were
expected since EDDA-V1 is learning a model by using the whole training set and
all the available features. On the other hand, EDDA-V2 is learning a model of
the data considering a sample of the whole training set and, additionally, only a
reduced number of features. Under this light, it is interesting to comment on the
performance of EDDA-V2 and GSGP. The experimental results suggest that the

28

32

36

40

0 1000 2000
Generations

Un
se

en
 er

ror

0

10

20

30

40

0 1000 2000
Generations

Tr
ai

ni
ng

 e
rro

r

28

32

36

40

0 1000 2000
Generations

Un
se

en
 er

ror

0

10

20

30

40

0 1000 2000
Generations

Tr
ai

ni
ng

 e
rro

r

)b()a(

28

32

36

40

0 1000 2000
Generations

Un
se

en
 er

ror

0

10

20

30

40

0 1000 2000
Generations

Tr
ai

ni
ng

 e
rro

r

28

32

36

40

0 1000 2000
Generations

Un
se

en
 er

ror

0

10

20

30

40

0 1000 2000
Generations

Tr
ai

ni
ng

 e
rro

r

)d()c(

Fig. 3. Evolution of the (median) best fitness on the training (insets image) and test
sets for the PPB benchmark and the following parametrizations: (a) 25 15 75 75;
(b) 25 5 50 50; (c) 25 5 75 75; (d) 75 5 75 75. The legend for all the plots is:

EDDA−V1 EDDA−V2 RHH

EDDA-V2 – An Improvement of the EDDA 193

usage of RHH for initializing the population results in poor performance when
compared to EDDA-V2.

To summarize, results show the superior performance of EDDA-V1 when
training error is taken into account, but EDDA-V2 produces a final model with
an error that is smaller than the one produced by GSGP. This is a notable result
because it shows that the proposed initialization method can outperform GSGP
initialized with ramped half and half by considering a lower number of training
instances and features.

While results on the training set are important to understand the ability of
EDDA-V2 to learn the model of the training data, it is even more important
and interesting to evaluate its performance on unseen instances. Considering
the plots reported from Figs. 2, 3 and 4, one can see that the EDDA-V2 actually
produces good quality solutions that are able to generalize over unseen instances.
In particular, EDDA-V2 presents a very nice behavior in the vast majority of

2000

2100

2200

2300

2400

2500

0 1000 2000
Generations

Un
se

en
 er

ror

1900

2000

2100

2200

2300

0 1000 2000
Generations

Tr
ai

ni
ng

 e
rro

r

2100

2200

2300

2400

2500

0 1000 2000
Generations

Un
se

en
 er

ror 2000

2100

2200

2300

0 1000 2000
Generations

Tr
ai

ni
ng

 e
rro

r

)b()a(

2000

2100

2200

2300

2400

2500

0 1000 2000
Generations

Un
se

en
 er

ror 2000

2100

2200

2300

0 1000 2000
Generations

Tr
ai

ni
ng

 e
rro

r

2100

2200

2300

2400

2500

0 1000 2000
Generations

Un
se

en
 er

ror

2000

2100

2200

2300

0 1000 2000
Generations

Tr
ai

ni
ng

 e
rro

r

)d()c(

Fig. 4. Evolution of the (median) best fitness on the training (insets image) and test
sets for the LD50 benchmark and the following parameterizations: (a) 25 5 75 75;
(b) 10 5 25 25; 10 5 50 50(c); (d) 10 5 75 75. The legend for all the plots is:

EDDA−V1 EDDA−V2 RHH

194 I. Bakurov et al.

the problems, showing better or comparable performance with respect to the
other competitors without overfitting to the training data. Focusing on the other
techniques, GSGP is the worst performer over all the considered benchmarks and
parameterizations.

To summarize the results of this first part of the experimental phase, it is
possible to state that EDDA-V2 outperforms GSGP with respect to the training
fitness by also producing models able to generalize over unseen instances. When
EDDA-V2 is compared against EDDA-V1, it performs poorer on the training
instances, but the generalization error is better with respect to the latter system.

To conclude the experimental phase, Fig. 5 shows the time (ms) needed to
initialize and evolve demes with EDDA-V1 and EDDA-V2. As expected EDDA-
V2 requires less computational time.

To assess the statistical significance of these results, a statistical validation
was performed considering the results achieved with the EDDA variants. First
of all, given that it is not possible to assume a normal distribution of the values
obtained by running the different EDDA variants, we ran the Shapiro-Wilk test
and we considered a value of α = 0.05. The null hypothesis of this test is that
the values are normally distributed. The result of the test suggests that the null
hypothesis should be rejected. Hence, we used the Mann–Whitney U test for
comparing the results returned EDDA-V2 against the ones produced by EDDA-
V1 under the null hypotheses that the distributions are the same across repeated
measures. Also, in this test a value of α = 0.05 was used.

0

20

40

60

80

1 2 3 4 5
Generations

Tim
e

0

50

100

1 2 3 4 5
Generations

Tim
e

)b()a(

0

20

40

60

1 2 3 4 5
Generations

Tim
e

(c)

Fig. 5. Time needed to initialize and evolve a deme for 5 iterations, with a 50% of
GSGP individuals, 50% of training instances, and 50% of features. Median calculated
over all the demes and runs for (a) Energy, (b) PPB, and (c) LD50. The legend for all
the plots is: EDDA−V1 EDDA−V2

EDDA-V2 – An Improvement of the EDDA 195

Table 3 reports the p-values returned by the Mann–Whitney test, and bold
is used to denote values suggesting that the null hypotheses should be rejected.
Considering these results, it is interesting to note that with respect to the train-
ing error, EDDA-V2 and EDDA-V1 produced comparable results in the vast
majority of the benchmarks and configurations taken into account. The same
result applies to the test error, where it is important to highlight that, in each
benchmark, there exists at least one parameters configuration that allows EDDA-
V2 to outperform EDDA-V1.

Table 3. p-values returned by the Mann–Whitney U test. Test and training error
achieved by populations initialized with EDDA-V2 and EDDA-V1 are compared. Val-
ues in the column parametrization correspond to the ones used in subplots (A), (B),
(C), (D) of Figs. 2, 3, and 4. Bold is used to denote p-values suggesting that the null
hypotheses should be rejected.

Parametrization Test Training

Energy PPB LD50 Enrgy PPB Ld50

A 0.048 0.203 0.065 0.043 0.523 0.109

B 0.708 0.267 0.230 0.123 0.035 0.273

C 0.440 0.230 0.016 0.187 0.142 0.031

D 0.708 0.203 0.390 0.109 0.843 0.901

6 Conclusions

Population initialization plays a fundamental role in the success of GP. Differ-
ent methods were developed and investigated in the EA literature, all of them
pointing out the importance of maintaining diversity among the different indi-
viduals in order to avoid premature convergence. A recent contribution, called
Evolutionary Demes Despeciation Algorithm (EDDA-V1 in this paper), intro-
duced an initialization technique in GP inspired by the biological phenomenon
of demes despeciation. The method seeds a population of N individuals with the
best solutions obtained by the independent evolution of N different populations,
or demes. EDDA-V1 has demonstrated its effectiveness in initializing a GSGP
population when compared to the standard ramped half and half method. This
paper extended the initialization technique by defining a new method, called
EDDA-V2 that initializes a population by evolving different parallel demes and,
in each deme, it uses a different subset of the training instances and a differ-
ent subset of the input features. This ensures an increased level of diversity, by
also reducing the time needed for the initialization step. Experimental results
obtained over three benchmark problems demonstrated that populations initial-
ized with EDDA-V2 and evolved by GSGP converge towards solutions with a
comparable or better generalization ability with respect to the ones initialized
with EDDA-V1 and the traditional ramped half and half technique.

196 I. Bakurov et al.

References

1. Archetti, F., Lanzeni, S., Messina, E., Vanneschi, L.: Genetic programming for
computational pharmacokinetics in drug discovery and development. Genet. Pro-
gram. Evol. Mach. 8(4), 413–432 (2007)

2. Beadle, L.C.J.: Semantic and structural analysis of genetic programming. Ph.D.
thesis, University of Kent, Canterbury, July 2009

3. Beadle, L.C.J., Johnson, C.G.: Semantic analysis of program initialisation in
genetic programming. Genet. Program. Evol. Mach. 10(3), 307–337 (2009)

4. Castelli, M., Manzoni, L., Vanneschi, L., Silva, S., Popovič, A.: Self-tuning geo-
metric semantic genetic programming. Genet. Program. Evol. Mach. 17(1), 55–74
(2016)

5. Castelli, M., Silva, S., Vanneschi, L.: A C++ framework for geometric semantic
genetic programming. Genet. Program. Evol. Mach. 16(1), 73–81 (2015)

6. Castelli, M., Vanneschi, L., Felice, M.D.: Forecasting short-term electricity con-
sumption using a semantics-based genetic programming framework: the south italy
case. Energy Econ. 47, 37–41 (2015)

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

8. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone,
M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32937-1 3

9. Oliveira, L.O.V., Otero, F.E., Pappa, G.L.: A dispersion operator for geometric
semantic genetic programming. In: Proceedings of the Genetic and Evolutionary
Computation Conference 2016, GECCO 2016, pp. 773–780. ACM (2016)

10. Pawlak, T.P., Wieloch, B., Krawiec, K.: Review and comparative analysis of geo-
metric semantic crossovers. Genet. Program. Evol. Mach. 16(3), 351–386 (2015)

11. Taylor, E.B., Boughman, J.W., Groenenboom, M., Sniatynski, M., Schluter, D.,
Gow, J.L.: Speciation in reverse: morphological and genetic evidence of the collapse
of a three-spined stickleback (gasterosteus aculeatus) species pair. Mol. Ecol. 15(2),
343–355 (2006)

12. Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: A study of fitness distance
correlation as a difficulty measure in genetic programming. Evol. Comput. 13(2),
213–239 (2005)

13. Vanneschi, L.: An introduction to geometric semantic genetic programming. In:
Schütze, O., Trujillo, L., Legrand, P., Maldonado, Y. (eds.) NEO 2015. SCI, vol.
663, pp. 3–42. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44003-
3 1

14. Vanneschi, L., Bakurov, I., Castelli, M.: An initialization technique for geometric
semantic GP based on demes evolution and despeciation. In: 2017 IEEE Congress
on Evolutionary Computation, CEC 2017, Donostia, San Sebastián, Spain, 5–8
June 2017, pp. 113–120 (2017)

15. Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic
programming. Genet. Program. Evol. Mach. 15(2), 195–214 (2014)

16. Vanneschi, L., Silva, S., Castelli, M., Manzoni, L.: Geometric semantic genetic
programming for real life applications. In: Riolo, R., Moore, J.H., Kotanchek, M.
(eds.) Genetic Programming Theory and Practice XI. GEC, pp. 191–209. Springer,
New York (2014). https://doi.org/10.1007/978-1-4939-0375-7 11

17. Wilson, D.S.: Structured demes and the evolution of group-advantageous traits.
Am. Nat. 111(977), 157–185 (1977). https://doi.org/10.1086/283146

https://doi.org/10.1007/978-3-642-32937-1_3
https://doi.org/10.1007/978-3-319-44003-3_1
https://doi.org/10.1007/978-3-319-44003-3_1
https://doi.org/10.1007/978-1-4939-0375-7_11
https://doi.org/10.1086/283146

Extending Program Synthesis Grammars
for Grammar-Guided Genetic

Programming

Stefan Forstenlechner(B), David Fagan, Miguel Nicolau, and Michael O’Neill

Natural Computing Research and Applications Group, School of Business,
University College Dublin, Dublin, Ireland
stefan.forstenlechner@ucdconnect.ie,

{david.fagan,miguel.nicolau,m.oneill}@ucd.ie

Abstract. Program synthesis is a problem domain that due to its
importance is tackled by many different fields, one being Genetic
Programming. Two variants, Grammar-Guided Genetic Programming
(G3P) and PushGP, have been applied to a vast general program syn-
thesis benchmark suite and solved a variety of problems although with
varying success rates. While G3P achieved higher success rates on some
problems, PushGP was able to find solutions to more problem instances.
Reason why G3P fails at some problems might be missing functionality
in the grammars or knowledge that has to discovered during the runs. In
this paper the current shortcomings of G3P are analysed and the papers
contributions include an example of extending grammars for program
synthesis, a fairer comparison between PushGP and G3P with a more
similar function set as well as new results on problems that have not
been solved with G3P and one that has not been solved with PushGP.

Keywords: Genetic Programming · Grammar · Program synthesis

1 Introduction

Genetic Programming has shown potential to solve a range of general program
synthesis problems. In contrast to other problem domains like regression where
an approximation of the solution might be acceptable, a partially correct solution
is usually of no use in program synthesis. But for GP to be successful in program
synthesis, the ability to find a correct solution should be high, as practitioners
should not have to be required to run GP multiple times while researchers only
do multiple runs for statistical tests. At the same time, it is essential that GP
can solve a wide range of program synthesis problems rather than special cases.

To this end, a range of difficult or unsolved problems is identified in the
general program synthesis benchmark suite [8], that has been used recently to
test GP on program synthesis, especially with G3P [3] and PushGP [17]. While
G3P was able to achieve a higher percentage of successful solutions found in

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 197–208, 2018.
https://doi.org/10.1007/978-3-319-99253-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_16&domain=pdf

198 S. Forstenlechner et al.

cases it found solutions, PushGP was able to solve more problems at least once
in general.

The focus of this paper lies in identifying differences between the function set
of G3P and PushGP, extending the grammars according to those differences as
well as the identified difficult problems from the benchmark suite and extending
the grammars accordingly. At the same time, the grammars shall stay as general
as possible to be able to use them outside of the context of benchmark problems
and should not be trimmed to “cheat” on any particular problem within the
benchmark suite. As the benchmark suite that has been used so far, proposes to
have an explicit char data type which is currently missing in G3P [3] the possi-
bility of adding it is further investigated. Therefore, the functionality available
in the grammars is not allowed to be extended further than the function set
available to PushGP.

The rest of the paper is structured in the following way. Section 2 summaries
related work on program synthesis. Section 3 describes the benchmark suite used
in the GP community for program synthesis and what problems have been diffi-
cult for GP and particularly for G3P. Afterwards, Sect. 4 describes in what ways
grammars can be extended to overcome the previous shortcomings. The experi-
mental setup used to tackle the benchmark suite is described in Sect. 5 and the
results are compared to previous approaches in Sect. 6. Finally, conclusion and
future work are discussed in Sect. 7.

2 Related Work

Program synthesis problems have been tackled even before GP was used and
many different approaches exist [11]. Nevertheless, GP systems have proven to
be very flexible and successful at doing this. Therefore this paper will focus on
GP systems.

2.1 Grammar-Guided Genetic Programming

Grammar-Guided Genetic Programming [12] is a GP variant that uses grammars
to define the search space. This makes it easy to use and flexible as a grammar
can be defined outside of the GP system instead of restricting GP to a certain
function set. Additionally, it is quite powerful, because any program that can be
generated with the grammar can be found by GP. Grammars also provide the
possibility of adding bias, if necessary. The most famous variants are CFG-GP
by Whigham [19] and grammatical evolution [14].

Forstenlechner et al. [3] proposed a grammar design for GP to tackle gen-
eral program synthesis problems, as mainly bespoken grammars have been used
before to solve program synthesis [13], which can not be reused to solve other
problems. The idea of the grammar design is to have multiple smaller gram-
mars and every grammar contains only the functionality for a single data type.
Additionally, one general grammar exists which contains the structure of the pro-
gram. The benefit of this design is that it is not limited to a single programming

Extending Program Synthesis Grammars for G3P 199

language and depending on the problem at hand a subset of the data types
required to solve the problem can be chosen. Therefore, the design is capable of
solving general purpose program synthesis problems, while the search space can
be kept small by not including unnecessary data types. Functions that require
multiple data types of which some are not available, will be removed from the
grammar automatically when combining the grammars for a chosen problem.

3 General Program Synthesis Benchmark Suite Remarks

A general program synthesis benchmark suite was introduced by Helmuth and
Spector [8]. It provides a variety of problems from introductory computer science
courses. It consists of a total of 29 problems with a description, training and test
set, fitness function and general parameter settings, mainly for PushGP [17],
for every problem. Additionally, every problem requires specific data types to
be available to be solved. A more detailed description is available in form of a
technical report [18], which also contains information about how to generate the
training and test data as well as the instructions available for PushGP.

The two GP systems that have been tested on the benchmark suite are
a G3P by Forstenlechner [3] and PushGP [17]. PushGP is a GP system that
evolves programs in the language Push, which was solely designed for evolution-
ary algorithms. Push uses stacks to store data instead of using variables. It has
a stack for every data type as well as for the code that is executed, which makes
it possible to manipulate the code during runtime.

An additional comparison of systems outside of the GP community, namely
Flash Fill [5] and MagicHaskeller [9], was done on the benchmark suite in [15].
The comparison showed that GP systems are more flexible and more successful
on this benchmark suite, although it should be mentioned that these systems
have been created with other use cases in mind like Flash Fill is used in Microsoft
Excel for string manipulation tasks.

In the initial introduction of the grammar design for program synthesis prob-
lems [3], the functionality was kept to the basics of Python without including
more than was available in PushGP. For example, adding the built-in sum func-
tion from Python would make solving the problem Vector Average fairly easy.

Table 1 shows the results achieved with G3P on the general program syn-
thesis benchmark suite. The results have been taken from [3]. The datasets of
Checksum and Vector Average have been changed since the benchmark suite has
been introduced and a simpler version of Super Anagrams has been used in [3].
The table indicates that G3P with the current grammars has difficulty to solve
problems that require char as a data type. At the moment it only uses string,
most likely because the initial grammars are based on Python which treats char
as string. While a programmer has no difficulty to understand how or when to
use a single character string, it is definitely more complicated for GP to find out
how or when to use it. Adding a char data type could yield better results. Addi-
tionally, PushGP was able to solve more problems from the benchmark suite,
although in many cases with a low success rate. Nevertheless, adding further
functionality could help improve the results of G3P.

200 S. Forstenlechner et al.

Table 1. Results of G3P on the general program synthesis benchmark suite sorted by
successfully found solutions. String and Char column indicate if these data types have
to be used when solving the problem. A * indicates if the data set has been changed,
since the results have been acquired.

N
u
m
b
er
IO

S
m
al
le
st

V
ec

to
rs

S
u
m
m
ed

M
ed

ia
n

S
tr
in
g
L
en

gt
h
s
B
ac

kw
ar

d
s

N
eg

at
iv
e
T
o
Z
er
o

G
ra

d
e

L
as

t
In

d
ex

of
Z
er
o

S
u
p
er

A
n
ag

ra
m
s*

C
ou

nt
O
d
d
s

F
or

L
oo

p
In

d
ex

S
m
al
l
O
r
L
ar
ge

V
ec

to
r
A
ve

ra
ge

*
S
u
m

of
S
qu

ar
es

C
om

p
ar

e
S
tr
in
g
L
en

gt
h
s

S
cr
ab

b
le

S
co

re
E
ve

n
S
qu

ar
e

C
h
ec
ks

u
m
*

C
ol
la
tz

N
u
m
b
er

D
ig
it
s

D
ou

b
le

L
et
te
rs

M
ir
ro
r
Im

ag
e

P
ig

L
at
in

R
ep

la
ce

S
p
ac

e
w
it
h

N
ew

li
n
e

S
yl
la
b
le
s

W
al
li
s
P
i

W
or
d

S
ta
t

X
-W

or
d

L
in
es

Successes 94 94 91 79 68 63 31 22 21 12 8 7 5 3 2 2 1 0 0 0 0 0 0 0 0 0 0 0
String X X X X X X X X X X X X X X
Char X X X X X X X X X X

4 Extending Program Synthesis Grammars

This section describes how the program synthesis grammars from [3] have been
extended to include an additional char data type as well as additional function-
ality to have a fairer comparison to PushGP. Extending the grammar also means
increasing the size of the search space as more programs can be generated from
the grammar. Therefore, the extension of the grammars can also have a negative
effect on the search performance.

4.1 Data Type Char

As shown in Sect. 3, G3P does poorly on problems that require a data type char.
G3P only used string as it mainly relied on Python even though the concepts
can be applied to other languages as well and because a char can be interpreted
as a string of length one. As many problems in the general program synthesis
benchmark suite require to check or manipulate single characters, G3P not using
a char grammar could explain why it currently fails at solving such problems.
While programmers have the intrinsic knowledge that a string consists of char-
acters and a string of length one can be treated similar to a char, GP either
has to discover this knowledge or has to be told a priori. The currently available
grammar data types are bool, integer, float and string, as well as a list version
grammar of each of these data types, plus the new char grammar. A list of char
grammar is currently not included as the benchmark suite does not require it
and strings can be viewed as a list of char. As G3P adds variables of the data
types of every used grammar to the evolved program, including the char gram-
mar makes it very likely that chars are used as opposed to before where G3P
had to find that a string of length one is required.

Extending Program Synthesis Grammars for G3P 201

4.2 Recursion

Recursion is a method of programming where a program calls itself to solve a
smaller instance of the same problem first and uses that solution to solve the
initial problem. Recursion is not an uncommon strategy to tackle problems in
GP [1,20]. In many cases, a recursive solution can be significantly shorter in
terms of code than an iterative program, which might make it easier for GP to
find. PushGP is capable of evolving recursive programs and for a fair comparison
should be part of the grammars for G3P as well.

To allow recursion, a program needs to be able to call itself and a way to
stop the recursion, usually an if condition called guard. As the grammars in
G3P are automatically merged together depending on the required data types,
and the number of input/output variables, as well as there types, a rule for a
recursive call can be generated and added to the grammar. The following is an
example where outputX is replaced with the correct type variable non-terminal
(e.g. <bool var>) and inputX with the correct type (e.g. <bool>):

<output1>’, ’...’, ’<outputN>’ = evolve(’<input1>’, ’...’, ’<inputN>’)’

In a similar way, a return statement can be generated:

’return result1, ..., resultN’

The grammar used to define the control flow (structure.bnf) already contains
if statements, but it is very likely that it might not be used and the program
gets stuck in an infinite recursion and at some point will throw an error due
to a stack overflow. A problem that occurs with infinite loops as well and was
handled by adding a guard to avoid any additional iterations if a certain limit is
reached. A similar guard is used to avoid infinite recursion. The benefit of using
this mechanism is that evolved programs will not throw an error and return
a value. Therefore, the program will be given a fitness value based on what it
returns instead of a default worst case fitness due to an error.

4.3 List Operations

When the grammars for program synthesis were introduced grammars for lists of
all data types were included but kept to the essential functionality. Items could
be added at the end, inserted or replaced at a specific index or removed. Lists
could be iterated, compared, checked if they are empty and their length could be
determined as well as slicing of lists was possible. Any additional functionality
the algorithm had to find. PushGP offers more functionality out of the box that
can be used, which has been added to the grammars for G3P, like reversing a list,
counting the occurrences of an item, replacing or removing items if a condition is
met etc. All of this functionality could be discovered as well, but as for example
O’Neill et al. [13] showed that GP has difficulties finding a solution to the integer
sorting problem, but by adding a swap function the problem was easily solvable.
As stated before no further functionality has been added, that was not already
available for PushGP as well. At the same time, it should be noted that adding

202 S. Forstenlechner et al.

additional functionality also increases the search space, which can make it more
difficult to find a correct solution. Even though the additional functionality can
make it easier to solve one problem, it can make it more difficult to solve another.
Therefore a decrease of successful solutions found on some problems is to be
expected.

4.4 Additional Methods

Similar to the list operations in the previous section, additional methods were
added to other data types that in general could have been discovered by G3P.
One example that is also often not included for boolean problems is XOR, as it
can be constructed with AND, OR and NOT and can make certain problems like
multiplexer too easy [10]. To be able to have a better comparison between G3P
and PushGP, such methods have been added as well. As there are too many
to mention every single one of them, the reader is referred to the grammars
themselves that are provided online [2] as well as [18]. Again, it should be noted
that the extended grammars do not exceed the functionality that is provided by
PushGP.

5 Experimental Setup

For the experiments, the extended grammars, which are described in the previous
section, are used with the same G3P system as in [3], which is available online
[2] including the extended grammars. The experiments are run on the problems
from the general program synthesis benchmark suite [8]. The parameter settings
are summarized in Table 2. The number of generations is set to 3001. As soon
as a successful solution is found, the run is stopped as GP cannot improve it
anymore. Lexicase selection [6] is used, as it has shown to be the most successful
selection operator with GP on program synthesis problems. Instead of using
a single fitness value for selection, lexicase operates on the fitness values of
every single training cases. It randomly selects a fitness case and selects the best
individual based on that case. In case of a tie, lexicase selection continues with
a subset of individuals that were in this tie and continue to select other training
cases until a single individual is left or until no fitness case is left, in which case
an individual is selected randomly.

6 Results

First the overall performance of G3P with the extended grammars and also
to PushGP. Afterwards, the effect of the extended grammars on the search is
analysed in more detail.

1 200 for Normal IO, Median and Smallest as proposed in [8].

Extending Program Synthesis Grammars for G3P 203

Table 2. Experimental parameter settings

Parameter Setting

Runs 100

Generations 300 (see footnote 1)

Population size 1000

Selection Lexicase

Crossover probability 0.9

Mutation probability 0.05

Elite size 1

Node limit 250

Variables per type 3

Max execution time 1 s

Max Tries 10

6.1 Successful Solutions

Table 3 shows the solutions found for each problem with G3P with extended
grammars for training and test with 100 runs. The results are compared to the
previously achieved successful solutions of G3P from [3]. Of the eight problems
that require a char data type and have not been solved with G3P before, three
have been solved with the extended grammars, namely Pig Latin, Replace Space
with Newline and Syllables. Pig Latin is one that has not been solved with
PushGP either. Additionally, Mirror Image has been solved as well, probably
due to the additional list operations, which was not solved with the G3P with
previous grammars. Table 3 also includes the p-value for the Wilcoxon Rank sum
test on best test fitness of the two grammar approaches and shows a significant
difference for nearly all of the problems. This is not surprising as the grammar
has a massive influence on the search, as a function set has on normal GP.

The results also show that due to the increased search space, which is caused
by the additional functions added to the grammar, the number of successful
solutions decreases for some problems. Three problems, Compare String Lengths,
Even Squares and Vector Average, could not be solved anymore, but the success
rate of the first two was rather small before as well. Especially, Compare String
Lengths is highly overfit as 96 successful solutions were found on test, but none
generalizes on test. This is a problem that occurs on multiple problem instances
and has been noticed before [7].

Even though on the final experiments some problems, even those which
require char as data type are still not solved, in preliminary experiments Check-
sum and Double Letters have been solved with G3P with extended grammars as
well. Even then the success rate was rather small, but theoretically, it has been
found that they can be solved with the extended grammars as well.

204 S. Forstenlechner et al.

Table 3. Successful solutions found with G3P with extended grammars on training and
test with 100 runs as well as increase and decrease to the previous grammars in brack-
ets. The p-value shows if there is a significant difference in the best test performance
between the two different grammars with 0.05 as level of significance. A significant dif-
ference is highlighted in bold. Finally, the results of PushGP on the benchmark suite
from [8] and the difference to G3P with extended grammars in brackets are compared.

G3P PushGP
Problem Name Test Training p-value Test

(0muskcehC +0) 0 (+0) 8.74E-32 0 (+0)
Collatz Numbers 0 (+0) 0 (+0) 0.0991 0 (+0)
Compare String Lengths 0 (–2) 96 (–1) 8.06E-05 7 (+7)

(3sddOtnuoC –9) 4 (–8) 1.81E-15 8 (+5)
(0stigiD +0) 0 (+0) 0.0298 7 (+7)

Double Letters 0 (+0) 0 (+0) 0.0040 6 (+6)
Even Squares 0 (–1) 0 (–1) 0.5683 2 (+2)
For Loop Index 6 (–2) 9 (–11) 0.0006 1 (–5)

(13edarG +0) 63 (–18) 0.1005 4 (–27)
Last Index of Zero 44 (+22) 97 (+43) 5.71E-11 21 (–23)

(95naideM –20) 99 (–1) 0.0039 45 (–14)
Mirror Image 25 (+25) 89 (+38) 3.25E-18 78 (+53)
Negative To Zero 13 (–50) 24 (–42) 9.12E-07 45 (+32)
Number IO 83 (–11) 95 (–5) 1.21E-15 98 (+15)

(3nitaLgiP +3) 4 (+4) 4.02E-25 0 (–3)
Replace Space with Newline 16 (+16) 29 (+29) 5.08E-30 51 (+35)
Scrabble Score 1 (–1) 1 (–4) 0.0008 2 (+1)
Small Or Large 9 (+2) 39 (–12) 0.5493 5 (–4)

(37tsellamS –21) 100 (+0) 9.58E-05 81 (+8)
String Lengths Backwards 18 (–50) 20 (–48) 6.70E-17 66 (+48)
Sum of Squares 5 (+2) 5 (+2) 8.02E-05 6 (+1)
Super Anagrams 0 (+0) 43 (–1) 2.33E-34 0 (+0)

(93selballyS +39) 53 (+53) 4.28E-29 18 (–21)
Vector Average 0 (–16) 0 (–17) 6.94E-32 16 (+16)
Vectors Summed 21 (–70) 28 (–65) 1.84E-23 1 (–20)
Wallis Pi 0 (+0) 0 (+0) 3.03E-24 0 (+0)
Word Stats 0 (+0) 0 (+0) 0.7722 0 (+0)
X-Word Lines 0 (+0) 0 (+0) 2.56E-34 8 (+8)

Finally, Table 3 shows the results of PushGP taken from [8] compared to G3P
with extended grammars. According to [7], PushGP is able to solve Checksum
after the original dataset has been changed. The comparison shows that both
approaches have problems where one method is more capable to find solutions
than the other, but there does not seem to be a clear advantage over one or
the other. Some problems have been solved with PushGP that have currently
not been solved with G3P, but again the success rates of these problems are
very small, below 10, in most cases, which makes a comparison difficult. The low
success rate is an issue that needs to be addressed by both approaches.

Extending Program Synthesis Grammars for G3P 205

6.2 Char Analysis

The grammar for the char data type is used by 10 problems. The grammar
contains a rule <char> with productions for char variables, char constants and
all functions that return a char value. Therefore, checking the percentage of
nodes in individuals shows if GP is making use of the additional data type.
Figure 1 depicts this usage.

Fig. 1. Percentage of <char> nodes in individuals averaged over 100 runs over gener-
ations.

In the initial generation, the percentage of nodes being <char> is nearly
identical for some problems, which is expected as these problems require the
same data types, which means the grammars are nearly identical, except maybe
input and output variables. Therefore the grammar has the same structure and
the same number of possible nodes, which leads to this effect. The percentage
of <char> nodes used may seem small being between 0.5% and 1.5%, but con-
sidering the number of productions available in the grammar, it is rather high.
In case of almost all problems, the usage of <char> nodes is either constant
or increases over time, after a few generations. The only problem that seems
to slowly decrease the usage of <char> nodes is Digits. This can be explained
by how G3P is tackling the problems. While PushGP prints every integer for
Digits, G3P has to return a list of integers as it does not use print statements
and therefore does not necessarily need a char data type.

For some problems, especially Replace Space with Newline, Syllables, Super
Anagrams and Pig Latin, the lines are not as stable as for the other problems.
The reason is that solutions that solve the problem at least for training have
been found and runs are stopped as soon as this happens. Hence, the average
percentage might drop or increase. In most cases, a sudden drop has been found,
which shows that runs that use <char> nodes more often seem to be able to find
a successful solution earlier. This indicates that the char grammar improves the
search for successful solutions.

206 S. Forstenlechner et al.

6.3 Recursion Analysis

The percentage of recursion used can be checked in a similar way as in the
previous section for char. Figure 2 depicts the percentage of recursion nodes
used over generations. The initial percentage is lower than with <char>, because
there is only one recursion production rule in the grammar, whereas <char>
is used by multiple functions. Afterwards, it drops even lower for all problems
and is barely used overall. As explained in Sect. 4.2, to use recursion, a method
needs to be able to call itself and a stopping criterion. At the moment the GP
system can evolve a method to call itself, but at the same time has to evolve a
stopping criterion, which seems to make it too complicated to be used. Without
the stopping criterion, the evolved program runs into an infinite loop, which
leads to a stack overflow or a timeout by the G3P system. A way to improve this
might be to adapt the grammar that a stopping criterion is added to the same
production rule as the recursion to always have both added at the same time.
This could increase the chance to make G3P use recursion to solve problems.

Fig. 2. Percentage of recursion nodes in individuals averaged over 100 runs over gen-
erations.

7 Conclusion and Future Work

The difficulties of solving multiple problems of the general program synthesis
benchmark suite with a grammar design approach [3] have been discussed. As
some of this problems have been solved with another approach before, the func-
tionality of the grammars has been extended in various ways to be closer to pre-
vious approaches, without “cheating” by adding functionality not used before.
An important enhancement of the grammars is that an explicit char grammar
has been added as many problems operate on single characters instead of strings.

Extending Program Synthesis Grammars for G3P 207

Programmers are able to identify such characteristics of a problem easily, while
GP would have to discover such knowledge. As the benchmark suite proposes to
use char as its own data type, this additional information does not give G3P an
unfair advantage when comparing to other systems.

Afterwards, the extended grammars are used to tackle the program synthesis
benchmark suite and the results are compared to the grammar design of [3]. The
results show significant differences for nearly all problems and successful solu-
tions have been found for previously unsolved problems with G3P. One problem,
Pig Latin, has been successfully solved that was not solved by any other app-
roach before. Additionally, a comparison with PushGP has been made, as the
extended grammars are closer in functionality to PushGP as in [3].

Due to the increased search space created by the extended grammars,
a decrease of successful solutions found on previously solved problems was
expected. A way to dynamically adjust the functionality of grammars during
runs could help avoid this problem [16]. Even the success rates of newly solved
problems were rather low. This is a problem not only of G3P, but also of other
approaches, and should be addressed in the future to make program synthe-
sis with GP more usable outside of the research community as well. Current
approaches include smarter operators [4] or post-run simplifications [7], but fur-
ther research is required to increase success rates.

Acknowledgments. This research is based upon works supported by the Science
Foundation Ireland, under Grant No. 13/IA/1850.

References

1. Agapitos, A., Lucas, S.M.: Learning recursive functions with object oriented genetic
programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A.
(eds.) EuroGP 2006. LNCS, vol. 3905, pp. 166–177. Springer, Heidelberg (2006).
https://doi.org/10.1007/11729976 15

2. Forstenlechner, S.: Github repository: HeuristicLab.CFGGP: Provides context
free grammar problems for HeuristicLab (2016). https://github.com/t-h-e/
HeuristicLab.CFGGP. Accessed 22 Mar 2018

3. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: A grammar design pattern
for arbitrary program synthesis problems in genetic programming. In: McDermott,
J., Castelli, M., Sekanina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.) EuroGP 2017.
LNCS, vol. 10196, pp. 262–277. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-55696-3 17

4. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: Semantics-based crossover
for program synthesis in genetic programming. In: Lutton, E., Legrand, P., Par-
rend, P., Monmarché, N., Schoenauer, M. (eds.) EA 2017. LNCS, vol. 10764, pp.
58–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78133-4 5

5. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2011, pp. 317–330. ACM,
New York (2011)

6. Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with
lexicase selection. IEEE Trans. Evol. Comput. 19(5), 630–643 (2015)

https://doi.org/10.1007/11729976_15
https://github.com/t-h-e/HeuristicLab.CFGGP
https://github.com/t-h-e/HeuristicLab.CFGGP
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-78133-4_5

208 S. Forstenlechner et al.

7. Helmuth, T., McPhee, N.F., Pantridge, E., Spector, L.: Improving generalization of
evolved programs through automatic simplification. In: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2017, pp. 937–944. ACM,
Berlin, 15–19 July 2017

8. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceed-
ings of the 2015 on Genetic and Evolutionary Computation Conference, GECCO
15, pp. 1039–1046. ACM, Madrid, 11–15 July 2015

9. Katayama, S.: Recent improvements of MagicHaskeller. In: Schmid, U., Kitzel-
mann, E., Plasmeijer, R. (eds.) AAIP 2009. LNCS, vol. 5812, pp. 174–193. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11931-6 9

10. Keijzer, M., Ryan, C., Murphy, G., Cattolico, M.: Undirected training of run
transferable libraries. In: Keijzer, M., Tettamanzi, A., Collet, P., van Hemert,
J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 361–370. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31989-4 33

11. Kitzelmann, E.: Inductive programming: a survey of program synthesis techniques.
In: Schmid, U., Kitzelmann, E., Plasmeijer, R. (eds.) AAIP 2009. LNCS, vol. 5812,
pp. 50–73. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11931-
6 3

12. McKay, R., Hoai, N., Whigham, P., Shan, Y., O’Neill, M.: Grammar-based genetic
programming: a survey. Genet. Program. Evol. Mach. 11(3–4), 365–396 (2010)

13. O’Neill, M., Nicolau, M., Agapitos, A.: Experiments in program synthesis with
grammatical evolution: a focus on integer sorting. In: 2014 IEEE Congress on
Evolutionary Computation (CEC), pp. 1504–1511, July 2014

14. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in an Arbitrary Language. Kluwer Academic Publishers, Norwell (2003)

15. Pantridge, E., Helmuth, T., McPhee, N.F., Spector, L.: On the difficulty of bench-
marking inductive program synthesis methods. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion, GECCO 2017, pp. 1589–1596.
ACM, New York (2017)

16. Saber, T., Fagan, D., Lynch, D., Kucera, S., Claussen, H., O’Neill, M.: Multi-
level grammar genetic programming for scheduling in heterogeneous networks.
In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., Garćıa-Sánchez, P. (eds.)
EuroGP 2018. LNCS, vol. 10781, pp. 118–134. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-77553-1 8

17. Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution
with the push programming language. Genet. Program. Evol. Mach. 3(1), 7–40
(2002)

18. Helmuth, T., Spector, L.: Detailed problem descriptions for general program syn-
thesis benchmark suite. Technical report, School of Computer Science, University
of Massachusetts Amherst (2015)

19. Whigham, P.A.: Grammatical bias for evolutionary learning. Ph.D. thesis, Univer-
sity of New South Wales, Australia (1996)

20. Yu, T.: A higher-order function approach to evolve recursive programs. In: Yu, T.,
Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice III. GPEM,
pp. 93–108. Springer, Boston (2006). https://doi.org/10.1007/0-387-28111-8 7

https://doi.org/10.1007/978-3-642-11931-6_9
https://doi.org/10.1007/978-3-540-31989-4_33
https://doi.org/10.1007/978-3-642-11931-6_3
https://doi.org/10.1007/978-3-642-11931-6_3
https://doi.org/10.1007/978-3-319-77553-1_8
https://doi.org/10.1007/978-3-319-77553-1_8
https://doi.org/10.1007/0-387-28111-8_7

Filtering Outliers in One Step
with Genetic Programming

Uriel López1,2, Leonardo Trujillo1,2(B) , and Pierrick Legrand3,4,5

1 Tecnológico Nacional de México/I.T. Tijuana, Tijuana, BC, Mexico
{uriel.lopez,leonardo.trujillo}@tectijuana.edu.mx

2 BioISI, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
3 IMB, UMR CNRS 5251, 351 cours de la libération, Talence, France

4 Inria Bordeaux Sud-Ouest, Talence, France
5 University of Bordeaux, Bordeaux, France

pierrick.legrand@u-bordeaux.fr

Abstract. Outliers are one of the most difficult issues when dealing
with real-world modeling tasks. Even a small percentage of outliers can
impede a learning algorithm’s ability to fit a dataset. While robust regres-
sion algorithms exist, they fail when a dataset is corrupted by more than
50% of outliers (breakdown point). In the case of Genetic Programming,
robust regression has not been properly studied. In this paper we present
a method that works as a filter, removing outliers from the target vari-
able (vertical outliers). The algorithm is simple, it uses a randomly gen-
erated population of GP trees to determine which target values should
be labeled as outliers. The method is highly efficient. Results show that
it can return a clean dataset when contamination reaches as high as 90%,
and may be able to handle higher levels of contamination. In this study
only synthetic univariate benchmarks are used to evaluate the approach,
but it must be stressed that no other approaches can deal with such high
levels of outlier contamination while requiring such small computational
effort.

Keywords: Outliers · Robust regression · Genetic programming

1 Introduction

The main application domain for Genetic Programming (GP) continues to be
symbolic regression. The ability of GP to model difficult non-linear problems,
and to produce relatively compact models when appropriate bloat control is used
[1], makes it a good option in this common machine learning task. Unlike ran-
dom ensemble regression, SVM regression or Neural Networks, for example, GP
has the potential of delivering human-readable solutions that are also accurate
and efficient. However, like any data-driven approach to modeling, much of the
quality of the final solution will be determined by the nature of the training
data; i.e.; even the best algorithm cannot produce a model when the output

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 209–222, 2018.
https://doi.org/10.1007/978-3-319-99253-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_17&domain=pdf
http://orcid.org/0000-0003-1812-5736

210 U. López et al.

variable shows no relationship to the input variables. One particularly difficult
case in learning is when the training data is corrupted by outliers. Indeed, outlier
data points can severely skew the learning process and bias the search towards
unwanted regions in solution space.

A common way to deal with this situation is to apply a filtering process
or to use a robust objective measure, such that performance estimation is not
affected by the presence of outlier points [2]. Such methods can handle outliers
effectively under the assumption that they are relatively rare; i.e. outliers repre-
sent a minority of the data points in the dataset. However, this work considers
an extreme case; where the percentage of outliers far outnumbers the inliers,
reaching as high as 90% of the entire training set1. In this case, even the most
robust objective function cannot properly guide a learning algorithm, and it is
the same for GP.

One way to deal with outliers is to use specialized sampling techniques such
as Random Sampling Consensus (RANSAC) [3], which is often used in computer
vision systems for data calibration [4]. Indeed, this method has been successfully
combined with GP to derive accurate models even when the data contamination
is above the breakdown point; i.e., the number of outliers is above 50%. How-
ever, a noteworthy drawback of such a method is that its computational cost is
extremely high, with the number of expected samples required to build a suffi-
ciently accurate model increasing exponentially with the total contamination in
the dataset. However, and this cannot be stressed enough, in current literature
no other methods exist that can deal with such extreme cases of data contam-
ination in an automatic manner [5–7]. In many cases, the best suggestion is to
simply inspect the data visually and clean it manually. In the case of GP, for
instance, such conditions are never even tested, not even for robust GP systems
[8–10].

The present work fills this notable gap by presenting an approach to clean
highly contaminated datasets in regression tasks. Particularly, this work con-
siders the case where the output variable is highly contaminated by outliers,
measurements that deviate sharply from the true signal that is trying to be
modeled. The proposed method can be used as a preprocessing step to clean the
data, applied before the actual modeling process is performed. The method is
efficient, requiring the same amount of computational effort that is required to
evaluate a single GP population. It uses a single randomly generated popula-
tion to determine which data points are outliers and which are not. Besides this
effort, all that is required is to order the population based on fitness, and with
that an efficient criterion for cleaning the data is proposed. The method can be
integrated not just with GP, but with any regression method. If used with GP,
however, then the outlier removal process is obtained basically for free since the
initial population of the GP search could be used to perform the filtering at
generation 0.

1 In fact, while the reported experiments only consider up to this level of data con-
tamination, it is straightforward to extend our approach to more severe scenarios.

Filtering Outliers in One Step with GP 211

The proposed method operates under the assumption that outlier points are
more difficult to model than inliers, when the models (GP trees) are generated
randomly. While we do not derive any formal proofs that show that this assump-
tion will hold in general, the experimental work confirms that this assumption is
valid for the set of test cases used to evaluate the proposal. We test the algorithm
on datasets that are contaminated by as much as 90% of outliers, and are able
to remove a sufficiently large proportion of the outlier instances, it then becomes
feasible for a standard robust regression method to tackle the problem.

The remainder of this paper proceeds as follows. Section 2 reviews basic con-
cepts on robust regression and outlier detection. Then, Sect. 3 presents our outlier
filter, the reader will notice that the most important characteristic of the pro-
posal is its simplicity; the section also reviews related works. Section 4 presents
the experimental work, following the general methodology of [2]. Finally, Sect. 5
provides a discussion, outlines our main conclusions and describes future work.

2 Background

2.1 Outliers

All regression and automatic modeling systems are heavily influenced by the
presence of anomalies in the training data [7]. These anomalies are usually
referred to as outliers, and can be present in the input variables, the output
variable, or in both. Outliers can be generated by several causes, such as gross
human error, equipment malfunction, extremely severe random noise or missing
data [5–7]. When outliers are rare, then it is possible to define them as data
points that are very different from the rest of the observations included in the
dataset. However, such a definition is not useful when the number of outliers
exceeds the number of inliers (non-outlier data points). Moreover, it is impor-
tant to distinguish between outliers and just signal noise. In our opinion, the two
most important distinctions are: (1) noise can be effectively modelled, and thus
filtered; and (2) outlier points deviate from inliers at a large scale, i.e. outliers
are anomalous w.r.t. the inliers, which is not a formal definition but in practice it
is a useful one. Therefore, since in this work we are concerned with the presence
of outliers in the output or target variable in regression problems (also called
vertical outliers), we can use the following definition for outliers [2]:

Definition 1. An outlier is a measurement of a system that is anomalous with
respect to the true behavior of the system.

While this definition may be seen as a tautology, there is an aspect of it that
is not immediately obvious. Notice that we are defining an outlier relative to the
“true behavior of the system”, whether this behavior is observable or not. The
definition is not based on the observed behavior in a representative dataset from
which we can pose a regression or learning task. This is crucial, because it may
seem counter intuitive to have a dataset where the majority of samples are in
fact outliers. However, if we know the true behavior of a system, in a controlled

212 U. López et al.

experiment with synthetic problems, it is straightforward to build a dataset
where the majority of points are outliers based on Definition 1. Moreover, such
a scenario is often encountered in real-world problems as well, one well-known
domain is computer vision [4].

2.2 Robust Regression

First, let us define the standard regression problem. Given a training dataset
T = {(xi, yi); i = 1, ..., n}, the goal is to derive a model that predicts yi based on
xi, where xi ∈ R

p and yi ∈ R. In GP literature we can refer to each input/output
pair (xi, yi) as a fitness case, a training instance or a data point. For linear
regression, the model is expressed as

yi = β0 + β1xi1 + · · · + βpxip + εi i = 1, .., n (1)

where the model parameters β = (β0, β1, ..., βp) ∈ R
p+1, can be estimated by

̂β0, ..., ̂βp using the least squares method [11], which can be expressed as

(̂β0, ..., ̂βp) ← arg min
β∈Rp+1

n
∑

i=1

r2
i , (2)

to find the best fit parameters of the linear model, where ri denotes the residuals
ri(̂β0, ..., ̂βp) = yi − (̂β0 + ̂β1xi1 + · · ·+ ̂βpxip) and the errors εi have an expected
value of zero [12]; if the summation in Eq. 2 is divided by n, the error measure
that must be minimized is the mean squared error (MSE). The issue with outliers
is that they bias the standard objective measures defined above (and others,
such as regularized approaches). In classical regression, there are several robust
regression methods that deal with the presence of outliers by modifying the
objective function used to perform the regression. For instance, Least Median
Squares (LMS) [13]

(̂β0, ..., ̂βp) ← arg min
β0,...,βp

med {r2
1, ..., r

2
n} (3)

where med represents the median. Another approach is Least Trimmed Squares
(LTS) [13], given by

(̂β0, ..., ̂βp) ← arg min
β0,...,βp

hp
∑

i=1

{r2
1, ..., r

2
n}i:n. (4)

where hp with p ≤ hp ≤ n is typically set to hp = (n + p + 1)/2 for maxi-
mum breakdown point, and p (size of the sample) is an algorithm parameter.
In the case of LMS, the idea is to use the median of the residuals instead of
an aggregate fitness such as the average error. A generalization of this method
is quantile regression [14]. Moreover, similar approaches have been applied with
more sophisticated regression methods, such as random decision trees [15]. LTS

Filtering Outliers in One Step with GP 213

searches for a subset of training cases that give the lowest error, since the lowest
error will be obtained when only inliers are present in the subset. Moreover,
there is an efficient implementation of this algorithm called FAST-LTS; a review
of robust methods can be found in [16]. These methods are indeed robust for
linear regression, but only when the number of outliers does not exceed 50% of
the training data, which is referred to as the breakdown point of the method.
Beyond this breakdown point, these methods also fail, but consider that stan-
dard LS has a breakdown point of 0 and theoretically the 50% breakdown cannot
be exceeded for linear regression problems. Moreover, recently it was shown that
combining LMS and LTS with GP can allow it to solve symbolic regression prob-
lems with the same order of accuracy when the dataset is contaminated by as
much as 50% of outliers, empirically showing that their breakdown point holds
in symbolic regression with GP [2].

For problems where the contamination of the dataset is above 50%, sampling
and approximate methods must be used. For instance, one approach is RANSAC
[3], a sampling method to solve parameter estimation problems where the con-
tamination level exceeds 50%. RANSAC has proven to be very useful in at least
one domain, computer vision [4], and many different version of the algorithm
have been derived such as the M-estimator Sample Consensus (MSAC), the
Maximum Likelihood Estimation Sample and Consensus (MLESAC) [17], and
the Optimal RANSAC algorithm [18]. Moreover, [2] has also shown that combin-
ing RANSAC with GP can achieve robustness in symbolic regression modeling
in extreme contamination scenarios, with empirical evidence presented for up to
90% contamination by outliers. The main drawback with RANSAC is that it
requires multiple random samples of the dataset, which have a low probabil-
ity of being sufficiently clean (composed primarily by inliers) when the original
dataset is highly contaminated, making a computationally expensive method2.

3 Outlier Removal with Genetic Programming

Before describing the proposed algorithm, we must first state the main assump-
tion on which it is based. Consider a training set T = {(xi, yi)} where some
fitness cases are inliers and other are outliers, where the l-th fitness case repre-
sents an outlier while the j-th fitness case represents an inlier. The assumption
is that for a randomly generated GP tree (model or program) K, there is a high
probability that the residual rl is larger than the residual rj . In other words,
the residuals on the outliers will be larger than the residuals on the inliers for
randomly generated models. While not at all obvious, there are some clear moti-
vations for this assumption. First, random GP trees will only be able to detect
simple and coarse relationships between the input and output variables, what
can also be considered to be as low-frequencies in the signal. On the other hand,
outliers will mostly appear as singularities in the training data, or high-frequency
2 While it would be relatively simple to parallelize the algorithm, since all samples are

taken independently, the cost can still become quite high if the modelling is done
with GP.

214 U. López et al.

components. Second, it is conceivable that a particular program might actually
produce a low residual for one (or a few) outlier(s), and in this cases the assump-
tion will not hold. However, since outliers do not follow a particular model (they
are not noise), then the residuals in all other outliers can be expected to be rela-
tively high. Finally, even if the majority of points in the training set are outliers
this assumption can be expected to hold since the models are not fitted to the
training data; i.e. the GP trees do not learn the outliers since they are randomly
generated.

In what follows we will define an algorithm for detecting outliers based on
this assumption and validate it in the experimental work reported afterward.

3.1 Proposed Algorithm

Based on the previous assumption, the proposed filtering process is summarized
in Algorithm 1. The main inputs are the training set T of size n, and a percentile
parameter ρ which defines the percentage of fitness cases that will be returned.
In step 1, Ramped Half and Half is used to generate a total of p GP trees, using
a specified function set F and a maximum depth d. The terminal set required
to generate the random models is always composed by the input variables and
randomly generated constants in the range [−1, 1]. Several informal tests showed
that the method was quite robust to parameters d, p and F .

In step 2, the residuals of each GP tree on each fitness case is computed,
constructing the matrix of residuals Rp×n, where each element ri,j is the residual
from the i-th model Ki (GP tree) on the j-th training instance xj ∈ T.

Step 3 is the key step, where the information contained in Rp×n is used to sort
the training set and identify outliers, working under the assumption that outliers
will have higher associated residuals for most GP trees. Therefore, we compute
the column wise median of Rp×n, generating a vector V of size n containing
the median residual of each training instance evaluated over all random models.
Therefore, set C will contain the ρ% of training instances from T that have the
lowest associated median residuals.

Algorithm 1. Proposed algorithm for outlier removal.
Input: Contaminated training set T of size n.

Input: Cut-off percentile ρ in(0, 1].

Input: Number of GP trees p.

Input: Function set F and model size parameter d.

Output: Set C ⊂ T of inliers.

1. Generate a random set P of models k : Rm → R,

with |P | = p using F and d.

2. Obtain the matrix of residuals Rp×n such that each ri,j is the

residual from each model ki ∈ P and each training instance

xj ∈ T

3. Sort T based on the column wise median vector of Rp×n, and return the lowest ρ% training

instances in set C.

Filtering Outliers in One Step with GP 215

3.2 Discussion

There are two general strategies to deal with outliers. The first approach is to
use the regression process to detect outliers and to basically build a model while
excluding the outliers. This approach is taken by most of the robust techniques
described above, such as LMS, LTS and even RANSAC, since the determination
of which points are outliers depends on obtaining the residuals from a fitted
model.

The second approach is to use a filtering process. A particularly well known
filter is the Hampel identifier, where a data point (xi, yi) is tagged as an outlier
if

| yi − yo |> tζ (5)

where yi is the value to be characterized, yo is a reference value, ζ is a measure
of data variation, and t is a user defined threshold [7]. The Hampel identifier
uses a window W centered on xi to compute yo and ζ, with yo set to the median
of all yj in W and ζ is 1.4826×MAD (Mean Absolute Deviation) within W ;
the value 1.4826 is chosen so that the results are not biased towards a Gaussian
distribution.

The proposed method can be considered to be a hybrid between these two
approaches. On the one hand, it is meant as a preprocessing step, used to remove
outliers before another learning algorithm is applied to the data, thus it can be
considered to be a filter. On the other hand, it is also based on the residuals
computed for each training instance. However, unlike other robust methods, the
residuals are derived from a random sampling of models, basically a population
of GP trees, and learning or parameter fitting is not performed at all.

3.3 Related Works in GP

As stated above, [2] presents several results that are relevant to robust regression
in GP. That work showed that both LMS and LTS are applicable to GP, and
empirically their breakdown also applies to GP. Also, given the general usefulness
of sampling the training instances to perform robust regression [16], that work
also tested the applicability of sampling techniques in GP, such as interleaved
sampling [19] and Lexicase selection [20]. Results showed that none of those
approaches were useful for robust regression. The best results were obtained
using RANSAC for sampling the training set and applying LMS on each selected
subset, achieving almost equal test set prediction than directly learning on a
clean training set. The method was called RANSAC-GP. The main drawback
of RANSAC-GP is the high computational cost, since GP had to be executed
on each sample and many samples were required as the percentage of outliers
increases. Moreover, one underlying assumption of RANSAC-GP is that the GP
search will be able to find a fairly accurate model on a clean subset of training
examples, since models obtained from different samples will be discriminated
based on their training performance. This assumption might not hold for some
real-world problems.

216 U. López et al.

Robust GP regression has not received much attention in GP, but some
works are notable. In [9] GP and Geometric Semantic Genetic Programming
(GSGP) are compared to determine which method was more sensitive to noisy
data. The training sets are corrupted with Gaussian noise, up to a maximum
of 20% of the training instances, concluding that GSGP is more robust when
the contamination is above 10%. However, outliers are not considered. Another
example is [10], in this case focusing on classification problems with GP-based
multiple feature construction when the data set is incomplete, which can also
considered to be outliers. The proposed method performs well, even when there
is up to 20% of missing data, but extreme cases such as the ones tested here are
not reported. A more related work is [21], where the authors build ensembles
of GP models evolved using a multiobjective approach, where both accuracy
and program size are minimized. The proposed approach is based on the same
general assumption of many techniques intended to be robust to outliers, that
model performance will be worse on outlier points that inliers. The ensembles
are built from hundreds of indenpendent GP runs, a process that is much more
expensive than the one proposed in the present work. Moreover, results are only
presented for a single test case, where it is not known how many outliers are
present, but results indicate that it is not higher than 5%. The method also
requires human interpretation and analysis of the results, while the method
proposed in this work is mostly automated except for the algorithm parameters.

4 Experimental Evaluation

4.1 Experimental Setup

As a first experimental test, we use the same procedure followed in [2]. First,
we use the synthetic problems defined in Table 1. The datasets for each problem
consist of 200 data points; i.e. input/output pairs of the form (xi, yi). The inde-
pendent variable (input) was randomly sampled using a uniform distribution
within the domain of each problem (see Table 1), and the corresponding value
of the dependent variable (output) was then computed with the known model
syntax. These represent the clean data samples or inliers of each problem. Then,
these datasets were contaminated by different amounts of outliers, from 10%
to 90% contamination in increments of 10%, for each. Thus, for each problem
we have nine different datasets, each with a different amount of outliers. The
proposed method is executed 30 times on each dataset, for each problem and for
each level of contamination, to evaluate the robustness of the approach. To turn
a particular fitness case (xi, yi) into an outlier, we first solve inequality 5 for yi,
such that

yi > yo + tζ

or yi < yo − tζ.
(6)

The decision to add or subtract from yi, as defined in Eq. 5, is done randomly,
and the value of t is set randomly within the range [10, 100] to guarantee a large

Filtering Outliers in One Step with GP 217

Table 1. Benchmark problems used in this work, where U [a, b, c] denotes c uniform
random samples drawn from a to b, that specifies how the initial training sets are
constructed consisting solely of inliers.

Objective function Training set

x4 + x3 + x2 + x U[−1, 1, 200]

x5 − 2x3 + x U[−1, 1, 200]

x3 + x2 + x U[−1, 1, 200]

x5 + x4 + x3 + x2 + x U[−1, 1, 200]

x6 + x5 + x4 + x3 + x2 + x U[−1, 1, 200]

amount of deviance from the original data, with ζ computed by the median of
all yi within the function domain of each symbolic regression benchmark.

The parameters for the proposed method are set as follows. The function
set is given by F = {+,−,×,÷, sin, cos} where ÷ is the protected division, the
maximum tree depth is set to d = 3, and the number of randomly generated
models is p = 100. The percentile parameter ρ is evaluated from 10% to 90%
in 10% increments. The method was coded using the Distributed Evolutionary
Algorithms in Python library (DEAP) [22], basically building on top of the
population initialization function.

4.2 Results

Figure 1 presents the main results. In each plot, the horizontal axis corresponds
to the value of the ρ parameter, while the vertical axis represents the level
of contamination in the output set C. In other words, the vertical axis shows
the percentage of inliers contained in the clean set C, which in the best case
would be 100%. However, it is important to remember, particularly when the
contamination is above 50%, that a desired goal is for the vertical axis to be as
high as possible, but in practice it can be sufficient if it is above 50%. In such a
case it would be possible to use a robust regression method to solve the resulting
modeling problem with set C. Each plot corresponds to one of the benchmarks
from Table 1, and each shows nine curves, one for each contamination level. Each
curve corresponds to the median performance over all 30 executions on each of
the contaminated training sets.

All of the curves show a regular and informative pattern. First, on each
problem the top curve corresponds to the lowest level of contamination 10%.
As ρ increases, more points are returned as possible inliers but might in fact be
outliers; i.e., C is larger, therefore the probability of the set being completely
clean gradually declines. While the 10% level of contamination seems rather
low in our tests, it is far above the breakdown point of non-robust regression
methods. However, for this simplest case the percentage of inliers never falls
below 90%. Second, as the level of contamination increases the performance
on each problem gradually degrades, but not in a significant manner. Take for

218 U. López et al.

Fig. 1. Performance on the benchmark problems. The horizontal axis corresponds to
the percentile parameter ρ, and the vertical axis represents the percentage of inliers in
the resulting clean set C. Each curve represents the median value performance over 30
independent runs for each level of contamination.

instance the most extreme case, when contamination is at the 90% level. Using
a conservative value for ρ of only 10%, the set returned contains a high amount
of inliers. In 4 problems it is above 90% and in only one case it falls to about
70%. In this latter case, Benchmark 3, this means that the new training set C
now contains only 30% of outliers instead of the original 90%. This is useful,
since it is now possible to build a model using a robust regression approach,
such as LMS or LTS. For all other contamination levels, the performance is even
more encouraging. For example, for contamination at 80% or lower it would
be possible to set ρ = 30% and produce a clean dataset that contains less than
40% of outliers. These are highly encouraging results, showing that the proposed

Filtering Outliers in One Step with GP 219

Table 2. Median performance on Benchmark 1, shown as the percentage of inliers in
the returned clean set C; bold values represent the level of contamination where the
number of detected inliers falls below 100%.

ρ value

Outliers ρ = 10 ρ = 20 ρ = 30 ρ = 40 ρ = 50 ρ = 60 ρ = 70 ρ = 80 ρ = 90

10% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.3

20% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 96.8 88.8

30% 100.0 100.0 100.0 100.0 100.0 100.0 96.4 87.1 77.7

40% 100.0 100.0 100.0 100.0 99.0 95.0 84.6 75.0 66.6

50% 100.0 100.0 100.0 100.0 94.0 82.5 71.4 62.5 55.5

60% 100.0 100.0 100.0 92.5 78.0 66.6 57.1 50.0 44.4

70% 100.0 100.0 93.3 72.5 60.0 50.0 42.8 37.5 33.3

80% 100.0 90.0 65.8 50.0 40.0 33.3 28.5 25.0 22.2

90% 90.0 50.0 33.3 25.0 20.0 16.6 14.2 12.5 11.1

Table 3. Median performance on Benchmark 3, shown as the percentage of inliers in
the returned clean set C; bold values represent the level of contamination where the
number of detected inliers falls below 100%.

ρ value

Outliers ρ = 10 ρ = 20 ρ = 30 ρ = 40 ρ = 50 ρ = 60 ρ = 70 ρ = 80 ρ = 90

10% 100.0 100.0 100.0 100.0 100.0 100.0 99.2 97.5 94.4

20% 100.0 100.0 100.0 100.0 100.0 98.3 95.7 90.9 85.5

30% 100.0 100.0 100.0 100.0 99.0 94.5 89.2 81.8 74.4

40% 100.0 100.0 100.0 99.3 93.0 87.5 79.2 71.2 63.8

50% 100.0 100.0 100.0 93.1 84.5 75.4 66.4 58.7 52.7

60% 100.0 100.0 94.1 80.0 71.0 62.5 54.2 46.8 43.3

70% 100.0 100.0 76.6 63.7 55.0 45.4 40.0 35.6 32.2

80% 100.0 75.0 56.6 45.0 37.0 30.8 27.1 23.7 21.1

90% 70.0 40.0 28.3 21.2 18.0 15.0 13.5 12.1 10.5

method can identify outliers fairly easily using the proposed configuration. To
better grasp these results, the numerical results for Benchmark 1 and Benchmark
3 are respectively shown in Tables 2 and 3. In each table, the bold value indicates
when the median percentage of returned inliers falls below 100%.

5 Conclusions and Future Work

Dealing with outliers is a notoriously hard problem in regression. The algorithm
presented in this work can effectively clean highly contaminated datasets. Stan-
dard regression techniques breakdown with even a single outlier in the training

220 U. López et al.

set, while robust regression techniques fail when the contamination by outliers is
greater than 50% on the training set. In such a cases, sampling techniques such
as RANSAC are required, but the number of samples required grows rapidly
with the percentage of outliers.

The proposed algorithm uses a random GP population to determine which
training instances are inliers and which are not. It works under the assumption
that outliers will be more difficult to model for randomly generated GP trees
than inliers are; i.e. the residuals on outliers will be larger than on inliers. While
robust regression methods also work under this assumption, this only holds after
the model has been tuned, after learning has been performed. Moreover, this
will only be possible if outliers represent a minority in the training set. On
the other hand, the proposed algorithm does not perform any learning, basing
its decision entirely on a random set of models. The proposed algorithm seems
related to several other machine learning approaches. As stated above, it is
obviously related to robust regression methods, particularly quantile regression,
but without performing any model fitting. It is also related to RANSAC, since
it performs a random sampling, but of models instead of training instances.

Results are encouraging, compared to other methods, only RANSAC can
attempt to deal with problems where the level of contamination exceeds 50%.
Take for instance the Hampel identifier, it would be useless since the median
value in the dataset would be an outlier. Moreover, while RANSAC can deal
with similar problems, its computational cost can become excessive and depends
on the ability of the learning or modeling algrithm to extract relatively accurate
models [2]. The proposed method is efficient, since it only requires generating
and evaluating a single GP population.

Future work will focus on the following. First, extend the evaluation to real-
world multi-variate problems, a more challenging scenario. Second, determine
how specific parameters of the proposed algorithm affect performance, partic-
ularly the number of random models generated. Third, attempt to determine
a general setting for ρ, at least experimentally. Fourth, clearly define how the
proposed algorithm relates to other robust regression and learning algorithms.
Finally, extend the method to deal with outliers in the input variables.

Acknowledgments. This research was funded by CONACYT (Mexico) Fron-
teras de la Ciencia 2015-2 Project No. FC-2015-2:944, BioISI R&D unit,
UID/MULTI/04046/2013 funded by FCT/MCTES/PIDDAC, Portugal, and first
author supported by CONACYT graduate scholarship No. 573397.

References

1. Trujillo, L., et al.: Neat genetic programming: controlling bloat naturally. Inf. Sci.
333, 21–43 (2016)

2. López, U., Trujillo, L., Martinez, Y., Legrand, P., Naredo, E., Silva, S.: RANSAC-
GP: dealing with outliers in symbolic regression with genetic programming. In:
McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.)
EuroGP 2017. LNCS, vol. 10196, pp. 114–130. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-55696-3 8

https://doi.org/10.1007/978-3-319-55696-3_8
https://doi.org/10.1007/978-3-319-55696-3_8

Filtering Outliers in One Step with GP 221

3. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24(6), 381–395 (1981)

4. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd
edn. Cambridge University Press, Cambridge (2004). ISBN 0521540518

5. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. 41(3), 15:1–15:58 (2009)

6. Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell.
Rev. 22, 85–126 (2004)

7. Pearson, R.: Mining Imperfect Data: Dealing with Contamination and Incomplete
Records. Society for Industrial and Applied Mathematics. SIAM, Philadelphia
(2005)

8. Kotanchek, M.E., Vladislavleva, E.Y., Smits, G.F.: Symbolic regression via genetic
programming as a discovery engine: insights on outliers and prototypes. In: Riolo,
R., O’Reilly, U.M., McConaghy, T. (eds.) Genetic Programming Theory and Prac-
tice VII. Genetic and Evolutionary Computation, pp. 55–72. Springer, Boston
(2010). https://doi.org/10.1007/978-1-4419-1626-6 4

9. Miranda, L.F., Oliveira, L.O.V.B., Martins, J.F.B.S., Pappa, G.L.: How noisy data
affects geometric semantic genetic programming. In: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2017, pp. 985–992. ACM,
New York (2017)

10. Tran, C.T., Zhang, M., Andreae, P., Xue, B.: Genetic programming based feature
construction for classification with incomplete data. In: Proceedings of the Genetic
and Evolutionary Computation Conference. GECCO 2017, pp. 1033–1040. ACM,
New York (2017)

11. Rousseeuw, P.J.: Least median of squares regression. J. Am. Stat. Assoc. 79(388),
871–880 (1984)

12. Alfons, A., Croux, C., Gelper, S.: Sparse least trimmed squares regression for
analyzing high-dimensional large data sets. Ann. Appl. Stat. 7(1), 226–248 (2013)

13. Giloni, A., Padberg, M.: Least trimmed squares regression, least median squares
regression, and mathematical programming. Math. Comput. Model. 35(9), 1043–
1060 (2002)

14. Bertsimas, D., Mazumder, R.: Least quantile regression via modern optimization.
ArXiv e-prints (2013)

15. Meinshausen, N.: Quantile regression forests. J. Mach. Learn. Res. 7, 983–999
(2006)

16. Hubert, M., Rousseeuw, P.J., Van Aelst, S.: Statist. Sci. High-breakdown robust
multivariate methods 23, 92–119 (2008)

17. Torr, P.H., Zisserman, A.: MLESAC: a new robust estimator with application to
estimating image geometry. Comput. Vis. Image Underst. 78(1), 138–156 (2000)

18. Hast, A., Nysjö, J., Marchetti, A.: Optimal RANSAC-towards a repeatable algo-
rithm for finding the optimal set (2013)

19. Gonçalves, I., Silva, S.: Balancing learning and overfitting in genetic programming
with interleaved sampling of training data. In: Krawiec, K., Moraglio, A., Hu,
T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 73–84.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0 7

20. Spector, L.: Assessment of problem modality by differential performance of lexicase
selection in genetic programming: a preliminary report. In: Proceedings of the
Fourteenth International Conference on Genetic and Evolutionary Computation
Conference Companion, GECCO Companion 2012, pp. 401–408. ACM (2012)

https://doi.org/10.1007/978-1-4419-1626-6_4
https://doi.org/10.1007/978-3-642-37207-0_7

222 U. López et al.

21. Kotanchek, M., Smits, G., Vladislavleva, E.: Pursuing the pareto paradigm: tour-
naments, algorithm variations and ordinal optimization. In: Riolo, R., Soule, T.,
Worzel, B. (eds.) Genetic Programming Theory and Practice IV. Genetic and Evo-
lutionary Computation. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
0-387-49650-4 11

22. Fortin, F.A.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13,
2171–2175 (2012)

https://doi.org/10.1007/978-0-387-49650-4_11
https://doi.org/10.1007/978-0-387-49650-4_11

GOMGE: Gene-Pool Optimal Mixing
on Grammatical Evolution

Eric Medvet(B), Alberto Bartoli, Andrea De Lorenzo, and Fabiano Tarlao

Department of Engineering and Architecture, University of Trieste, Trieste, Italy
emedvet@units.it

Abstract. Gene-pool Optimal Mixing Evolutionary Algorithm
(GOMEA) is a recent Evolutionary Algorithm (EA) in which the inter-
actions among parts of the solution (i.e., the linkage) are learned and
exploited in a novel variation operator. We present GOMGE, the exten-
sion of GOMEA to Grammatical Evolution (GE), a popular EA based on
an indirect representation which may be applied to any problem whose
solutions can be described using a context-free grammar (CFG). GE is
a general approach that does not require the user to tune the internals
of the EA to fit the problem at hand: there is hence the opportunity
for benefiting from the potential of GOMEA to automatically learn and
exploit the linkage. We apply the proposed approach to three variants
of GE differing in the representation (original GE, SGE, and WHGE)
and incorporate in GOMGE two specific improvements aimed at coping
with the high degeneracy of those representations. We experimentally
assess GOMGE and show that, when coupled with WHGE and SGE, it
is clearly beneficial to both effectiveness and efficiency, whereas it delivers
mixed results with the original GE.

Keywords: Genetic programming · Linkage · Family of Subsets
Representation

1 Introduction

Evolutionary Algorithms (EAs) are a powerful tool for solving complex problems.
One motivation for their wide adoption is that the user is not required to provide
a model for the problem at hand: in most cases, it is up to the EA to figure
out how the parts of the solution (w.r.t. the representation employed in that
EA) interact in determining the solution quality. However, actually knowing the
model and being able to exploit its knowledge may be crucial to determine the
effectiveness of the EA.

A model-based EA has been recently proposed for achieving both goals, i.e.,
the ability to know and exploit the model without requiring any user-provided
specification of the model itself. The Gene-pool Optimal Mixing Evolution Algo-
rithm (GOMEA) [1] is a state-of-the-art approach for solving discrete optimiza-
tion problems and has been carefully designed for exploiting the interactions
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 223–235, 2018.
https://doi.org/10.1007/978-3-319-99253-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_18&domain=pdf

224 E. Medvet et al.

among parts of a solution, i.e., the linkage. GOMEA is based on several crucial
contributions: an internal representation of the linkage; a method for deriving
the linkage from the population; a novel genetic operator (Gene-pool Optimal
Mixing, GOM) in which the individual iteratively receives from random donors
some portions of the genetic material defined by the linkage.

We here present GOMGE, i.e., the extension of GOMEA to Grammatical
Evolution (GE) [2]—a form of Genetic Programming (GP). GE particularly fits
the two aforementioned goals pursued by GOMEA, because it is really a general
purpose EA. In facts, key for GE success is that it can tackle any problem whose
solutions may be described by means of a context-free grammar (CFG). The
user is hence not required to know and tune the internals of the EA: he can
obtain a solution for the problem at hand by simply providing the CFG and a
fitness function. Indeed, GE has been widely used in many different applications:
e.g., generation of string similarity indexes suitable for text extraction [3], road
traffic rules synthesis [4], automatic design of analog electronic circuits [5], and
even the design of other optimization algorithms [6].

Internally, GE operates on individuals described with an indirect representa-
tion: genetic operators are applied to bit-string genotypes; then, bit-strings are
transformed into solutions (i.e., strings of the language defined by the problem-
specific CFG) by means of a genotype-phenotype mapping function. The latter,
which essentially defines the individual representation of GE, favored the adop-
tion of this EA, since it allowed building on the vast knowledge about manipula-
tion of bit-string genotypes. On the other hand, extensive research on the prop-
erties of GE representation showed that it has many drawbacks [7–9]. Indeed,
beyond inspiring a large debate among scholars which also concerned about the
aims and methods for designing an EA representation [10–12], the drawbacks of
GE representation also stimulated the recent arising of two variants—Structured
GE (SGE) [13] and Weighted Hierarchical GE (WHGE) [14]—mainly consisting
in a different genotype-phenotype mapping function and, hence, a different rep-
resentation.

We applied GOMGE to the three mentioned variants of GE (the original
GE, SGE, and WHGE) and incorporated in GOMGE two small modifications
motivated by the need of coping with the degeneracy of those representations,
i.e., the tendency to map many genotypes to the same phenotype [7,8]. Our
work has a twofold aim: (a) extend the benefit in effectiveness delivered by
GOMEA to GE, hence further boosting its practical applicability, and (b) shed
new lights on the three representations, in particular concerning their proneness
to exhibit “good” linkage, i.e., a linkage which can actually be exploited to
improve the effectiveness of the EA. The latter point is of particular interest for
better understanding both GOMEA (and its linkage learning method) and GE
representations: in facts, being based on an indirect representation, the linkage
observed in GE is the result of the combination of interactions between genes
which occur during the genotype-phenotype mapping and those related to the
problem at hand.

GOMGE: Gene-Pool Optimal Mixing on Grammatical Evolution 225

We performed an extensive experimental evaluation considering three GE
variants with four linkage models applied to four benchmark problems. The
results show that GOMGE does improve the effectiveness and efficiency of both
SGE and WHGE, whereas it delivers mixed results with GE.

The remainder of the paper is organized as follows. In Sect. 2, we briefly
survey previous studies relevant to the present paper. In Sects. 3 and 3.1, we
describe the standard search algorithm used in GE and GOMGE, respectively.
In Sect. 4, we discuss the results of our experimental evaluation. Finally, in Sect. 5,
we summarize the findings and draw the conclusions.

2 Related Works

GOMEA [1] has been extended to different EAs or macro-categories of problems:
to GP in GOMEA-GP [15], where a novel approach is proposed for identifying
and encapsulating relevant building blocks; to real-valued (RV) optimization
in RV-GOMEA [16]; to multi-objective (MO) optimization problems in MO-
GOMEA [17]. GOMGE is the first application of GOMEA to GE.

There have been several attempts to exploit some form of knowledge of the
model underlying the problem for improving the effectiveness of GE. These
efforts were usually aimed at discovering useful building blocks, i.e., reusable com-
ponents of the solutions. Position-independent GE (πGE) [18] proposed a novel
genotype-phenotype mapping in which the non-terminal symbol to be derived
was chosen using the information in the genotype instead of following a left-to-
right order. Decoupling non-terminal derivation from the non-terminal choice
was expected to favor the emergence of building blocks, but no experimental
evidence of the desired effect was provided. A different approach was instead
proposed in [19] and, more recently, in [20]. In both cases, the aim is to modify
the grammar to discover new problem-specific building blocks and hence improve
the search effectiveness; the two cited papers, however, greatly differ in the way
they pursue this goal. In [19] a user-defined “universal grammar” related to the
class of considered problems (e.g., symbolic regression) is available and part of
the genotype is devoted to encode a more specific grammar which describes the
actual solution space. In [20], a two phases process is proposed: in a first phase,
a probabilistic grammar-based model is learned during an evolution performed
using the original user-provided CFG. In a second phase, the new learned model
is used to evolve hopefully better solutions. In the present work, differently than
the two cited works, we attempt to learn the model (i.e., the linkage) directly
at the level of the genotype, instead of at the level of the phenotype (i.e., the
grammar).

Another attempt of incorporating the knowledge of the model in GE has
been proposed in [21] and further improved in [22]. The authors of the cited
paper describe a rather complex theoretical framework in which a model can be
obtained from a grammar by means of a deterministic algorithm: the model is a
particular graph in which vertexes are partially derived strings of the language
and edges are derivation rules. The genotype is not a bit-string, but instead a

226 E. Medvet et al.

sequence of derivation rules which, essentially, allows to move along the graph.
Accordingly, the proposed EA uses specific genetic operators, making it rather
different than the original GE. Finally, it is worth to mention that in several
studies of model-based GP, the proposed model itself consisted in (probabilistic)
grammars (e.g., [23]): we refer the reader to [24] for a broader overview of these
approaches.

3 Grammatical Evolution

GE has been widely studied and several variants for the various EA components
have been proposed. Here, we present the most widely used search algorithm and
representation (for which we consider also the recent variants SGE and WHGE),
because they are relevant to this study.

Algorithm 1 shows the search algorithm of GE. First, the initial population I
consisting of npop individuals is built. In this work, we consider an initialization
procedure in which genotypes of a given length lg are generated at random, but
more complex strategies may be employed. Then, the following steps are repeated
until the termination criterion is met: (1) A new population I ′ (with |I ′| = |I| =
npop) is built from I by applying the genetic operators (mutation and crossover
chosen according to the probabilities pmut, pcross) to parents selected from the
population I using a predefined parent selection criterion (SelectParent() in
Algorithm 1). (2) The population I is updated by including the new population I ′

and then by removing the npop exceeding individuals using a predefined removal
selection criterion (SelectRemoval() in Algorithm 1).

Concerning the termination criterion, the most common option is to repeat
the two steps above for a predefined number of times, usually called the number
of generations. In this work, however, we chose a different criterion for enabling
a fairer comparison with GOMGE which, differently than the m+n generational
model of Algorithm 1, may perform a large number of fitness evaluations in each
iteration of the main loop (see Sect. 3.1). We hence adopted for both search algo-
rithms the following stopping criterion. The steps are iterated until at least one
of the two following conditions is met: (a) the elapsed time T after the beginning
of the evolution exceeds a predefined time limit Tmax or (b) the population I
includes an individual with perfect fitness f (the notion of perfect fitness being
dependent, in general, on the problem).

The search algorithm defined in Algorithm 1 is agnostic to the specific selec-
tion criteria SelectParent() and SelectRemoval(): tournament selection
and worst fitness selection (i.e., truncation selection) are, respectively, common
choices. The genotype-phenotype mapping function Map() is the component in
which the GE variants mostly differ and essentially defines the individual repre-
sentation. In this work, we consider the original representation and two recent
variants: Structured GE (SGE) [13] and Weighted Hierarchical GE (WHGE) [14]:
it is worth to note that, in both cases, the proposal of the representation variant
was aimed at improving the poor properties of the original GE representation,
in particular degeneracy and locality. Degeneracy concerns the degree to which

GOMGE: Gene-Pool Optimal Mixing on Grammatical Evolution 227

different genotypes are mapped to the same phenotype. Locality describes how
well genotypic neighbors correspond to phenotypic neighbors. It has been shown
that these properties are related to higher level properties of the EA, as, e.g.,
diversity [7] and evolvability [25]. It is foreseeable that degeneracy and locality
may impact also on the learnability of the linkage and may interplay with the
GOM operator.

Algorithm 1. Standard GE.
function Evolve()

I ← InitPopulation(npop)
while ¬TerminationCriterionMet() do

I′ ← ∅
while |I′| < npop do

o ← GetOperator()
Gp ← ∅
while |Gp| ≤ Arity(o) do

(gp, pp, fp)←SelectParent(I)
Gp ← Gp ∪ {gp}

end while
Gc ← Apply(o, Gp)
for all gc ∈ Gc do

pc ← Map(gc)
fc ← Fitness(pc)
I′ ← I′ ∪ {(gc, pc, fc)}

end for
end while
I ← I ∪ I′

while |I| > npop do
I ← I \ {SelectRemoval(I)}

end while
end while
return Best(I)

end function

Algorithm 2. GOMGE.
function Evolve()

I ← InitPopulation(npop)
i� = Best(I)
while ¬TerminationCriterionMet() do

F ← LearnLinkageModel(I)
I′ ← ∅
for all (g, p, f) ∈ I do

(g0, p0, f0) ← (g, p, f)
for all F ∈ RndPerm(F) do

gc ← g
(gd, pd, fd)←RandomDonor(I)
gc[F] ← gd[F]
pc ← Map(gc)
fc ← Fitness(pc)
if fc < f then

(g, p, f) ← (gc, pc, fc)
end if

end for
while p = p0 do

g ← Apply(Mutation, {g})
p ← Map(g)
f ← Fitness(p)

end while
I′ ← I′ ∪ {(g, p, f)}

end for
I ← I′

i� = Best(I ∪ {i�})
end while
return i�

end function

Due to space constraints, we do not describe in details the representation of
GE, SGE, and WHGE: we provide a coarse overview of the underlying principles
and refer the reader to the respective papers for further details. Being forms of
grammar-based genetic programming, in GE, SGE, and WHGE the phenotype is
a string of the language language L(G) defined by a user-provided CFG G, which
is an implicit parameter of the mapping function Map(). In the original GE [2],
the genotype g is a bit-string. Groups of 8 consecutive bits in the genotype are
called codons: each codon encodes an integer value and is consumed for deriving
the leftmost non-terminal. SGE has been introduced in [13] by Lourenço et al. In
SGE, the genotype g consists of a number of fixed-size lists (genes) of integers:
each list corresponds to a non-terminal symbol of the CFG and each integer in
the list (codon) determines a single derivation for that non-terminal. Finally, the
most recent WHGE [14] is designed to consume the genotype hierarchically with
the aim of reducing the degeneracy and increasing the locality. In WHGE, the
genotype g is a bit-string, as in the original GE.

228 E. Medvet et al.

3.1 GOMGE: Gene-Pool Optimal Mixing EA for GE

Our GOMGE proposal consists on two localized modifications to the adaptation
of GOMEA to GP [15], described below and motivated by explorative experi-
ments and recent findings about (lack of) diversity in GE [7,26]. GOMGE is
described in Algorithm 2. After the initialization of the population, the main
loop is repeated until a termination criterion is met and consists in two steps: (i)
learning the linkage from the current population and (ii) applying the Gene-pool
Optimal Mixing (GOM) variation operator to each individual in the population.
The linkage is expressed as a Family of Subsets (FOS) F = {F1, F2, . . . } which
is a set of sets of zero-based genotype indexes (loci): i.e., Fi ⊆, {0, . . . , lg − 1},
where lg is the evolution-wise immutable size of the genotype. We experimented
with 4 different way of obtaining the FOS described at the end of this section.

Applying the GOM operator to an individual (g, p, f) consists in repeating
the following steps for each set F in a random permutation of F : (i) a donor
(gd, pd, fd) is randomly chosen in the population and (ii) the portions of the
genotype g defined by F are replaced with the corresponding portions coming
from gd; (iii) the fitness Fitness(Map(g)) of the new individual is computed
and, (iv) if there is a strict improvement, the modification on the individual g is
kept, otherwise, it is rolled back.

After preliminary experiments, we observed that this version of the GOM
often resulted in no modifications being applied to the individual, since no fit-
ness improvements were obtained. We think this finding is motivated by the
degeneracy of the indirect representation of GE and its variants: the likelihood
is non-negligible of obtaining the same individual after an iteration of GOM
operator; as a consequence, the fitness does not improve and the evolution might
stagnate. We hence modified the GOM operator by employing a forced mutation
(performed with a mutation operator suitable to the specific representation being
used) in case the phenotype did not change after the processing of all the sets in
F . The idea is borrowed from [15], where a phase called “forced improvement”
eventually results in an individual with a better fitness than the input one, yet
possibly equal to another individual in the population. Here, we instead simply
apply a standard mutation, because otherwise the tendency of GE and variants
to drastically reduce the diversity in the population during the evolution could
have been further stimulated.

Since the forced mutation might apply to the best individual in the popu-
lation (hence negatively affecting the results of the search obtained so far), we
introduced a simple mechanism for keeping track of the best individual i�, which
is updated at each iteration of the main loop.

In GOMGE, as in GOMEA, the linkage is expressed using a FOS, which
can either be learned from the population or being predefined. We considered 4
variants, two belonging to the former category (Linkage Tree and Random Tree)
and two to the latter category (Univariate and Natural).

The Univariate FOS (later denoted by U) is the simplest FOS and assumes
that there is no linkage between portions of the genotype. This FOS contains
one singleton set for each possible locus: FU = {{0}, {1}, . . . , {lg − 1}}.

GOMGE: Gene-Pool Optimal Mixing on Grammatical Evolution 229

The Natural FOS (later denoted by N) is a statically built FOS which tries to
capture the representation-dependent linkage. We defined it only for GE, where
it captures the fact that derivations are chosen using groups of 8 consecutive
bits (i.e., FN,GE = {{0, 1, . . . , 7}, {8, 9, . . . , 15}, . . . }), and for SGE, where it
captures the fact that integers are organized in lists, the size of each list being
dependent on the grammar (i.e., FN,SGE = {{0, . . . , |gs0 | − 1}, {|gs0 |, . . . , |gs0 | +
|gs1 | − 1}, . . . }).

The learnable variants are Linkage Tree and Random Tree, later denoted by
LT and RT, respectively. LT was already considered in the seminal GOMEA
paper and was later shown to be very beneficial to search effectiveness, in partic-
ular in black-box optimization problems [27]. LT models complex linkage struc-
tures using a hierarchy, i.e., a tree where nodes are sets of loci and a node is
the set union of its children. The LT FOS FLT is built from the population as
follows. Initially, a set of sets of loci F0 is set to FU and FLT = F0. Then, the
following steps are repeated until |F0| ≥ 1: (i) the pair F, F ′ ∈ F0 × F0 of loci
sets, with F �= F ′, is determined which exhibits the greatest mutual information;
then (ii) F, F ′ are removed from F0 and F ∪ F ′ is added to F0 and FLT. This
procedure may be implemented efficiently using the algorithm described in [28],
where the mutual information between sets of loci is estimated, rather than com-
puted using the genotype values at F, F ′ loci observed in the population (we
refer the reader to the cited paper for further details).

Finally, RT resembles LT since it also models the linkage as a hierarchy.
Differently than LT, however, a random value instead of the mutual information
is used at step 3.1 above when building FRT. The rationale is to allow, as for
LT, the simultaneous modification at different loci of the genotype.

4 Experimental Evaluation

For assessing experimentally the effectiveness of GOMGE w.r.t. the standard
GE search algorithm, we considered 4 benchmark problems: Parity (with n ∈
{5, . . . , 9}), Nguyen7 [29], KLandscapes [30] (with k ∈ {3, . . . , 7}), and Text [7].
These problems represent different domains, including boolean functions (Par-
ity), symbolic regression (Nguyen7), and synthetic problems (KLandscapes and
Text). Two of them have a tunable hardness (Parity and KLandscapes) and two
are recommended as GP benchmarks in [31] (Nguyen7 and KLandscapes); one
(Text) has been designed purposely for grammar-based GP and is based on a
grammar with more derivation rules and more symbols than the other considered
problems.

We performed the experimental evaluation using a prototype Java implemen-
tation of both standard GE and GOMGE. The implementation and the gram-
mars for the benchmark problems are publicly available1. The prototype includes
a two caches for the fitness function Fitness() and the genotype-phenotype map-
ping function Map(); both use a size-based eviction policy with a size limit of
200 000 entries.
1 https://github.com/ericmedvet/evolved-ge.

https://github.com/ericmedvet/evolved-ge

230 E. Medvet et al.

We performed 30 runs for each of the five variants (standard GE, to be
considered as the baseline and later denoted by Base., and GOMGE coupled with
the 4 FOSs, U, N, RT, and LT) on each of the four problems. We executed each
run on one node of the CINECA HPC cluster (Marconi-A1), the node having
2 Intel Xeon E5-2694 v4 CPUs (2.3 mGHz) with 18 cores each and 128 GB of
RAM.

We set the main evolutionary parameters as follows: genotype size lg = 512
for GE, lg = 128 for WHGE, or determined by d = 6 (see [13]) for SGE; popula-
tion size npop = 500; two-points same crossover for GE, WHGE or SGE crossover
for SGE with rate 0.8; bit-flip mutation with pmut = 0.01 for GE, WHGE or SGE
mutation with pmut = 0.01 for SGE with rate 0.2; tournament selection of size
3; and max elapsed time Tmax=60 s.

Table 1 shows the mean and the standard deviation (across the 30 runs) of the
final best fitness for each problem and variant. The table also shows, graphically
and for each GOMGE variant and problem, the statistical significance (p-value
with the Mann-Whitney U-test) of the null hypothesis that the final best fitness
values have equal median of those obtained with the baseline.

Table 1. Mean and standard deviation of the final best fitness. The best mean for
each problem is highlighted. The statistical significance (see text) is shown graphically:
‡ means p < 0.01, † means p < 0.05, and ∗ means p < 0.1 (no markers for greater
p-values).

Var. Parity-7 Nguyen7 KLand.-5 Text

GE Base. 0.5 ± 0.02 0.39 ± 0.25 0.61 ± 0.09 4.9 ± 1.2

U 0.5 ± 0.01 0.49 ± 0.19‡ 0.63 ± 0.06‡ 3.5 ± 0.7‡

N 0.5 ± 0 0.4 ± 0.2 0.61 ± 0.09 3.1± 0.8‡

RT 0.49 ± 0.02 0.68 ± 0.6‡ 0.68 ± 0.04‡ 4.5 ± 0.6‡

LT 0.49 ± 0.03 0.68 ± 0.16‡ 0.68 ± 0.04‡ 4.6 ± 0.5‡

WHGE Base. 0.17 ± 0.13 0.52 ± 0.19 0.4 ± 0.08 5.7 ± 0.8

U 0.16 ± 0.07∗ 0.31 ± 0.15‡ 0.6 ± 0.05‡ 4.9 ± 0.5‡

RT 0± 0‡ 0.18± 0.11‡ 0.29 ± 0.04‡ 4 ± 0‡

LT 0± 0‡ 0.21 ± 0.12‡ 0.25± 0.07‡ 4 ± 0‡

SGE Base. 0.08 ± 0.12 0.7 ± 0.12 0.54 ± 0.14 6.3 ± 0.5

U 0± 0‡ 0.35 ± 0.23‡ 0.34 ± 0‡ 5.4 ± 0.5‡

N 0± 0‡ 0.29 ± 0.24‡ 0.34 ± 0‡ 5.1 ± 0.3‡

RT 0± 0‡ 0.65 ± 1.14‡ 0.34 ± 0‡ 5 ± 0.2‡

LT 0± 0‡ 0.54 ± 0.21‡ 0.34 ± 0‡ 5 ± 0.2‡

The foremost finding is that GOMGE outperforms the baseline with WHGE
and SGE in almost all cases (i.e., FOS and problem), with the single exception of
U with WHGE on the KLandscapes-5 problem, for which the baseline performs

GOMGE: Gene-Pool Optimal Mixing on Grammatical Evolution 231

better (0.4 vs. 0.6). The difference is always significant. GOMGE improvement
becomes evident on the Parity-7 problem, for which both WHGE and SGE
obtain the perfect fitness in all the runs only with GOMGE. Concerning the
FOS, it can be seen that the largest improvement is delivered by RT and LT, for
WHGE, and by N, for SGE (see also the next tables): the facts that LT and RT
lead to the same good performance with WHGE and that N with SGE resembles
the SGE crossover operator (see [13]) suggest that the improvement is related to
the reiterated application of the GOM operator, rather than to the possibility
of learning the linkage.

Differently, coupling GOMGE with GE representation leads to mixed results:
no significant difference are visible on one problem (Parity-7), a decrease in
the fitness is visible on two problems (Nguyen7 and KLandscapes-5), and an
improvement is visible for the last problem (Text). Overall, N is the best FOS
for GE.

For better understanding the results in terms of final best fitness, we analyzed
also three other relevant metrics: the elapsed time T , the number of actual
fitness evaluations N (corresponding to the fitness cache miss count), and the
final phenotypical diversity D. We measured the latter as the ratio between the
number of different phenotypes in the population and the population size.

Table 2. Elapsed time T (in s), number N of actual fitness evaluations (in thousands),
and final phenotype diversity D (in percentage).

Elapsed time T [s] Act. fitness ev. N [×103] Pheno. div. D [%]

Var. Par.-7 Ng.7 KL.-5 Text Par.-7 Ng.7 KL.-5 Text Par.-7 Ng.7 KL.-5 Text

GE Base. 85 66 65 59 0.2 6.8 5 5 6 4 7 2

U 114 57 59 59 0.4 12.8 19.2 192.8 23 35 68 93

N 123 59 55 60 0.2 37.8 32.1 133.7 28 54 69 97

RT 145 65 65 68 0.7 7.9 14.7 67.9 27 53 69 96

LT 149 79 72 69 0.6 8 14.6 53.1 28 54 69 96

WHGE Base. 68 64 64 61 10.7 9.4 10.5 6.5 11 4 31 12

U 71 64 71 62 585.2 299.8 160.2 197.6 92 89 88 92

RT 14 86 61 77 353.7 548.7 352.7 591.9 79 56 89 48

LT 15 85 61 83 328.7 360.7 321.4 457.1 71 45 54 51

SGE Base. 43 61 62 62 1.2 3.3 2.6 1.2 5 7 5 4

U 20 60 64 60 39.6 50.1 52.1 45.1 98 71 62 91

N 1 63 63 59 38.8 89.9 53.3 62 98 71 38 82

RT 2 57 76 58 47.3 81.2 54.8 46.3 92 52 27 50

LT 4 53 68 59 57.9 21.8 52 33.4 64 27 27 32

Table 2 shows the mean (across the 30 runs) of the three metrics T,N,D
for each problem and variant. Two main observations may be made. First, the
number of actual fitness evaluation increases with GOMGE, the increment being
remarkable for WHGE and SGE (up to 20×). This figure is also reflected in the
elapsed time T , when a perfect fitness value is not found. We recall that one of

232 E. Medvet et al.

the two termination criteria is the elapsed time, with a time limit of Tmax = 60s:
however, since the condition is evaluated once per main loop, the limit may be
exceeded, in particular for GOMGE. It can also be noted that GE, in all the 5
variants, performs a very low number (hundreds, on average) of actual fitness
evaluations for the Parity-7 problem: this is mainly due to high degeneracy, which
has already been shown to hamper this representation in particular in problems
where the phenotype should be large [7], and, to a lesser extent, to invalidity,
i.e., the tendency of generating a null phenotype after exceeding the maximum
number of wrappings [2].

Second, Table 2 shows that the final phenotypical diversity is in general much
larger with GOMGE than with the baseline, in all cases: values are around
10% with the latter and often exceed 90% with GOMGE. This finding can be
explained by the fact that GOMGE does not select best individuals for applying
the GOM operator, but rather replaces a parent with a child only upon a fit-
ness improvement, a mechanism resembling the established diversity promotion
scheme known as deterministic crowding [32]. Together, the two observations
suggest that GOMGE is at the same time more effective and more efficient than
the baseline in exploring the search space: indeed, it can be noted from Tables 1
and 2 than the largest fitness improvements are obtained in sync with improve-
ments in the metrics N and D. Significantly, the only problem in which GOMGE
outperforms the baseline with GE is the one (Text) in which the increment of
N and D is the greatest.

5 Concluding Remarks

We presented GOMGE, an application of the Gene-pool Optimal Mixing Evolu-
tionary Algorithm (GOMEA) to Grammatical Evolution (GE), a form of general-
purpose Genetic Programming which is widely used by practitioners because it
easily applies to any problem whose solutions may be described by a context-free
grammar. We incorporated in GOMGE two specific improvements for coping
with the degeneracy (i.e., the tendency to map many genotypes to the same
pohenotype) of GE indirect representations. We applied GOMGE to three vari-
ants of GE (original GE, SGE, and WHGE), essentially differing in the individ-
ual representation, a key component of any EA which has been shown to impact
on many higher-level EA properties (e.g., evolvability), and eventually on its
effectiveness.

We performed an extensive experimental evaluation of 4 GOMGE variants,
differing in the way of obtaining a linkage model, on 4 benchmark problems. The
results show that GOMGE is significantly beneficial to both effectiveness and
efficiency of the search with SGE and WHGE, whereas it delivers mixed results
with the original GE. At a deeper analysis, the experimental results suggest that
the drastic increase in the phenotypical diversity and in the number of actual
fitness evaluation are key factors for explaining the performance gap between
GOMGE and standard GE.

GOMGE: Gene-Pool Optimal Mixing on Grammatical Evolution 233

We think that our proposal further boosts the applicability of GE to practical
problems and sheds new light on the possibility of GE representations to exhibit
“good” and learnable linkage.

References

1. Thierens, D., Bosman, P.A.: Optimal mixing evolutionary algorithms. In: Proceed-
ings of the 13th Annual Conference on Genetic and Evolutionary Computation,
GECCO 2011, pp. 617–624. ACM, New York (2011)

2. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs
for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty,
T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055930

3. Bartoli, A., De Lorenzo, A., Medvet, E., Tarlao, F.: Syntactical similarity learning
by means of grammatical evolution. In: Handl, J., Hart, E., Lewis, P.R., López-
Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 260–
269. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6 24

4. Medvet, E., Bartoli, A., Talamini, J.: Road traffic rules synthesis using grammat-
ical evolution. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol.
10200, pp. 173–188. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
55792-2 12

5. Castejón, F., Carmona, E.J.: Automatic design of analog electronic circuits using
grammatical evolution. Appl. Soft Comput. 62, 1003–1018 (2018)

6. Miranda, P.B., Prudêncio, R.B.: Generation of particle swarm optimization algo-
rithms: an experimental study using grammar-guided genetic programming. Appl.
Soft Comput. 60, 281–296 (2017)

7. Medvet, E., Bartoli, A., Talamini, J.: Road traffic rules synthesis using grammat-
ical evolution. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol.
10200, pp. 173–188. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
55792-2 12

8. Thorhauer, A.: On the non-uniform redundancy in grammatical evolution. In:
Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.)
PPSN 2016. LNCS, vol. 9921, pp. 292–302. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-45823-6 27

9. Thorhauer, A., Rothlauf, F.: On the locality of standard search operators in gram-
matical evolution. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.)
PPSN 2014. LNCS, vol. 8672, pp. 465–475. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10762-2 46

10. Medvet, E., Bartoli, A.: On the automatic design of a representation for grammar-
based genetic programming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S.,
Garćıa-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 101–117. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-77553-1 7

11. Whigham, P.A., Dick, G., Maclaurin, J.: On the mapping of genotype to phenotype
in evolutionary algorithms. Genet. Program. Evol. Mach. 18, 1–9 (2017)

12. Spector, L.: Introduction to the peer commentary special section on “on the map-
ping of genotype to phenotype in evolutionary algorithms” by peter a. whigham,
grant dick, and james maclaurin. Genet. Program. Evol. Mach. 18(3), 351–352
(2017)

https://doi.org/10.1007/BFb0055930
https://doi.org/10.1007/978-3-319-45823-6_24
https://doi.org/10.1007/978-3-319-55792-2_12
https://doi.org/10.1007/978-3-319-55792-2_12
https://doi.org/10.1007/978-3-319-55792-2_12
https://doi.org/10.1007/978-3-319-55792-2_12
https://doi.org/10.1007/978-3-319-45823-6_27
https://doi.org/10.1007/978-3-319-45823-6_27
https://doi.org/10.1007/978-3-319-10762-2_46
https://doi.org/10.1007/978-3-319-10762-2_46
https://doi.org/10.1007/978-3-319-77553-1_7

234 E. Medvet et al.

13. Lourenço, N., Pereira, F.B., Costa, E.: SGE: a structured representation for gram-
matical evolution. In: Bonnevay, S., Legrand, P., Monmarché, N., Lutton, E., Schoe-
nauer, M. (eds.) EA 2015. LNCS, vol. 9554, pp. 136–148. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31471-6 11

14. Medvet, E.: Hierarchical grammatical evolution. In: Proceedings of the Genetic
and Evolutionary Computation Conference Companion, GECCO 2017, pp. 249–
250. ACM, New York (2017)

15. Virgolin, M., Alderliesten, T., Witteveen, C., Bosman, P.A.N.: Scalable genetic
programming by gene-pool optimal mixing and input-space entropy-based building-
block learning. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference, pp. 1041–1048. ACM (2017)

16. Bouter, A., Alderliesten, T., Witteveen, C., Bosman, P.A.: Exploiting linkage infor-
mation in real-valued optimization with the real-valued gene-pool optimal mixing
evolutionary algorithm. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pp. 705–712. ACM (2017)

17. Luong, N.H., La Poutré, H., Bosman, P.A.: Multi-objective gene-pool optimal mix-
ing evolutionary algorithms. In: Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation, pp. 357–364. ACM (2014)

18. O’Neill, M., Brabazon, A., Nicolau, M., Garraghy, S.M., Keenan, P.: πgrammatical
evolution. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3103, pp. 617–629. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24855-2 70

19. O’Neill, M., Ryan, C.: Grammatical evolution by grammatical evolution: the evo-
lution of grammar and genetic code. In: Keijzer, M., O’Reilly, U.-M., Lucas, S.,
Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 138–149. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24650-3 13

20. Wong, P.-K., Wong, M.-L., Leung, K.-S.: Hierarchical knowledge in self-improving
grammar-based genetic programming. In: Handl, J., Hart, E., Lewis, P.R., López-
Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 270–
280. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6 25

21. He, P., Johnson, C.G., Wang, H.: Modeling grammatical evolution by automaton.
Sci. China Inf. Sci. 54(12), 2544–2553 (2011)

22. He, P., Deng, Z., Gao, C., Chang, L., Hu, A.: Analyzing grammatical evolution and
πGrammatical evolution with grammar model. In: Balas, V.E., Jain, L.C., Zhao,
X. (eds.) Information Technology and Intelligent Transportation Systems. AISC,
vol. 455, pp. 483–489. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
38771-0 47

23. Shan, Y., McKay, R.I., Baxter, R., Abbass, H., Essam, D., Nguyen, H.: Gram-
mar model-based program evolution. In: Congress on Evolutionary Computation,
CEC2004, Volume 1, pp. 478–485. IEEE (2004)

24. Shan, Y., McKay, R., Essam, D., Abbass, H.: A survey of probabilistic model build-
ing genetic programming. In: Pelikan, M., Sastry, K., CantÚPaz, E. (eds.) Scalable
Optimization via Probabilistic Modeling, pp. 121–160. Springer, Heidelberg (2006).
https://doi.org/10.1007/978-3-540-34954-9 6

25. Medvet, E., Daolio, F., Tagliapietra, D.: Evolvability in grammatical evolution. In:
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 977–
984. ACM (2017)

26. Medvet, E., Bartoli, A., Squillero, G.: An effective diversity promotion mechanism
in grammatical evolution. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion, pp. 247–248. ACM (2017)

https://doi.org/10.1007/978-3-319-31471-6_11
https://doi.org/10.1007/978-3-540-24855-2_70
https://doi.org/10.1007/978-3-540-24650-3_13
https://doi.org/10.1007/978-3-319-45823-6_25
https://doi.org/10.1007/978-3-319-38771-0_47
https://doi.org/10.1007/978-3-319-38771-0_47
https://doi.org/10.1007/978-3-540-34954-9_6

GOMGE: Gene-Pool Optimal Mixing on Grammatical Evolution 235

27. Thierens, D., Bosman, P.A.N.: Hierarchical problem solving with the linkage tree
genetic algorithm. In: Proceedings of the 15th Annual Conference on Genetic and
Evolutionary Computation, pp. 877–884. ACM (2013)

28. Gronau, I., Moran, S.: Optimal implementations of UPGMA and other common
clustering algorithms. Inf. Process. Lett. 104(6), 205–210 (2007)

29. Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R.I., Galván-López, E.: Semantically-
based crossover in genetic programming: application to real-valued symbolic regres-
sion. Genet. Program. Evol. Mach. 12(2), 91–119 (2011)

30. Vanneschi, L., Castelli, M., Manzoni, L.: The k landscapes: a tunably difficult
benchmark for genetic programming. In: Proceedings of the 13th Annual Confer-
ence on Genetic and Evolutionary Computation, pp. 1467–1474. ACM (2011)

31. White, D.R., Mcdermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kron-
berger, G., Jaśkowski, W., O’Reilly, U.M., Luke, S.: Better gp benchmarks: com-
munity survey results and proposals. Genet. Program. Evol. Mach. 14(1), 3–29
(2013)

32. Squillero, G., Tonda, A.: Divergence of character and premature convergence: a
survey of methodologies for promoting diversity in evolutionary optimization. Inf.
Sci. 329, 782–799 (2016)

Self-adaptive Crossover in Genetic
Programming: The Case of the Tartarus

Problem

Thomas D. Griffiths(B) and Anikó Ekárt

Aston Lab for Intelligent Collectives Engineering (ALICE), Aston University,
Aston Triangle, Birmingham B4 7ET, UK

{grifftd1,a.ekart}@aston.ac.uk

Abstract. The runtime performance of many evolutionary algorithms
depends heavily on their parameter values, many of which are problem
specific. Previous work has shown that the modification of parameter
values at runtime can lead to significant improvements in performance.
In this paper we discuss both the ‘when’ and ‘how ’ aspects of imple-
menting self-adaptation in a Genetic Programming system, focusing on
the crossover operator. We perform experiments on Tartarus Problem
instances and find that the runtime modification of crossover parameters
at the individual level, rather than population level, generate solutions
with superior performance, compared to traditional crossover methods.

Keywords: Self-adaption · Crossover · Tartarus problem

1 Introduction

In the field of Evolutionary Algorithms and specifically Genetic Programming, it
is widely accepted that the on-the-fly modification and adaptation of parameters
values at runtime can lead to improvements in performance [1]. This process of
modifying parameter values can be conceptualised into two distinct processes,
the first: ‘when’ to modify and the second: ‘how’ to modify.

A common approach for deciding ‘when’ to trigger the parameter modifica-
tions, whether they be deterministic [2] or probabilistic [3], is decided by use of
a pre-determined schedule or fixed time interval; we refer to these as episodic
modifications. The primary benefit of episodic methods is that they allow for
a regular and predictable sequence of parameter modifications to be performed
over time without the need for any further interaction.

However, the rigid nature of this approach presents several drawbacks when
utilised on dynamic or multi-dimensional optimisation problems, such as the
Tartarus Problem (TP). An alternative to episodic modification is to create a
mechanism which provides a continual opportunity to modify parameter values
at any time; we refer to this as continuous modification. We therefore propose the
introduction of a self-adaptive crossover bias method, allowing for the continual
modification of individual crossover parameters at runtime.
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 236–246, 2018.
https://doi.org/10.1007/978-3-319-99253-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_19&domain=pdf

Self-adaptive Crossover in Genetic Programming 237

The process of deciding ‘how’ the parameter value is to be modified is often
more complex, this can be divided into two smaller, sequential sub-tasks:

• Deciding the mechanism by which the parameter values are modified,
• Calculating the magnitude of the parameter value modifications.

This division between the mechanism and the magnitude allows for the meth-
ods by which the modifications are made and the impact of those modifications,
to be tuned and controlled separately at runtime. There exist several different
approaches to deciding ‘how’ the parameter values should be modified that are
utilised in Genetic Programming, these can be classified as either determinis-
tic, adaptive or self-adaptive. An outline and comparative taxonomy of these
approaches is presented in Sect. 2.

It is hypothesised that allowing the Genetic Programming system to trig-
ger the parameter modifications ‘as and when they are required’ will reduce the
number of ineffective adaptations being executed, increasing efficiency and allow-
ing for convergence to an optimal solution. The proposed self-adaptive crossover
bias will create a more continuous parameter value modification process, which
is more flexible compared to the rigid, traditional episodic approach, leading to
an increase in solution performance.

In this paper we discuss the differences between adaptive and self-adaptive
parameter modification and implement a self-adaptive crossover bias method
in genetic programming. The paper is organised as follows: Sect. 2 discusses
and defines the differences between adaptation and self-adaptation, presenting
a taxonomy of the two parameter modification approaches. Section 3 describes
the Tartarus Problem and the experimental setup. Section 4 presents the pro-
posed self-adaptive crossover operator and compares the performance with that
of individuals utilising a standard crossover operator. Finally, Sect. 5 addresses
conclusions and future research aspirations on the topic.

2 Parameter Modification Approaches

The parameter modification approaches utilised in genetic programming can be
generally classified into one of three categories [1], being deterministic, adaptive
or self-adaptive1 in nature. The characteristics, flexibility and complexity varies
widely between the three categories of approach.

Deterministic Parameter Modification – The parameter value is modi-
fied on a global level according to a fixed, pre-determined rule. The modifi-
cation receives no feedback from, and is not influenced by, the current status
of the search [4,5].
Adaptive Parameter Modification – The parameter value is modified on
a global level according to a mechanism, which receives input from, and is at
least partly influenced by, the status of the search [6].

1 The descriptive terms ‘Adaptive’ and ‘Self-Adaptive’ are used in the broad general
context of Evolutionary Computation. These terms have distinct meanings in fields
such as Artificial Life; based on strict Ecological and Psychological definitions.

238 T. D. Griffiths and A. Ekárt

Self-adaptive Parameter Modification – The parameter value is modified
on an individual level, where the parameters are encoded into the genome of
an individual in some form. The parameters undergo the same processes of
mutation and recombination as the individuals themselves. The modification
of these parameter values is coupled with the status of the search [7].

In Adaptive Parameter Modification (APM) the mechanism by which the
parameter values are modified is defined in advance, leading to explicit exoge-
nous parameter modification. The performance of APM is only as good as the
information that it receives from the environment, care must be taken to ensure
that the information received is applicable to the selected parameters.

Conversely, in the Self-Adaptive Parameter Modification (SAPM) the way in
which the parameter values are modified is entirely implicit. In this approach the
mutation and recombination processes of the evolutionary cycle itself are used
and exploited. The parameter values are embedded in the representation [8],
leading to an implicit endogenous parameter modification. The performance of
SAPM is closely linked to the choice of evolutionary operators, therefore effective
operator choice is essential. Table 1 outlines a taxonomy of approaches compar-
ing the three methods of deterministic, adaptive and self-adaptive parameter
modification.

Table 1. Taxonomy of parameter modification approaches. (× indicates a relationship.)

Deterministic APM SAPM

Affected by Explicitly-defined mechanisms × ×
State of the search × ×
Operator selection ×

Modifies Population level parameters × ×
Individual level parameters ×

The taxonomy outlined in Table 1 allows for the comparison of the different
parameter modification approaches to be made. Each approach is affected by
a selection of factors, both internal and external, which influence the overall
effectiveness and performance. The self-adaptive approach leads to modifications
to be made at the individual level, in contrast the adaptive and deterministic
approaches both lead to modifications to be made at the global level.

3 The Tartarus Problem

The Tartarus problem is a grid-based optimisation problem [9], which we intro-
duced as a genetic programming benchmark [10]. The problem was chosen due to
the fact that it satisfies many of the desirable benchmark characteristics outlined

Self-adaptive Crossover in Genetic Programming 239

by White et al. [11]. One of the most important characteristics of an effective
benchmark problem is tunable difficulty [12], the ability to create several prob-
lem instances with a tunable and predictable level of difficulty.

A Tartarus instance comprises of an enclosed, non-toroidal n × n grid, a set
number of movable blocks B and a controllable agent, as shown in Fig. 1(a).
Unlike in other grid based problems, such as the Lawnmower problem [13], the
agent is initially unaware of its location and orientation within the environment.
The agent receives input from eight sensors, allowing it to detect both blocks and
the environment boundary in the surrounding eight grid-squares. The goal is to
locate and move the blocks to the environment boundary, as shown in Fig. 1(b).
At the end of a run, the environment is analysed and the agent is awarded a
score, the fitness score, based on its progress in achieving the goal. The agent is
able to change its state by executing a finite number of actions m, chosen from
the following three actions:

(1) turn left, (2) turn right, (3) move forwards one square.

(a) Example Initial State (b) Example Final State

Fig. 1. Example states for the canonical 6 × 6 Tartarus instance.

3.1 Improved State Evaluation

We previously suggested that the original method of evaluating the state of Tar-
tarus instances was insufficient to capture the progress of the agent [10]. The
original method of state evaluation only rewarded individuals who had pushed
blocks all the way to the edges of the grid. This binary success or fail approach
works well for many benchmark problems where the absolute score achieved by a
candidate solution is the only desired success measure. However, for GP, reward-
ing part-way solutions is essential during evolution, so that better solutions can
evolve.

For example, the concentrated instance in Fig. 2(a) is very different from the
dispersed instance in Fig. 2(b). However, under the original evaluation method
[9] both of these states would have the same fitness score of zero. The blocks in
the dispersed instance are visibly closer to the edge of the grid when compared
to the blocks in the concentrated instance. Specifically, it would take a total of 32
movement actions to move the blocks to the edge of the grid in the concentrated
instance (a), but only 27 actions to move the blocks in the dispersed instance (b).

240 T. D. Griffiths and A. Ekárt

(a) Concentrated Instance (b) Dispersed Instance

Fig. 2. Comparison of concentrated and dispersed instances

We proposed an improved method for evaluating the state of a Tartarus
instance that utilises a more granular approach, rewarding blocks which have
moved part-way as well as blocks which have been moved completely to the
edge. This is done by calculating how close each block is to the edge of the
environment, resulting in the following state evaluation SE [10]:

SE = 6 −
12

B∑

i=1

di

B
(
n − 1

) , (1)

where B is the total number of blocks, n is the size of the grid and di is the
distance of block i from an edge in the given instance. The value range of SE
is consistent with the range of the original evaluation method; 0–6, allowing for
direct comparison between the canonical 6 × 6 grid and larger instance sizes.

A score near 0 would indicate that the agent has made no progress towards
moving the blocks to the edge of the environment, or in some cases moved blocks
closer to the centre in a counterintuitive manner. A score of 6 would indicate a
state where all of the blocks in the instance have been successfully moved to the
edges of the environment by the agent. At the end of each generation the agents
use their resultant SE value as their fitness score.

4 Self-adaptive Crossover Operator

For a TP instance of size n= 6, an agent at the standard level of difficulty, D = 1,
is allowed m = 80 movement operations [10]. For linear GP these operations
are encoded as a genome containing m alleles, with each allele corresponding to
one of the three possible agent actions outlined in Sect. 3.

For each individual genome, the aggregate number of move forward one
square (AF), turn left (AL) and turn right (AR) alleles are counted, these values
make up the genome composition. It is important to note that this composition
of the genome does not take into consideration the sequential order of the alleles,
but only the aggregate number of each type of allele present. We hypothesise
that for each Tartarus instance there exist optimal compositions of agent actions,

Self-adaptive Crossover in Genetic Programming 241

which, when used to seed future individuals, will likely lead to an increase in
solution performance.

As the composition of the individual genome is made up of three primary
components, it can be viewed on a ternary plot in order to visualise the mag-
nitude of the components present in the composition. A population of 1000
individuals were generated, corresponding to 697 unique genome compositions.
The population was executed across 100 different TP instances of size n = 6,
and the resultant fitness scores averaged.

Analysis of the data showed there to be a clear divide in the average fitness
scores between individuals who have an approximately equal composition, from
the central region of the ternary plot, and those individuals with an uneven
composition, who lie on the periphery. 80% of the compositions fall within the
central region; here the variation in average fitness scores is low, with values
ranging from 3.3–3.75, as shown in Fig. 3.

Fig. 3. The central 80% of compositions

However, for individuals who have an uneven composition, who fall outside
of this central region; the variation in average fitness scores is high, with values
ranging from 2.6–4.6. This is highlighted most clearly in Fig. 4, showing the
bottom 10% and the top 10% of individual compositions in terms of averaged
fitness score. It can be seen that the top 10% and bottom 10% of compositions
exist in two defined bands surrounding the central region.

Upon further investigation, it was found that increasing the number of move
forward instructions in the genome, relative to number of turn left and turn
right instructions, leads to a noticeable increase in fitness score. This can be
seen most notably in Fig. 3; there is a defined change in fitness scores between
the compositions in the uppermost section of the plot, with higher AF, and the
compositions in the lower section of the plot, with lower AF.

242 T. D. Griffiths and A. Ekárt

(a) Bottom 10% of Compositions (b) Top 10% of Compositions

Fig. 4. Top and bottom 10% of compositions

This is expected behaviour, it is intuitive that compositions containing a high
proportion of turn left or turn right instructions would simply spin around and
not move far from the initial grid location, therefore having a lower score. In a
similar manner, compositions containing a lower but approximately equal num-
ber of turn left and turn right instructions, the impact of these would effectively
be cancelled out, resulting in a lower score.

We postulated that it would be possible to use this information to design a
self-adaptive crossover bias in order to exploit the changes in expected fitness for
different areas of the composition space. This would allow for the introduction
of bias in the generation of new individuals by favouring offspring with certain
compositions. As it is the output of the chosen crossover operator that is affected,
the process of generating new individuals, the proposed self-adaptations can be
incorporated and utilised alongside any traditional crossover approach.

In order to do this, the crossover operator was parameterised at the indi-
vidual level. Each individual was assigned a random target AF value T ′

g during
initialisation, in the range AF = 2

5m − 4
5m, from where the value can adapt

during evolution. The process of adapting the target value is divided into two
stages. In the first stage, the ‘how ’ stage, the target value T ′

g is updated at the
end of generation g, during the evaluation step, according to the performance of
the individual in comparison to previous evaluations:

T′
g =

{
Tg if Fg > Fg-1

Tg + Rg if Fg ≤ Fg-1,
(2)

where Tg is the current target value, Fg and Fg-1 are the current and previous
fitness scores of the individual and Rg is a uniformly distributed random value
in the interval:

[

− AF g

Tg
,
AF g

Tg

]

,

Self-adaptive Crossover in Genetic Programming 243

where AF g is the current AF value in generation g. In the second stage, the
‘when’ stage, the probability of triggering the self-adaptation and implement-
ing the new target value T ′

g into the crossover parameters of the individual is
calculated:

P (T ′
g) =

Tg

G · B · T ′
g

, (3)

where G is the number of generations without an improvement in the fitness
score of the individual and B is the number of blocks present in the instance.

The probability P (T ′
g) is influenced by both the number of generations G

since the actions of the individual led to an improvement in fitness score and
the change between the target values Tg and T ′

g. As G increases or the differ-
ence between Tg and T ′

g increases, the chance that the self-adaptation will be
triggered becomes greater. If the self-adaptation is triggered, at the start of the
next generation, Tg+1 will be initialised with the current value T ′

g.
A population of 100 individuals was generated, each with a genome containing

a random mixture of m = 142 alleles. These individuals were tested on 100
instances of size n = 8. The target AF values T chosen by the individual at
each generation g were averaged. As shown in Fig. 5, over time, the target values
chosen by the individuals within the population stabilise and converge to a small
range of values. Figure 5 also shows the maximum and minimum T values within
the population, over generations, until they converge.

It can be seen that by generation 18 the target values of all the individuals
within the population have converged to approximately AF = 95, for an instance
of size n = 8. This indicates that allowing for the self-adaptation of the target
value T leads to the creation of a crossover operator favouring individuals with
compositions with close to optimal AF values. From Fig. 5 we can conclude that
an AF value close to the optimal value is found.

The utilisation of the proposed self-adaptive crossover bias leads to an
increase in both the overall solution performance and the rate of solution
improvement in the Tartarus Problem. In Fig. 6 the performance of the self-
adaptive crossover bias, averaged over 20 different TP instances of size n = 8, is
plotted against the performance using standard canonical crossover. The range
in fitness values present in the population at each generation is shown by the
shaded areas, with the average score shown as solid lines.

The occurrences of self-adaptations being triggered within a population plot-
ted against the changes in maximum fitness score, on a generation by genera-
tion basis is shown in Fig. 7. The plot shows that there is a strong correlation
between the occurrence of self-adaptations within the population and an increase
in the maximum fitness score achieved. We can conclude that the mechanisms
by which the self-adaptation is calculated and triggered are effective, improving
the performance of individuals in the population through the modification and
manipulation of evolutionary pressures.

Between generation 11 and generation 12, 32% of the individuals in the
population triggered self-adaptations of their target AF value Tn. This led to
an increase of 0.5 in the maximum fitness score of the population, bringing it

244 T. D. Griffiths and A. Ekárt

Fig. 5. Convergence of target AF value T within the population

Fig. 6. Comparison between self-adaptive bias and traditional crossover

from 4.5 to 5.0. This is a substantial increase in the maximum fitness score of
the population, a direct consequence of the self-adaptations carried out by the
individuals.

Self-adaptive Crossover in Genetic Programming 245

Fig. 7. Occurrences of self-adaptation and the maximum fitness score.

5 Conclusion

In this paper we outlined a novel approach to introducing self-adaptation into a
crossover operator bias at the individual level.

The self-adaptation is triggered by the individual as and when required on a
continual basis, rather than according to a pre-defined schedule or episodic time
interval. The introduction of bias into the crossover operator, favouring offspring
with certain compositions leads to convergence to solutions with higher average
fitness scores.

We demonstrated that the individuals within the population were able to
converge on a target parameter to be used by the crossover operator bias. This
crossover bias was successfully utilised in order to generate solutions with higher
average fitness score, when compared to solutions utilising traditional crossover
operators.

The next step is to concentrate on testing the robustness of the proposed self-
adaptation mechanism. Work will be conducted to test the applicability of the
mechanism on other benchmark problems in order to ensure that it is generalis-
able and flexible. The long-term aim is to adapt and improve the self-adaptive
mechanism so that it may be used on real world problems and applications.

246 T. D. Griffiths and A. Ekárt

References

1. Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control in
evolutionary algorithms. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Param-
eter Setting in Evolutionary Algorithms. Studies in Computational Intelligence,
vol. 54, pp. 19–46. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-
69432-8 2

2. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Sci-
ence 220, 671–680 (1983)

3. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for
numerical optimization. In: Proceedings of the 2005 IEEE Congress on Evolu-
tionary Computation, vol. 2, pp. 1785–1791. IEEE (2005)

4. Hesser, J., Männer, R.: Towards an optimal mutation probability for genetic algo-
rithms. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp.
23–32. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0029727

5. Hansen, N, Ostermeier, A., Gawelczyk, A.: On the adaptation of arbitrary normal
mutation distributions in evolution strategies: the generating set adaptation. In:
Eshelman, L.J. (ed.) Proceedings of the 6th International Conference on Genetic
Algorithms, ICGA 1995, pp. 57–64. Morgan Kaufmann (1995)

6. Hinterding, R., Michalewicz, Z., Peachey, T.C.: Self-adaptive genetic algorithm for
numeric functions. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P.
(eds.) PPSN 1996. LNCS, vol. 1141, pp. 420–429. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61723-X 1006

7. Bäck, T.: The interaction of mutation rate, selection and self-adaptation within
a genetic algorithm. In: Proceedings of the 2nd Conference on Parallel Problem
Solving from Nature, PPSN II, pp. 85–94 (1992)

8. Dang, D.-C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist popula-
tions. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter,
B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 803–813. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45823-6 75

9. Teller, A.: The evolution of mental models. In: Kinnear Jr, K.E. (ed.) Advances in
Genetic Programming, pp. 199–217 (1994)

10. Griffiths, T.D., Ekárt, A.: Improving the Tartarus problem as a benchmark in
genetic programming. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E.,
Garćıa-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 278–293. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-55696-3 18

11. White, D.R., et al.: Better GP benchmarks: community survey results and propos-
als. Genet. Program. Evolvable Mach. 14(1), 3–29 (2013)

12. McDermott, J., et al.: Genetic programming needs better benchmarks. In: Soule,
T., et al. (eds.) Proceedings of the 14th International Conference on Genetic and
Evolutionary Computation, GECCO 2012, pp. 791–798 (2012)

13. Koza, J.R.: Scalable learning in genetic programming using automatic function
definition. In: Kinnear Jr, K.E. (ed.) Advances in Genetic Programming, pp. 99–
117 (1994)

https://doi.org/10.1007/978-3-540-69432-8_2
https://doi.org/10.1007/978-3-540-69432-8_2
https://doi.org/10.1007/BFb0029727
https://doi.org/10.1007/3-540-61723-X_1006
https://doi.org/10.1007/978-3-319-45823-6_75
https://doi.org/10.1007/978-3-319-55696-3_18

Multi-objective Optimization

A Decomposition-Based Evolutionary
Algorithm for Multi-modal

Multi-objective Optimization

Ryoji Tanabe(B) and Hisao Ishibuchi

Shenzhen Key Laboratory of Computational Intelligence,
Department of Computer Science and Engineering,

Southern University of Science and Technology, Shenzhen, China
rt.ryoji.tanabe@gmail.com, hisao@sustc.edu.cn

Abstract. This paper proposes a novel decomposition-based evolution-
ary algorithm for multi-modal multi-objective optimization, which is the
problem of locating as many as possible (almost) equivalent Pareto opti-
mal solutions. In the proposed method, two or more individuals can be
assigned to each decomposed subproblem to maintain the diversity of
the population in the solution space. More precisely, a child is assigned
to a subproblem whose weight vector is closest to its objective vector, in
terms of perpendicular distance. If the child is close to one of individ-
uals that have already been assigned to the subproblem in the solution
space, the replacement selection is performed based on their scalarizing
function values. Otherwise, the child is newly assigned to the subprob-
lem, regardless of its quality. The effectiveness of the proposed method is
evaluated on seven problems. Results show that the proposed algorithm
is capable of finding multiple equivalent Pareto optimal solutions.

1 Introduction

A multi-objective optimization problem (MOP) is the problem of finding a
solution x = (x1, ..., xD)T ∈ S that minimizes an objective function vector
f : S → R

M . Here, S is the D-dimensional solution space, and R
M is the

M -dimensional objective space. Usually, f consists of M conflicting objective
functions. A solution x 1 is said to dominate x 2 iff fi(x 1) ≤ fi(x 2) for all
i ∈ {1, ...,M} and fi(x 1) < fi(x 2) for at least one index i. If there exists no x
in S such that x dominates x ∗, x ∗ is called a Pareto optimal solution. The set
of all x ∗ is the Pareto optimal solution set, and the set of all f (x ∗) is the Pareto
front. The goal of MOPs is usually to find a set of nondominated solutions that
approximates the Pareto front well in the objective space.

An evolutionary multi-objective optimization algorithm (EMOA) is an effi-
cient population-based optimization method to approximate the Pareto front of
a given MOP in a single run [1]. Although several paradigms of EMOAs (e.g.,
dominance-based EMOAs) have been proposed, decomposition-based EMOAs

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 249–261, 2018.
https://doi.org/10.1007/978-3-319-99253-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_20&domain=pdf

250 R. Tanabe and H. Ishibuchi

Fig. 1. Illustration of a situation where three solutions are identical or close to each
other in the objective space but are far from each other in the solution space. This
figure was made using [8,13] as reference.

are recently popular in the EMO community. In particular, MOEA/D [18] is
one of the most representative decomposition-based EMOAs [14].

There are multiple equivalent Pareto optimal solutions in some real-world
problems (e.g., space mission design problems [12], rocket engine design prob-
lems [7], and path-planning problems [17]). Figure 1 explains such a situation.
Diverse solutions are helpful for decision-making [3,11–13]. If two or more solu-
tions having (almost) the same objective vector are found, users can make a final
decision according to their preference which cannot be represented by the objec-
tive functions. For example, in Fig. 1, if xa becomes unavailable for some reasons
(e.g., materials shortages and traffic accidents), x b and x c can be candidates for
the final solution instead of xa.

A multi-modal MOP (MMOP) [3,8,17] is the problem of locating as many as
possible (almost) equivalent Pareto optimal solutions. Unlike the general MOPs,
the goal of MMOPs is to find a good approximation of the Pareto-optimal solu-
tion set. For example, in Fig. 1, it is sufficient to find one of xa, x b, and x c for
MOPs, because their objective vectors are almost the same. In contrast, EMOAs
need to find all of xa, x b, and x c for MMOPs. Some EMOAs for MMOPs have
been proposed in the literature (e.g., [3,6,12,13,17]).

While MMOPs can be found in real-world problems [7,12,17], it is likely
that most MOEA/D-type algorithms [14] are not capable of locating multiple
equivalent Pareto optimal solutions. This is because they do not have any explicit
mechanism to maintain the diversity of the population in the solution space. If
the ability to keep solution space diversity in the population is incorporated into
MOEA/D, an efficient multi-modal multi-objective optimizer may be realized.

This paper proposes a novel MOEA/D algorithm with addition and dele-
tion operators (MOEA/D-AD) for multi-modal multi-objective optimization. In
MOEA/D-AD, the population size μ is dynamically changed during the search
process. Multiple individuals that are far from each other in the solution space
can be assigned to the same decomposed single-objective subproblem. Only sim-
ilar individuals in the solution space are compared based on their scalarizing
function values. Thus, MOEA/D-AD maintains the diversity in the population
by performing environmental selection for each subproblem among individuals
that are close to each other in the solution space.

A Decomposition-Based Evolutionary Algorithm 251

Algorithm 1. The procedure of MOEA/D-AD
1 t ← 1, initialize the population P = {x 1, ..., xN};

2 for i ∈ {1, ..., N} do Assign x i to the i-th subproblem;
3 while The termination criteria are not met do
4 µ ← |P |;
5 Randomly select r1 and r2 from {1, ..., µ} such that r1 �= r2;
6 Generate the child u by recombining x r1 and x r2 ;
7 Apply the mutation operator to u ;

8 for i ∈ {1, ..., N} do di ← PD(f
′
(u),w i);

9 j ← arg min
i∈{1,...,N}

{di};

10 bwinner ← FALSE and bexplorer ← TRUE;
11 for x ∈ P | x has been assigned to the j-th subproblem do
12 if isNeighborhood(u, x) = TRUE then

13 bexplorer ← FALSE;

14 if g(u|wj) ≤ g(x|wj) then
15 P ← P\{x} and bwinner ← TRUE;

16 if bwinner = TRUE or bexplorer = TRUE then
17 P ← P ∪ {u} and assign u to the j-th subproblem;

18 t ← t + 1;

19 A ← selectSparseSolutions(P);
20 return A;

This paper is organized as follows. Section 2 introduces MOEA/D-AD.
Section 3 describes experimental setup. Section 4 presents experimental results
of MOEA/D-AD, including performance comparison and its analysis. Section 5
concludes this paper with discussions on directions for future work.

2 Proposed MOEA/D-AD

MOEA/D decomposes a given M -objective MOP into N single-objective sub-
problems using a scalarizing function g : RM → R and a set of uniformly dis-
tributed weight vectors W = {w1, ...,wN}, where w i = (wi

1, ..., w
i
M)T for each

i ∈ {1, ..., N}, and
∑M

j=1 wi
j = 1. One individual in the population P is assigned

to each decomposed subproblem. Thus, the population size μ of MOEA/D always
equals N (i.e., μ = N and |P | = |W |).

Algorithm 1 shows the procedure of the proposed MOEA/D-AD for multi-
modal multi-objective optimization. While the number of subproblems N is still
constant in MOEA/D-AD, μ is nonconstant. Although it is ensured that μ ≥ N ,
μ is dynamically changed during the search process (i.e., μ �= N and |P | �=
|W |) unlike MOEA/D. After the initialization of the population (lines 1–2), the
following steps are repeatedly applied until a termination condition is satisfied.

252 R. Tanabe and H. Ishibuchi

Algorithm 2. The isNeighborhood(u ,x) function
/* The population P = {y 1, ..., y µ} */

1 for i ∈ {1, ..., µ} do dEi ← NED(y i,u);

2 Sort individuals based on their distance values such that dE1 ≤ dE2 ≤ ... ≤ dEµ ;
3 for i ∈ {1, ..., L} do
4 if yi = x then return TRUE;

5 return FALSE;

At the beginning of each iteration, parent individuals are selected from the
whole population P (line 5). Unlike the original MOEA/D, the mating selection
is not restricted to neighborhood individuals to generate diverse new solutions.
Then, a child u is generated by applying the variation operators (lines 6–7).

After u has been generated, the environmental selection is performed (lines
8–17). Note that our subproblem selection method (described below) was derived
from MOEA/D-DU [16]. However, unlike MOEA/D-DU, only one subproblem
is updated for each iteration in MOEA/D-AD to preserve the diversity. First,
the perpendicular distance di between the normalized objective vector f ′(u) of
u and w i is calculated for each i ∈ {1, ..., N} (line 8), where PD represents the
perpendicular distance between two input vectors. Here, f ′(u) is obtained as
follows: f ′

k(u) = (fk(u) − fmin
k)/(fmax

k − fmin
k), where fmin

k = miny∈P{fk(y)},
and fmax

k = maxy∈P{fk(y)} for each k ∈ {1, ...,M}. Then, the j-th subproblem
having the minimum d value is selected (line 9). The environmental selection is
performed only on the j-th subproblem.

The child u is compared to all the individuals that have been assigned to
the j-th subproblem (line 11–15). Two Boolean variables bwinner and bexplorer ∈
{TRUE,FALSE} (line 10) are used for the addition operation of MOEA/D-AD.
More precisely, bwinner represents whether u outperforms at least one individual
belonging to the j-th subproblem regarding the scalarizing function value, and
bexplorer indicates whether u is far from all the individuals assigned to the j-th
subproblem in the solution space. If at least one of bwinner and bexplorer is TRUE,
u enters the population P (lines 16–17).

In line 12 of Algorithm 1, the isNeighborhood(u ,x) function returns TRUE
if u is close to x in the solution space (otherwise, it returns FALSE). Algorithm
2 shows details of the function, where the NED function returns the normalized
Euclidean distance between two input vectors using the upper and lower bounds
for each variable of a given problem. In Algorithm 2, L (1 ≤ L ≤ μ) is a control
parameter of MOEA/D-AD. First, the normalized Euclidean distance between
each individual in P and u is calculated. Then, all the μ individuals are sorted
based on their distance values in descending order. Finally, if x is within the L
nearest individuals from u among the μ individuals, the function returns TRUE.

If x is in the neighborhood of u in the solution space (line 12), they are com-
pared based on their scalarizing function values (lines 14–15). The environmental
selection is performed only among similar individuals in the solution space in

A Decomposition-Based Evolutionary Algorithm 253

Algorithm 3. The selectSparseSolutions(P) function
/* The population P = {x 1, ..., x µ} */

1 P ← selectNondominatedSolutions(P), µ ← |P |, A ← ∅;

2 for i ∈ {1, ..., µ} do bselectedi ← FALSE, Di ← ∞;
3 Randomly select j from {1, ..., µ};

4 A ← A ∪ {x j}, bselectedj ← TRUE;
5 for i ∈ {1, ..., µ} do

6 if bselectedi = FALSE then Di ← min(NED(x i, x j), Di);

7 while |A| < N do

8 j ← arg max
i∈{1,...,µ}|bselectedi =FALSE

Di, A ← A ∪ {x j}, bselectedj ← TRUE;

9 for i ∈ {1, ..., µ} do

10 if bselectedi = FALSE then Di ← min(NED(x i, x j), Di);

11 return A, which is the N or fewer nondominated solutions selected from P ;

order to maintain the diversity of the population. If x is worse than u , x is
removed from P (line 15). This is the deletion operation of MOEA/D-AD.

Since μ is not bounded, P may include a large number of solutions at the
end of the search. This is undesirable in practice because decision-makers are
likely to want to examine only a small number of nondominated solutions that
approximate the Pareto front and the Pareto solution set [18]. To address this
issue, a method of selecting N nondominated solutions is applied to the final
population (line 19). Recall that N denotes the number of subproblems.

Algorithm 3 shows details of the selectSparseSolutions function, which
returns N or less nondominated solutions A. First, nondominated solutions are
selected from P . Then, one individual is randomly selected from P and inserted
into A. Then, a solution having the maximum distance to solutions in A is
repeatedly stored into A. It is expected that a set of nondominated solutions
being far from each other in the solution space are obtained by this procedure.

3 Experimental Settings

Test Problems. We used the following seven two-objective MMOPs: the Two-
On-One problem [10], the Omni-test problem [3], the three SYM-PART problems
[11], and the two SSUF problems [9]. The number of variables D is five for the
Omni-test problem and two for the other problems. In the Two-On-One and
SSUF1 problems, there are two symmetrical Pareto optimal solutions that are
mapped to the same objective vector. In the other problems, Pareto optimal
solutions are regularly distributed. The number of equivalent Pareto optimal
solutions is two for the SSUF3 problem, nine for the three SYM-PART problems,
and 45 for the Omni-test problem.

254 R. Tanabe and H. Ishibuchi

Performance Indicators. We used the inverted generational distance (IGD)
[20] and IGDX [19] for performance assessment of EMOAs. Below, A denotes a
set of nondominated solutions of the final population of an EMOA. The IGD and
IGDX metrics require a set of reference points A∗. For A∗ for each problem, we
used 5 000 solutions which were selected from randomly generated 10 000 Pareto-
optimal solutions by using the selectSparseSolutions function (Algorithm 3).

The IGD value is the average distance from each reference solution in A∗ to
its nearest solution in A in the objective space as follows:

IGD(A) =
1

|A∗|

(
∑

z∈A∗
min
x∈A

{
ED

(
f (x), f (z)

)}
)

,

where ED(x 1,x 2) represents the Euclidean distance between x 1 and x 2.
Similarly, the IGDX value of A is given as follows:

IGDX(A) =
1

|A∗|

(
∑

z∈A∗
min
x∈A

{
ED

(
x , z

)}
)

.

While IGD measures the quality of A in terms of both convergence to the
Pareto front and diversity in the objective space, IGDX evaluates how well
A approximates the Pareto-optimal solution set in the solution space. Thus,
EMOAs that can find A with small IGD and IGDX values are efficient multi-
objective optimizers and multi-modal multi-objective optimizers, respectively. It
should be noted that small IGD values do not always mean small IGDX values.

Setup for EMOAs. We compared MOEA/D-AD with the following five meth-
ods: MO Ring PSO SCD [17], Omni-optimizer [3], NSGA-II [2], MOEA/D [18],
and MOEA/D-DU [16]. Omni-optimizer is a representative EMOA for MMOPs.
MO Ring PSO SCD is a recently proposed PSO algorithm for MMOPs. NSGA-
II and MOEA/D are widely used EMOAs for MOPs. Since the selection method
of the subproblem to be updated in MOEA/D-AD was derived from MOEA/D-
DU, we also included it in our experiments.

Available source code through the Internet were used for algorithm imple-
mentation. For the implementation of MOEA/D-AD, we used the jMetal frame-
work [4]. Source code of MOEA/D-AD can be downloaded from the first author’s
website (https://ryojitanabe.github.io/). The population size μ and the number
of weight vectors N were set to 100 for all the methods. In MOEA/D-AD, μ
is dynamically changed as shown in Fig. 4(a). For a fair comparison, we used
a set of nondominated solutions of the size N = 100 selected from the final
population by using the selectSparseSolutions function (Algorithm 3). Thus, the
EMOAs were compared using the obtained solution sets of the same size (100).
For all the six EMOAs, the number of maximum function evaluations was set
to 30 000, and 31 runs were performed. The SBX crossover and the polynomial
mutation were used in all the EMOAs (except for MO Ring PSO SCD). Their
control parameters were set as follows: pc = 1, ηc = 20, pm = 1/D, and ηm = 20.

https://ryojitanabe.github.io/

A Decomposition-Based Evolutionary Algorithm 255

Table 1. Results of the six EMOAs on the seven MMOPs. The tables (a) and (b)
show the mean IGD and IGDX values, respectively. The best and second best data
are represented by the bold and italic font. The numbers in parenthesis indicate the
ranks of the EMOAs. The symbols +, −, and ≈ indicate that a given EMOA performs
significantly better (+), significantly worse (−), and not significantly better or worse
(≈) compared to MOEA/D-AD according to the Wilcoxon rank-sum test with p < 0.05.

MOEA/

D-AD

MO Ring

PSO SCD

Omni-

optimizer

NSGA-II MOEA/D MOEA/

D-DU

(a) IGD

Two-On-One 0.0637 (5) 0.0606≈ (4) 0.0489+ (2) 0.0490+ (3) 0.0450+ (1) 0.0709− (6)

Omni-test 0.0755 (5) 0.1814− (6) 0.0303+ (2) 0.0297+ (1) 0.0517+ (4) 0.0458+ (3)

SYM-PART1 0.0302 (4) 0.0283+ (3) 0.0236+ (2) 0.0210+ (1) 0.0467− (5) 0.0478− (6)

SYM-PART2 0.0305 (3) 0.0312≈ (4) 0.0284+ (2) 0.0229+ (1) 0.0466− (5) 0.0474− (6)

SYM-PART3 0.0307 (2) 0.0323− (3) 0.0343− (4) 0.0228+ (1) 0.0455− (5) 0.0470− (6)

SSUF1 0.0075 (6) 0.0065+ (5) 0.0060+ (4) 0.0055+ (2) 0.0055+ (3) 0.0042+ (1)

SSUF3 0.0190 (5) 0.0106+ (3) 0.0170+ (4) 0.0073+ (1) 0.0629− (6) 0.0082+ (2)

(b) IGDX

Two-On-One 0.0353 (1) 0.0369− (2) 0.0383− (3) 0.1480− (4) 0.2805− (6) 0.2067− (5)

Omni-test 1.3894 (1) 2.2227− (3) 2.0337− (2) 2.5664− (4) 4.3950− (6) 2.9251− (5)

SYM-PART1 0.0686 (1) 0.1482− (2) 3.8027− (3) 7.9287− (5) 9.1551− (6) 5.0426− (4)

SYM-PART2 0.0783 (1) 0.1610− (2) 1.0863− (3) 5.3711− (5) 9.4834− (6) 5.1610− (4)

SYM-PART3 0.1480 (1) 0.4909− (2) 1.3620− (3) 5.8410− (5) 7.3969− (6) 4.6767− (4)

SSUF1 0.0761 (1) 0.0860− (2) 0.0899− (3) 0.1323− (5) 0.2443− (6) 0.1143− (4)

SSUF3 0.0302 (2) 0.0198+ (1) 0.0541− (3) 0.0710− (5) 0.3083− (6) 0.0599− (4)

We used the Tchebycheff function [18] for MOEA/D and MOEA/D-AD as
the scalarizing function. The control parameter L of MOEA/D-AD was set to
L = �0.1μ� (e.g., L = 201 when μ = 2018). According to [16,18], the neighbor-
hood size T of MOEA/D and MOEA/D-DU was set to T = 20. All other param-
eters of MOEA/D-DU and MO Ring PSO SCD were set according to [16,17].

4 Experimental Results

4.1 Performance Comparison

IGD Metric. Table 1 shows the comparison of the EMOAs on the seven prob-
lems. The IGD and IGDX values are reported in Table 1(a) and (b), respectively.

Table 1(a) shows that the performance of NSGA-II regarding the IGD metric
is the best on five problems. MOEA/D and MOEA/D-DU also perform best on
the Two-On-One and SSUF1 problems, respectively. In contrast, MOEA/D-AD
and MO Ring PSO SCD perform poorly on most problems. Note that such a
poor performance of multi-modal multi-objective optimizers for multi-objective
optimization has already been reported in [13,17]. Since multi-modal multi-
objective optimizers try to locate all equivalent Pareto optimal solutions, their
ability to find a good approximation of the Pareto front is usually worse than

256 R. Tanabe and H. Ishibuchi

Fig. 2. Distribution of nondominated solutions in the final population of each EMOA
in the objective space on the SYM-PART1 problem. The horizontal and vertical axis
represent f1 and f2, respectively.

that of multi-objective optimizers, which directly approximate the Pareto front.
However, the IGD values achieved by MOEA/D-AD are only 1.3–2.6 times worse
than the best IGD values on all the problems.

IGDX Metric. Table 1(b) indicates that the three multi-modal multi-objective
optimizers (MOEA/D-AD, MO Ring PSO SCD, and Omni-optimizer) have
good performance, regarding the IGDX indicator. In particular, MOEA/D-AD
performs the best on the six MMOPs. MOEA/D-AD shows the second best per-
formance only on the SSUF3 problem. In contrast, the performance of MOEA/D
and MOEA/D-DU regarding the IGDX metric is quite poor. The IGDX values
obtained by MOEA/D are 3.2–121.1 times worse than those by MOEA/D-AD.
Thus, the new mechanism that maintains the solution space diversity in the
population mainly contributes to the effectiveness of MOEA/D-AD.

Distribution of Solutions Found. Figures 2 and 3 show the distribution of
nondominated solutions in the final population of each EMOA in the objective
and solution spaces on the SYM-PART1 problem. Again, we emphasize that
only N = 100 nondominated solutions selected from the final population by
using the selectSparseSolutions function (Algorithm 3) are shown for MOEA/D-
AD in Figs. 2 and 3. Results of a single run with median IGD and IGDX values
among 31 runs are shown in Figs. 2 and 3, respectively.

As shown in Fig. 2, the Pareto front of the SYM-PART1 problem is con-
vex. While the distribution of nondominated solutions found by MOEA/D and
MOEA/D-DU in the objective space is biased to the center of the Pareto front,

A Decomposition-Based Evolutionary Algorithm 257

−15−10 −5 0 5 10 15−15
−10
−5
0
5
10
15

−15−10 −5 0 5 10 15−15
−10
−5
0
5
10
15

−15−10 −5 0 5 10 15−15
−10
−5
0
5
10
15

−15−10 −5 0 5 10 15−15
−10
−5
0
5
10
15

−15−10 −5 0 5 10 15−15
−10
−5
0
5
10
15

−15−10 −5 0 5 10 15−15
−10
−5
0
5
10
15

Fig. 3. Distribution of nondominated solutions in the final population of each EMOA
in the solution space on the SYM-PART1 problem. The horizontal and vertical axis
represent x1 and x2, respectively.

that by NSGA-II is uniform. Compared to the result of NSGA-II, nondominated
solutions obtained by MOEA/D-AD and MO Ring PSO SCD are not uniformly
distributed in the objective space. This is because they also take into account
the diversity of the population in the solution space.

The Pareto optimal solutions are on the nine lines in the SYM-PART1 prob-
lem. Figure 3 shows that Omni-optimizer, NSGA-II, MOEA/D, and MOEA/D-
DU fail to locate all the nine equivalent Pareto optimal solution sets. Solutions
obtained by the four methods are only on a few lines. In contrast, MOEA/D-
AD and MO Ring PSO SCD successfully find nondominated solutions on all the
nine lines. In particular, solutions obtained by MOEA/D-AD are more evenly
distributed on the nine lines. Similar results to Figs. 2 and 3 are observed in
other test problems. In summary, our results indicate that MOEA/D-AD is an
efficient method for multi-modal multi-objective optimization.

4.2 Analysis of MOEA/D-AD

Influence of L on the Performance of MOEA/D-AD. MOEA/D-AD
has the control parameter L, which determines the neighborhood size of the
child in the solution space. Generally speaking, it is important to understand
the influence of control parameters on the performance of a novel evolutionary
algorithm. Here, we investigate how L affects the effectiveness of MOEA/D-AD.

Table 2 shows results of MOEA/D-AD with six L values on the seven test
problems. Due to space constraint, only aggregations of statistical testing results
to MOEA/D-AD with L = �0.1μ� are shown here. Intuitively, MOEA/D-AD
with a large L value should perform well regarding the IGD metric because
large L values relax the restriction for the environmental selection and may

258 R. Tanabe and H. Ishibuchi

Table 2. Results of MOEA/D-AD with various L values on the seven MMOPs. The
tables (a) and (b) show aggregations of statistical testing results (+, −, and ≈) of the
IGD and IGDX metrics. Each entry in the table shows the number of problems where
the performance of MOEA/D-AD with each value of L is significantly better (worse)
or has no significant difference from that of MOEA/D-AD with L =
0.1µ�.

0.1µ 0.05µ 0.2µ 0.3µ 0.4µ 0.5µ

(a) IGD

+ (better) 1 0 0 0 0

− (worse) 0 3 5 5 5

≈ (no sig.) 6 4 2 2 2

(b) IGDX

+ (better) 2 1 0 0 0

− (worse) 3 2 5 6 7

≈ (no sig.) 2 4 2 1 0

improve its ability for multi-objective optimization. However, Table 2(a) shows
that the performance of MOEA/D-AD with a large L value is poor, regarding
the IGD indicator. As pointed out in [15], the solution space diversity may help
MOEA/D-AD to approximate the Pareto front well.

Table 2(b) indicates that the best IGDX values are obtained by L = �0.05μ�
and L = �0.2μ� on two problems and one problem, respectively. Thus, the perfor-
mance of MOEA/D-AD depends on the L value. A control method of L is likely
to be beneficial for MOEA/D-AD. However, MOEA/D-AD with L = �0.1μ�
performs well on most problems. Therefore, L = �0.1μ� can be the first choice.

Adaptive Behavior of MOEA/D-AD. Unlike other MOEA/D-type algo-
rithms, the population size μ and the number of individuals belonging to each
subproblem are adaptively adjusted in MOEA/D-AD.

Figure 4(a) shows the evolution of μ of MOEA/D-AD on the seven prob-
lems. In Fig. 4(a), μ is increased as the search progresses. This is because the
diverse individuals in the solution space are iteratively added in the population.
Recall that the number of equivalent Pareto optimal solutions nsame is 45 for the
Omni-test problem, nine for the three SYM-PART problems, and two for other
problems. Figure 4(a) indicates that the trajectory of μ is problem-dependent.
Ideally, μ should equal nsame × N so that nsame Pareto optimal solutions are
assigned to each of N subproblems. However, the actual μ values are signifi-
cantly larger than the expected values. For example, while the ideal μ value is
200 (2 × 100) on the Two-On-One problem, the actual μ value at the end of the
search is 2 480.

To analyze the reason, we show the number of individuals assigned to each
subproblem at the end of the search on the Two-On-One, Omni-test, and

A Decomposition-Based Evolutionary Algorithm 259

SYM-PART1 problems in Fig. 4(b). Figure 4(b) indicates that the distribution
of individuals is not even. More extra individuals are allocated to subproblems
whose indices are close to 50. That is, MOEA/D-AD allocates unnecessary indi-
viduals to most subproblems. If individuals can be evenly assigned to each sub-
problem, the performance of MOEA/D-AD may be improved. An in-depth anal-
ysis of the adaptive behavior of MOEA/D-AD is needed.

Fig. 4. (a) Evolution of the population size µ of MOEA/D-AD. (b) Number of individ-
uals assigned to the j-th subproblem (j ∈ {1, ..., N}) at the end of the search, where
N = 100. Results of a single run with a median IGDX value among 31 runs are shown.

5 Conclusion

We proposed MOEA/D-AD, which is a novel MOEA/D for multi-modal multi-
objective optimization. In order to locate multiple equivalent Pareto optimal
solutions, MOEA/D-AD assigns one or more individuals that are far from
each other in the solution space to each subproblem. We examined the per-
formance of MOEA/D-AD on the seven two-objective problems having equiva-
lent Pareto optimal solutions. Our results indicate that MOEA/D-AD is capa-
ble of finding multiple equivalent Pareto optimal solutions. The results also
show that MOEA/D-AD performs significantly better than Omni-optimizer
and MO Ring PSO SCD, which are representative multi-modal multi-objective
optimizers.

Several interesting directions for future work remain. Any neighborhood cri-
terion (e.g., sharing and clustering [8]) can be introduced in MOEA/D-AD.
Although we used the relative distance-based neighborhood decision (Algo-
rithm 2) in this study, investigating the performance of MOEA/D-AD with
other neighborhood criteria is one future research topic. Also, the effectiveness of
MOEA/D-AD could be improved by using an external archive that stores diverse

260 R. Tanabe and H. Ishibuchi

solutions [12]. A more efficient search can be performed by utilizing a decision-
maker’s preference [5]. Incorporating the decision-maker’s preference into the
search process of MOEA/D-AD is an avenue for future work. Since the exist-
ing multi-modal multi-objective test problems are not scalable in the number of
objectives and variables, this paper dealt with only two-objective problems with
up to five variables. Designing scalable test problems is another research topic.

Acknowledgments. This work was supported by the Science and Technology Inno-
vation Committee Foundation of Shenzhen (Grant No. ZDSYS201703031748284).

References

1. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley,
Hoboken (2001)

2. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE TEVC 6(2), 182–197 (2002)

3. Deb, K., Tiwari, S.: Omni-optimizer: a generic evolutionary algorithm for single
and multi-objective optimization. EJOR 185(3), 1062–1087 (2008)

4. Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimiza-
tion. Adv. Eng. Softw. 42(10), 760–771 (2011)

5. Gong, M., Liu, F., Zhang, W., Jiao, L., Zhang, Q.: Interactive MOEA/D for multi-
objective decision making. In: GECCO, pp. 721–728 (2011)

6. Kramer, O., Danielsiek, H.: DBSCAN-based multi-objective niching to approxi-
mate equivalent pareto-subsets. In: GECCO, pp. 503–510 (2010)

7. Kudo, F., Yoshikawa, T., Furuhashi, T.: A study on analysis of design variables
in Pareto solutions for conceptual design optimization problem of hybrid rocket
engine. In: IEEE CEC, pp. 2558–2562 (2011)

8. Li, X., Epitropakis, M.G., Deb, K., Engelbrecht, A.P.: Seeking multiple solutions:
an updated survey on niching methods and their applications. IEEE TEVC 21(4),
518–538 (2017)

9. Liang, J.J., Yue, C.T., Qu, B.Y.: Multimodal multi-objective optimization: a pre-
liminary study. In: IEEE CEC, pp. 2454–2461 (2016)

10. Preuss, M., Naujoks, B., Rudolph, G.: Pareto set and EMOA behavior for simple
multimodal multiobjective functions. In: Runarsson, T.P., Beyer, H.-G., Burke, E.,
Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193,
pp. 513–522. Springer, Heidelberg (2006). https://doi.org/10.1007/11844297 52

11. Rudolph, G., Naujoks, B., Preuss, M.: Capabilities of EMOA to detect and preserve
equivalent pareto subsets. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T.,
Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 36–50. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70928-2 7

12. Schütze, O., Vasile, M., Coello, C.A.C.: Computing the set of epsilon-efficient solu-
tions in multiobjective space mission design. JACIC 8(3), 53–70 (2011)

13. Shir, O.M., Preuss, M., Naujoks, B., Emmerich, M.: Enhancing decision space
diversity in evolutionary multiobjective algorithms. In: Ehrgott, M., Fonseca, C.M.,
Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 95–
109. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01020-0 12

14. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multiobjective evo-
lutionary algorithms based on decomposition. IEEE TEVC 21(3), 440–462 (2017)

https://doi.org/10.1007/11844297_52
https://doi.org/10.1007/978-3-540-70928-2_7
https://doi.org/10.1007/978-3-642-01020-0_12

A Decomposition-Based Evolutionary Algorithm 261

15. Ulrich, T., Bader, J., Zitzler, E.: Integrating decision space diversity into
hypervolume-based multiobjective search. In: GECCO, pp. 455–462 (2010)

16. Yuan, Y., Xu, H., Wang, B., Zhang, B., Yao, X.: Balancing convergence and diver-
sity in decomposition-based many-objective optimizers. IEEE TEVC 20(2), 180–
198 (2016)

17. Yue, C., Qu, B., Liang, J.: A multi-objective particle swarm optimizer using ring
topology for solving multimodal multi-objective problems. IEEE TEVC (2017, in
press)

18. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE TEVC 11(6), 712–731 (2007)

19. Zhou, A., Zhang, Q., Jin, Y.: Approximating the set of pareto-optimal solutions in
both the decision and objective spaces by an estimation of distribution algorithm.
IEEE TEVC 13(5), 1167–1189 (2009)

20. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance assessment of multiobjective optimizers: an analysis and review. IEEE
TEVC 7(2), 117–132 (2003)

A Double-Niched Evolutionary Algorithm
and Its Behavior on Polygon-Based

Problems

Yiping Liu1, Hisao Ishibuchi2, Yusuke Nojima1(B), Naoki Masuyama1,
and Ke Shang2

1 Department of Computer Science and Intelligent Systems,
Graduate School of Engineering, Osaka Prefecture University, Sakai,

Osaka 599-8531, Japan
yiping0liu@gmail.com, {nojima,masuyama}@cs.osakafu-u.ac.jp

2 Department of Computer Science and Engineering,
Southern University of Science and Technology,

Shenzhen 518055, Guangdong, China
hisao@sustc.edu.cn, kshang@foxmail.com

Abstract. Multi-modal multi-objective optimization problems are com-
monly seen in real-world applications. However, most existing researches
focus on solving multi-objective optimization problems without multi-
modal property or multi-modal optimization problems with single objec-
tive. In this paper, we propose a double-niched evolutionary algorithm
for multi-modal multi-objective optimization. The proposed algorithm
employs a niche sharing method to diversify the solution set in both the
objective and decision spaces. We examine the behaviors of the proposed
algorithm and its two variants as well as three other existing evolutionary
optimizers on three types of polygon-based problems. Our experimental
results suggest that the proposed algorithm is able to find multiple Pareto
optimal solution sets in the decision space, even if the diversity require-
ments in the objective and decision spaces are inconsistent or there exist
local optimal areas in the decision space.

Keywords: Evolutionary computation
Multi-objective optimization · Multi-modal optimization · Niche
Diversity

1 Introduction

There are many multi-objective optimization problems in real-world applica-
tions. Due to the conflicting nature of objectives, there is typically no single
optimal solution to these problems, rather a Pareto optimal solution set. The
image of the Pareto optimal solution set in the objective space is referred to as
the Pareto front. The general task (in a posteriori situations) of a multi-objective
optimizer is to find an approximate solution set not only close to but also well
distributed on the Pareto front.
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 262–273, 2018.
https://doi.org/10.1007/978-3-319-99253-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_21&domain=pdf

DNEA and Its Behavior on Polygon-Based Problems 263

In view of this, a large number of multi-objective evolutionary algorithms
(MOEAs) are designed to solve multi-objective optimization problems over the
past two decades. The most typical MOEAs are the Pareto-based ones, in which
the Pareto dominance relationship is adopted as the first selection criterion to
distinguish well converged solutions, while a density-based second selection cri-
terion is used to promote diversity in the objective space. The widely adopted
density-based selection criteria are the crowding distance [1] and niche sharing
[4] methods, to name a few.

On the other hand, the objective(s) of an optimization problem may have
multi-modal property. For such an objective, there exist different optimal solu-
tions which have the same objective value. This requires evolutionary algorithms
to maintain diversity among solutions in the decision space to provide more
options for the decision maker. Most existing researches focus on multi-modal
single-objective optimization, where niche techniques, e.g., the fitness sharing [3]
and crowding [12] methods, are usually employed to diversify the solution set.

Up to now, there are only a few researches on multi-modal multi-objective
evolutionary optimization. How to maintain diversity in both the objective and
decision spaces is a crucial issue for evolutionary algorithms to solve multi-modal
multi-objective optimization problems. In this paper, we propose a Double-
Niched Evolutionary Algorithm (DNEA), in which the niche sharing method
is adopted in both the objective and decision spaces. We compared the proposed
DNEA with three state-of-the-art designs on polygon-based problems, where
the performance of the achieved solution sets in the objective space can be visu-
ally examined in the decision space. Besides a basic type of the polygon-based
problems, we also adopted two other types to further investigate and discuss the
behaviors of the competing algorithms on multi-modal multi-objective optimiza-
tion.

The remainder of this paper is organized as follows. In Sect. 2, the related
works on multi-modal multi-objective optimization problems and techniques for
diversity maintenance are reviewed for the completeness of the presentation.
The proposed DNEA is then described in detail in Sect. 3. Section 4 presents the
experimental results and relevant discussions. Section 5 concludes the paper and
provides future research directions.

2 Related Works

2.1 Multi-modal Multi-objective Optimization Problems

As defined in [7] recently, a multi-modal multi-objective optimization problem
has more than one Pareto optimal solution sets. In other word, there are at
least two similar feasible regions in the decision space corresponding to the same
region of the objective space. Later, [13] gave a simple real-world example in the
path-planning problem. The traveling time and the number of transfer stations
are two objectives in this example. There may exist two different paths that have
the same objective values. In such a situation, if an optimizer can provide both

264 Y. Liu et al.

of the paths, the decision maker will have more options for other considerations
(e.g. gas station).

Actually, before the concept of multi-modal multi-objective optimization
problems is proposed, there have been some researches on this topic. For instance,
a map-based problem is proposed in [5], where the goal is find a location nearest
to elementary school, junior-high school, convenience store, and railway station
on a real-world map. Clearly, it is a four-objective optimization problem. Since
the numbers of the aforementioned places are usually more than one on the
map, there may exist several optimal locations that have the same objective
values. In addition, a few real-world multi-objective optimization problems are
also identified to multi-modal property in the literature [11].

In this study, we adopt the polygon-based problems [5] as test problems in
the experiments. The polygon-based problems can be termed as an ideal version
of the aforementioned map-based problems. The Pareto optimal sets of these
problems are located in several regular polygons, which is relatively easy for
investigating the behavior of an optimizer at the early stage of the research
on multi-modal multi-objective optimization. Moreover, there have not been a
widely accepted metric to simultaneously measure the convergence and diversity
performances in both the objective and decision spaces of a solution set for
multi-modal multi-objective optimization, whereas these performances in the
polygon-based problems can be visually examined in a two-dimensional space.
This is another important reason of adopting the polygon-based problems in this
study.

2.2 Diversity Maintenance in the Objective and Decision Spaces

In early 70s and 80s, some classic niche techniques, e.g., the fitness sharing [3]
and crowding [12] methods, have been proposed to manipulate the distribution
of solutions in the decision space for multi-modal evolutionary optimization. In
the fitness sharing method, individuals in the same neighborhood will degrade
the fitness of each other, thereby discouraging the others occupying the same
niche. In crowding methods, an offspring and its close parents compete with
each other, and individuals with better fitness in the sparse areas are favored.
There are a lot of other niche methods developed in the last two decades, e.g.,
clearing [10] and speciation [6]. However, all of above methods can only deal
with single-objective optimization problems.

On the other hand, MOEA are developed to provide a diverse solution set
in the objective space for multi-objective optimization. Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [1] is one of the most representative Pareto-
based MOEAs. In NSGA-II, solutions with large crowding distances in the objec-
tive space are preferred in the environmental selection. Niched Pareto Genetic
Algorithm (NPGA) [4] is another classic Pareto-based MOEA, where the fitness
sharing method [3] is termed as the niche sharing method to promote diversity
in the objective space. MOEA Based on Decomposition (MOEA/D) [14] is also
found a promising alternative to solve multi-objective optimization problems. In
MOEA/D, a number of scalarizing functions based on a set of well distributed

DNEA and Its Behavior on Polygon-Based Problems 265

reference vectors are used to guide the evolution. The diversity of solutions is
ensured by the distribution of the reference vectors. In addition, indicator-based
MOEAs [8,15] and reference points-based MOEAs [9] are theoretically well-
supported options.

There have been a few works on maintaining diversity in the decision space for
multi-objective optimization. In [2], the Omni-optimizer was proposed by apply-
ing the crowding distance in the decision space. A decision space-based niching
NSGA-II (DN-NSGA-II) in [7] was developed to search multiple Pareto optimal
solution sets, which is similar to omni-optimizer. Very recently, a multi-objective
particle swarm optimization algorithm with ring topology and special crowding
distance [13] is proposed to obtain good distributions among the population.

In this paper, we propose a double-niched evolutionary algorithm for multi-
modal multi-objective optimization. In the proposed algorithm, the niche sharing
method is simultaneously employed for diversity maintenance in both the objec-
tive and decision spaces. We describe the proposed algorithm in detail in the
next section.

3 A Double-Niched Evolutionary Algorithm

The general framework of DNEA is similar to other generational evolutionary
algorithms. What makes DNEA special is its environmental selection operator,
which is detailed in Algorithm 1.

Algorithm 1. Environmental Selection of DNEA
Require: N (population size), Q (candidate solution set), σobj (niche radius in the

objective space), σvar (niche radius in the decision space)
1: F = F1 ∪ F2 ∪ ...Fk =Nondominated sort (Q)
2: P = F1 ∪ F2 ∪ ...Fk−1

3: N ′ = N − |P |
4: while |Fk| > N ′ do
5: for all xi ∈ Fk do
6: calculate fDS(xi) according to σobj and σvar

7: end for
8: xmax = arg max

xi∈Fk

fDS(xi)

9: Fk = Fk/{xmax}
10: end while
11: P = P ∪ Fk

12: return P

In Algorithm 1, the solutions in the candidate solution set, Q, are first sorted
to form several nondominated fronts, F1∪F2∪...Fk, where k in Fk is the minimal
value such that |F1|+ |F2|+ ...|Fk| > N (N is the population size) (Line 1). This
procedure is similar to that in NSGA-II [1]. Then, the first Fk−1 nondominated
fronts are combined into the new population, P (Line 2). N ′ = N − |P | is the

266 Y. Liu et al.

number of solutions remain to be chosen into P (Line 3). While |Fk| > N ′,
the double-sharing function, fDS , of each solution in Fk is calculated as follows
(Line 6):

fDS(xi) =
∑

xj∈Fk

Shobj(i, j) + Shvar(i, j) (1)

In this formulation, Shobj(i, j) = max{0, 1 − dobj(i, j)/σobj} and Shvar(i, j) =
max{0, 1 − dvar(i, j)/σvar}, where dobj(i, j) and σobj are the Euclidean distance
between xi and xj and the niche radius in the objective space, respectively, and
dvar(i, j) and σvar have the similar meanings in the decision space. Then, the
solution with the maximum value of the double-sharing function, xmax, is deleted
from Fk (Line 9). Finally, the remaining solutions in Fk (where |Fk| = N ′) are
merged into P (Line 11).

Note that the settings of σobj and σvar are non-trivial. Generally, the higher
dimension of the objective (decision) space and the smaller population size, the
larger value of σobj (σvar). If σobj (σvar) is too large (e.g. larger than the distance
between any pair of solutions), boundary solutions are more likely to be selected.
Conversely, if σobj (σvar) is too small (e.g. smaller than the distance between any
pair of solutions), then the solutions to be discarded are selected at random as
the double-sharing function would assign zero to every solution. In both of the
above situations, the algorithm would encounter diversity maintenance issues.
In this study, since it is easy to choose the above values for polygon-based prob-
lems, we handle them as pre-specified fixed parameters. Developing a method to
adaptively tune σobj and σvar is an interesting future work.

It can be seen from Algorithm 1 and Eq. (1) that solutions located in sparse
regions either in the objective space or in the decision space are preferred. A
solution that is very close to others in the objective (decision) space but far away
from others in the decision (objective) space still has a chance to be selected.
This means that DNEA has a great potential to maintain diversity in both the
objective and decision spaces.

In the following section, we investigate the performance of DNEA on the
polygon-based problems to demonstrate its effectiveness. We also test two vari-
ants of DNEA as competing algorithms. The first is termed as DNEAobj, where
any Shvar is set to zero. This means that DNEAobj only has the ability to main-
tain diversity in the objective space. In this situation, DNEAobj is almost equal
to NPGA. Conversely, setting Shobj to zero, the second is termed as DNEAvar,
which only focuses on diversity in the decision space.

4 Experiments

In this section, three types of polygon-based problems are first introduced. Then,
the competing algorithms and the parameter settings are given. Finally, the per-
formance of the competing algorithms are empirically evaluated and discussed.

DNEA and Its Behavior on Polygon-Based Problems 267

4.1 Polygon-Based Problems

We adopt three types of polygon-based problems with 3 and 4 objectives in the
experiments. There are four polygons in each problem. The details of them are
described as follows.

Type I: The first type is a very basic one, where all the polygons have the same
shape and size. The vertexes of triangles in the 3-objective problem of Type I
are

{A1 = (20, 30),B1 = (30, 10),C1 = (10, 10),
A2 = (80, 30),B2 = (90, 10),C2 = (70, 10),
A3 = (80, 90),B3 = (90, 70),C3 = (70, 70),
A4 = (20, 90),B4 = (30, 70),C4 = (10, 70)}.

AiBiCi, i = 1, 2, 3, 4 is the ith triangle. The three objectives to be minimized are
formulated as follows:

f1(x) = min{d(x,Ai), i = 1, 2, 3, 4}
f2(x) = min{d(x,Bi), i = 1, 2, 3, 4}
f3(x) = min{d(x,Ci), i = 1, 2, 3, 4}

(2)

where d(x,X) is the Euclidean distance from a solution x to X (X is a vertex) in
the decision space. Similarly, the objectives of the 4-objective problem of Type I
can be defined. There are four rectangles with size of 20 × 20 in the 4-objective
problem. Each polygon in these problems is a Pareto optimal region, and all the
regions are mapped to the same Pareto front. Finding a uniformly distributed
solution set in a polygon will lead to a well distributed approximate Pareto front.

Type II: The vertexes of polygons in Type II are the same as those in Type I.
The difference is that d(x,X) is transformed into d(x,X)0.01 in the objectives in
Type II. By such transformation, uniformly distributed solutions in the objective
space are actually nonuniformly distributed in the decision space, and vice versa.
By using the problems in Type II, we intend to investigate the behavior of each
competing algorithm when the diversities in the objective and decision spaces
are inconsistent.

Type III: For the problems in Type III, the size of polygons sequentially
increases. To be specific, the vertexes of triangles in the 3-objective problem
in Type III are

{A1 = (20, 30),B1 = (30, 10),C1 = (10, 10),
A2 = (80, 30.02),B2 = (90.01, 10),C2 = (69.99, 10),
A3 = (80, 90.2),B3 = (90.1, 70),C3 = (69.9, 70),
A4 = (20, 92),B4 = (31, 70),C4 = (9, 70)}.

The vertexes in the 4-objective problem are

{A1 = (10, 30),B1 = (30, 30),C1 = (30, 10),D1 = (10, 10),
A2 = (69.99, 30.01),B2 = (90.01, 30.01),C2 = (90.01, 9.99),D2 = (69.99, 9.99),
A3 = (69.9, 90.1),B3 = (90.1, 90.1),C3 = (90.1, 69.9),D3 = (69.9, 69.9),
A4 = (9, 91),B4 = (31, 91),C4 = (31, 69),D4 = (9, 69)}.

268 Y. Liu et al.

For the problems in Type III, only the first polygon is the true Pareto optimal
region and all the other polygons are local optimal regions. This means that any
solution located in the other polygons is dominated by a solution in the first
polygon. By testing each competing algorithm on the problems in Type III, we
expect to observe that whether the algorithm is trapped into the local optimal
regions while maintaining diversity in the decision space.

4.2 Competing Algorithms and Parameter Settings

Besides the proposed DNEA and its two variants, DNEAobj and DNEAvar, we
applied three other algorithms, i.e., DN-NSGA-II, NSGA-II, and MOEA/D, to
each test problem 30 times using the following specifications:

– Population size: 210 and 220 for 3- and 4-objective problems, respectively
– Population initialization: random values in [0, 100] for each decision variable
– Termination condition: 300 generations
– Crossover probability: 1.0 (SBX with ηc = 20)
– Mutation probability: 0.5 (Polynomial mutation with m = 20)
– Niche radius in DNEA and its variants: σobj = 0.06 and σvar = 0.02
– Neighborhood size in MOEA/D: 10% of the population size
– Crowding factor in DN-NSGA-II: half of the population size

It is interesting to note that the competing algorithms can be classified into
three categories. The first one is DNEA, which is designed to maintain diversity
in both the objective and decision spaces. The second one includes DNEAobj

and the classic multi-objective optimizers, i.e., NSGA-II and MOEA/D. They
only focus on diversity maintenance in the objective space. On the contrary,
DNEAvar and DN-NSGA-II fall into the third one.

4.3 Results and Discussions

In this part, the performances of the competing algorithms are evaluated and
discussed on the three types of polygon-based problems.

Results on Type I: In Fig. 1, we show the average number of solutions in the
Pareto optimal regions achieved by each competing algorithms over 30 runs. In
Fig. 1(a), (b), (d) and (e), ‘1st’ represents the average number of solutions in
the polygon which contains the most solutions in each run. ‘2nd’ represents that
in the polygon which contains the second most solutions, and ‘3rd’ and ‘4th’
have the similar meanings. ‘avg’ indicates the average number of solutions in all
the four polygons. Figure 2 shows the final solution sets of each algorithm in a
typical run in the decision space. In the typical run, the number of solutions in
each polygon is the nearest to the average number over 30 runs. Note that the
results in most other runs are similar to the typical one.

From Fig. 1(a) and (d), we can see that the difference between ‘1st’ and ‘4th’
obtained by DNEAobj, NSGA-II, and MOEA/D is larger than the others, which
means that most of the solutions achieved by these algorithms concentrate on one

DNEA and Its Behavior on Polygon-Based Problems 269

0

20

40

60

80

1st 2nd 3rd 4th avg

N
um

be
r o

f S
ol

ut
io

ns

DNEA DNEA-obj DNEA-var
MOEA/D NSGA-II DN-NSGA-II

(a) 3 objective - Type I

0

20

40

60

80

1st 2nd 3rd 4th avg

N
um

be
r o

f S
ol

ut
io

ns

DNEA DNEA-obj DNEA-var
MOEA/D NSGA-II DN-NSGA-II

(b) 3 objective - Type II

0

30

60

90

120

1st 2nd 3rd 4th avg

N
um

be
r o

f S
ol

ut
io

ns

DNEA DNEA-obj DNEA-var
MOEA/D NSGA-II DN-NSGA-II

(c) 3 objective - Type III

0

20

40

60

80

1st 2nd 3rd 4th avg

N
um

be
r o

f S
ol

ut
io

ns

DNEA DNEA-obj DNEA-var
MOEA/D NSGA-II DN-NSGA-II

(d) 4 objective - Type I

0

30

60

90

120

1st 2nd 3rd 4th avg

N
um

be
r o

f S
ol

ut
io

ns

DNEA DNEA-obj DNEA-var
MOEA/D NSGA-II DN-NSGA-II

(e) 4 objective - Type II

0

40

80

120

160

1st 2nd 3rd 4th avg

N
um

be
r o

f S
ol

ut
io

ns

DNEA DNEA-obj DNEA-var
MOEA/D NSGA-II DN-NSGA-II

(f) 4 objective - Type III

Fig. 1. The average number of solutions in each polygon.

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Triangle 1 Triangle 2

Triangle 4 Triangle 3

(a) DNEA

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Triangle 1 Triangle 2

Triangle 4 Triangle 3

(b) DNEAobj

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Triangle 1 Triangle 2

Triangle 4 Triangle 3

(c) DNEAvar

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Triangle 1 Triangle 2

Triangle 4 Triangle 3

(d) DN-NSGA-II

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Triangle 1 Triangle 2

Triangle 4 Triangle 3

(e) NSGA-II

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Triangle 1 Triangle 2

Triangle 4 Triangle 3

(f) MOEA/D

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Rectangle 1 Rectangle 2

Rectangle 4 Rectangle 3

(g) DNEA

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Rectangle 1 Rectangle 2

Rectangle 4 Rectangle 3

(h) DNEAobj

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Rectangle 1 Rectangle 2

Rectangle 4 Rectangle 3

(i) DNEAvar

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Rectangle 1 Rectangle 2

Rectangle 4 Rectangle 3

(j) DN-NSGA-II

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Rectangle 1 Rectangle 2

Rectangle 4 Rectangle 3

(k) NSGA-II

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Rectangle 1 Rectangle 2

Rectangle 4 Rectangle 3

(l) MOEA/D

Fig. 2. The final solution sets in the decision space on the polygon-based problem in
type I (a-f and g-l show the results on the 3- and 4-objective problems, respectively).

or two polygons. This can be also visually observed from the distribution of solu-
tions in the decision space in Fig. 2. Thus, DNEAobj, NSGA-II, and MOEA/D
fail to get multiple Pareto optimal solution sets. On the other hand, the differ-
ence between ‘1st’ and ‘4th’ obtained by DNEA, DNEAvar, and DN-NSGA-II
in Fig. 1 are relatively small. This suggests that the solutions are almost equally
assigned to each polygon, which can be also observed in Fig. 2. From these obser-
vations, we can conclude that DNEA, DNEAvar, and DN-NSGA-II have a good

270 Y. Liu et al.

ability to maintain diversity in the decision space. It is worth noting that the dif-
ference between “1st” and “4th” of DN-NSGA-II is a bit larger than DNEA and
DNEAvar in Fig. 1(a) and (d), and the distribution of solutions of DN-NSGA-II
is not as good as those of DNEA and DNEAvar in Fig. 2. This indicates that the
niche sharing method could perform better than the crowding distance method
in maintaining diversity.

Results on Type II: Similar to Figs. 2 and 3 shows the results of each com-
peting algorithm on the polygon-based problems in Type II.

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Triangle 1 Triangle 2

Triangle 4 Triangle 3

(a) DNEA

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Triangle 1 Triangle 2

Triangle 4 Triangle 3

(b) DNEAobj

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Triangle 1 Triangle 2

Triangle 4 Triangle 3

(c) DNEAvar

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Triangle 1 Triangle 2

Triangle 4 Triangle 3

(d) DN-NSGA-II

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Triangle 1 Triangle 2

Triangle 4 Triangle 3

(e) NSGA-II

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Triangle 1 Triangle 2

Triangle 4 Triangle 3

(f) MOEA/D

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Rectangle 1 Rectangle 2

Rectangle 4 Rectangle 3

(g) DNEA

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Rectangle 1 Rectangle 2

Rectangle 4 Rectangle 3

(h) DNEAobj

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Rectangle 1 Rectangle 2

Rectangle 4 Rectangle 3

(i) DNEAvar

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Rectangle 1 Rectangle 2

Rectangle 4 Rectangle 3

(j) DN-NSGA-II

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Rectangle 1 Rectangle 2

Rectangle 4 Rectangle 3

(k) NSGA-II

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Rectangle 1 Rectangle 2

Rectangle 4 Rectangle 3

(l) MOEA/D

Fig. 3. The final solution sets in the decision space on the polygon-based problem in
type II (a-f and g-l show the results on the 3- and 4-objective problems, respectively).

The results in Fig. 1(b) and (e) are similar to those in Fig. 1(a) and (d),
however, the average numbers of solutions in the polygons achieved by DNEA
and DNEAobj are smaller than the others. We speculate that the reason is the
deterioration of the convergence ability for the complicated Pareto fronts by the
enhancement of the diversification ability in those algorithms. From Fig. 3, we
can see that only DNEA find all vertexes of all polygons. The solutions achieved
by DNEAobj, NSGA-II, and MOEA/D only concentrate on several vertexes due
to the same reason when handling with the problems in Type I. The behaviors
of DNEAvar and DN-NSGA-II are much the same as those in Fig. 2, since they
only consider diversity in the decision space.

For further investigation, we show the non-dominated solutions in the objec-
tive space obtained by each algorithm on the 3-objective problem in the typical
run in Fig. 4. It can be seen from Fig. 4 that the solutions obtained by DNEAvar

and DN-NSGA-II focus on small areas. This observation suggests that they can-
not maintain a good diversity in the objective space for the problems in Type II,
although the distribution of their solutions looks uniform in the decision space
in Fig. 3. The solutions obtained by DNEA, DNEAobj, NSGA-II, and MOEA/D
are widely spread in the objective space. However, as we have observed in Fig. 3,

DNEA and Its Behavior on Polygon-Based Problems 271

only DNEA can achieve solution sets with large diversity in the decision space.
Similar results can be also observed on the 4-objective problem, where they are
not presented due to space limits.

f1

f3

f2
0.95

1.00
1.05

1.10 0.95 1.00 1.05 1.10

0.95

1.00

1.05

1.10

(a) DNEA

f1

f3

f2
0.95

1.00
1.05

1.10 0.95 1.00 1.05 1.10

0.95

1.00

1.05

1.10

(b) DNEAobj

f1

f3

f2
0.95

1.00
1.05

1.10 0.95 1.00 1.05 1.10

0.95

1.00

1.05

1.10

(c) DNEAvar

f1

f3

f2
0.95

1.00
1.05

1.10 0.95 1.00 1.05 1.10

0.95

1.00

1.05

1.10

(d) DN-NSGA-II

f1

f3

f2
0.95

1.00
1.05

1.10 0.95 1.00 1.05 1.10

0.95

1.00

1.05

1.10

(e) NSGA-II

f1

f3

f2
0.95

1.00
1.05

1.10 0.95 1.00 1.05 1.10

0.95

1.00

1.05

1.10

(f) MOEA/D

Fig. 4. The Pareto fronts on the 3-objective polygon-based problem in type II shown
by the 3D coordinates.

From the above-mentioned observations, we can conclude that maintaining
diversity in both the objective and decision spaces is necessary for solving the
problems in Type II. This motivates us to think that when the requirements of
diversity in the objective and decision spaces are conflict, should we consider
them equally, or make a trade-off between them? The proposed DNEA in this
study belongs to the former way. Developing methods in the latter way will be
a interesting future work.

Results on Type III: In the same manner as in the previous two subsections,
the results on the polygon-based problems in Type III are shown in Figs. 1(c)
and (f) and 5. The meaning of the results in Fig. 1(c) and (f) is a little different
from those in Figs. 1(a), (b), (d), and (e). In Fig. 1(c) and (f), ‘1st’, ‘2nd’, ‘3rd’,
and ‘4th’ indicate the first, second, third, and fourth polygon, respectively (only
the first polygon is the true Pareto optimal solution set). Since the polygons in
the Type III problems have different sizes, it is better to count the solutions in
each polygon separately.

It can be seen from Figs. 1(c) and (f) and 5 that most of the solutions achieved
by DNEAobj, NSGA-II, and MOEA/D locate in the first and second polygons.
Especially, almost all of the solutions achieved by MOEA/D are in the first
polygon. The reason is that the scarlarizing function employed in MOEA/D
provides a much larger selection pressure towards the Pareto front than the
Pareto dominance criterion used in the other algorithms. The behaviors of DNEA
and DNEAvar are nearly the same, where the solutions are equally assigned to
the first three polygons. The solutions achieved by DN-NSGA-II also locate in
the first three polygons, however, the number of solutions in the second polygon
is smaller than those in the first and third polygons for unknown reason.

These observations indicate that maintaining diversity in the decision space
can lead to more solutions in the local optimal areas than that in the objective
space. However, such algorithms like DNEA, DNEAvar, and DN-NSGA-II are not
trapped in these local optimal areas. They can also provide a well-distributed
Pareto optimal solution set in the first polygon (i.e., the true Pareto optimal
solution set). The question is that whether the solutions in the local optimal
areas are necessary in a real-world application. If such solutions are actually

272 Y. Liu et al.

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Triangle 1 Triangle 2

Triangle 4 Triangle 3

(a) DNEA

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Triangle 1 Triangle 2

Triangle 4 Triangle 3

(b) DNEAobj

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Triangle 1 Triangle 2

Triangle 4 Triangle 3

(c) DNEAvar

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Triangle 1 Triangle 2

Triangle 4 Triangle 3

(d) DN-NSGA-II

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Triangle 1 Triangle 2

Triangle 4 Triangle 3

(e) NSGA-II

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Triangle 1 Triangle 2

Triangle 4 Triangle 3

(f) MOEA/D

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Rectangle 1 Rectangle 2

Rectangle 4 Rectangle 3

(g) DNEA

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Rectangle 1 Rectangle 2

Rectangle 4 Rectangle 3

(h) DNEAobj

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Rectangle 1 Rectangle 2

Rectangle 4 Rectangle 3

(i) DNEAvar

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Rectangle 1 Rectangle 2

Rectangle 4 Rectangle 3

(j) DN-NSGA-II

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Rectangle 1 Rectangle 2

Rectangle 4 Rectangle 3

(k) NSGA-II

0

20

40

60

80

100

0 20 40 60 80 100

x2

x1

Rectangle 1 Rectangle 2

Rectangle 4 Rectangle 3

(l) MOEA/D

Fig. 5. The final solution sets in the decision space on the polygon-based problem in
type III (a-f and g-l show the results on the 3- and 4-objective problems, respectively).

needed for the decision maker, how to achieve them is another question. For
example, the solutions in the fourth polygon may be needed in some situations,
however, none of the algorithms can achieve them. Controlling the number of
solutions in each local optimal region is another interesting future work.

5 Conclusions

In this paper, we proposed a double-niched evolutionary algorithm, i.e., DNEA,
for multi-modal multi-objective optimization. In DNEA, a double sharing func-
tion is employed to estimate the density of a solution in both the objective
and decision spaces. We introduced three types of polygon-based problems and
applied DNEA, its variants, DN-NSGA-II, NSGA-II, and MOEA/D to them.
In computational experiments, we have the following observations: (1) Diversity
maintenance in the decision space is necessary to find multiple Pareto opti-
mal solution sets. (2) Diversities in the objective and decision spaces should be
simultaneously considered if they are inconsistent. (3) Promoting diversity in the
decision space leads to more solutions in local Pareto optimal regions. Besides
the future works mentioned in Subsection 4.3, balance between convergence and
diversity in the decision space is certainly interesting for our future research.

Acknowledgments. This work was supported by the Science and Technology Inno-
vation Committee Foundation of Shenzhen (Grant No. ZDSYS201703031748284).

References

1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

2. Deb, K., Tiwari, S.: Omni-optimizer: a generic evolutionary algorithm for single
and multi-objective optimization. Eur. J. Oper. Res. 185(3), 1062–1087 (2008)

DNEA and Its Behavior on Polygon-Based Problems 273

3. Goldberg, D.E., Richardson, J., et al.: Genetic algorithms with sharing for multi-
modal function optimization. In: Proceedings of the Second International Confer-
ence on Genetic Algorithms Genetic algorithms and their applications, pp. 41–49.
Lawrence Erlbaum, Hillsdale (1987)

4. Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto genetic algorithm for
multiobjective optimization. In: Proceedings of IEEE World Congress on Compu-
tational Intelligence, pp. 82–87. IEEE (1994)

5. Ishibuchi, H., Akedo, N., Nojima, Y.: A many-objective test problem for visually
examining diversity maintenance behavior in a decision space. In: Proceedings of
the 13th Annual Conference on Genetic and Evolutionary computation, pp. 649–
656. ACM (2011)

6. Li, J.P., Balazs, M.E., Parks, G.T., Clarkson, P.J.: A species conserving genetic
algorithm for multimodal function optimization. Evol. Comput. 10(3), 207–234
(2002)

7. Liang, J., Yue, C., Qu, B.: Multimodal multi-objective optimization: a preliminary
study. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2454–
2461. IEEE (2016)

8. Liu, Y., Gong, D., Sun, J., Jin, Y.: A many-objective evolutionary algorithm using
a one-by-one selection strategy. IEEE Trans. Cybern. 47(9), 2689–2702 (2017)

9. Liu, Y., Gong, D., Sun, X., Zhang, Y.: Many-objective evolutionary optimization
based on reference points. Appl. Soft Comput. 50(1), 344–355 (2017)

10. Pétrowski, A.: A clearing procedure as a niching method for genetic algorithms.
In: Proceedings of IEEE International Conference on Evolutionary Computation,
pp. 798–803. IEEE (1996)

11. Preuss, M., Kausch, C., Bouvy, C., Henrich, F.: Decision space diversity can be
essential for solving multiobjective real-world problems. In: Ehrgott, M., Naujoks,
B., Stewart, T., Wallenius, J. (eds.) Multiple Criteria Decision Making for Sustain-
able Energy and Transportation Systems, vol. 634, pp. 367–377. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-04045-0 31

12. Thomsen, R.: Multimodal optimization using crowding-based differential evolution.
In: IEEE Congress on Evolutionary Computation, vol. 2, pp. 1382–1389. IEEE
(2004)

13. Yue, C., Qu, B., Liang, J.: A multi-objective particle swarm optimizer using ring
topology for solving multimodal multi-objective problems. IEEE Trans. Evol. Com-
put. (2017, early access)

14. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

15. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X. (ed.) Parallel Problem Solving from Nature-PPSN VIII, vol. 3242, pp. 832–842.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9 84

https://doi.org/10.1007/978-3-642-04045-0_31
https://doi.org/10.1007/978-3-540-30217-9_84

Artificial Decision Maker Driven by PSO:
An Approach for Testing Reference Point

Based Interactive Methods

Cristóbal Barba-González1, Vesa Ojalehto2, José Garćıa-Nieto1(B),
Antonio J. Nebro1,2, Kaisa Miettinen2, and José F. Aldana-Montes1

1 Dep. Lenguajes y Ciencias de la Computación,
Ada Byron Research Building, University of Málaga, 29071 Málaga, Spain

{cbarba,jnieto,antonio,jfam}@lcc.uma.es
2 Faculty of Information Technology, University of Jyvaskyla,

P.O. Box 35, 40014 Agora, Finland
{vesa.ojalehto,kaisa.miettinen}@jyu.fi

Abstract. Over the years, many interactive multiobjective optimiza-
tion methods based on a reference point have been proposed. With a
reference point, the decision maker indicates desirable objective function
values to iteratively direct the solution process. However, when analyzing
the performance of these methods, a critical issue is how to systematically
involve decision makers. A recent approach to this problem is to replace
a decision maker with an artificial one to be able to systematically evalu-
ate and compare reference point based interactive methods in controlled
experiments. In this study, a new artificial decision maker is proposed,
which reuses the dynamics of particle swarm optimization for guiding the
generation of consecutive reference points, hence, replacing the decision
maker in preference articulation. We use the artificial decision maker
to compare interactive methods. We demonstrate the artificial decision
maker using the DTLZ benchmark problems with 3, 5 and 7 objectives to
compare R-NSGA-II and WASF-GA as interactive methods. The exper-
imental results show that the proposed artificial decision maker is useful
and efficient. It offers an intuitive and flexible mechanism to capture the
current context when testing interactive methods for decision making.

Keywords: Multiobjective optimization · Preference articulation
Multiple criteria decision making · Particle swarm optimization

1 Introduction

Interactive multiobjective optimization methods based on a reference point are
very popular techniques [1–3] not only in current research, but also in industry, as
they allow decision makers (DMs) to specify information about their preferences
in an intuitive manner to direct the operation of the optimization algorithms. As
a consequence, the DM is able to learn progressively (at each iteration) about the
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 274–285, 2018.
https://doi.org/10.1007/978-3-319-99253-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_22&domain=pdf

Artificial Decision Maker Driven by PSO 275

set of (approximated) solutions in the Pareto front of a complex problem, hence
reducing one’s cognitive load [2]. A second advantage of applying interactive
multiobjective optimization methods is that they only need to generate those
solutions interesting for the DM, i.e., that are in the region of interest.

Nevertheless, a critical issue arises when testing and comparing interactive
methods [1,4], since they require the DMs to be involved in the solution process.
Therefore, this involvement makes experiments much more costly than testing by
computational means. In addition, other human factors take part, such as incon-
sistency and variability among decisions, learning curve when facing problems,
and different times in solution processes.

In order to cope with this deficiency, a useful approach is to use artificial
DMs (ADMs) as mechanisms to generate preference information when comparing
interactive methods. Because interactive methods utilize different types of pref-
erence information [3,5], appropriate ADMs are demanded for each type. Indeed,
in comparison with the amount and diversity of existing interactive methods, the
number of ADMs is limited [1]. Interactive methods can be divided into non ad
hoc and ad hoc methods depending on whether the DM can be replaced by a
value function or not, respectively (see, e.g., [1,6]). Reference point based meth-
ods belong to the latter group. However, many popular interactive methods are
based on reference points [2,3], where the DM represents the region of interest
as a vector of desirable objective values.

Recently, in [7] a new ADM has been developed for testing reference point
based interactive methods. It is able to adjust reference points based on informa-
tion about solutions derived so far. The adjustment involves randomness and the
amount of noise decreases during the interactive solution process. The overall
procedure is based on a pre-defined neighborhood of a most preferred solution.

Following this line of research, a novel ADM is proposed here that reuses
the dynamics of particle swarm optimization (PSO) to guide the generation of
reference points, hence, replacing the DM in preference articulation. The idea is
to derive reference points by particle’s movements in the swarm, which evolves
in the objective space. The main contributions of the proposed ADM in this
paper are as follows:

– It offers an intuitive, bio-inspired and flexible mechanism to capture the cur-
rent context in interactive solution processes when tackling multiobjective
optimization problems. At each iteration of the process, nondominated solu-
tions derived so far can be used in generating the new reference point.

– It avoids dependence on the pre-defined target levels for objectives.
– It allows different parameter settings to enhance diversification/intensification

in the generation of new reference points.

The new ADM is tailored for comparing interactive evolutionary reference
point based methods. We demonstrate it on the DTLZ benchmark problems with
3, 5 and 7 objectives and two reference point evolutionary methods R-NSGA-
II [8] and WASF-GA [9]. Thus, we use them as examples of interactive EMOs
(iEMOs). The experimental results show that the proposed ADM is useful and
efficient when compared to the previous one.

276 C. Barba-González et al.

The rest of this paper is organized as follows. Section 2 contains background
concepts and related work. The proposed ADM is described in Sect. 3. Section 4
summarizes experimental results, analysis and discussions. Finally, conclusions
and lines of future work are outlined in Sect. 5.

2 Background

Evolutionary multiobjective optimization methods have been shown to perform
successfully when finding a set of trade-off solution approximations representing
a Pareto front to complex multiobjective optimization problems. Nevertheless,
a common requirement in real-world problems arises in solution process where
not only Pareto front approximations are demanded, but it is desirable to find
preferred solutions or regions that reflect human DM’s desires or tendencies.

Interactive methods are able to focus on an area of interest in the objective
space, in order to find preferred solutions [1]. Examples of ways how a DM
can provide preference information are comparisons of small sets of solutions,
classification or indicating desired trade-offs [1,3,6]. Furthermore, as mentioned
in the introduction, an intuitive type of preference articulation in interactive
methods is based on reference points [2,3], which consist of desirable objective
function values.

The difficulty arises when trying to evaluate and compare interactive methods
based on reference points, since a human DM is required to take part in the
solution process to specify reference points. On the other hand, as stated in
[4], there exists a strong necessity of creating automatic DMs to facilitate the
comparison of different methods.

We consider multiobjective optimization problems of the form

minimize f(x) = (f1(x), . . . , fk(x))T

subject to x = (x1, . . . , xn)T ∈ S,
(1)

where we minimize1 k (k ≥ 2) objective functions fi : S → R on the set S ⊂ R

of feasible solutions (decision vectors). The elements in the objective space R
k

are the objective (function) values z = f(x) = (f1(x), . . . , fk(x))T , usually called
objective vectors. We denote the set of feasible objective vectors by Z = f(S).
The so-called Pareto optimal set of solutions to the problem is defined as:

E =
{
x ∈ S :� ∃ x

′ ∈ S | fi(x
′
) ≤ fi(x), i = 1, · · · , k and f(x

′
) �= f(x)

}
(2)

and the corresponding objective vectors form a Pareto front.

Artificial Decision Maker: In what follows, we refer to the ADM proposed
in [7] as the original ADM. It consists of three main components: steady part,
current context and preference information. We need the concepts of ideal (z∗)
and nadir (znad) objective vectors of the problem to find reference points.

1 Without loss of generality, we use minimization in definitions.

Artificial Decision Maker Driven by PSO 277

The former is defined as z∗ = (z∗
1 , . . . , z∗

k)T , where z∗
i = minx∈Sfi(x) for

i = 1, . . . , k, whereas the later is defined as znad = (znad1 , . . . , znadk)T , where
znadi = maxx∈Efi(x) for i = 1, . . . , k. If these vectors are not known a priori,
the ideal objective vectors can be calculated and the nadir estimated [3]. When
applying iEMOS, they can e.g. be estimated from the current population. The
three main components of the ADM are:

– Steady part : This part includes experience and knowledge available at the
beginning of the solution process and remains unchanged in the solution pro-
cess. As an example, the steady part can consist of a region of interest or of
target levels specific to objective functions that are desired to be achieved.

– Current context : This part includes all the knowledge about the problem
which is gained during the solution process by the ADM, for instance, shape
of the Pareto front, trade-offs between the objectives, obtainable objective
function values (e.g., z∗ and znad), etc.

– Preference information: With this part, the ADM expresses its knowledge
during the solution process in order to guide the method towards solutions
that are more preferred by the ADM. Preference information is method-
specific and in this research we consider reference points q = (q1, . . . , qk)T .

3 Artificial Decision Maker Driven by PSO

As mentioned before, we propose an ADM that enables testing interactive meth-
ods, where preference information is given in the form of a reference point. The
proposed ADM utilizes PSO in modifying the current context of the original
ADM and we call it ADM-PSO.

Given an iteration counter t, a reference point is denoted by qt =
(qt,1, . . . , qt,k)T . It is said to be achievable for problem (1), if qt ∈ Z + R

k
+

(where R
k
+ = {y ∈ R

k | yi ≥ 0 for i = 1, . . . , k}), that is, if either qt ∈ Z or
if qt is dominated by a Pareto optimal objective vector in Z. Otherwise, the
reference point is said to be unachievable, that is, not all of its components can
be achieved simultaneously.

By using a reference point qt in the iteration t, an ADM is able to feed
an interactive multiobjective optimization method with preferences. Then the
method can direct the solution process accordingly. If the method is evolution-
ary, it can generate approximations of Pareto optimal solutions oriented to this
specific region of interest. This new set of nondominated solutions can be in turn
used to generate a new reference point qt+1 for the next iteration of the method.
This process can be repeated until a stopping criterion is valid. In our case, we
use a pre-defined point asp to be called ADM-aspiration point and stop once we
get a reference point close enough to it. Intuitively, an additional (single objec-
tive) optimization problem arises in this process, since the new reference point
is to be generated, with a minimum distance to asp. In our case, the current
Pareto front approximation is used as a population to train the implicit learning
model of the optimization method, i.e., the ADM. In this way, the new ADM is
able to operate on the objective space by taking advantage of all the information
provided by the interactive method.

278 C. Barba-González et al.

Keeping this idea in mind, the proposed approach focuses on the use of a
canonical PSO to carry out the generation of new reference points, hence acting
as an ADM which is able to interact with the underlying interactive multiobjec-
tive optimization method. As mentioned earlier, in this study we consider iEMO
methods. The aim is to reuse the biological inspiration modeling a particle’s
dynamics in PSO, to replace DMs when managing their preferences.

A conceptual sketch of this approach is illustrated in Fig. 1, where the new
reference point qt+1 is generated in one movement step of the PSO. It takes into
account the previous reference point qt as well as the objective vectors of the
nondominated solutions in the current Pareto front approximation, provided by
the underlying iEMO.

Fig. 1. Conceptual sketch of an ADM-PSO operation. The new reference point qt+1 is
generated by means of PSO particle’s movement operators.

Among the many existing PSO variants, for simplicity, ADM-PSO is based on
the standard version 2007 [10]. It provides the canonical equations to model the
particle’s movements, which have been adapted to cope with the reference point
generation as follows: Each particle’s position vector p (codifying an objective
vector) is updated at each iteration t as

pt+1 = pt + vt+1, (3)

where pt+1 is a new candidate reference point (pt+1 = qt+1) and vt+1 is the
velocity vector of the particle given by

vt+1 = ω · vt + U t[0, ϕ1] · (lt − pt) + U t[0, ϕ2] · (bt − pt). (4)

In (4), lt is the local best position the particle pt has ever stored and bt is
the position found by the member of its neighborhood that has had the best
performance so far. In ADM-PSO, bt = qt, i.e., it is set as the reference point.

Acceleration coefficients ϕ1 and ϕ2 control the relative effect of the personal
and social best particles and U t is a diagonal matrix with elements distributed

Artificial Decision Maker Driven by PSO 279

in the interval [0, ϕi], uniformly at random. Finally, ω ∈ (0, 1) is called the
inertia weight and influences the trade-off between exploitation and exploration.
These parameters can be used to induce additional preference information into
the ADM. In particular, ADM-PSO is able to set the current context (defined
in Sect. 2) by using not only the nearest point to asp (as done by the original
ADM), but all the points (objective vectors of nondominated solutions) in the
Pareto front approximation provided by the iEMO. Consequently, this allows
the ADM-PSO to explore thoroughly the Pareto front in the objective space.

In order to asses the adequacy of the new generated reference points, the
following single objective fitness function is used by ADM-PSO:

d(xq) =

√√√√ k∑
i=1

(fi(xq) − aspi). (5)

In short, the function d(xq) calculates the Euclidean distance between the near-
est point (solution xq) of the Pareto front approximation obtained with the
reference point q, and the point asp, where k is the number of objectives. As
commented before, ADM-PSO aims at minimizing this distance.

Algorithm of ADM-PSO

For the sake of a better understanding, the pseudo-code of ADM-PSO is shown
in Algorithm 1. The first phase corresponds to initialization of parameters, pop-
ulations and initial Pareto set approximations (from line 1 to 11). In this phase,
an initial reference point is also generated (line 12) as done in the original ADM
(see Sect. 3 in [7]). After this, the iterative solution process (line 13) starts with
multiple rounds of the interactive multiobjective optimization method (line 14)
and the corresponding generation of new reference points, by means of PSO (line
16). Each ADM round (lines 13-18) entails a maximum number of iterations
(Imax) in which the iEMO algorithm in question is run until reaching a maxi-
mum number of generations Gmax (line 14). The PSO is then invoked to obtain
a new reference point, which uses the last obtained Pareto set approximation
from the previous step. Before that, an intermediate step (line 15) is computed
to “accommodate” objective vectors in the Pareto front approximation (or non-
dominated points) to the swarm (St+1). At the end, the approximation of the
region of interest found is returned (line 19) and the whole algorithm ends.

ADM-PSO has been developed in the jMetal library of EMOs and following
its architectural style [11] with the aim of taking advantage of all the functionali-
ties provided in this framework: solution types, operators, algorithms, problems,
etc. It is worth noting that the core algorithm has been designed to provide
a general (software) template, so that iEMOs to be tested can be easily con-
figured. As mentioned, the current configuration contains iEMOs R-NSGA-II
and WASF-GA. In this way, a framework for the evaluation and comparison of
iEMOs is available2.
2 https://github.com/KhaosResearch/admpso.

https://github.com/KhaosResearch/admpso

280 C. Barba-González et al.

Algorithm 1. Pseudo-code of ADM-PSO
1: Imax // Maximum number of ADM iterations
2: Gmax // Maximum number of iEMO generations
3: c, m // Genetic operators
4: t ← 0 // ADM iteration counter
5: A // Multiobjective optimization problem
6: S // Maximum swarm size of ADM-PSO
7: ϕ1, ϕ2, ω // PSO specific parameters
8: M // iEMO algorithm(s) tested
9: Pt ← initializePopulation(N) // where N is Population size

10: evaluate(Pt, A)
11: Et ← initializeParetoSet(Pt)
12: qt ← initializeReferencePoint(asp, z∗, znad, wr, pr) // As in original ADM
13: while (t < Imax) AND (asp �= qt) do
14: (Pt+1, Et+1) ← computeiEMO(M,qt, c, m, Pt, A, Gmax) // Evolves iEMO
15: St+1 ← setNewSwarm(S, Et+1) // Generate new swarm from Et+1

16: qt+1 ← computePSO(asp,qt, St+1, ϕ1, ϕ2, ω) // Generate new reference point
17: t ← t + 1
18: end while
19: return Et+1 // Notify Pareto front approximation

4 Experimental Results

In order to demonstrate the validity of the proposed approach, a series of experi-
ments has been conducted to test two iEMOs called WASF-GA [9] and R-NSGA-
II [8]. In the experiments, ADM-PSO generates reference points for the meth-
ods, hence enabling automatic tests and comparisons. For these experiments, a
common framework has been used that comprises of a family of seven DTLZ
benchmark problems [12] with 3, 5 and 7 objectives, summing up to 21 different
problems. For each combination of algorithms and problems, 31 independent
runs were performed.

In these experiments, a set of fixed ADM-aspiration points (asp) was con-
figured for each problem. They are all achievable and calculated by taking into
account the estimated ideal and nadir objective vectors for each problem as
aspi = 2/3 × znadi + z∗

i . It is worth noting that for these problems the ideal
objective vectors are always at the origin (0, . . . , 0), whereas nadir objective vec-
tors were obtained from the worst solutions (ranges) found so far in preliminary
experiments, where algorithmic parameters were tuned as described below. In
this regard, Table 1 shows the nadir objective vectors used with the correspond-
ing asp for each problem, as well as the number of objective functions (k).

In order to enable fair comparisons, WASF-GA and R-NSGA-II were set
using a common parameter setting that consists of a population size N = 100,
external archive size E = 100, a maximum number of (iEMO) generations
Gmax = 20, 000, a crossover SBX with a probability c = 0.9 and a distribu-
tional index 20, a polynomial mutation with a probability m = 0.1, a mutation
distributional index 20, and a binary tournament selection. In the case of R-
NSGA-II, the epsilon parameter was set to 0.0045.

Artificial Decision Maker Driven by PSO 281

Table 1. Achievable ADM-aspiration points (asp) and nadir objective vectors used.

Problem k asp znad

DTLZ1 3 (6.7, 26.7, 133.4) (10.0, 40.0, 200.0)

5 (7.0, 26.7, 133.7, 33.6, 100.4) (10.0, 40.0, 200.5, 50.5, 150.5)

7 (7.0, 26.7, 133.7, 33.6, 100.4, 31.0, 67.7) (10.0, 40.0, 200.5, 50.5, 150.5, 46.5, 101.5)

DTLZ2 3 (2.6, 1.4, 1.4) (4.0, 2.0, 2.0)

5 (2.6, 1.4, 1.4, 1.4, 1.4) (4.0, 2.0, 2.0, 2.0, 2.0)

7 (2.6, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4) (4.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0)

DTLZ3 3 (17.0, 122.0, 38.7) (25.5, 183.0, 58.0)

5 (1.0, 19.0, 1.0, 667.0, 668) (1.5, 28.5, 1.5, 999.0, 999.5)

7 (17.0, 122.0, 40.0, 40.0, 667.0, 668.0, 667.0) (25.5, 183.0, 60.0, 60.0, 999.0, 999.5, 999.0)

DTLZ4 3 (1.4, 1.4, 1.4) (2.0, 2.0, 2.0)

5 (1.4, 1.4, 1.4, 1.4, 1.4) (2.0, 2.0, 2.0, 2.0, 2.0)

7 (1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4) (2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0)

DTLZ5 3 (1.4, 1.4, 1.4) (2.0, 2.0, 2.0)

5 (1.4, 1.4, 3.0, 3.0, 1.7) (2.0, 2.0, 3.0, 3.0, 2.5)

7 (1.4, 1.4, 1.4, 1.4, 1.0) (2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 1.5)

DTLZ6 3 (3.0, 2.7, 4.4) (4.5, 4.0, 6.5)

5 (3.0, 2.7, 4.4, 4.4, 5.4) (4.5, 4.0, 6.5, 6.5, 8.0)

7 (3.0, 2.7, 4.4, 4.4, 4.4, 3.7, 3.4) (4.5, 4.0, 6.5, 6.5, 6.5, 5.5, 5.0)

DTLZ7 3 (1.4, 1.4, 13.4) (2.0, 2.0, 20.0)

5 (1.4, 1.4, 1.4, 1.4, 21.7) (2.0, 2.0, 2.0, 2.0, 32.5)

7 (1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 42.7) (2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 55.0)

For ADM-PSO, parameters were set by following the previous work and
standard settings of PSO 2007 [10]. It comprised of a maximum number of
iterations Imax = 11, an objective consideration probability p = 0.5, a weight
w = 1/k and a tolerance θ = 10−3 (see [7] for a further explanation of ADM
parameters). For PSO, we set ϕ1 = ϕ2 = 1/(2 + log(2)) and inertia ω = 1/(2 ·
log(2)). Since the swarm is fed with those non-dominated points of the external
archive of the iEMO, the maximum swarm size was set accordingly, i.e., S =
E = 100 each time the ADM-PSO is started. It conducted only 3 generations to
assure that particles are able to move accordingly with new data.

In addition, with the aim of keeping track of the original ADM [7], it was also
applied by following the same procedure. The results of ADM and ADM-PSO
are arranged in Tables 2 and 3, respectively. In these tables, WASF-GA and R-
NSGA-II are compared using the DTLZ problems, where for brevity the number
of objectives is limited to 3, 5 and 7. The mean, standard deviation (STD) and
minimum (MIN) distances of the nearest point (in the resulting Pareto front
approximation) to the ADM-aspiration point asp are reported, together with
the number of iterations (ITER) the ADM used on the average.

The first observation can be made from Tables 2 and 3 with regards to ADM
and ADM-PSO. They performed in a similar way when guiding the underly-
ing iEMOs (WASF-GA and R-NSGA-II) to find solutions close to the ADM-
aspiration point. In this sense, no statistical differences could be found when
comparing the mean distance distributions of all the combinations of ADMs
with iEMOs. To be more specific, according to Friedman’s test [13] with χ2 and
3 degrees of freedom, a value of 6.07 was obtained (<7.81 from a χ2 distribution
table α = 0.05), so the null hypothesis could not be rejected.

282 C. Barba-González et al.

Table 2. WASF-GA versus R-NSGA-II with the original ADM.

Pro k WASF-GA R-NSGA-II
blem MEAN STD MIN ITER MEAN STD MIN ITER

DTLZ1 3 3.54E-02 3.33E-02 1.08E-02 7.70E+00 4.53E-01 1.57E-01 2.46E-01 8.40E+00
DTLZ1 5 1.60E+00 4.82E-01 4.83E-01 8.10E+00 2.15E+00 2.48E-01 1.56E+00 8.00E+00
DTLZ1 7 3.15E-01 1.48E-01 8.95E-02 9.00E+00 7.33E-02 2.82E-02 4.16E-02 7.50E+00
DTLZ2 3 1.75E-01 3.84E-01 2.42E-02 9.40E+00 7.11E-02 3.33E-02 1.82E-02 8.40E+00
DTLZ2 5 4.24E-01 3.14E-01 2.23E-01 7.30E+00 3.90E-01 6.22E-02 3.01E-01 7.90E+00
DTLZ2 7 1.68E-01 4.22E-02 1.10E-01 6.60E+00 1.43E-01 9.09E-02 4.07E-02 8.80E+00
DTLZ3 3 4.78E+00 1.23E+00 3.41E+00 7.00E+00 1.29E+01 2.33E+00 1.02E+01 7.00E+00
DTLZ3 5 3.74E+01 4.41E+00 2.91E+01 7.70E+00 2.77E+01 2.17E+01 1.06E+00 9.50E+00
DTLZ3 7 2.23E+02 3.33E+01 1.73E+02 6.60E+00 3.25E+02 2.78E+01 2.81E+02 8.10E+00
DTLZ4 3 6.01E-01 5.16E-04 6.01E-01 9.20E+00 6.06E-01 3.92E-03 6.02E-01 8.00E+00
DTLZ4 5 6.97E-01 1.17E-01 5.49E-01 7.30E+00 3.70E-01 6.40E-02 3.18E-01 6.90E+00
DTLZ4 7 7.03E-01 2.64E-02 6.51E-01 8.10E+00 6.25E-01 2.81E-02 5.80E-01 8.20E+00
DTLZ5 3 1.70E-01 3.16E-04 1.70E-01 9.10E+00 1.62E-01 5.86E-03 1.51E-01 7.90E+00
DTLZ5 5 9.51E-03 5.27E-03 4.92E-03 9.30E+00 1.29E-01 2.69E-02 9.67E-02 7.10E+00
DTLZ5 7 1.51E-01 2.54E-02 1.15E-01 7.70E+00 1.13E-01 3.74E-02 4.85E-02 7.00E+00
DTLZ6 3 4.52E-01 4.72E-01 1.60E-01 7.20E+00 1.48E+00 1.29E-01 1.25E+00 8.10E+00
DTLZ6 5 1.46E+00 1.25E+00 1.52E-01 7.50E+00 2.83E+00 1.37E+00 9.00E-01 5.20E+00
DTLZ6 7 4.87E+00 1.52E-01 4.63E+00 7.70E+00 4.60E+00 1.72E-01 4.20E+00 8.60E+00
DTLZ7 3 2.16E-02 1.96E-02 4.12E-03 9.90E+00 4.85E-01 1.10E-01 2.92E-01 7.60E+00
DTLZ7 5 2.90E+00 6.02E-01 1.88E+00 7.10E+00 2.80E+00 7.16E-01 1.75E+00 8.80E+00
DTLZ7 7 2.05E+01 1.52E+00 1.78E+01 7.10E+00 1.24E+01 9.65E-01 1.06E+01 4.70E+00

Nevertheless, ADM-PSO was able to obtain solutions in a lower number of
iterations, which means an advantage in the computational effort. This can be
observed in columns ITER of Tables 2 and 3, where ADM-PSO with WASF-GA
used a lower number of iterations than the original ADM with WASF-GA in
15 out of 21 problems. Furthermore, ADM-PSO with R-NSGA-II required fewer
iterations than the original ADM with R-NSGA-II for all the problems except
for DTLZ7 with 7 objectives. Overall, the number of iterations can be used as
an indicator for the solution process even though a smaller number does not
directly mean a good performance. The ADM may be e.g. tailored to focus first
on learning where very different reference points are used for scanning the Pareto
front.

In this sense, it is worth noting that the aim of iEMOs is not to obtain
a complete coverage of the Pareto front, but to focus on a specific region of
interest relevant for a DM. WASF-GA and R-NSGA-II usually generate a set of
solutions in that region, so that ADM-PSO uses them when forming the swarm.
In this way, it is able to take advantage of information in the current context
while experimenting a fast convergence (typical in PSO) to the ADM-aspiration
point, i.e., to generate better reference points.

A special case was registered for problem DTLZ3 in Tables 2 and 3 since the
performances of the iEMOs involved usually deteriorated as the ADM did not
achieve the ADM-aspiration points consistently. Probably, the heterogeneity in
the ranges observed when calculating the nadir objective vectors for this problem
made the ADMs to generate the points asp close to unachievable regions, hence
leading the iEMO to require extra effort to reach it.

In general, the performance of the iEMOs got worse as the number of objec-
tive functions increased. This is not surprising, since the complexity of DTLZ

Artificial Decision Maker Driven by PSO 283

Table 3. WASF-GA versus R-NSGA-II with ADM-PSO.

Pro k WASF-GA R-NSGA-II
blem MEAN STD MIN ITER MEAN STD MIN ITER

DTLZ1 3 1.29E-02 5.41E-03 4.69E-03 6.80E+00 2.01E-01 1.34E-01 6.06E-02 5.80E+00
DTLZ1 5 1.73E+00 3.39E-01 1.11E+00 7.90E+00 2.18E+00 2.01E-01 1.95E+00 5.30E+00
DTLZ1 7 1.89E-01 7.71E-02 6.18E-02 7.60E+00 6.70E-02 1.37E-02 4.64E-02 6.10E+00
DTLZ2 3 2.50E-02 5.67E-04 2.44E-02 8.10E+00 5.51E-02 2.62E-02 2.98E-02 6.60E+00
DTLZ2 5 4.65E-01 3.75E-01 1.26E-01 6.00E+00 4.44E-01 1.92E-01 3.62E-01 6.40E+00
DTLZ2 7 1.51E-01 4.08E-02 1.06E-01 7.00E+00 9.11E-02 9.77E-02 2.88E-02 7.00E+00
DTLZ3 3 4.00E+00 1.28E+00 1.70E+00 7.50E+00 1.02E+01 2.35E+00 6.78E+00 6.10E+00
DTLZ3 5 2.59E+01 1.15E+01 1.35E+01 5.90E+00 4.60E+00 2.59E+00 1.88E+00 7.20E+00
DTLZ3 7 1.95E+02 5.60E+01 1.22E+02 7.50E+00 3.30E+02 1.78E+01 2.98E+02 7.80E+00
DTLZ4 3 6.01E-01 0.00E+00 6.01E-01 7.20E+00 6.03E-01 3.07E-03 6.01E-01 4.60E+00
DTLZ4 5 4.39E-01 4.80E-02 3.24E-01 8.30E+00 3.17E-01 9.62E-03 3.03E-01 6.80E+00
DTLZ4 7 6.99E-01 3.37E-02 6.27E-01 7.30E+00 5.87E-01 6.96E-03 5.77E-01 7.30E+00
DTLZ5 3 1.70E-01 2.93E-17 1.70E-01 6.10E+00 1.64E-01 3.84E-03 1.56E-01 7.10E+00
DTLZ5 5 8.96E-03 3.92E-03 2.54E-03 7.00E+00 1.14E-01 2.75E-02 8.81E-02 6.00E+00
DTLZ5 7 1.25E-01 2.48E-02 9.47E-02 5.10E+00 7.54E-02 2.44E-02 4.22E-02 6.20E+00
DTLZ6 3 2.57E-01 6.94E-02 1.54E-01 6.80E+00 1.47E+00 1.16E-01 1.24E+00 7.60E+00
DTLZ6 5 1.07E+00 1.37E+00 1.54E-01 8.30E+00 2.51E+00 1.02E+00 1.29E+00 5.10E+00
DTLZ6 7 4.87E+00 1.23E-01 4.72E+00 7.10E+00 4.56E+00 1.17E-01 4.39E+00 6.50E+00
DTLZ7 3 9.95E-03 2.86E-03 4.28E-03 6.70E+00 3.79E-01 1.05E-01 2.18E-01 6.20E+00
DTLZ7 5 2.34E+00 4.31E-01 1.74E+00 6.10E+00 2.76E+00 6.04E-01 1.99E+00 6.20E+00
DTLZ7 7 2.12E+01 1.81E+00 1.80E+01 8.00E+00 1.01E+01 4.26E+00 2.18E+00 5.40E+00

problems is higher with more objectives, and the number of dimensions tackled
by both ADMs is also larger, while the number of evaluations was set similarly for
all the problems and numbers of objectives. In this regard, an interesting obser-
vation is that R-NSGA-II performed usually better than WASF-GA for 5 and
7 objectives, even when employing a lower number of iterations of ADM/ADM-
PSO (ITERs).

From the point of view of ADM-PSO’s specific performance, it can be seen
from Table 3 that it enabled the comparison between WASF-GA and R-NSGA-
II and also allowed to capture certain differences in their search strategies. To
be more concrete, WASF-GA obtained a better mean (denoted with a grey
background in 11 values out of 21 problems) and a minimum distances (11 out
of 21 problems) than R-NSGA-II, although the latter needed a slightly lower
number of iterations.

To illustrate the behaviour of ADM-PSO with these two iEMOs, Fig. 2 shows
representative examples of trajectories walked by the reference points generated,
when guiding WASF-GA (left) and R-NSGA-II (right) to solve DTLZ5 with 3
objectives. It can be observed that ADM-PSO with R-NSGA-II resulted with a
more spread out trajectory than WASF-GA, whereas the latter algorithm was
more concentrated to the area around the ADM-aspiration point (red square
symbol). These reference points are in turn generated according to their prece-
dent Pareto front approximations, which are used by ADM-PSO to constitute
contextual information. This is indeed illustrated in Fig. 3, where Pareto front
approximations are plotted with regards to the 3 closest reference points to the
ADM-aspiration point (of ADM-PSO). Accordingly, Pareto front approxima-
tions of R-NSGA-II are scattered, whereas WASF-GA showed more concentrated
fronts to the ADM-aspiration point area.

284 C. Barba-González et al.

0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.780.
50

0.
55

0.
60

0.
65

0.
70

0.64
0.66

0.68
0.70

0.72
0.74

0.76

f1

f2

f3

WASFGA−AMD−PSO

Initial Referecence Point
ASP

0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.780.
50

0.
55

0.
60

0.
65

0.
70

0.64
0.66

0.68
0.70

0.72
0.74

0.76

f1

f2

f3

RNSGAII−AMD−PSO

Initial Referecence Point
ASP

Fig. 2. Search paths of ADM-PSO when guiding WASF-GA (left) and R-NSGA-II
(right) to solve DTLZ5 with 3 objectives. (Color figure online)

0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.780.
50

0.
55

0.
60

0.
65

0.
70

0.64
0.66

0.68
0.70

0.72
0.74

0.76

f1

f2

f3

WASFGA−ADM−PSO

Initial Referecence Point
ASP
FRONT 1
FRONT 2
FRONT 3

0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.780.
50

0.
55

0.
60

0.
65

0.
70

0.64
0.66

0.68
0.70

0.72
0.74

0.76

f1

f2

f3

RNSGAII−ADM−PSO

Initial Referecence Point
ASP
FRONT 1
FRONT 2
FRONT 3

Fig. 3. Pareto front approximations of WASF-GA (left) and R-NSGA-II (right) accord-
ing to the reference points of ADM-PSO (the 3 closest reference points to the asp),
when solving DTLZ5 with 3 objectives.

5 Conclusions and Future Work

We have introduced ADM-PSO, a new variant of an ADM for preference artic-
ulation in the form of reference points guided by PSO. Our approach enables
comparing interactive reference point based EMOs without involving human
DMs. ADM-PSO has been implemented following the jMetal architecture and
its source codes are freely available.

The proposed approach was demonstrated on the DTLZ benchmark problems
with 3, 5 and 7 objectives and using R-NSGA-II and WASF-GA as interactive
reference point based methods to be compared. The experimental results show
that ADM-PSO is useful and efficient in comparison with the previous ADM. It
offers a bio-inspired and flexible mechanism to capture the current context of an
ADM in interactive solution processes.

ADM-PSO is conceptually intuitive and straightforward, although it opens
a promising line of future research as follows. First, exploring the possibilities
of using different metaheuristics like DE, CMA-ES and GA for the generation
of reference points instead of PSO. Second, testing parameter tunning in PSO
(and other metaheuristics), e.g., ϕ1 and ϕ2, to control the influence of the current
reference point (global best) and/or local history of particles, hence to induce the
ADM’s behavior in terms of intensification/diversification mechanisms. Third,

Artificial Decision Maker Driven by PSO 285

carrying out further comparisons of multiple state-of-the art iEMOs, to test their
performances in a controlled and computationally fair execution framework.

Acknowledgements. This work was partially funded by Grants TIN2017-86049-R
(Spanish MICINN) and P12-TIC-1519 (PAIDI). C. Barba-González was supported by
Grant BES-2015-072209 (Spanish MICINN) and University of Jyväskylä. J. Garćıa-
Nieto is the recipient Post-Doct fellowship of “Plan Propio” at Universidad de Málaga.
This work was supported on the part of V. Ojalehto by the Academy of Finland (grant
number 287496).

References

1. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)
2. Miettinen, K., Ruiz, F., Wierzbicki, A.P.: Introduction to multiobjective optimiza-

tion: interactive approaches. In: Branke, J., Deb, K., Miettinen, K., S�lowiński, R.
(eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 27–57. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-88908-3 2

3. Miettinen, K., Hakanen, J., Podkopaev, D.: Interactive nonlinear multiobjective
optimization methods. In: Greco, S., Ehrgott, M., Figueira, J. (eds.) Multiple Cri-
teria Decision Analysis. ISOR, vol. 233, pp. 931–980. Springer, New York (2016).
https://doi.org/10.1007/978-1-4939-3094-4 22

4. López-Ibáñez, M., Knowles, J.: Machine decision makers as a laboratory for inter-
active EMO. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.)
EMO 2015. LNCS, vol. 9019, pp. 295–309. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-15892-1 20

5. Purshouse, R.C., Deb, K., Mansor, M.M., Mostaghim, S., Wang, R.: A review of
hybrid evolutionary multiple criteria decision making methods. In: Proceedings of
IEEE Congress on Evolutionary Computation, pp. 1147–1154 (2014)

6. Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation, and Applica-
tions. Wiley, Hoboken (1986)

7. Ojalehto, V., Podkopaev, D., Miettinen, K.: Towards automatic testing of reference
point based interactive methods. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez,
M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 483–492.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6 45

8. Deb, K., Sundar, J.: Reference point based multi-objective optimization using evo-
lutionary algorithms. In: Proceedings of the 8th Annual Conference on Genetic
and Evolutionary Computation, ACM pp. 635–642 (2006)

9. Ruiz, A.B., Luque, M., Miettinen, K., Saborido, R.: An interactive evolutionary
multiobjective optimization method: interactive WASF-GA. In: Gaspar-Cunha,
A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp.
249–263. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1 17

10. PSO-Central-Group: Standard PSO 2006, 2007, and 2011. Technical report, Par-
ticle Swarm Central, January 2011. http://www.particleswarm.info/

11. Durillo, J.J., Nebro, A.J.: jMetal: a java framework for multi-objective optimiza-
tion. Adv. Eng. Softw. 42(10), 760–771 (2011)

12. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimiza-
tion test problems. In: Proceedings of the 2002 Congress on Evolutionary Compu-
tation. vol. 1, pp. 825–830. IEEE (2002)

13. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures.
Chapman & Hall/CRC, California (2007)

https://doi.org/10.1007/978-3-540-88908-3_2
https://doi.org/10.1007/978-1-4939-3094-4_22
https://doi.org/10.1007/978-3-319-15892-1_20
https://doi.org/10.1007/978-3-319-15892-1_20
https://doi.org/10.1007/978-3-319-45823-6_45
https://doi.org/10.1007/978-3-319-15892-1_17
http://www.particleswarm.info/

A Simple Indicator Based Evolutionary
Algorithm for Set-Based Minmax

Robustness

Yue Zhou-Kangas(B) and Kaisa Miettinen

University of Jyvaskyla, Faculty of Information Technology,
P.O. BOX(35), Agora, 40014 University of Jyvaskyla, Finland

{yue.y.zhou-kangas,kaisa.miettinen}@jyu.fi

Abstract. For multiobjective optimization problems with uncertain
parameters in the objective functions, different variants of minmax
robustness concepts have been defined in the literature. The idea of min-
max robustness is to optimize in the worst case such that the solutions
have the best objective function values even when the worst case hap-
pens. However, the computation of the minmax robust Pareto optimal
solutions remains challenging. This paper proposes a simple indicator
based evolutionary algorithm for robustness (SIBEA-R) to address this
challenge by computing a set of non-dominated set-based minmax robust
solutions. In SIBEA-R, we consider the set of objective function values in
the worst case of each solution. We propose a set-based non-dominated
sorting to compare the objective function values using the definition of
lower set less order for set-based dominance. We illustrate the usage
of SIBEA-R with two example problems. In addition, utilization of the
computed set of solutions with SIBEA-R for decision making is also
demonstrated. The SIBEA-R method shows significant promise for find-
ing non-dominated set-based minmax robust solutions.

Keywords: Minmax robust Pareto optimal solutions · Hypervolume
Set-based dominance · SIBEA · Uncertainty

1 Introduction and Background

The need to simultaneously consider multiple objectives and the existence of
uncertainty from various sources complicate real-world optimization problems.
Uncertainty due to for example imprecise data or uncertain future developments
usually reflects as parameters in the objective functions. Traditional multiobjec-
tive optimization methods concentrate on optimizing multiple objectives simul-
taneously and finding a set of Pareto optimal or non-dominated solutions for
deterministic formulations of problems. Different approaches can be used to find
this set, for example with scalarization techniques (see e.g., [21]) or with evolu-
tionary multiobjective optimization methods (see e.g., [8]). However, the involved
uncertainty can affect deterministic Pareto optimal or non-dominated solutions
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 286–297, 2018.
https://doi.org/10.1007/978-3-319-99253-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_23&domain=pdf

A Simple Indicator Based Evolutionary Algorithm 287

with undesired degradation in their objective function values. Thus, considering
uncertainty in the optimization process is as important as optimizing multiple
objectives simultaneously.

The goal of handling uncertainty and multiple objectives simultaneously is
finding robust solutions that are sufficiently immune to the uncertainty and with
trade-offs among the objectives. Different concepts of robustness and measures of
robustness have been proposed in the literature. Typically, robustness measures
are incorporated into evolutionary multiobjective optimization methods to quan-
tify the effects of uncertainty on the objective function values (e.g., [4,9,12,17]).
Different robustness concepts alter the definition of dominance. Based on the
concepts, uncertain multiobjective optimization problems can be transformed
to deterministic ones (as summarized in [14,25]). In addition, different possi-
ble values of uncertain parameters can be considered simultaneously during the
optimization process (as e.g., in [22,24]).

Among the robustness concepts, the most widely used ones belong to the
family of minmax robustness (e.g., [5,11,16]). Due to different possible values of
the uncertain parameters, a solution in the decision space can correspond to a
set of outcomes (i.e., objective function values). We refer to a set of outcomes
corresponding to a solution as the outcome set of the solution. Minmax robust-
ness compares the worst outcomes in the outcome sets and finds the best possible
ones. The worst outcomes are referred to as the worst case outcome set.

Set-based minmax robustness [11] finds the solutions with the best worst
case outcome sets by utilizing set-based dominance [23]. For feasible solutions
considered, we need to identify their worst case outcome sets by maximizing the
multiple objectives simultaneously in their outcome sets and compare them with
set-based dominance. This series of tasks makes the computation of set-based
minmax robust solutions challenging. Methods from robust optimization and
mathematical optimization can only address the challenge partially.

Some solution methods via scalarizing and reformulating the scalarized sub-
problems have been proposed e.g., in [5,16]. However, typically the reformula-
tions are based on some (strict) assumptions on the characteristics of the problem
which cannot be always guaranteed in practical problems. If no assumptions on
the characteristics can be made, using samples to replace the uncertainty set has
been explored e.g., in [27]. The shortcoming is that the resulting solutions might
not be or near to minmax robust. The needs of obtaining a more accurately
approximated set of set-based minmax robust solutions have motivated us for
further developments.

Different types of evolutionary multiobjective optimization methods have
been able to approximate solutions for many challenging problems. For compar-
ing worst case outcome sets, methods which combine non-dominated sorting and
crowding distance are not suitable since defining the crowding distance between
the worst case outcome sets is not possible. Decomposition based methods cannot
be directly applied since we cannot directly associate worst case outcome sets to
the weighting vectors. Set-based dominance has been utilized in the evolutionary
multiobjective optimization community e.g., in [3,30]. The population is treated

288 Y. Zhou-Kangas and K. Miettinen

a whole set and set-based dominance is used to improve the population. Very
recently, using set-based dominance to solve problems involving uncertainty has
also attracted interest. In [15], a genetic algorithm has been proposed for solving
combinatorial bi-objective optimization problems with a set of discrete values of
the uncertain parameters. In [13], an evolutionary algorithm has been proposed
for solving problems with interval uncertainty (i.e., the uncertain parameters
stem from some intervals) with reformulated objective functions. A specific defi-
nition of set-based dominance has been used to compare the worst case outcomes
in [2]. These earlier research demonstrates potential to address the challenges.

In this paper, we propose utilizing an evolutionary multiobjective optimiza-
tion approach SIBEA-R to tackle the challenge of approximating set-based min-
max robust Pareto optimal solutions. We extend SIBEA [28] for this purpose.
We incorporate the definition of set-based minmax robustness into the SIBEA
method and develop a non-dominated sorting procedure based on the lower set
less order. We also utilize the hypervolume of the worst case outcome sets in the
environmental selection process.

The rest of the paper is organized as follows: Sect. 2 presents some concepts
we use in this paper. Section 3 presents SIBEA-R followed by some numerical
examples of how it can be used in Sect. 4. Finally, Sect. 5 concludes the paper
and identifies some future research directions.

2 Preliminaries

In this paper, we consider multiobjective optimization problems with uncertainty
reflected in the parameters of the objective functions in the following form:

(
minimize (f(x, ξ) = f1(x, ξ), · · · , fk(x, ξ))T

subject to x ∈ X

)
ξ∈U

, (1)

where x = (x1, · · · , xn)T is the decision vector from the feasible set X in the
decision space R

n whose components are called decision variables and ξ consists
of the uncertain parameters which are assumed to stem from an uncertainty
set U . With ξ stemming from U , a solution x ∈ X is mapped in the objective
space as a set-valued map [23] under the objective functions f1, · · · , fk to the
objective space. We call this set-valued map the outcome set and denote by
fU (x) = {f(x, ξ), ξ ∈ U}. In the outcome set, a specific objective vector f(x, ξ)
is called an outcome.

The set-based minmax robust counterpart of (1) is presented in [11] as:

minimize
x∈X

maximize
ξ∈U

f(x, ξ) = (f1(x, ξ), · · · , fk(x, ξ))T . (2)

We say that a solution x∗ ∈ X is set-based minmax robust Pareto optimal for
problem (1), if there does not exist another solution x ∈ X such that fU (x) ⊆
fU (x∗) −R

k
≥, where R

k
≥ = {x ∈ R

k : xi ≥ 0, i = 1, · · · , k} [11]. This definition is
based on the concept of lower set less order: let A and B be arbitrary closed sets,

A Simple Indicator Based Evolutionary Algorithm 289

then A �l B implies A ⊆ B − R
k
≥. Thus, when we compare two sets of vectors,

we say A �l B if for all a ∈ A there exists b ∈ B such that ai ≤ bi, i = 1, · · · , k.
Figure 1 illustrates an example of set-based minmax robustness with two

objective functions to be minimized. In the example, we have a feasible set
X = {x1, x2, x3, x4} and an arbitrary uncertainty set U . We plot the outcome
set of the three solutions in the figure fU (x1) (bold solid curve), fU (x2) (bold
dotted line), fU (x3) (bold dashed line), and fU (x4) (bold dash-dotted line). The
gray thin lines help us to identify the borders of the outcome sets. Solution x1

is a set-based minmax robust Pareto optimal solution, since fU (x1) − R
2
≥ does

not contain fU (x2) nor fU (x3). Similarly, we can see that x2 and x3 are also
set-based minmax robust Pareto optimal solutions. However, x4 is not set-based
minmax robust Pareto optimal since fU (x4) − R

2
≥ contains fU (x1) and fU (x3).

The formulation (2) minimizes the worst case outcomes. As mentioned before,
we need to first find the worst case outcomes and compare them as a whole. So,
finding set-based minmax robust Pareto optimal solutions requires us to address
these two challenges in a systematical way. Finding the worst case outcome set
of a fixed solution x ∈ X requires solving a multiobjective optimization problem
with the objective functions to be maximized as follows:

maximize
ξ∈U

(f1(x, ξ), · · · , fk(x, ξ))T . (3)

0 1 2 3 4
f
1

0

1

2

3

4

f 2

Fig. 1. Example of set-based minmax robustness

3 The SIBEA-R Method

In this section, we introduce SIBEA-R for approximating set-based minmax
robust Pareto optimal solutions. We first introduce the steps of SIBEA-R. Then,
we discuss details of the steps with a concentration on the further developments
on SIBEA for set-based minmax robustness.

The SIBEA-R method takes the population size (NP) and the number of
generations (NG) as the input and produces a set of non-dominated set-based
minmax robust solutions A as the output. The basic steps are as follows:

290 Y. Zhou-Kangas and K. Miettinen

Step 1. (Initialization) Generate an initial set of decision vectors P of size
NP and find their worst case outcome sets by solving (3). Set the generation
counter m = 1.
Step 2. (Mating) Create an offspring population Q using crossover and muta-
tion operators and find their worst case outcome sets. Set P = P ∪ Q.
Step 3. (Environmental selection) Rank the population P using lower set
less order and sort the individuals into different fronts F i, i = 1, 2, · · · . and
do the following:

• Set a new population P 1 = ∅. Set i = 1 and P 1 = P 1 ∪ F 1. As long as
|P 1| < NP , set i = i+1, P 1 = P 1 ∪F i. The notation |P 1| represents the
cardinality of P 1.

• if |P 1| = NP , set P = P 1 and go to Step 4. Otherwise, do the following
until |P 1| = NP : identify the solutions with the worst rank P ′ ⊂ P 1.

• For each solution x ∈ P ′, determine the loss of the value of the hypervol-
ume indicator d(x) if it is removed from the set P ′. Remove the solution
with the smaller loss from P ′, i.e., set P ′ = P ′ \ {x}

Step 4. (Termination) If m > NG, set A = P 1 and stop. Otherwise, set
m = m + 1 and go to Step 2.

In Steps 1 and 2, we consider the worst case outcome sets of the individuals
and their offspring. We have mentioned earlier that for a fixed solution, finding
its worst case outcomes is a multiobjective optimization problem with objectives
to be maximized in the uncertainty set. We can solve the maximization prob-
lem with an evolutionary multiobjective optimization method to approximate a
set of outcomes in the worst case. However, doing so requires a lot of compu-
tation resources. Thus, we should find a representative set of solutions of the
maximization problem and use it to save the computation resource.

We propose to systematically solve a small number of scalarized subproblems
to obtain the representative worst case outcome sets. For example, we can utilize
the approach used in [6] to generate a set of evenly distributed points on a unit
hyperplane in the objective space. Then, we use them as the reference points
to optimize a series of the achievement scalarizing functions (see e.g., [26]). In
what follows we denote the number of worst case outcomes in the representative
worst case outcome set by W and the values of the uncertain parameters which
the objective functions reach their worst case values by ξw, w = 1, · · · ,W . The
number of function evaluations depends on the solver used to solve the scalarized
subproblems. In case of discrete scenarios in the uncertainty set, the number of
function evaluations is k × NP × NG× number of scenarios.

After we have found the representative worse case outcome sets of the indi-
viduals, we need to rank them and sort them into different fronts. We call this
step set-based non-dominated sorting, where we define the dominance between
two representative worst case outcome sets with lower set less order. The sort-
ing procedure is inspired by that presented in [10]. The steps of the set-based
non-dominated sorting are as follows:

Step 1. For each solution p ∈ P , set the domination count np = 0 and the
set of solutions dominated by p as an empty set Sp = ∅. Set P = P \ {p} and
carry out the following steps:

A Simple Indicator Based Evolutionary Algorithm 291

(a) For each q ∈ P , do the following:
If for all f(q, ξw), w = 1, · · · ,W , there exists f(p, ξw) such that
f(q, ξw) ≤ f(p, ξw), set np = np + 1.
Otherwise if for all f(p, ξw), w = 1, · · · ,W , there exists f(q, ξw) such
that f(p, ξw) ≤ f(q, ξw), set Sp = Sp ∪ {q}

(b) If nq = 0, then prank = 1 and F 1 = F 1 ∪ {p}.
Step 2. Set front counter i = 1
Step 3. Do the following steps until F i = ∅

For each p ∈ F i

for each q ∈ Sp

set nq = nq − 1
if nq = 0, then qrank = i+1, and F i+1 = F i+1 ∪{q}, set i = i+1
and continue with Step 3 to the next front.

In the set-based non-dominated sorting, Step 2(a) is for checking if fU (p) �l

fU (q) or fU (q) �l fU (p). We pair-wise compare the solutions and go through the
outcomes in the representative worst case outcome sets.

After we have sorted the solutions into different fronts, we start the environ-
mental selection in Step 3. We fill the next generation population incrementally
starting from solutions that are in F 1 until the number of solutions exceeds the
population size NP . Then we delete the solutions from the last front based on
the loss of the value of the hypervolume indicator (see e.g., [1,28]). We calculate
the loss of the hypervolume when deleting a solution x′ as d(x′) = H(S)−H(S′),
where S = {f̃U (x) : x ∈ P ′} and S′ = S \ {f̃U (x′)}. Here, we use f̃U instead of
fU because we consider the representative worst case outcome sets.

After step 3, we have a new population. If the number of generations has
been exceeded, we terminate the solution process and take the set-based non-
dominated solutions of the last generation as the output set A. If the number of
generations has not been exceeded, we continue by going to Step 2.

After obtaining the set A, a decision maker should choose a final solution.
For example, [27] uses an interactive post-processing procedure to find the final
solution based on preference information. In the interactive process, we present
the outcome of a solution in the nominal case which is the undisturbed or usual
case. Then, the decision maker can specify her or his preferences for a more
desired solution until (s)he finds a satisfactory solution. The purpose is to help
the decision maker to find the final solution based on the nominal value and at
the same time the solution is the best possible when the worst case happens.

4 Numerical Results

In this section, we demonstrate the usage of the SIBEA-R method with two
example problems. The examples help us to test our proposal of using set-based
non-dominated sorting in an evolutionary algorithm. The first example problem
is a simple linear problem based on one of the examples presented in [25]:

292 Y. Zhou-Kangas and K. Miettinen

⎛
⎜⎜⎝

minimize
(

2ξ1x1 − 3ξ2x2

5ξ1x1 + ξ2x2

)

subject to 0 ≤ x1 ≤ 1.5
0 ≤ x2 ≤ 3

⎞
⎟⎟⎠

ξ∈U

, (4)

where U =
{(−1

2

)
,
(
2
3

)}
.

In the experiments, we used the default setting of parameters as in the imple-
mentation of SIBEA in [7]. For (4), we can compute the outcomes in both possible
sets of values for the uncertain parameters. We first illustrate the evolvement
of the population, we visualize the initial generation in the decision space in
Fig. 2a and in the objective space in Fig. 2b. In the figures, the solid lines are
the borders of the feasible set and we visualize 10 individuals because of limited
varieties of markers. In Fig. 2b, the same marker appears twice because of the
two possible cases in U . We use SIBEA-R to evolve the population by consider-
ing their outcome sets (each set consists of two outcomes with the same marker
in the figure). After 100 generations, the last generation is shown in Fig. 2c in
the decision space and in Fig. 2d in the objective space.

We then studied the final populations of 20 independent runs with NP = 30.
It is not even possible to compute a complete set of set-based robust Pareto
optimal solutions for linear problems like (4). To the best of our knowledge,
methods with similar ideas in the literature (e.g., [2]) had a different definition
of robust Pareto optimality. We cannot easily benchmark the example problems.
Thus, we first visually compare the solutions computed by SIBEA-R with 30
solutions computed by the weighted-sum approach proposed in [11]. The purpose
is to use the solutions computed by the weighted-sum approach as references.

Figures 3a and b illustrate the solutions computed by the weighted-sum app-
roach and SIBEA-R. The solutions computed by the weighted-sum approach are
marked as solid red circles in the figures and the solutions computed by SIBEA-
R are marked by the gray plus sings. In the figures, the gray cloud consists of
the solutions computed with 20 runs of the SIBEA-R method. We can see that
SIBEA-R was able to find the solutions found by the weighted-sum approach. In
addition, SIBEA-R also found other solutions in the interior of the feasible space.
The existence of set-based minmax Pareto optimal solutions in the interior of
the feasible space is proven in [20]. For example, the point (0.5, 2.4) is set-based
minmax robust Pareto optimal which can be checked by the definition. Based on
the visualizations, we can observe that SIBEA-R has considered the outcomes
concerning both sets of possible values of the uncertain parameters and found a
set of non-dominated set-based minmax robust solutions.

The second example problem is based on a standard benchmark problem,
ZDT2 (see, e.g., [8]). In this problem, we introduced two uncertain parameters
which stem from a polyhedral uncertainty set. A polyhedral uncertainty set is
given as the convex hull of a finite set of points. Even though modifying the
problem can cause the loss of the characteristics of the carefully designed test
problems, our purpose is to illustrate the solutions founds by SIBEA-R and
the usage of them for decision making. For the ZDT2-based problem, we set

A Simple Indicator Based Evolutionary Algorithm 293

0 1 2
x
1

0

1

2

3
x 2

(a) Initial population in the decision space

-30 -20 -10 0 10
f
1

-10

0

10

20

30

f 2

(b) Outcomes of the initial population

0 1 2
x
1

0

1

2

3

x 2

(c) Final population in the decision space

-30 -20 -10 0 10
f
1

-10

0

10

20

30

f 2

(d) Outcomes of the final population

Fig. 2. The evolvement of the population by SIBEA-R

NG = 100, NP = 30 and found six worst case outcomes to represent the worst
case outcome set. We run SIBEA-R 20 times to solve the problem.

We analyzed the results with the so-called average non-dominated objective
space (i.e., the percentage of the volume of objective space between the ideal
point and a reference vector which are not covered by the solutions) in each
generation in all the runs to observe the convergence (see details in [29]). We
also analyzed the attainment surface of the worst case outcome sets from mul-
tiple runs with the empirical attainment function graphical tools [18,19]. We
visualized the 25%, 50%, 75% attainment surfaces.

The average non-dominated objective space in each generation for the 20 runs
of the ZDT2-based problem is illustrated in Fig. 4. The figure shows that the non-
dominated objective space gradually reduced with generations and at the final
generations, the average non-dominated space stayed stable. This means that
the objective function values of solutions reduced along the generations. The
attainment surfaces of the results from the 20 runs are shown in Fig. 5. The
figure illustrates that the solutions tend to converge to the area bounded by the
intervals f1 = [0.5, 0.8], f2 = [0.2, 0.7]. Based on the experiment results, we can
observe that SIBEA-R was able to improve the populations with the generations
and the final populations of different runs were similar.

294 Y. Zhou-Kangas and K. Miettinen

0 1 2
x
1

0

1

2

3

x 2

(a) Solutions in the decision space

-30 -20 -10 0 10
f
1

-10

0

10

20

30

f 2

(b) Solutions in the objective space

Fig. 3. Solutions computed by the weighted-sum approach and SIBEA-R

Fig. 4. Average non-dominated objec-
tive space, ZDT2-based problem

Fig. 5. Attainment surface, ZDT2-based
problem

After SIBEA-R has found a set of non-dominated set-based minmax robust
solutions, the set can be used for decision making. We illustrate the usage
with a reference point-based interactive approach (see e.g., [21] for a detailed
description). In a reference point-based approach, the decision maker specifies
the desired objective function values as a reference point. We find a solution
which satisfies the reference point as well as possible and present the solution to
the decision maker. This kind of interactive process continues until the decision
maker finds a most satisfactory solution. We used the final population of a run of
the ZDT2-based problem and helped a decision maker to choose a final solution
based on their outcomes in the nominal case. In the nominal case, the uncer-
tain parameters behave normally without disturbance. So, we used the original
ZDT2 problem as the nominal case. We carried out four iterations. The reference
points and the solutions found are illustrated in Table 1. The solutions are also
presented in Fig. 6 with different markers. The decision maker took the third
solution as the final solution since it is the nearest to her desired values.

In the examples, we observed that SIBEA-R was able to find set-based min-
max robust Pareto optimal solutions found by the weighted-sum approach. It was

A Simple Indicator Based Evolutionary Algorithm 295

Table 1. Interactive post-processing

Ref. Solution Marker

(0.3, 0.7)T (0.43, 0.81)T Square

(0.3, 0.95)T (0.3, 0.91)T Up triangle

(0.5, 0.6)T (0.57, 0.67)T Diamond

(0.8, 0.6)T (0.61, 0.61)T Down triable

0 0.2 0.4 0.6 0.8
f
1

0.6

0.7

0.8

0.9

1

1.1

f 2

Fig. 6. Solutions found based on refer-
ence points

also able to find some solutions that the weighted-sum approach was not able to
find. In the ZDT2-based problem, SIBEA-R was stable regarding finding similar
final populations in different runs. These observations suggested that SIBEA-R
has an appealing potential for approximating set-based minmax robust Pareto
optimal solutions, which can be then used for decision making.

5 Conclusions

In this paper, we proposed SIBEA-R to compute an approximated set of set-
based minmax robust Pareto optimal solutions. This is an initial study to explore
opportunities evolutionary multiobjective optimization methods can provide in
tackling challenges with robustness which are otherwise difficult. In SIBEA-R,
instead of considering single outcomes, we considered the worst case outcome
sets of solutions. We proposed a set-based non-dominated sorting procedure
based on the lower set less order to rank the solutions for environmental selec-
tion. We illustrated the utilization of SIBEA-R with two example problems. The
experiments on the example problems suggest that SIBEA-R can approximate
set-based minmax robust Pareto optimal solutions. We also illustrated how the
solutions found by SIBEA-R can be used in decision making.

Due to the set-based non-dominated sorting and the calculation of the hyper-
volume of outcome sets, SIBEA-R is computationally expensive and it tends to
work with small population sizes. Thus, an immediate future research direction
is to improve the computational efficiency and enable the calculation of a larger
number of non-dominated set-based minmax robust solutions. In this paper,
we only presented a limited amount of numerical experiments. It is necessary
to extend the numerical experiments to a wider range of problems to further
identify the strengths and limitations of SIBEA-R.

Acknowledgments. We thank Dr. Tinkle Chugh for useful discussions and providing
an implementation of SIBEA. This research is related to Decision Analytics (DEMO).

296 Y. Zhou-Kangas and K. Miettinen

References

1. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indica-
tor: Optimal μ-distributions and the choice of the reference point. In: Proceedings
of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, pp.
87–102. ACM, New York (2009)

2. Avigad, G., Branke, J.: Embedded evolutionary multi-objective optimization for
worst case robustness. In: Proceedings of the 10th Annual Conference on Genetic
and Evolutionary Computation, GECCO 2008, pp. 617–624. ACM (2008)

3. Bader, J., Brockhoff, D., Welten, S., Zitzler, E.: On using populations of sets in
multiobjective optimization. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao,
J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 140–154. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-01020-0 15

4. Bader, J., Zitzler, E.: Robustness in hypervolume-based multiobjective search.
Technical report, TIK Report 317 (2010)

5. Bokrantz, R., Fredriksson, A.: Necessary and sufficient conditions for Pareto effi-
ciency in robust multiobjective optimization. Eur. J. Oper. Res. 262(2), 682–692
(2017)

6. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolution-
ary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5),
773–791 (2016)

7. Chugh, T., Sindhya, K., Hakanen, J., Miettinen, K.: An interactive simple
indicator-based evolutionary algorithm (I-SIBEA) for multiobjective optimization
problems. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO
2015. LNCS, vol. 9018, pp. 277–291. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-15934-8 19

8. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for
Solving Multi-Objective Problems. Springer, Heidelberg (2006). https://doi.org/
10.1007/978-0-387-36797-2

9. Deb, K., Gupta, H.: Introducing robustness in multi-objective optimization. Evol.
Comput. 14(4), 463–494 (2006)

10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

11. Ehrgott, M., Ide, J., Schöbel, A.: Minmax robustness for multi-objective optimiza-
tion problems. Eur. J. Oper. Res. 239(1), 17–31 (2014)

12. Gaspar-Cunha, A., Covas, J.A.: Robustness in multi-objective optimization using
evolutionary algorithms. Comput. Optim. Appl. 39(1), 75–96 (2007)

13. Gong, D., Sun, J., Miao, Z.: A set-based genetic algorithm for interval many-
objective optimization problems. IEEE Trans. Evol. Comput. 22(1), 47–60 (2018)

14. Ide, J., Schöbel, A.: Robustness for uncertain multi-objective optimization: a sur-
vey and analysis of different concepts. OR Spectr. 38(1), 235–271 (2016)

15. Konur, D., Farhangi, H.: Set-based min-max and min-min robustness for multi-
objective robust optimization. In: Coperich, K., Cudney, E., Hembhard, H. (eds.)
Proceedings of the 2017 Industrial and Systems Engineering Research Conference,
pp. 1–6. Institute of Industrial and Systems Engineers (2017)

16. Kuroiwa, D., Lee, G.M.: On robust multiobjective optimization. Vietnam J. Math.
40(2, 3), 305–317 (2012)

17. Li, M., Azarm, S., Aute, V.: A multi-objective genetic algorithm for robust design
optimization. In: Proceedings of the 7th Annual Conference on Genetic and Evo-
lutionary Computation, GECCO 2005, pp. 771–778 (2005)

https://doi.org/10.1007/978-3-642-01020-0_15
https://doi.org/10.1007/978-3-319-15934-8_19
https://doi.org/10.1007/978-3-319-15934-8_19
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-0-387-36797-2

A Simple Indicator Based Evolutionary Algorithm 297

18. López-Ibáñez, M.: EAF graphical tools. http://lopez-ibanez.eu/eaftools
19. López-Ibáñez, M., Paquete, L., Stützle, T.: Exploratory analysis of stochastic local

search algorithms in biobjective optimization. In: Bartz-Beielstein, T., Chiaran-
dini, M., Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of
Optimization Algorithms, pp. 209–222. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-02538-9 9

20. Majewski, D.: Robust bi-objective linear optimization. Master’s thesis, University
of Göttingen (2014)

21. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publish-
ers, Boston (1999)

22. Miettinen, K., Mustajoki, J., Stewart, T.J.: Interactive multiobjective optimization
with NIMBUS for decision making under uncertainty. OR Spectr. 36(1), 39–56
(2014)

23. Rodrguez-Marn, L., Sama, M.: (λ, c)-contingent derivatives of set-valued maps. J.
Math. Anal. Appl. 335(2), 974–989 (2007)

24. Wiecek, M.M., Blouin, V.Y., Fadel, G.M., Engau, A., Hunt, B.J., Singh, V.: Multi-
scenario multi-objective optimization with applications in engineering design. In:
Barichard, V., Ehrgott, M., Gandibleux, X., T’Kindt, V. (eds.) Multiobjective Pro-
gramming and Goal Programming: Theoretical Results and Practical Applications.
LNE, vol. 618, pp. 283–298. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-540-85646-7 26

25. Wiecek, M.M., Dranichak, G.M.: Robust multiobjective optimization for decision
making under uncertainty and conflict. In: Gupta, A., Capponi, A., Smith, J.C.,
Greenberg, H.J. (eds.) Optimization Challenges in Complex, Networked and Risky
Systems, pp. 84–114 (2016)

26. Wierzbicki, A.P.: A mathematical basis for satisficing decision making. Math.
Model. 3(5), 391–405 (1982)

27. Zhou-Kangas, Y., Miettinen, K., Sindhya, K.: Interactive multiobjective robust
optimization with NIMBUS. In: Proceedings of Clausthal-Goettingen International
Workshop on Simulation Science 2017. Springer (2018, to appear)

28. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on
the design of pareto-compliant indicators via weighted integration. In: Obayashi,
S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol.
4403, pp. 862–876. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-70928-2 64

29. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evo-
lutionary algorithm for multiobjective optimization. Technical report, TIK Report
103 (2002)

30. Zitzler, E., Thiele, L., Bader, J.: On set-based multiobjective optimization. IEEE
Trans. Evol. Comput. 14(1), 58–79 (2010)

http://lopez-ibanez.eu/eaftools
https://doi.org/10.1007/978-3-642-02538-9_9
https://doi.org/10.1007/978-3-642-02538-9_9
https://doi.org/10.1007/978-3-540-85646-7_26
https://doi.org/10.1007/978-3-540-85646-7_26
https://doi.org/10.1007/978-3-540-70928-2_64
https://doi.org/10.1007/978-3-540-70928-2_64

Extending the Speed-Constrained
Multi-objective PSO (SMPSO) with
Reference Point Based Preference

Articulation

Antonio J. Nebro1(B), Juan J. Durillo2, José Garćıa-Nieto1,
Cristóbal Barba-González1, Javier Del Ser3,4,5, Carlos A. Coello Coello6,

Antonio Beńıtez-Hidalgo1, and José F. Aldana-Montes1

1 Dept. de Lenguajes y Ciencias de la Computación,
Universidad de Málaga, Málaga, Spain

antonio@lcc.uma.es
2 Leibniz Supercomputing Centre, Munich, Germany
3 TECNALIA Research and Innovation, Derio, Spain

4 University of the Basque Country (UPV/EHU), Bilbao, Spain
5 Basque Center for Applied Mathematics (BCAM), Bilbao, Spain

6 Computer Science Department, CINVESTAV-IPN
(Evolutionary Computation Group), Ciudad de México, Mexico

Abstract. The Speed-constrained Multi-objective PSO (SMPSO) is an
approach featuring an external bounded archive to store non-dominated
solutions found during the search and out of which leaders that guide
the particles are chosen. Here, we introduce SMPSO/RP, an extension of
SMPSO based on the idea of reference point archives. These are external
archives with an associated reference point so that only solutions that
are dominated by the reference point or that dominate it are considered
for their possible addition. SMPSO/RP can manage several reference
point archives, so it can effectively be used to focus the search on one or
more regions of interest. Furthermore, the algorithm allows interactively
changing the reference points during its execution. Additionally, the par-
ticles of the swarm can be evaluated in parallel. We compare SMPSO/RP
with respect to three other reference point based algorithms. Our results
indicate that our proposed approach outperforms the other techniques
with respect to which it was compared when solving a variety of prob-
lems by selecting both achievable and unachievable reference points. A
real-world application related to civil engineering is also included to show
up the real applicability of SMPSO/RP.

Keywords: Multi-objective optimization · SMPSO
Decision making · Reference point

1 Introduction

Dealing with a multi-objective optimization problem involves finding its Pareto
front or a reasonably good approximation to it in case of using non-exact
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 298–310, 2018.
https://doi.org/10.1007/978-3-319-99253-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_24&domain=pdf

Extending SMPSO with Preference Articulation 299

optimization techniques such as metaheuristics [1]. This accuracy is expressed, in
general, in terms of convergence and diversity, with the aim of offering the deci-
sion maker (DM) a set of optimal or quasi-optimal solutions evenly spread along
the Pareto front. In practice, the DM is usually only interested in a portion of
the Pareto front, which can be provided by integrating user’s preferences within
multi-objective metaheuristics [2]. The preference information can be given to
the algorithm a prori, before starting the search process, and/or in an interactive
way, during the search.

In this paper, we propose an extension of the SMPSO multi-objective par-
ticle swarm algorithm [3] to allow DMs to guide the search towards one or
more regions of interest by indicating preferences a priori and interactively.
SMPSO features a bounded-size external archive where a diverse subset of the
non-dominated solutions found during the search is kept and from which global
leaders are chosen to compute the speed of the particles. When the archive
becomes full, a density estimator (e.g., the crowding distance [4]) is applied in
order to remove the solution which least contributes in terms of diversity.

Our extension makes use of reference points as a mean for articulating DM’s
preferences. We associate an external archive to each reference point. Newly
solutions (i.e., every time a particle changes its position) are checked to be added
within each of these archives as follows: if the newly generated solution and the
archive reference point are non-dominated with respect to each other, nothing
is done; otherwise, the former is added to the archive using the same strategy
as in SMPSO. This way, reference point archives only keep the non-dominated
solutions of the selected preference region. Our proposal, called SMPSO/RP, also
modifies the leader selection strategy to select an external archive randomly and
then take the leader from it; this mechanism promotes diversity of the swarm
and avoids concentrating the search in a single region of interest.

As solving real-world problems might be highly time-consuming, adding the
capability of changing the reference points interactively is a basic feature that
allows the DM to adjust and focus the search towards the regions of inter-
est. On the contrary, approaches based on static reference points would require
re-starting the search from scratch every time the reference point is changed.
In SMPSO/RP, the strategy followed when a reference point is changed is to
remove all the solutions of the corresponding archive that are non-dominated
with respect the new reference point.

The main contributions of this paper are summarized as follows:

1. A new algorithm, SMPSO/RP, that extends SMPSO by incorporating inter-
active reference point preference articulation. SMPSO/RP has the following
features:

– Ability to deal with one or more DM preferences or regions of interest.
– Ability to interactively change DM preferences by means of changing the

desired reference points.
– Ability of parallel evaluations of particles.
– GUI for visualizing the computed front evolution for problems with two

and three objectives.

300 A. J. Nebro et al.

2. Comparison against three reference point based multi-objective evolutionary
algorithms.

3. Application of SMPSO/SP to a real-world problem of the domain of civil
engineering.

4. Freely available implementation of SMPSO/RP within the jMetal [5] frame-
work1.

The rest of the paper is organized as follows. Section 2 contains background
concepts and our proposal is described in Sect. 3. We devote Sects. 4 and 5 for
assessing the performance of SMPSO/RP. A real-world application of our pro-
posal is included in Sect. 6. The conclusions and some possible paths of future
work are indicated in Sect. 7.

2 Background

Preference-based multi-objective metaheuristics aim at finding the most inter-
esting parts according the criteria of a DM instead of the full Pareto front. This
has been a relatively active research area in the last two decades [6–8].

In this work we are interested in the reference point method [9]. This method
constitutes a simple way to delimit an interest region of the objective space by the
definition of a user-defined point by the DM, as it requires no parameter defining
the width of the region of interest. Given a reference point P , the region of
interest is the subset of the Pareto front dominated by P if this is not achievable,
or the subset of the Pareto front dominating P if this is achievable. This approach
is very similar to the g-dominance concept [10]. Figure 1 illustrates an example
of the regions of interest delimited by an achievable and unachievable reference
point. Our purpose is to extend SMPSO to allow guiding the search according
to this kind of preference articulation mechanism.

P
Q

f1

f 2

Fig. 1. Examples of the regions of interest delimited by points P (unachievable) and
Q (achievable).

1 https://github.com/jMetal/jMetal.

https://github.com/jMetal/jMetal

Extending SMPSO with Preference Articulation 301

SMPSO [3] is an algorithm following the classic particle swarm algorithm
metaheuristic [11], so it manages a set of solutions or particles which are referred
to as the swarm. The position of particle x i at the generation t is updated with
Eq. (1):

x i(t) = x i(t − 1) + v i(t) (1)

where the factor v i(t) is known as velocity, and it is defined as:

v i(t) = w · v i(t − 1) + C1 · r1 · (x pi
− x i) + C2 · r2 · (x gi − x i) (2)

In Eq. (1), x pi
is the best solution that x i has viewed, x gi is the best particle

(known as the leader) that the entire swarm has viewed, w is the inertia weight
of the particle and controls the trade-off between global and local influence, r1
and r2 are two uniformly distributed random numbers in the range [0, 1], and
C1 and C2 are specific parameters which control the effect of the personal and
global best particles.

The motivation to develop SMPSO was originated after stating that the
MOPSO algorithm [12], a previously proposed multi-objective PSO based on
Eqs. 1 and 2, was able of efficiently solve parameter scalable problems [13] but
it had difficulties when dealing with the (multi-frontal) ZDT4 problem. We dis-
covered that by applying the constriction coefficient (Eq. (3)) obtained from
the constriction factor χ originally developed by Clerc and Kennedy (Eq. (2))
in [14], SMPSO could successfully solve that problem with up to 2048 variables.
The constriction coefficient is defined as:

χ =
2

2 − ϕ − √
ϕ2 − 4ϕ

(3)

where

ϕ =

{
C1 + C2 if C1 + C2 > 4

0 if C1 + C2 ≤ 4
(4)

Additionally, SMPSO further bounds the accumulated velocity of each vari-
able j (in each particle) by means of the following velocity constriction equation:

vi,j(t) =

⎧
⎪⎨

⎪⎩

δj if vi,j(t) > δj

−δj if vi,j(t) ≤ −δj

vi,j(t) otherwise

(5)

where

δj =
(upper limitj − lower limitj)

2
(6)

As commented beforehand, SMPSO adopts the use of an external archive to
store the non-dominated solutions and out of which leaders are chosen.

302 A. J. Nebro et al.

3 Algorithm Proposal

The basic component of SMPSO/RP is the concept of reference point archive
(i.e., an external archive with an associated reference point). The basic idea is
to modify the strategy for adding new solutions to the external archive, in such
a way that only solutions within the area of interest defined by a reference point
P are kept. The basic approach is as follows: given a solution a to be inserted, it
is first compared with P . If either a dominates P or vice-versa, then a is checked
for insertion in the archive as done in the original SMPSO. However, if none of
them dominates the other, a is discarded.

P

f1

f 2

Fig. 2. Example illustrating how a point in the boundary of the region of interest can
remain in the reference point archive.

This strategy does not work properly in two scenarios. First, when the archive
is empty and only non-dominated solutions regarding P are generated by the
search. This scenario results in an empty archive which renders the working
behavior of SMPSO impossible, as it may need to select a global leaders from
this archive. Our solution is to incorporate the non-dominated solution if the
archive is empty. This solution is expected to be removed later by any other
solution dominating it.

The second situation has to do with a poor convergence of solutions on any
of the ends of the region of interest. The Fig. 2 illustrates this issue. The white
points are inside the region of interest defined by P , and the point with a gray
background is exactly in the boundary of this region. The gray point is non-
dominated regarding the white points and therefore always kept in the archive
as it is assigned an infinite crowding distance by the density estimator. However,
it is not close to the Pareto front, so convergence is negatively affected. This
would not happen if some of the black points on the left would belong to the
region of interest, because they dominate the gray point, which would have been
either removed or never inserted. Our approach, then, is to insert non-dominated
points which are outside the region of interest with a certain probability for the
sake of filtering these poorly converged points in the ends of the region of interest
(after some pilot tests, we have set this probability to 0.05). These points outside
the area of interest are removed later from the archive.

Extending SMPSO with Preference Articulation 303

SMPSO/RP can have more than one reference point archive, so the DM
can indicate several regions of interest. The working procedure of SMPSO/RP
resembles that of SMPSO, except for subtle yet very relevant differences: the
leader selection, which take a leader from a randomly selected reference point
archive, and all the archives are updated when any particle moves. SMPSO/RP
has been implemented in jMetal 5 [15], which provides parallelism support to
evaluate all the solutions in a population or swarm in parallel in multi-core sys-
tems. As only the evaluations are computed in parallel, linear speed-ups cannot
be expected given that the rest of the algorithm is sequential code. However,
these scheme has the advantage that no changes in the algorithm are needed.

0 0.2 0.4 0.6 0.8 1
0

2

4

P Q

0 0.2 0.4 0.6 0.8 1
0

2

4

0 0.2 0.4 0.6 0.8 1
0

2

4

0 0.2 0.4 0.6 0.8 1
0

2

4

Fig. 3. Example of the front evolution when solving the ZDT1 problem indicating the
unachievable reference point P (0.1,0.5) and the achievable one Q (0.8,0.3). The plots
depicts the fronts at generations 10, 50, 80, and 120. The population and archive sizes
are set to 100.

To illustrate how SMPSO/RP works, Fig. 3 depicts an example of how the
computed front evolves over the generations when two reference points, one of
each type, have been indicated by the DM.

4 Experimental Setup

In this section, we detail the experimentation we have carried out to assess
the performance of SMPSO/RP. We describe first the selected algorithms to be
compared with our proposal and their parameter settings. Then, we present the
chosen benchmark problems and the reference points that have been specified.
Finally, we describe the experimentation methodology.

The regions of interest computed by SMPSO/RP are delimited by the dom-
inance relationship in relation to the reference point. Hence, we have consid-
ered three algorithms following the same principle. These algorithms are WASF-
GA [6], gSMS-EMOA, and gNSGA-II.

WASF-GA or Weighting Achievement Scalarizing Function Genetic Algo-
rithm uses an scalarization approach with weight vectors. In each generation
WASF-GA classifies individuals into fronts by taking into account the achieve-
ment scalarizing function and the reference point. It also requires to know the

304 A. J. Nebro et al.

Table 1. Achievable and unachievable points selected for each of the ZDT, DTLZ, and
WFG problems.

Problem Achievable Unachievable Problem Achievable Unachievable

ZDT1 (0.80, 0.60) (0.20, 0.40) WFG1 (1.31, 1.61) (0.49, 0.88)

ZDT2 (0.80, 0.80) (0.50, 0.30) WFG2 (1.80, 2.91) (0.23, 0.20)

ZDT3 (0.30, 0.80) (0.20, 0.00) WFG3 (1.75, 2.55) (0.56, 1.61)

ZDT4 (0.99, 0.95) (0.08, 0.25) WFG4 (1.88, 3.71) (0.29, 2.93)

ZDT6 (0.78, 0.61) (0.39, 0.21) WFG5 (1.88, 2.46) (0.47, 1.98)

DTLZ1 (0.41, 0.36) (0.00, 0.02) WFG6 (1.46, 3.44) (0.28, 0.10)

DTLZ2 (0.83, 0.92) (0.07, 0.51) WFG7 (1.17, 3.74) (0.11, 3.03)

DTLZ3 (0.87, 1.00) (0.15, 0.42) WFG8 (1.92, 3.60) (0.29, 3.56)

DTLZ4 (0.97, 0.59) (0.41, 0.51) WFG9 (1.83, 3.92) (0.81, 2.15)

DTLZ5 (0.97, 0.59) (0.03, 0.27)

DTLZ6 (0.76, 0.84) (0.08, 0.48)

DTLZ7 (0.85, 3.88) (0.62, 1.27)

ranges of the objective solutions in the Pareto front from the ideal and nadir
points, which need to be estimated.

The other chosen algorithms, gNSGA-II and gSMS-EMOA, are variants of
the original NSGA-II and SMS-EMOA algorithms modified to incorporate the
concept of g-dominance [10]. NSGA-II [4] is by far the most well-known and
used multi-objective evolutionary algorithm, and it is characterized by following
a generational scheme which applies a non-dominated sorting algorithm and the
crowding distance density estimator to promote, respectively, convergence and
diversity. SMS-EMOA [16] is a typical representative of indicator-based multi-
objective evolutionary metaheuristics; it is based on a steady-state version of
NSGA-II but replacing the crowding distance by the hypervolume contribution.
None of the algorithms evaluated in this paper requires additional parameter
to determine the extent of the region of interest. Algorithms requiring so, like
R-NSGA-II [17] or RPSO-SS [18], are out of the scope of this initial analysis.

All the solvers share common parameter settings. The population/swarm size
is set to 100. The stopping condition is to compute 25,000 function evaluations.
The mutation operator (turbulence in SMPSO/RP) is the polynomial mutation,
applied with probability of 1/L (being L the number of decision variables of the
problem) and a distribution index of 0.20. gNSGA-II, gSMS-EMOA, and WASF-
GA apply SBX crossover with a probability of 0.9 and distribution index of 20.0.
As these three algorithms only allow indicating a reference point, SMPSO/RP is
configured with an external archive with capacity for 100 solutions. WASF-GA
generates 100 weight vectors with ε = 0.01.

As benchmark problems, we have selected the ZDT [19], DTLZ [20], and
WFG [21] families and we have solved them by indicating both an achiev-
able and an unachievable reference point. In this study, we have considered the

Extending SMPSO with Preference Articulation 305

Table 2. Median and interquartile range of the hypervolume quality indicator when
solving the problems indicating achievable reference points.

SMPSO/RP gSMS-EMOA gNSGAII WASF-GA
ZDT1 5.58e − 017.6e−05 5.58e − 016.6e−05 5.55e − 018.9e−04 5.57e − 014.7e−04
ZDT2 4.48e − 016.9e−05 4.48e − 019.4e−05 4.43e − 011.2e−03 4.46e − 015.7e−04
ZDT3 3.60e − 013.9e−05 3.59e − 019.7e−05 3.57e − 015.4e−04 3.57e − 013.2e−04
ZDT4 6.43e − 012.3e−04 6.40e − 014.3e−03 6.35e − 014.9e−03 6.38e − 014.2e−03
ZDT6 4.16e − 016.3e−05 4.12e − 011.4e−03 3.95e − 017.3e−03 4.03e − 012.4e−03
DTLZ1 4.94e − 017.7e−05 0.00e + 000.0e+00 0.00e + 000.0e+00 4.88e − 017.3e−03
DTLZ2 3.96e − 011.2e−04 3.96e − 011.5e−05 3.94e − 013.9e−04 3.96e − 012.2e−05
DTLZ3 2.85e − 018.7e−05 0.00e + 000.0e+00 0.00e + 000.0e+00 1.41e − 012.0e−01
DTLZ4 4.11e − 019.1e−05 4.11e − 012.8e−05 4.09e − 017.2e−04 4.10e − 014.1e−01
DTLZ5 4.12e − 019.0e−05 4.13e − 011.4e−05 4.11e − 015.1e−04 4.12e − 014.5e−05
DTLZ6 4.48e − 018.3e−05 0.00e + 000.0e+00 0.00e + 000.0e+00 5.25e − 029.0e−02
DTLZ7 3.05e − 012.7e−05 3.04e − 011.1e−01 3.03e − 011.1e−01 3.03e − 018.1e−05
WFG1 0.00e + 000.0e+00 0.00e + 000.0e+00 0.00e + 001.3e−02 0.00e + 003.5e−03
WFG2 4.74e − 013.4e−04 4.74e − 011.2e−03 4.73e − 011.2e−03 4.72e − 011.1e−03
WFG3 4.94e − 012.3e−04 4.94e − 011.1e−03 4.91e − 011.2e−03 4.93e − 017.4e−04
WFG4 3.51e − 018.8e−03 3.53e − 013.1e−05 3.51e − 017.0e−04 3.52e − 013.2e−04
WFG5 2.52e − 012.9e−05 2.52e − 012.5e−05 2.51e − 012.0e−04 2.51e − 012.6e−05
WFG6 4.48e − 011.1e−04 3.02e − 012.4e−01 3.10e − 011.8e−01 3.68e − 019.6e−02
WFG7 4.42e − 011.8e−04 4.43e − 012.6e−04 4.40e − 017.8e−04 4.42e − 014.2e−04
WFG8 2.56e − 017.5e−02 2.26e − 011.3e−03 2.26e − 011.2e−03 2.26e − 015.8e−04
WFG9 3.27e − 012.3e−04 3.26e − 013.7e−03 3.23e − 013.1e−03 3.25e − 013.4e−03

two-objective formulations of the DTLZ and WFG problems. As reference points,
we have chosen the ones defined in [6], summarized in Table 1.

To compare the four metaheuristics, we have executed 30 independent runs
per configuration and computed the hypervolume [22] as a quality indicator
to measure both the convergence and diversity of the obtained Pareto front
approximations. As this indicator needs a reference point to be calculated and
the Pareto fronts of all the problems are known, we have removed from the
reference fronts all the solutions that fall out of the region delimited by the
reference points.

We report in the tables summarizing the results the median and interquartile
range (IQR) as measures of central tendency and dispersion, respectively. With
the aim of providing these results with statistical confidence (in this study, p-
value = 0.05), we have applied Friedman’s ranking and Holm’s post-hoc multi-
compare tests [23] to know which algorithms are statistically worse than the
control one (i.e., the one with the best ranking).

5 Results and Discussion

Table 2 summarizes the obtained results when the indicated reference point is
achievable. The cells with dark and light gray background indicate the best and
second best hypervolume values, respectively. We observe that SMPSO/RP out-
performed the other techniques in 14 out of the 21 evaluated problems, followed
by gSMS-EMOA which obtained the best indicator values in 6 problems.

The results yielded when indicating unachievable reference points are
included in Table 3. SMPSO/RP is again the best performing algorithm since it

306 A. J. Nebro et al.

Table 3. Median and interquartile range of the hypervolume quality indicator when
solving the problems indicating unachievable reference points.

SMPSO/RP gSMS-EMOA gNSGAII WASF-GA
ZDT1 5.19e − 017.5e−05 5.19e − 012.5e−04 5.14e − 011.1e−03 5.17e − 016.8e−04
ZDT2 4.53e − 013.7e−05 4.53e − 011.2e−04 4.48e − 019.5e−04 4.51e − 014.6e−04
ZDT3 4.91e − 012.9e−05 4.90e − 016.2e−04 4.87e − 012.7e−03 4.88e − 014.3e−04
ZDT4 5.69e − 012.6e−04 5.62e − 015.9e−03 5.58e − 017.4e−03 5.62e − 015.5e−03
ZDT6 4.30e − 014.5e−05 4.25e − 017.9e−04 4.10e − 013.5e−03 4.16e − 012.4e−03
DTLZ1 4.95e − 014.9e−05 4.87e − 012.3e−02 4.80e − 017.9e−02 4.89e − 015.8e−03
DTLZ2 3.10e − 016.9e−05 3.10e − 014.0e−05 3.07e − 014.5e−04 3.09e − 012.1e−05
DTLZ3 3.19e − 012.0e−04 0.00e + 000.0e+00 0.00e + 000.0e+00 1.67e − 012.4e−01
DTLZ4 3.91e − 012.4e−04 3.91e − 015.6e−05 3.89e − 014.4e−04 3.91e − 013.3e−05
DTLZ5 2.66e − 011.9e−04 2.66e − 013.6e−05 2.64e − 013.2e−04 2.66e − 011.6e−05
DTLZ6 3.11e − 011.6e−05 0.00e + 000.0e+00 0.00e + 000.0e+00 1.55e − 015.6e−02
DTLZ7 5.85e − 012.1e−05 5.85e − 014.3e−05 5.83e − 015.2e−04 5.59e − 014.8e−05
WFG1 0.00e + 006.8e−04 3.28e − 021.1e−01 1.66e − 011.3e−01 4.77e − 013.2e−01
WFG2 5.56e − 014.5e−04 5.54e − 012.4e−03 5.54e − 012.3e−03 5.53e − 013.2e−03
WFG3 4.95e − 013.4e−04 4.93e − 011.1e−03 4.90e − 012.2e−03 4.91e − 011.9e−03
WFG4 3.59e − 014.7e−03 3.66e − 015.9e−05 3.62e − 016.8e−04 3.65e − 014.6e−04
WFG5 2.20e − 011.1e−05 2.20e − 013.7e−05 2.18e − 013.8e−04 2.18e − 016.8e−06
WFG6 0.00e + 000.0e+00 0.00e + 000.0e+00 0.00e + 000.0e+00 0.00e + 000.0e+00
WFG7 3.70e − 016.0e−04 3.70e − 011.1e−04 3.67e − 019.6e−04 3.68e − 015.5e−04
WFG8 3.04e − 011.4e−02 2.87e − 013.3e−03 2.87e − 014.7e−03 2.87e − 013.2e−03
WFG9 2.85e − 015.1e−04 2.84e − 013.3e−03 2.81e − 013.3e−03 2.81e − 012.3e−03

obtained the best hypervolume values in 12 out of 21 the problems. Meanwhile,
the second best, gSMS-EMOA, only achieved the best results in 7 problems.

Table 4. Average Friedman’s rankings with Holm’s Adjusted p-values (0.05) of com-
pared algorithms when solving the problems indicating achievable (left) and unachiev-
able (right) reference points.

Achievable (IHV) Unachievable (IHV)

Algorithm FriRank HolmAp Algorithm FriRank HolmAp

*SMPSO/RP 1.52 - *SMPSO/RP 1.59 -

gSMS-EMOA 2.09 1.51e−01 gSMS-EMOA 2.16 1.51e−01

WASF-GA 2.76 3.77e−03 WASF-GA 2.71 9.94e−03

gNSGAII 3.62 4.34e−07 gNSGAII 3.52 3.88e−06

As shown in Table 4, SMPSO/RP is the best ranked algorithm according
to Friedman’s test for achievable, as well as for unachievable reference points.
SMPSO/RP is then established as the control algorithm in the post-hoc Holm
tests. The adjusted p-values (HolmAp in Table 4) resulting from these compar-
isons are lower than the confidence level (0.05) for WASF-GA and gNSGAII,
which means that differences between SMPSO/RP and these two algorithms are
statistically significant.

To have an insight of the time reductions when running SMPSO/RP in
a multi-core system, we have executed it on a machine featuring a quad-core
Intel i7 at 2.2. GHz and 16 GB of 1600 MHz DDR3 RAM with hyper-threading

Extending SMPSO with Preference Articulation 307

enabled. In particular we have performed these execution using 1, 2, 4 and 8
threads when solving the ZDT4 problem and reference point (0.5, 0.5). We have
added an idle loop inside the objective functions to increase their computing.
The times obtained are 61.5, 45.5, 30.85 and 19.45 s, which mean speed-ups of
1.3, 1.99 and 3.16 with 2, 4, and 8 threads respectively. These speed-ups are
expected because, as commented in Sect. 3, only the function evaluations are
performed in parallel. Nevertheless, the time reductions are significant and have
been achieved with neither major changes in the code nor extra configuration.

6 Use Case

This section describes the application of SMPSO/RP to a real-world problem in
the field of structural design. The selected problem aims to optimize the design
of a cable stayed-bridge having two objectives (total weight and deformation),
encompassing 26 decision variables and 68 constraints [24].

We assume here that a civil engineer is interested in finding the region of the
front including solutions with the lowest weights. Without any initial knowledge
regarding the weight of different solutions, the starting reference point for the
civil engineer is set to (0.0, 0.0) and he/she interactively changes it during the
search as information about different computed structures is obtained. A possible
execution is shown in Fig. 4 and is described next:

1. Generation 14: Reference point: (0.0, 0.0). The algorithm is looking for a first
feasible solution.

2. Generation 64: SMPSO/RP has found a feasible region and a set of non-
dominated solutions.

0 0.1 0.2 0.3
0

2

4

·10−2

0 0.1 0.2 0.3
0

2

4

·10−2

0.2 0.22 0.24
5

5.2

5.4

·10−2

0.2 0.21 0.22
5

5.2

5.4

5.6

·10−2

0.19 0.2 0.2 0.2

4.85

4.9

4.95

5
·10−2

0.18 0.18 0.18 0.19
4.2

4.3

4.4

·10−2

0.18 0.18 0.18 0.18

4.16

4.18

4.2
·10−2

0.17 0.18 0.18
3.9

4

4.1

4.2
·10−2

Fig. 4. Example of guiding the search in the structural design problem. Each plot
depicts the front at generation 14, 64, 104, 208, 278, 465, 534, and 599, respectively.
The reference point changes from (0.0, 0.0) to (0.2, 0.05), (0.18, 0.042), and (0.17, 0.039).
The x-axis represents the weight and the y-axis the deformation.

308 A. J. Nebro et al.

3. Generation 104. The reference point is changed to (0.2, 0.05), which currently
is unfeasible.

4. Generation 208. The front is evolving towards the current reference point.
5. Generation 278. The current reference point is feasible and the computed

front of solutions is spreading.
6. Generation 465. The reference point is changed to (0.18, 0.042), which is cur-

rently unfeasible.
7. Generation 534. The current reference point is feasible and the computed

front of solutions is spreading.
8. Generation 599. The reference point is changed to (0.17, 0.039), which is cur-

rently unfeasible. At this stage, the engineer is satisfied with the solutions
obtained and the optimization process is stopped.

7 Conclusions and Future Research Lines

We introduced SMPSO/RP, an extension of the SMPSO incorporating a prefer-
ence articulation mechanism based on indicating reference points. Our approach
allows changing the reference points interactively and evaluating particles of the
swarm in parallel. SMPSO/RP is implemented within the jMetal framework and
its source code is freely available.

We have compared our proposal against three other related algorithms on a
benchmark composed of 21 problems. Our results indicate that SMPSO/RP
achieved the best overall performance when indicating both achievable and
unachievable reference points. We have also measured the time reductions
that have been achieved when running the algorithm in a multi-core processor
platform.

As a line of future work, we are working on adapting SMPSO/RP to efficiently
deal with many-objective problems. This implies to rethink the archiving policy
and derive novel Pareto density metrics suitable for such problem formulations.

Acknowledgement. This work has been partially funded by Grants TIN2017-86049-
R (Spanish Ministry of Education and Science) and P12-TIC-1519 (Plan Andaluz
de Investigación, Desarrollo e Innovación). Cristóbal Barba-González is supported by
Grant BES-2015-072209 (Spanish Ministry of Economy and Competitiveness). José
Garćıa-Nieto is the recipient of a Post-Doctoral fellowship of “Captación de Talento
para la Investigación” Plan Propio at Universidad de Málaga. Javier Del Ser thanks the
Basque Government for its funding support through the EMAITEK program. Carlos
A. Coello Coello is supported by CONACyT project no. 221551.

References

1. Coello Coello, C., Lamont, G., van Veldhuizen, D.: Multi-Objective Optimization
Using Evolutionary Algorithms, 2nd edn. Wiley, Hoboken (2007)

2. Coello Coello, C.: Handling preferences in evolutionary multiobjective optimiza-
tion: a survey. In: Proceedings of the IEEE Conference on Evolutionary Compu-
tation, ICEC, vol. 1, pp. 30–37 (2000)

Extending SMPSO with Preference Articulation 309

3. Nebro, A., Durillo, J., Garćıa-Nieto, J., Coello Coello, C., Luna, F., Alba,
E.: SMPSO: a new PSO-based metaheuristic for multi-objective optimization.
In: IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-
Making, MCDM 2009, pp. 66–73. IEEE Press (2009)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

5. Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimiza-
tion. Adv. Eng. Softw. 42(10), 760–771 (2011)

6. Ruiz, A., Saborido, R., Luque, M.: A preference-based evolutionary algorithm for
multiobjective optimization: the weighting achievement scalarizing function genetic
algorithm. J. Glob. Optim. 62(1), 101–129 (2015)

7. Branke, J.: MCDA and multiobjective evolutionary algorithms. In: Greco, S.,
Ehrgott, M., Figueira, J. (eds.) Multiple Criteria Decision Analysis. ISOR, vol.
233, pp. 977–1008. Springer, New York (2016). https://doi.org/10.1007/978-1-
4939-3094-4 23

8. Li, L., Wang, Y., Trautmann, H., Jing, N., Emmerich, M.: Multiobjective evolu-
tionary algorithms based on target region preferences. Swarm Evol. Comput. 40,
196–215 (2018)

9. Wierzbicki, A.P.: Reference point approaches. In: Gal, T., Stewart, T.J., Hanne, T.
(eds.) Multicriteria Decision Making. ISOR, vol. 21, pp. 237–275. Springer, Boston
(1999). https://doi.org/10.1007/978-1-4615-5025-9 9

10. Molina, J., Santana, L., Hernández-Dı́az, A., Coello Coello, C., Caballero, R.: g-
dominance: Reference point based dominance for multiobjective metaheuristics.
Eur. J. Oper. Res. 197(2), 685–692 (2009)

11. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, pp. 1942–1948 (1995)

12. Sierra, M.R., Coello Coello, C.A.: Improving PSO-based multi-objective optimiza-
tion using crowding, mutation and ε-dominance. In: Coello Coello, C.A., Hernández
Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4 35

13. Durillo, J., Nebro, A., Coello Coello, C., Garcia-Nieto, J., Luna, F., Alba, E.: A
study of multiobjective metaheuristics when solving parameter scalable problems.
IEEE Trans. Evol. Comput. 14(4), 618–635 (2010)

14. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence
in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73
(2002)

15. Nebro, A.J., Durillo, J.J., Vergne, M.: Redesigning the jMetal multi-objective
optimization framework. In: Proceedings of the Companion of the Conference on
Genetic and Evolutionary Computation (GECCO), pp. 1093–1100 (2015)

16. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

17. Deb, K., Sundar, J., Ubay, B., Chaudhuri, S.: Reference point based multi-objective
optimization using evolutionary algorithm. Int. J. Comput. Intell. Res. 2(6), 273–
286 (2006)

18. Allmendinger, R., Li, X., Branke, J.: Reference point-based particle swarm opti-
mization using a steady-state approach. In: Li, X., et al. (eds.) SEAL 2008. LNCS,
vol. 5361, pp. 200–209. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-89694-4 21

19. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

https://doi.org/10.1007/978-1-4939-3094-4_23
https://doi.org/10.1007/978-1-4939-3094-4_23
https://doi.org/10.1007/978-1-4615-5025-9_9
https://doi.org/10.1007/978-3-540-31880-4_35
https://doi.org/10.1007/978-3-540-89694-4_21
https://doi.org/10.1007/978-3-540-89694-4_21

310 A. J. Nebro et al.

20. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolu-
tionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.)
Evolutionary Multiobjective Optimization. AI&KP, pp. 105–145. Springer, London
(2005). https://doi.org/10.1007/1-84628-137-7 6

21. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test
problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.)
EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31880-4 20

22. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. Trans. Evol. Comput. 3(4), 257–271
(1999)

23. Derrac, J., Garćıa, S., Molina, D., Herrera, F.: A practical tutorial on the use of
non-parametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

24. Zavala, G., Nebro, A.J., Luna, F., Coello Coello, C.: Structural design using multi-
objective metaheuristics. Comparative study and application to a real-world prob-
lem. Struct. Multidiscip. Optim. 53(3), 545–566 (2016)

https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/978-3-540-31880-4_20
https://doi.org/10.1007/978-3-540-31880-4_20

Improving 1by1EA to Handle Various
Shapes of Pareto Fronts

Yiping Liu1, Hisao Ishibuchi2, Yusuke Nojima1(B), Naoki Masuyama1,
and Ke Shang2

1 Department of Computer Science and Intelligent Systems,
Graduate School of Engineering, Osaka Prefecture University,

Sakai, Osaka 599-8531, Japan
yiping0liu@gmail.com, {nojima,masuyama}@cs.osakafu-u.ac.jp

2 Department of Computer Science and Engineering,
Southern University of Science and Technology,

Shenzhen 518055, Guangdong, China
hisao@sustc.edu.cn, kshang@foxmail.com

Abstract. 1by1EA is a competitive method among existing many-
objective evolutionary algorithms. However, we find that it may fail to
find boundary solutions depending on the Pareto front shape. In this
study, we present an improved version of 1by1EA, named 1by1EA-II,
to enhance the flexibility in handling various shapes of Pareto fronts.
In 1by1EA-II, the Chebyshev distances from a solution to the nadir
and ideal points are alternately employed as two convergence indicators.
Using the first convergence indicator, boundary solutions are preferred
for a wide spread in the objective space. With the other convergence
indicator, non-boundary solutions are preferred to promote diversity. We
empirically compare the proposed 1by1EA-II with its original version as
well as four other state-of-the-art algorithms on DTLZ and Minus-DTLZ
test problems. The results show that 1by1EA-II is the most flexible
algorithm.

Keywords: Many-objective evolutionary computation
Pareto front shape · Convergence · Diversity

1 Introduction

There exist a large number of multi-objective optimization problems (MOPs)
in real-world applications. The conflict of objectives implies that there is no
single optimal solution to an MOP, rather a set of trade-off solutions, called
the Pareto optimal solution set (PS). The image of PS in the objective space is
referred to as the Pareto front (PF). Without loss of generality, an MOP can be
mathematically expressed as follows:

minf(x) = min(f1 (x), f2(x), . . . , fM (x))
s.t. x ∈ S ⊂ Rn (1)

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 311–322, 2018.
https://doi.org/10.1007/978-3-319-99253-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_25&domain=pdf

312 Y. Liu et al.

where x = (x1, . . . , xn) represents an n-dimensional decision vector in space
S, fm(x),m = 1, . . . ,M , is the m-th objective to be minimized, and M is the
number of objectives. When M > 3, the problem in Eq. (1) is referred to as a
many-objective optimization problem (MaOP).

Multi-Objective Evolutionary Algorithms (MOEAs) are widely applied to
solve MOPs, where the Pareto dominance-based ones are most popular, such as
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [4] and Strength Pareto
Evolutionary Algorithm 2 (SPEA2) [17]. However, their performance generally
deteriorates appreciably for MaOPs. One main reason is the low efficiency of
the Pareto dominance-based selection strategy in the high-dimensional objective
space.

To address this issue, various MOEAs aiming at solving MaOPs have been
developed in recent years. Generally, they can be categorized into the fol-
lowing three categories: (1) improved Pareto dominance-based methods, e.g.,
SPEA2 with shift-based density estimation (SDE) [8] and NSGA-III [3]; (2)
decomposition-based methods, e.g., MOEA/D [15] and Reference-Vector-guided
Evolutionary Algorithm (RVEA) [2]; (3) indicator-based methods, e.g., Hyper-
volume Estimation algorithm (HypE). Besides, there are a number of novel meth-
ods that have not been categorized, e.g., Grid-based Evolutionary Algorithm
(GrEA) [14], Knee point driven Evolutionary Algorithm (KnEA) [16], Bi-Goal
Evolutionary approach (BiGE) [9], Reference Points-based Evolutionary Algo-
rithm (RPEA) [11], and One-by-One selection-based Evolutionary Algorithm
(1by1EA) [10].

These MOEAs often show encouraging performance on widely used bench-
marks such as DTLZ [5] and WFG [6]. However, their performance may strongly
depend on the PF shapes. For example, by simply inverting the PF shapes of
DTLZ, the performance of a decomposition-based method noticeably degrades
[7]. Similarly, NSGA-III and MOMBI-II which share the concept of decomposi-
tion would also have the issue. For another instance, the performance of some
methods like GrEA is very sensitive to the parameter settings, and it is difficult
to tune the parameters according to the PF shapes. The real-world optimization
problems usually have various shapes of PFs. Therefore, developing more flexi-
ble MOEAs is a must, where improving the flexibility of existing state-of-the-art
MOEAs is very promising.

In this study, we improve 1by1EA’s ability in solving MaOPs with various
shapes of PFs. 1by1EA is very competitive among existing many-objective opti-
mizers. As shown by our computational experiments later in this paper, 1by1EA
has high search ability on DTLZ (which is higher than other many-objective
optimizers such as NSGA-III, MOEA/D, BiGE and KnEA). 1by1EA adopts
not only a one-by-one selection strategy to well balance the convergence and
the diversity of solutions, but also a corner solution preserving strategy for a
wide spread. However, we find that 1by1EA may not perform well when the
corner solutions are difficult to be located on a PF. In this study, we present
an improved version of 1by1EA, named 1by1EA-II. It alternately employs two
convergence indicators to search the boundary and non-boundary solutions and
is more flexible than its original version.

Improving 1by1EA to Handle Various Shapes of Pareto Fronts 313

The remainder of this paper is organized as follows. In Sect. 2, 1by1EA is first
briefly introduced and the motivation of this work is elaborated. The proposed
1by1EA-II is then described in detail in Sect. 3. Section 4 presents experimen-
tal results and discussions. Section 5 concludes the paper and provides future
research directions.

2 Preliminaries

In this section, we first briefly introduce 1by1EA [10] and then elaborate the
motivation of this work.

2.1 A Brief Introduction to 1by1EA

The general framework of 1by1EA is similar to standard generational evolution-
ary algorithms, whereas its environmental selection makes it special.

Assume to solve the problem in Eq. (1) using 1by1EA. Before the environ-
mental selection, the convergence and distribution indicators of each candidate
solution are calculated. Please refer to the original study for the examples of
these indicators [10]. The convergence indicator is usually a scalarizing function
aggregating all objective functions, such as the sum of all objective functions or
the Euclidean distance between the solution and the ideal (nadir) point. Note
that we estimate the ideal (nadir) point in terms of the minimum (maximum)
objective values among obtained non-dominated solutions in this study. The con-
vergence indicator can provide an extremely large selection pressure towards the
PF. The general formulation of the convergence indicator can be summarized as
follows:

c(x) = agg(f1(x), . . . , fM (x)). (2)

The distribution indicator is the cosine similarity between the solution and each
of the others. It can efficiently reduce the number of dominance resistant solu-
tions.

Next, M corner solutions are selected to estimate the boundary of the PF.
The mth corner solution xcorner

m is obtained by the following method:

xcorner
m = arg min

xi∈Q
cm(xi),m = 1, . . . ,M, (3)

where cm(xi) = agg(f1(x), . . . , fm−1(x), fm+1(x), . . . , fM (x)), and Q is the cur-
rent population.

Finally, the one-by-one selection strategy is applied. It consists of the two
important steps. In the first step, only one solution with the best value of the
convergence indicator is selected, focusing on the convergence. In the second step,
solutions close to the one selected in the first step are de-emphasized according
to the distribution indicator, thus maintaining the diversity of the population.
By repeating the above two steps, a solution set with good convergence and
diversity can be obtained.

314 Y. Liu et al.

1by1EA has been demonstrated to be a competitive many-objective opti-
mizer. However, we find that 1by1EA is not flexible enough due to the corner
solution preserving strategy. The motivation of improving 1by1EA is elaborated
in the next subsection.

2.2 Motivation

As reported in [7] recently, a number of newly proposed decomposition-based
algorithms seem to be overspecialized for the popular benchmarks like DTLZ.
In [7], the minus version of DTLZ (denoted as Minus-DTLZ) is presented, where
the PF shapes are inverted from those of DTLZ. Figure 1 shows the true PFs of
DTLZ2 and Minus-DTLZ2 with three objectives for intuitive understanding.

f1

f3

f20.2
0.4

0.6
0.8

1.0 1.0 1.0 0.2 0.4 0.6 0.8 1.0 1.0 1.0

0.2
0.4
0.6
0.8
1.0 1.0 1.0

(a) DTLZ2

f1

f3

f2
-3.0

-2.0
-1.0

0.0 0.0 0.0 0.0 -3.0 -2.0 -1.0 0.0 0.0 0.0 0.0

-3.0

-2.0

-1.0

0.0 0.0 0.0 0.0

(b) Minus-DTLZ2

Fig. 1. The true PFs of DTLZ2 and Minus-DTLZ2 with three objectives.

The performance of decomposition-based algorithms appreciably deteriorates
on Minus-DTLZ merely because the PF shapes of Minus-DTLZ are different from
those of DTLZ. Some recent researches on using two reference vector sets have
addressed this issue [1,13]. This inspires us to investigate the behaviors of some
non-decomposition-based algorithms like 1by1EA when handling various shapes
of PFs.

The corner solution preserving strategy plays an important role in 1by1EA.
Figure 2 presents the solution sets obtained by 1by1EA with and without pre-
serving corner solutions on DTLZ2 and Minus-DTLZ2 with three objectives in a
typical run, where the Euclidean distance between a solution and the ideal point
is chosen as the convergence indicator. Note that in this study, the inverted gen-
erational distance (IGD) [18] of the solution set obtained in the typical run is
the nearest to the average IGD over 40 runs.

We can see from Fig. 2 that preserving corner solutions can lead to the solu-
tion sets widely spread in the objective space both on DTLZ2 and Minus-DTLZ2.
The solution set in Fig. 2(b) approximates well to the true PF in Fig. 1(a). How-
ever, the solution set in Fig. 2(d) fails to cover some boundary regions, comparing
to the true PF in Fig. 1(b). The reason is that the corner solutions to DTLZ2
(i.e., (1, 0, 0), (0, 1, 0), (0, 0, 1)) can be easily located by Eq. (3) (i.e., minimizing

Improving 1by1EA to Handle Various Shapes of Pareto Fronts 315

f1

f3

f20.2
0.4

0.6
0.8

1.0 1.0 1.0 0.2 0.4 0.6 0.8 1.0 1.0 1.0

0.2
0.4
0.6
0.8
1.0 1.0 1.0

(a) 1by1EA on
DTLZ2 without

preserving
corner solutions

f1

f3

f2
0.2

0.4
0.6

0.8
1.0 1.0 1.0 0.2 0.4 0.6 0.8 1.0 1.0 1.0

0.2
0.4
0.6
0.8
1.0 1.0 1.0

(b) 1by1EA on
DTLZ2

f1

f3

f2
-3.0

-2.0
-1.0

0.00.00.00.0-3.0 -2.0 -1.0 0.00.00.00.0

-3.0

-2.0

-1.0

0.00.00.00.0

(c) 1by1EA on
Minus-DTLZ2

without
preserving

corner solutions

f1

f3

f2
-3.0

-2.0
-1.0

0.00.00.00.0-3.0 -2.0 -1.0 0.00.00.00.0

-3.0

-2.0

-1.0

0.00.00.00.0

(d) 1by1EA on
Minus-DTLZ2

Fig. 2. The solution sets obtained on DTLZ2 and Minus-DTLZ2 with three objectives.

f2 + f3, f3 + f1, and f1 + f2, respectively), whereas those to Minus-DTLZ2
(i.e., (−3.5, 0, 0), (0,−3.5, 0), (0, 0,−3.5)) cannot. Of course, we can use another
method (i.e., by minimizing f1, f2, and f3, respectively) to obtain the corner
solutions of Minus-DTLZ2. However, for real-world optimization problems, we
usually cannot obtain the a priori knowledge of corner points and apply a proper
method to locate all of them. Furthermore, even if we use both of the above-
mentioned methods, the shape of a PF could be too complex to locate the corner
solutions.

From these observations, we notice that if the corner solution can be pre-
cisely located, 1by1EA performs perfectly; otherwise, it may miss some boundary
regions on a PF. This indicates that the performance of 1by1EA also depends
on the shapes of PFs.

In view of this, we present an improved version of 1by1EA, named 1by1EA-
II, to enhance its flexibility in handling various shapes of PFs. In 1by1EA-II, the
corner solutions are no longer needed to be preserved. The diversity of solutions
are promoted by alternately employing two different convergence indicators. The
details of 1by1EA-II are described in the next section.

3 1by1EA-II

The difference between 1by1EA and 1by1EA-II is that in the environmental
selection of 1by1EA-II, the corner solutions are no longer preserved by Eq. (3),
and two convergence indicators are alternately employed to select the solution
with best convergence performance. That is, after selecting a solution according
to a convergence indicator, the next solution to be selected is based on the
other convergence indicator. Please refer to the original study of 1by1EA for
the environmental selection procedure [10]. We describe the two convergence
indicators used in 1by1EA-II in the following parts.

316 Y. Liu et al.

The first convergence indicator adopted in 1by1EA-II is the Chebyshev dis-
tance between a solution and the nadir point. It is formulated as follows:

cCdN(x) = max
1≤m≤M

|fm(x) − znadm |, (4)

where znad = (znad1 , . . . , znadM) is the nadir point. Note that there is no weight in
the convergence indicators, since all the objectives are equally considered in this
study. The solution farthest from the nadir point is supposed to have the best
convergence performance. However, since the nadir point is estimated based on
the obtained non-dominated solutions, a solution dominated by the estimated
nadir point may be better than others according to Eq. (4). This situation should
be avoided. In addition, we want to minimize the convergence indicator. There-
fore, we modify Eq. (4) into the following formulation:

c1(x) = min
1≤m≤M

(fm(x) − znadm). (5)

By minimizing c1 in 1by1EA-II, the boundary solutions (including the cor-
ner solutions) are preferred (no matter the Pareto front is convex or concave).
Figure 3(a) presents an illustration of the solution selection procedure only
using c1.

f1 f2

0

A

f3
1

1 1
G

C

D

B

E
F

H

I

J

(a) Only using c1

f1 f2

0

A

f3
1

1 1
G

C

D

B

E
F

H

I

J

(b) Alternately using c1 and c2

Fig. 3. Solution selection procedure in 1by1EA-II.

In Fig. 3, assume (0, 0, 0) and (1, 1, 1) are the ideal and nadir points, respec-
tively. Dots A-J are candidate solutions, and we want to select five of them into
the next generation. The dashed triangles are the intersections of the contour
lines of c1 and the hyperplan defined by f1 +f2 +f3 = 1 (note that the solutions
are not necessarily on the hyperplan). Solutions connected with each other are
in the other’s niche according to the diversity indicator. As can be seen from
Fig. 3(a), the boundary solution A has the minimum value of c1 and all the
other solutions are within the corresponding dashed triangle of A. Therefore, A
is selected first. Then B is de-emphasized since it is too close to A. Next, C, D,
E, and F are selected one by one due to their minimum c1 values among the

Improving 1by1EA to Handle Various Shapes of Pareto Fronts 317

rest. From this illustration, we can observe that boundary solutions are always
preferred by minimizing c1 no matter what is the shape of a PF. Consequently,
preserving corner solutions is unnecessary in 1by1EA-II.

However, employing c1 as the only convergence indicator may results in two
issues. The first issue is that it may lead the population into a partial region of
the PF, since the estimated nadir point is usually quite different from the true
one at the early stage of evolution. Minimizing c1 with an incorrect nadir point
will result in solutions located in partial regions. Conversely, the nadir point
in the next generation could be estimated more incorrectly by these solutions.
Figure 4(a) shows the obtained solution set on DTLZ2 with three objectives in
a typical run when c1 is employed as the only convergence indicator. We can see
that most solutions locate in a small region. The other issue is that even if we
use the true nadir point, the solutions are more likely to locate in the boundary
region. Figure 4(b) shows all the solution sets obtained in 40 runs where the true
nadir point is used in c1. We can observe that the solutions in the boundary
region are denser than those in the central region.

f1

f3

f20.2
0.4

0.6
0.8

1.0 1.0 1.0 0.2 0.4 0.6 0.8 1.0 1.0 1.0

0.2
0.4
0.6
0.8
1.0 1.0 1.0

(a) In a typical run
using the estimated

nadir point

f1

f3

f2
0.2

0.4
0.6

0.8
1.0 1.0 1.0 0.2 0.4 0.6 0.8 1.0 1.0 1.0

0.2
0.4
0.6
0.8
1.0 1.0 1.0

(b) In 40 runs using
the true nadir point

Fig. 4. The solution set obtained on DTLZ2 with three objectives when c1 is employed
as the only convergence indicator.

In view of this, we employ the Chebyshev distance between a solution and
the ideal point as the other convergence indicator, which is formulated as follows:

c2(x) = max
1≤m≤M

|fm(x) − z∗
m|, (6)

where z∗ = (z∗
1 , . . . , z∗

M) is the ideal point. In contrast to minimizing c1, non-
boundary solutions are preferred when minimizing c2. Alternately employing c1
and c2 is helpful to promote diversity, since both non-boundary and boundary
solutions have a chance to be selected. Let us see Fig. 3(b) as an example, where
the dashed inverted triangles are the intersections of the contour lines of c2 and
the hyperplan defined by f1+f2+f3 = 1. The solution J has the minimum value
of c2 and all the other solutions are outside the corresponding dashed inverted
triangle of J. In this case, A, J, C, I, and D are selected one by one, and B and F

318 Y. Liu et al.

are de-emphasized after selecting A and I, respectively. There are more solutions
in the central region in Fig. 3(b) than that in Fig. 3(a). In addition, solutions
selected by alternately using c1 and c2 have a much lower chance to converge
into a partial region, and the nadir point could be estimated more precisely.

By the cooperation among the above-mentioned two convergence indicators
and the distribution indicator, the one-by-one selection strategy in 1by1EA-II is
expected to locate the boundary solutions on a PF and maintain a good diversity
within the boundary.

4 Experiments and Discussions

In this section, we empirically evaluate and discuss the performance of 1by1EA-II
by comparing it with 1by1EA, NSGA-III, MOEA/D, BiGE and KnEA. DTLZ1
to 4 and Minus-DTLZ1 to 4 are chosen as test problems. We consider these test
problems with 3, 4, 6, and 8 objectives. The number of variables n is set to
M + 4 for DTLZ1 and Minus-DTLZ1, and M + 9 for the other test problems
(M is the number of objectives). NSGA-III and MOEA/D are supposed to be
overspecialized for DTLZ test problems according to [7]. No study has shown
that BiGE and KnEA are overspecialized so far.

For all compared algorithms, simulated binary crossover and polynomial
mutation are used as the crossover and mutation operators, with both distri-
bution indexes being set to 20. The crossover and mutation probabilities are 1.0
and 1/n, respectively. The population size N is set to 105, 120, 132 and 156 when
M is 3, 4, 6, and 8, respectively. In 1by1EA, the Euclidean distance between a
solution and the ideal point is chosen as the convergence indicator. In MOEA/D,
the PBI method with θ = 5 is adopted. In KnEA, T is set to 0.5. Each algorithm
is run for 40 times on each test problem, where the termination condition is set
to 600 generations for DTLZ3 and Minus-DTLZ3, and 300 generations for the
other test problems. The source codes of 1by1EA and 1by1EA-II can be down-
loaded from https://github.com/yiping0liu. All the other compared algorithms
are implemented by PlatEMO [12].

Table 1 lists the average values of IGD over 40 runs in gray scale, where
a darker tone corresponds to a larger average value of IGD. Note that in this
study the reference points for IGD calculation are uniformly sampled on a true
PF, and the number of reference points is around 104. In Table 1, “Rank1”,
“Rank−1”, and “Rankall” denote the average ranks of each algorithm according
to the average IGD values on DTLZ, Minus-DTLZ, and all the test problems,
respectively. DTLZn-m (DTLZn−1-m) denotes DTLZn (Minus-DTLZn) with
m objectives. “†” indicates that the result is significantly different from that of
1by1EA-II by Wilcoxon’s rank sum test where the null hypothesis is rejected at a
significant level of 0.05. “+”, “−”, and “=” indicate the number of test problems
where 1by1EA-II shows significantly better, worse, and similar performance,
respectively.

From Table 1, we can see that 1by1EA-II, 1by1EA, NSGA-III, and MOEA/D
generally achieve satisfactory results on DTLZ, where 1by1EA obtains the best

https://github.com/yiping0liu

Improving 1by1EA to Handle Various Shapes of Pareto Fronts 319

Table 1. Average IGD obtained by different algorithms.

“Rank1”. The “Rank1” of 1by1EA-II is very close to those of NSGA-III and
MOEA/D, which are verified to have strength in solving DTLZ. This indicates
that 1by1EA-II is very effective on solving these problems. However, 1by1EA-
II does not perform as well as 1by1EA, NSGA-III, and MOEA/D on DTLZ1,

320 Y. Liu et al.

DTLZ2 and DTLZ3 with three objectives. MOEA/D performs poorly on DTLZ4,
since DTLZ4 has a bias PF, which results in the failure of the PBI method in
maintaining diversity in the objective space. BiGE and KnEA obtain larger val-
ues of “Rank1” than the others, which suggests that they do not achieve appeal-
ing results, comparing to the algorithms that are supposed to overspecialized for
DTLZ. However, they show relatively good performance on DTLZ4.

For Minus-DTLZ, 1by1EA-II outperforms the others on most test problems
and obtains the best “Rank−1”. On the contrary, 1by1EA achieves poor IGD val-
ues on these problems and obtains the worst “Rank−1”. Comparing the results
obtained by 1by1EA on DTLZ and Minus-DTLZ, we can notice that the perfor-
mance of 1by1EA strongly depends on the PF shapes. The distribution of refer-
ence vectors (points) used in both MOEA/D and NSGA-III is inconsistent with
the PF shapes of Minus-DTLZ. The performance of MOEA/D generally degrades
appreciably on Minus-DTLZ, whereas the results of NSGA-III on Minus-DTLZ
are still acceptable. The reason is that every reference vector (point) has to be
assigned a solution in MOEA/D while it does not in NSGA-III. Moreover, in
NSGA-III, multiple solutions can be clustered to one reference point, and then
the reference points within the region of PF are assigned more solutions than
those outside the region of PF. Consequently, the diversity of the solution set
can be well maintained in NSGA-III. This observation indicates that the per-
formance of NSGA-III is less sensitive to the PF shape than MOEA/D. The
average ranks obtained by BiGE and KnEA on Minus-DTLZ are better than
those on DTLZ. They achieve encouraging results on some Minus-DTLZ test
problems. Theoretically, both of them are not designed to solve particular prob-
lems, however, they seem to perform better on Minus-DTLZ when comparing to
the other algorithms.

As a whole, 1by1EA-II achieves the best overall performance among the
compared algorithms, since it obtains the best value of “Rankall”. Besides,
both“Rank1” and “Rank−1” obtained by 1by1EA-II are satisfying. Therefore,
we can conclude that 1by1EA-II is most flexible among the compared algorithm
on DTLZ and Minus-DTLZ test problems.

To visually demonstrate the superiority of 1by1EA-II over the other algo-
rithms, we show the solution sets obtained by the compared algorithms in a
typical run in Fig. 5. Due to space limits, only results on Minus-DTLZ2 with
three objectives are presented. As can be seen from Fig. 5, 1by1EA-II can locate
the boundary solutions according to the PF shape and maintain good diver-
sity within the boundary. 1by1EA behaves as we have explained in Subsect. 2.2.
For NSGA-III, there are many solutions very close to another one, since multiple
solutions are clustered to one reference point. In MOEA/D, the reference vectors
outside the true PF are assigned to solutions that are close to those inside the
true PF, and thus the solutions obtained by MOEA/D are denser in the certain
regions. The solutions obtained by BiGE fail to trace the true PF shape, and
some overlap with each other. KnEA can find the boundary solutions, however,
most solutions concentrate on the corner regions.

Improving 1by1EA to Handle Various Shapes of Pareto Fronts 321

f1

f3

f2
-3.0

-2.0
-1.0

0.00.00.00.0-3.0 -2.0 -1.0 0.00.00.00.0

-3.0

-2.0

-1.0

0.00.00.00.0

(a) 1by1EA-II

f1

f3

f2
-3.0

-2.0
-1.0

0.00.00.00.0-3.0 -2.0 -1.0 0.00.00.00.0

-3.0

-2.0

-1.0

0.00.00.00.0

(b) 1by1EA

f1

f3

f2
-3.0

-2.0
-1.0

0.00.00.00.0-3.0 -2.0 -1.0 0.00.00.00.0

-3.0

-2.0

-1.0

0.00.00.00.0

(c) NSGA-III

f1

f3

f2
-3.0

-2.0
-1.0

0.00.00.00.0-3.0 -2.0 -1.0 0.00.00.00.0

-3.0

-2.0

-1.0

0.00.00.00.0

(d) MOEA/D

f1

f3

f2
-3.0

-2.0
-1.0

0.00.00.00.0-3.0 -2.0 -1.0 0.00.00.00.0

-3.0

-2.0

-1.0

0.00.00.00.0

(e) BiGE

f1

f3

f2
-3.0

-2.0
-1.0

0.00.00.00.0-3.0 -2.0 -1.0 0.00.00.00.0

-3.0

-2.0

-1.0

0.00.00.00.0

(f) KnEA

Fig. 5. The solution sets obtained by different algorithms on Minus-DTLZ2 with three
objectives in a typical run.

5 Conclusions

In this paper, we presented an improved version of 1by1EA, named 1by1EA-
II. 1by1EA-II has two distinct features. The first is that it does not preserve
corner solution in the environmental selection. The other is that it alternately
employs two different convergence indicators, which are the Chebyshev distances
from a solution to the nadir and ideal points, respectively. By using these two
convergence indicators, 1by1EA-II has an ability in achieving a well-distributed
solution set according to the PF shape.

To demonstrate the effectiveness of 1by1EA-II, we tested it on DTLZ and
Minus-DTLZ test problems in comparison with five state-of-the-art algorithms,
namely, 1by1EA, NSGA-III, MOEA/D, BiGE, and KnEA. The experimental
results demonstrated that 1by1EA-II is a competitive and flexible method among
the chosen algorithms.

To further investigate and improve the flexibility of 1by1EA-II, we will apply
it to optimization problems with other shapes of PFs in the future work. In
addition, based on the boundary locating technique in 1by1EA-II, developing
a reference vector generation method for decomposition-based algorithms is of
great interest.

Acknowledgments. This work was supported by the Science and Technology Inno-
vation Committee Foundation of Shenzhen (Grant No. ZDSYS201703031748284).

322 Y. Liu et al.

References

1. Bhattacharjee, K.S., Singh, H.K., Ray, T., Zhang, Q.: Decomposition based evolu-
tionary algorithm with a dual set of reference vectors. In: 2017 IEEE Congress on
Evolutionary Computation (CEC), pp. 105–112. IEEE (2017)

2. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolution-
ary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5),
773–791 (2016)

3. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point based non-dominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

5. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolu-
tionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.)
Evolutionary Multiobjective Optimization, pp. 105–145. Springer, London (2005).
https://doi.org/10.1007/1-84628-137-7 6

6. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5),
477–506 (2006)

7. Ishibuchi, H., Setoguchi, Y., Masuda, H., Nojima, Y.: Performance of
decomposition-based many-objective algorithms strongly depends on Pareto front
shapes. IEEE Trans. Evol. Comput. 21(2), 169–190 (2017)

8. Li, M., Yang, S., Liu, X.: Shift-based density estimation for Pareto-based algo-
rithms in many-objective optimization. IEEE Trans. Evol. Comput. 18(3), 348–365
(2014)

9. Li, M., Yang, S., Liu, X.: Bi-goal evolution for many-objective optimization prob-
lems. Artif. Intell. 228, 45–65 (2015)

10. Liu, Y., Gong, D., Sun, J., Jin, Y.: A many-objective evolutionary algorithm using
a one-by-one selection strategy. IEEE Trans. Cybern. 47(9), 2689–2702 (2017)

11. Liu, Y., Gong, D., Sun, X., Zhang, Y.: Many-objective evolutionary optimization
based on reference points. Appl. Soft Comput. 50(1), 344–355 (2017)

12. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platform for evo-
lutionary multi-objective optimization [educational forum]. IEEE Comput. Intell.
Mag. 12(4), 73–87 (2017)

13. Wang, Z., Zhang, Q., Li, H., Ishibuchi, H., Jiao, L.: On the use of two refer-
ence points in decomposition based multiobjective evolutionary algorithms. Swarm
Evol. Comput. 34, 89–102 (2017)

14. Yang, S., Li, M., Liu, X., Zheng, J.: A grid-based evolutionary algorithm for many-
objective optimization. IEEE Trans. Evol. Comput. 17(5), 721–736 (2013)

15. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

16. Zhang, X., Tian, Y., Jin, Y.: A knee point driven evolutionary algorithm for many-
objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2015)

17. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolu-
tionary algorithm. Technical report, Eidgenössische Technische Hochschule Zürich
(ETH), Institut für Technische Informatik und Kommunikationsnetze (TIK) (2001)

18. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Per-
formance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003)

https://doi.org/10.1007/1-84628-137-7_6

New Initialisation Techniques
for Multi-objective Local Search

Application to the Bi-objective Permutation Flowshop

Aymeric Blot1(B), Manuel López-Ibáñez2, Marie-Éléonore Kessaci1,
and Laetitia Jourdan1

1 Université de Lille, CNRS, UMR 9189 – CRIStAL, Lille, France
{aymeric.blot,mkessaci,laetitia.jourdan}@univ-lille.fr

2 Alliance Manchester Business School, University of Manchester, Manchester, UK
manuel.lopez-ibanez@manchester.ac.uk

Abstract. Given the availability of high-performing local search (LS)
for single-objective (SO) optimisation problems, a successful approach
to tackle their multi-objective (MO) counterparts is scalarisation-based
local search (SBLS). SBLS strategies solve multiple scalarisations, aggre-
gations of the multiple objectives into a single scalar value, with varying
weights. They have been shown to work specially well as the initialisa-
tion phase of other types of MO local search, e.g., Pareto local search
(PLS). A drawback of existing SBLS strategies is that the underlying
SO-LS method is unaware of the MO nature of the problem and returns
only a single solution, discarding any intermediate solutions that may
be of interest. We propose here two new SBLS initialisation strategies
(ChangeRestart and ChangeDirection) that overcome this drawback by
augmenting the underlying SO-LS method with an archive of nondomi-
nated solutions used to dynamically update the scalarisations. The new
strategies produce better results on the bi-objective permutation flow-
shop problem than other five SBLS strategies from the literature, not
only on their own but also when used as the initialisation phase of PLS.

Keywords: Flowshop scheduling · Local search · Heuristics
Multi-objective optimisation · Combinatorial optimisation

1 Introduction

Multi-objective (MO) local search methods [5,7,11] are usually classified into
two types. Scalarisation-based local search (SBLS) strategies aggregate the mul-
tiple objectives into a single (scalar) one by means of weights, and use single-
objective (SO) local search to tackle each scalarised problem. Dominance-based
local search (DBLS) strategies search the neighbourhood of candidate solutions
for (Pareto) dominating or nondominated solutions. Successful algorithms for
MO combinatorial optimisation problems often hybridise both strategies by gen-
erating a set of high-quality solutions by means of SBLS, and further improving
this set by applying a DBLS method [3,5,7,8].
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 323–334, 2018.
https://doi.org/10.1007/978-3-319-99253-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_26&domain=pdf

324 A. Blot et al.

Various SBLS strategies have been proposed in the literature that mainly
differ in the sequence of weights explored during the search and the starting
solution for solving each scalarisation. The simplest method, henceforth called
Restart [10], uses a uniform set of weights and starts each scalarisation from a
randomly (or heuristically) generated solution. More advanced strategies, such as
AdaptiveAnytime [4], dynamically compute the next weight and choose a starting
solution among the best ones found so far with the goal of closing the largest
“gap” in the current Pareto front approximation.

We propose to augment the SO local search that solves the scalarisations with
an archive of nondominated solutions, such that they are able to return a set of
solutions that are available to the overall SBLS strategy and to the other local
search runs solving other scalarisations. We also propose two new SBLS strategies
able to generate high-quality solutions to initialize DBLS. With ChangeRestart,
we subdivide the time granted to solve each scalarisation in multiple steps, and
use intermediary solutions to restart each local search run when it falls behind.
With ChangeDirection, we further improve ChangeRestart by changing not only
the starting solution of a local search run, but also the weight that defines the
scalarisation being solved. As a case study, we focus on a bi-objective variant
of the permutation flowshop scheduling problem (PFSP), which has been used
previously as a benchmark for MO local search [3].

This paper is organised as follows. Section 2 describes classical SBLS strate-
gies and the bi-objective PFSP considered here. Section 3 proposes to augment
SO local search used within SBLS strategies with a nondominated archive, and
Sect. 4 proposes two new SBLS strategies. The experimental setup and results are
discussed in Sects. 5 and 6, respectively. Section 7 summarises the conclusions.

2 Background

2.1 Scalarisation-Based Local Search (SBLS)

In MO combinatorial optimisation problems, we have a set of feasible solutions S,
where each solution s ∈ S may be evaluated according to a vector of M objec-
tives f (s) = (f1(s), . . . , fM (s)). Without a priori information, candidate solu-
tions are usually compared in terms of Pareto dominance: s1 dominates s2 iff
∀i = 1, . . . ,M , fi(s1) ≤ fi(s2) and ∃j, fj(s1) < fj(s2) (assuming minimisation
without loss of generality). The goal becomes to find, or approximate as well as
possible, the Pareto-optimal set, i.e., the set of solutions S∗ ⊂ S that are not
dominated by any other solution in S. The image of the Pareto-optimal set in
the objective space is called the Pareto front.

An MO problem can be transformed into a SO one by scalarising it, for
example, by means of weighted sum. For simplicity, we will focus on the bi-
objective (M = 2) case in the following. Given a problem with two objectives
f (s) = (f1(s), f2(s)) and a normalised weight vector λ = (λ, 1 − λ), where
λ ∈ [0, 1] ⊂ R, the corresponding scalarised problem (scalarisation) is computed
as fλ(s) = λ · f1(s) + (1−λ) · f2(s). An optimal solution of this SO scalarisation
is a Pareto-optimal solution of the MO problem, thus multiple Pareto-optimal

New Initialisation Techniques for Multi-objective Local Search 325

solutions (although maybe not all) may be obtained by solving multiple scalarisa-
tions with different weights. The main advantage of solving scalarisations instead
of the original MO problem is that, very often, highly effective and efficient local
search algorithms exist for the single-objective case. SBLS approaches are con-
ceptually related to decomposition-based algorithms (e.g., MOEA/D [14]).

Classical SBLS strategies differ in how weights are generated and which solu-
tion is used as the starting point of each local search run LSλ solving fλ:

Restart. Perhaps the simplest strategy consists in generating a set of uniformly
distributed weights and start each LSλ run from a randomly or heuristically
generated solution [10].

TPLS. In its simplest version [10], one high-quality solution is generated by
optimising just the first objective. In a second phase, a sequence of scalarisations
of the problem, with weights that increasingly favours the second objective, are
tackled by running LSλ, thus generating solutions along the Pareto frontier from
the first to the second objective. Moreover, each run of LSλ starts from the
best solution found for the previous scalarisation. This strategy is called 1to2
or 2to1 depending on the objective optimised in the first phase, and produce
better solutions towards that objective. An alternative strategy (Double) avoids
this bias by using half of the weights for 1to2 and the other half for 2to1 [4,10].

AdaptiveAnytime. Unless the problem is fairly regular in terms of difficulty
and the Pareto front is roughly symmetric for all scalarising directions, the
above TPLS strategies can lead to uneven exploration of the objective space
and poorly distributed approximation of the Pareto front. Similar poor results
are also obtained when the algorithm is terminated before finishing the prede-
fined number of scalarisations. The AdaptiveAnytime strategy was proposed to
address these issues [4]. Similar to Double TPLS, a first phase generates one
high-quality solution for each individual objective and a second phase solves a
sequence of scalarisations. AdaptiveAnytime maintains a set G of “gaps” in the
current Pareto front approximation, where each gap is a pair of solutions that
are neighbours in the objective space, i.e., no other solution exists within the
hyper-cube defined by them, and the size of the gap is the volume of this hyper-
cube. The most successful variant of AdaptiveAnytime solves two scalarisations at
each step, by first finding the largest gap in G, e.g., (s1, s2) with f1(s1) < f1(s2),
then computing:

{
λ1 = λ − θ · λ
λ2 = λ + θ · (1 − λ) where λ =

f2(s1) − f2(s2)
f2(s1) − f2(s2) + f1(s2) − f1(s1)

(1)

and θ ∈ [0, 1] is a parameter that biases λ1 towards the first objective and λ2

towards the second objective; and solving fλ1 starting from s1 and fλ2 starting
from s2. The solution returned by solving each scalarisation is used to update
G, by removing any dominated solutions and updating the corresponding gaps.
Thus, each step of the AdaptiveAnytime strategy tries to reduce the size of the
largest gap and adapt the weights to the shape of the current front.

326 A. Blot et al.

2.2 Bi-objective Permutation Flowshop Scheduling

The above SBLS strategies have been tested on various bi-objective PFSPs [4]
and AdaptiveAnytime was later used as the initialisation phase of the state-of-
the-art MO local search [3]. The PFSP is among the best-known problems in the
scheduling literature, since it models several typical problems in manufacturing.
Given a set of n jobs to be processed sequentially on m machines, where each
job requires a different processing time on each machine, the goal is to find
a permutation of the jobs that optimises particular objectives, such that all
the jobs are processed in the same order on all machines, and the order of the
machines is the same for all jobs. In this paper, we focus on the bi-objective
variant (bPFSP) that minimises the completion time of the last job (makespan)
and the sum of completion times of all jobs (total flowtime).

3 Archive-Aware SBLS Strategies

Classical SBLS strategies (Restart, 1to2, 2to1, Double and AdaptiveAnytime) use
a SO local search to find a new solution optimised for a given scalarisation. Each
local search run (LSλ) starts from a given solution and returns the single best
solution found for that particular scalarisation. Any other solution found during
the run is discarded, even when not dominated by the solution returned.

We propose to augment the SO local search with an archive that keeps track
of nondominated solutions found while solving a scalarisation, in order to pre-
serve solutions that may be optimal for the MO problem, even if they are not for
the particular scalarisation. Since such intermediary solutions are fully evaluated
to compute their scalarised value, keeping an archive of these solutions only adds
the computational overhead of updating the archive. In practice, adding every
solution evaluated to the archive would require too much time. Instead, we only
update the archive when a new solution replaces the current one.

As an example of SO local search, let us consider iterated greedy (IG) [12]. At
each iteration of IG, the current solution π is randomly destructed (by removing
some jobs from it), heuristically reconstructed (by re-inserting the jobs in new
positions), and the resulting solution may be further improved by another local
search. An acceptance criterion replaces the current solution (π) with the new
one if the latter is better or some other condition is met. In any case, if the new
solution improves the best-so-far one (π�), the latter is replaced. The algorithm
returns π� once it terminates.

Our proposed archive-aware IG adds an archive of nondominated solutions
(A) that is updated every time a better current solution is found, and returns
the archive in addition to the best solution found. Any other SO local search
used within SBLS strategies can be made archive-aware in a similar manner.

We propose variants of the classical SBLS strategies that make use of such
archive-aware SO local search and we denote such variants with the suffix
“arch”. In Restartarch, 1to2arch, 2to1arch and Doublearch, each local search run pro-
duces an archive instead of a single solution. The resulting N scalar archives are
independent of each other until merged into a final archive. Thus, the search

New Initialisation Techniques for Multi-objective Local Search 327

trajectory of these archive-aware SBLS variants is the same as their original
counterparts, except for the overhead incurred by updating the archives. In the
case of AdaptiveAnytimearch, the archive returned by each local search run is
immediately merged with the overall archive so that all solutions returned by
the local search are used for computing the next largest gap.

4 New SBLS Strategies: ChangeRestart, ChangeDirection

4.1 ChangeRestart

We observed that the sub-spaces searched by running the SO local search for
different values of λ often overlap, thus the best-so-far solution found for one
scalarisation may be worse than the best-so-far solution found for another when
the latter solution is evaluated on the former scalarisation. Thus, the main idea
behind ChangeRestart is to divide each local search run (LSλ) into smaller steps
and, at each step, decide to either continue the run until the next step or restart
it from a new solution. In particular, the time limit assigned to each LSλ run is
divided by N steps (when N steps = 1, ChangeRestart is identical to Restart). When
interrupted, LSλ returns its best-so-far solution (π�

λ). Then, for all weights λ,
we calculate the scalarised value fλ of all solutions in the current nondominated
archive A, and we can limit the computational overhead of this recalculation
by reducing the number of steps (N steps). After interrupting LSλ′ and LSλ′′ , if
fλ′(π�

λ′′) < fλ′(π�
λ′), then LSλ′ restarts its search from π�

λ′′ . In the archive-aware
variant ChangeRestartarch, each run of LSλ returns a nondominated archive that
is merged with the overall archive A.

Figure 1 shows possible executions of ChangeRestart and ChangeRestartarch for
two scalarisations and three steps (N steps = 3). Blue points () and red triangles
() show the initial solutions and the best solutions found after each step. These
solutions are connected with arrows to show the trajectory followed by each
run of LSλ. Unfilled points () and triangles () show intermediary solutions in
the archive after each step. For ChangeRestart (left), after the second step, the
solution (a) found for λ = 1 has a worse value in the first objective than the
solution (b) found for λ = 0.5. Thus, the local search for λ = 1 re-starts from
solution b instead of a. For ChangeRestartarch (right), the local search re-starts
instead from solution (c), as it has an even better value regarding objective f1.

4.2 ChangeDirection

While ChangeRestart is an extension of Restart, the second SBLS strategy pro-
posed here, ChangeDirection, is inspired by the more advanced AdaptiveAnytime,
which dynamically adapts scalarisation weights according to the gaps in the cur-
rent overall archive (A), in order to focus the search in the direction that will
most improve the current approximation to the Pareto front. In ChangeDirection,
as in ChangeRestart, the runs of LSλ are also divided in a number of steps and,
after each step, solutions from different scalarisations are merged into A. How-
ever, instead of only updating the starting solution of each LSλ run, the weight

328 A. Blot et al.

a

b

f1

f2 λ = 1.0
λ = 0.5

a

b

c

f1

f2 λ = 1.0
λ = 0.5

Fig. 1. Example runs of ChangeRestart (left) and ChangeRestartarch (right) (N steps = 3).
(Color figure online)

λ is also updated. That is, in addition to speeding up an LSλ run by re-starting
from a better initial solution, the scalarisation direction of LSλ may be changed
to focus on the largest gap in the current approximation front. In particular, a
weight λ is replaced by another weight whenever the best-so-far solution of LSλ

is worse, according to fλ, than a solution returned by another local search run.
In that case, the computational resources allocated to searching in the direction
given by λ could be better used in searching on a different direction.

ChangeDirection only differs from ChangeRestart in the deletion and replace-
ment of scalarisation directions. Thus, we will only explain those novel parts.
First, we delete those scalarisation weights for which the best solution found
in the last run of LSλ is worse, according to the same scalarisation fλ, than a
solution in A. Then, following the strategy of AdaptiveAnytime explained ear-
lier, the gaps in the current approximation front are computed and new weights
are generated from the largest gap to replace the deleted ones. In particular,
two weights are generated from each gap (Eq. 1) until all deleted weights are
replaced. When only one additional weight is needed, it is chosen randomly
between the two weights produced by the gap. The new scalarisations then start
from the solutions constituting the sides of the gap. If all gaps are used and
additional weights are needed, they are drawn uniformly at random within [0, 1]
and initial solutions are taken uniformly at random from A. Finally, as in Chan-
geRestart, each LSλ either re-starts from a new initial solution if its scalarisation
was introduced in this step, or continues from its current solution, otherwise.
As previously, in the archive-aware variant ChangeDirectionarch, each run of LSλ

returns a nondominated archive that is merged with the overall archive A.

5 Experimental Setup

We wish to investigate not only whether the new proposed SBLS strategies work
well on their own, but also if they provide a good initial set for a dominance-
based local search (DBLS) algorithm. Thus, we use the various SBLS strategies
as the initialisation phase of a hybrid of SBLS + DBLS algorithm, where a SBLS
strategy generates an initial approximation front that is further improved by a
DBLS strategy, in our case, an iterated variant of Pareto local search (IPLS).

New Initialisation Techniques for Multi-objective Local Search 329

We use IG as the single-objective local search (LSλ) and the algorithms are
evaluated on the bi-objective PFSP (bPFSP). In this section, we explain the
details of the our experimental setup.

bPFSP Instances. As a benchmark, we consider the well-known Tail-
lard instances [13], in particular, 80 instances divided into 8 classes with
{20, 50, 100, 200} jobs and {10, 20} machines, i.e., 10 instances for each com-
bination jobs×machines.

Iterated Greedy (IG). The single-objective local search used by the SBLS
strategies is Iterative greedy (IG) [12], which is a state-of-the-art algorithm for
the single-objective PFSP. The particular IG variant and parameter settings
are directly taken from the bPFSP literature [3]. For the archive-aware SBLS
strategies, we augment this IG variant with an archive as explained in Sect. 3.

Iterated Pareto Local Search (IPLS). As the DBLS component of our hybrid
SBLS + DBLS algorithm, we consider an iterated variant of Pareto local search
(PLS) [9], as it was shown that even simple perturbations could benefit PLS
algorithms [2]. Our iterated PLS (IPLS) extends the PLS used in [3] by perturbing
the archive when the latter converges to a Pareto local optimal set, using the
generalised framework of [1]. The perturbation used creates a new archive by
taking every current solution and replacing it with one of its neighbours, taken
uniformly at random, three times in a row; dominated solutions from this new
set are then filtered. As the neighbourhood of PLS, we use the union of the
exchange and insertion neighbourhoods [6], in which two positions of two jobs
are swapped and one job is reinserted at another position, respectively.

Termination Criteria. The termination criterion of algorithms applied to the
bPFSP is usually set as maximum running time linearly proportional to both
the number of jobs n and machines m (e.g., 0.1 ·n ·m CPU seconds [3]). Instead,
we use a maximum running time for the hybrid SBLS + IPLS of 0.002 · n2 · m
CPU seconds. Indeed, the total number of solutions grows exponentially and the
typical size of permutation neighbourhoods grows quadratically, making a linear
running time less relevant. The coefficient 0.002 was chosen to match the linear
time for n = 50 and m = 20. The SBLS strategies are limited to 25% of this
maximum running time, and the remaining 75% is allocated to IPLS. In IPLS, a
perturbation occurs after n successive iterations without improvement.

The main parameter of the SBLS strategies is the number of scalarisations
(N scalar), that is, the number of runs of IG executed in addition to two individual
runs for each of the two single objectives. Following [3], we perform longer runs
of IG for the two single objectives (IG{1,2}) than for the other scalarisations
(IGλ), with the time assigned to IG{1,2} being 1.5 times the time assigned to
IGλ. As more time is allocated to IG{1,2} than to IGΛ, their respective running
time budgets are 1.5/(N scalar + 3) and 1/(N scalar + 3) of the total time assigned
to the SBLS strategy. In the case of ChangeRestart and ChangeDirection, the
maximum runtime of each IG is further divided by N steps.

The following experiments are separated in three successive phases. First,
we analyse the effect of using an archive-aware IG on the five SBLS strategies

330 A. Blot et al.

from the literature (Restart, 1to2, 2to1, Double, and AdaptiveAnytime). Second,
we compare all these SBLS variants with the new SBLS strategies proposed
here (ChangeRestart and ChangeDirection), including their archive-aware coun-
terparts. Finally, we analyse other possible setting for the parameters N scalar

and N steps. Unless stated otherwise, ChangeRestart and ChangeDirection use
N steps = 20; all SBLS strategies use a fixed value of N scalar = 12; and both
AdaptiveAnytime and ChangeDirection use θ = 0.25 for Eq. 1 [3].

In all cases, we run the hybrid SBLS+IPLS and we save the archive returned
by the SBLS strategies (before IPLS) and the final archive (after IPLS). Each
experiment is repeated 5 times, using independent random seeds, on each of the
80 Taillard instances, that is, we perform for each strategy 50 runs per instance
class and 400 runs in total. All replications use the same seeds on the same
instances. All the experiments have been conducted on Intel Xeon E5-2687W
V4 CPUs (3.0 GHz, 30 MB cache, 64 GB RAM).

Results are evaluated according to both the hypervolume and the additive-ε
indicators [15]. Indicator values have been computed independently on every run
by aggregating all results generated for an instance and scaling both objectives
to a 0–1 scale in which 0 (1) corresponds to the minimum (maximum) objective
value reached by any solution. The hypervolume variant 1 − HV is used, with 0
corresponding to the maximum hypervolume, so that both indicators are to be
minimised. The reference point used for computing the hypervolume indicator is
(1.0001, 1.0001). The reference set for computing the additive-ε indicator is the
set of nondominated solutions from all aggregated results for each instance.

6 Experimental Results

6.1 Known SBLS Strategies vs. Their Archive-Aware Variants

First, we compare the five classical SBLS strategies with their archive-aware
variants. Figure 2 shows the mean hypervolume and additive-ε values, over all
80 bPFSP instances, obtained by each strategy before and after running IPLS.
For both indicators, all the archive-aware variants (in red) lead to improved qual-
ity before IPLS. After results are improved by IPLS, all archive-aware variants
produce again better results than their original counter-parts, with the exception
of AdaptiveAnytime. This is somewhat surprising and further analysis is needed
to understand this behaviour. Interestingly, some of the archive-aware variants
are able to outperform AdaptiveAnytime when their original variants are not.

6.2 Performance of the Two New SBLS Strategies

We now compare the newly proposed SBLS strategies (ChangeRestart and
ChangeDirection) to the ones from the literature as well as their archive-aware
variants. In terms of hypervolume (Fig. 2, left), all four new strategies achieve
in average much better results than the strategies from the literature, with
ChangeRestartarch achieving the best results both on its own and when further

New Initialisation Techniques for Multi-objective Local Search 331

0.25 0.3

0.16

0.17

1− HV before IPLS

1
−

H
V

af
te
r
IP
L
S

0.16 0.18 0.2 0.22 0.24

0.095

0.1

0.105

ε before IPLS

ε
af
te
r
IP
L
S

Restart Restartarch 1to2 1to2arch
2to1 2to1arch Double Doublearch

AdaptiveAnytime AdaptiveAnytimearch ChangeRestart ChangeRestartarch
ChangeDirection ChangeDirectionarch

Fig. 2. Comparison of all SBLS strategies according to (left) mean hypervolume and
(right) mean additive-ε. (Color figure online)

improved by IPLS. However, in terms of additive-ε (Fig. 2, right), the non-
archive-aware ChangeRestart strategy performs much worse than the three other
new strategies, but still better than most strategies from the literature. Overall,
the best strategy according to both indicators appears to be the archive-aware
ChangeRestart strategy.

To validate these observations, Table 1 shows the results of a statistical anal-
ysis comparing all approaches, without averaging over instance classes, for both
hypervolume (top) and ε (bottom). For each instance class, and for all possible
pairs of strategies, we conducted a statistical Wilcoxon test comparing their final
quality (after IPLS) paired on the 50 values per class. The symbol “✓” in the table
indicates strategies for which there was no other strategy performing statistically
better (95% confidence). In other words, within each row, all strategies with “✓”
are not statistically better to each other, while for those strategies without “✓”,
there was at least one other strategy statistically better. As shown in Table 1,
the SBLS strategies from the literature are often outperformed by some other
strategy, whereas their archive-aware variants are less often so, in particular on
the smaller instances with 20 and 50 jobs. Finally, ChangeRestartarch and both
variants of ChangeDirection are almost never outperformed, even on the largest
instances, validating our previous observations.

6.3 Analysis of Parameters N scalar and N steps

SBLS strategies strongly depend on the number of scalarisations. Our choice of
N scalar = 12 was motivated by previous studies claiming that few scalarisations
should be preferred [3]. Figure 3 (left) shows for the 14 previous strategies the
final performance regarding both hypervolume and additive ε indicators, for both

332 A. Blot et al.

Table 1. SBLS strategies not statistically outperformed by another strategy after IPLS
step, using paired Wilcoxon tests (left: hypervolume; right: additive-ε)

parameter values of N scalar ∈ {6, 12} scalarisations, in order to see the impact
of archives-aware mechanisms when using very few scalarisations.

We can see that for all strategies, both with and without archiving, using
12 scalarisations improves significantly the mean performance regarding hyper-
volume and slightly the one regarding the ε indicator, hinting that even with
archiving a sufficient number of scalarisations are still required.

The number of steps, i.e., how many times we can restart the scalarisations,
is at the core of the two new SBLS strategies we propose. Figure 3 (right) shows

0.16 0.17 0.18

0.095

0.1

0.105

0.11

1− HV after IPLS

ε
af
te
r
IP
L
S

N scalar = 6 N scalar = 6 (arch)
N scalar = 12 N scalar = 12 (arch)

0.16 0.17
0.09

0.095

0.1

0.105

1− HV after IPLS

ε
af
te
r
IP
L
S

1 2
5 10
15 20
25

ChangeRestart ChangeRestartarch
ChangeDirection ChangeDirectionarch

Restart

Fig. 3. Impact of the number of scalarisations (left) and the number of steps (right)
(Color figure online)

New Initialisation Techniques for Multi-objective Local Search 333

for all variants of the ChangeRestart and ChangeDirection strategies the impact
of the parameter N steps, for values of N steps = 1 (equivalent to Restart) and
N steps ∈ {2, 5, 10, 15, 20, 25}, using the final performance regarding both the
hypervolume and ε indicators. Marks indicate the value of N steps, while colours
indicate the strategy.

As the figure shows, at first increasing the number of steps from one largely
improves the quality of the results. Increasing the number of steps further spe-
cially benefits the archive-aware variants and in particular, ChangeDirectionarch.
However, for large values of N steps, the quality improvements stop or, in several
cases, worsen. Thus, it appears that even larger values would not improve the
results reported here.

7 Conclusion

This paper proposes and evaluates two complementary ways of augmenting
scalarisation-based local search (SBLS) strategies by making the underlying
single-objective local search aware of the multi-objective nature of the prob-
lem. Our first proposal adds an archive of nondominated solutions to the single-
objective local search. Our results showed that these archive-aware SBLS vari-
ants always improve over their original counterparts when ran on their own.
Moreover, this improvement also shows for nearly all SBLS strategies when act-
ing as the initialisation phase of an iterated Pareto local search (IPLS).

Our second proposal was to divide each run of the single-objective local
search into a number of smaller steps and, at each step, restart scalarisations
that produce poor results. We proposed two SBLS strategies that differ on what
is changed by the restart. In ChangeRestart, the local search for solving a scalar-
isation is restarted from the best-known solution for that scalarisation problem.
This solution was possibly generated when solving a different scalarisation. In
ChangeDirection, not only the starting solution, but also the weight that defines
the scalarisation problem itself being solved are both updated in order to re-focus
this particular run on the largest gap of the current approximation front.

Our experimental results show that these two new SBLS strategies outper-
form five classical SBLS strategies from the literature, even when the latter
are using an archive-aware local search. In particular, ChangeDirection produces
consistently the best results, either on its own or when used as the initialisation
phase of a hybrid SBLS + IPLS algorithm, which suggests that the new strate-
gies may lead to new state-of-the-art results for the bi-objective permutation
flowshop [3], and other problems. An additional benefit of ChangeDirection is
that it maintains the adaptive behaviour of AdaptiveAnytime, while it also may
perform N scalar local search runs in parallel between steps.

Future work will analyse in more detail the interaction between the new
SBLS strategies and the archive-aware SO local search. A more comprehensive
analysis of the effect of the N scalar and N steps parameters would be needed
to understand their interactions with problem features. We would also hope
to evaluate the new proposals in terms of their anytime behaviour [4]. Finally,

334 A. Blot et al.

we focused here on archive-aware mechanisms and we did not consider various
common speedups that would be required for a fair comparison with other state-
of-the-art algorithms.

References

1. Blot, A., Jourdan, L., Kessaci-Marmion, M.E.: Automatic design of multi-objective
local search algorithms: case study on a bi-objective permutation flowshop schedul-
ing problem. In: GECCO 2017, pp. 227–234. ACM Press (2017)

2. Drugan, M.M., Thierens, D.: Path-guided mutation for stochastic Pareto local
search algorithms. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.)
PPSN 2010. LNCS, vol. 6238, pp. 485–495. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15844-5 49

3. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm
for bi-objective flow-shop scheduling problems. COR 38(8), 1219–1236 (2011)

4. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Improving the anytime behavior
of two-phase local search. AMAI 61(2), 125–154 (2011)

5. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Combining two search
paradigms for multi-objective optimization: two-phase and Pareto local search. In:
Talbi, E.G. (ed.) Hybrid Metaheuristics, vol. 434, pp. 97–117. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-30671-6 3

6. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Anytime Pareto local search.
EJOR 243(2), 369–385 (2015)

7. Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., Talbi, E.G.: On dominance-
based multiobjective local search: design, implementation and experimental anal-
ysis on scheduling and traveling salesman problems. JOH 18(2), 317–352 (2011)

8. Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a
survey and a new approach. ITOR 19(4), 495–520 (2012)

9. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biob-
jective traveling salesman problem: an experimental study. In: Gandibleux, X.,
Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective
Optimisation. LNMES, vol. 535, pp. 177–200. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-642-17144-4 7

10. Paquete, L., Stützle, T.: A two-phase local search for the biobjective traveling
salesman problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb,
K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 479–493. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36970-8 34

11. Paquete, L., Stützle, T.: Stochastic local search algorithms for multiobjective com-
binatorial optimization: a review. In: Handbook of Approximation Algorithms and
Metaheuristics, pp. 29-1–29-15. Chapman & Hall/CRC (2007)

12. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. EJOR 177(3), 2033–2049 (2007)

13. Taillard, É.D.: Benchmarks for basic scheduling problems. EJOR 64(2), 278–285
(1993)

14. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE TEC 11(6), 712–731 (2007)

15. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.:
Performance assessment of multiobjective optimizers: an analysis and review. IEEE
TEC 7(2), 117–132 (2003)

https://doi.org/10.1007/978-3-642-15844-5_49
https://doi.org/10.1007/978-3-642-15844-5_49
https://doi.org/10.1007/978-3-642-30671-6_3
https://doi.org/10.1007/978-3-642-17144-4_7
https://doi.org/10.1007/978-3-642-17144-4_7
https://doi.org/10.1007/3-540-36970-8_34

Towards a More General Many-objective
Evolutionary Optimizer

Jesús Guillermo Falcón-Cardona(B) and Carlos A. Coello Coello

Computer Science Department, CINVESTAV-IPN,
Av. IPN No. 2508, Col. San Pedro Zacatenco, 07300 México D.F., Mexico

jfalcon@computacion.cs.cinvestav.mx, ccoello@cs.cinvestav.mx

Abstract. Recently, it has been shown that the current Many-Objective
Evolutionary Algorithms (MaOEAs) are overspecialized in solving cer-
tain benchmark problems. This overspecialization is due to a high cor-
relation between the Pareto fronts of the test problems with the convex
weight vectors commonly used by MaOEAs. The main consequence of
such overspecialization is the inability of these MaOEAs to solve the
minus versions of well-known benchmarks (e.g., the DTLZ−1 test suite).
In furtherance of avoiding this issue, we propose a novel steady-state
MaOEA that does not require weight vectors and uses a density estimator
based on the IGD+ indicator. Moreover, a fast method to calculate the
IGD+ contributions is integrated in order to reduce the computational
cost of the proposed approach, which is called IGD+-MaOEA. Our pro-
posed approach is compared with NSGA-III, MOEA/D, IGD+-EMOA
(the previous ones employ convex weight vectors) and SMS-EMOA on
the test suites DTLZ and DTLZ−1, using the hypervolume indicator.
Our experimental results show that IGD+-MaOEA is a more general
optimizer than MaOEAs that need a set of convex weight vectors and it
is competitive and less computational expensive than SMS-EMOA.

Keywords: Multi-objective optimization · Quality indicators
Density estimation

1 Introduction

In the scientific and industrial fields, there is a wide variety of problems that
involve the simultaneous optimization of several, often conflicting, objective func-
tions. These are the so-called multi-objective optimization problems (MOPs)
which are mathematically defined as follows:

min
x∈Ω

F (x) = (f1(x), f2(x), . . . , fm(x))T (1)

The first author acknowledges support from CONACyT and CINVESTAV-IPN to
pursue graduate studies in Computer Science. The second author gratefully acknowl-
edges support from CONACyT project no. 221551.

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 335–346, 2018.
https://doi.org/10.1007/978-3-319-99253-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_27&domain=pdf

336 J. G. Falcón-Cardona and C. A. Coello Coello

where x is the vector of decision variables, Ω ⊆ R
n is the decision variable space

and F (x) is the vector of m(≥ 2) objective functions. The solution of an MOP is
a set of solutions that represent the best possible trade-offs among the objectives,
i.e., finding solutions in which an objective function cannot be improved without
worsening another. The particular set that yields the optimal values is known as
the Pareto Optimal Set (P∗) and its image in the objective space is known as
the Pareto Optimal Front (PF∗).

Multi-Objective Evolutionary Algorithms (MOEAs) are population-based
and gradient-free methods that have been successfully applied to solve MOPs
[1]. For several years, MOEAs have adopted the Pareto dominance relation.1

However, Pareto-based MOEAs does not perform properly when tackling MOPs
having four or more objective functions, i.e., the so-called many-objective opti-
mization problems (MaOPs) [2]. This behavior is due to the rapid increase of
solutions preferred by the use of Pareto dominance which directly produces
a dilution of the selection pressure. With the aim of properly regulating the
selection pressure of a MOEA three main approaches have been considered for
MaOPs: (1) to define new dominance relations (mainly based on relaxed forms
of Pareto dominance), (2) decomposition of the MOP, and (3) indicator-based
selection.

Many-Objective Evolutionary Algorithms (MaOEAs) based on decomposi-
tion and performance indicators2 are the most popular alternatives in the cur-
rent literature [2]. Most of the state-of-the-art MaOEAs employ a set of convex
weight vectors. A vector w ∈ R

m is a convex weight vector if
∑m

i=1 wi = 1 and
wi ≥ 0 for all i = 1, . . . ,m. These weight vectors lie on an (m − 1)-simplex and
are used by MaOEAs as search directions [3], reference points [4,5] or as part
of an indicator’s definition [6]. However, in 2017, Ishibuchi et al. [7] empirically
showed that the use of convex weight vectors overspecializes MaOEAs on MOPs
whose Pareto fronts are strongly correlated to the simplex formed by the weight
vectors.

In this paper, we propose a steady-state MaOEA that uses Pareto dominance
as its main selection criterion and a density estimator based on the Inverted
Generational Distance plus (IGD+) indicator. The proposed approach, called
IGD+-MaOEA, does not require a set of convex weight vectors in any of its
mechanisms in furtherance of avoiding the previously indicated overspecializa-
tion. Furthermore, a fast IGD+ contribution computation method is integrated
into the proposed approach to reduce its computational cost.

The remainder of this paper is organized as follows. Section 2 presents an
overview of some state-of-the-art MaOEAs. The detailed description of our pro-
posal is outlined in Sect. 3. Our experimental results are provided in Sect. 4.
Finally, Sect. 5 presents our conclusions and some possible paths for future work.

1 Given two solutions u , v ∈ R
m, u dominates v (denoted as u ≺ v), if and only if

ui ≤ vi for all i = 1, . . . ,m and there exists at least an index j ∈ {1, . . . ,m} such
that ui < vi. In case ui ≤ vi for all i = 1, . . . ,m, u is said to weakly dominate v
(denoted as u � v).

2 A unary performance indicator I is a function that assigns a real value to a set of
m-dimensional vectors.

Towards a More General Many-objective Evolutionary Optimizer 337

2 Previous Related Work

The MOEA based on Decomposition (MOEA/D) [3] transforms an MOP into as
many single-objective optimization problems as weight vectors there are, through
a scalarizing function. For each weight vector w i, MOEA/D defines a neighbor-
hood of size T , i.e., it finds the T nearest solutions to w i, using Euclidean
distances. Using this neighborhood structure, MOEA/D tries to optimize the
scalarizing functions at each generation simultaneously. Hence, the aim is to
find the intersections between the Pareto front and the weight vectors according
to the value of the scalarizing function.

Deb et al. [4] proposed the Nondominated Sorting Genetic Algorithm III
(NSGA-III). NSGA-III uses a (μ + λ) selection scheme, i.e., using a population
of μ potential parents produces, at each generation, λ offspring. Then, the union
set of parents and offspring is classified using the nondominated sorting method
[8] that creates a set of disjoint ranks R1, R2, . . . , Rk, using Pareto dominance.
Ranks are added into the next population until one of them (e.g., Rj) makes the
population size to be larger than μ. Hence, some solutions have to be deleted
from Rj using a density estimator that employs a set of convex weight vectors to
define a niche count per weight vector. Solutions from the most crowded regions
are deleted until the desired population size is achieved.

In 2016, Manoatl and Coello [5] introduced the IGD+-Evolutionary Multi-
Objective Algorithm (IGD+-EMOA) that is an indicator-based MaOEA. They
defined an environmental selection mechanism on the transformation of an MOP
into a Linear Assignment Problem, using the IGD+ indicator. As IGD+ needs
a reference set, the authors proposed to use a set of weight vectors that try to
approximate the Pareto front geometry employing Lamé Superspheres. However,
by doing this, only smooth concave or convex geometries can be appropriately
approximated. Consequently, IGD+-EMOA has difficulties to solve MOPs having
highly irregular Pareto fronts, namely disconnected and degenerated.

The S-Metric Selection Evolutionary Multi-Objective Algorithm (SMS-
EMOA) [9] is a steady-state version of the NSGA-II [8] but it implements a
density estimator based on the hypervolume (HV) indicator. Due to this HV-
based density estimator, SMS-EMOA increases selection pressure and drives the
population to the maximization of the HV, which is directly related to finding
Pareto optimal solutions [10]. Moreover, SMS-EMOA does not rely on convex
weight vectors. However, its main drawback is the high computational cost asso-
ciated to the computation of the individual HV contributions when the number
of objective functions is greater than three, which makes its use prohibitive in
MaOPs.

3 Our Proposed Approach

Ishibuchi et al. [11] proposed the IGD+ indicator as an improved version of the
Inverted Generational Distance (IGD) indicator [1]. The main difference between

338 J. G. Falcón-Cardona and C. A. Coello Coello

IGD+ and IGD is that the former is weakly Pareto-compliant3 while the latter
is Pareto non-compliant. Mathematically, given an approximation to the Pareto
front A and a reference set denoted as Z, IGD+ is defined as follows (we assume
minimization):

IGD+(A,Z) =
1

|Z|
∑

z∈Z
min
a∈A

d+(a , z), (2)

where d+(a , z) =
√∑m

k=1[max(ak − zk, 0)]2. IGD+ measures the average dis-
tance from each reference vector to the nearest dominated region related to an
element in A. The aim is to minimize the value of IGD+. If IGD+(A,Z) = 0,
it implies that A = Z; else if the value is greater than zero, IGD+ intends to
determine how different are both sets.

The contribution C of a solution a ∈ A to IGD+, is defined as follows:

C(a ,A,Z) = |IGD+(A,Z) − IGD+(A \ {a},Z)|. (3)

Clearly, the computational cost of calculating the contribution of a single solution
is Θ(mNM), where |A| = N and |Z| = M . Based on Eq. (3), our proposed
IGD+-based density estimator (IGD+-DE) aims to delete from A the solution
having the minimum contribution. The total runtime of IGD+-DE is Θ(mN2M)
which is too expensive. In furtherance of reducing this computational cost, in the
next section we propose a method based on memoization to achieve Θ(mNM)
time for the full IGD+-DE procedure.

3.1 Fast IGD+ Contribution

IGD+ in Eq. (2) is basically composed by |Z| minimum d+ values, where each
one is related to a solution, not necessarily different, in A. If a ∈ A is related
to one or more elements in Z, it is called contributing solution; otherwise, it is
called noncontributing solution. It is worth noting that the IGD+ contribution
of the latter is zero, and, thus, IGD+-DE deletes it first. Algorithm 1, proposed
by Falcón-Cardona and Coello [12], stores in a memoization structure, for each
z ∈ Z, the two smallest d+ values and the corresponding pointers to the solutions
in A (see Fig. 1) when IGD+(A,Z) is computed in line 2. For each a ∈ A, the
nested for-loops of lines 4–15 compute ψ = IGD+(A\{a},Z). For this purpose,
the algorithm takes advantage of the memoization structure. If a is related to one
or more minimum d+ values, then the second best value is added to ψ; otherwise,
the minimum d+ is added. At the end, C(a ,A,Z) = |IGD+(A,Z)−ψ| is assigned
to Ci. Consequently, the total runtime of Algorithm1 is Θ(mNM)+Θ(mNM) =
Θ(mNM).

When this method is integrated into IGD+-DE, its overall cost goes from
Θ(mN2M) to Θ(mNM). The cost of calculating all the IGD+ contributions
is Θ(mNM) and it takes Θ(M) finding the minimum contribution, thus,
Θ(mNM) + Θ(M) = Θ(mNM) is the runtime of IGD+-DE.
3 Let A and B be two non-empty sets of m-dimensional vectors and let I be a unary

indicator. I is weakly Pareto-compliant if and only if A weakly dominates B implies
I(A) ≤ I(B) (assuming minimization of I).

Towards a More General Many-objective Evolutionary Optimizer 339

Fig. 1. IGD+ cost matrix and the memoization structure. Each row of the memoization
structure stores the two smalles d+ values and the corresponding pointers to the related
solutions.

Algorithm 1. Fast IGD+ Contribution
Require: Approximation set A of size N ; Reference set Z of size M
Ensure: Vector C = (Ci)i=1,...,N of IGD+ contributions
1: Memoization ← ∅
2: total ← IGD+(A, Z, Memoization)
3: ∀i ∈ {1, . . . , |A|}, Ci ← 0
4: for i = 1 to N do
5: ψ ← 0
6: for j = 1 to M do

7: if Memoization[j].af
j = ai then

8: ψ ← ψ + Memoization[j].d+
js

9: else
10: ψ ← ψ + Memoization[j].d+

jf

11: end if
12: end for
13: ψ ← ψ/N
14: Ci ← |total − ψ|
15: end for
16: return C

3.2 IGD+-MaOEA

IGD+-MaOEA is a steady-state MOEA similar to SMS-EMOA [9]. However,
instead of using HV contributions, this approach uses IGD+-DE. Algorithm 2
describes the general framework of IGD+-MaOEA, where the main loop is pre-
sented in lines 2 to 13. First, a new solution q is generated by variation opera-
tors.4 q is added to P to create the temporary population Q which is ranked by
the nondominated sorting method in line 5. If the layer Rk has more than one
solution, then IGD+-DE is executed in line 7, using Algorithm1 where the set
of nondominated solutions R1 performs as the reference set Z. In case |Rk| = 1,
the sole solution of Rk is deleted. For both cases, uworst denotes the solution to
be deleted. In line 12, the population for the next generation is set. At the end
of the evolutionary process, the current population P is returned.

4 Simulated binary crossover (SBX) and polynomial-based mutation operators are
employed [8].

340 J. G. Falcón-Cardona and C. A. Coello Coello

Algorithm 2. IGD+-MaOEA general framework
Require: No special parameters needed
Ensure: Approximation to the Pareto front
1: Randomly initialize population P
2: while stopping criterion is not fulfilled do
3: q ← V ariation(P)
4: Q ← P ∪ {q}
5: {R1, . . . , Rk} ← NondominatedSorting(Q)
6: if |Rk| > 1 then

7: C ← IGD+DE(A = Rk, Z = R1)

8: Let uworst be the solution with the minimum IGD+ contribution in C
9: else
10: Let uworst be the sole solution in Rk

11: end if
12: P ← Q \ {uworst}
13: end while
14: return P

4 Experimental Results

In order to assess the performance of IGD+-MaOEA5, we used the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite and its minus version, DTLZ−1 proposed by
Ishibuchi et al. [7] adopting m = 3, 4, 5, 6, 7 objective functions. For all DTLZ and
DTLZ−1 instances, n = m+K−1, where K is set to 5 for DTLZ1, 10 for DTLZ2-
6 and 20 for DTLZ7 [1]. The values of K apply to the corresponding minus
problems. The purpose of using DTLZ−1 is to show that IGD+-MaOEA is more
general than traditional MaOEAs based on the use of convex weight vectors.
We compared IGD+-MaOEA with respect to NSGA-III6, MOEA/D7, IGD+-
EMOA8 and SMS-EMOA9 (the latter for only MOPs having 3 and 4 objective
functions due to its high computational cost). Results were compared using
the hypervolume indicator, using the following reference points: (1, 1, . . . , 1) for
DTLZ1/DTLZ1−1, (1, 1, . . . , 1, 21) for DTLZ7/DTLZ7−1 and (2, 2, . . . , 2) for the
remaining MOPs.

4.1 Parameters Settings

Since our approach and all the considered MaOEAs are genetic algorithms that
use SBX and PBX, we set the crossover probability (Pc), crossover distribution
index (Nc), mutation probability (Pm) and the mutation distribution index (Nm)
as follows. For MOPs having 3 objective functions Pc = 0.9 and Nc = 20, while
for MaOPs, Pc = 1.0 and Nc = 30. In all cases, Pm = 1/n, where n is the number

5 The source code of IGD+-MaOEA is available at http://computacion.cs.cinvestav.
mx/∼jfalcon/IGD+-MOEA.html.

6 We used the implementation available at: http://web.ntnu.edu.tw/∼tcchiang/
publications/nsga3cpp/nsga3cpp.htm.

7 We used the implementation available at: http://dces.essex.ac.uk/staff/zhang/
webofmoead.htm.

8 The source code was provided by its author, Edgar Manoatl Lopez.
9 We employed the implementation available at jMetal 4.5.

http://computacion.cs.cinvestav.mx/~jfalcon/IGD+-MOEA.html
http://computacion.cs.cinvestav.mx/~jfalcon/IGD+-MOEA.html
http://web.ntnu.edu.tw/~tcchiang/publications/nsga3cpp/nsga3cpp.htm
http://web.ntnu.edu.tw/~tcchiang/publications/nsga3cpp/nsga3cpp.htm
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm

Towards a More General Many-objective Evolutionary Optimizer 341

of decision variables and Nm = 20. Table 1 shows the population size, objective
function evaluations (employed as our stopping criterion) and the parameter
H for the generation of the set of convex weight vectors described in [3]. The
population size N is equal to the number of weight vectors, i.e., N = CH+m−1

m−1 .
In all cases, the neighborhood size T of MOEA/D is set to 20.

Table 1. Common parameters settings

Objectives 3 4 5 6 7

Population size (N) 120 120 126 126 210

Objective function evaluations (×103) 50 60 70 80 90

Weight-vector partitions (H) 14 7 5 4 4

4.2 Comparison with MaOEAs Based on Convex Weight Vectors

Tables 3 and 4 show the average HV and the standard deviation (in parenthe-
ses) obtained by all the algorithms compared. The two best values among the
MaOEAs are emphasized in grayscale, where the darker tone corresponds to the
best value. Aiming to have statistical confidence of the results, we performed a
one-tailed Wilcoxon test using a significance level of 0.05. Based on the Wilcoxon
test, the symbol # is placed when IGD+-MaOEA performs better than other
MaOEA in a statistically significant way.

Regarding the original DTLZ problems, in Table 3 it is shown that IGD+-
MaOEA achieves the best performance in 9 out of 35 problems. Our proposed
approach obtained the best HV values in DTLZ3, DTLZ5 and DTLZ6. For
DTLZ7, IGD+-MaOEA obtained the second best value when using from 5 to
7 objective functions. Regarding DTLZ1, DTLZ2 and DTLZ4, our proposed
approach never obtained the first or the second best HV values among the com-
pared MaOEAs in a statistically significant manner. Nevertheless, it is worth
noting that numerically, the differences in all cases are minimal. On the other
hand, NSGA-III obtained the best HV values in 7 of the 35 instances, being the
best in DTLZ1 and DTLZ7. Overall, IGD+-EMOA obtained the worst place in
the performance rank because it only produced the best HV values only in 2
instances. Hence, we conclude that IGD+-MaOEA outperforms MOEA/D and
IGD+-EMOA and is competitive with respect to NSGA-III.

Table 2. Average runtimes (in seconds) of IGD+-MaOEA and SMS-EMOA on the
DTLZ and DTLZ−1 test suites using 3 objective functions.

MaOEa Type DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

IGD+-MaOEA Original 55.87 s 81.66 s 42.44 s 72.80 s 54.92 s 65.31 s 76.26 s

Minus 78.45 s 91.74 s 68.86 s 92.13 s 93.18 s 102.94 s 81.92 s

SMS-EMOA Original 963.43 s 2144.43 s 359.28 s 1648.35 s 995.15 s 1944.93 s 1785.38 s

Minus 1453.27 s 1868.63 s 1125.25 s 1906.52 s 1947.56 s 1950.85 s 1364.88 s

342 J. G. Falcón-Cardona and C. A. Coello Coello

Table 3. Hypervolume results for the compared MOEAs on the DTLZ problems. We
show the mean and standard deviations (in paretheses). The two best values are shown
in gray scale, where the darker tone corresponds to the best value. The symbol # is
placed when IGD+-MaOEA performs better in a statistically significant way.

MOP Dim. IGD+-MaOEA IGD+-EMOA NSGA-III MOEA/D SMS-EMOA

DTLZ1

3
9.664790e-01

(2.049666e-03)
9.740508e-01

(4.467021e-04)
9.741141e-01

(3.120293e-04)
9.740945e-01

(2.619649e-04)
9.745172e-01

(5.241259e-05)

4
9.846496e-01

(2.656403e-03)
9.943998e-01

(9.261547e-05)
9.942231e-01

(8.570576e-04)
9.944018e-01

(6.220464e-05)
9.946409e-01

(2.134463e-05)

5
9.881899e-01

(3.232379e-03)
9.943585e-01

(2.338311e-02)
9.986867e-01

(3.379577e-05)
9.986355e-01

(3.735697e-05)

6
9.906617e-01

(2.651917e-03)
9.035094e-01#
(7.491169e-02)

9.996492e-01
(2.587221e-05)

9.996231e-01
(1.535746e-05)

7
9.948828e-01

(1.318848e-03)
9.264419e-01#
(6.287378e-02)

9.999224e-01
(7.339504e-06)

9.998569e-01
(2.567104e-05)

DTLZ2

3
7.420261e+00
(1.353052e-03)

7.421843e+00
(1.327349e-04)

7.421572e+00
(6.064709e-04)

7.421715e+00
(1.372809e-04)

7.431551e+00
(5.463841e-05)

4
1.556161e+01
(2.748489e-03)

1.556734e+01
(4.007277e-04)

1.556646e+01
(6.681701e-04)

1.556718e+01
(2.213968e-04)

1.558874e+01
(6.349012e-05)

5
3.166574e+01
(5.201361e-03)

3.166818e+01
(3.831826e-04)

3.166721e+01
(6.548007e-04)

3.166781e+01
(5.129480e-04)

6
6.373545e+01
(5.321646e-03)

6.182623e+01
(4.486397e+00)

6.373806e+01
(1.136133e-03)

6.373808e+01
(6.532194e-04)

7
1.278044e+02
(5.835291e-03)

1.117158e+02+
(1.213189e+01)

1.278161e+02
(1.524540e-03)

1.278230e+02
(4.937498e-04)

DTLZ3

3
7.304310e+00
(5.416726e-01)

5.978405e+00#
(2.296587e+00)

6.762070e+00#
(1.512456e+00)

7.191410e+00#
(9.234976e-01)

7.116381e+00#
(1.038033e+00)

4
1.554332e+01
(1.357241e-02)

1.553667e+01
(2.805291e-02)

1.426614e+01#
(3.337968e+00)

1.525936e+01#
(9.041126e-01)

1.557833e+01
(4.705930e-03)

5
3.165020e+01
(9.384670e-03)

3.165404e+01
(6.820552e-03)

2.926244e+01#
(5.291705e+00)

2.921654e+01#
(6.617692e+00)

6
6.371498e+01
(1.113938e-02)

5.883028e+01#
(5.646345e+00)

5.837271e+01#
(1.552667e+01)

5.395689e+01#
(1.319237e+01)

7
1.277759e+02
(1.177247e-02)

1.178341e+02#
(3.658990e+00)

1.164877e+02#
(2.147719e+01)

1.086977e+02#
(2.778728e+01)

DTLZ4

3
6.874113e+00
(7.238869e-01)

7.037545e+00
(7.189670e-01)

7.218780e+00
(4.062937e-01)

7.421636e+00
(1.147608e-04)

6.960992e+00
(5.030399e-01)

4
1.495718e+01

(1.406114e+00)
1.491851e+01

(1.029726e+00)
1.540943e+01
(3.164949e-01)

1.556707e+01
(2.297960e-04)

1.506728e+01
(6.892799e-01)

5
3.141161e+01
(5.091958e-01)

3.011363e+01#
(1.320577e+00)

3.163040e+01
(1.455720e-01)

3.166733e+01
(4.792449e-04)

6
6.342094e+01
(8.053848e-01)

6.220439e+01#
(4.109418e-01)

6.374155e+01
(5.870500e-04)

6.373585e+01
(1.078543e-03)

7
1.276686e+02
(5.342428e-01)

1.268979e+02#
(4.641205e-01)

1.278235e+02
(5.765414e-04)

1.278246e+02
(3.325992e-04)

DTLZ5

3
6.103250e+00
(3.206747e-04)

4.126358e+00#
(1.356638e-01)

6.086240e+00#
(3.462620e-03)

6.046024e+00#
(2.227008e-04)

6.105419e+00
(1.265596e-05)

4
1.195066e+01
(1.060364e-02)

8.053758e+00#
(6.181680e-02)

1.176583e+01#
(3.990838e-02)

1.187250e+01#
(4.856384e-03)

1.200938e+01
(7.506854e-04)

5
2.352758e+01
(5.631168e-02)

1.617222e+01#
(1.916164e-01)

2.162912e+01#
(9.476133e-01)

2.328373e+01#
(1.640165e-02)

6
4.655654e+01
(1.477530e-01)

3.216498e+01#
(2.350120e-01)

4.222308e+01#
(1.270959e+00)

4.584961e+01#
(4.179642e-02)

7
9.259723e+01
(2.885851e-01)

6.433872e+01#
(6.900391e-01)

8.421920e+01#
(2.089834e+00)

9.094108e+01#
(1.339743e-01)

DTLZ6

3
5.822452e+00
(9.468474e-02)

5.524093e+00#
(8.062048e-01)

5.755154e+00#
(7.832234e-02)

5.774939e+00#
(8.361881e-02)

5.838678e+00
(7.196085e-02)

4
1.141949e+01
(1.435037e-01)

9.520791e+00#
(5.465663e-01)

5.969793e+00#
(6.529944e-01)

1.136532e+01
(1.519071e-01)

1.112687e+01#
(1.725538e-01)

5
2.243194e+01
(2.205059e-01)

1.230783e-02#
(1.960431e-02)

6.433325e-02#
(1.002102e-01)

2.217372e+01#
(3.778954e-01)

6
4.395244e+01
(4.872918e-01)

6.039732e+00#
(1.208422e+01)

3.872393e+00#
(7.548978e-01)

4.349163e+01#
(5.731473e-01)

7
8.562322e+01
(8.346399e-01)

3.737526e+01#
(3.051737e+01)

7.781012e+01#
(2.442098e-00)

8.668146e+01
(1.610733e+00)

DTLZ7

3
1.613138e+01
(1.102308e-01)

1.571995e+01#
(7.026627e-02)

1.631926e+01
(1.253568e-02)

1.620770e+01
(1.240925e-01)

1.637100e+01
(7.629934e-02)

4
1.435812e+01
(1.541455e-01)

1.364183e+01#
(1.305431e-01)

1.462787e+01
(3.713300e-02)

1.406944e+01#
(5.544544e-02)

1.483349e+01
(1.533320e-01)

5
1.221977e+01
(5.193563e-01)

1.133320e+01#
(1.223979e-01)

1.284401e+01
(3.182259e-02)

6.515913e+00#
(1.170945e+00)

6
1.035596e+01
(4.758743e-01)

9.287520e+00#
(9.704494e-02)

1.082465e+01
(7.434508e-02)

1.366732e+00#
(1.894512e+00)

7
8.804845e+00
(3.468746e-01)

7.339032e+00#
(9.787487e-02)

8.942419e+00
(5.155349e-02)

1.089167e-01#
(1.867035e-01)

Towards a More General Many-objective Evolutionary Optimizer 343

Table 4. Hypervolume results for the compared MOEAs on the DTLZ−1 problems.
We show the mean and standard deviations (in paretheses). The two best values are
shown in gray scale, where the darker tone corresponds to the best value. The symbol
is placed when IGD+-MaOEA performs better in a statistically significant way.

MOP Dim. IGD+-MaOEA IGD+-EMOA NSGA-III MOEA/D SMS-EMOA

DTLZ1−1

3
2.264909e+07

(8.207717e+04)
1.140466e+07#
(1.217933e+06)

2.044422e+07#
(2.230718e+05)

1.708422e+07#
(2.776295e+05)

1.640482e+07#
(1.253694e+06)

4
1.663320e+09

(4.001511e+07)
3.783933e+07#
(1.747066e+07)

6.137596e+08#
(8.114743e+07)

3.671230e+08#
(8.437648e+07)

1.176107e+09#
(1.162071e+08)

5
6.119188e+10

(4.760735e+09)
3.145584e+06#
(6.453973e+06)

1.653440e+10#
(7.395153e+09)

1.275157e+10#
(5.929635e+09)

6
1.040799e+12

(2.723386e+11)
5.143618e+05#
(1.818714e+06)

3.525438e+11#
(1.554685e+11)

6.835890e+10#
(4.577981e+10)

7
1.879388e+13

(7.487935e+12)
3.352615e+05#
(1.083160e+06)

5.717044e+12#
(2.906156e+12)

5.582247e+11#
(9.246709e+11)

DTLZ2−1

3
1.210884e+02
(9.009171e-01)

9.369690e+01#
(5.010715e+00)

1.226427e+02
(4.332124e-01)

1.241646e+02
(1.767939e-01)

1.261046e+02
(1.456397e-02)

4
4.674859e+02

(6.158074e+00)
6.908303e+01#
(2.593222e-01)

4.670265e+02#
(5.036135e+00)

4.782322e+02
(3.762262e-01)

5.109249e+02
(4.731194e-01)

5
1.655899e+03

(3.942682e+01)
1.817170e+02#
(2.352582e+00)

1.529187e+03#
(3.829295e+01)

1.570781e+03#
(5.466206e+00)

6
5.470358e+03

(1.134490e+02)
4.572952e+02#
(8.088396e+00)

4.188435e+03#
(3.496415e+02)

3.701069e+03#
(1.866271e+01)

7
1.926684e+04

(4.521928e+02)
1.187017e+03#
(1.260695e+01)

1.321225e+04#
(1.030901e+03)

1.320162e+04#
(6.203137e+01)

DTLZ3−1

3
5.017451e+09

(1.676399e+07)
3.163373e+09#
(3.448716e+08)

4.769399e+09#
(4.395958e+07)

4.788299e+09#
(5.251105e+07)

3.617983e+09#
(1.229064e+08)

4
5.016984e+12

(2.782494e+10)
1.858417e+11#
(1.368270e+11)

3.421113e+12#
(1.621812e+11)

3.382020e+12#
(8.277136e+10)

2.942443e+12#
(1.497601e+11)

5
4.010397e+15

(5.491013e+13)
2.308672e+10#
(5.932196e+10)

1.418461e+15#
(2.265638e+14)

2.169617e+15#
(3.559794e+13)

6
2.671524e+18

(7.441405e+16)
6.882907e+09#
(2.710629e+10)

4.952138e+17#
(1.783349e+17)

7.151722e+17#
(2.068326e+16)

7
1.792722e+21

(4.730737e+19)
3.686677e+10#
(1.841504e+11)

1.374261e+20#
(6.319205e+19)

8.941855e+20#
(5.275602e+19)

DTLZ4−1

3
1.232680e+02
(5.341538e-01)

8.745995e+01#
(7.308267e+00)

1.231716e+02#
(3.158586e-01)

1.241412e+02
(2.261829e-01)

1.261219e+02
(1.400665e-02)

4
4.872739e+02

(2.714648e+00)
6.889884e+01#
(2.509073e-01)

4.703987e+02#
(3.758543e+00)

4.774396e+02#
(2.932713e-01)

5.114649e+02
(3.829142e-01)

5
1.751991e+03

(1.604473e+01)
1.667599e+02#
(4.139344e+01)

1.532427e+03#
(3.367009e+01)

1.577174e+03#
(3.235047e+00)

6
5.844499e+03

(5.546305e+01)
4.266016e+02#
(3.968221e+02)

4.188345e+03#
(2.845836e+02)

3.654612e+03#
(4.982487e+00)

7
2.024392e+04

(1.637229e+02)
2.470440e+02#
(8.390175e+01)

1.311381e+04#
(6.546800e+02)

1.295551e+04#
(5.175739e+01)

DTLZ5−1

3
1.189566e+02

(1.131492e+00)
1.045511e+02#
(2.925727e+00)

1.212729e+02
(4.506920e-01)

1.230132e+02
(1.173182e-01)

1.248782e+02
(1.400672e-02)

4
4.524837e+02

(6.184888e+00)
1.458893e+02#
(1.837707e+01)

4.617533e+02
(3.033948e+00)

4.737665e+02
(5.201724e-01)

5.067611e+02
(3.943537e-01)

5
1.590424e+03

(3.260130e+01)
1.247849e+03#
(7.727654e+01)

1.526551e+03#
(4.186892e+01)

1.532378e+03#
(6.612506e+00)

6
5.201281e+03

(1.024733e+02)
4.775094e+03#
(8.471898e+02)

3.648377e+03#
(3.589604e+02)

3.670455e+03#
(1.117756e+01)

7
1.798605e+04

(3.438881e+02)
3.663675e+03#
(2.075826e+03)

1.169538e+04#
(9.150133e+02)

1.287945e+04#
(5.086978e+01)

DTLZ6−1

3
1.277596e+03

(8.980299e+00)
5.926270e+02#
(4.387564e+01)

1.281204e+03
(4.388455e+00)

1.290813e+03
(6.053013e-01)

1.307600e+03
(1.645502e+00)

4
9.344785e+03

(1.172155e+02)
7.139870e+02#
(1.364398e+02)

8.894185e+03#
(9.665925e+01)

8.908490e+03#
(7.411574e+00)

9.489564e+03
(6.321189e+01)

5
5.967159e+04

(9.243485e+02)
4.054599e+03#
(5.178149e+02)

4.774990e+04#
(2.111510e+03)

5.337501e+04#
(1.101944e+02)

6
3.401029e+05

(5.077651e+03)
2.826444e+04#
(4.152159e+03)

1.871320e+05#
(4.124992e+04)

1.611984e+05#
(2.134698e+02)

7
2.037163e+06

(1.966308e+04)
6.996351e+04#
(2.447352e+02)

6.943417e+05#
(1.558202e+05)

1.227654e+06#
(7.772613e+03)

DTLZ7−1

3
2.145249e+02
(5.714409e-01)

2.121154e+02#
(5.197201e+00)

2.144482e+02
(1.844494e-02)

2.144785e+02
(3.401603e-03)

2.143458e+02#
(2.207311e-04)

4
5.142917e+02

(2.116147e+00)
4.945863e+02#
(1.805875e+01)

5.130456e+02#
(1.613943e+00)

5.083181e+02#
(1.486713e+01)

5.142100e+02#
(1.152841e+00)

5
1.199552e+03

(5.112678e+00)
4.348046e+02#
(6.886537e+01)

1.190442e+03#
(4.159670e+00)

6.388549e+02#
(5.254422e+01)

6
2.741875e+03

(1.509787e+01)
7.362027e+02#
(1.136842e+02)

2.691994e+03#
(7.841504e+00)

9.262902e+02#
(3.468054e+00)

7
6.176946e+03

(1.308306e+01)
1.355104e+03#
(3.306126e+02)

6.016129e+03#
(2.260447e+01)

1.621765e+03#
(1.220737e+02)

344 J. G. Falcón-Cardona and C. A. Coello Coello

Table 4 shows the statistical results for the DTLZ−1 test suite. IGD+-MaOEA
is the best MaOEA in these problems because it presented the best HV val-
ues in 27 out of 35 instances. Its performance is more evident when tackling
the instances having many objectives. In case of three-dimensional problems, it
obtained the second best overall HV values, being SMS-EMOA the best opti-
mizer. It is worth noticing that none of the MaOEAs that use convex weight
vectors obtained the best HV value in any of the problems. This strongly evi-
dences their overspecialization in MOPs whose Pareto fronts are closely related
to the shape of an (m − 1)-simplex. MOEA/D obtained the second place in 16
problems and NSGA-III in 15. IGD+-EMOA is the worst MaOEA in these prob-
lems as it never obtained the best HV values nor the second best ones. Hence, it
is evident that the strategy based on weight vectors for the construction of the
IGD+-EMOA’s reference set has a negative impact on its performance. More-
over, based on the direct comparison between IGD+-MaOEA and IGD+-EMOA,
the former can be considered as a better optimizer.

4.3 Comparison with SMS-EMOA

From Tables 3 and 4, it is clear that SMS-EMOA outperforms IGD+-MaOEA
in the DTLZ test suite and that both are competitive in the DTLZ−1 instances.
However, the aim of SMS-EMOA is to maximize HV and this indicator is being
employed for comparison purposes which clearly favor this algorithm. Neverthe-
less, it is worth noting that the overall HV differences between both algorithms
is not very significant. It is also worth highlighting that IGD+-MaOEA gener-
ates similar distributions to those of SMS-EMOA. This is shown in Fig. 2 where

-600-400-200 0
-600 -400 -200 0

-600

-400

-200

 0

IG
D

+
-M

aO
E

A

DTLZ1-1

IG
D

+
-M

aO
E

A

 0 0.5 1 1.5
 0 0.5 1 1.5

 0

 1

 2
DTLZ2

-0.75
-0.5

-1
-0.75

-0.5

-33

-32.5

-32

-31.5

-31

-30.5 DTLZ7-1

-400
-200

 0
-400

-200
 0

-400

-200

 0

S
M

S
-E

M
O

A
S

M
S

-E
M

O
A

 0 0.5 1 1.5
 0 0.5 1 1.5

 0

 1

 2

-0.75
-0.5

-1
-0.75

-0.5

-33

-32.5

-32

-31.5

-31

-30.5

Fig. 2. Pareto fronts produced by IGD+-MaOEA and SMS-EMOA for DTLZ1−1,
DTLZ2 and DTLZ7−1 for 3 objective functions. Each front corresponds to the median
HV values.

Towards a More General Many-objective Evolutionary Optimizer 345

the Pareto fronts for DTLZ2 are similar. This distribution is due to the use of
the set of nondominated solutions as the reference set in the IGD+-DE algo-
rithm. Hence, this kind of reference set is highly recommended to approximate
the performance of HV-based MaOEAs using the IGD+ indicator. Moreover, the
average computational cost of IGD+-MaOEA is significantly lower than that of
SMS-EMOA. This claim is supported by the average runtimes shown in Table 2.

5 Conclusions and Future Work

In this paper, we have proposed a steady-state MaOEA, called IGD+-MaOEA,
that adopts an IGD+-based density estimator and Pareto dominance as its main
selection criterion. Moreover, a fast method to compute the IGD+ contribu-
tions is employed in order to reduce the computational cost from Θ(mN2M) to
Θ(mNM), where m is the number of objective functions, N is the cardinality
of the approximation set and M the size of the reference set. IGD+-MaOEA
does not adopt convex weight vectors in any of its mechanisms. In consequence,
the performance of IGD+-MaOEA does not strongly depend on the Pareto front
shape. Our experimental results show that IGD+-MaOEA is a more general
multi-objective optimizer because its performance does not degrade when solv-
ing the DTLZ−1 test suite. In fact, IGD+-MaOEA is competitive with NSGA-III
and outperforms MOEA/D and IGD+-EMOA in the original DTLZ test suite
and it outpeforms these MaOEAs in all the DTLZ−1 problems. Moreover, we
compared our approach with SMS-EMOA and our experimental results indicate
that IGD+-MaOEA performs similarly to the former, which makes it a remark-
able approach to approximate the performance of HV-based MaOEAs. As part of
our future work, we are interested in producing uniformly distributed solutions
for both the DTLZ and DTLZ−1 test suites. Furthermore, we aim to improve
the convergence results of IGD+-MaOEA in the DTLZ test problems without
worsening its performance on the DTLZ−1 instances.

References

1. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for
Solving Multi-objective Problems, 2nd edn. Springer, New York (2007). https://
doi.org/10.1007/978-0-387-36797-2. ISBN 978-0-387-33254-3

2. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimiza-
tion: a short review. In: 2008 Congress on Evolutionary Computation (CEC 2008),
Hong Kong, pp. 2424–2431. IEEE Service Center, June 2008

3. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

4. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

5. Lopez, E.M., Coello, C.A.C.: IGD+-EMOA: a multi-objective evolutionary algo-
rithm based on IGD+. In: 2016 IEEE Congress on Evolutionary Computation
(CEC 2016), Vancouver, Canada, 24–29 July 2016, pp. 999–1006. IEEE Press
(2016). ISBN 978-1-5090-0623-9

https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-0-387-36797-2

346 J. G. Falcón-Cardona and C. A. Coello Coello

6. Gómez, R.H., Coello, C.A.C.: Improved metaheuristic based on the R2 indicator
for many-objective optimization. In: 2015 Genetic and Evolutionary Computation
Conference (GECCO 2015), Madrid, Spain, July 11–15 2015, pp. 679–686. ACM
Press (2015). ISBN 978-1-4503-3472-3

7. Ishibuchi, H., Setoguchi, Y., Masuda, H., Nojima, Y.: Performance of
decomposition-based many-objective algorithms strongly depends on pareto front
shapes. IEEE Trans. Evol. Comput. 21(2), 169–190 (2017)

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

9. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

10. Fleischer, M.: The measure of pareto optima applications to multi-objective meta-
heuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.)
EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36970-8 37

11. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation
in generational distance and inverted generational distance. In: Gaspar-Cunha,
A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp.
110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1 8

12. Falcón-Cardona, J.G., Coello, C.A.C.: Multi-objective evolutionary hyper-heuristic
based on multiple indicator-based density estimators. In: 2018 Genetic and Evolu-
tionary Computation Conference (GECCO 2018), Kyoto, Japan, 15–19 July 2018.
ACM Press (To be published)

https://doi.org/10.1007/3-540-36970-8_37
https://doi.org/10.1007/3-540-36970-8_37
https://doi.org/10.1007/978-3-319-15892-1_8

Towards Large-Scale Multiobjective
Optimisation with a Hybrid Algorithm

for Non-dominated Sorting

Margarita Markina and Maxim Buzdalov(B)

ITMO University, 49 Kronverkskiy prosp., Saint-Petersburg 197101, Russia
margaritam2706@gmail.com, mbuzdalov@gmail.com

Abstract. We present an algorithm for non-dominated sorting that is
suitable for large-scale multiobjective optimisation. This algorithm is a
hybrid of two previously known algorithms: the divide-and-conquer algo-
rithm initially proposed by Jensen, and the non-dominated tree algo-
rithm proposed by Gustavsson and Syberfeldt.

While possessing the good worst-case asymptotic behaviour of the
divide-and-conquer algorithm, the proposed algorithm is also very effi-
cient in practice. In our experimental study it is shown to outperform
both of its parents on the majority of problem instances, both sampled
uniformly from a hypercube and having a single front, with as large as
106 points and up to 15 objectives.

Keywords: Multiobjective optimisation · Non-dominated sorting
Large-scale optimisation

1 Introduction

Many real-world optimisation problems are inherently multiobjective, that is,
they require maximizing or minimizing not a single objective, but several ones,
which often conflict with each other. For this reason, there are typically many
optimal solutions which are incomparable and trade one objective for another.
Even in the conditions that only one of these solutions must be chosen, this choice
is often advised to be done lately, as the acquired knowledge of the problem can
influence the preferences of the decision maker [1].

According to the tutorial [1], most general-purpose evolutionary multiobjec-
tive algorithms that do not try to incorporate the prior knowledge or user pref-
erences belong to three categories: Pareto-based [5–7,26], indicator-based [25],
and decomposition-based [23] algorithms.

In turn, Pareto-based algorithms can be classified by how they rank or select
solutions. Some of them maintain an archive of non-dominated solutions [3,5,
13], others perform non-dominated sorting [6,7], use domination count [9] or
domination strength [26] to assign fitness values. In this paper, we consider non-
dominated sorting, as many popular algorithms rely on this procedure [6,7].
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 347–358, 2018.
https://doi.org/10.1007/978-3-319-99253-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_28&domain=pdf

348 M. Markina and M. Buzdalov

1.1 Non-dominated Sorting: Definition and Algorithms

From now on we assume, without loss of generality, that we need to minimize
all objectives. We also explicitly state that in this paper we consider only the
objective space and ignore the existence of decision variables and the questions
of genotype-to-phenotype mapping. Throughout the paper, we denote as M the
number of objectives.

To define non-dominated sorting, we first need to introduce the Pareto dom-
inance relation. A point p is said to dominate a point q, denoted as p ≺ q, if for
every objective index i, 1 ≤ i ≤ M , it holds that pi ≤ qi, and there exists an
index j such that pj < qj .

Non-dominated sorting assigns ranks to solutions from the solution set P
in the following way: every solution from P that is not dominated by any other
solution from P gets rank 0, and every solution which is dominated by at least one
solution of rank i gets rank i+1. A set of all points having the same rank is often
called a front, a level or a layer. In the work where this procedure was originally
proposed [20], it was performed in O(N3M), where N is the population size.
This was later improved to be O(N2M) in a subsequent work that introduced
the famous NSGA-II algorithm [7].

In NSGA-II, non-dominated sorting determines the computational complex-
ity of a single iteration, as all other parts of an iteration scale better as N grows.
This poses a problem either when fitness evaluation and variation operators are
cheap, or when the population size N is large. As a result, there is quite a num-
ber of works dedicated to reduction of either theoretical complexity or practical
running times of non-dominated sorting. Due to space limitations, we cannot
consider each work in detail, nor can we cite all of them, so we just briefly
describe the two prevailing directions.

The first direction aims at developing algorithms that work efficiently on
inputs common to evolutionary multiobjective optimisation, but their worst-
case time is still Ω(N2M). A remarkable number of papers belongs to this direc-
tion [8,11,16,18,22,24], where most of the algorithms have Θ(N2M) worst-case
complexity, while Deductive Sort [16] can be forced to run in Θ(N3M) time.
Among these, the best performing algorithms to date are Best Order Sort [18]
and the ENS-NDT algorithm [11].

The second direction tries to reduce not only the running times, but also the
computational complexity. Jensen [12] was the first to adapt the earlier result
of Kung et at. [14], who solved the problem of finding non-dominated solu-
tions in O(N(log N)max(1,M−2)), to non-dominated sorting. This algorithm has
the worst-case complexity of O(N(log N)M−1). However, this algorithm could
not handle coinciding objective values, which was later corrected in subsequent
works [2,10].

We shall also note that in a different community, where this problem is
called layers of maxima, an algorithm for M = 3 was found [17], whose com-
plexity is O(N(log log N)2) with the use of randomized data structures, or
O(N(log log N)3) for deterministic ones. Whether this algorithm is useful in
practice is still an open question.

Towards Large-Scale Multiobjective Optimisation with a Hybrid Algorithm 349

Finally, we should mention our own recent work [15], where we tried to unify
the benefits of the two directions above under the cover of a single algorithm.
Our current paper builds on some of the insights of that paper and pushes these
ideas towards a new level of quality.

1.2 Our Motivation and Contribution

Apart from a purely fundamental desire to develop efficient algorithms for hard
problems, our research is motivated by a very important practical problem: the
multiobjective in-core fuel management optimisation problem, instances of which
needs to be solved during the functioning of a nuclear reactor. This problem
is a hard combinatorial optimisation problem, the solutions of which need to
optimise a number of contradicting objectives, such as the power received from
the reactor, the amount of neutrons flying out from the reactor and more.

In a multiobjective setting, this problem attracted significant attention in the
recent years. Several approaches used in practice use algorithms that employ non-
dominated sorting. The reader is directed to the dissertation of Evert Schlünz
for further reading [19]. An application of simulated annealing to this problem
recommended numbers of samples up to 105 already in 1995 [21], which become
population sizes in multiobjective settings and can nowadays rise up to 106.

In this paper, we consider hybridising the divide-and-conquer approach, ini-
tially proposed by Jensen [12] and subsequently refined by Fortin et al. [10] and
Buzdalov and Shalyto [2], and the recently proposed ENS-NDT approach by
Gustavsson and Syberfeldt [11]. The latter algorithm is used to solve subprob-
lems, which are created by the divide-and-conquer algorithm and have small
enough sizes. This particular scheme resembles the production-ready implemen-
tations of the mergesort algorithm, which delegate small sub-arrays to the inser-
tion sort.

In the case of non-dominated sorting, however, the subproblems are not com-
pletely equivalent to the initial non-dominated sorting problem. The straightfor-
ward adaptation of the ENS-NDT algorithm to solving these subproblems has
rendered invalid a number of its invariants, which appear to be necessary for fast
operation of the algorithm. This forced us to develop a slightly different version
of ENS-NDT, which also appeared to be interesting on its own: in particular, it
appeared to be more efficient than the original version for smaller values of M .

Our experiments show that our hybrid algorithm tends to outperform both
its origins, namely, the ENS-NDT algorithm (including its variation developed
by us) and the divide-and-conquer algorithm, especially for large problem sizes
(N > 105). This claim is supported by experimental results on two types of data
(the “uniform hypercube”, also known as the “cloud dataset”, and the “uniform
hyperplane” that consists of a single front) with M up to 15 and N up to 106.

The rest of the paper is structured as follows. Section 2 describes the nec-
essary details of the divide-and-conquer algorithm, as well as of ENS-NDT.
Section 3 presents the modified version of the ENS-NDT algorithm, that is used
in the hybrid, as well as the hybrid itself. Experiments are presented and dis-
cussed in Sect. 4. Finally, Sect. 5 concludes.

350 M. Markina and M. Buzdalov

2 Preliminaries: The Algorithms to Hybridise

In this section, we describe the two algorithms, that we are going to use, in more
detail. We start with the divide-and-conquer approach by Jensen [12], however,
we use the version taken from [2] which is provably correct on every input unlike
the algorithm from [12] and unlike the algorithm from [10] has a provably fast
asymptotic behaviour. The second algorithm will be the non-dominated tree
approach from [11], which is also known as ENS-NDT.

We assume that we perform non-dominated sorting on a set of points P
from the M -dimensional objective space. Since non-dominated sorting is based
entirely on the Pareto dominance relation, we can safely assume that this objec-
tive space is R

M , as otherwise we can sort all points in every objective and
transform objectives into integers while preserving Pareto dominance.

2.1 The Divide-and-Conquer Algorithm

The divide-and-conquer algorithm is based on the following observation. Assume
we took some value q of the j-th objective and we split the set of points P into
two sets, the set PL = {p ∈ P | pj ≤ q} and PR = {p ∈ P | pj > q}. Then no
point from PR can dominate any point from PL, because every point from PL

is less than any point from PR in the j-th objective. So we can find the ranks
for points PL on their own, then perform the necessary comparisons between
points from PL and from PR, always having points from PL on the left side of
the dominance relation to be checked, and, finally, refine the ranks for points
from PR by comparing them one to another.

The operations on PL and PR alone can be implemented in mostly the same
way (again choosing an objective, splitting into halves and performing the same
actions on the halves), thus allowing a recursive implementation. The operation
on two arguments, PL and PR, is different, but it can also benefit from divide-
and-conquer: if we split both sets of points, using the same value q of the same
objective, into sets LL, LR, RL and RR, we can use the same procedure on pairs
LL and RL, LL and RR, LR and RR, but we can avoid calling it on LR and RL.

For performance reasons, the value q is always chosen to be a median of the
set of j-th objectives, and all sets are split into three parts (less than q, equal to
q and greater than q). What is more, the objective j is always chosen to be the
maximum objective in which the comparison still makes sense: in HelperA all
points have the same value for every objective greater than j, and in HelperB
every l ∈ L dominates every r ∈ R in all objectives greater than j.

To complete the algorithm, one needs to provide recursion terminators. There
are two types of them: the first ones trigger when one of the sets becomes too
small, the second ones are called when only two meaningful objectives remain.
The former case is solved straightforwardly. For the latter case, a special sweep-
line algorithm is used, which is described in detail in [12].

The outline of the algorithm is given in Algorithm1. The runtime of the
sweep line subroutines is known to be O(n log n) where n is the number of
points supplied. Using this fact, and by noticing that max(|PL|, |PR|) ≤ 1/2 · |P |

Towards Large-Scale Multiobjective Optimisation with a Hybrid Algorithm 351

Algorithm 1. The outline of the divide-and-conquer algorithm
function DivideConquerSorting(P , M)

HelperA(P , M)
end function
function HelperA(P , m)

if |P | ≤ 1 then
return

else if |P | = 2 then
Compare points in first m objectives

else if m = 2 then
Run the sweep line subroutine

else
q ← Median({pm | p ∈ P})
〈PL, PM , PR〉 ← Split(P,m, q)
HelperA(PL, m)
HelperB(PL, PM , m − 1)
HelperA(PM , m − 1)
HelperB(PL ∪ PM , PR, m − 1)
HelperA(PR, m)

end if
end function
function HelperB(L, R, m)

if |L| ≤ 1 or |R| ≤ 1 then
Compare all pairs of points in first m objectives

else if m = 2 then
Run the sweep line subroutine

else
q ← Median({pm | p ∈ L ∪ R})
〈LL, LM , LR〉 ← Split(L,m, q)
〈RL, RM , RR〉 ← Split(R,m, q)
HelperB(LL, RL, m)
HelperB(LR, RR, m)
HelperB(LL ∪ LM , RM ∪ RR, m − 1)

end if
end function

and max(|LL| + |RL|, |LR| + |RR|) ≤ 1/2 · (|L| + |R|), one can use the Master
theorem for solving recurrence relations [4] and prove the O(|P | · (log |P |)M−1)
worst-case running time bound.

Note that even the HelperA function solves a more general problem than
non-dominated sorting: this function must cope with the existing lower bounds
on ranks, arising from comparisons of points from the set P with points outside
this set. From this point of view, HelperB can be seen as the function that
upgrades ranks of points from the set R by comparing them with points from
the set L, whose ranks are known and will not subsequently change. It is possible
to switch to other algorithms instead of HelperA and HelperB, for instance
on smaller sizes to improve performance, if they produce the expected result.

352 M. Markina and M. Buzdalov

2.2 The ENS-NDT Algorithm

This algorithm belongs to another family of algorithms for non-dominated sort-
ing, termed Efficient Non-dominated Sorting, or ENS [24]. The main idea is to
first sort all points lexicographically (by comparing the first objectives, move
on to the second objectives if the first are equal, and continuing this way).
A point cannot dominate any other point which comes before in the lexico-
graphical order. The algorithm then traverses the points in the sorted order,
while maintaining some data structure that makes comparisons with the pre-
vious points faster. For each point, first a rank query is performed against the
data structure, then the point with the determined rank is added to that data
structure.

Two algorithms from this family, ENS-SS and ENS-BS [24], maintain a list
of already ranked points for each rank value, and for each such list the domi-
nance check is performed, starting with the most recently added point. They are
different in that ENS-SS performs the sequential search for a rank, starting with
the first one, and ENS-BS performs binary search for a rank.

The ENS-NDT algorithm proposed by Gustavsson and Syberfeldt [11],
instead of a list, uses a k-d tree (this name comes from a “k-dimensional tree”) to
store points of each rank. To do this efficiently, the objective space is partitioned
in advance: first all points are split by the M -th objective into two approximately
equal parts (using the median similarly to the divide-and-conquer algorithm),
then every such part is further partitioned into halves using the (M−1)-th objec-
tive and so on. After the second objective, the M -th objective comes again, as
splitting in the first objective never makes sense. Every tree that stores the points
will subsequently use this space partitioning scheme.

Ranking a newly inserted point is performed by running binary search for
the rank, and for each rank a query to the k-d tree is made. The tree is traversed
from the root towards the leaves. When the branching node is visited, its child
corresponding to smaller objective values is always visited, while its other child
is visited only if the splitting value stored in the node is not greater than the
corresponding objective of the query point. Dominance comparisons in leaves are
made straightforwardly, and if one of them succeeds, the procedure terminates.

The possibility of skipping entire subtrees determines the impressive perfor-
mance of this algorithm. In particular, for many distributions of input points
one can show a constant upper bound α on the probability of entering a node
child corresponding to a higher objective value. This immediately gives the upper
bound of O(M ·N log2(1+α)) per one query and O(M ·N1+log2(1+α)) for the entire
run, which is strictly faster than Θ(N2M) when α < 1.

It is, however, possible to observe the Θ(N2M) running time of this algorithm
on an input described by three numbers N , M and k, where N is the number
of points, M is the number of objectives and 1 ≤ k ≤ M is the index of the
“special” objective. The point P (i), 1 ≤ i ≤ N , of this input will have the
objective value P

(i)
j = i for all j �= k and P

(i)
k = N − i. The choice of k that

degrades the performance most prominently depends on the implementation,
but k = 1 or k = M may be good choices. With this input, there will always be
one front, and each ranking query will visit almost the entire tree.

Towards Large-Scale Multiobjective Optimisation with a Hybrid Algorithm 353

3 The Proposed Algorithms

In this section, we first explain the problems which arise when adapting ENS-
NDT, and many more algorithms, to serve as the replacements for HelperA
and HelperB of the divide-and-conquer algorithm. Then we introduce ENS-
NDT-ONE, a modification of ENS-NDT that uses only one k-d tree instance
and is capable of working as HelperA and HelperB. Finally, we describe the
hybrid algorithm.

3.1 Loss of Monotonicity in HelperB

At the first glance, it should be trivial to adapt ENS-NDT, as well as other
algorithms from the ENS family, to serve as HelperB. Given the point sets
L and R, one has to traverse their union in the lexicographical order. When a
point from L is encountered, it is added to the data structure with its already
known rank. When a point from R is encountered, one needs to query the data
structure for the rank of this point, but one must not add this point to the data
structure. This way, all necessary comparison between the points from L and
from R will be performed.

The problem with this approach is that, in order to work correctly, the imple-
mentations of the algorithms shall stop relying on certain invariants that improve
performance, and, as a result, the performance can significantly degrade. In the
case of ENS-NDT and ENS-BS, this important invariant is monotonicity, which
enables binary search. The invariant can be formulated as follows: if the front
k +1 dominates the point, then the front k also dominates it. We now show that
this invariant can be violated inside HelperB.

Consider points p0 = (1, 3, 9, 1), p1 = (1, 5, 5, 3), p2 = (1, 6, 2, 4), p3 = (1, 6,
7, 4), p4 = (1, 6, 7, 7), p5 = (1, 9, 1, 5), p6 = (2, 1, 6, 7), p7 = (2, 6, 5, 6), p8 =
(4, 8, 2, 7), p9 = (5, 3, 3, 8). The first call to HelperA splits them into PL =
{p0, p1, p2, p3}, PM = {p5}, PR = {p4, p6, p7, p8, p9}. By the time HelperB(PL∪
PM , PR, 3) is called, p0 will have rank 0 and p3 will have rank 1. This call will
partition these sets around the median of the third objective, which is 5, such
that LR = {p0, p3} and RR = {p4, p6}. Once HelperB(LR, RR, 3) is called,
the point p4 will be found to be dominated by p3 of rank 1, but the front
corresponding to rank 0 will consist only of point p0, which does not dominate
p4. This means that there is no monotonicity anymore, and binary search for
the rank is no longer valid.

The same problem makes it impossible for ENS-SS to test ranks in the
increasing order. The original ENS-SS stops once a front is found that does
not dominate the point. We now know that inside HelperB this can result in a
preliminary termination. The valid strategy in these conditions is to test ranks
in the decreasing order, and to stop once the front is found that does dominate
the point. Again, this reduces the performance of the ENS-SS algorithm, as,
unlike the original version, most fronts are now traversed to their very end.

We overcome this problem by adapting ENS-NDT in such a way that it does
not have to rely on monotonicity of fronts, while retaining a decent performance.

354 M. Markina and M. Buzdalov

Rank 0 tree Rank 1 tree Rank 2 tree

Fig. 1. The way ENS-NDT uses its k-d trees. Each tree is associated with a rank value,
and stores only points with that rank.

0 1 0 2

1 2

2 2

2 1

1 1

1 0 0 1

2

Fig. 2. The way ENS-NDT-ONE uses its only k-d tree. All points reside in the same
tree, and each node additionally stores the maximum rank of a point in its subtree.

3.2 The ENS-NDT-ONE Algorithm

We propose a new algorithm for non-dominated sorting, termed ENS-NDT-ONE,
that is based on ENS-NDT, however, unlike its ancestor, it does not maintain
separate trees for storing points of different ranks. Instead, all points now reside
in a single k-d tree.

One of the performance advantages of ENS-NDT is that, while completing
the rank query for a point p, once a point in a tree is found to dominate p, it is
possible to quit that tree immediately, since no more points from that tree can
influence the rank of p. This is not so in ENS-NDT-ONE, as there can be points
with the same or a greater rank compared to the updated rank of p.

To compensate for this performance loss, we propose to store in each tree
node the value of the maximum rank among all points in the subtree rooted
at this node. With this information in hand, we can now refrain from visiting
the node (and all nodes in its subtree) if the maximum rank is less than the
current rank of the point p being queried. The maximum ranks of nodes are
also straightforwardly updated on insertion of a point. See Figs. 1 and 2 for
comparison of the principles beneath ENS-NDT and ENS-NDT-ONE.

Towards Large-Scale Multiobjective Optimisation with a Hybrid Algorithm 355

The worst-case running time of this algorithm is Θ(N2M), which is demon-
strated by the same construction as we used for ENS-NDT. However, for
many cases the running time is much smaller. For instance, if the points to
be sorted are sampled uniformly from a hypercube [0; 1]M , then we can see
that Θ(N) points will have a probability of at most 1/2 to enter both chil-
dren of every particular branching node of the tree. This immediately gives the
O(MN1+log2(3/2)) ≈ O(MN1.585) runtime bound. Similar results can be shown
for other distributions, and the bounds can be further reduced by considering
the distribution of ranks.

3.3 The Hybrid Algorithm

We can now formulate the hybrid algorithm. We take the divide-and-conquer
algorithm as a basis, however, before we enter the main parts of HelperA or
HelperB, we check whether the subproblem is small enough. If it is, we use the
ENS-NDT-ONE algorithm to solve this subproblem. Since ENS-NDT-ONE is
immune to the features of these subproblems, such as the loss of monotonicity,
the resulting algorithm will always produce correct results.

More formally, we define, for every number of objectives, a threshold which
signifies that every subproblem with this number of objectives and the size below
the threshold should be delegated to ENS-NDT-ONE. For HelperA, the size
of the problem is the size of the set P , while for HelperB this is the sum of
sizes of the sets L and R.

We shall note that, since we define thresholds to be constants, the asymp-
totic estimation of the running time of this algorithm is still O(N(log N)M−1).
However, we note that more careful choices for thresholds, that possibly depend
on the number of objectives or on other properties of the subproblems, may
possibly result in smaller runtime bounds. Due to the complexity of this issue,
including strong dependency on inputs, we leave this for possible future work.

4 Experiments and Discussion

All mentioned algorithms were implemented in Java within the same algorithmic
framework, which enabled sharing large code amounts between the algorithms.
These implementations are available on GitHub1 along with performance plots.

All the algorithms, except for the original divide-and-conquer algorithm, fea-
ture parameters that influence their performance. In particular, the ENS-NDT
algorithm and its derivatives have the split threshold parameter which regulates
the maximum possible size of the terminal node. In [11] this parameter was fixed
to the value of 2, however, our preliminary experiments found that the value of
8 brings generally better performance. This difference can be attributed to the
differences in implementations. We used the split threshold of 8 for ENS-NDT,
ENS-NDT-ONE, as well as in the ENS-NDT-ONE part of the hybrid algorithm.

1 https://github.com/mbuzdalov/non-dominated-sorting/releases/tag/v0.1.

https://github.com/mbuzdalov/non-dominated-sorting/releases/tag/v0.1

356 M. Markina and M. Buzdalov

Table 1. Average running times of the algorithms in seconds. The smallest running
time, for each category, is marked grey. All standard deviations are less than 2%.

N M Divide&Conquer ENS-NDT ENS-NDT-ONE Hybrid
hypercube hyperplane hypercube hyperplane hypercube hyperplane hypercube hyperplane

5 · 105 3 1.52 0.85 1.95 0.73 1.66 0.76 1.17 0.67
106 3 2.82 1.60 5.25 1.61 4.25 1.65 2.63 1.50

5 · 105 5 22.7 16.6 8.31 2.01 6.25 2.22 6.43 4.68
106 5 45.2 33.0 26.3 5.22 18.2 5.82 17.2 12.8

5 · 105 7 89.6 55.1 17.1 6.96 15.5 6.78 9.29 7.02
106 7 191.5 120.2 55.4 19.4 46.1 18.9 26.8 20.1

5 · 105 10 197.7 99.9 27.6 15.9 36.7 17.7 14.5 11.5
106 10 478.8 228.6 84.8 48.1 104.8 55.0 41.0 33.0

5 · 105 15 190.0 116.1 40.8 23.0 62.1 25.9 22.6 15.7
106 15 587.9 337.5 135.4 76.3 206.8 85.4 64.5 46.0

The hybrid algorithm also depends on the switch-to-tree threshold values.
Based on our preliminary investigations, we chose this threshold for three objec-
tives to be 100, and for more than three objectives to be 20 000.

We have investigated the performance of all these algorithms, including the
ENS-NDT-ONE alone, on several artificial inputs. We used two types of data.
The first one is the “uniform hypercube”, which is also known as the “cloud
dataset” in the literature, where points are sampled uniformly at random from
the [0; 1]M hypercube. The second one is the “uniform hyperplane”, where points
are sampled uniformly at random from the piece of a hyperplane, such that all
coordinates are non-negative and sum up to 1. The following values of N were
tested: {1, 2, 5} × {10, 102, 103, 104, 105} and 106. We considered M to be from
the set {3, 5, 7, 10, 15}, which covers the most widely used range.

For every input configuration, 10 instances were created with different but
fixed random seeds. We measured the total times on all these instances and
divided them by 10 to achieve an approximation of the average time. The time
measurements were done using the Java Microbenchmark Harness suite with one
warmup iteration of at least 6 seconds, which was enough for the entire bytecode
to be translated to the native code, and one measurement iteration of at least
one second. For each pair of algorithm and input, five measurement runs were
conducted. A high-performance server with AMD OpteronTM 6380 processors
and 512 GB of RAM was used, and the code was run with the OpenJDK virtual
machine 1.8.0 141.

The already mentioned GitHub release features the plots of the running
times, which could not fit in this paper due to space restrictions. In Table 1,
we show only the average results for two largest N , 5 · 105 and 106. One can see
that the hybrid algorithm wins in all cases except for M = 5 and the hyperplane
instance of M = 7. One more insight is that ENS-NDT-ONE runs faster than
ENS-NDT on hypercube instances with M ≤ 7, which means that the maxi-
mum subtree rank heuristic is indeed efficient. The implementation constant of
ENS-NDT-ONE seems to be slightly larger, however.

Towards Large-Scale Multiobjective Optimisation with a Hybrid Algorithm 357

5 Conclusion

We proposed a highly efficient algorithm for non-dominated sorting based on
hybridisation of two previously known algorithms, the divide-and-conquer algo-
rithm by Jensen and the non-dominated tree (ENS-NDT) by Gustavsson and
Syberfeldt. It typically outperforms both of its parents on large population sizes,
except for certain ranges of population sizes in several dimensions. Our modifica-
tion of ENS-NDT is also of interest, as it can outperform the original ENS-NDT.

We are probably the first to report results on 106 solutions. Some industrial
applications of evolutionary multiobjective optimisation already require pop-
ulation sizes that are this large. As divide-and-conquer algorithms often offer
parallelisation benefits, and our algorithm is not an exception, we hope to get
further speed-ups by adapting our algorithm to multicore computers.

The optimal choice of thresholds to decide when to switch to ENS-NDT is
an open and difficult question. We expect that adaptation of thresholds while
running the algorithm can overcome this issue.

Acknowledgment. We would like to acknowledge the support of this research by the
Russian Scientific Foundation, agreement No. 17-71-20178.

References

1. Brockhoff, D., Wagner, T.: GECCO 2016 tutorial on evolutionary multiobjective
optimization. In: Proceedings of Genetic and Evolutionary Computation Confer-
ence Companion, pp. 201–227 (2016)

2. Buzdalov, M., Shalyto, A.: A provably asymptotically fast version of the generalized
jensen algorithm for non-dominated sorting. In: Bartz-Beielstein, T., Branke, J.,
Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 528–537. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10762-2 52

3. Coello Coello, C.A., Toscano Pulido, G.: A micro-genetic algorithm for multiobjec-
tive optimization. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne,
D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 126–140. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44719-9 9

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

5. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: Region-based
selection in evolutionary multiobjective optimization. In: Proceedings of Genetic
and Evolutionary Computation Conference, pp. 283–290. Morgan Kaufmann Pub-
lishers (2001)

6. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

8. Fang, H., Wang, Q., Tu, Y.C., Horstemeyer, M.F.: An efficient non-dominated
sorting method for evolutionary algorithms. Evol. Comput. 16(3), 355–384 (2008)

https://doi.org/10.1007/978-3-319-10762-2_52
https://doi.org/10.1007/3-540-44719-9_9

358 M. Markina and M. Buzdalov

9. Fonseca, C.M., Fleming, P.J.: Nonlinear system identification with multiobjective
genetic algorithm. In: Proceedings of the World Congress of the International Fed-
eration of Automatic Control, pp. 187–192 (1996)

10. Fortin, F.A., Grenier, S., Parizeau, M.: Generalizing the improved run-time com-
plexity algorithm for non-dominated sorting. In: Proceedings of Genetic and Evo-
lutionary Computation Conference, pp. 615–622. ACM (2013)

11. Gustavsson, P., Syberfeldt, A.: A new algorithm using the non-dominated tree to
improve non-dominated sorting. Evol. Comput. 26(1), 89–116 (2018)

12. Jensen, M.T.: Reducing the run-time complexity of multiobjective EAs: the NSGA-
II and other algorithms. IEEE Trans. Evol. Comput. 7(5), 503–515 (2003)

13. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the
pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

14. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
J. ACM 22(4), 469–476 (1975)

15. Markina, M., Buzdalov, M.: Hybridizing non-dominated sorting algorithms: divide-
and-conquer meets best order sort. In: Proceedings of Genetic and Evolutionary
Computation Conference Companion, pp. 153–154 (2017)

16. McClymont, K., Keedwell, E.: Deductive sort and climbing sort: new methods for
non-dominated sorting. Evol. Comput. 20(1), 1–26 (2012)

17. Nekrich, Y.: A fast algorithm for three-dimensional layers of maxima problem. In:
Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 607–618.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22300-6 51

18. Roy, P.C., Islam, M.M., Deb, K.: Best Order Sort: a new algorithm to non-
dominated sorting for evolutionary multi-objective optimization. In: Proceedings
of Genetic and Evolutionary Computation Conference Companion, pp. 1113–1120
(2016)

19. Schlünz, E.B.: Multiobjective in-core fuel management optimisation for nuclear
research reactors. Ph.D. thesis, Stellenbosch University, December 2016

20. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in
genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

21. Stevens, J., Smith, K., Rempe, K., Downar, T.: Optimization of pressurized water
reactor shuffling by simulated annealing with heuristics. Nucl. Sci. Eng. 121(1),
67–88 (1995)

22. Wang, H., Yao, X.: Corner sort for pareto-based many-objective optimization.
IEEE Trans. Cybern. 44(1), 92–102 (2014)

23. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

24. Zhang, X., Tian, Y., Cheng, R., Jin, Y.: An efficient approach to nondominated
sorting for evolutionary multiobjective optimization. IEEE Trans. Evol. Comput.
19(2), 201–213 (2015)

25. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A.,
Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol.
3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30217-9 84

26. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evo-
lutionary algorithm for multiobjective optimization. In: Proceedings of the EURO-
GEN 2001 Conference, pp. 95–100 (2001)

https://doi.org/10.1007/978-3-642-22300-6_51
https://doi.org/10.1007/978-3-540-30217-9_84
https://doi.org/10.1007/978-3-540-30217-9_84

Tree-Structured Decomposition
and Adaptation in MOEA/D

Hanwei Zhang1,2 and Aimin Zhou1(B)

1 Shanghai Key Laboratory of Multidimensional Information Processing,
Department of Computer Science and Technology, East China Normal University,

Shanghai, China
amzhou@cs.ecnu.edu.cn

2 CNRS-IRISA, Rennes, France
hanwei.zhang@irisa.fr

Abstract. The multiobjective evolutionary algorithm based on decompo-
sition (MOEA/D) converts a multiobjective optimization problem (MOP)
into a set of simple subproblems, and deals with them simultaneously to
approximate the Pareto optimal set (PS) of the original MOP. Normally
in MOEA/D, a set of weight vectors are predefined and kept unchanged
during the search process. In the last few years, it has been demonstrated
in some cases that a set of predefined subproblems may fail to achieve a
good approximation to the Pareto optimal set. The major reason is that
it is usually unable to define a proper set of subproblems, which take full
consideration of the characteristics of the MOP beforehand. Therefore,
it is imperative to develop a way to adaptively redefine the subproblems
during the search process. This paper proposes a tree-structured decom-
position and adaptation (TDA) strategy to achieve this goal. The basic
idea is to use a tree structure to decompose the search domain into a
set of subdomains that are related with some subproblems, and adap-
tively maintain these subdomains by analyzing the search behaviors of
MOEA/D in these subdomains. The TDA strategy has been applied to
a variety of test instances. Experimental results show the advantages
of TDA on improving MOEA/D in dealing with MOPs with different
characteristics.

1 Introduction

Decomposition based multiobjective evolutionary algorithms (MOEAs) [1–3]
have recently been attracting much attention for dealing with multiobjective opti-
mization problems (MOPs). A main difference between the decomposition based
MOEAs and the other two major MOEA paradigms, i.e., the Pareto domination
based approaches [4,5] and the indicator based approaches [6–8], lies in the envi-
ronmental selection. To differentiate solutions in the environmental selection, the
Pareto domination based approaches use the Pareto domination relationship and
a density estimation strategy to define a complete ranking order of the solutions,
and the indicator based approaches utilize a performance indicator to score a
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 359–371, 2018.
https://doi.org/10.1007/978-3-319-99253-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_29&domain=pdf

360 H. Zhang and A. Zhou

solution or a subpopulation. Since the decomposition based approaches convert
an MOP into a set of subproblems, the environmental selection is implemented
for each subproblem [9], i.e., if the subproblem is a scalar-objective problem,
the subproblem objective value can be directly used to do selection; if the sub-
problem is a multiobjective problem, the above two selection approaches can be
used. For both scalar-objective and multiobjective subproblems, they are tackled
simultaneously.

The multiobjective evolutionary algorithm based on decomposition (MOEA/D)
is a typical decomposition based MOEA [10]. The combination of the found
optimal solutions of the subproblems will constitute an approximation to the
Pareto optimal set of the original MOP. A variety of methods have been pro-
posed to decompose an MOP into a set of subproblems in MOEA/D [10,11].
Let minx∈Ω F (x) = {f1(x), · · · , fm(x)} be a general MOP, where x is a decision
variable vector, Ω denotes the feasible region of the search space, and fi(x) is the
ith objective. This paper considers the Tchebycheff approach [10] that defines a
parameterized scalar-objective subproblem g(x|w, z∗) = max1≤j≤m wi|fi(x)−z∗

j |
with reference point z∗ = (z∗

1 , · · · , z∗
m) and weight vector w = (w1, · · · , wm),

which is required that wi ≥ 0, for i = 1, · · · ,m, and
∑m

i=1 wi = 1. It is clear
that all the weight vectors are from an (m − 1)-dimensional simplex. For sim-
plicity, we use gi to denote g(x|wi, z∗) in the sequel.

The approximation quality is determined by the weight vectors and the ref-
erence point. In different MOEA/D variants, the reference point is adaptively
updated by the best solutions found so far and this strategy works well. However,
when the Pareto Front (PF) shape of an MOP is complicated (e.g. disconnected,
ill-scaled), the uniform sampling strategy may fail to find a good approximation
of the PF. A natural way to deal with this problem is to adaptively adjust the
weight vectors during the search process. Several works have been done along
this direction [12–16]. This paper proposes a new way to adjust the weight vec-
tors dynamically, called tree-structured decomposition and adaptation (TDA),
and name MOEA/D with TDA as MOEA/D-TDA. The basic idea is to main-
tain a tree structure to decompose the search domain into a set of subdomains
that are related to some subproblems, and adaptively adjust the subdomains to
find the Pareto optimal solutions of an MOP. The search domain, in both the
objective and decision spaces, is recursively decomposed into a set of simplexes
through a set of weight vectors in the weight space. The simplex is regarded
as a basic unit of the search process. Each simplex is represented as a node in
the tree structure. The sparseness of the simplexes is measured along the search
process. According to the measurement, some new simplexes are added in the
sparse areas and some old ones are removed from the dense areas. And a tree
structure makes it efficient for these operations. Since it is hard to find a good
approximation to both the PF and the PS, we utilize two populations: an inter-
nal working population that approximates the PS and an external archive that
approximates the PF.

The rest of the paper is organized as follows. Section 2 presents the proposed
method in detail. Sections 3 and 4 study the major components in the new app-
roach. Section 5 gives the experimental studies. Finally, the paper is concluded
in Sect. 6 with some suggestions for future work.

Tree-Structured Decomposition and Adaptation in MOEA/D 361

2 The Proposed Method

In this section, we introduce the strategy tree-structured decomposition and adap-
tation (TDA) in details. Firstly, the framework of the algorithm is given. After
that, we explain how to partition the decision, the objective, and the weight
domains into some subdomains by using a tree structure named decomposition
tree. Last but not least, we depict the approach to adaptively change the weight
vectors by adding or removing subdomains according to the search behaviors.

2.1 Algorithm Framework

MOEA/D-TDA maintains a set of scalar-objective subproblems, and the ith
(i = 1, · · · , N) subproblem is with (a) its weight vector wi and objective function
gi(x), (b) its current solution xi and its objective vector F i = F (xi), and (c)
the index set of its neighboring subproblems, Bi, of which the weight vectors are
closest to wi.

With TDA, the domains are decomposed recursively using a Tree-structured
DT = {Dk}, k = 1, · · · ,K, which is called the decomposition tree. Each node in
DT represents a subdomain and is defined as Dk = <p,O,W,E> where p is the
index of its parent node, O contains the indices of its child nodes, W contains
the weight vectors of the subproblems that are directly related to the domain,
and E is the set of all the edges of the simplex that forms the subdomain. It
should be noted that

– Each domain is with m subproblems, i.e., |W | = m, in which m is the number
of objectives.

– O = ∅ if Dk is a leaf node or |O| = 2m−1 otherwise.
–

⋃
D∈DT D.W contains the weight vectors of all the subproblems.

– Let N = |⋃D∈DT D.W | and K be the number of subproblems and the
number of subdomains respectively. D.W denotes the weight vectors for the
domain D. Neither N nor K is fixed throughout the run, and we discuss this
in the next section.

Algorithm 1. Main Framework of MOEA/D-TDA
1 Initialize a decomposition tree DT .

2 Initialize all the subproblems according to the weight vectors
⋃

D∈DT D.W with DT .

3 Initialize the reference point z∗ = (z∗
1 , · · · , z∗

m) as z∗
j = min

i=1,··· ,N
fj(x

i) for j = 1, ..., m.

4 while not terminate do

5 Update the decomposition tree DT .

6 Update the neighborhood structure according to the weight vectors.

7 foreach subproblem i ∈ {1, · · · , N} do

8 Generate a new solution y = Generate(i).

9 Update the reference point z∗ by resetting z∗
j = fj(y) if z∗

j ≥ fj(y) for j = 1, ..., m.

10 Update the population by the new trial solution y.

MOEA/D-TDA also needs to maintain a reference point z∗ = (z∗
1 , · · · , z∗

m).
The main framework of MOEA/D-TDA is shown in Algorithm 1. We would make
the following comments on the framework.

362 H. Zhang and A. Zhou

– In Line 2, the weight vectors are generated in the decomposition tree initial-
ization process. Each solution is initialized by a randomly sampled point from
Ω and is assigned to subproblems according to the weight vectors.

– The reference point z∗ is initialized in Line 3 and updated in Line 9.
– In Line 4, a maximum number of generations is used as the termination

condition.
– In Line 6, the neighborhood structure needs to be updated since the weight

vectors may change in Line 5.
– In Line 7, each subproblem is selected for offspring generation and population

update in each generation.

Basically, the above algorithm framework is following the original MOEA/D
framework [17]. Line 8 generates a new solution y. There are various ways to
implement it. It should be noted that, in this paper, this procedure is the same
generation procedure as in MOEA/D-DE [17]. Line 10 tries to replace one solu-
tion in the current population by the trial solution y. In this paper, we use the
approach defined in [18]. In the next section, we emphasize the decomposition
tree initialization in Line 1, the decomposition tree update in Line 5.

2.2 Domain Decomposition

Let N0 be the desired population size. The domain decomposition process starts
by setting the decomposition tree as the weight domain, then recursively decom-
poses the subdomains until the number of weight vectors exceeds N0. Figure 1
illustrates the decomposition tree initialization process in the case of tri-objective
problems. Each edge of the weight simplex is cut into two equal-length edges and
some subdomains with equal size are generated. It can be deduced easily that
when decomposing a subdomain, 2m−1 new subdomains and 2m−1−1 new weight
vectors are generated.

Fig. 1. An illustration of decomposition tree initialization in the case of tri-objective
problems.

Let ei = (ei,1, ei,2, · · · , ei,m) denote the unit vector in the coordinate system
where ei,j = 0 if j �= i, and ei,i = 1. The decomposition tree initialization process
is shown in Algorithm 2.

Tree-Structured Decomposition and Adaptation in MOEA/D 363

Algorithm 2. Decomposition Tree Initialization
1 Set DT = {D1} where D1.p = 0, D1.O = ∅, and D1.W = {e1, · · · , em}.
2 while | ⋃

D∈DT D.W | < N0 do

3 Let D ∈ DT be a randomly chosen leaf node that has the lowest depth.

4 Decompose domain D into a set of subdomains, set the child nodes of D be these

subdomains, and add them to DT .

In Algorithm 2, we define the depth of the root node as 1, and the depth of
a child node is the depth of its parent node plus 1. Line 3 makes sure that it is
always a leaf node, which is most closet to the root node, to be decomposed. It
should also be noted that in Line 3, to keep the population size, not all the leaf
nodes with the same depth will be decomposed.

2.3 Domain Adaptation

As discussed previously, MOEA/D can obtain a set of well-distributed solutions
by setting proper weight vectors. To this end, we adaptively change the weight
vectors by adding some nodes in sparse areas and removing some nodes in dense
areas. This idea is implemented in TDA by adding some new subdomains and
removing some old nodes respectively.

(a) (b)

Fig. 2. An illustration of (a) deleting old domains and (b) inserting new domains in
the case of tri-objective problems.

Figure 2(a) illustrates, in the case of tri-objective problems, how to remove a
subdomain. It should be noted that not all subdomains can be removed, and a
removable subdomain is the one that contains only one level of child subdomains.
Once a subdomain is removed, some of the corresponding weight vectors and
subproblems are removed as well. Since a weight vector may be shared by several
subdomains, only the unused weights can be removed. Figure 2(b) illustrates, in
the case of tri-objective problems, how to add some subdomains. Some new
weight vectors and subproblems are added as well.

Let d(D) be a function that measures the search behavior, which is the
density in this paper, of subdomain D. We assume a lower d(D) value denotes
that subdomain D is dense while a higher d(D) value denotes that subdomain
D is sparse. The decomposition tree adaptation process is shown in Algorithm 3.

364 H. Zhang and A. Zhou

Algorithm 3. Decomposition Tree Adaptation
1 Let D1 ⊂ DT be the set of removable nodes, and sort them by an increasing order of their

d(·) values.

2 Let D2 ⊂ S be the set of leaf nodes, and sort them by a decreasing order of their d(·) values.

3 Set d1 = first(D1) and d2 = first(D2).

4 while |D1| > 0 and |D2| > 0 and d(d1) < d(d2) do

5 Delete node d1 from DT, and set D1 = D1\{d1}.
6 Decompose d2, add new nodes to DT, and set D2 = D2\{d2}.
7 Remove the parent node of d2 from D1 by setting D1 = D1\{parent(d2)}.
8 Resort D1 and D2, set d1 = first(D1) and d2 = first(D2).

We would like to make some comments on the algorithm.

– The process stops in Line 4 when there is no removable subdomain to delete,
or no subdomain to decompose, or the density of the subdomain to delete is
bigger than that of the one to decompose. The target is to make all subdo-
mains have the same density values and thus to obtain a set of well-distributed
final solutions.

– In each step, one subdomain is removed and one is decomposed. The target is
to keep a stable population size although the number of added weight vectors
may not be the same as the number of removed weight vectors.

– When a subdomain is deleted from DT in Line 5, the corresponding weight
vectors and subproblems are deleted as well if the weight vectors are not used
by other subdomains.

– When a subdomain is added to DT in Line 6, some new weight vectors
and subproblems are also added. Each new subproblem is initialized with a
randomly generated solution and with infinite objective values.

– In Line 7, the parent node of d2 is removed from D1 to prevent the newly
added subdomains to be deleted again in the next steps.

– d(·) is a function to measure subdomain by measuring its density. How to
define the function will be discussed later.

3 Subdomain Measurement

To implement MOEA/D-TDA, a key issue is on how to measure the subdomain.
Density might be a good choice in this case. We define the density of a simplex
as follows.

df(s) =
∑

wiwj∈s.E

||F (xi) − F (xj)||2
dx(s) =

∑

wiwj∈s.E

||xi − xj ||2
dw(s) =

∑

wiwj∈s.E

||wi − wj ||2
(1)

where wiwj is an edge in the simplex s, and || · ||2 denotes the L2 norm, xi and
xj are two solutions with wi and wj respectively. df(·), dx(·), and dw(·) measure
the density of the subdomain in the objective space, in the decision space, and
in the weight space respectively. It is clear that, if dw(·) is used, MOEA/D-TDA

Tree-Structured Decomposition and Adaptation in MOEA/D 365

is actually the original MOEA/D because the initial weight vectors are well-
distributed; otherwise if df(·) or dx(·) is used, MOEA/D-TDA will emphasize
the search behavior in either the objective space or the decision space. If we
attach more importance to the objective space, we name this version as TDA-F
while TDA-X for the version underlines the decision space.

It should be noted that the above measurements are just examples and other
subdomain measurements could be defined and used in MOEA/D-TDA. In fol-
lowing, we study the influence of the three subdomain measurements defined in
(1). We choose two problems, i.e., LZ3 [17] and its variant SLZ31, as examples in
the study. The parameter settings are as follows: the population size N = 300,
the number of decision variables n = 30, and the neighborhood size T = 20.
The parameters in offspring reproduction are δ = 0.9, F = 0.5, and η = 20. The
maximum FE number is 3 × 105 for all the algorithms. Each algorithm is exe-
cuted in each problem with 50 independent runs. For quantitative comparison,
the Inverted Generational Distance (IGD) metric [19] is used and the reference
point set has 1000 points.

0 200 400 600 800 1000
10−3

10−2

10−1

100

gen

IG
D

LZ3

dw
df
dx

0 200 400 600 800 1000
10−3

10−2

10−1

gen

IG
D

SLZ3

dw
df
dx

Fig. 3. The mean IGD metric values versus generations for MOEA/D-TDA with dif-
ferent density measurements on LZ3 and SLZ3.

The experimental results are shown in Fig. 3. From the figure, we can con-
clude that (a) it is hard to balance the population diversity in both the decision
and the objective spaces if the diversity maintains strategy is used only in one
space, and (b) in some cases, to keep the population diversity in the objective,
it is necessary to keep the population diversity in the decision space.

4 External Population

As discussed in the above section, in order to balance population diversity in
both the objective and decision spaces we need an external population (archive)
to MOEA/D-TDA. A step to maintain the external population should be added
to Algorithm 1 after Line 10. The two populations are with different usages: the

1 The LZ test instances are scaled by replace the original f1(x) function by 0.1f1(x).

366 H. Zhang and A. Zhou

internal population tries to approximate the PS in the decision space, and the
external population tries to approximate the PF in the objective space.

In the new approach, the offspring generation operation is based on the inter-
nal population, and the density measurement dx is applied to tune the subprob-
lems and thus to maintain the diversity of the internal population. The external
population is initialized as the internal population. The newly generated solu-
tions are used to update the external population. The solutions in the external
population will not be used for offspring generation, but they will be output as
the approximation result. It should be noted that any archive strategy can be
integrated into MOEA/D-TDA. In the following experiment, we consider the
following strategies: (a) NDS: the nondomination sorting scheme from NSGA-
II [5], (b) HBS: the hypervolume based selection from SMS-EMOA [8], and (c)
DBS: the population maintain strategy introduced in this paper with the density
measurement df(·).

A B C D

10−2

gen

IG
D

LZ3

A B C D

10−3

gen

IG
D

SLZ3

Fig. 4. Box-plots of IGD values of the final results obtained by the four algorithms
over 50 independent runs.

To demonstrate the contribution of external population the corresponding
maintain strategies, we empirically compare the following four algorithms on LZ3
and SLZ3: (a) A: MOEA/D-TDA with dw and without an external population,
i.e., the original MOEA/D, (b) B: MOEA/D-TDA with dx and with an external
population maintained by NDS, (c) C: MOEA/D-TDA with dx and with an
external population maintained by HBS, and (d) D: MOEA/D-TDA with dx
and with an external population maintained by DBS.

Figure 4 shows the box-plots of the IGD metric values of the final results
obtained by the four algorithms. From the figure, we can see that by using
external population, the approximation quality can be significantly improved.
Comparing the three external population maintain strategies, the experimental
results suggest that MOEA/D-TDA with NDS performs the best. The reason
might be that it is more suitable to approximate the PF especially when the PF
is scaled.

Tree-Structured Decomposition and Adaptation in MOEA/D 367

Table 1. The mean and standard deviation of IGD values obtained by five algorithms
over 50 runs on the LZ and SLZ suites.

LZ1 TDA-X 1.407e − 031.681e−05[4] SLZ1 TDA-X 8.847e − 041.384e−05[1]

TDA-F 1.403e − 031.288e−05[3] TDA-F 9.476e − 041.955e−05[2]

DE 1.280e − 033.029e−06[1] DE 3.339e − 031.113e−05[4]

M2M 1.391e − 035.464e−05[2] M2M 3.411e − 031.655e−04[5]

AWA 1.809e − 037.184e−05[5] AWA 1.017e − 031.511e−05[3]

LZ2 TDA-X 2.243e − 031.688e−04[1] SLZ2 TDA-X 9.417e − 042.946e−05[1]

TDA-F 2.539e − 031.767e−04[3] TDA-F 1.117e − 037.294e−05[2]

DE 2.429e − 032.395e−04[2] DE 3.709e − 032.853e−04[3]

M2M 3.157e − 037.434e−04[4] M2M 5.760e − 032.057e−03[4]

AWA 3.109e − 028.845e−03[5] AWA 1.219e − 025.529e−03[5]

LZ3 TDA-X 2.128e − 031.131e−04[1] SLZ3 TDA-X 9.521e − 042.799e−05[1]

TDA-F 2.160e − 031.674e−04[2] TDA-F 1.420e − 039.339e−04[2]

DE 2.549e − 031.241e−03[4] DE 3.518e − 031.934e−04[3]

M2M 2.327e − 031.821e−04[3] M2M 3.774e − 032.733e−04[4]

AWA 7.092e − 032.240e−03[5] AWA 5.082e − 032.638e−03[5]

LZ4 TDA-X 2.010e − 039.338e−05[1] SLZ4 TDA-X 9.371e − 043.229e−05[1]

TDA-F 2.192e − 032.031e−04[2] TDA-F 1.273e − 033.375e−04[2]

DE 3.016e − 031.512e−03[4] DE 3.544e − 031.481e−04[4]

M2M 2.966e − 036.310e−04[3] M2M 3.767e − 033.099e−04[5]

AWA 3.119e − 032.191e−04[5] AWA 1.457e − 032.386e−04[3]

LZ5 TDA-X 7.867e − 032.919e−03[4] SLZ5 TDA-X 2.967e − 038.921e−04[1]

TDA-F 6.872e − 031.391e−03[2] TDA-F 3.858e − 031.192e−03[2]

DE 7.091e − 031.537e−03[3] DE 4.185e − 038.924e−04[3]

M2M 4.240e − 034.501e−04[1] M2M 4.728e − 036.535e−04[4]

AWA 1.163e − 022.879e−03[5] AWA 6.727e − 032.693e−03[5]

LZ6 TDA-X 1.764e − 014.460e−02[4] SLZ6 TDA-X 1.787e − 019.593e−02[4]

TDA-F 2.587e − 014.757e−02[5] TDA-F 2.015e − 018.980e−02[5]

DE 3.015e − 025.592e−03[1] DE 8.681e − 021.326e−02[3]

M2M 6.748e − 022.449e−02[3] M2M 7.559e − 029.218e−03[2]

AWA 5.286e − 024.625e−03[2] AWA 3.230e − 029.002e−03[1]

LZ7 TDA-X 2.410e − 019.336e−02[5] SLZ7 TDA-X 5.807e − 025.907e−02[3]

TDA-F 2.342e − 018.378e−02[4] TDA-F 6.217e − 025.097e−02[4]

DE 8.053e − 028.047e−02[3] DE 3.842e − 022.723e−02[2]

M2M 5.082e − 026.167e−02[2] M2M 1.037e − 016.527e−02[5]

AWA 2.452e − 031.740e−04[1] AWA 1.087e − 032.781e−05[1]

LZ8 TDA-X 1.774e − 021.737e−02[3] SLZ8 TDA-X 3.048e − 031.409e−03[2]

TDA-F 2.086e − 022.080e−02[4] TDA-F 2.696e − 031.727e−03[1]

DE 3.653e − 035.015e−03[1] DE 5.008e − 037.817e−04[3]

M2M 1.060e − 024.170e−03[2] M2M 5.383e − 037.574e−04[4]

AWA 6.847e − 022.812e−02[5] AWA 1.444e − 021.589e−02[5]

LZ9 TDA-X 2.499e − 035.715e−04[2] SLZ9 TDA-X 1.080e − 039.872e−05[1]

TDA-F 3.998e − 031.559e−03[3] TDA-F 1.484e − 031.236e−04[2]

DE 2.311e − 031.561e−04[1] DE 6.135e − 031.927e−03[3]

M2M 4.874e − 031.894e−03[4] M2M 6.569e − 031.232e−03[4]

AWA 1.844e − 011.558e−02[5] AWA 3.887e − 022.324e−02[5]

Mean rank TDA-X 2.8 Mean rank TDA-X 1.7

TDA-F 3.1 TDA-F 2.4

DE 2.2 DE 3.1

M2M 2.7 M2M 4.1

AWA 4.2 AWA 4.7

368 H. Zhang and A. Zhou

Table 2. The mean and standard deviation of IGD values obtained by five algorithms
after different percentages of function evaluations over 50 runs on the GLT suite.

20% 60% 100%

GLT1 TDA-X 1.909e − 021.528e−02[4] 3.881e − 034.800e−03[4] 2.785e − 033.607e−03[4]

TDA-F 7.517e − 044.872e−05[1] 6.961e − 043.897e−05[1] 6.619e − 043.406e−05[1]

DE 1.259e − 033.918e−04[3] 1.178e − 034.929e−07[3] 1.177e − 031.519e−07[3]

M2M 1.182e − 038.326e−06[2] 1.160e − 035.941e−06[2] 1.146e − 036.267e−06[2]

AWA 4.146e − 011.495e−01[5] 3.395e − 022.862e−02[5] 1.612e − 022.325e−02[5]

GLT2 TDA-X 1.730e − 011.445e−01[3] 5.778e − 024.546e−02[2] 4.960e − 023.610e−02[3]

TDA-F 5.411e − 026.426e−02[1] 1.187e − 023.297e−03[1] 1.024e − 021.009e−03[1]

DE 1.506e − 011.592e−02[2] 1.524e − 015.333e−03[3] 1.527e − 013.876e−03[4]

M2M 1.962e − 015.300e−02[4] 1.654e − 016.687e−04[4] 1.656e − 012.359e−04[5]

AWA 2.040e + 001.076e+00[5] 2.386e − 012.329e−01[5] 1.569e − 021.060e−03[2]

GLT3 TDA-X 2.482e − 027.303e−03[4] 1.417e − 029.307e−03[4] 9.753e − 038.699e−03[4]

TDA-F 1.943e − 029.349e−03[3] 6.295e − 036.039e−03[2] 3.197e − 033.577e−03[1]

DE 1.607e − 021.004e−02[2] 8.553e − 035.942e−03[3] 8.115e − 035.284e−03[3]

M2M 6.466e − 034.056e−04[1] 5.982e − 032.015e−04[1] 5.881e − 039.950e−05[2]

AWA 2.151e − 014.782e−02[5] 1.094e − 014.817e−02[5] 6.073e − 022.317e−02[5]

GLT4 TDA-X 3.734e − 028.125e−02[4] 2.913e − 028.167e−02[4] 2.225e − 026.917e−02[4]

TDA-F 2.487e − 032.644e−03[1] 1.891e − 034.997e−05[1] 1.874e − 033.510e−05[1]

DE 1.218e − 024.398e−02[3] 5.185e − 031.110e−04[2] 5.167e − 031.129e−04[3]

M2M 5.550e − 034.575e−04[2] 5.217e − 032.316e−04[3] 5.155e − 031.298e−05[2]

AWA 4.843e − 011.649e−01[5] 6.700e − 025.839e−02[5] 2.883e − 025.044e−02[5]

GLT5 TDA-X 3.749e − 029.307e−03[2] 2.302e − 023.629e−03[3] 2.177e − 021.744e−03[3]

TDA-F 4.794e − 029.241e−03[3] 2.279e − 024.658e−03[2] 2.086e − 029.415e−04[1]

DE 2.589e − 021.601e−03[1] 2.187e − 021.618e−03[1] 2.098e − 021.171e−03[2]

M2M 5.220e − 026.313e−03[4] 5.402e − 026.722e−03[4] 5.471e − 026.731e−03[4]

AWA 2.404e − 012.345e−02[5] 1.917e − 012.291e−03[5] 1.860e − 011.156e−03[5]

GLT6 TDA-X 1.632e − 018.498e−03[3] 1.617e − 017.846e−03[3] 1.616e − 017.832e−03[3]

TDA-F 1.631e − 011.011e−03[2] 1.618e − 014.125e−04[4] 1.616e − 013.808e−04[4]

DE 1.636e − 014.821e−02[4] 1.496e − 015.359e−02[2] 1.436e − 015.559e−02[2]

M2M 3.800e − 025.870e−03[1] 3.813e − 026.428e−03[1] 4.077e − 026.389e−03[1]

AWA 3.375e − 014.023e−02[5] 2.354e − 011.011e−02[5] 2.301e − 019.980e−03[5]

Mean rank TDA-X 3.3 3.3 3.5

TDA-F 1.8 1.8 1.5

DE 2.5 2.3 2.8

M2M 2.3 2.5 2.7

AWA 5.0 5.0 4.5

5 Comparison Study

In this section, we study the performance of the proposed strategy with some
state-of-the-art algorithms on some test suites. The following algorithms are
compared: (a) TDA: MOEA/D-TDA with dx and with an external population
maintained by NDS, (b) DE : MOEA/D-DE [20], which is a conceptual MOEA/D
algorithm and is similar to MOEA/D-TDA with dw, (c) AWA: MOEA/D-
AWA [13], which is a variation of MOEA/D by adapting weight vectors in evo-
lution, and (d) M2M : MOEA/D-M2M [15], which decomposes an MOP into a
set of MOPs and tackle these MOPs simultaneously.

The first five instances in the LZ test suite [17], their variants, in which f1
is scaled to 10f1, and the GLT test suite [21] are used in the comparison study.

Tree-Structured Decomposition and Adaptation in MOEA/D 369

The variants of LZ1-LZ5 are called SLZ1-SLZ5 respectively. The experimental
settings are as follows. For MOEA/D-TDA and MOEA/D-DE the experimental
settings are the same as it is in Sect. 3. And for MOEA/D-AWA and MOEA/D-
M2M, the experimental settings are the same as it is in the original paper.

Table 1 presents the mean and variance of IGD values obtained over 50 runs
on LZ and SLZ test suites. On the LZ test suite, DE works the best and TDA-X
achieves the best performance on LZ2, LZ3, and LZ4. In the SLZ test suite,
TDA-X performs the best on all problems. The rank values obtained by the
algorithms also indicate similar results. Comparing to LZ, the SLZ problems
have more complex PF. This might be the reason that maintaining a well dis-
tributed population in the decision space is helpful for approximating the PF in
the objective space especially when problems are with complicated PFs. Table 2
presents the mean and variance of IGD values obtained by the algorithms with
different percentages of function evaluations. TDA-F achieves the best perfor-
mance on all problems except on GLT6. Besides, TDA-F always gains the best
rank value in every stage. The results indicate that TDA-F has better perfor-
mance in the problems complicated in objective space than other state-of-art
evolutionary algorithms.

6 Conclusions

This paper proposed a new adaptive strategy, called domain decomposition and
adaptation (TDA), to tune the weight vectors online in MOEA/D so as to find
good approximations to both PF and PS. The empirical studies indicated that
the search behavior measurement in the decision space is helpful and necessary to
maintain a good approximation to the PS. Since it is hard to approximate both
PS and PF well with a single population, an external archive is added to main-
tain a good approximation to the PF. Therefore, the proposed algorithm, called
MOEA/D-TDA, has two populations: an internal population, which is with the
subproblems that are adjusted by TDA, to approximate PS, and an external
population to approximate PF. Comparing to the basic algorithm MOEA/D-
DE, MOEA/D-TDA does not introduce additional control parameters.

The experimental study has demonstrated: (a) MOEA/D with a single pop-
ulation is hard to approximate both PS and PF, and a good approximation to
the PS is necessary to find a good approximation to the PF; (b) TDA with
a search behavior measurement in the decision space is helpful to find a good
approximation to the PS; and (c) an external archive is helpful to find a good
approximation to PF. A further systematic comparison study on several test
suites has indicated the advantages of MOEA/D-TDA over some state-of-the-
art MOEAs.

The success of TDA depends on two key issues: one is the domain decom-
position strategy, and the other is the search behavior measurement. For the
former, we use a simplex to represent the domain, and for the latter, we give an
initial study based on L2 norm in the three domains. It is no doubt that there
might be better ways to do so, and this is the target for future work. Besides,

370 H. Zhang and A. Zhou

in the proposed approach, the fineness of the weight vector distribution has a
fix pattern and the number of subdomains increases rapidly when the number
of objective increasing. These are the issues to be improved in the future.

Acknowledgement. This work is supported by the National Natural Science Foun-
dation of China under Grant No. 61731009, 61673180, and 61703382.

References

1. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,
Hoboken (2001)

2. Cartos Coelle Coello, G.B.L., Van Veldhuizen, D.A.: Evolutionary Algorithms for
Solving Multi-Objective Problems. Springer, Heidelberg (2002). https://doi.org/
10.1007/978-0-387-36797-2

3. Tan, K.C., Khor, E.F., Lee, T.H.: Multiobjective Evolutionary Algorithms and
Applications. Springer, Heidelberg (2006). https://doi.org/10.1007/1-84628-132-6

4. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evo-
lutionary algorithm. Evolutionary Methods for Design Optimisation and Control,
pp. 95–100 (2001)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

6. Rostami, S., Neri, F.: Covariance matrix adaptation pareto archived evolution
strategy with hypervolume-sorted adaptive grid algorithm. Integr. Comput.-Aided
Eng. 23(4), 313–329 (2016)

7. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X. (ed.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30217-9 84

8. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

9. Liu, H.-L., Gu, F., Cheung, Y.: T-MOEA/D: MOEA/D with objective transform in
multi-objective problems. In: 2010 International Conference of Information Science
and Management Engineering, vol. 2, pp. 282–285. IEEE (2010)

10. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

11. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multiobjective evo-
lutionary algorithms based on decomposition. IEEE Trans. Evol. Comput. PP(99),
1–23 (2016)

12. Li, H., Landa-Silva, D.: An adaptive evolutionary multi-objective approach based
on simulated annealing. Evol. Comput. 19(4), 561–595 (2011)

13. Qi, Y., Ma, X., Liu, F., Jiao, L., Sun, J., Wu, J.: MOEA/D with adaptive weight
adjustment. Evol. Comput. 22(2), 231–264 (2014)

14. Jiang, S., Cai, Z., Zhang, J., Ong, Y.-S.: Multiobjective optimization by decompo-
sition with Pareto-adaptive weight vectors. In: 2011 Seventh International Confer-
ence on Natural Computation (ICNC), vol. 3, pp. 1260–1264. IEEE (2011)

15. Liu, H.-L., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization
problem into a number of simple multiobjective subproblems. IEEE Trans. Evol.
Comput. 18(3), 450–455 (2014)

https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/1-84628-132-6
https://doi.org/10.1007/978-3-540-30217-9_84

Tree-Structured Decomposition and Adaptation in MOEA/D 371

16. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using
reference-point based nondominated sorting approach, part II: handling constraints
and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–
622 (2014)

17. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto
sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

18. Zhou, A., Zhang, Q.: Are all the subproblems equally important? Resource alloca-
tion in decomposition based multiobjective evolutionary algorithms. IEEE Trans.
Evol. Comput. 20(1), 52–64 (2016)

19. Zhou, A., Zhang, Q., Jin, Y., Tsang, E., Okabe, T.: A model-based evolution-
ary algorithm for bi-objective optimization. In: IEEE Congress on Evolutionary
Computation (CEC), vol. 3, pp. 2568–2575 (2005)

20. Li, Y., Zhou, A., Zhang, G.: An MOEA/D with multiple differential evolution
mutation operators. In: IEEE Congress on Evolutionary Computation (CEC), pp.
397–404 (2014)

21. Zhang, H., Zhou, A., Song, S., Zhang, Q., Gao, X.-Z., Zhang, J.: A self-organizing
multiobjective evolutionary algorithm. IEEE Trans. Evol. Comput. 20(5), 792–806
(2016)

Use of Reference Point Sets in a
Decomposition-Based Multi-Objective

Evolutionary Algorithm

Edgar Manoatl Lopez(B) and Carlos A. Coello Coello

Departamento de Computación, CINVESTAV-IPN
(Evolutionary Computation Group), 07300 México D.F., Mexico

emanoatl@computacion.cs.cinvestav.mx, ccoello@cs.cinvestav.mx

Abstract. In recent years, decomposition-based multi-objective evolu-
tionary algorithms (MOEAs) have gained increasing popularity. How-
ever, these MOEAs depend on the consistency between the Pareto front
shape and the distribution of the reference weight vectors. In this paper,
we propose a decomposition-based MOEA, which uses the modified
Euclidean distance (d+) as a scalar aggregation function. The proposed
approach adopts a novel method for approximating the reference set,
based on an hypercube-based method, in order to adapt the reference
set for leading the evolutionary process. Our preliminary results indi-
cate that our proposed approach is able to obtain solutions of a similar
quality to those obtained by state-of-the-art MOEAs such as MOMBI-
II, NSGA-III, RVEA and MOEA/DD in several MOPs, and is able to
outperform them in problems with complicated Pareto fronts.

1 Introduction

Many real-world problems have several (often conflicting) objectives which need
to be optimized at the same time. They are known as Multi-objective Opti-
mization Problems (MOPs) and their solution gives rise to a set of solutions
that represent the best possible trade-offs among the objectives. These solutions
constitute the so-called Pareto optimal set and their image is called the Pareto
Optimal Front (POF). Over the years, Multi-Objective Evolutionary Algorithms
(MOEAs) have become an increasingly common approach for solving MOPs,
mainly because of their conceptual simplicity, ease of use and efficiency.

Decomposition-based MOEAs transform a MOP into a group of sub-
problems, in such a way that each sub-subproblem is defined by a reference
weight point. Then, all these sub-problems are simultaneously solved using a
single-objective optimizer [16]. Because of their effectiveness (e.g., with respect

The first author acknowledges support from CONACyT and CINVESTAV-IPN to
pursue graduate studies in Computer Science. The second author gratefully acknowl-
edges support from CONACyT project no. 221551.

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 372–383, 2018.
https://doi.org/10.1007/978-3-319-99253-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_30&domain=pdf

Use of Reference Point Sets in a Decomposition-Based MOEA 373

to Pareto-based MOEAs1) and efficiency,2 decomposition-based MOEAs have
become quite popular in recent years both in traditional MOPs and in many-
objective problems (i.e., MOPs having four or more objectives).

However, the main disadvantage of decomposition-based MOEAs is that the
diversity of its selection mechanism is led explicitly by the reference weight
vectors (normally the weight vectors are distributed in a unit simplex). This
makes them unable to properly solve MOPs with complicated Pareto fronts
(i.e., Pareto fronts with irregular shapes).

Decomposition-based MOEAs are appropriate for solving MOPs with regu-
lar Pareto front (i.e., those sharing the same shape of a unit simplex). There is
experimental evidence that indicates that decomposition-based MOEAs are not
able to generate good approximations to MOPs having disconnected, degener-
ated, badly-scaled or other irregular Pareto front shapes [2,5].

Here, we propose a decomposition-based MOEA, which adopts the modified
Euclidean distance (d+) as a scalar aggregation function. This approach is able
to switch between a PBI scalar aggregation function and the d+ distance in
order to lead the optimization process. In order to adopt the d+ distance, we
also incorporate an adaptive method for building the reference set. This method
is based on the creation of hypercubes, which uses an archive for preserving good
candidate solutions. We show that the resulting decomposition-based MOEA has
a competitive performance with respect to state-of-the-art MOEAs, and that is
able to properly deal with MOPs having complicated Pareto fronts.

The remainder of this paper is organized as follows. Section 2 provides some
basic concepts related to multi-objective optimization. Our decomposition-based
MOEA is described in Sect. 3. In Sect. 4, we present our methodology and a short
discussion of our preliminary results. Finally, our conclusions and some possible
paths for future research are provided in Sect. 5.

2 Basic Concepts

Formally a MOP in terms of minimization is defined as:

minimize f (x) := [f1(x), f2(x), . . . , fm(x)]T (1)

subject to:
gi(x) ≤ 0, i = 1, 2, . . . , p (2)

hj(x) = 0, j = 1, 2, . . . , q (3)

where x = [x1, x2, . . . , xn] is the vector of decision variables, fi : R
n → R,

i = 1, . . . ,m are the objective functions and gi, hj : R
n → R, i = 0, . . . , p,

j = 1, . . . , q are the constraint functions of the problem.

1 It is well-known that Pareto-based MOEAs cannot properly solve many-objective
problems [12].

2 The running time of decomposition-based MOEAs is lower than that of indicator-
based MOEAs [1,9] and reference-based MOEAs [14].

374 E. Manoatl Lopez and C. A. Coello Coello

We also need to provide more details about the IGD+ indicator, which uses
the modified Euclidean distance that we adopt in our proposal. According to
[11], the IGD+ indicator can be described as follows:

IGD+(A,Z) =
1

|Z|

⎛
⎝

|Z|∑
j=1

d+j (z ,a)
p

⎞
⎠

1/p

(4)

where a ∈ A ⊂ R
m, z ∈ Z ⊂ R

m, A is the Pareto front set approximation and
Z is the reference set. d+(a , z) is defined as:

d+(z ,a) =
√

(max{a1 − z1, 0})2, . . . , (max{am − zm, 0})2. (5)

Therefore, we can see that the set A represents a better approximation to the
real PF when we obtain a lower IGD+ value, if we consider the reference set
as PFTrue. IGD+ was shown to be weakly Pareto complaint, and this indicator
presents some advantages with respect to the original Inverted Generational
Distance (for more details about IGD and IGD+, see [4] and [11] respectively).

3 Our Proposed Approach

3.1 General Framework

Our approach adopts the same structure of the original MOEA/D [16], but we
include some improvements in order to solve MOPs with complicated Pareto
fronts. Our approach has the following features: (1) An archiving process for
preserving candidate solutions which will form the reference set; (2) a method
for adapting the reference set in order to sample uniformly the Pareto front;
and (3) a rule for updating the reference set. Algorithm1 shows the details of
our proposed approach. Our proposed MOEA decomposes the MOP into scalar
optimization subproblems, where each subproblem is solved simultaneously by an
evolutionary algorithm (same as the original MOEA/D). The population, at each
generation, is composed by the best solution found so far for each subproblem.
Each subproblem is solved by using information only from its neighborhood,
where each neighborhood is defined by the n candidate solutions which have
the nearest distance based on the scalar aggregation function. The reference
update process is launched when certain percentage of the evolutionary process
(defined by “UpdatePercent”) is reached. The reference update process starts to
store the non-dominated solutions in order to sample the shape of the Pareto
front. When the cardinality of the set |A| is equal to “ArchiveSize”, the reference
method is launched for selecting the best candidate solutions, which will form the
new reference set. Once this is done, the scalar aggregation function is updated
by choosing the modified Euclidean distance (d+) (see Eq. (4)), and the set A
is cleaned up. The number of allowable updates is controlled by the variable
“maxUpdates”.

Use of Reference Point Sets in a Decomposition-Based MOEA 375

Algorithm 1. General Framework
Input: A MOP, a stopping criterion, N subproblems, a uniform spread of N reference

vectors: λ1 . . . λN , number of solutions in the neighborhood and a scalar aggregation

function (g).

Output: Approximation of the MOP

1: Create each neighborhood for every reference vector: B(i);

2: Generate an initial population randomly (xi, . . . , xN) ∈ X ;

3: t ← 0;

4: A ← {};
5: while t < genmax do

6: for each B(i) ∈ B do

7: Apply evolutionary operators: Randomly select two parents from B(i) and

create an individual y;

8: Improvement: Apply a problem-specific repair/improvement heuristic on y

to produce y′;
9: for each j ∈ B(i) do

10: if g(F (y′), λj) < g(F (xj), λ
j) then

11: xj ← y′;
12: end if

13: end for

14: Update of Neighboring Solutions: For each index in B(i) ;

15: if t > UpdatePercent then

16: if |A| < ArchiveSize then

17: A ← nonDominated(A ∪ y′);
18: yref ← getNadirPoint(A);

19: end if

20: if |A| == ArchiveSize and Updates < maxUpdates then

21: λ1 . . . λN ← ComputeReferenceSet(A, yref , zsize);

22: g(.) ← d+;

23: A ← {};
24: Updates ← Updates + 1;

25: end if

26: end if

27: end for

28: t ← t + 1;

29: end while

30: Q ← non-Dominated (F (X));

31: return Q, X;

3.2 Archiving Process

As mentioned before, the archive stores non-dominated solutions, up to a maxi-
mum number of solutions defined by the “ArchiveSize” value. When the archive
reaches its maximum capacity, the approximation reference algorithm is exe-
cuted for selecting candidate solutions (these candidate solutions will form the
so-called candidate reference set). After that, the archive is cleaned and the
archiving process continues until reaching a maximum number of updates. The
archiving process is applied after a 60% of the total number of generations. It
is worth mentioning that the candidate reference set is not compatible with the

376 E. Manoatl Lopez and C. A. Coello Coello

weight relation rule3, which implies that it is not possible to use the Tchebycheff
scalar aggregation function for leading the search. However, the PBI function
works because it only requires directions (for more details see [16]).

3.3 Reference Set

In our approach, we aim to select the best candidate points whose directions are
promising (these candidate solutions will sample the Pareto front as uniformly
as possible). The main idea is to apply a density estimator. For this reason, we
propose to use an algorithm based on the hypercube contributions to select a
certain number of reference points from the archive. Algorithm2 provides the
pseudo-code of an approach that is invoked with a set of non-dominated can-
didate points (called A set) and the maximum number of reference points that
we aim to find. The algorithm is organized in two main parts. In the first loop,
we create a set of initial candidate solutions to form the so-called Q set. Thus,
the solutions from A that form part of Q will be removed from A. After that,
the greedy algorithm starts to find the best candidate solutions which will form
the reference set Z. In order to find the candidate reference points, the selec-
tion mechanism computes the hypercube contributions of the current reference
set Q. Once this is done, we remove the ith solution that minimizes the hyper-
cube value and we add a new candidate solution from A to Q. This process
is executed until the cardinality of A is equal to zero. In the line 21 of Algo-
rithm2, we apply the expand and translate operations. A hypercube is generated
by the union of all the maximum volumes covered by a reference point. The ith

maximum volume is described as “the maximum volume generated by a set of
candidate points” (these candidate points are obtained from the archive using a
reference point yref). The hypercube is computed using Algorithm3. The main
idea of this algorithm is to add all the maximum volumes, which are defined
by the maximum point and the reference point (yref). When a certain point
is considered to be the maximum point, the objective space is split between m
parts. The maximum point is removed from the set Q. This process is repeated
until Q is empty.

In the first part of Algorithm3, we validate if Q contains one element. If that
is the case, we compute the volume generated by yref and q ∈ Q. Otherwise,
we compute the union of all the maximum hypercubes. In order to apply this
procedure, we find the vector qmax that maximizes the hypercube. Once this
is done, we create m reference points which will form the so-called Y set. For
each reference point from Y, we reduce the set Q into a small subset in order
to form the set Qnew. Once this is done, we proceed to compute recursively the
hypercube value of the new set formed by the subset Qnew and the new reference
point ynew. It is worth noting that this value allows to measure the relationship
among each element of a non-dominated set.

3 The weights of the reference point problem should be
∑m

i=0 λi = 1.

Use of Reference Point Sets in a Decomposition-Based MOEA 377

Algorithm 2. ComputeReferenceSet(A, zsize)
Input: A current non-dominated set A ⊂ R

m and maximum number of reference
points zsize.

Output: Reference point set Z ⊂ R
m with |Z| = zsize

1: yref ← FindMaxV alue(A) + ε;
2: Q ← {};
3: while |Q| < (zsize + 1) do
4: a ← pop(A);
5: Q ⋃{a} ;
6: end while
7: while A! = {} do
8: i ← 0;
9: maxHypercube ← HCB(Q, yref);

10: for each q ∈ Q do
11: ContHyperCube[i] ← maxHypercube − HCB(Q\{q}, yref);
12: i ← i + 1;
13: end for
14: imin ← argmin ContHyperCube;
15: Q\{qimin};
16: a ← pop(A);
17: Q ⋃{a};
18: end while
19: Z ← {};
20: for each q ∈ Q do
21: Z ⋃{q ∗ ε − l};
22: end for
23: return Z;

4 Experimental Results

We compare the performance of our approach with respect to that of four state-
of-the-art MOEAs: MOEA/DD [13], NSGA-III [5], RVEA [2], and MOMBI-II
[9]. These MOEAs had been found to be competitive in MOPs with a vari-
ety of Pareto front shapes. MOEA/DD [13] is an extension of MOEA/D which
includes the Pareto dominance relation to select candidate solutions and is able
to outperform the original MOEA/D, particularly in many-objective problems
having up to 15 objectives. NSGA-III [5] uses a distributed set of reference points
to manage the diversity of the candidate solutions, with the aim of improving
convergence. The Reference Vector Guided Evolutionary Algorithm (RVEA) [2]
provides very competitive results in MOPs with complicated Pareto fronts. Many
Objective Meta-heuristic Based on the R2 indicator (MOMBI) [8] adopts the use
of weight vectors and the R2 indicator, and both mechanisms lead the optimiza-
tion process. MOMBI is very competitive but it tends to lose diversity in high
dimensionality. This study includes an improved version of this approach, called
MOMBI-II [9].

378 E. Manoatl Lopez and C. A. Coello Coello

Algorithm 3. HCB(Q, yref)
Input: A current set Q ⊂ R

m and a reference point yref

Output: Hypercube value
1: if |Q| = 1 then
2: return vol(Q, yref);
3: end if
4: V olList ← {};
5: for each p ∈ Q′ do
6: V olList

⋃{vol(p, yref)};
7: end for
8: imax ← argmax V olList;
9: qmax ← Q[imax] ;

10: Y ← SplitReferencePoint (qmax, yref);
11: Q ← Q\{qmax};
12: hypercube ← 0;
13: for each ynew ∈ Y do
14: Qnew ← CoverPoints (Q,ynew);
15: hypercube ← hypercube + HCB(Qnew,ynew);
16: end for
17: return hypercube + max(V olList);

4.1 Methodology

For our comparative study, we decided to adopt the Hypervolume indicator, due
to this indicator is able to assess both convergence and maximum spread along
the Pareto front. The reference points used in our preliminary study are shown
in Table 1.

Table 1. Reference points used for the hypervolume indicator

Problem Reference point Problem Reference point

DTLZ1 (1, 1, 1) VNT1 (5, 6, 5)

DTLZ2-6 (2, 2, 2) VNT2 (5, −15, −11)

DTLZ7 (2, 2, 7) VNT3 (9, 18, 5)

MAF1-3 (2, 2, 2) WFG1 (3, 5, 7)

MAF4 (3, 5, 9) WFG2 (2, 4, 7)

MAF5 (9, 5, 3) WFG3 (2, 3, 7)

We aimed to study the performance of our proposed approach when solving
MOPs with complicated Pareto front shapes. For this reason, we selected 18
test problems with a variety of representative Pareto front shapes from some
well-known and recently proposed test suites: the DTLZ [7], the WFG [10], the
MAF [3] and the VNT test suites [15].

Use of Reference Point Sets in a Decomposition-Based MOEA 379

4.2 Parameterization

In the MAF and DTLZ test suites, the total number of decision variables is given
by n = m + k − 1, where m is the number of objectives and k was set to 5 for
DTLZ1 and MAF1, and to 10 for DTLZ2-6, and MAF2-5. The number of decision
variables in the WFG test suite was set to 24, and the position-related parameter
was set to m−1. The distribution indexes for the Simulated Binary crossver and
the polynomial-based mutation operators [6] adopted by all algorithms, were
set to: ηc = 20 and ηm = 20, respectively. The crossover probability was set
to pc = 0.9 and the mutation probability was set to pm = 1/L, where L is
the number of decision variables. The total number of function evaluations was
set in such a way that it did not exceed 60,000. In MOEA/DD, MOMBI-II
and NSGA-III, the number of weight vectors was set to the same value as the
population size. The population size N is dependent on H. For this reason, for
all test problems, the population size was set to 120 for each MOEA. In RVEA,
the rate of change of the penalty function and the frequency to conduct the
reference vector adaptation were set to 2 and 0.1, respectively. Our approach
was tested using a PBI scalar aggregation function and the modified Euclidean
distance (d+). The maximum number of elements allowed in the archive was set
to 500 and the maximum number of reference updates was set to 5.

4.3 Discussion of Results

Table 2 shows the average hypervolume values of 30 independent executions of
each MOEA for each instance of the DTLZ, VNT, MAF and WFG test suites,
where the best results are shown in boldface and grey-colored cells contain the
second best results. The values in parentheses show the variance for each prob-
lem. We adopted the Wilcoxon rank sum test in order to compare the results
obtained by our proposed MOEA and its competitors at a significance level
of 0.05, where the symbol “+” indicates that the compared algorithm is sig-
nificantly outperformed by our approach. On the other hand, the symbol “−”
means that MOEA/DR is significantly outperformed by its competitor. Finally,
“≈” indicates that there is no statistically significant difference between the
results obtained by our approach and its competitor.

As can be seen in Table 2, our MOEA was able to outperform MOMBI-II,
RVEA, MOEA/DD, and NSGA-III in seven instances and in several other cases,
it obtained very similar results to those of the best performer. We can see that
our approach outperformed its competitors in MOPs with degenerate Pareto
fronts (DTLZ5-6 and VNT2-3). In this study, MOMBI-II is ranked as the second
best overall performer, because it was able to outperform its competitors in four
cases. It is worth mentioning that all the adopted MOEAs are very competitive
because the final set of solutions obtained by them has similar quality in terms
of the hypervolume indicator.

Figures 1, 2, 3 and 4 show a graphical representation of the final set of solu-
tions obtained by each MOEA. On the MOPs with inverted Simplex-like Pareto
fronts, our algorithm had a good performance (see Fig. 1). Figures 1a to e show

380 E. Manoatl Lopez and C. A. Coello Coello

Table 2. Performance comparison among several MOEAs using the average hypervol-
ume values obtained from 30 independent executions solving 18 benchmark problems
for 3 objectives.

MOMBI-II RVEA MOEA/DD NSGA-III MOEA/DR

DTLZ1 0.96622 (0.000001) + 0.66911 (0.000152) + 0.97379 (0.000000) ≈ 0.96256 (0.001064) + 0.97265 (0.000007)
DTLZ2 7.36755 (0.000028) + 7.42224 (0.000000) ≈ 7.42234 (0.000000) ≈ 7.41893 (0.000000) + 7.42684 (0.000143)
DTLZ3 7.38843 (0.000084) - 7.40582 (0.000084) - 7.4118 (0.000047) - 7.38048 (0.000258) - 7.26131 (0.000248)
DTLZ4 7.3593 (0.036144) - 7.42226 (0.000000) - 7.42224 (0.000000) - 7.10506 (0.227356) ≈ 7.10433 (1.093691)
DTLZ5 6.00978 (0.000000) + 5.9632 (0.000369) + 6.02456 (0.000062) + 5.84002 (0.05518) + 6.10349 (0.000002)
DTLZ6 5.79608 (0.00523) + 5.13815 (0.016264) + 5.6037 (0.006442) + 5.49135 (0.023354) + 5.84857 (0.003765)
DTLZ7 13.37473 (0.000091) - 13.0605 (1.283746) - 12.99409 (0.015542) ≈ 13.32733 (0.002554) - 12.37989 (0.181549)
VNT1 61.44939 (0.000533) + 60.51323 (0.011862) + 60.55111 (0.021176) + 61.19214 (0.011932) + 61.88114 (0.512056)
VNT2 7.79702 (0.000001) + 7.7712 (0.000368) + 7.80468 (0.000037) 7.77446 (0.000935) + 7.84291 (0.000554)
VNT3 15.11767 (0.000262) + 15.03082 (0.000422) + 15.06016 (0.000114) + 15.12629 (0.000502) + 15.15149 (6.685422)
MAF1 5.44926 (0.000019) - 5.37408 (0.000659) + 5.37139 (0.00009) + 5.4129 (0.000875) - 5.3986 (0.013358)
MAF2 5.08952 (0.000056) 5.1583 (0.000058) ≈ 5.11373 (0.000003) + 5.09758 (0.000043) + 5.14115 (0.000105)
MAF3 7.90637 (0.000043) - 7.91154 (0.004847) - 7.64261 (1.915744) + 7.89441 (0.00452) - 7.82731 (0.000558)
MAF4 84.87316 (0.151259) - 83.53436 (29.511151) - 51.80943 (1120.296924) + 83.73257 (1.377427) - 75.81219 (4.084039)
MAF5 95.97704 (52.294491) + 96.66782 (53.122845) + 96.95207 (0.017991) + 88.72762 (237.475764) + 98.26977 (44.804422)
WFG1 50.38691 (7.353216) - 51.68413 (5.001739) - 41.77398 (7.334821) + 44.95726 (10.36034) ≈ 43.02462 (6.595565)
WFG2 48.72516 (12.06217) - 51.14414 (0.045119) - 44.23925 (3.146579) + 48.14747 (12.622738) - 46.87356 (1.171321)
WFG3 24.28138 (0.007298) - 22.12339 (0.086504) - 21.04349 (0.178677) - 23.54542 (0.037132) - 16.85662 (0.76122)

that the solutions produced by all the MOEAs adopted have a good coverage
of the corresponding Pareto fronts. However, the solutions of MOMBI-II and
NSGA-III are not distributed very uniformly, while the solutions of RVEA and
MOEA/DD are distributed uniformly but their number is apparently less than
their population size. On MOPs with badly-scaled Pareto fronts, our approach
was able to obtain the best approximation (see Fig. 2). Figures 2a to e show that
the solutions produced by all the MOEAs adopted are distributed very uniformly.
On MOPs with degenerate Pareto fronts, it is clear that the winner in this cate-
gory is our algorithm since the solutions of NSGA-III, RVEA and MOEA/DD are
not distributed very uniformly, and they were not able to converge (see Fig. 3).
On MOPs with disconnected Pareto fronts, our approach did not perform better
than the other MOEAs. The reason is probably that the evolutionary operators
were not able to generate solutions in the whole objective space, which makes
the approximations produced by our approach to converge to a single region.
Figure 4 shows that RVEA was able to obtain the best approximation in DTLZ7
since its approximation is distributed uniformly along the Pareto front.

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

f3

f1f2

f3

(a) MOMBI-II

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

f3

f1f2

f3

(b) RVEA

 0 0.2 0.4 0.6 0.8 1 1.2

 0 0.2 0.4 0.6 0.8 1 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f3

f1f2

f3

(c) MOEA/DD

 0 0.2 0.4 0.6 0.8 1 1.2

 0 0.2 0.4 0.6 0.8 1 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f3

f1f2

f3

(d) NSGA-III

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

f3

f1f2

f3

(e) MOEA/DR

Fig. 1. Graphical representation of the final set of solutions obtained by each MOEA
on MAF1 with 3 objectives

Use of Reference Point Sets in a Decomposition-Based MOEA 381

 0 1 2 3 4 5 6 7 8

 0 0.5 1 1.5 2 2.5 3 3.5 4

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

f3

f1f2

f3

(a) MOMBI-II

 0 1 2 3 4 5 6 7 8 9

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 0

 0.5

 1

 1.5

 2

 2.5

f3

f1f2

f3

(b) RVEA

 0 1 2 3 4 5 6 7 8 9

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 0

 0.5

 1

 1.5

 2

 2.5

f3

f1f2

f3

(c) MOEA/DD

 0 1 2 3 4 5 6 7 8 9

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 0

 0.5

 1

 1.5

 2

 2.5

f3

f1f2

f3

(d) NSGA-III

 0 1 2 3 4 5 6 7 8 9

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 0

 0.5

 1

 1.5

 2

 2.5

f3

f1f2

f3

(e) MOEA/DR

Fig. 2. Graphical representation of the final set of solutions obtained by each MOEA
on MAF5 with 3 objectives

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f3

f1

f2

f3

(a) MOMBI-II

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

f3

f1

f2

f3

(b) RVEA

 0
 0.5

 1
 1.5

 2
 2.5 0

 0.5
 1

 1.5
 2

 2.5
 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

f3

f1

f2

f3

(c) MOEA/DD

 0
 0.5

 1
 1.5

 2
 2.5 0

 0.2
 0.4

 0.6
 0.8

 1
 1.2

 1.4
 1.6

 1.8
 2

 0

 0.5

 1

 1.5

 2

 2.5

f3

f1

f2

f3

(d) NSGA-III

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

f3

f1

f2

f3

(e) MOEA/DR

Fig. 3. Graphical representation of the final set of solutions obtained by each MOEA
on DTLZ6 with 3 objectives

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

f3

f1

f2

f3

(a) MOMBI-II

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

f3

f1

f2

f3

(b) RVEA

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5

f3

f1

f2

f3

(c) MOEA/DD

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5

f3

f1

f2

f3

(d) NSGA-III

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5

f3

f1

f2

f3

(e) MOEA/DR

Fig. 4. Graphical representation of the final set of solutions obtained by each MOEA
on DTLZ7 with 3 objectives

5 Conclusions and Future Work

We have proposed a decomposition-based MOEA for solving MOPs with differ-
ent Pareto front shapes (i.e. those having complicated Pareto front shapes). The
core idea of our proposed approach is to adopt the modified Euclidean distance
(d+) as a scalar aggregation function. Additionally, our proposal introduces a
novel method for approximating the reference set, based on an hypercube-based
method, in order to adapt the reference set to address the evolutionary process.
Our results show that our method for adapting the reference point set improves
the performance of the original MOEA/D. As can be observed, the reference set
is of utmost importance since our approach leads its search process using a set of
reference points. Our preliminary results indicate that our approach is very com-
petitive with respect to MOMBI-II, RVEA, MOEA/DD and NSGA-III, being
able to outperform them in seven benchmark problems. Based on such results,
we claim that our proposed approach is a competitive alternative to deal with
MOPs having complicated Pareto front shapes. As part of our future work, we
are interested in studying the sensitivity of our proposed approach to its param-
eters. We also intend to improve its performance in those cases in which it was
not the best performer.

382 E. Manoatl Lopez and C. A. Coello Coello

References

1. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

2. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolution-
ary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5),
773–791 (2016)

3. Cheng, R., et al.: A benchmark test suite for evolutionary many-objective opti-
mization. Complex Intell. Syst. 3(1), 67–81 (2017)

4. Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolu-
tionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa,
G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688–
697. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24694-7 71

5. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evo-
lutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R.
(eds.) Evolutionary Multiobjective Optimization. Theoretical Advances and Appli-
cations, pp. 105–145. Springer, USA (2005). https://doi.org/10.1007/1-84628-137-
7 6

8. Hernández Gómez, R., Coello Coello, C.A.: MOMBI: a new metaheuristic for
many-objective optimization based on the R2 indicator. In: 2013 IEEE Congress
on Evolutionary Computation (CEC 2013), Cancún, México, 20–23 June 2013, pp.
2488–2495. IEEE Press (2013). ISBN 978-1-4799-0454-9

9. Hernández Gómez, R., Coello Coello, C.A.: Improved metaheuristic based on the
R2 indicator for many-objective optimization. In: 2015 Genetic and Evolutionary
Computation Conference (GECCO 2015), Madrid, Spain, 11–15 July 2015, pp.
679–686. ACM Press (2015). ISBN 978-1-4503-3472-3

10. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5),
477–506 (2006)

11. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation
in generational distance and inverted generational distance. In: Gaspar-Cunha,
A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp.
110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1 8

12. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimiza-
tion: a short review. In: 2008 Congress on Evolutionary Computation (CEC 2008),
Hong Kong, June 2008, pp. 2424–2431. IEEE Service Center (2008)

13. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimiza-
tion algorithm based on dominance and decomposition. IEEE Trans. Evol. Com-
put. 19(5), 694–716 (2015)

14. Manoatl Lopez, E., Coello Coello, C.A.: IGD+-EMOA: a multi-objective evolu-
tionary algorithm based on IGD+. In: 2016 IEEE Congress on Evolutionary Com-
putation (CEC 2016), Vancouver, Canada, 24–29 July 2016, pp. 999–1006. IEEE
Press (2016). ISBN 978-1-5090-0623-9

https://doi.org/10.1007/978-3-540-24694-7_71
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/978-3-319-15892-1_8

Use of Reference Point Sets in a Decomposition-Based MOEA 383

15. Veldhuizen, D.A.V.: Multiobjective evolutionary algorithms: classifications, anal-
yses, and new innovations. Ph.D. thesis, Department of Electrical and Computer
Engineering. Graduate School of Engineering. Air Force Institute of Technology,
Wright-Patterson AFB, Ohio, USA, May 1999

16. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

Use of Two Reference Points in Hypervolume-
Based Evolutionary Multiobjective

Optimization Algorithms

Hisao Ishibuchi1(&), Ryo Imada2, Naoki Masuyama2,
and Yusuke Nojima2

1 Shenzhen Key Laboratory of Computational Intelligence,
Department of Computer Science and Engineering,

Southern University of Science and Technology, Shenzhen 518055, China
hisao@sustc.edu.cn

2 Department of Computer Science and Intelligent Systems,
Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho,

Naka-ku, Sakai, Osaka 599-8531, Japan
ryo.imada@ci.cs.osakafu-u.ac.jp,

{masuyama,nojima}@cs.osakafu-u.ac.jp

Abstract. Recently it was reported that the location of a reference point has a
dominant effect on the optimal distribution of solutions for hypervolume max-
imization when multiobjective problems have inverted triangular Pareto fronts.
This implies that the use of an appropriate reference point is indispensable when
hypervolume-based EMO (evolutionary multiobjective optimization) algorithms
are applied to such a problem. However, its appropriate reference point speci-
fication is difficult since it depends on various factors such as the shape of the
Pareto front (e.g., triangular, inverted triangular), its curvature property (e.g.,
linear, convex, concave), the population size, and the number of objectives. To
avoid this difficulty, we propose an idea of using two reference points: one is the
nadir point, and the other is a point far away from the Pareto front. In this paper,
first we demonstrate that the effect of the reference point is strongly problem-
dependent. Next we propose an idea of using two reference points and its simple
implementation. Then we examine the effectiveness of the proposed idea by
comparing two hypervolume-based EMO algorithms: one with a single refer-
ence point and the other with two reference points.

Keywords: Evolutionary multiobjective optimization (EMO)
Hypervolume-based algorithms � Reference point specification
Hypervolume contribution

1 Introduction

The hypervolume indicator [25] has been used for performance comparison in the
EMO (evolutionary multiobjective optimization) community [26] due to its Pareto
compliant property [24]. The hypervolume indicator has also been used in indicator-
based EMO algorithms such as SMS-EMOA [3, 8], HypE [2], and FV-MOEA [18]. In

© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 384–396, 2018.
https://doi.org/10.1007/978-3-319-99253-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_31&domain=pdf

this paper, these algorithms are referred to as the hypervolume-based EMO algorithms.
Their high performance on many-objective problems has been reported in the literature
[10, 21, 22] in comparison with Pareto dominance-based EMO algorithms (e.g.,
NSGA-II [6]). Whereas the Pareto dominance-based selection pressure towards the
Pareto front is severely weakened by the increase in the number of objectives, the
hypervolume indicator can drive the population towards the Pareto front (usually at the
cost of large computation load for many-objective problems [10]).

Properties of the hypervolume indicator can be visually examined by using the
optimal distribution of solutions for hypervolume maximization. The optimal distri-
bution has been theoretically derived for two-objective problems [1, 4] and empirically
shown for multiobjective problems with three or more objectives [12–14]. Let us
consider a two-objective minimization problem whose Pareto front is a straight line
between (0, 1) and (1, 0) in a two-dimensional objective space. In Fig. 1, the Pareto
front is shown by the red line. The optimal distribution of l solutions for hypervolume
maximization is the equidistant distribution including (0, 1) and (1, 0) if the reference
point r = (r, r) for hypervolume calculation satisfies r� 1þ 1=ðl� 1Þ [1, 4]. This
condition is r� 1:25 in Fig. 1 with l = 5. Thus the optimal distribution includes the
two extreme points (0, 1) and (1, 0) of the Pareto front when r� 1:25 as shown in
Fig. 1(c) and (d). When r < 1.25, these two points are not included in the optimal
distribution as shown in Fig. 1(a) and (b). It should be noted that the location of the
reference point has no effect on the optimal distribution of solutions in Fig. 1 when
r� 1:25. This observation suggests the use of a reference point which is far away from
the Pareto front. Actually, the use of an infinitely large (i.e., distant) reference point in
SMS-EMOA was mentioned in [8]. The reference point in SMS-EMOA in [3] was
specified by adding 1.0 to the estimated nadir point in each generation (i.e., 2.0 in
Fig. 1 if the true nadir point is correctly estimated).

The above discussions imply that the reference point specification is not important
in the hypervolume-based EMO algorithms. When the reference point is far away from
the Pareto front of the two-objective minimization problem as in Fig. 1(d), the
hypervolume-based EMO algorithms work well. In this case, the two extreme points (0,
1) and (1, 0) have much larger hypervolume contributions than the other three inside

0 f1

f2

1.0

1.0 r 1.1

0 f1

f2

1.1

r

0 f1

f2

1.25

1.25 r

0 f1

f2

1.5

r1.5

(a) r = 1.0 (nadir point). (b) r = 1.1. (c) r = 1.25. (d) r = 1.5.

Fig. 1. The optimal distribution of five solutions (l = 5) for each specification of the reference
point r = (r, r). The shaded area shows the corresponding hypervolume. (Color figure online)

Use of Two Reference Points in Hypervolume-Based EMO Algorithms 385

solutions. As a result, the two extreme points of the Pareto front are likely to be found.
When the two extreme points are included in the current population, the location of the
reference point has no effect on the hypervolume contributions of the other inside
solutions. For example, the three inside solutions have the same hypervolume contri-
butions in Fig. 1(c) with r = 1.25 and Fig. 1(d) with r = 1.5.

A large reference point (which is far away from the Pareto front) can also be used
for multiobjective minimization problems with triangular Pareto fronts such as the
DTLZ1-4 [7] and WFG4-9 [9]. For example, in the case of three objectives, the
hypervolume contributions of only the three extreme points of the Pareto front depend
on the location of the reference point when they are included in the current population.
Figure 2 shows approximately optimal distributions of 50 solutions of the three-
objective DTLZ1 for two settings of the reference point r = (r, r, r): r = 0.5 (i.e., nadir
point) in Fig. 2(a) and r = 20 in Fig. 2(b). These two distributions were obtained by
SMS-EMOA with a large computation load (i.e., 1,000,000 generations) in our former
study [12]. In Fig. 2(a) with r = 0.5, the three extreme points are not included in the
obtained distribution since the nadir point is used as the reference point (i.e., since the
hypervolume contributions of the three extreme points are zero when the nadir point is
used as the reference point). In Fig. 2(b) with r = 20, the entire Pareto front is covered
by the 50 solutions. Moreover, the two distributions in Fig. 2 are similar to each other
whereas the totally different reference points are used. Figure 2 suggests that the use of
a large reference point (which is far away from the Pareto front) works well on the
three-objective DTLZ1. Figure 2 also suggests that the reference point specification is
not important (since the similar results are obtained from the totally different reference
points). Similar results are also obtained from the totally different reference points for
the three-objective DTLZ2-4 and WFG4-9. It should be noted that the information of
the true nadir point is used in those computational experiments (e.g., Fig. 2) to search
for the optimal distribution of solutions.

Our discussions on Figs. 1 and 2 suggest the use of a large reference point in the
hypervolume-based EMO algorithms. This is a good idea for two-objective mini-
mization problems and multiobjective minimization problems with triangular Pareto
fronts. However, this is not a good idea for multiobjective minimization problems with

0.5

0.0

0.5

0.00.0
0.5f2

f3

f1

0.5

0.0

0.5

0.00.0
0.5f2

f3

f1

(a) r = 0.5 (nadir point). (b) r = 20.

Fig. 2. An approximately optimal distribution of 50 solutions (l = 50) of the three-objective
DTLZ1 test problem for each specification of the reference point r = (r, r, r) [12].

386 H. Ishibuchi et al.

inverted triangular Pareto fronts such as the inverted DTLZ1 [17], Minus-DTLZ1-4
[16] and Minus-WFG4-9 [16]. Figure 3 shows approximately optimal distributions of
50 solutions of the three-objective inverted DTLZ1 for the two settings of the reference
point: r = 0.5 (i.e., nadir point) in Fig. 3(a) and r = 20 in Fig. 3(b). These two dis-
tributions were obtained by SMS-EMOA after 1,000,000 generations in our former
study [12]. Figure 3(b) clearly shows that the use of a large reference point is not
appropriate in the hypervolume-based EMO algorithms. The use of the nadir point is
not appropriate as shown in Fig. 3(a), either.

An appropriate specification of the reference point was discussed from a viewpoint
of fair performance comparison of EMO algorithms in our former studies [13, 14]. The
basic idea is to specify the reference point so that uniformly distributed solutions over
the entire Pareto front have similar hypervolume contributions (i.e., any solution should
not have a dominantly large or negligibly small contribution). For the two-objective
minimization problem with the linear Pareto front in Fig. 1, the suggested reference
point in [13, 14] is r ¼ 1þ 1=ðl� 1Þ where l is the population size. In Fig. 1 with the
population size 5, r is calculated as r = 1.25. This specification is used in Fig. 1(c)
where each solution has exactly the same hypervolume contribution. By using an
integer parameter H which denotes the number of intervals determined by l solutions
(i.e., H = l − 1), the suggested specification is rewritten as r = 1 + 1/H. The integer
parameter H in this formulation is the same as H in the weight vector specification
mechanism in MOEA/D [23]. Using this fact, the reference point specification method
by r = 1 + 1/H was extended to multiobjective minimization problems with linear
Pareto fronts in [13, 14] where the value of H was determined from the number of
objectives M and the population size l using the following formulation:

HþM�1CM�1 � l\HþMCM�1: ð1Þ

In this formulation, nCm denotes the number of combinations of selecting m ele-
ments from a set of n elements (n�m): nCm = n!/m!(n − m)!.

The reference point specification method of r = 1 + 1/H with (1) is a good
guideline for performance comparison of EMO algorithms. However, it does not
always work well in the hypervolume-based EMO algorithms as we will show later in
this paper. It is difficult to appropriately specify the reference point in the hypervolume-

0.5

0.0

0.5

0.00.0
0.5f2

f3

f1

0.5

0.0

0.5

0.00.0
0.5f2

f3

f1

(a) r = 0.5 (nadir point). (b) r = 20.

Fig. 3. An approximately optimal distribution of 50 solutions (l = 50) of the three-objective
inverted DTLZ1 test problem for each specification of the reference point r = (r, r, r) [12].

Use of Two Reference Points in Hypervolume-Based EMO Algorithms 387

based EMO algorithms especially for multiobjective problems with nonlinear inverted
triangular Pareto fronts (e.g., Minus-DTLZ2-4 and Minus-WFG4-9 [16]). This is
because the appropriate reference point specification depends on various factors such as
the shape of the Pareto front and its curvature property in addition to the number of
objectives (M) and the population size (l) used in (1). This is also because the true
Pareto front is unknown (i.e., because the reference point specification should be based
on the estimation nadir point, which is not always accurate).

To avoid the difficulty in appropriately specifying the reference point, we propose
an idea of using two reference points. One is the estimated nadir point and the other is
far away from it. Our idea is motivated by a simple intuition from Fig. 3: A good
solution set would be obtained by combining the two solution sets in Fig. 3.

This paper is organized as follows. First, we demonstrate the difficulty in appro-
priately specifying the reference point in Sect. 2. Experimental results are explained
using the hypervolume contributions of uniformly distributed solutions. Next, we
propose an idea of using two reference points and its simple implementation in Sect. 3.
Then, we examine the effectiveness of our idea in Sect. 4. Our two-point approach is
compared with the standard single-point approach. Finally, we conclude this paper in
Sect. 5 where a number of future research directions are suggested.

2 Empirical Discussions on Reference Point Specification

In this section, we show experimental results by FV-MOEA [18] on the three-objective
DTLZ1 [7], DTLZ2 [7], Minus-DTLZ1 [16], Minus-DTLZ2 [16] and the car-side
impact problem [17]. FV-MOEA is a recently-proposed fast hypervolume-based EMO
algorithm. We use FV-MOEA in the same specifications as SMS-EMOA. Thus the
same experimental results are obtained from FV-MOEA and SMS-EMOA. We use FV-
MOEA because it is faster than SMS-EMOA (whereas we used SMS-EMOA in our
former studies [12–14]).

FV-MOEA is applied to each three-objective minimization problem. During its
execution, the objective space is normalized using non-dominated solutions in each
generation as follows (e.g., see [11]). First, non-dominated solutions in the current
population are selected. Next, the minimum and maximum values of each objective are
found in the selected non-dominated solutions. Then, each objective is normalized so
that the minimum and maximum values are 0 and 1, respectively. FV-MOEA with
various specifications of the reference point is used under the following settings.

Population size (l): 100,
Termination condition: 100,000 solution evaluations,
Crossover: SBX (Crossover probability: 1.0, Distribution index: 20),
Mutation: PM (Mutation probability: 1/(String length), Distribution index: 20),
Number of runs: 11 runs.

Among the 11 runs for each specification of the reference point, a single run with
the median hypervolume is selected and shown as the experimental result in this paper.

Since the population size is 100 for the three-objective problems (i.e., l = 100 and
M = 3), the suggested reference point in [13, 14] is calculated from (1) as r = 1 + 1/

388 H. Ishibuchi et al.

H = 13/12. In addition to this specification, we also examine the following values:
r = 1.0 (the estimated nadir point), 1.05 (closer to the estimated nadir point than
13/12), 1.2 (slightly larger than 13/12), 1.5 (larger than 13/12) and 10 (far away from
the Pareto front: much larger than the others). Experimental results are shown in
Figs. 4, 5, 6, 7 and 8.

In Fig. 4 on DTLZ1 and Fig. 5 on DTLZ2, almost the same results are obtained
when r� 1:05. These results suggest the use of a large reference point for multiob-
jective minimization problems with triangular Pareto fronts. These results also show
that the reference point specification is not important for such a multiobjective problem
as long as the reference point is not too close to the estimated nadir point.

However, in Figs. 6, 7 and 8, totally different results are obtained from different
specifications of the reference point. When the reference point is far away from the
estimated nadir point (i.e., r = 10), many solutions are around the boundary of the
Pareto front. In this case, only a small number of solutions are obtained inside the
Pareto front. Thus we can see from Figs. 6, 7 and 8 that a large reference point is not
appropriate.

(a) r = 1.0. (b) r = 1.05. (c) r = 13/12. (d) r = 1.2. (e) r = 1.5. (f) r = 10.

Fig. 4. Experimental results on DTLZ1 (median results over 11 runs).

(a) r = 1.0. (b) r = 1.05. (c) r = 13/12. (d) r = 1.2. (e) r = 1.5. (f) r = 10.

Fig. 5. Experimental results on DTLZ2 (median results over 11 runs).

(a) r = 1.0. (b) r = 1.05. (c) r = 13/12. (d) r = 1.2. (e) r = 1.5. (f) r = 10.

Fig. 6. Experimental results on Minus-DTLZ1 (median results over 11 runs).

Use of Two Reference Points in Hypervolume-Based EMO Algorithms 389

Independent of the shape of the Pareto front, the use of the estimated nadir point
(i.e., r = 1.0 in Figs. 4, 5, 6, 7 and 8(a)) is not advisable since the diversity of the
obtained solution sets is very small. It should be noted that the obtained solution sets in
Figs. 4(a) and 5(a) are totally different from the approximately optimal solution sets in
Figs. 1(a) and 2(a), respectively. This is because the true nadir point is used in Figs. 1
and 2 while the estimated nadir point is used in Figs. 4, 5, 6, 7 and 8.

As shown in Figs. 4 and 5, for multiobjective problems with triangular Pareto
fronts, the reference point specification is not important since almost the same solution
sets are obtained from different specifications of the reference point as far as it is not too
close to the estimated nadir point. On the contrary, for multiobjective problems with
inverted triangular Pareto fronts, the reference point specification is important (see
Figs. 6 and 7). However, it is difficult to appropriately specify the reference point for
such a problem. For example, whereas the suggested reference point by r = 1 + 1/
H = 13/12 works well on Minus-DTLZ1 in Fig. 6, it is too small for Minus-DTLZ2 in
Fig. 7. In Fig. 7, r = 1.5 seems to be appropriate. However, it seems to be too large in
Fig. 6 (compare Fig. 6(e) with Fig. 6(c) and (d)).

Our experimental results in Figs. 4, 5, 6, 7 and 8 can be explained using the
hypervolume contributions of uniformly distributed solutions. In Figs. 9, 10, 11 and
12, we show the hypervolume contributions of 21 uniformly distributed solutions on
the Pareto fronts. Each test problem in Figs. 9, 10, 11 and 12 is normalized so that the
ideal and nadir points are (0, 0, 0) and (1, 1, 1), respectively. The 21 solutions are
generated in the same manner as the weight vector generation mechanism in MOEA/D
with H = 5. The suggested reference point by r = 1 + 1/H is 1.2. In each figure, the
size (i.e., area) of the closed circle is proportional to the hypervolume contribution of
the corresponding solution. When the hypervolume contribution is zero, the corre-
sponding solution is not shown.

(a) r = 1.0. (b) r = 1.05. (c) r = 13/12. (d) r = 1.2. (e) r = 1.5. (f) r = 10.

Fig. 7. Experimental results on Minus-DTLZ2 (median results over 11 runs).

 (a) r = 1.0. (b) r = 1.05. (c) r = 13/12. (d) r = 1.2. (e) r = 1.5. (f) r = 20.

Fig. 8. Experimental results on the car-side impact problem (median results over 11 runs).

390 H. Ishibuchi et al.

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

 (a) r = 1.0. (b) r = 1.1. (c) r = 1.2. (d) r = 1.5.

Fig. 9. Hypervolume contribution of each solution of DTLZ1.

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

 (a) r = 1.0. (b) r = 1.1. (c) r = 1.2. (d) r = 1.5.

Fig. 10. Hypervolume contribution of each solution of DTLZ2.

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

 (a) r = 1.0. (b) r = 1.1. (c) r = 1.2. (d) r = 1.5.

Fig. 11. Hypervolume contribution of each solution of Minus-DTLZ1.

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

 (a) r = 1.0. (b) r = 1.1. (c) r = 1.2. (d) r = 1.5.

Fig. 12. Hypervolume contribution of each solution of Minus-DTLZ2.

Use of Two Reference Points in Hypervolume-Based EMO Algorithms 391

In Figs. 9, 10, 11 and 12(a) with r = 1.0, the hypervolume contributions of the
three extreme points are zero. When the estimated nadir point is used as the reference
point (i.e., r = 1.0) in the hypervolume-based EMO algorithms, the hypervolume
contributions of the extreme points in the current population are zero. Thus they are
likely to be removed from the current population through generation update. Then the
diversity of the population gradually decreases, which increases the inaccuracy of the
nadir point estimation. This is the reason for the very small diversity in Figs. 4, 5, 6, 7
and 8(a) with r = 1.0.

In Fig. 9 on DTLZ1 and Fig. 10 on DTLZ2, the hypervolume contributions of only
the three extreme points depend on the reference point specification. This is the reason
why almost the same results are obtained in Figs. 4 and 5 independent of the reference
point specification except for the case where the reference point is too small. On the
contrary, in Fig. 11 on Minus-DTLZ1 and Fig. 12 on Minus-DTLZ2, the reference
point specification affects the hypervolume contributions of all boundary solutions.
When the nadir point is used as the reference point in Figs. 11(a) and 12(a), the
hypervolume contributions of all boundary solutions are zero. By increasing the dis-
tance between the reference point and the nadir point (i.e., by moving the reference
point far away from the Pareto front), their hypervolume contributions increase. When
the reference point is far away from the Pareto front, boundary solutions have large
hypervolume contributions. This is the reason why only a small number of inside
solutions are obtained in Figs. 6(f) and 7(f) with r = 10. The upper-right half of the
Pareto front of the car-side impact problem in Fig. 8 has a similar property to the
inverted triangular Pareto fronts of Minus-DTLZ1 and Minus-DTLZ2. Thus many
solutions are obtained along the upper-right boundary of the Pareto front in Fig. 8(f).

When the suggested reference point (i.e., r = 1.2) is used for DTLZ1 in Fig. 9 and
Minus-DTLZ1 in Fig. 11, all solutions in each figure have the same hypervolume
contribution. This is the reason why the well-distributed solution sets are obtained for
those test problems in Figs. 4(c) and 6(c). However, in Fig. 10 on DTLZ2 and Fig. 12
on Minus-DTLZ2, each solution has a different hypervolume contribution due to the
nonlinearity of their Pareto fronts. As a result, well-distributed solution sets are not
obtained in Figs. 5 and 7 independent of the reference point specification.

3 Proposed Idea and Its Simple Implementation

Our idea is to use two reference points in order to avoid the difficulty in appropriately
specifying a single reference point for multiobjective problems with inverted triangular
Pareto fronts. As the first attempt, we specify the two reference points as r = 1.0 and
r = 10, respectively. That is, one reference point is the estimated nadir point, and the
other is far away from it. The population is divided into two subpopulations of the same
size. A hypervolume-based EMO algorithm (FV-MOEA [18] in this paper) is applied
to each subpopulation using a different reference point: r = 1.0 for one subpopulation
and r = 10 for the other. The final result of the proposed idea is the merged solution set
of the two subpopulations. The execution of FV-MOEA is performed in each sub-
population separately except for the following two procedures.

392 H. Ishibuchi et al.

(i) Normalization: The normalization of the objective space is performed in each
generation using non-dominated solutions among all solutions in the two subpop-
ulations. This is for accurately estimating the nadir point in each generation. If the
normalization is performed separately, good results are not obtained from r = 1.0 as
we have already shown in Figs. 4, 5, 6, 7 and 8(a) in the previous section.

(ii) Periodical Subpopulation Comparison: If the two subpopulations are similar, a
good merged solution set cannot be obtained from them. In this case, it may be a
good idea to merge them into a single population during the execution of FV-
MOEA instead of merging them after its separate execution on each subpopula-
tion. In this paper, we examine the similarity of the two subpopulations four times
during its execution (after 20%, 40%, 60%, and 80% use of the available com-
putation load, i.e., after 20,000th, 40,000th, 60,000th, and 80,000th solution
evaluations). If the two subpopulations are similar, we merge them into a single
population and FV-MOEA is applied to the merged population. The reference
point is specified as r = 1 + 1/H. Once the two subpopulations are merged, the
merged population is not divided again.

One important issue is how to measure the similarity of the two subpopulations. In
this paper, we use the IGD+ indicator [15] where the subpopulation with r = 10 is used as
the IGD+ reference points to calculate IGD+ of the other subpopulation with r = 1.0.
When the calculated IGD+ is smaller than 21/2/5H, we merge the two subpopulations.
The threshold value is specified as 21/2/5H based on the following consideration. In the
normalized three-objective DTLZ1, the length of each side of the triangular Pareto front
is 21/2 (e.g., the distance of the line between (1, 0, 0) and (0, 1, 0)). When l = H+M−1CM−1

solutions are uniformly distributed over the entire Pareto front, each side was divided
intoH intervals. Thus the distance between adjacent solutions on each side is 21/2/H. The
threshold value 21/2/5H is 1/5 of the distance between adjacent solutions on each side in
the uniformly distributed solutions. Of course, other indicators (e.g., IGD [5, 20] and Dp

[19]) and/or other specifications of the threshold value can be used, which is an important
future research topic.

4 Experimental Results by the Proposed Idea

Using the same parameter specifications as in Sect. 2, we apply FV-MOEA with two
reference points (r = 1.0 and r = 10) to the five test problems. Median experimental
results among 11 runs are shown in Fig. 13.

(a) DTLZ1. (b) DTLZ2. (c) Minus-DTLZ1. (d) Minus-DTLZ2. (e) Car-side.

Fig. 13. Experimental results by FV-MOEA with two reference points.

Use of Two Reference Points in Hypervolume-Based EMO Algorithms 393

In Fig. 13(c)–(d), we obtain the intended results. Many solutions around the
boundary of the Pareto front of each test problem are obtained from r = 10. At the
same time, many inside solutions are also obtained from r = 1.0. The effectiveness of
the proposed idea is clearly shown in Fig. 13(d) for Minus-DTLZ2. In Fig. 14, we
compare the obtained solution set by the proposed idea (i.e., Fig. 14(a) which is the
same as Fig. 13(d)) with the results by the standard FV-MOEA with a single reference
point (i.e., Fig. 14(b)–(f) which are the same as Fig. 7(b)–(f)). The solution set in
Fig. 14(a) is similar to the solution set in Fig. 14(e) with r = 1.5. However, the
boundary solutions in Fig. 14(a) are much closer to the boundary of the Pareto front
than Fig. 14(e). That is, the solution set in Fig. 14(a) covers the wider region of the
Pareto front than Fig. 14(e). Similar observations can be obtained from Fig. 13(c) and
(e) by comparing them with the corresponding results of the standard FV-MOEA with
a single reference point in Figs. 6 and 8, respectively.

The obtained solution set of DTLZ1 in Fig. 13(a) is almost the same as the solution
sets in Fig. 4(c)–(f). This is because the two subpopulations are merged into a single
population during the execution of FV-MOEA as intended. Once the two subpopula-
tions are merged, FV-MOEA with the two reference points is exactly the same as FV-
MOEA with r = 1 + 1/H. The obtained solution set of DTLZ2 in Fig. 13(b) seems to
be inferior to the results in Fig. 5(b)–(f). This is because the two subpopulations are not
merged in Fig. 13(b). By changing the threshold value from 21/2/5H to 21/2/2H, almost
the same solution set as Fig. 5(b)–(f) is obtained from FV-MOEA with the two ref-
erence points. This is because the two subpopulations are merged and FV-MOEA with
r = 1 + 1/H is used. This result suggests the necessity of further examinations about the
parameter setting in the proposed idea.

5 Conclusions

In this paper, we proposed an idea of using two reference points in hypervolume-based
EMO algorithms to avoid the difficulty in appropriately specifying a single reference
point for multiobjective problems with inverted triangular Pareto fronts. Whereas
promising results were obtained by a simple implementation of the proposed idea, a
number of issues are left for future research to design a competent hypervolume-based
EMO algorithm with two reference points. Among them are the choice of a similarity
indicator and a threshold value, the timing of similarity check, and the specification of
the two reference points (e.g., the use of an infinitely large reference point). Information
exchange mechanisms between the two subpopulations should be further addressed.

(a) r = 1 & 10. (b) r = 1.05. (c) r = 13/12. (d) r = 1.2. (e) r = 1.5. (f) r = 10.

Fig. 14. Comparison of the proposed idea with the standard single reference point approach.

394 H. Ishibuchi et al.

Discussions are also needed on the estimation of the nadir point, the normalization of
the objective space (e.g., see [11]), and the computational complexity of the proposed
idea. Of course, performance comparison of the proposed idea with other EMO
algorithms is needed. Another important future research topic is to examine the shape
of the Pareto fronts of real-world multiobjective problems (e.g., triangular, inverted
triangular or others; linear, concave or convex).

Acknowledgments. This work was supported by the Science and Technology Innovation
Committee Foundation of Shenzhen (Grant No. ZDSYS201703031748284).

References

1. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based multiobjective
optimization: theoretical foundations and practical implications. Theoret. Comput. Sci.
425, 75–103 (2012)

2. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective
optimization. Evol. Comput. 19, 45–76 (2011)

3. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on
dominated hypervolume. Eur. J. Oper. Res. 181, 1653–1669 (2007)

4. Brockhoff, D.: Optimal l-distributions for the hypervolume indicator for problems with
linear bi-objective fronts: exact and exhaustive results. In: Deb, K. (ed.) SEAL 2010. LNCS,
vol. 6457, pp. 24–34. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
17298-4_2

5. Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolutionary
multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E.,
Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688–697. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24694-7_71

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test
problems. In: Proceedings of IEEE CEC 2002, pp. 825–830 (2002)

8. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure
as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO
2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005). https://doi.org/10.1007/
978-3-540-31880-4_5

9. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems
and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10, 477–506 (2006)

10. Ishibuchi, H., Akedo, N., Nojima, Y.: Behavior of multi-objective evolutionary algorithms
on many-objective knapsack problems. IEEE Trans. Evol. Comput. 19, 264–283 (2015)

11. Ishibuchi, H., Doi, K., Nojima, Y.: On the effect of normalization in MOEA/D for multi-
objective and many-objective optimization. Complex Intell. Syst. 3, 279–294 (2017)

12. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Hypervolume subset selection for
triangular and inverted triangular Pareto fronts of three-objective problems. In: Proceedings
of FOGA 2017, pp. 95–110 (2017)

13. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Reference point specification in
hypervolume calculation for fair comparison and efficient search. In: Proceedings of GECCO
2017, pp. 585–592 (2017)

Use of Two Reference Points in Hypervolume-Based EMO Algorithms 395

http://dx.doi.org/10.1007/978-3-642-17298-4_2
http://dx.doi.org/10.1007/978-3-642-17298-4_2
http://dx.doi.org/10.1007/978-3-540-24694-7_71
http://dx.doi.org/10.1007/978-3-540-31880-4_5
http://dx.doi.org/10.1007/978-3-540-31880-4_5

14. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: How to Specify a Reference Point in
Hypervolume Calculation for Fair Performance Comparison. Evolutionary Computation (in
press)

15. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in
generational distance and inverted generational distance. In: Gaspar-Cunha, A., Henggeler
Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 110–125. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-15892-1_8

16. Ishibuchi, H., Setoguchi, Y., Masuda, H., Nojima, Y.: Performance of decomposition based
many-objective algorithms strongly depends on Pareto front shapes. IEEE Trans. Evol.
Comput. 21, 169–190 (2017)

17. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-
point based non-dominated sorting approach, part II: handling constraints and extending to
an adaptive approach. IEEE Trans. Evol. Comput. 18, 602–622 (2014)

18. Jiang, S., Zhang, J., Ong, Y.-S., Zhang, A.N., Tan, P.S.: A simple and fast hypervolume
indicator-based multiobjective evolutionary algorithm. IEEE Trans. Cybern. 45, 2202–2213
(2015)

19. Schütze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged hausdorff
distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans.
Evol. Comput. 16, 504–522 (2012)

20. Sierra, M.R., Coello Coello, C.A.: A new multi-objective particle swarm optimizer with
improved selection and diversity mechanisms. Technical report, CINVESTAV-IPN (2004)

21. Tanabe, R., Ishibuchi, H., Oyama, A.: Benchmarking multi- and many-objective evolution-
ary algorithms under two optimization scenarios. IEEE Access 5, 19597–19619 (2017)

22. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in
many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T.
(eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-70928-2_56

23. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decompo-
sition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)

24. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on the design of
Pareto-compliant indicators via weighted integration. In: Obayashi, S., Deb, K., Poloni, C.,
Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 862–876. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_64

25. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a
comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.)
PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0056872

26. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Fonseca, V.G.: Performance
assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput.
7, 117–132 (2007)

396 H. Ishibuchi et al.

http://dx.doi.org/10.1007/978-3-319-15892-1_8
http://dx.doi.org/10.1007/978-3-540-70928-2_56
http://dx.doi.org/10.1007/978-3-540-70928-2_56
http://dx.doi.org/10.1007/978-3-540-70928-2_64
http://dx.doi.org/10.1007/BFb0056872
http://dx.doi.org/10.1007/BFb0056872

Parallel and Distributed Frameworks

Introducing an Event-Based Architecture
for Concurrent and Distributed

Evolutionary Algorithms

Juan J. Merelo Guervós1(B) and J. Mario Garćıa-Valdez2

1 Universidad de Granada, Granada, Spain
jmerelo@geneura.ugr.es

2 Instituto Tecnológico de Tijuana, Tijuana, BC, Mexico
mario@tectijuana.edu.mx

Abstract. Cloud-native applications add a layer of abstraction to the
underlying distributed computing system, defining a high-level, self-
scaling and self-managed architecture of different microservices linked
by a messaging bus. Creating new algorithms that tap these architec-
tural patterns and at the same time employ distributed resources effi-
ciently is a challenge we will be taking up in this paper. We introduce
KafkEO, a cloud-native evolutionary algorithms framework that is pre-
pared to work with different implementations of evolutionary algorithms
and other population-based metaheuristics by using micro-populations
and stateless services as the main building blocks; KafkEO is an attempt
to map the traditional evolutionary algorithm to this new cloud-native
format. As far as we know, this is the first architecture of this kind
that has been published and tested, and is free software and vendor-
independent, based on OpenWhisk and Kafka. This paper presents a
proof of concept, examines its cost, and tests the impact on the algorithm
of the design around cloud-native and asynchronous system by comparing
it on the well known BBOB benchmarks with other pool-based architec-
tures, with which it has a remarkable functional resemblance. KafkEO
results are quite competitive with similar architectures.

Keywords: Cloud computing · Microservices
Distributed computing · Event-based systems · Kappa architecture
Stateless algorithms · Algorithm implementation
Performance evaluation · Distributed computing · Pool-based systems
Heterogeneous distributed systems · Serverless computing
Functions as a service

1 Introduction

Cloud computing is increasingly becoming the dominant way of running the
server side of most enterprise applications nowadays, the same as the browser
is the standard platform for the client side. Besides the convenience of the pay-
as-you-go model, it also offers a way of describing the infrastructure as part of
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 399–410, 2018.
https://doi.org/10.1007/978-3-319-99253-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_32&domain=pdf
http://orcid.org/0000-0002-1385-9741
http://orcid.org/0000-0002-2593-1114

400 J. J. Merelo Guervós and J. M. Garćıa-Valdez

the code, so that it is much easier to reproduce results and has been a boon for
scientific computing. However, programming the cloud means that monolithic
applications, that is, applications built on a single stack of services that com-
municate by layers, are no longer an efficient architectural design for scientific
workflows. Cloud architectures favor asynchronous communication over hetero-
geneous resources, and shifting from mostly sequential and monolithic to an
asynchronously parallel architecture will also imply important reformulation of
the algorithms in order to take full advantage of these technologies. Cloud-native
applications add a layer of abstraction to the underlying distributed computing
system, seamlessly integrating different elements in a single data flow, allow-
ing the user to just focus on code and service connections. Services are native
points in this new architecture, departing from a monolithic or even distributed
paradigm to become a loosely collection of services, in fact microservices [19],
which in many cases are stateless, reacting to some event and living only while
they are doing some kind of processing. Reactive systems not only allow mas-
sive scaling and independent deployment they are also more economical than
other monolithic options. Platform as a service (PaaS) or even Container as a
Service (CaaS) approaches need to be running all the time in order to maintain
their state, so they are paid for their size and time they remain active. At any
rate, while one of the main selling points of Functions as a Service (FaaS) is
their ultra-fast activation time, from our point of view their most interesting
feature is the fact that they provide stateless processing. An important caveat of
stateless processing is that algorithms must be adapted to this fact and turned,
at least in part, into a series of stateless steps working on a data stream. It is
also taken to an atomic extreme with the so-called serverless architectures [20],
which allow vendors and users to deploy code as single, stateless functions, that
get activated via rules, triggers or explicitly, reacting to events consumed from
a message queue. The first commercial implementation of this kind of architec-
ture was released by Amazon with its Lambda product, to be closely followed
by releases by Azure (Microsoft) and Google and OpenWhisk, an open source
implementation released by IBM [2].

In this paper we want to introduce KafkEO, a serverless framework for evolu-
tionary algorithms and other population-based systems. The main design objec-
tive is to leverage the scaling capabilities of a serverless framework, as well as
create a system that can be deployed on different platforms by using free soft-
ware. Our intention has also been to create an algorithm that is functionally
equivalent to an asynchronous, parallel, island-based, EA, which can use paral-
lelism and at the same time reproduce mechanisms that are akin to migration.
The island-based paradigm is relatively standard in distributed EA applications,
but in our case, we have been using it since it allows for better parallelism and
thus performance, at the same time it makes keeping diversity easier while need-
ing fewer parameters to tune.

We will examine the results of this framework using the first five functions of
the Noiseless Black-Box-Optimization-Benchmarking (BBOB) testbed [10] part
of the COCO (COmparing Continuous Optimisers) platform for comparisons

Introducing an Event-Based Architecture 401

of real-parameter global optimisers [10]. The framework is compared against
another cloud-ready parallel pool based implementation. The implementation is
also free software and can be downloaded from GitHub. The rest of the paper is
organized as follows. Next we present the state of the art in cloud implementation
of evolutionary algorithms, to be followed in Sect. 3 by an introduction to the
serverless architecture we will be using as well as our mapping of the evolutionary
algorithm to it. Section 4 will present the result of performing experiments with
this proof of concept; finally in Sect. 5 will discuss the results, present conclusions
and future lines of work.

2 State of the Art

In general, scientific computing has followed the trends of the computing indus-
try, with new implementations published almost as soon as new technologies
became commercially available, or even before. There were very early implemen-
tations of evolutionary algorithms on transputers [21], the world wide web [5] and
the first generation of cloud services [12,16,17]. However, every new computing
platform has its own view of computing, and in many cases that has made evo-
lutionary algorithms move in new directions in order to make them work better
in that platform while keeping the spirit of bio-inspiration. For instance, most
evolutionary algorithms work in a synchronous way; although there were very
early efforts to create asynchronous EAs [6], in general generations proceed one
after the other and migration happens in all islands at the same time. However,
this mode of working does not fit well with architectures that are heterogeneous
and dynamic, which is why there have been many efforts from early on to adapt
EAs to this kind of substrate [1,3,22].

This kind of internet-native applications later on transitioned to using
Service-Oriented Architectures (SoA) [14]. While monolithic, that is, including
all services in a single computing node and application, SoA were better adapted
to heterogeneous environments by distributing services across a network using
standard protocols. Several authors implemented evolutionary algorithms over
them [8,13,15]. However, scaling problems and the extension of cloud deploy-
ment and services had made this kind of architectures decline in popularity.

In general, frameworks based in SoA also tried to achieve functional equiv-
alence with parallel or sequential versions of EAs. There is the same tension
between functional equivalence and new design in new, cloud based approaches
to evolutionary algorithms. Salza and collaborators [16,17] explicitly and look-
ing to optimize interoperability claim that there is very little need to change
“traditional” code to port it to the cloud, implicitly claiming this functional
equivalence with sequential evolutionary algorithms.

Besides these implementations using well known cloud services, there are
new computation models for evolutionary algorithms that are not functionally
equivalent to a canonical EA, but have proved to work well in these new envi-
ronments. Pool based EAs, [4], with a persistent population that can be tapped
to retrieve single individuals or pools of them and return evaluated or evolved

402 J. J. Merelo Guervós and J. M. Garćıa-Valdez

sub-populations, have been used for new frameworks such as EvoSpace [9], and
proved to be able to accommodate all kinds of ephemeral and heterogeneous
resources.

In the serverless, event-based architectures we are going to be targeting in this
paper, there has been so far no work that we know of. Similar setups including
microservices have been employed by Salza et al. [17]; however, the proposed
serverless system adds a layer of abstraction to event-based queuing systems
such as the one employed by Salza by reducing it to functions, messages and
rules or triggers. We will explain in detail these architectures in the next section.

Fig. 1. Chart showing the general picture of the layers of a serverless architecture,
including the messages and services that constitute KafkEO, with labels indicating
message routes and the software components used for every part.

3 Event-Based Architectures and Implementing
Evolutionary Algorithms over Them

Microservice architectures share the common trait of consisting of several ser-
vices with a single concern, that is, providing a single processing value, in many
cases stateless, and coupled using lightweight protocols such as REST and mes-
saging buses that carry information from every service to the next. In this case,
we are going to be using IBM’s BlueMix service, which includes OpenWhisk as
a serverless framework and MessageHub, a vendor implementation of the Kafka
messaging service; this last one gives name to the framework we are presenting,
called KafkEO (EO stands for Evolving Objects).

Introducing an Event-Based Architecture 403

Fig. 2. A flow diagram of KafkEO, showing message routes, MessageHub topics and
the functions that are being used.

The main reason for choosing OpenWhisk and Kafka is availability of
resources, but also the fact that all parts of the implementation are open source
and can be deployed in desktop machines or other cloud providers by changing
the configuration. It is also a good practice to implement free software using free
software, making it widely available to the scientific community.

The layers and message flow in the application are shown in Fig. 1, which
also includes the evolutionary components. We will focus for the time being in
the general picture: a serverless architecture using a messaging service as a back-
bone, which in this case takes the shape of the Kafka/MessageHub service. These
messages are produced and consumed by a service, which can also store them
in an external database for their later use; in general, messaging systems are
configured to keep messages only for a certain amount of time, and they disap-
pear after that. Messaging queues are organized in topics and every topic uses a
series of partitions, which can be increased for bigger throughput; the functions,
hosted in OpenWhisk, execute actions triggered by the arrival of new messages;
these actions also produce new messages that go back to the MessageHub to
continue with the message loop. If all this is hosted in a cloud provider, as it is
the case, the MessageHub service will be charged according to a particular cost
structure, with partitions taking the most part of the cost, while messages have
a relatively small impact.

The evolutionary algorithm mapped over this architecture is represented in
Fig. 2. The main design challenge is to try and map an evolutionary algorithm
to a serverless, and then stateless, architecture. That part is done in points 1
through 5 of Fig. 2. The beginning of the evolution is triggered from outside
the serverless framework (1) by creating a series of Population objects, which
we pack (2) to a message in the new-populations topic. Population objects are
the equivalent to islands or samples in EvoSpace. If Population object is a self-
contained population of individuals, represented as a JSON structure.

404 J. J. Merelo Guervós and J. M. Garćıa-Valdez

The arrival of a new population package sets off the MessageArrived trigger
(3), that is bound to the actions that effectively perform a small number of
generations. In this case we give as an example a GA and a PSO algorithms,
although only the GA has been implemented for this paper. Any number of
GA algorithms (actions) can be triggered in parallel by the same message, and
new actions can be triggered while others are still working; this phase is then
self-scaling and parallel by design.

Population objects are extracted from the message and, for each, a call to
an evolve process is executed in parallel. The evolve process consists of two
sequential actions (5), first, the GA Service function that runs a GA for a certain
number of generations, producing a new evolved object, which is then sent to
the second action called Message Produce responsible of sending the object to
the evolved-population-objects message queue. The new Population object (6)
includes the evolved population and also metadata such as a flag indicating
whether the solution has been found, the best individual, and information about
each generation. With this metadata a posterior analysis of the experiment can
be achieved or simply generating the files used by the BBOB Post-processing
scripts.

This queue is polled by a service outside the serverless framework, called
Population-Controller. This service needs to be stateful, since it implements a
buffer that needs to wait until several populations are ready to then mix them
(in step #9 in Fig. 2) to produce a new population, that is the result of selection
and crossover between several populations coming from the evolved-population-
objects message queue. Eventually, these mixed populations are returned to the
initial queue to return to the serverless part of the application. Another task of
the Population-Controller is to start and stop the experiment. The service must
keep the number of Population objects received, then after a certain number is
reached, the controller stops sending new messages to the new-populations topic.
It is important to note, that because of the asynchronous nature of the system,
several messages could still arrived after the current experiment is over. The
controller must only accept messages belonging to the current process.

This merging step before starting evolution takes the place of the migra-
tion phase and allows this type of framework to work in parallel, since several
instances of the function might be working at the exact same time; the results
of these instances are then received back by every one of the instances.

In fact, this kind of system would be more functionally equivalent to a pool-
based architecture [4], since the queue acts as a pool from where populations are
taken and where evolved populations return. Actually, the pool becomes a stream
in this case, but in fact the pool also evolves, changing its composition, and has a
finite size just like the pool. Since pool-based architectures have already proved
they work with a good performance, we might expect this type of architecture,
being functionally equivalent, to be at least just as efficient and the latter, and
better adapted to a cloud-native application.

In this phase where we are creating a proof of concept, there is a single
instance of this part. For the time being, it has not been detected as a bottleneck,

Introducing an Event-Based Architecture 405

although eventually, when the number of functions are working in parallel, it
might become one. There are several options for overcoming this problem, the
easiest of which is to add more instances of this Population-controller. These
instances will act in parallel, processing the message queue at different offsets
and contributing to population diversity. This will eventually have its influence
in the results of the algorithm, so it is better left as future work.

Since we are running just a few functions, the amount of code of KafkEO
is quite small compared with other implementations. We use DEAP for all the
evolutionary functions, which are written in Python and released in GitHub
under the GPL license.

4 Experiments and Results

In this section we compare the performance of KafkEO against an implemen-
tation of the EvoSpace [9] pool-based architecture, using the first five functions
of the Noiseless BBOB testbed [10], which are real-parameter, single-objective,
separable functions, namely: Sphere, ellipsoidal, which is highly multimodal,
Rastrigin, Buche-Rastrigin, and the purely lineal function called linear slope.
It is expected that the two algorithms achieve similar results as they are func-
tionally equivalent. The EvoSpace implementation follows the basic EvoSpace
model in which EvoWorkers asynchronously interact with the population pool
by taking samples of the population to perform a standard evolutionary search
on the samples, to then return newly evolved solutions back to the pool.

EvoWorkers were implemented in Python with the same code as KafkEO and
using DEAP [7] for the GA service function. The code is in the following GitHub
repository: https://hidden.com. Before each experiment, a script initializes the
population on the server, creating the number of individuals specified by the Pool
Size parameter, this size depends on the dimension of the problem according to
the BBOB testbed. When starting each EvoWorker, the following parameters
are used: first, the Sample Size indicating the number of individuals the worker
would take from the server on each interaction, then the Iterations per Sample
parameter specifies the number of generations or iterations the worker algorithm
will run before sending back to the server the resulting population. Finally, the
number of times an EvoWorker will take, evolve and return a sample, is indicated
by the Samples per Worker parameter. The number of EvoWorkers instantiated
for the experiment is given by the GA Workers parameter. The EvoSpace param-
eters are shown in Table 1. These parameters are set for each dimension and they
indicate the effort in number of evaluations. In both experiments the maximum
number of evaluations is 105 ·D. For instance, for D = 2, the maximum number
of evaluations is 200, 000 which is obtained by multiplying the parameters int
the first column of Table 1: 50 · 100 · 20 · 2. Also both algorithms limit the search
space to [−5, 5]D.

On the other hand, the parameters used for KafkEO are shown in Table 2.
Every function runs an evolutionary algorithm for the shown number of iterations
and with the population size also shown. The number of initial messages act as

https://hidden.com

406 J. J. Merelo Guervós and J. M. Garćıa-Valdez

Table 1. EvoWorker setup parameters,

Dimension 2 3 5 10 20 40

Iterations per Sample 50 50 50 50 50 50

Sample Size 100 100 100 200 200 200

Samples per Worker 20 30 25 25 25 25

GA Workers 2 2 4 5 8 16

Pool Size 250 250 500 1000 2000 4000

an initial trigger, being thus equivalent to the number of parallel functions or
workers; this is the tunable parameter used for increasing performance when
the problem dimension, and thus difficulty, increases; the population size is also
increased, so that initial diversity is higher. Please note that every population
is generated randomly, so that the population size would have to be multiplied
by the number of initial messages to get to the initial population involved in the
experiment. The effort is limited by the maximum number of messages consumed
by the Population-Controller from the evolved-population-objects message queue.
The maximum number is calculated by multiplying the Maximum Iterations and
Initial Messages parameters. Again for a 105·D maximum number of evaluations.

Table 2. KafkEO parameters for the BBOB benchmark. Dimensions are the inde-
pendent variable, the rest of the parameters are changed to adapt to the increasing
difficulty.

Dimension 2 3 5 10 20 40

Iterations 50 50 50 50 50 50

Population Size 100 100 100 200 200 200

Initial Messages 2 2 4 5 8 16

Maximum Iterations 2 2 4 5 8 16

The evolutionary algorithm implemented in KafkEO used the same code, also
delegating the evolutionary operations to the standard DEAP library, written in
Python [7], using 12 for tournament size, a Gaussian mutation with sigma = 0.05
and a probability between 0.1 and 0.6, plus two point crossover with probability
between 0.8 and 1; these are the default parameters. In particular, the tourna-
ment size injects a high selective pressure which is known to decrease diversity.
The system also allows to set different parameters for every instance; in this
proof of concept only two parameters were randomly set, Mutation Probabil-
ity uniformly random in the [.1, .6] range, and Crossover Probability random on
[.8, 1]. This is one deviation from the standard evolutionary algorithm, but has
been proved in the past to provide good results without needing to fine tune
different parameters [18].

Introducing an Event-Based Architecture 407

The experiments were performed during the month of January using a paid
IBM BlueMix subscription. The totality of experiments costed about $12. Most
of the cost is due to the MessageHub partitions, that is, the hosted messaging
service itself. The amount paid for the messages in the BlueMix platform is
less than one dollar in total; messages are paid by the hundreds of thousands
delivered, and are actually not the most expensive part of the implementation
of the algorithm. Partitions are essential for a high throughput; a messaging
queue will be able to process as many messages as the partitions are able to get
through in parallel; this means that cost will scale with the number of messages in
a complex way, not simply linearly, and design decisions will have to be taken.
The baseline is that the best option is to maximize the number of messages
that can be borne by a particular partition, and try to minimize the number of
partitions to avoid scaling costs.

Fig. 3. Scaling of the running time with dimension to reach certain target values Δf .
Lines: average runtime (aRT); Cross (+): median runtime of successful runs to reach
the most difficult target that was reached at least once (but not always); Cross (×):
maximum number of f-evaluations in any trial. Notched boxes: interquartile range with
median of simulated runs. All values are divided by dimension and plotted as log10

values versus dimension. Shown is the aRT for fixed values of Δf = 10k with k given in
the legend. Numbers above aRT-symbols (if appearing) indicate the number of trials
reaching the respective target. The light thick line with diamonds indicates the best
algorithm from BBOB 2009 for the most difficult target. Horizontal lines mean linear
scaling, slanted grid lines depict quadratic scaling. Odd columns (1, 3): EvoSpace; even
columns (2, 4): KafkEO.

408 J. J. Merelo Guervós and J. M. Garćıa-Valdez

The results of the comparison are shown in Fig. 3, which follow the classical
BBOB 2009 format, which includes the amount of effort devoted to finding a
certain fitness level and time needed to do it. Figure 3 was generated by the post-
processing script from COCO [10] used in the Black-box Optimization Bench-
marking workshop series. The EvoSpace and KafkEO results are shown side by
side, only for the sake of comparison, since we are only interested for the time
being in the baseline performance of the proof of concept.

The results obtained show that the basic Genetic Algorithm implemented in
KafkEO does not perform very well against the testbed, specially when compared
against other nature inspired algorithms like PSO or other hybrid approaches
[11]. However, both implementations, shown side by side, reach similar results
with the same effort; and the results in this case have been obtained with fewer
parameters, with out the need to specify an initial pool size and without tuning
the evolutionary algorithm parameters.

This is a problem that pool-based algorithms have: we need to specify the
initial number of individuals to place in the pool and have the burden of always
keeping a minimum number of individuals in the pool. This is not the case
in KafkEO, because there is no need to have a repository for the population.
However, population size and the number of generations turned in by every
instantiation of the functions have to be tuned, which is something that will
have to be left as future work.

5 Conclusions

This paper is intended to introduce a simple proof of concept of a serverless
implementation of an evolutionary algorithm. The main problem with this algo-
rithm, shared by many others, is to turn something that has state (in the form
of loop variables or anything else) into a stateless system. In this initial proof
of concept we have opted to create a stateful mixer outside the serverless (and
thus stateless) platform to be able to perform migration and mixing among pop-
ulations. A straightforward first step would be to parallelize this service so that
it can respond faster to incoming evolved populations; however, this scaling up
should be done by hand and a second step will be to make the architecture
totally serverless by using functions that perform this mixing in a stateless way.
This might have the secondary effect of simplifying the messaging services to
a single topic, and making deployment much easier by avoiding the desktop or
server back-end we are using now for that purpose.

The proof of concept is a good adaptation of an evolutionary algorithm to
the serverless architecture, with a performance that is comparable, in terms of
number of evaluations, to pool-based architectures. Even if results right now are
not competitive, the scalability of the architecture and also the possibilities it
offers in terms of tuning parameters for the algorithm, even using heterogeneous
functions tapping the same topic (channel), offer the chance of improving running
time as well as the algorithm itself in terms of number of evaluations. This is an
avenue that we will explore in the near future. The whole set of experiments, done

Introducing an Event-Based Architecture 409

in the cloud with a desktop component, took more than running a single desktop
experiment using EvoSpace. However, scaling was lineal with problem difficulty,
which at least mean that we are not adding an additional level of complexity to
the algorithm and might indicate that horizontal or vertical scaling would solve
the problem. This kind of scaling also indicates that the stateful part, run in a
desktop, has not for this problem size become a bottleneck. Even so, we consider
that it is essential to create an algorithm architecture that will be fully serverless
and, thus, stateless.

Other changes will go in the direction of testing the performance of the
system and computing the cost, so that we can increase the former without
increasing the latter. Since there is room for increasing parallelism, we will try
different ways of obtaining better algorithmic results by making a parameter
sensitivity analysis, including population size, length of evolution runs, and other
algorithmic parameters. Once those algorithmic baselines have been set, we will
experiment with different metaheuristics such as particle swarm optimization,
or even try for heterogeneous functions with different evolutionary algorithm
parameters, with the purpose of reducing the number of parameters to set at
the start.

Acknowledgments. Supported by projects TIN2014-56494-C4-3-P (Spanish Min-
istry of Economy and Competitiveness) and DeepBio (TIN2017-85727-C4-2-P).

References

1. Atienza, J., Castillo, P.A., Garćıa, M., González, J., Merelo, J.: Jenetic: a dis-
tributed, fine-grained, asynchronous evolutionary algorithm using Jini. In: Wang,
P.P. (ed.) Proceedings of JCIS 2000 (Joint Conference on Information Sciences),
vol. I, pp. 1087–1089 (2000). ISBN: 0-9643456-9-2

2. Baldini, I., et al.: Cloud-native, event-based programming for mobile applications.
In: Proceedings - International Conference on Mobile Software Engineering and
Systems, MOBILESoft 2016, pp. 287–288 (2016)

3. Baugh, J.W., Kumar, S.V.: Asynchronous genetic algorithms for heterogeneous
networks using coarse-grained dataflow. In: Cantú-Paz, E., et al. (eds.) GECCO
2003. LNCS, vol. 2723, pp. 730–741. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-45105-6 88

4. Bollini, A., Piastra, M.: Distributed and persistent evolutionary algorithms: a
design pattern. In: Poli, R., Nordin, P., Langdon, W.B., Fogarty, T.C. (eds.)
EuroGP 1999. LNCS, vol. 1598, pp. 173–183. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48885-5 14

5. Chong, F.S., Langdon, W.B.: Java based distributed genetic programming on the
internet. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary
Computation Conference, vol. 2, p. 1229. Morgan Kaufmann, Orlando, 13–17 July
1999. Full text in technical report CSRP-99-7

6. Coleman, V.: The DEME mode: an asynchronous genetic algorithm. Technical
report, University of Massachussets at Amherst, Department of Computer Science
(1989). uM-CS-1989-035

7. Fortin, F.A., Rainville, F.M.D., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

https://doi.org/10.1007/3-540-45105-6_88
https://doi.org/10.1007/3-540-45105-6_88
https://doi.org/10.1007/3-540-48885-5_14
https://doi.org/10.1007/3-540-48885-5_14

410 J. J. Merelo Guervós and J. M. Garćıa-Valdez

8. Garćıa-Sánchez, P., González, J., Castillo, P.A., Arenas, M.G., Merelo-Guervós, J.:
Service oriented evolutionary algorithms. Soft Comput. 17(6), 1059–1075 (2013)

9. Garćıa-Valdez, M., Trujillo, L., Merelo, J.J., Fernández de Vega, F., Olague, G.:
The EvoSpace model for pool-based evolutionary algorithms. J. Grid Comput.
13(3), 329–349 (2015). https://doi.org/10.1007/s10723-014-9319-2

10. Hansen, N., Auger, A., Mersmann, O., Tusar, T., Brockhoff, D.: COCO: a platform
for comparing continuous optimizers in a black-box setting (2016). arXiv preprint
arXiv:1603.08785

11. Hansen, N., Auger, A., Ros, R., Finck, S., Poš́ık, P.: Comparing results of 31
algorithms from the black-box optimization benchmarking BBOB-2009. In: Pro-
ceedings of the 12th Annual Conference Companion on Genetic and Evolutionary
Computation, pp. 1689–1696. ACM (2010)

12. Merelo-Guervós, J.J., Arenas, M.G., Mora, A.M., Castillo, P.A., Romero, G.,
Laredo, J.L.J.: Cloud-based evolutionary algorithms: an algorithmic study. CoRR
abs/1105.6205, 1–7 (2011)

13. Munawar, A., Wahib, M., Munetomo, M., Akama, K.: The design, usage, and
performance of GridUFO: a grid based unified framework for optimization. Future
Gener. Comput. Syst. 26(4), 633–644 (2010)

14. Papazoglou, M.P., van den Heuvel, W.J.: Service oriented architectures:
approaches, technologies and research issues. VLDB J. 16(3), 389–415 (2007).
https://doi.org/10.1007/s00778-007-0044-3

15. Rodŕıguez, L.G., Diosa, H.A., Rojas-Galeano, S.: Towards a component-based soft-
ware architecture for genetic algorithms. In: 2014 9th Computing Colombian Con-
ference (9CCC), pp. 1–6, September 2014

16. Salza, P.: Parallel genetic algorithms in the cloud. Ph.D. thesis, University of
Salerno, Italy (2017). https://goo.gl/sDx6mY

17. Salza, P., Hemberg, E., Ferrucci, F., O’Reilly, U.M.: cCube: a cloud microservices
architecture for evolutionary machine learning classification. In: Proceedings of
the Genetic and Evolutionary Computation Conference Companion, pp. 137–138.
ACM (2017)

18. Tanabe, R., Fukunaga, A.: Evaluation of a randomized parameter setting strategy
for island-model evolutionary algorithms. In: 2013 IEEE Congress on Evolutionary
Computation (CEC), pp. 1263–1270. IEEE (2013)

19. Thönes, J.: Microservices. IEEE Softw. 32(1), 116–116 (2015)
20. Varghese, B., Buyya, R.: Next generation cloud computing: new trends and

research directions. Future Gener. Comput. Syst. 79, 849–861 (2018). Cited by
2

21. Voigt, H.-M., Born, J., Santibañez-Koref, I.: Modelling and simulation of dis-
tributed evolutionary search processes for function optimization. In: Schwefel, H.-
P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 373–380. Springer, Heidel-
berg (1991). https://doi.org/10.1007/BFb0029778

22. Zorman, B., Kapfhammer, G.M., Roos, R.S.: Creation and analysis of a JavaSpace-
based distributed genetic algorithm. In: PDPTA, pp. 1107–1112 (2002)

https://doi.org/10.1007/s10723-014-9319-2
http://arxiv.org/abs/1603.08785
https://doi.org/10.1007/s00778-007-0044-3
https://goo.gl/sDx6mY
https://doi.org/10.1007/BFb0029778

Analyzing Resilience to Computational
Glitches in Island-Based Evolutionary

Algorithms

Rafael Nogueras and Carlos Cotta(B)

Dept. Lenguajes y Ciencias de la Computación,
Universidad de Málaga, ETSI Informática, Campus de Teatinos,

29071 Málaga, Spain
ccottap@lcc.uma.es

Abstract. We consider the deployment of island-based evolutionary
algorithms (EAs) on irregular computational environments plagued with
different kind of glitches. In particular we consider the effect that fac-
tors such as network latency and transient process suspensions have on
the performance of the algorithm. To this end, we have conducted an
extensive experimental study on a simulated environment in which the
performance of the island-based EA can be analyzed and studied under
controlled conditions for a wide range of scenarios in terms of both the
intensity of glitches and the topology of the island-based model (scale-
free networks and von Neumann grids are considered). It is shown that
the EA is resilient enough to withstand moderately high latency rates
and is not significantly affected by temporary island deactivations unless
a fixed time-frame is considered. Combining both kind of glitches has a
higher toll on performance, but the EA still shows resilience over a broad
range of scenarios.

1 Introduction

The great success of metaheuristics in the last decades comes partly from the fact
that their underlying algorithmic models are very much amenable to deployment
in parallel and distributed environments [1]. Indeed, nowadays the use of parallel
environments is a key factor to approach the resolution of complex computational
problems, and population-based metaheuristics are ideal tools in this context.
Specifically, evolutionary algorithms (EAs) have been used on this kind of setting
since the 1980s with excellent results and can greatly benefit from parallelism
[2,16]. Following this line, during the last years there has been a growing interest
in the use of EAs in distributed computing environments that move away from
classical dedicated networks so common in the past. Among such environments
we can cite cloud computing [19], P2P networks [14,28], or volunteer computing
(VC) [7], just to name a few.

Some of these emerging computational scenarios –in particular P2P and VC
systems– are characterized by several distinctive features which can be summa-
rized under the umbrella term of irregularity. Such irregularity is the result of
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 411–423, 2018.
https://doi.org/10.1007/978-3-319-99253-2_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_33&domain=pdf

412 R. Nogueras and C. Cotta

their being part of interconnected techno-social systems [26] composed of hetero-
geneous layers of resources with a complex dynamics. Thus, the computational
substrate may be composed of a collection of computing nodes with heteroge-
neous capabilities [4,17], a feature that has to be accounted for, typically by
finding an appropriate balancing of the computational load [6] or by distribut-
ing data appropriately [23]. The dynamism of the computational environment
is another outstanding feature of these systems: computational nodes can have
an uncontrollable dynamics caused by user interventions, interruptions of the
network, eventual blockages, delays in communications, etc. The term churn is
used to denote this phenomenon [24].

While sometimes it may be possible to try to hide these computational irreg-
ularities by adding intermediate layers, this can be a formidable challenge in
multiple situations [8], and therefore algorithms may need being adapted to run
natively (that is, irregularity-aware) on these computational systems. Focusing
on EAs, these are fortunately very resilient, at least at a fine-grained scale –
see [15,18]. Furthermore, in cases in which they can be more sensitive to envi-
ronmental disruptions (e.g., in coarse-grain settings such as the island model
[12]), they can be augmented with the necessary functionality to endure some of
the difficulties caused by the irregularity of the computational substrate. In line
with this, previous work has studied the resilience of EAs in scenarios plagued
with instability and heterogeneity [21,22]. This does not exhaust the sources of
irregularity though. Computational glitches can take place in additional different
forms, such as traffic overloads or transient computational limitations, which to
the best of our knowledge have not been analyzed in this context. Studying the
performance of EAs in the presence of these is precisely the focus of this work.
To this end we deploy an island-based EA on a simulated computational envi-
ronment that allows experimenting in a controlled way with different intensities
of such computational glitches, namely communication latency and temporary
process deactivations. This will described in more detail in Sect. 2.

2 Methodology

As anticipated in previous section, we consider an island-based EA working on
a simulated environment, in order to have control on the different issues under
study. Each island of the EA runs on a computational node of this environment.
In the following we will describe the basic algorithmic details of the EA, as well
as how the network and the computational glitches are modeled.

Algorithmic Model. The algorithm considered is a steady-state EA with one-
point crossover, bit-flip mutation, binary tournament selection and replacement
of the worst parent. This algorithm is deployed on a computational environment
in which each node hosts an island running an instance of the previously men-
tioned EA. After each iteration of the basic EA, these islands perform migration
(stochastically with probability pmig) of single individuals to neighboring islands.

Resilience of EAs to Computational Glitches 413

Algorithm 1. Overview of the island-based evolutionary algorithm.
for i ∈ [1 · · · nι] do in parallel

Initialize(popi) ; // initialize i-th island population

buffer i ← ∅ ; // initialize i-th migration buffer

end
while ¬ BudgetExhausted() do

for i ∈ [1 · · · nι] do in parallel // basic evolutionary cycle

CheckMigrants (popi, buffer i) ; // accept migrants (if any)

DoIteration(popi) ; // selection, reproduction, replacement

if rand() < pmig then
for j ∈ Ni do

SendMigrants(popi, buffer j) ; // send migrants

end

end

end

end

In each migration event the migrant is randomly selected from the current popu-
lation and the receiving island inserts it in its population by replacing the worst
individual [20]. The whole process is illustrated in Algorithm 1.

Network Model. We assume a network composed by nι nodes interconnected
following a certain topology. More precisely, we consider two possibilities for
this purpose: a von Neumann (VN) grid and a scale-free (SF) network. The first
one is a classical structure often used in spatially-structured EAs [10,25] and
can be described as a regular toroidal mesh in which each node is connected to
four neighbors (those located at unit Manhattan distance), see Fig. 1a. As to the
second one, it is a complex network structure commonly found in many natural
and artificial systems (e.g., P2P networks) as a consequence of their growth
dynamics, i.e., their continuous expansion by the addition of new nodes that
attach preferentially to sites that are already well connected [5]. The result is a
network topology in which node degrees are distributed following a power-law
(i.e., the fraction p(d) of nodes with d neighbors goes as p(d) ∼ d−γ for some
constant parameter γ). To generate a network of this kind we use the Barabási-
Albert model [3], whereby the network is grown from a clique of m + 1 nodes
by adding a node at a time, connecting it to m of the nodes previously added
(selected with probability proportional to their degree) where m is a parameter
of the model. Figure 1b shows an example of a SF network. As anticipated by the
power-law distribution of node degrees, a few nodes will have a large connectivity
and increasingly more nodes will have a smaller number of neighbors.

Modeling Glitches. The functioning of the island-based EA described before
is disturbed by the presence of perturbations of two types: (i) communication
delays and (ii) temporary process deactivations. Both of them can have a diverse

414 R. Nogueras and C. Cotta

Fig. 1. (a) Example of a grid with von Neumann topology (toroidal links not shown
for simplicity) (b) Example of a scale-free network with m = 2.

set of causes in real networks but in the specific context considered in this work,
they can –from a very broad and abstract perspective – be considered to stem
from the intrinsic properties of the underlying computational substrate, namely
the fact it may be often composed of non-dedicated, low-end computational
devices. Focusing firstly on network latency, it is a major issue on P2P systems:
their decentralized nature makes them inherently more scalable than client-server
architectures but also hampers effective communications due to bandwidth lim-
itations and routing information maintenance overhead [13]. This can exert a
strong influence on the performance of applications running on this kind of
environments, e.g., [29]. To test the extent to which this factor also affects the
performance of our island-based EA, we introduce a tunable delay in the commu-
nication between islands: whenever individuals are sent for migration purposes,
they will only arrive to the destination island after some time λ, measured in
a machine-independent way as a number of iterations of the basic evolutionary
cycle in Algorithm 1.

The second factor considered is the temporary deactivation of a process. This
can be due to a number of factors related to the way the operating system of
a certain computational node schedules processes (e.g., the node can engage
in swapping, or another high-priority process may kick in –recall we could be
considering a VC scheme whereby our algorithm would be using just the spare
CPU and bandwidth of a certain device– and the EA can be put to sleep). In
such a case, we assume the computation process is still active but its execution is
temporarily frozen. This means that it will not execute any evolutionary cycle nor
it will send any individuals to neighboring islands (but it cannot prevent other
islands from sending migrants to it; these migrants will be simply kept in the
input buffer and processed later when the node wakes up). This is related to the
issue of instability mentioned in Sect. 1 and can be considered as a slightly more
benign form of churn, that is, the island is not completely lost as it would happen
when a node goes out of the system and the process is terminated. In order to
model this factor we need two parameters ps and ts: the first one indicates

Resilience of EAs to Computational Glitches 415

the probability that each island is put to sleep in each iteration (assumed for
simplicity to be constant and fixed for all islands), and the second one denotes
the number of cycles it will remain in this dormant state.

3 Experimentation

We consider nι = 64 islands of μ = 32 individuals each, and a total number
of evaluations maxevals = 250, 000. We use crossover probability pX = 1.0,
mutation probability pM = 1/�, where � is the genotype length, and migration
probability pmig = 1/(5μ) = 1/160. Regarding the network parameters, we use
m = 2 in the Barabási-Albert model in order to define the topology of the SF
network; in the case of the VN topology, we consider a 8 × 8 toroidal grid. As
for the computational glitches, we consider the following settings:

– Latency values λ = kμ for k ∈ {0, 1, 2, 4, 8}. Intuitively, these values indicate
a communication delay analogous to k full generations elapsed on an island.

– Node deactivations are done with values ps = k/(μnι) and ts = kμ, with k ∈
{0, 1, 2, 4, 8, 16, 32}. Intuitively, a certain value of k would indicate both the
average number of islands being deactivated per generation and the number
of generations they would remain in that state.

The experimental benchmark comprises Deb’s trap function [9] (TRAP, con-
catenating 32 four-bit traps), Watson et al.’s Hierarchical-if-and-only-if function
[27] (HIFF, using 128 bits) and Goldberg et al.’s Massively Multimodal Decep-
tive Problem [11] (MMDP, using 24 six-bit blocks). These functions provide
a scalable benchmark exhibitting properties of interest such as multimodality
and deception. We perform 20 simulations for each configuration and measure
performance as the percentage deviation from the optimal solution in each case.

Firstly, let us analyze how the latency of communications affects the per-
formance of the algorithm. Figure 2 and Table 1 show the results. As expected,
the performance of the algorithm degrades as the latency of communications
increases (that is, as we move to the right along the X axis). This can be
interpreted in terms of the role of migration: when individuals are migrated
the receiving island can benefit both from increased diversity and from quality
genetic material. In fact these two factors are intertwined since good (in terms
of fitness) fresh information is more likely to proliferate in the target popula-
tion, and can hence re-focus the search conducted in the island or contribute
to drive it out of stagnating states. To the extent that this information starts
to constitute a glimpse from the past (as it happens when the latency is in the
upper range of values considered), the migrants tend to be less significant in
terms of fitness (since the receiving island has more time to evolve and advance
in the mean time). They will still carry diversity (and actually in some cases
this diversity might be probably higher in comparative terms, since the emitting
island was in a less-converged state), but the impact on the receiving island will
be less marked, at least in the cases in which latency is high (cf. Table 1), with-
out excluding that for the lower range of latency values considered this diversity

416 R. Nogueras and C. Cotta

0 2 4 6 8
0

5

10

15

λ/μ

de
vi

at
io

n
fr

om
 o

pt
im

um
 (

%
)

SF
VN

(a)

0 2 4 6 8
0

5

10

15

20

25

30

λ/μ
de

vi
at

io
n

fr
om

 o
pt

im
um

 (
%

)

SF
VN

(b)

0 2 4 6 8
0

5

10

15

λ/μ

de
vi

at
io

n
fr

om
 o

pt
im

um
 (

%
)

SF
VN

(c)

Fig. 2. Average deviation from the optimal solution as a function of the latency param-
eter for SF and VN topologies. (a) TRAP (b) HIFF (c) MMDP.

Table 1. Results (20 runs) of the different EAs on SF (upper portion of the table)
and VN (lower portion of the table) networks for different latency values. In this table
and subsequent ones, the median (x̃), mean (x̄) and standard error of the mean (σx̄)
are indicated. A symbol �| • |◦ is used to indicate statistically significant differences at
α = 0.01|0.05|0.10 with respect to the case λ = 0 according to a Wilcoxon ranksum
test.

SF TRAP H-IFF MMDP

Latency (λ) x̃ x̄ ± σx̄ x̃ x̄ ± σx̄ x̃ x̄ ± σx̄

0 2.50 2.34 ± 0.33 11.11 10.21 ± 1.87 5.99 5.75 ± 0.32

μ 2.50 2.84 ± 0.36 16.67 14.53 ± 1.83 ◦ 5.99 6.33 ± 0.38

2μ 2.50 2.56 ± 0.26 16.67 15.40 ± 1.67 ◦ 7.49 7.06 ± 0.29 •
4μ 3.75 3.88 ± 0.25 � 19.44 15.95 ± 1.79 • 7.49 8.10 ± 0.38 �

8μ 6.25 6.16 ± 0.32 � 21.88 21.92 ± 0.60 � 8.99 9.37 ± 0.41 �

VN TRAP H-IFF MMDP

Latency (λ) x̃ x̄ ± σx̄ x̃ x̄ ± σx̄ x̃ x̄ ± σx̄

0 0.00 0.00 ± 0.00 0.00 6.39 ± 1.68 1.50 1.50 ± 0.27

μ 0.00 0.00 ± 0.00 0.00 2.50 ± 1.17 ◦ 1.50 2.17 ± 0.25

2μ 0.00 0.37 ± 0.13 � 0.00 3.89 ± 1.40 3.00 3.10 ± 0.33 �

4μ 1.25 1.16 ± 0.22 � 11.11 8.13 ± 1.79 4.49 4.55 ± 0.32 �

8μ 3.75 3.41 ± 0.24 � 13.89 10.80 ± 1.92 ◦ 7.32 6.86 ± 0.24 �

boost can sometimes provide a minor improvement. The results are also qual-
itatively similar for both network topologies in which the degradation trend is
analogous.

Let us now turn our attention to the effect of temporary island deactiva-
tions. The results for different intensities of this factor are shown in Table 2.
As it can be seen, there is hardly a degradation of results even for large glitch
rates. To interpret this, notice that the presence of dormant islands resembles

Resilience of EAs to Computational Glitches 417

Table 2. Results (20 runs) of the different EAs on SF (upper portion of the table) and
VN (lower portion of the table) networks for different deactivation parameters and a
constant number of evaluations. The statistical comparison is done with respect to the
case k = 0.

SF TRAP H-IFF MMDP

k x̃ x̄ ± σx̄ x̃ x̄ ± σx̄ x̃ x̄ ± σx̄

0 2.50 2.34 ± 0.33 11.11 10.21 ± 1.87 5.99 5.73 ± 0.32

1 1.25 1.94 ± 0.27 16.67 13.11 ± 1.98 4.49 5.00 ± 0.36

2 2.50 2.37 ± 0.28 13.89 11.08 ± 1.78 5.99 5.82 ± 0.37

4 2.50 2.34 ± 0.29 16.67 14.57 ± 1.35 5.99 5.90 ± 0.39

8 2.50 2.88 ± 0.41 16.67 15.07 ± 1.54 • 7.32 6.86 ± 0.34 •
16 2.50 2.66 ± 0.36 19.44 18.44 ± 1.25 � 5.99 6.11 ± 0.36

32 2.50 2.22 ± 0.28 16.67 16.05 ± 1.71 • 5.99 6.03 ± 0.35

VN TRAP H-IFF MMDP

k x̃ x̄ ± σx̄ x̃ x̄ ± σx̄ x̃ x̄ ± σx̄

0 0.00 0.00 ± 0.00 0.00 6.39 ± 1.68 1.50 1.50 ± 0.27

1 0.00 0.00 ± 0.00 0.00 3.06 ± 1.24 1.50 1.26 ± 0.29

2 0.00 0.06 ± 0.06 0.00 6.10 ± 1.79 1.50 1.56 ± 0.22

4 0.00 0.12 ± 0.09 0.00 5.42 ± 1.81 1.50 1.48 ± 0.28

8 0.00 0.06 ± 0.06 11.11 8.06 ± 1.59 1.50 1.95 ± 0.31

16 0.00 0.25 ± 0.11 • 11.11 7.15 ± 1.58 1.50 1.91 ± 0.30

32 0.00 0.25 ± 0.11 • 11.11 8.89 ± 1.76 2.83 2.36 ± 0.22 •

transient heterogeneous computational capabilities: within a small time window,
each island will have conducted a different number of cycles, which is to some
extent analogous to assume they are running on nodes with different compu-
tational power; however, on the larger scale, these dormant periods distribute
rather homogeneously over all islands, and thus they advance on average at the
same rate. Of course, these perturbations become better smoothed out in the
longer term the finer they are (hence some effects can be observed in the upper
range of values of k, where glitches are more coarse-grained), but EAs are in any
case resilient enough to withstand heterogeneous advance rates without dramatic
performance losses [22].

A different perspective can be obtained if we approach these results from
the point of view of a fixed time frame, as opposed to a fixed computational
effort distributed over a variable time frame. Obviously, the presence of dormant
islands contributes to dilute the computational effort exerted over a certain time
frame, so studying the resilience of the EA to this dilution is in order. To do
so, we consider a time frame dictated by the number of cycles performed by the
EA in the base (k = 0) case. The results under these conditions are shown in
Table 3 and Fig. 3. As expected there is a clear trend of degradation in this case.

418 R. Nogueras and C. Cotta

0 5 10 15 20 25 30
0

10

20

30

40

50

60

k

de
vi

at
io

n
fr

om
 o

pt
im

um
 (

%
)

SF
VN

(a)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

k
de

vi
at

io
n

fr
om

 o
pt

im
um

 (
%

)

SF
VN

(b)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

k

de
vi

at
io

n
fr

om
 o

pt
im

um
 (

%
)

SF
VN

(c)

Fig. 3. Average deviation from the optimal solution as a function of the deactivation
parameters for SF and VN topologies and a constant number of cycles. (a) TRAP (b)
HIFF (c) MMDP.

Table 3. Results (20 runs) of the different EAs on SF (upper portion of the table) and
VN (lower portion of the table) networks for different deactivation parameters and a
constant number of cycles. The statistical comparison is done with respect to the case
k = 0.

SF TRAP H-IFF MMDP

k x̃ x̄ ± σx̄ x̃ x̄ ± σx̄ x̃ x̄ ± σx̄

0 2.50 2.34 ± 0.33 11.11 10.21 ± 1.87 5.99 5.75 ± 0.32

1 1.25 2.00 ± 0.25 16.67 14.21 ± 1.91 5.24 5.17 ± 0.35

2 2.81 2.94 ± 0.30 16.67 12.53 ± 1.80 5.99 6.24 ± 0.34

4 3.75 3.78 ± 0.30 � 19.44 18.51 ± 1.23 � 7.49 7.54 ± 0.43 �

8 9.69 8.94 ± 0.53 � 30.38 29.26 ± 1.15 � 13.48 13.45 ± 0.50 �

16 21.56 21.69 ± 0.47 � 45.31 45.62 ± 0.46 � 21.39 20.98 ± 0.49 �

32 38.44 37.81 ± 0.60 � 57.47 57.20 ± 0.29 � 30.29 30.03 ± 0.27 �

VN TRAP H-IFF MMDP

k x̃ x̄ ± σx̄ x̃ x̄ ± σx̄ x̃ x̄ ± σx̄

0 0.00 0.00 ± 0.00 0.00 6.39 ± 1.68 1.50 1.50 ± 0.27

1 0.00 0.00 ± 0.00 0.00 3.06 ± 1.24 1.50 1.27 ± 0.29

2 0.00 0.06 ± 0.06 0.00 6.11 ± 1.80 3.00 2.32 ± 0.23 •
4 0.00 0.62 ± 0.19 � 5.56 8.33 ± 2.01 3.00 3.79 ± 0.33 �

8 6.25 6.31 ± 0.33 � 22.05 22.32 ± 1.48 � 10.15 10.26 ± 0.41 �

16 20.63 20.44 ± 0.41 � 43.40 43.40 ± 0.49 � 20.31 20.15 ± 0.32 �

32 37.19 36.47 ± 0.52 � 56.60 56.53 ± 0.32 � 29.29 29.25 ± 0.53 �

Still, the EA can withstand scenarios in which islands remain deactivated for a
number of cycles equivalent to twice the population size, although performance
significantly degrades for larger deactivation rates/periods in which a much more
significant part of the computational effort is lost (up from about 25% for k = 4).

Resilience of EAs to Computational Glitches 419

Table 4. Results (20 runs) of the different EAs on SF networks for different latency and
deactivation parameters and a constant number of cycles. Three symbols are shown
next to each entry indicating from left to right statistical comparisons with respect
to (i) λ = 0, k = 0, (ii) same λ and k = 0, and (iii) same k and λ = 0 using a
Wilcoxon ranksum test. Blanks indicate no statistically significant difference for the
corresponding comparison, and �| • |◦ have the same meaning as in Tables 1, 2 and 3.

SF TRAP H-IFF MMDP

λ k x̃ x̄ ± σx̄ x̃ x̄ ± σx̄ x̃ x̄ ± σx̄

0 0 2.50 2.34 ± 0.33 11.11 10.21 ± 1.87 5.99 5.75 ± 0.32

1 1.25 2.00 ± 0.25 16.67 14.21 ± 1.91 5.24 5.17 ± 0.35

2 2.50 2.41 ± 0.28 19.44 14.68 ± 1.99 • • 5.99 5.23 ± 0.36

4 3.13 3.00 ± 0.33 19.44 15.97 ± 1.81 • • 5.99 6.33 ± 0.31

8 2.50 2.81 ± 0.35 19.44 17.91 ± 1.34 � � 7.49 7.44 ± 0.46 � �

μ 0 2.50 2.84 ± 0.36 16.67 14.53 ± 1.83 ◦ ◦ 5.99 6.33 ± 0.38

1 3.75 3.22 ± 0.34 • 16.67 16.58 ± 1.62 • 6.57 6.47 ± 0.40 •
2 2.50 2.25 ± 0.32 16.67 14.86 ± 1.34 ◦ 6.57 6.39 ± 0.43 ◦
4 2.50 2.66 ± 0.22 18.06 15.00 ± 1.89 • 5.99 6.33 ± 0.35

8 3.44 2.97 ± 0.30 19.44 17.58 ± 1.62 � 8.07 7.56 ± 0.50 �◦
2μ 0 2.50 2.56 ± 0.26 16.67 15.40 ± 1.67 ◦ ◦ 7.49 7.06 ± 0.29 • •

1 3.44 3.09 ± 0.30 • 16.67 13.69 ± 1.94 7.49 7.16 ± 0.34 � �

2 2.81 3.19 ± 0.23 ◦ • 18.06 17.14 ± 1.58 � 5.99 6.41 ± 0.28 •
4 4.37 3.97 ± 0.30 ��• 18.06 15.00 ± 2.14 • 7.49 7.27 ± 0.35 � ◦
8 4.06 3.69 ± 0.41 •• 20.14 18.81 ± 1.35 �◦ 7.49 7.45 ± 0.41 �

4μ 0 3.75 3.88 ± 0.25 � � 19.44 15.95 ± 1.79 • • 7.49 8.10 ± 0.38 � �

1 4.37 4.16 ± 0.25 � � 19.44 17.66 ± 1.16 � 7.49 7.59 ± 0.32 � �

2 4.06 4.31 ± 0.32 � � 20.14 18.23 ± 1.16 � 8.99 8.26 ± 0.30 � �

4 4.69 4.53 ± 0.39 � � 20.49 17.41 ± 1.61 � 8.66 8.30 ± 0.42 � �

8 5.00 4.81 ± 0.24 �•� 20.83 18.17 ± 1.64 � 8.82 8.25 ± 0.27 �

8μ 0 6.25 6.16 ± 0.32 � � 21.88 21.92 ± 0.60 � � 8.99 9.37 ± 0.41 � �

1 5.94 5.75 ± 0.33 � � 21.70 22.35 ± 0.81 � � 10.15 9.79 ± 0.30 � �

2 5.94 6.09 ± 0.26 � � 22.14 22.47 ± 0.87 � � 9.57 9.59 ± 0.33 � �

4 6.25 6.25 ± 0.38 � � 21.88 22.76 ± 0.78 � � 10.48 10.51 ± 0.36 �•�

8 5.00 5.47 ± 0.35 �◦� 25.00 23.53 ± 1.52 �•� 10.48 10.58 ± 0.48 �◦�

Finally, let us consider the cross-effect of having both types of computational
glitches. To this end, we have focused on the lower range of deactivation rates
(0 � k � 8) in which degradation is moderate at most, leaving aside parameter
settings for which extreme degradation already takes place on its own. Also, we
have fixed ts = μ in order to have more fine-grained island deactivations and
isolate the analysis on the interplay between ps and λ. The results are shown

420 R. Nogueras and C. Cotta

Table 5. Results (20 runs) of the different EAs on VN grids for different latency
and deactivation parameters and a constant number of cycles. Statistical comparisons
follow the same notation as in Table 4.

VN TRAP H-IFF MMDP

λ k x̃ x̄ ± σx̄ x̃ x̄ ± σx̄ x̃ x̄ ± σx̄

0 0 0.00 0.00 ± 0.00 0.00 6.39 ± 1.68 1.50 1.50 ± 0.27

1 0.00 0.00 ± 0.00 0.00 3.06 ± 1.24 1.50 1.27 ± 0.29

2 0.00 0.00 ± 0.00 0.00 3.33 ± 1.36 1.50 1.76 ± 0.25

4 0.00 0.12 ± 0.09 0.00 4.72 ± 1.35 1.50 1.78 ± 0.23

8 0.00 0.19 ± 0.10 ◦ ◦ 11.11 8.06 ± 1.42 3.00 3.13 ± 0.25 ��

μ 0 0.00 0.00 ± 0.00 0.00 2.50 ± 1.17 ◦◦ 1.50 2.17 ± 0.25

1 0.00 0.25 ± 0.11 ••• 0.00 5.28 ± 1.37 3.00 2.77 ± 0.27 �◦�

2 0.00 0.19 ± 0.10 ◦◦◦ 5.56 5.56 ± 1.27 ◦ 2.83 2.42 ± 0.22 • ◦
4 0.00 0.28 ± 0.13 •• 0.00 5.56 ± 1.61 3.00 2.50 ± 0.24 • •
8 0.00 0.37 ± 0.13 �� 0.00 4.03 ± 1.63 ◦ 3.00 3.56 ± 0.31 ��

2μ 0 0.00 0.37 ± 0.13 � � 0.00 3.89 ± 1.40 3.00 3.10 ± 0.33 � �

1 0.00 0.44 ± 0.14 � � 0.00 4.44 ± 1.43 3.00 3.05 ± 0.25 � �

2 0.00 0.50 ± 0.14 � � 0.00 3.33 ± 1.36 3.00 3.52 ± 0.29 � �

4 0.00 0.56 ± 0.14 � • 5.56 6.39 ± 1.52 3.00 3.34 ± 0.33 � �

8 1.25 0.69 ± 0.14 � � 0.00 5.56 ± 1.45 4.49 4.68 ± 0.31 ���

4μ 0 1.25 1.16 ± 0.22 � � 11.11 8.13 ± 1.79 4.49 4.55 ± 0.32 � �

1 1.25 1.34 ± 0.21 � � 0.00 2.22 ± 1.24 ◦• 4.49 4.89 ± 0.26 � �

2 1.25 0.97 ± 0.16 � � 0.00 3.33 ± 1.36 • 5.66 5.35 ± 0.30 � �

4 1.25 1.50 ± 0.19 � � 0.00 1.88 ± 1.30 •�◦ 4.49 4.64 ± 0.26 � �

8 1.56 1.81 ± 0.23 �•� 5.56 7.57 ± 1.83 5.99 6.11 ± 0.32 ���

8μ 0 3.75 3.41 ± 0.24 � � 13.89 10.80 ± 1.92 ◦ ◦ 7.32 6.86 ± 0.24 � �

1 3.75 3.66 ± 0.28 � � 13.89 12.26 ± 1.80 • � 7.49 7.51 ± 0.27 � �

2 3.75 3.56 ± 0.29 � � 16.67 13.56 ± 1.91 � � 7.49 7.70 ± 0.24 ���

4 3.75 3.66 ± 0.27 � � 19.44 15.78 ± 1.69 �•� 7.49 7.41 ± 0.29 � �

8 4.37 4.47 ± 0.26 ��� 16.67 14.51 ± 1.79 � � 8.66 8.44 ± 0.43 ���

in Tables 4 and 5. As it can be seen, both factors strongly interact in degrading
performance: if we inspect the first block in either table (corresponding to hav-
ing no latency) we observe that performance differences only start to become
significant for larger values of ps; however, remaining blocks are plagued with
significant performance differences, even for small values of ps. Furthermore, we
can see that having ps > 0 can provoke significant differences in scenarios in
which the mere presence of latency would not suffice, cf. Table 1. It is never-
theless interesting to observe that this latter factor, namely latency, seems to
have a stronger influence in the performance of the algorithm in this scenario,

Resilience of EAs to Computational Glitches 421

as indicated by the fact that turning off deactivations for a given latency value
does not usually provide a significant difference (that is, unless the former is
typically in the upper end of its range) whereas the converse is often the case.

4 Conclusions

Resilience is a property that any algorithm running on an irregular computa-
tional environment should feature. Evolutionary algorithms are in this sense
well-prepared thanks to the intrinsic resilience provided by their population-
based nature. In particular, we have shown in this work that an island-based
EA can withstand significant computational glitches without major performance
losses. Indeed, the range of latency values and deactivation rates for which notice-
able degradation takes place can be considered at the very least moderately high
(e.g., latency values larger than a couple of generations of the EA). This comple-
ments previous findings that showed both the sensitivity of these techniques to
more serious disruptions (such as node failures) and their amenability for being
endowed with mechanisms to endure such severe glitches. In this sense, it would
be of the foremost interest to study harder scenarios integrating node failures
with the computational perturbations considered in this work, analyzing how the
EA can react to the corresponding variety of fluctuations in the computational
landscape. Such a study could certainly encompass other algorithmic variants
of EAs, as well as additional network topologies. The study could be also con-
ducted along other dimensions such as the effect that the migration probability
can have in order to counteract glitches.

Acknowledgements. This work is supported by the Spanish Ministerio de Economı́a
and European FEDER under Projects EphemeCH (TIN2014-56494-C4-1-P) and Deep-
BIO (TIN2017-85727-C4-1-P) and by Universidad de Málaga, Campus de Excelencia
Internacional Andalućıa Tech.

References

1. Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley, Hoboken
(2005)

2. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans.
Evol. Comput. 6(5), 443–462 (2002)

3. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74(1), 47–97 (2002)

4. Anderson, D.P., Reed, K.: Celebrating diversity in volunteer computing. In: Pro-
ceedings of the 42nd Hawaii International Conference on System Sciences, HICSS
2009, pp. 1–8. IEEE Computer Society, Washington (2009)

5. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

6. Beltrán, M., Guzmán, A.: How to balance the load on heterogeneous clusters. Int.
J. High Perform. Comput. Appl. 23, 99–118 (2009)

422 R. Nogueras and C. Cotta

7. Cole, N.: Evolutionary algorithms on volunteer computing platforms: the Milky-
Way@Home project. In: de Vega, F.F., Cantú-Paz, E. (eds.) Parallel and Dis-
tributed Computational Intelligence. Studies in Computational Intelligence, vol.
269, pp. 63–90. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
10675-0 4

8. Cotta, C., et al.: Ephemeral computing and bioinspired optimization - challenges
and opportunities. In: 7th International Joint Conference on Evolutionary Com-
putation Theory and Applications, pp. 319–324. SCITEPRESS, Lisboa, Portugal
(2015)

9. Deb, K., Goldberg, D.: Analyzing deception in trap functions. In: Whitley, L.
(ed.) Second Workshop on Foundations of Genetic Algorithms, pp. 93–108. Morgan
Kaufmann Publishers, Vail (1993)

10. Dorronsoro, B., Alba, E.: Cellular Genetic Algorithms Operations Research/
Computer Science Interfaces, vol. 42. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-0-387-77610-1

11. Goldberg, D., Deb, K., Horn, J.: Massive multimodality, deception and genetic
algorithms. In: Männer, R., Manderick, B. (eds.) Parallel Problem Solving from
Nature - PPSN II, pp. 37–48. Elsevier Science Inc., New York (1992)

12. Hidalgo, J., Lanchares, J., Fernández de Vega, F., Lombraña, D.: Is the island
model fault tolerant? In: Thierens, D., et al. (eds.) Genetic and Evolutionary Com-
putation - GECCO 2007, pp. 2737–2744. ACM Press, New York (2007)

13. Kumar, P., Sridhar, G., Sridhar, V.: Bandwidth and latency model for DHT based
peer-to-peer networks under variable churn. In: 2005 Systems Communications
(ICW 2005, ICHSN 2005, ICMCS 2005, SENET 2005), pp. 320–325. IEEE August
2005

14. Laredo, J., Castillo, P., Mora, A., Merelo, J.J.: Evolvable agents, a fine grained
approach for distributed evolutionary computing: walking towards the peer-to-peer
computing frontiers. Soft Comput. 12(12), 1145–1156 (2008)

15. Laredo, J., Castillo, P., Mora, A., Merelo, J.J., Fernandes, C.: Resilience to churn
of a peer-to-peer evolutionary algorithm. Int. J. High Perform. Syst. Archit. 1(4),
260–268 (2008)

16. Lässig, J., Sudholt, D.: General scheme for analyzing running times of parallel
evolutionary algorithms. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G.
(eds.) Parallel Problem Solving from Nature - PPSN XI, pp. 234–243. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5 24

17. Lastovetsky, A.: Heterogeneous parallel computing: from clusters of workstations to
hierarchical hybrid platforms. Supercomput. Front. Innovations 1(3), 70–87 (2014)

18. Lombraña González, D., Fernández de Vega, F., Casanova, H.: Characterizing fault
tolerance in genetic programming. Future Generation Computer Systems 26(6),
847–856 (2010)

19. Meri, K., Arenas, M., Mora, A., Merelo, J.J., Castillo, P., Garćıa-Sánchez, P.,
Laredo, J.: Cloud-based evolutionary algorithms: an algorithmic study. Nat. Com-
put. 12(2), 135–147 (2013)

20. Nogueras, R., Cotta, C.: An analysis of migration strategies in island-based mul-
timemetic algorithms. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J.
(eds.) PPSN 2014. LNCS, vol. 8672, pp. 731–740. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10762-2 72

21. Nogueras, R., Cotta, C.: Self-healing strategies for memetic algorithms in unstable
and ephemeral computational environments. Nat. Comput. 16(2), 189–200 (2017)

https://doi.org/10.1007/978-3-642-10675-0_4
https://doi.org/10.1007/978-3-642-10675-0_4
https://doi.org/10.1007/978-0-387-77610-1
https://doi.org/10.1007/978-0-387-77610-1
https://doi.org/10.1007/978-3-642-15844-5_24
https://doi.org/10.1007/978-3-319-10762-2_72
https://doi.org/10.1007/978-3-319-10762-2_72

Resilience of EAs to Computational Glitches 423

22. Nogueras, R., Cotta, C.: Analyzing self-� island-based memetic algorithms in het-
erogeneous unstable environments. Int. J. High Perform. Comput., Appl (2016).
https://doi.org/10.1177/1094342016678665

23. Renard, H., Robert, Y., Vivien, F.: Data redistribution algorithms for heteroge-
neous processor rings. Int. J. High Perform. Comput. Appl. 20, 31–43 (2006)

24. Stutzbach, D., Rejaie, R.: Understanding churn in peer-to-peer networks. In: 6th
ACM SIGCOMM Conference on Internet Measurement - IMC 2006, pp. 189–202.
ACM Press, New York (2006)

25. Tomassini, M.: Spatially Structured Evolutionary Algorithms Natural Computing
Series. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-29938-6

26. Vespignani, A.: Predicting the behavior of techno-social systems. Science
325(5939), 425–428 (2009)

27. Watson, R.A., Hornby, G.S., Pollack, J.B.: Modeling building-block interdepen-
dency. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN
1998. LNCS, vol. 1498, pp. 97–106. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0056853

28. Wickramasinghe, W., Steen, M.V., Eiben, A.E.: Peer-to-peer evolutionary algo-
rithms with adaptive autonomous selection. In: Thierens, D. (ed.) Genetic and
Evolutionary Computation - GECCO 2007, pp. 1460–1467. ACM Press, New York
(2007)

29. Zhou, J., Tang, L., Li, K., Wang, H., Zhou, Z.: A low-latency peer-to-peer approach
for massively multiplayer games. In: Despotovic, Z., Joseph, S., Sartori, C. (eds.)
AP2PC 2005. LNCS (LNAI), vol. 4118, pp. 120–131. Springer, Heidelberg (2006).
https://doi.org/10.1007/11925941 10

https://doi.org/10.1177/1094342016678665
https://doi.org/10.1007/3-540-29938-6
https://doi.org/10.1007/BFb0056853
https://doi.org/10.1007/BFb0056853
https://doi.org/10.1007/11925941_10

Spark Clustering Computing Platform Based
Parallel Particle Swarm Optimizers

for Computationally Expensive Global
Optimization

Qiqi Duan, Lijun Sun, and Yuhui Shi(&)

Shenzhen Key Laboratory of Computational Intelligence,
Department of Computer Science and Engineering,

Southern University of Science and Technology, Shenzhen 518055, China
shiyh@sustc.edu.cn

Abstract. The increasing demands on processing large-scale data from both
industry and academia have boosted the emergence of data-intensive clustering
computing platforms. Among them, Hadoop MapReduce has been widely
adopted in the evolutionary computation community to implement a variety of
parallel evolutionary algorithms, owing to its scalability and fault-tolerance.
However, the recently proposed in-memory Spark clustering computing
framework is more suitable for iterative computing than disk-based MapReduce
and often boosts the speedup by several orders of magnitude. In this paper we
will parallelize three mostly cited versions of particle swarm optimizers on
Spark, in order to solve computationally expensive problems. First we will
utilize the simple but powerful Amdahl’s law to analyze the master-slave model,
that is, we do quantitative analysis based on Amdahl’s law to answer the
question on which kinds of optimization problems the master-slave model could
work well. Then we will design a publicly available Spark-based software
framework which parallelizes three different particle swarm optimizers in a
unified way. This new framework can not only simplify the development
workflow of Spark-based parallel evolutionary algorithms, but also benefit from
both functional programming and object-oriented programming. Numerical
experiments on computationally expensive benchmark functions show that a
super-linear speedup could be obtained via the master-slave model. All the
source code are put at the complementary GitHub project for free access.

Keywords: Parallel particle swarm optimizer � Spark clustering computing
Computationally expensive global optimization

1 Introduction

The increasing demands on processing large-scale data from both industry and aca-
demia have boosted the emergence of new data-intensive clustering computing plat-
forms. Three of the most successful platforms are the disk-based MapReduce
distributed computing paradigm [1–3], the general-purpose GPU heterogeneous com-
puting environment, and the more recently in-memory Spark clustering computing

© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 424–435, 2018.
https://doi.org/10.1007/978-3-319-99253-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_34&domain=pdf

framework [4]. They have been successfully used in a variety of fields (e.g., database
[8], machine learning [9], and business intelligence [10]). It is expected by many
researchers from the evolutionary computation (EC) community (e.g., [1, 14, 15]) that
parallelizing evolutionary algorithms (EAs) on these big data-driven clustering com-
puting platforms could be beneficial to solve computationally expensive problems.

However, designing easy-to-use, scalable, portable, efficient parallel evolutionary
algorithms (PEAs) is a non-trivial task. This is mainly due to the fact that we not only
need knowledge of hardware architectures and software platforms, but also need to
carefully make trade-offs among different performance metrics. For instance, given a
fixed number of function evaluations, if a relatively large population size is chosen on
each generation for more powerful parallelization, the slower convergence speed may
be obtained. On the contrary, if a relatively small population size is chosen for faster
convergence, more execution time may be spent. To alleviate such problems, a large
number of PEAs based on these big data-driven computing platforms have been pro-
posed (see [14, 15] for comprehensive surveys).

Among them, both Hadoop MapReduce (e.g., [25, 26]) and GPUs (e.g., [6, 7, 14])
have been widely adopted in the EC field to implement a variety of PEAs. To the best
of our knowledge, however, there is few work attempting to use Spark, the state-of-the-
art in-memory clustering computing platform, to accelerate PEAs. It has been recently
found in [4, 9] that Spark is more suitable for iterative computing than MapReduce and
often boost the speedup by more than one order of magnitude. Considering significant
advantages of Spark over MapReduce, in this paper we will parallelize three highly
cited versions of particle swarm optimizer (i.e., PSO [21], CLPSO [11], and ALCPSO
[18]) based on Spark, in order to solve computationally expensive problems. More
specifically, the main contributions of this paper are two-fold:

1. Inspired by [1, 12], we will utilize the simple but powerful Amdahl’s law to
theoretically analyze the master-slave model for PEAs, that is, we do quantitative
analysis based on the Amdahl’s law, in order to answer the question on which kinds
of problems the master-slave model could work well (see Sect. 3.2 for more
details).

2. We will design a Spark-based software framework parallelizing three highly cited
PSOs. This new framework can not only simplify the development workflow of
Spark-based PEAs, but also benefit from both functional programming and object-
oriented programming (via Scala [22]). The framework is put at the complementary
GitHub project1 for free access. Numerical experiments on computationally
expensive test functions show that a super-linear speedup could be obtained via the
master-slave model.

The rest of the paper is organized as follows. Section 2 gives a brief review of the
state-of-the-art works of PEAs. Section 3 describes Spark, the Amdahl’s law for the
master-salve model, and three Spark-based PSOs. Section 4 conducts numerical
experiments. Section 5 gives conclusions and promising research directions.

1 https://github.com/QiqiDuan257/parallel-pso-spark.

Spark Clustering Computing Platform Based Parallel PSOs 425

https://github.com/QiqiDuan257/parallel-pso-spark

2 Review

In this section, we will review some state-of-the-art works of PEAs, owing to the limit
of space. For more comprehensive surveys, please refer to [14, 15, 23].

The most representative work on MapReduce-based PEAs may be the work
recently published by Ferrucci et al. [1]. This paper answered a critical research
problem regarding when the MapReduce-based PEAs could execute faster than their
sequential versions. In [1], a disadvantage of MapReduce-based PEAs (i.e., the over-
head caused by communications with the distributed data storage system) was
identified.

Wachowiak et al. [6] parallelized a PSO variant in a heterogeneous clustering
computing environment, where many-core GPUs are used to run data-parallel opera-
tions (e.g., the matrix-matrix multiplication operation) and multi-core CPUs are used to
execute other computationally complex tasks (e.g., complicated nested loops). To
obtain a higher speedup, they used float-point precision rather than double-point pre-
cision in experiments, which may be not suited for real-world applications where high
numerical errors are not allowed. Further, the performance of their algorithm depends
heavily on the execution profiling to these test functions.

In the cloud computing environment, Zhan et al. [5] proposed a double-layered
distributed differential evolution algorithm called Cloudde. The first layer is responsible
for operating multiple independent populations with different parameter settings, while
the second layer is in charge of computationally intensive function evaluations dis-
tributed on multiple virtual machines. The traditional MPI system was applied to
realize Cloudde. Although Cloudde showed good performance on some benchmark
functions, its scalability and fault-tolerance ability have not yet been tested and thus
constitute an open question.

3 Spark-Based Parallel PSOs

This section first compares Spark with other parallel computing technologies. Then
Amdahl’s law is utilized to quantitatively analyze the master-slave model. Finally, a
Spark-based software framework is developed to parallelize three PSOs.

3.1 Comparing Spark with Other Parallel Computing Technologies

Currently, spark is the most active open-source big data project [24]. When compared
with MapReduce and MPI, two main advantages of Spark are presented below:

1. It provides a simple yet powerful abstract data structure called resilient distributed
dataset (RDD) [20], which can utilize distributed RAM efficiently. Conceptually,
RDD can be regarded as an immutable distributed shared memory with implicit data
parallelism and fault tolerance. Spark hides the details of hardware architectures and
communications among nodes, to some extent. With the help of RDD, developers
can focus mainly on the algorithmic logic itself.

426 Q. Duan et al.

2. It supports over 100 high-level operators and the mix of functional programming
and object-oriented programming, which simplify the development workflow. For
instance, once the function evaluations are finished on different workers, the output
can be reduced to the fitness value by invoking the mapValues method and then
returned to the driver by invoking the collect method.

For iterative computation, Spark often reduces the execution time by several orders
of magnitude when compared with MapReduce [4, 9].

3.2 Amdahl’s Law for the Master-Slave Model

Owing to its simplicity, the master-slave model has been applied to design a variety of
PEAs (e.g. Cloudde [5], PEPNet [13]) over two decades. Empirically, it can perform
well when the fitness evaluation time dominates the total execution time of the algo-
rithm. However, there is a lack of rigorous quantitative analysis on the theoretical upper
bound of the speedup obtained by PEAs based on the master-slave model, except the
early work conducted by Dubreuil et al. [12].

In [12], a complicated mathematical model was proposed to analyze the master-
slave model, which takes some realistic factors (e.g., communication cost, network
latency) into account. However, accurately estimating these parameter values involved
is a non-trivial task in practice. Ferrucci et al. [1] hold that the ideal speedup is equal to
the cluster size. Strictly speaking, the cluster size is a looser upper bound, when
compared with Amdahl’s law. Although they mentioned Amdahl’s law in their paper,
they did not attempt to use it to further analyze PEAs. Their works [1, 12] motivated us
to utilize more general Amdahl’s law to theoretically and empirically explain when and
why the master-slave model could work well, especially under the Spark clustering
computing framework. Inspired by Amdahl’s law, we will show in Sect. 4 when a
super-linear speedup could be obtained by Spark-based PEAs on computationally
intensive continuous benchmark functions.

As stated in Amdahl’s law [19, 27], the speedup obtained via parallelization can be
calculated according to Eq. 1, as presented below.

speedup ¼ 1

s þ 1� sð Þ
p

ð1Þ

For Eq. 1, the numerator is the unit time of the sequential program and the
denominator is the time spent by the parallel program, where (s) is the serial fraction
and (p) is the parallel level. Figure 1 gives a clear description of Amdahl’s law, where
different serial fractions are considered ranging from 50% to 0.005%.

Under the Spark clustering computing environment, p directly corresponds to the
total number of logical cores used for function evaluations (rather than the total number
of slaves). Therefore, we only need to estimate s for the sequential algorithm, which
can be easily done in practice via adding timing. In [27], “it therefore seems reasonable
that there might be a rather even distribution of serial fraction from 0 to 1 over the
entire space of computer applications”. We will validate it in the EC field via analyzing
several commonly used test functions (see Sect. 4.2 for details).

Spark Clustering Computing Platform Based Parallel PSOs 427

3.3 Spark-Based PEAs Framework for the Master-Slave Model

In this sub-section, we propose a Spark-based PEAs framework, which can in a unified
way parallelize three highly cited PSO versions (i.e., PSO [21], CLPSO [11], and
ALCPSO [18]) using the master-slave model. For details of these three PSOs, please
refer to their corresponding original papers. For their concrete implementation details,
please refer to the Scala source code on the complementary GitHub project.

This Spark-based PEAs framework is built on a unified interface with three basic
configuration classes and an algorithm base class as parameters. Although sequential
algorithms are also supported in this framework, we focus mainly on the parallelization
of population-based evolutionary algorithms. Three configuration classes are Con-
FuncParams, TestParams, and AlgoParams, respectively. The ConFuncParams class
includes the function name, function dimension, upper and lower search bounds during
optimization, and initial upper and lower search bounds at the beginning stage of the
search. The TestParams class includes the total number of independent tests, and
random seeds to initialize the population. The AlgoParams class includes the popu-
lation size, and the maximum of function evaluations, which can be inherited to cus-
tomize the parameter settings. All algorithm sub-classes inherited from the algorithm
base class have the same method called optimize, which takes as input the function, and
as output the final optimization results. Taking as inputs the function rather than
reference or value is one of very useful and flexible characteristics for functional
programming. The unified interface takes as input two functions, one of which is the
method of the optimization algorithm (i.e., optimize) and another of which is the
function optimized at hand. Such functional programing-based design increases the
scalability and flexibility of the proposed PEAs framework.

To parallelize function evaluations, a simple but resilient data structure built in
Spark (i.e., RDD) is used. First we use the parallelize method of the built-in
SparkContext object to transfer all individuals from the master to slave nodes. For
simplicity, the parallel level is equal to the population size. Then function evaluations
tasks can be started by invoking the built-in mapValues method. Finally, all the fitness
values are returned from different slave nodes to the master by invoking the built-in

Fig. 1. Amdahl’s law [19]. (Different lines correspond to different serial fractions. Note that
parallelization may be useful only for highly parallelizable programs [27].)

428 Q. Duan et al.

collect method. For more details, please refer to the public Scala source code. Overall,
fulfilling the master-slave model for PEAs is simple and straight under the Spark
clustering computing framework.

4 Numerical Experiments

In this section, we first describe a private Spark clustering computing platform used
here. Then five of most commonly used continuous benchmark functions are empiri-
cally analyzed according the Amdahl’s law. Finally, comparisons between sequential
and parallel PSOs are conducted.

4.1 The Spark Clustering Computing Platform

All numerical experiments were conducted on a private Spark clustering computing
platform with a total of 160 CPU cores, which consists of a master node (i.e., the
driver) and three slave nodes (i.e., the workers). Except that the master node has four
480-GB SSD hard disks working in RAID 1+0 for high-availability, all the nodes have
the same hardware and software configurations, as presented in Table 1. The recom-
mendations from the Spark official website [16] are followed to configure the hardware.
We also give a practical guidance on the online appendix2 to illustrate how to rapidly
and efficiently deploy a private Spark clustering computing platform. Both Matlab and
Scala are also installed on these machines to run sequential algorithms. For Scala, the
third-party numerical processing library (i.e., breeze [17]) is used.

4.2 Analyses of Continuous Benchmark Functions

To compare the performance of different algorithms, five well-known continuous
benchmark functions (i.e., Sphere, Rosenbrock, Rastrigin, Griewank, and Schwefel12)
[18] are used. Because they have different landscape characteristics (e.g., unimodal vs.
multimodal, and no-separable vs. separable) and different time complexities (e.g., linear
vs. quadratic), we can compare their run time on different scenarios.

Table 1. Hardware and software configurations for each node.

Hardware Setting Software Version

Machine Dell® PowerEdge R730 Server OS CentOS 7.3.1611
Architecture 64-bit Spark 2.2.0
CPU 40 Intel® Xeon E5-2640 v4 @ 2.40 GHz Scala 2.11.11
RAM 64 GB Sbt 1.0.1
Hard disk A 960 GB SSD hard disk without RAID Matlab R2016b (glnxa64)
Network 1Gbps LAN Java 1.8.0_131

2 https://github.com/QiqiDuan257/parallel-pso-spark.

Spark Clustering Computing Platform Based Parallel PSOs 429

https://github.com/QiqiDuan257/parallel-pso-spark

To test the performance of PEAs on computationally expensive problems, a
common practice is to use high-dimensional benchmark functions. However, we found
that some high-dimensional benchmark functions may be not computationally
expensive, assuming that for computationally expensive functions the function eval-
uations time should dominate the total execution time. According to the proportion of
the function evaluations (i.e., FEs) time, these five high-dimensional benchmark
functions can be classified empirically into two categories, as presented below:

1. Benchmark functions with a low proportion of the FE time include Sphere,
Rosenbrock, Rastrigin, and Griewank. All of them have a linear time complexity
with the dimension. As we can see from Fig. 2, for PSO, CLPSO, and ALCPSO,
almost all of the proportions of FE are less than 50% even when the dimension
reaches 1e7. According to Amdahl’s law, we can predict that the master-slave
model could only obtain a limited speedup on these functions, which is less than 2
even in the ideal case. In the following parts, we will further validate our afore-
mentioned prediction in Spark.

2. Benchmark functions with a high proportion of the FE time on high dimension
include Schwefel12 with a quadratic time complexity. As shown in Fig. 3, when the
dimension exceeds 1e3, the proportion of the FE time reaches more than 95%.
Based on Amdahl’s law, it can be theoretically estimated that the master-slave
model could show a significant speedup on this function. In the following parts, we
will further prove that even a super-linear speedup can be achieved on this function
in Spark.

Fig. 2. Four benchmark functions with a low proportion of the function evaluations time
varying with function dimensions for PSO, CLPSO, and ALCPSO.

430 Q. Duan et al.

When using a PEA based on the master-slave model, we may first calculate the
proportion of the FE time on its sequential version, and then estimate the theoretical
speedup through Amdahl’s law. In most cases this speedup may be over-estimated
owing to a variety of overheads in practice (e.g., communication cost, synchronization
barriers, and network latency). However, it is worth noting that we still achieve a
super-linear speedup in some cases, often caused by strong scaling [27].

4.3 Comparisons on Computationally Expensive Functions

We first compare three Spark-based PSOs with their corresponding sequential versions
on the computationally intensive Schwefel12 benchmark function varying function
dimensions from 1e1 to 1e5. To reduce statistical errors, all numerical experiments
were run independently 30 times (except for inefficient sequential versions), and the
average run time was recorded, as shown in Fig. 4. To make fair comparisons, for all
algorithms, the population size and the maximum of function evaluations are set to 100
and 500, respectively. For high-dimensional problems, a relatively large population
size (e.g., 100) is preferred to enhance exploration. Because the total run time of all the
sequential algorithms on high dimensions is unaccepted for the large number of FE, a
relatively small number of FE (i.e., 500) is used here. Other parameter settings of all
algorithms follow the suggestions given in their corresponding original papers. Con-
sidering the repeatability of the experiment, all data and source code are freely avail-
able on the complementary GitHub project.

As we can see from Fig. 4, all three Spark-based PSOs can obtain the significant
speedup on high dimensions, when compared with their corresponding Matlab-based
sequential versions. More specifically, on 1e3, 1e4, and 1e5 dimensions, Spark-based
PSO, CLPSO and ALCPSO achieve the (3x, 41x, 224x), (6x, 50x, 194x), and (5x, 44x,
184x) speedup, respectively. However, on 10 and 100 dimensions, since the com-
munications overheads between the master and all slaves cancel out the speedup
obtained via parallelization, even worse results are obtained.

To test the scalability of the proposed algorithms on the function with the 1e5
dimension, we linearly increased the maximum of FE from 1000 to 5000 with step
1000. To reduce statistical errors, all numerical experiments were run independently 30
times for all three Spark-based parallel PSOs (except for inefficient sequential

Fig. 3. A benchmark function with a high proportion of the function evaluations time.

Spark Clustering Computing Platform Based Parallel PSOs 431

contenders), and the average run time was summarized, as presented in Fig. 5. It can be
observed from Fig. 5 that all three parallel PSOs can obtain the super-linear speedup
on this high-dimensional, computationally expensive function. On the contrary, the
time complexities of all three Matlab-based sequential versions linearly rise with the
number of FE. For parallel PSOs, some stability issues raise with the increasing number
of FE, which will be analyzed in Fig. 6.

To further analyze the stability (i.e., fault-tolerance ability) of the proposed parallel
algorithms, we plotted the boxplots of the execution time for all three Spark-based
PSOs in Fig. 6. We can see that there are some outliers, which take approximately up
to 3x times than typical runs. Although more time is spent, the program could

(a) (b)

Fig. 4. Comparisons of run time for Three Spark-based parallel PSOs versus sequential
counterparts on Schwefel12 varying with function dimensions. (Since some lines are condensed
into one single line in the left figure (a) owing to the large magnitude of the y-axis, we enlarge
them in the right figure (b) via logarithmizing the y-axis.)

(a) (b)

Fig. 5. Comparisons of speedup for Spark-based parallel PSOs versus Matlab-based sequential
counterparts on 100000-dimensional Schwefel12 varying with number of function evaluations.
(Note that some lines are condensed into one single line in the left figure (a) owing to the large
magnitude of the y-axis.)

432 Q. Duan et al.

automatically be recovered from the struggling state which may be caused by the
underlying network instability. In fact, the good fault-tolerance ability of Spark has
been empirically proven in industry [4], which is one advantage over MPI in practice.

4.4 Comparisons on Functions with Linear Time Complexity

We conducted experiments on four high-dimensional yet computationally-cheap
benchmark functions. All experiments were run independently 30 times. For all four
functions, the dimension and maximum of FE are set to 1e5 and 500, respectively. For
all algorithms used here, the population size is set to 100.

Fig. 6. Boxplot of the execution time obtained on 30 independently runs.

Fig. 7. Comparisons of run time on four computationally-cheap benchmark functions.

Spark Clustering Computing Platform Based Parallel PSOs 433

As we can see from Fig. 7, three Spark-based parallel PSOs do not obtain any
speedup on computationally-cheap benchmark functions, when compared with their
corresponding sequential counterparts. This is due to the fact that the communication
and synchronization costs among the master and all slaves heavily exceed the paral-
lelization benefit. The “one-size-fits-all” parallelization strategy may not exist.

5 Conclusions and Future Research Directions

In this paper we first analyzed the speedup of PEAs using the master-slave model.
According to Amdahl’s law, we pointed out when the master-slave model could work
well. Then we provided a Spark-based PEAs framework based on which three most
cited PSOs have been parallelized using the master-slave model. The experimental
results showed that a super-linear speedup could be obtained by the proposed parallel
PSOs at least on computationally expensive test functions. However, there are some
open questions which are our future research directions and are presented below:

1. The effectiveness and efficiency of the proposed PEAs need to be further tested on
more realistic optimization problems (e.g. geostatic correction [6]).

2. For data-intensive function evaluations tasks, how do Spark-based PEAs read data
from the distributed file storage system efficiently?

Acknowledgements. This work is partially supported by the Ministry of Science and Tech-
nology (MOST) of China under the Grant No. 2017YFC0804002, National Science Foundation
of China under the Grant No. 61761136008, and Science and Technology Innovation Committee
Foundation of Shenzhen under the Grant No. ZDSYS201703031748284. We acknowledge three
anonymous reviewers for their valuable comments and Dr. Jun Huang, Hao Tong, Chang Shao,
Liang Qu, and Jing Liu for their help.

References

1. Ferrucci, F., Salza, P., Sarro, F.: Using Hadoop MapReduce for parallel genetic algorithms: a
comparison of the global, grid and island models. Evol. Comput. 29, 1–33 (2018). Early
Access

2. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

3. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun. ACM 53(1),
72–77 (2010)

4. Zaharia, M., Xin, R.S., Wendell, P., et al.: Apache Spark: a unified engine for big data
processing. Commun. ACM 59(11), 56–65 (2016)

5. Zhan, Z.H., Liu, X.F., Zhang, H., et al.: Cloudde: a heterogeneous differential evolution
algorithm and its distributed cloud version. IEEE Trans. Parallel Distrib. Syst. 28(3), 704–
716 (2017)

6. Wachowiak, M.P., Timson, M.C., DuVal, D.J.: Adaptive particle swarm optimization with
heterogeneous multicore parallelism and GPU acceleration. IEEE Trans. Parallel Distrib.
Syst. 28(10), 2784–2793 (2017)

434 Q. Duan et al.

7. Kan, G., Lei, T., Liang, K., et al.: A multi-core CPU and many-core GPU based fast parallel
shuffled complex evolution global optimization approach. IEEE Trans. Parallel Distrib. Syst.
28(2), 332–344 (2017)

8. Thusoo, A., Sarma, J.S., Jain, N., et al.: Hive: a warehousing solution over a map-reduce
framework. Proc. VLDB Endow. 2(2), 1626–1629 (2009)

9. Meng, X., Bradley, J., Yavuz, B., et al.: MLlib: machine learning in Apache Spark. J. Mach.
Learn. Res. 17(1), 1235–1241 (2016)

10. Armbrust, M., Xin, R.S., Lian, C., et al.: Spark SQL: relational data processing in Spark. In:
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,
pp. 1383–1394. ACM (2015)

11. Liang, J.J., Qin, A.K., Suganthan, P.N., et al.: Comprehensive learning particle swarm
optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10
(3), 281–295 (2006)

12. Dubreuil, M., Gagné, C., Parizeau, M.: Analysis of a master-slave architecture for distributed
evolutionary computations. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 36(1), 229–235
(2006)

13. Riessen, G.A., Williams, G.J., Yao, X.: PEPNet: parallel evolutionary programming for
constructing artificial neural networks. In: Angeline, P.J., Reynolds, R.G., McDonnell, J.R.,
Eberhart, R. (eds.) EP 1997. LNCS, vol. 1213, pp. 35–45. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0014799

14. Tan, Y., Ding, K.: A survey on GPU-based implementation of swarm intelligence
algorithms. IEEE Trans. Cybern. 46(9), 2028–2041 (2016)

15. Gong, Y.J., Chen, W.N., Zhan, Z.H., et al.: Distributed evolutionary algorithms and their
models: a survey of the state-of-the-art. Appl. Soft Comput. 34, 286–300 (2015)

16. Spark Hardware Provisioning Homepage. http://spark.apache.org/docs/latest/hardware-
provisioning.html. Accessed 02 Apr 2018

17. Scala Breeze Homepage. https://github.com/scalanlp/breeze. Accessed 02 Apr 2018
18. Chen, W.N., Zhang, J., Lin, Y., et al.: Particle swarm optimization with an aging leader and

challengers. IEEE Trans. Evol. Comput. 17(2), 241–258 (2013)
19. Kirkpatrick, K.: Parallel computational thinking. Commun. ACM 60(12), 17–19 (2017)
20. Zaharia, M., Chowdhury, M., Das, T., et al.: Resilient distributed datasets: a fault-tolerant

abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, p. 2. USENIX Association
(2012)

21. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE World Congress on
Computational Intelligence, pp. 69–73 (1998)

22. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima Inc., Mountain View
(2016)

23. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol.
Comput. 6(5), 443–462 (2002)

24. Spark GitHub Homepage. https://github.com/apache/spark. Accessed 02 Apr 2018
25. Verma, A., Llorà, X., Goldberg, D.E., et al.: Scaling genetic algorithms using MapReduce.

In: Ninth International Conference on Intelligent Systems Design and Applications, pp. 13–
18. IEEE (2009)

26. Hajeer, M.H., Dasgupta, D.: Handling big data using a data-aware HDFS and evolutionary
clustering technique. IEEE Trans. Big Data (2017). Early Access

27. Gustafson, J.L.: Amdahl’s law. In: Padua, D. (ed.) Encyclopedia of Parallel Computing,
pp. 53–60. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-09766-4

Spark Clustering Computing Platform Based Parallel PSOs 435

http://dx.doi.org/10.1007/BFb0014799
http://spark.apache.org/docs/latest/hardware-provisioning.html
http://spark.apache.org/docs/latest/hardware-provisioning.html
https://github.com/scalanlp/breeze
https://github.com/apache/spark
http://dx.doi.org/10.1007/978-0-387-09766-4

Weaving of Metaheuristics
with Cooperative Parallelism

Jheisson López1,2, Danny Múnera2, Daniel Diaz3, and Salvador Abreu4(B)

1 National University of General Sarmiento, Buenos Aires, Argentina
jalopez@ungs.edu.ar

2 University of Antioquia, Medellin, Colombia
danny.munera@udea.edu.co

3 University of Paris 1/CRI, Paris, France
daniel.diaz@univ-paris1.fr

4 University of Évora/LISP, Évora, Portugal
spa@uevora.pt

Abstract. We propose PHYSH (Parallel HYbridization for Simple
Heuristics), a framework to ease the design and implementation of hybrid
metaheuristics via cooperative parallelism. With this framework, the
user only needs encode each of the desired metaheuristics and may rely
on PHYSH for parallelization, cooperation and hybridization. PHYSH
supports the combination of population-based and single-solution meta-
heuristics and enables the user to control the tradeoff between intensi-
fication and diversification. We also provide an open-source implemen-
tation of this framework which we use to model the Quadratic Assign-
ment Problem (QAP) with a hybrid solver, combining three metaheuris-
tics. We present experimental evidence that PHYSH brings significant
improvements over competing approaches, as witness the performance
on representative hard instances of QAP.

1 Introduction

Metaheuristics are often the most efficient approach to address the hardest Com-
binatorial Optimization Problems (COP). Metaheuristics are high-level proce-
dures using choices (i.e., heuristics) to limit the part of the search space which
actually gets visited, in order to make problems tractable. Metaheuristics can be
classified in two main categories: single-solution and population-based methods.
Single-solution metaheuristics (S-MH) maintain, modify and stepwise improve on
a single candidate solution, hence the term trajectory-based metaheuristics. On
the other hand, population-based metaheuristics (P-MH), modify and improve
a population, i.e. a set of individuals corresponding to candidate solutions.

Metaheuristics generally implement two main search strategies: intensifica-
tion and diversification, also called exploitation and exploration [1]. Intensifica-
tion guides the solver to deeply explore a promising part of the search space. In

This work was partly funded by FCT under grant UID/CEC/4668/2016 (LISP).

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 436–448, 2018.
https://doi.org/10.1007/978-3-319-99253-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_35&domain=pdf

Weaving of Metaheuristics with Cooperative Parallelism 437

contrast, diversification aims at extending the search onto different parts of the
search space [8]. In order to obtain the best performance, a metaheuristic should
provide a useful balance between intensification and diversification. By design,
some heuristics are good at one but not at the other.

More generally, each metaheuristic can perform differently according to
the problem or even instance being solved. A single metaheuristic will also
vary depending on its chosen tuning parameters. The current trend is thus
to design hybrid metaheuristics, by combining different methods in order to
benefit from the individual advantages of each one [9]. An effective approach
consists in combining an evolutionary algorithm with a single-solution method
(very often a local search procedure). These hybrid methods are called memetic
algorithms [10]. Hybrid metaheuristics tend to be complex procedures, tricky to
design, implement and tune, therefore, most of them only combine two methods.

Despite the good results obtained with the use of hybrid metaheuristics, it
is still necessary to reduce the processing times needed for harder instances [18].
One possible answer entails resorting to parallel execution [5]. For instance,
several instances of a given metaheuristic can be executed in parallel in order
to develop concurrent explorations of the search space, either independently or
cooperatively by means of communication between concurrent processes. The
first is easiest to implement on parallel computers, as the metaheuristics run
oblivious to each other and execution stops as soon as any of them finds a solu-
tion [16,22]. For some problems this provides very good results [3] but in many
cases the speedup tends to taper off when increasing the number of proces-
sors [13]. A cooperative approach entails adding a communication mechanism in
order to share or exchange information among solver instances during the search
process [20]. However, designing an efficient cooperative method is a daunt-
ingly complex task [4], and many issues must be solved: What information is
exchanged? Between which processes is it exchanged? When is it exchanged? How
is it exchanged? How is the imported data used? [21]. Moreover, most cooper-
ative choices are problem-dependent (and sometimes even instance-dependent).
Bad choices result in poor performance, possibly much worse than what could
be obtained with independent parallelism. However, a well-tuned cooperative
scheme may significantly outperform the independent approach.

In 2014, we proposed the Cooperative Parallel Local Search framework
(CPLS) for the cooperative parallel execution of local search metaheuris-
tics [13,14]. The user only has to encode the LS procedure and can rely on CPLS
to obtain a parallel application able to run concurrently and cooperatively several
instances of this LS procedure. At runtime, the outcome is a parallel exploration
of the search space with candidate solution interchange. All low-level parallel
mechanisms (task creation/destruction, mapping to physical resources, synchro-
nization, communication, termination, . . .) are transparently handled by CPLS.
CPLS has been successfully used to tackle stable matching problems [15] and
very difficult instances of the Quadratic Assignment Problem (QAP) [12]. We
later extended CPLS to allow the user to run different metaheuristics in paral-
lel. CPLS has enabled a simpler way to hybridize metaheuristics, by exploiting

438 J. López et al.

its solution-sharing cooperative parallelism mechanism. At runtime, the parallel
instances of each different metaheuristic communicate their best solutions, and
one of them may forgo its current computation to adopt a better solution from
the others, hoping to converge faster. The expected outcome is that a solution
which may be stagnating for one solver, has a chance to be improved on by
another metaheuristic. CPLS has been successfully used to develop a very effi-
cient hybrid solver for QAP [11]. However, CPLS was designed for local search
metaheuristics: its cooperation mechanisms can only handle single-solution meta-
heuristics. When pursuing hybridization this limitation becomes too severe.

In this paper we propose a framework for the Parallel HYbridization of Simple
Heuristics (PHYSH), which eases the implementation of hybrid metaheuristics
using cooperative parallelism. As in CPLS, the user only needs to code each of
the desired metaheuristics, independently, and may rely on PHYSH to provide
both parallelism and cooperation to get “the best of both worlds”. PHYSH is
highly parametric and the user has control over the trade-off between intensifi-
cation and diversification. Single-solutions methods are in charge of intensifying
the search while population-based methods can be used to provide diversification
through the evolution of a population. We also sketch a prototype implemen-
tation, available as an open source library written in the IBM X10 concurrent
programming language. Needs only code the desired metaheuristic, PHYSH API.
We used this implementation to develop a parallel solver for QAP by hybridiz-
ing 3 metaheuristics: a Genetic Algorithm, an Extremal Optimization procedure
and a Tabu Search method. The resulting solver performs extremely well on the
hardest instances of QAP.

The rest of this paper is organized as follows: in Sect. 2 we describe the
framework, while in Sect. 3 we discuss implementation issues. In Sect. 4 we carry
out an experimental evaluation on hard QAP instances. Finally, we summarize
our results and draw plans for future developments in Sect. 5.

2 The PHYSH Framework

The aim of PHYSH is to offer the user an environment for the development of
hybrid and parallel metaheuristics. By transparently managing all of the tech-
nical details of parallel programming as well as mechanisms for hybridization,
PHYSH allows the user to focus on metaheuristic codings and problem modeling.
The resulting parallel hybrid search process starts from different points in the
search space, attempting to ensure convergence on proper solutions while escap-
ing local extrema. We achieve this with multiple concurrent worker teams, each
one tasked with visiting a different region of the search space. Figure 1 depicts a
search space where red regions contain high-quality solutions which is explored
by 4 teams in parallel: 2 teams are intensifying the search in a promising region
while the 2 others are diversifying the search in order to reach other rich region.

Teams are composed of the following components: a set of search units, a
diverse and an elite populations. The main active element of the framework
is the search unit (SU) which encapsulates a single metaheuristic that can be

Weaving of Metaheuristics with Cooperative Parallelism 439

Fig. 1. PHYSH search process (Color figure online)

either a S-MH or a P-MH. If the SU contains a S-MH, it takes the role of
an intensifier otherwise (implementing P-MH) it takes the role of a diversifier.
The elite population (EP) retains the best individuals found by the intensifiers,
while the diverse population (DP) holds individuals sent by diversifiers. The
interaction patterns between the different components that make up a team
establish a parametric four-way migratory flow process (see Fig. 2). In each case
a parameter controls the migration frequency.1

– Elite Emigration (ee): from the intensifier worker to the EP.
– Diverse Emigration (de): from the diversifier worker to the DP.
– Elite Immigration (ei): from the EP to the diversifier worker.
– Diverse Immigration (di): from the DP to the intensifier worker.

Fig. 2. PHYSH team structure

1 Terms “immigration” and “emigration” are from the metaheuristics point-of-view.

440 J. López et al.

The intensifiers (resp. diversifiers) must apply a selection policy to deter-
mine which individuals emigrate to the EP (resp. DP). EP and DP population
implement an acceptance policy for deciding whether the incoming individual is
accepted or rejected (discarded). For immigration flows, intensifiers and diver-
sifiers request individuals respectively from DP and EP. Once again a selection
policy is implemented on the populations to define how to chose an individual
and send it to the corresponding entity.

Our framework follows the design principle of separating policy form mech-
anism. As a result, this process constitutes a flexible interaction model between
intensifiers and diversifiers which eases the hybridization of simple metaheuris-
tics, effectively promoting cross-fertilization among different types.

Different mechanisms can be implemented for the same policy e.g., an elitist
or non-elitist mechanism. In the first case we favor elite individuals, while in the
second we may, for instance, select the most diverse individual or even adopt a
stochastic stance. We may assign several mechanisms for the same policy to a
component, in that case the mechanisms are applied in a round-robin fashion
until they succeed in the (selection/acceptance) pipeline.

An intuitive configuration could assign elitist mechanism to the intensifiers,
non-elitist mechanism to the diversifiers, and both types of mechanism to the
populations. We decided to make this a configurable option, as it provides rich
choices of search strategy.

In PHYSH, the programmer may easily control the balance between inten-
sification and diversification (see Fig. 3). Take the proportion of SUs used for
the intensifiers vs. diversifiers: it may be tuned to achieve a specific balance. For
instance, if more intensification is needed for a given instance, one may increase
the number of SUs in the role of intensifier. The intensification/diversification
level may also be tweaked by varying the number of teams in the execution:
given a fixed number of processing units, using more teams with a lower SU
count will increase the diversification on the search.

Fig. 3. PHYSH intensification-diversification control

The PHYSH framework is designed to adapt to different parallel archi-
tectures: shared-memory multiprocessors as well as distributed systems with
network-connected MP nodes. SUs are meant to be mapped to physical proces-
sors, while teams may be configured very flexibly.

Weaving of Metaheuristics with Cooperative Parallelism 441

3 PHYSH×10: A Prototype Implementation

We implemented our prototype in the X10 programming language which is a
high level object-oriented programming language, focused on concurrency and
distribution. X10 supports a wide range of parallel platforms and it has been
in active developemnt by IBM research since 2004. X10 is based on the Asyn-
cronous Partitioned Global Address Space model (APGAS). Using this model,
computation and data are partitioned into places which are abstractions for
mutable, shared-memory regions that can contain global references to locations
in other places, as well as worker threads operating on this memory.

In adoption of common practice for metaheuristics tools, PHYSH×10
presents a clear separation between available metaheuristics and the problems
that can be solved. We have implemented a genetic algorithm (GA), a robust
tabu search (RoTS) and an extremal optimization (EO) procedure. Conse-
quently, the diversifiers are built from SUs that contain a GA, while the other
two metaheuristics are available for the SUs in the intensifiers. Figure 4 displays
the main classes of PHYSH×10, a few application-specific ones and their rela-
tionships.

Fig. 4. PHYSH×10 UML diagram of the main classes

PHYSH×10 uses the features offered by X10-APGAS model to assign avail-
able physical processing resources. Accordingly, each SU is allocated to an X10
place, so that intensifiers and diversifiers operate as a distributed system. As
explain above, SUs are grouped to form teams. Each team is composed of tz
SUs. The number of teams is thus #cores/tz. EP and DP populations are
bound to a single SU within each team. These populations have a parametric
size i.e., epz individuals for EP and dpz individuals for DP. Each component
implements the most convenient mechanism for the acceptance and selection
criteria.

442 J. López et al.

At present, PHYSH×10 provides the following selection mechanisms:

– Best : best individual found in the search process.
– Current : all eligible individuals are selected (for S-MH the current configura-

tion is the unique eligible individual.)
– Random: an individual is randomly selected from the elegible set.

The following acceptance mechanism are also provided:

– Elitist : The individual is accepted if it is better than the worst in the target
population (if it is not present yet.)

– Probabilistic: The individual is accepted, regardless of its cost, with a given
probability (if it is not present yet.)

– Maximizer : The individual is accepted if its average distance to the other
individuals is greater than a defined threshold.

Intensifiers implement the current mechanism for the selection policy i.e., SU
sends its current configuration to perform the emigration to the EP. Parame-
ter elite emigration period (eep) controls the periodicity of this communication.
Intensifiers also request an immigrant individual from DP each diverse immigra-
tion period (dip). To accept or deny this individual intensifiers implement an
elitist mechanism for the acceptance policy (for S-MH the target “population”
is current solution of the metaheuristic).

Diversifiers implements a random mechanism for the selection policy. This
mechanism requires a parameter to define the percentage of the population
eligible for emigration (ppfe). The individual to emigrate is randomly chosen
among the top ppfe% of the SU’s population (the best individuals). Parame-
ter diverse emigration period (dep) controls the periodicity of this emigration
process. Diversifiers also request an immigrant from EP each elite immigration
period (eip). Individual diversifiers implement an elitist acceptance mechanism.

To simplify the assignment of these parameters we define two general values:
emigration period ep and immigration period ip. Considering teams of size tz (a
team embeds tz SUs) and a problem of size of n, the default values are computed
as follows: eip = ep/tz, dep = ip/n, eep = ep/n and dip = ip.

4 Experimental Evaluation

To evaluate the performance of our framework, we developed PHYSH-QAP2: a
parallel hybrid solver for QAP which combines three metaheuristics: a Genetic
Algorithm (GA) [7], a Robust Tabu Search (RoTS) [19] and an Extremal Opti-
mization procedure (EO) [12]. PHYSH-QAP is built on top of PHYSH×10. We
consider three sets of very hard benchmarks: the 33 hardest instances of QAPLIB
and two sets of even harder instances: Drezners dreXX and Palubeckis InstXX
instances. All experiments have been carried out on a cluster of 16 machines,
each with 4×16-core AMD Opteron 6376 CPUs running at 2.3 GHz and 128 GB
of RAM. The nodes are interconnected with InfiniBand FDR 4× (i.e., 56 GBPS).
We had access to 4 nodes and used up to 32 cores per node.
2 The source code is available from https://github.com/jlopezrf/COPSolver-V 2.0.

https://github.com/jlopezrf/COPSolver-V_2.0

Weaving of Metaheuristics with Cooperative Parallelism 443

4.1 Evaluation of PHYSH-QAP on QAPLIB

QAPLIB is a collection of 134 QAP problems of different sizes [2]. The instances
are generally named as nameXX where name corresponds to the first letters of
the author and XX is the size of the problem. For each instance, QAPLIB also
includes the Best Known Solution (BKS), which is sometimes the optimum.
Many QAPLIB instances are easy for a parallel solver, we therefore only con-
sidered the 33 hardest instances, as reported in [12]. Each problem instance is
executed 30 times, stopping as soon as the BKS is reached or when a time limit
of 5 min is hit, using 64 cores. PHYSH-QAP was configured with four teams,
each of size tz = 16 embedding 1 diversifier running GA, 8 intensifiers run-
ning RoTS and 7 intensifiers running EO. The size for the elite population and
the diverse population was set to 4 (epz = dpz = 4). The ppfe parameter is
instance-dependent (we only experimented with values 0, 50 and 100).

Table 1 has all the results. For each instance we have the BKS, the ppfe
parameter used, the number of times the BKS is reached (across the 30 execu-
tions), the Average Percentage Deviation (ADP) which is the average of the 30
relative deviation percentages computed as follows: 100 × Sol−BKS

BKS , the Best Per-
centage Deviation (BPD) which corresponds to the relative deviation percentage
of the best solution found among the 30 executions, the Worst Percentage Devia-
tion (WPD) which corresponds to the worst solution, the average execution time
given in seconds which corresponds to the elapsed (wall) time, and includes the
time to install all solver instances, solve the problem communications and the
time to detect and propagate the termination and, finally, the average number of
times the winning SU adopted an individual from the diverse/elite populations.

On this set of 33 hardest instances, even with a limit of time of 5 min PHYSH-
QAP is able to find the BKS at least once for 29 instances. Moreover, it is even
able to reach the BKS systematically at each replication for 21 instances. For
the 4 remaining instances (tai80a, tai100a, tai150b and tai256c), the quality
of solutions returned by PHYSH-QAP is very good, around 0.2% of the BKS.
The summary row has interesting numbers. The average ADP is only 0.051%, the
average BPD is 0.024% and the average WPD is 0.079%. These numbers confirm
that all runs provide high quality solutions; even the worst runs provide good
results. For instance, in the worst case (tai80a), the worst solution among 30
runs is within just 0.547% of the BKS. Performance-wise, PHYSH-QAP averages
just 96 s to find a solution. If we do not take into account the 4 unsolved instances
(whose time is bounded by the time limit), the average run time is 70 s. The
number of adopted configurations on the wining SU is 4.2, on average, showing
that the hybridization is effectively taking place.

Comparison with Another Parallel Hybrid Solver for QAP: ParEOTS is
a hybrid solver for QAP built on the top of the CPLS framework. ParEOTS com-
bines RoTS and EO and has shown to perform very well. Indeed, on the hardest
instances of QAPLIB, it outperforms most of state-of-the-art methods [11].

For this comparison we selected the 15 hardest instances from Table 1. We
then ran ParEOTS using the parameters reported in [11] in the same execution

444 J. López et al.

Table 1. PHYSH-QAP on hard QAPLIB instances (64 cores, timeout = 5 min)

BKS ppfe #BKS APD BPD WPD Time #adopt

els19 17212548 50 30 0 0 0 0.0 0.1

kra30a 88900 100 30 0 0 0 0.0 0

sko56 34458 50 30 0 0 0 1.8 0.5

sko64 48498 50 30 0 0 0 2.0 0.3

sko72 66256 50 30 0 0 0 9.8 1.2

sko81 90998 50 30 0 0 0 22.4 1.6

sko90 115534 100 30 0 0 0 104.4 6.3

sko100a 152002 100 27 0.001 0 0.016 129.3 3.4

sko100b 153890 0 30 0 0 0 52.4 1.0

sko100c 147862 0 30 0 0 0 77.5 1.3

sko100d 149576 0 30 0 0 0 64.9 1.2

sko100e 149150 0 30 0 0 0 49.4 0.9

sko100f 149036 100 29 0.000 0 0.005 103.7 2.4

tai40a 3139370 50 20 0.025 0 0.074 173.9 4.7

tai50a 4938796 100 8 0.133 0 0.336 262.0 10.3

tai60a 7205962 0 1 0.242 0 0.368 292.7 9.5

tai80a 13499184 50 0 0.460 0.335 0.547 300.0 8.6

tai100a 21052466 0 0 0.352 0.167 0.463 300.0 22.6

tai20b 122455319 100 30 0 0 0 0.0 0.0

tai25b 344355646 50 30 0 0 0 0.0 0.1

tai30b 637117113 50 30 0 0 0 0.1 1.3

tai35b 283315445 0 30 0 0 0 0.3 1.8

tai40b 637250948 0 30 0 0 0 0.4 2.5

tai50b 458821517 0 30 0 0 0 6.7 0

tai60b 608215054 0 30 0 0 0 10.9 0

tai80b 818415043 0 30 0 0 0 42.0 1.3

tai100b 1185996137 0 29 0.001 0 0.024 143.4 4.9

tai150b 498896643 50 0 0.190 0.085 0.410 300.0 10.1

tai64c 1855928 0 30 0 0 0 0.2 0.1

tai256c 44759294 50 0 0.264 0.211 0.312 300.0 4.4

tho40 240516 0 30 0 0 0 1.1 0.1

tho150 8133398 0 1 0.021 0 0.043 298.8 29.7

wil100 273038 100 26 0.000 0 0.002 144.7 5.2

Summary 771 0.051 0.024 0.079 96.8 4.2

Weaving of Metaheuristics with Cooperative Parallelism 445

environment as for PHYSH-QAP: same machine, using 64 cores with a time
limit of 5 min and 30 repetitions per instance.

Table 2. PHYSH-QAP vs ParEOTS (64 cores, timeout = 5 min)

PHYSH-QAP ParEOTS

#BKS APD Time #BKS APD Time

sko81 30 0 22.4 25 0.002 70.6
sko90 30 0 104.4 29 0.000 116.5
sko100a 27 0.001 129.3 25 0.003 128.9
sko100c 30 0 77.5 29 0.000 127.3
tai40a 20 0.025 173 9 20 0.025 184.2
tai50a 8 0.133 262.0 3 0.144 289.8
tai60a 1 0.242 292.7 0 0.270 300.0
tai80a 0 0.460 300 0 0.460 300.0
tai100a 0 0.352 300 0 0.358 300.0
tai100b 29 0.001 143.4 22 0.015 181.4
tai150b 0 0.190 300.0 0 0.130 300.0
tai64c 30 0 0.2 28 0.004 20.0
tai256c 0 0.264 300.0 0 0.272 300.0
tho150 1 0.021 298.8 0 0.019 300.0
wil100 26 0 144.7 14 0.001 213.9

Summary 232 0.113 190 0 195 0.114 208.8

Table 2 presents the results. To compare the two solvers, compare the number
of BKS found, then (in case of a tie), the APDs and finally the execution times.
For each benchmark, the best-performing solver row is highlighted and the dis-
criminant field is enhanced in bold font. PHYSH-QAP outperforms ParEOTS on
13 out of 15 of the hardest QAPLIB instances while the reverse only occurs for
one instance (tai150b). Our implementation systematically solves 4 instances
which are not fully solved on ParEOTS (sko81, sko90, sko100c and tai64c).
The summary row shows that PHYSH-QAP obtains a total #BKS higher than
ParEOTS (232 vs. 195). It is worth noticing that this quality of solutions is
obtained in a shorter execution time (190 s vs. 208 s).

4.2 Evaluation of PHYSH-QAP on Harder Instances

We evaluated our hybrid solver on two sets of instances, artificially crafted to
be very difficult for metaheuristics: the dreXX instances proposed by Drezner
et al. [6] and the InstXX instances by Palubeckis [17]. These instances are
generated with a known optimum. For this test we used the same machine,
with 128 cores and a time limit of 10 min with 30 repetitions. We used the
same framework configuration as in Sect. 4.1 for QAPLIB. We could not yet
experiment with different values for ppfe so we use ppfe = 100 for all instances.

446 J. López et al.

Table 3. PHYSH-QAP on Drezner and Palubeckis (128 cores, timeout = 10min)

#BKS APD best Time

dre21 30 0 356 0.0
dre24 30 0 396 0.0
dre28 30 0 476 0.0
dre30 30 0 508 0.1
dre42 30 0 764 0.9
dre56 30 0 1086 11.5
dre72 30 0 1452 90.9
dre90 23 2.757 1838 281.2
dre110 6 14.997 2264 549.4
dre132 5 11.404 2744 558.2

Summary 244 2.915 149.2

#BKS APD best Time

Inst20 30 0 81536 0.0
Inst30 30 0 271092 0.1
Inst40 30 0 837900 3.2
Inst50 30 0 1840356 7.7
Inst60 30 0 2967464 11.8
Inst70 30 0 5815290 35.7
Inst80 30 0 6597966 78.0
Inst100 17 0.038 15008994 476.4
Inst150 0 0.122 58411484 600.0
Inst200 0 0.123 75495960 600.0

Summary 227 0.028 181.3

Table 3 presents the results obtained on both benchmarks. Regarding
Drezner’s instances, PHYSH-QAP is able to optimally solve all instances. To
best of our knowledge, no other dedicated solver for QAP has ever reported
an optimal solution either for dre110 or dre132 (highlighted in green in the
table). Moreover, all instances of size n ≤ 72 are systematically solved at each
replication. Regarding Palubeckis’ instances, the optimum is found for instances
with n ≤ 100 (and systematically found at each replication for n ≤ 80). For
size n > 100, clearly a limit of 10 min is too short. Nevertheless the quality
of obtained solutions within this time limit is very good with an APD around
0.12%. It is worth noting that for Inst150 and Inst200, the solution computed
by PHYSH-QAP improves on the best solutions ever published (corresponding
best costs computed are highlighted in green in Table 3).

5 Conclusion and Future Directions

We have proposed PHYSH: a new framework for the efficient resolution of
Combinatorial Optimization Problems combining single-solution metaheuristics,
population-based metaheuristics, cooperative parallelism and hybridization. We
have used our X10 implementation of this framework to construct a hybrid solver
for the Quadratic Assignment Problem which combines up to three metaheuris-
tics. This solver turns out to perform exceptionally well, particularly on very
hard instances of QAP.

We plan to study the impact of each parameter in more detail; includ-
ing experimentation with techniques for parameter auto-tuning, e.g. using F-
Race. We also plan to add new metaheuristics to the prototype, particularly
population-based methods. This enriched implementation we will enable uas to
address a wider range of problems. Finally, it will be interesting to experiment
on different parallel architectures, for instance GPGPUs or Intel MIC, using the
X10 language, which greatly abstracts on machine architectural specificities.

Weaving of Metaheuristics with Cooperative Parallelism 447

References

1. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and
conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

2. Burkard, R.E., Karisch, S., Rendl, F.: QAPLIB - a quadratic assignment problem
library. Eur. J. Oper. Res. 55(1), 115–119 (1991)

3. Caniou, Y., Codognet, P., Richoux, F., Diaz, D., Abreu, S.: Large-scale parallelism
for constraint-based local search: the costas array case study. Constraints 20(1),
30–56 (2015)

4. Crainic, T., Gendreau, M., Hansen, P., Mladenovic, N.: Cooperative parallel vari-
able neighborhood search for the p-median. J. Heuristics 10(3), 293–314 (2004)

5. Crainic, T., Toulouse, M.: Parallel meta-heuristics. In: Gendreau, M., Potvin, J.Y.
(eds.) Handbook of Metaheuristics. ISOR, vol. 146, pp. 497–541. Springer, Boston
(2010). https://doi.org/10.1007/978-1-4419-1665-5 17

6. Drezner, Z.: The extended concentric tabu for the quadratic assignment problem.
Eur. J. Oper. Res. 160(2), 416–422 (2005)

7. Drezner, Z.: Extensive experiments with hybrid genetic algorithms for the solution
of the quadratic assignment problem. Comput. Oper. Res. 35(3), 717–736 (2008)

8. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Mor-
gan Kaufmann/Elsevier, Burlington (2004)

9. Misevicius, A.: A tabu search algorithm for the quadratic assignment problem.
Comput. Optim. Appl. 30(1), 95–111 (2005)

10. Moscato, P., Cotta, C.: Memetic algorithms. In: Handbook of Applied Optimiza-
tion, vol. 157, p. 168 (2002)

11. Munera, D., Diaz, D., Abreu, S.: Hybridization as cooperative parallelism for the
quadratic assignment problem. In: Blesa, M.J., et al. (eds.) HM 2016. LNCS,
vol. 9668, pp. 47–61. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39636-1 4

12. Munera, D., Diaz, D., Abreu, S.: Solving the quadratic assignment problem
with cooperative parallel extremal optimization. In: Chicano, F., Hu, B., Garćıa-
Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 251–266. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30698-8 17

13. Munera, D., Diaz, D., Abreu, S., Codognet, P.: A parametric framework for coop-
erative parallel local search. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS,
vol. 8600, pp. 13–24. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44320-0 2

14. Munera, D., Diaz, D., Abreu, S., Codognet, P.: Flexible cooperation in parallel
local search. In: Symposium on Applied Computing, SAC 2014, pp. 1360–1361.
ACM Press, Gyeongju (2014)

15. Munera, D., Diaz, D., Abreu, S., Rossi, F., Saraswat, V., Codognet, P.: Solving
hard stable matching problems via local search and cooperative parallelization. In:
AAAI, Austin, TX, USA (2015)

16. Novoa, C., Qasem, A., Chaparala, A.: A SIMD tabu search implementation for
solving the quadratic assignment problem with GPU acceleration. In: Proceedings
of the 2015 XSEDE Conference on Scientific Advancements Enabled by Enhanced
Cyberinfrastructure - XSEDE 2015, pp. 1–8 (2015)

17. Palubeckis, G.: An algorithm for construction of test cases for the quadratic assign-
ment problem. Inform. Lith. Acad. Sci. 11(3), 281–296 (2000)

18. Saifullah Hussin, M.: Stochastic local search algorithms for single and bi-objective
quadratic assignment problems. Ph.D. thesis. Université de Bruxelles (2016)

https://doi.org/10.1007/978-1-4419-1665-5_17
https://doi.org/10.1007/978-3-319-39636-1_4
https://doi.org/10.1007/978-3-319-39636-1_4
https://doi.org/10.1007/978-3-319-30698-8_17
https://doi.org/10.1007/978-3-662-44320-0_2
https://doi.org/10.1007/978-3-662-44320-0_2

448 J. López et al.

19. Taillard, É.: Robust taboo search for the quadratic assignment problem. Parallel
Comput. 17(4–5), 443–455 (1991)

20. Talbi, E.G., Bachelet, V.: COSEARCH: a parallel cooperative metaheuristic. J.
Math. Model. Algorithms 5(1), 5–22 (2006)

21. Toulouse, M., Crainic, T., Gendreau, M.: Communication issues in designing
cooperative multi-thread parallel searches. In: Osman, I., Kelly, J. (eds.) Meta-
Heuristics: Theory & Applications, pp. 501–522. Kluwer Academic Publishers,
Norwell (1995)

22. Tsutsui, S., Fujimoto, N.: An analytical study of parallel GA with independent
runs on GPUs. In: Tsutsui, S., Collet, P. (eds.) Massively Parallel Evolutionary
Computation on GPGPUs. NCS, vol. 8, pp. 105–120. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37959-8 6

https://doi.org/10.1007/978-3-642-37959-8_6

Applications

Conditional Preference Learning
for Personalized and Context-Aware

Journey Planning

Mohammad Haqqani(B), Homayoon Ashrafzadeh, Xiaodong Li,
and Xinghuo Yu

School of Science, Computer Science and Software Engineering, RMIT University,
Melbourne, Australia

mohammad.haqqani@rmit.edu.au

Abstract. Conditional preference networks (CP-nets) have recently
emerged as a popular language capable of representing ordinal preference
relations in a compact and structured manner. In the literature, CP-nets
have been developed for modeling and reasoning in mainly toy-sized com-
binatorial problems, but rarely tested in real-world applications. Learn-
ing preferences expressed by passengers is an important topic in sustain-
able transportation and can be used to improve existing journey plan-
ning systems by providing personalized information to the passengers.
Motivated by such needs, this paper studies the effect of using CP-nets
in the context of personalized and context-aware journey planning. We
present a case study where we learn to predict the journey choices by
the passengers based on their historical choices in a multi-modal urban
transportation network. The experimental results indicate the benefit
of the conditional preference in passengers’ modeling in context-aware
journey planning.

Keywords: User modeling · Preference learning
Conditional preferences · CP-nets · Personalized journey planning

1 Introduction

Personalized journey planning provides tailored information to the passengers
on sustainable transit options through usually web-based journey planner [3].
It seeks to overcome the habitual use of cars, enabling more journeys to be
made on bike, foot, or public transport. This is achieved through the provision
of personalized information, to increase the passengers’ satisfaction using mul-
timodal transit to support a voluntary shift towards more sustainable choices.
The planner uses expressed passenger preferences to recommend journeys to the
individuals based on his/her circumstances. The power of the individual-based
journey planning is that it can often lead to more significant behavior change
than a one-solution-fits-all-approach [3].
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 451–463, 2018.
https://doi.org/10.1007/978-3-319-99253-2_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_36&domain=pdf

452 M. Haqqani et al.

Currently, the majority of ‘intelligent’ commercial journey planners only
have a small set of predefined preferences (e.g., preferred highways or public
transit modes) made available for passengers to choose from and rank (Yahoo!
trip planner, PTV journey planner, Google Maps) [2]. Although these planners
are reliable and offer adequate assistance to passengers, they assume the values
of passengers’ preferences are independent i.e., the value of one attribute does
not influence the passenger’s preference on the value of other attributes [12].
This assumption, however, is not sound in real-world journeying. For example,
the weather condition may affect the passengers’ preferences towards the trans-
portation modes that they are willing to take. This issue could be alleviated
by incorporating passengers’ preferences and context into the planning process.
Here, we refer to the ‘context’ as the interrelated conditions in which the jour-
ney occurs such as departure-time, weather status, the purpose of the journey,
companionship, etc. (see Sect. 3). By incorporating context and user preferences,
more desirable journey plans can be recommended to the passengers which, by
increasing their satisfaction, can motivate them to use multimodal transit.

As an example, suppose we are observing a user’s interactions with a par-
ticular web-based journey planning system. For instance, we observe that the
passenger prefers a train over a bus arriving at Flinders Street for one query,
and we also observe that for another query, the passenger prefers a train arriving
at Flinders Street to a bus arriving at Swanston Street for a specific destina-
tion. An intuitively correct hypothesis that explains her behavior could be that
she unconditionally prefers trains over buses, and Flinders Street over Swanston
Street. Such a hypothesis is useful for further predictions. For example, using this
hypothesis, we can predict that she will prefer a train to Flinders Street over any-
thing else. However, such a hypothesis gives no further information about other
preferences, for example, we cannot predict whether she prefers a bus arriving
at Flinders Street over a train arriving at Swanston Street or not. Now assume
that in the later observations, we observe that she also prefers a bus arriving at
Swanston Street over a train arriving at Swanston Street. A new possible updated
hypothesis could be that she prefers Flinders Street over Swanston Street when
traveling by train and vice versa when traveling with buses. In other words, her
preferences over the transportation modes are conditioned with her destined
street.

In the above scenario, the passenger has used previous travel experiences
to learn specific preferences about the journeys and a similar approach can be
followed by a computer algorithm. The learning problem underlying this sce-
nario is to extract a preference structure by observing the user’s behavior in
situations involving a choice among several alternatives. Each alternative can be
specified by many attributes, such as the transportation mode, the destination
location, the arrival and departure time, etc. in the above example. As a result,
the space of possible situations has a combinatorial structure. Furthermore, as we
have shown in the example, the preferences induced by the passenger’s behavior
are intrinsically related to conditional preferential independence, a fundamental
notion in multi-attribute decision theory [20]. Indeed, the initial hypothesis is

CP-Nets for Personalized Journey Planning 453

unconditional in the sense that the preference over the values of each attribute is
independent of the values of other attributes. By contrast, in the final hypothe-
sis, the passenger’s preferences among the transportation modes of the journeys
are conditioned by the destined streets.

Conditional preference networks, also known as CP-nets, was proposed for
handling problems where the preferences are conditioned to one another [4].
CP-nets have received a great deal of attention due to their compact and natu-
ral representation of conditional preferences [8,12,17]. Informally, a CP-net is a
digraph where nodes represent attributes pointing to a (possibly empty) set of
parents, and a set of conditional tables associated with each attribute, expressing
the local preference on the values of the attribute given all possible combinations
of values of its parents (Fig. 1) (see Sect. 2). The transitive closure of these local
preferences is a partial order over the set of alternatives, which can be extended
into several total orders. CP-nets and their generalizations are probably the most
famous compact representation language for conditional preferences in multi-
attribute domains [1]. While many facets of CP-nets have been studied in detail,
such as learning of CP-nets, consistency and dominance checking, and optimiza-
tion (constrained and unconstrained), to the best of our knowledge, there are
no works on studying the effect of conditional preference modeling with CP-net
in a real-world application. This paper aims to examine the effect of conditional
preference modeling in the context-aware journey planning problem.

The objective of this paper is to investigate the effect of conditional prefer-
ence modeling - using a GA-based CP-net learning methods (CPLGA) proposed
in [8] - in personalized journey planning problem and compare it with vari-
ous conventional preference learning techniques (four derived from the literature
namely, RankNet citeburges2005learning, AdaRank [18], OSVM [13] and SVOR
[11], and one designed for the problem under investigation called learning pref-
erence weight (PWL) [9]) alongside with the performance comparison of three
state-of-the-art passive CP-net learning methods presented in [8,14,15] for the
personalized journey planning problem.

2 Background on CP-Net

Assume a finite list V = {X1, . . . , Xn} of attributes, with their associated finite
domains Dom = {D1, . . . , Dn} where n is the number of domain elements. An
attribute Xi is a binary attribute if Di has two elements, which by convention we
note xi, x̄i [17]. By Ω = ×Xi∈DDi, we denote the set of all complete alternatives,
called outcomes.

A preference relation is a reflexive and transitive binary relation � over
Ω. A complete preference relation � is a preference relation that is connected,
that is, for every x, y ∈ Ω we have either x � y or y � x. A strict preference
relation � is an irreflexive and transitive (thus asymmetric) binary relation over
Ω. A linear preference relation is a strict preference relation that is connected.
From a preference relation we define a strict reference relation in the usual way:
x � y iff x � y and y � x.

454 M. Haqqani et al.

Preferences between outcomes that differ in the value of one attribute only,
all other attributes being equal (or ceteris paribus) are often easy to assert and
to understand. CP-nets [5] are a graphical language for representing such pref-
erences. Informally, a CP-net is composed of a directed graph representing the
preferential dependencies between attributes, and a set of conditional preference
tables expressing, for each attribute, the local preference on the values of its
domain given all possible combinations of values of its parents.

Fig. 1. (a) A simple CP-net N , modeling the passenger preferences. Journeys are
defined by three attributes and for this particular passenger the preferences over transit
mode is conditioned with the values of time of the journey and weather condition. (b)
The equivalent chromosome of the sample CP-net

Definition 1. Preference: A strict preference relation �u is a partial order on
a set of outcomes O ∈ Ω defined by a user u. oi �u oj indicates that the user
strictly prefers oi over oj.

Definition 2. Conditional Preference Rule (CP-rule): A CP-rule on an
attribute Xi is an expression of the form t : p � p, where p is a literal of
Xi and t is a term such that t ∈ {V \Xi}.

Such a rule means given that t holds, the value p is preferred to the value p
for the attribute Xi.

Definition 3. Conditional Preference Table (CPT): CPT (Xi) is a table asso-
ciated with each attribute that consists of conditional preference rules (CP-rules)
t : p �i p specifying a linear order on Dom(Xi) where t indicated to the parents
of Xi in the dependency graph.

Definition 4. Conditional Preference Network (CP-net): A CP-net is a digraph
on V = {X1, . . . , Xn} in which each node is labeled with a CPT. An edge (Xi,Xj)
indicates that the preferred value of Xj is conditioned by the value of its parent
attribute Xi.

Definition 5. Dominance Testing: A dominance testing, defined by a triple
(N, oi, oj), is a decision of whether oj is dominated by oi given the CP-net N
and oi, oj ∈ Ω. The answer is in the affirmative if and only if N |= oi � oj.

CP-Nets for Personalized Journey Planning 455

Let us explain the properties of a CP-net with an example of the journey
planning problem. Figure 1 represents a CP-net model for a particular passenger.
Since the graph has three nodes we can infer that each journey is formulated by
three attributes namely, weather condition, travel time and transit mode. Please
note that one can describe journeys with a different set of attributes. As we can
see in the Fig. 1, the CP-net contains three CPTs with six CP-rules (weather
and travel time nodes has one rule each and four rules for transit mode node).
Using this CP-net, as well as dominance testing, we can infer that the passenger
prefers a train leaving in a morning on a sunny day to a bus leaving in the same
condition. Formally speaking, a journey with a train dominates a journey with
a bus for the traveler on a sunny morning. However, we still need to answer
the question ‘how can one model a passenger with a CP-net using her historical
travel information?’.

In GLPCA [8], we proposed a GA-based CP-nets learning solver in order
to find a CP-net from historical and inconsistent preference examples. Each
chromosome is representing a CP-net and the length of each chromosome is set
to the number of attributes and is composed of two main parts: Parenti and
CPTi. Parenti denotes to the nodes j ∈ {N\i} in the dependency graph which
the preference over the value of node i is conditioned on them and CPTi denotes
the conditional preference table associated with node i (Fig. 1(b) represents the
equivalent chromosome for the sample CP-net in Fig. 1(a)). Then, we used GA
to find an individual that best describes the training preference dataset. The
output of the algorithm is then considered as the user’s model and is used to
predict her future ranking in order to provide personalized information. We refer
readers to [8] for detailed information about the algorithm.

3 Multimodal Journey Planning Tool

In our study, we use the journey planner presented in [10] to find multimodal
journey plans. This planner computes optimal multi-objective journey plans
using a customized NSGAII-based algorithm [7]. Here we considered two criteria
to optimize journey plans. The first criterion is the travel time and the second
criterion is journey convenience which is a linear combination of the number of
transfers, waiting and walking times. We refer the readers to [10] for detailed
information about the algorithm.

3.1 Journey Plan Attributes

To apply a CP-net, first, we need an attribute-based representation approach to
describe each journey. Based on the knowledge of mobility experts, we divided
the journey’s attributes into two categories: journey plan attributes and contex-
tual attributes. Regarding journey plan attributes, we identify the following set
of attributes to describe each journey:
Travel Time: which denotes to the total time spent to complete the journey.

456 M. Haqqani et al.

Modes of Transport: which refers to the utilized transportation modes in the
recommended journey.
Personal Energy Expenditure (PEE): which denotes to the PEE of the
journeys that contain walking or cycling concerning the weight of the passenger
as well as the average speed of the walking/cycling mode using the published
energy consumption rates presented in [16].
CO2 Emission: which denotes to the CO2 emissions related to each journey.
We utilized unit rates (per kilometer) for each vehicle to calculate the emission
of a journey [ABS 2013].
Number of Transfers: which denotes to the number of transfers required to
complete the journey.
Monetary Cost: which is the monetary cost associated with each journey [ABS
2013]. When a journey contains multiple public transport, the cost is calculated
once in every 2-h time window.

Finally, CP-nets are typically designed to function with categorical data;
therefore, we first have to discretize the numeric attributes described above. To
do this, we employed a fuzzy-set method [12] that assigns each possible value
to one or two predefined categories. In particular, we divide each numerical
attribute into five equal intervals: very low, low, normal, high and very high.
This method allows for a more accurate discretization by assigning a weight to
the categories that are close to the boundaries separating two intervals.

3.2 Contextual Attributes

Based on the knowledge of mobility experts we identified seven contextual factors
as relevant in this domain: 2 user-specific factors: companionship and reason of
the journey, and five environmental-based factors namely: time of day, time of
the week, weather, temperature, and crowdedness.
Companionship: which is a binary attribute indicating that the passenger is
alone or not.
Reason of the Journey: which specifies the purpose of the journey including,
going to work, going back home and site seeing.
Time of Day: which can be either early morning, morning, afternoon, evening
and night.
Time of the Week: which is a binary value distinguishing between weekends
and week-days.
Weather: which indicate the expected weather of a particular journey including,
sunny, rainy and windy.
Temperature: which is a multivalued attribute consisting of very cold, cold,
normal, hot and very hot.
Crowdedness: which denotes to the expected crowdedness of a particular public
transit mode and can range from quiet, natural and crowded.

CP-Nets for Personalized Journey Planning 457

4 Algorithms’ Evaluation

4.1 Experimental Setup

We have conducted experiments on real data collected from the transportation
network of the City of Melbourne, to evaluate the effectiveness of the condi-
tional preference modeling in the context-aware journey planning domain. For
the road, bike and foot transportation network the OpenStreetMap1 data has
been used. Regarding public transit network, we used the GTFS2 data, consist-
ing of several information such as stop locations, routes, and timetable. A total
of 34617 locations considered including 31259 bus stops, 1763 tram stations, 218
train stations, and 44 rental bike stations were included in the network. For the
multi-modal network, all pairs of nodes, within 0.25 km radius, are connected
by walking legs. Cycling legs are only available between two bike stations within
the distance of two hours. The speed of walking and cycling legs is 5 km/h and
12 km/h respectively.

To carry out the experiment, we first had to collect a data-set of user ratings
for a variety of journey plans. For each user, a set of 200 random queries, includ-
ing random origin, destination and departure time, are created. By default, a
set of contextual conditions was randomly picked for each query. In response
to each query, the journey planner generated five to seven alternative journey
plans combining different modes of transportation. Each plan was followed by a
detailed explanation of characteristics of the journey plan and Users were asked
to analyze and rank them from ‘best’ to ‘worst’ taking into consideration the
‘active’ contextual situation. This experiment lasted four weeks, and we collected
a total of 5,218 orders given by 45 users to 31,350 journey plans in 8,710 queries.
The participants comprised of 55% women and 45% men living in Melbourne
(Australia) at the time of the experiment. Each user, on average, provided 115
rankings.

Besides, a common problem that arises when dealing with human subjects
is the possibility of noise or inconsistent information [8]. Therefore, to test the
robustness of the results, we also evaluated the behavior of preference learning
methods under noisy conditions. To add order noise into the data set, we swapped
the rankings of two randomly selected pairs of adjacent journeys in the original
sample orders. The noise level could be controlled by changing the number of
times that the swapping happens. Finally, We generated three data-set with
0.1%, 1% and 10% of noise, respectively.

Various types of distance metrics have been proposed in the literature to com-
pute the distance between two orders, O1 and O2, composed of the same sets
of solutions, i.e., X(O1) = X(O2). In this paper, we use the widely-used Spear-
man’s rank correlation coefficient (ρ) [17], which is a non-parametric measure of
correlation between two variables and is defined as:
1 http://www.openstreetmap.com.
2 The General Transit Feed Specification (GTFS) data which defines a common format

for public transportation schedules and associated geographic information. For more
information, please visit http://www.transitwiki.org.

http://www.openstreetmap.com
http://www.transitwiki.org

458 M. Haqqani et al.

ρ = 1 − 6ds(O1, O2)
L3 − L

, (1)

where L is the length of orders and ds(O1, O2) is the sum of the squared differ-
ences between ranks O1 and O2.

Finally, in all the experiments, we used the CPLGA with the configuration
setup described in Table 1. The parameters of CPLGA are set following our
experience in practice. We have chosen a non-parametric test, Wilcoxon Signed
Rank Test [6] as the statistical significant testing. The test is performed at the
5% significance level.

Table 1. CPLGA setup used in experiments

Selection mechanism Ranked bias

Bias = 1.2

Nr. of parents Nr. of attributes

Cross-over rate 0.8

Mutation rate 0.4

Pool size 200

Maximum number of evaluation 20000

Results average over 30

4.2 Result Analysis

Table 2 shows the means of ρ for the CP-net based preference learning algo-
rithm with the learning-to-rank methods, namely RankNet [5], AdaRank [18],
OSVM [13], SVOR [11] and PWL [9], different sample size and noise levels.
These methods are the most popular methods for learning-to-rank in recent years
and can perform reasonably well under noisy training samples. The experiment
shows that CP-net based ranking significantly outperformed all the learning-to-
rank methods at different noise levels and different training sizes. This is due
to the fact that learning-to-rank methods do not take into account the condi-
tional dependency of the attributes. However, our further experiments reveal
that there exists a dependency between passengers’ preferences that the conven-
tional learning-to-rank methods tend to overlook.

As discussed earlier, the purpose of CP-net is to provide a conditional model
to represent the user preferences. Therefore, during the experiments, we modeled
each user with a CP-net based on his/her rating data-set, i.e., a total number of
45 CP-nets were obtained. Figure 2 illustrates the dependencies between journey
attributes and contextual attributes among all 45 learned CP-nets. The num-
ber in a circle represents the number of CP-nets that the two attributes were
conditioned to each other. For example, we observed that for 27 passengers, the
value of transportation mode was dependent on the expected weather condition
of the journey. In other words, for 27 passengers, the learned model indicates

CP-Nets for Personalized Journey Planning 459

Table 2. Comparing the conditional preference learning with conventional learning to
rank methods for different training sizes.

|S| 200 500 1000

Noise level 0 0.01 0.05 0.1 0 0.01 0.05 0.1 0 0.01 0.05 0.1

Method ρ

AdaRank 0.7453 0.7458 0.7352 0.7140 0.7642 0.7799 0.7614 0.7397 0.7895 0.7917 0.7743 0.7527

RankNet 0.6663 0.6642 0.6438 0.6242 0.7031 0.6833 0.6768 0.6493 0.7376 0.7165 0.7046 0.6765

OSVM 0.7305 0.7123 0.6653 0.6276 0.7866 0.7622 0.7201 0.6383 0.8257 0.7881 0.7281 0.6476

SVOR 0.7360 0.6965 0.6569 0.6363 0.7718 0.7704 0.6754 0.6271 0.8063 0.7704 0.6883 0.6435

PWL 0.7260 0.7246 0.7149 0.7002 0.7864 0.7751 0.7592 0.7520 0.8119 0.8031 0.7808 0.7717

CPLGA 0.8435 0.8432 0.8215 0.8090 0.8817 0.8769 0.8530 0.8433 0.9285 0.9019 0.8946 0.8775

Fig. 2. The conditional dependency between contextual and journey attributes. The
numbers in the circles denote the number of CP-nets that the values of two attributes
are dependent on each other.

that their preferences among the transportation modes used in the journey are
conditioned on the weather status. We also observed that almost half of the
participants have a conditioned preference over the transportation modes based
on the expected crowdedness of the transportation network. Latent information
such as this, which is ignored by the majority of popular learning-to-rank meth-
ods, can be precious when one wants to predict the passengers’ behavior. We
believe that this information was the main reason of why CP-net based pref-
erence learning method outperformed all conventional ones. However, we first
need to prove that the learned CP-net are concordant with the actual passen-
gers’ behavior. To achieve this, we conduct another experiment to reveal that
whether the actual behavior of passengers matched with our learned CP-nets.
For the sake of brevity, in this paper, we only present the two highest conditioned
attributes, namely (weather and mode) and (crowdedness and mode).

Figure 3 presents the average percentage of transportation mode against four
different attributes namely, crowdedness, day-time, purpose and weather condi-
tion. In Fig. 3(a) we show the average percentage of transportation modes for

460 M. Haqqani et al.

(a) Weather (27 passengers from Fig. 2). (b) Crowdedness (21 passengers from Fig. 2)

(c) Day-time (19 passengers from Fig. 2) (d) Purpose (17 passengers from Fig. 2)

Fig. 3. The conditional dependency between transit mode and four highly conditioned
variables extracted from the true ratings of the passengers.

the first ranked journey for the 27 passengers presented in Fig. 2 based on the
learned CP-nets for these passengers, we expected that the transportation mode
was conditioned to the weather status. Figure 3(a) shows the actual behavior of
these passengers when they rated the actual recommended journeys. In here we
assumed that, for each query, they would choose their highest ranked journey. As
shown in Fig. 3(a), there is a clear correlation between the used transportation
mode and the weather status which demonstrates that the learned CP-net is con-
cordant with the actual behavior of the passengers. For example, we observed
that when raining, the usage of trains was increased as these passengers pre-
ferred trains more over other means of transportation. We also observed that
the usage of buses dropped dramatically in raining condition. It could be since,
for buses and trams, the possibility of delays increases in raining weather and
passengers – who gained this knowledge through experience – try to avoid it by
leaning towards trains which are more robust against variations in weather con-
ditions. Although, this information may seem trivial, but note that these explicit
dependencies are being ignored by the conventional learning-to-rank methods.
Needless to say, such information is beneficial when the system wants to predict
passengers’ preferences to recommend personalized journeys to them.

Figure 3(b) demonstrates the same results for the relation between expected
crowdedness of the transportation network and the passengers’ preferences
among different modes of transportation. As we stated before, in 21 out of
47 learned CP-net, the value of transportation mode is conditioned with the
value of expected crowdedness. Again, we observed that there is a clear corre-
lation between the two attributes in actual passengers’ behaviors. For example,
we observed an increase in train usage in crowded situations. One explanation
could be that the passengers prefer to avoid traffic jams, in case of buses, or
limited space, in case of trams. We also observed an increase of bicycle usage
when the transportation network is crowded. This could be because, in the City

CP-Nets for Personalized Journey Planning 461

of Melbourne passengers are only allowed to bring their bikes onto the trains,
but prohibited for other means of transportation, so some passengers are willing
to take some part of the journey with bikes during rush hours.

To have a fair comparison, we also compare CPLGA [8] against two CP-
net learning algorithms proposed in [14,15]. Similar to CPLGA, these methods
learn CP-nets passively from inconsistent examples. We observed that CPLGA
algorithm significantly performs better than the other two. Regarding [15] it is
because this algorithm starts with a hypothesis and then performs a local search
to optimize that hypothesis, making the algorithm prone to getting stuck in local
optima for larger problems. Another issue is the sample size. Note that for larger
problems (i.e., more than ten attributes) these algorithms need a large training
set to prove their hypothesis. We also tested the robustness of these methods in
noisy condition by adding 1% to 20% of noise to the data-set. We observed that
all methods which have handled the noisy data and could find similar preference
graphs as the noise-free setting; however, we again observed a significant gap
between CPLGA model and the other algorithms concerning their performance
(Table 3).

Table 3. Comparison between the three state-of-the-art passive CP-net learning meth-
ods on real data with different noise level.

|S| ρ 0 0.01 0.05 0.1 0.2

Method Sample agreement

500 [15] 0.5533 0.5564 0.4756 0.4213 0.2712

[14] 0.5117 0.5107 0.4819 0.4665 0.2301

CPLGA 0.9212 0.9230 0.9195 0.8400 0.7512

1000 [15] 0.5812 0.5601 0.5139 0.4201 0.3320

[14] 0.5210 0.5109 0.4939 0.4339 0.3134

CPLGA 0.9309 0.9101 0.9152 0.8754 0.7713

5 Conclusions

In this paper, we discussed the effect of conditional preference learning in the
domain of context-aware journey planning problem. To this aim, we have pro-
posed a context-aware journey recommendation test-bed and we have imple-
mented and evaluated the CP-net based preference learning algorithm and com-
pared it with five state-of-the-art PL strategies and two similar CP-net learning
approaches. Our experiment results have concluded that there exists the latent
conditional information in the user preferences and this information can be very
useful when one wants to predict the passengers’ behavior in the urban trans-
portation network.

Our future work is to further improve the performance of the conditional
preference learning methods. We also want to investigate the effectiveness of the

462 M. Haqqani et al.

conditional preference learning strategies when applied during the construction
of the journey plans. We believe that in this way the preference model can have
a major impact on quality of the recommended journeys and also help to speed
up the plan generation process by reduction of the search space.

Acknowledgment. This research was supported under Australian Research Council’s
Linkage Projects funding scheme (project number LP120200305).

References

1. Allen, T.E.: CP-nets: from theory to practice. In: Walsh, T. (ed.) ADT 2015.
LNCS, vol. 9346, pp. 555–560. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23114-3 33

2. Bell, P., Knowles, N., Everson, P.: Measuring the quality of public transport jour-
ney planning. In: IET and ITS Conference on Road Transport Information and
Control, RTIC 2012, pp. 1–4. IET (2012)

3. Bonsall, P.: Do we know whether personal travel planning really works? Transp.
Policy 16(6), 306–314 (2009)

4. Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Reasoning with conditional
ceteris paribus preference statements. In: UAI, pp. 71–80 (1999)

5. Burges, C., et al.: Learning to rank using gradient descent. In: ICML, pp. 89–96
(2005)

6. Corder, G.W., Foreman, D.I.: Nonparametric Statistics: A Step-by-Step Approach.
Wiley, Hoboken (2014)

7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197
(2002)

8. Haqqani, M., Li, X.: An evolutionary approach for learning conditional preference
networks from inconsistent examples. In: Cong, G., Peng, W.-C., Zhang, W.E., Li,
C., Sun, A. (eds.) ADMA 2017. LNCS, vol. 10604, pp. 502–515. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69179-4 35

9. Haqqani, M., Li, X., Yu, X.: Estimating passenger preferences using implicit
relevance feedback for personalized journey planning. In: Wagner, M., Li, X.,
Hendtlass, T. (eds.) ACALCI 2017. LNCS, vol. 10142, pp. 157–168. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-51691-2 14

10. Haqqani, M., Li, X., Yu, X.: An evolutionary multi-criteria journey planning algo-
rithm for multimodal transportation networks. In: Wagner, M., Li, X., Hendtlass,
T. (eds.) ACALCI 2017. LNCS, vol. 10142, pp. 144–156. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-51691-2 13

11. Herbrich, R., Graepel, T., Obermayer, K.: Support vector learning for ordinal
regression. In: ICANN, vol. 1, pp. 97–102 (1999)

12. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative
filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 5–53 (2004)

13. Kazawa, H., Hirao, T., Maeda, E.: Order SVM: a kernel method for order learning
based on generalized order statistics. Syst. Comput. Jpn. 36(1), 35–43 (2005)

14. Liu, J., Xiong, Y., Caihua, W., Yao, Z., Liu, W.: Learning conditional preference
networks from inconsistent examples. IEEE TKDE 26(2), 376–390 (2014)

15. Liu, J., Yao, Z., Xiong, Y., Liu, W., Caihua, W.: Learning conditional preference
network from noisy samples using hypothesis testing. Knowl.-Based Syst. 40, 7–16
(2013)

https://doi.org/10.1007/978-3-319-23114-3_33
https://doi.org/10.1007/978-3-319-23114-3_33
https://doi.org/10.1007/978-3-319-69179-4_35
https://doi.org/10.1007/978-3-319-51691-2_14
https://doi.org/10.1007/978-3-319-51691-2_13

CP-Nets for Personalized Journey Planning 463

16. Owen, N., Humpel, N., Leslie, E., Bauman, A., Sallis, J.F.: Understanding envi-
ronmental influences on walking. Am. J. Prev. Med. 27(1), 67–76 (2004)

17. Spearman, C.: The proof and measurement of association between two things. Am.
J. Psychol. 15(1), 72–101 (1904)

18. Xu, J., Li, H.: AdaRank: a boosting algorithm for information retrieval. In: ACM
SIGIR, pp. 391–398 (2007)

Critical Fractile Optimization Method
Using Truncated Halton Sequence

with Application to SAW Filter Design

Kiyoharu Tagawa(B)

Kindai University, Higashi-Osaka 577-8502, Japan
tagawa@info.kindai.ac.jp

Abstract. This paper proposes an efficient optimization method to
solve the Chance Constrained Problem (CCP) described as the critical
fractile formula. To approximate the Cumulative Distribution Function
(CDF) in CCP with an improved empirical CDF, the truncated Halton
sequence is proposed. A sample saving technique is also contrived to solve
CCP by using Differential Evolution efficiently. The proposed method is
applied to a practical engineering problem, namely the design of SAW
filter.

Keywords: Chance Constrained Problem · Empirical distribution

1 Introduction

In real-world optimization problems, various uncertainties have to be taken into
account. Traditionally, there are two kinds of problem formulations for handling
uncertainties in the optimization [11], namely the deterministic one and the
stochastic one. Chance Constrained Problem (CCP) [13] is one of the possible
formulation of the stochastic optimization problem. Since the balance between
optimality and reliability can be taken with a probability in CCP, a number of
real-world optimization problems have been formulated as CCPs [7,9].

CCP has been studied in the field of stochastic programming [13]. If the
chance constraint is linear, CCP can be transformed to a deterministic optimiza-
tion problem. Otherwise, CCP is so hard to solve because the time-consuming
Monte Carlo simulation is needed to calculate the empirical probability that the
chance constraint is satisfied. For solving CCP with the optimization methods
of nonlinear programming, the stochastic programming assumes that the chance
constraint is differentiable and convex. Even though Evolutionary Algorithms
(EAs) are also reported to solve CCP [8,12], they use Monte Carlo simulations
to evaluate the feasibility of every solution in the process of optimization.

In our previous paper [16], an optimization method based on Differential
Evolution (DE) [14] was given to solve CCP without the Monte Carlo simulation.
Specifically, CCP is described by using the Cumulative Distribution Function
(CDF) of uncertain function value. In order to approximate CDF from samples,
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 464–475, 2018.
https://doi.org/10.1007/978-3-319-99253-2_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_37&domain=pdf

Critical Fractile Optimization Method Using Truncated Halton Sequence 465

an extended version of Empirical CDF (ECDF) [10], which is called Weighted
ECDF (W ECDF) [15], was employed. Thereby, for solving the CCP formulated
with CDF, an Adaptive DE (ADE) combined with W ECDF was used.

This paper focuses on a specific CCP known as the critical fractile formula
[4] and improves the previous method [16] by introducing two new techniques.
Firstly, the truncated Halton sequence is proposed to approximate CDF with
W ECDF more efficiently. Secondly, a new ADE equipped with a sample saving
technique is proposed. The improved method is applied to the structural design
of Surface Acoustic Wave (SAW) filters [2], which are widely used in the radio
frequency circuits of mobile communication systems such as cellular phones.

2 Background and Problem Formulation

As stated above, there are two problem formulations for handling uncertainties.
Robust optimization problem is a deterministic problem formulation [3]. Let
x = (x1, · · · , xD) ∈ X ⊆ �D, X = [xj , xj]D, j = 1, · · · , D be a vector of
decision variables, or a solution. The uncertainty is given by a vector of random
variables ξ = (ξ1, · · · , ξK) ∈ Ξ with a support Ξ ⊆ �K . Robust optimization
problem is defined with a measurable function g : X × Ξ → � as

min
x∈X

γ s.t. ∀ ξ ∈ Ξ : g(x, ξ) ≤ γ. (1)

The feasible solution x ∈ X of the robust optimization problem in (1) has to
satisfy the constraint g(x, ξ) ≤ γ absolutely with 100% probability. Therefore,
it seems to be too conservative from an engineering perspective.

CCP is a stochastic problem formulation [13]. By introducing any required
sufficiency level α ∈ (0, 1) into an infinite number of constraints in (1), CCP
reduces the conservativism of the robust optimization problem as

min
x∈X

γ s.t. Pr(g(x, ξ) ≤ γ) ≥ α (2)

where Pr(A) denotes the probability that an event A will occur.
Actually, CCP may have more than one constraint. Besides, there are two

types of CCPs, namely separate CCP and joint CCP [13]. In this paper, separate
CCP having only one chance constraint is considered as shown in (2).

The presence of the uncertainty in CCP leads to different results for repeated
evaluations of the same solution x ∈ X. Since ξ ∈ Ξ is a vector of random
variables, the function value g(x, ξ) ∈ � in (2) becomes a random variable too.
The CDF of g(x, ξ) depending on the solution x ∈ X is defined as

F (x, γ) = Pr(g(x, ξ) ≤ γ). (3)

By using the inverse CDF of g(x, ξ), an alternative formulation of the CCP
in (2), which is known as the critical fractile formula [4], is written as

min
x∈X

γ(x) = F−1(x, α) (4)

466 K. Tagawa

where γ(x) denotes the critical fractile γ = γ(x) achieved by x ∈ X.
The probability distribution of ξ ∈ Ξ in CCP is usually known [13]. If the

probability distribution of g(x, ξ) ∈ � is also known or the inverse CDF of
g(x, ξ) can be derived analytically, the CCP in (4) can be transformed into
a deterministic optimization problem [4,13]. Otherwise, for solving the original
CCP in (2), the probability Pr(g(x, ξ) ≤ γ) in (2) has to be evaluated repeatedly
with the Monte Carlo simulation by changing the value of γ ∈ �.

3 Approximation of CDF

3.1 Empirical CDF (ECDF)

In real-world optimization problems, g(x, ξ) in (3) is too complex to derive its
CDF analytically. Therefore, an approximation of the CDF is composed from
samples. Let g(x, ξn) ∈ �, ξn ∈ Ξ, n = 1, · · · , N be a set of random samples
of the function value g(x, ξ) in (3). The indicator function is defined as

1l(g(x, ξn) ≤ γ) =

{
1 if g(x, ξn) ≤ γ

0 otherwise.
(5)

From the samples g(x, ξn), n = 1, · · · , N , ECDF [10] is composed as

F(x, γ) =
1
N

N∑
n=1

1l(g(x, ξn) ≤ γ). (6)

Let F̃(x, γ) be a smoothed ECDF. The CDF of g(x, ξ) is approximated by
F̃(x, γ). Since F̃(x, γ) is a monotone increasing function, we can get the inverse
CDF value, or the critical fractile in (4), numerically as γ = F̃

−1(x, α).
As a drawback of ECDF, many samples are required to approximate CDF

accurately because the samples g(x, ξn), ξn ∈ Ξ taken from the tail part of the
probability distribution on Ξ ⊆ �K are relatively few in number.

3.2 Weighted Empirical CDF (W ECDF)

W ECDF [15] is an improved ECDF to approximate CDF in (3). In order to take
samples ξn ∈ Ξ from Ξ ⊆ �K uniformly, K-dimensional Halton Sequence (HS)
is used instead of the random sampling. HS is a low-discrepancy sequence [5]. Let
θn ∈ Θ ⊆ �K , n = 1, · · · , N be a set of points generated as HS. Considering
the support Ξ ⊆ �K , the region Θ ⊆ �K of HS is chosen as Θ ⊇ Ξ.

Let f : Ξ → [0, ∞) be the Probability Density Function (PDF) of ξ ∈ Ξ.
Each of the points θn ∈ Θ of HS is weighted by the PDF of ξ ∈ Ξ as f(θn).
Thereby, W ECDF is composed from g(x, θn), θn ∈ Θ, n = 1, · · · , N as

F(x, γ) =
1
W

N∑
n=1

f(θn) 1l(g(x, θn) ≤ γ) (7)

where W = f(θ1) + · · · + f(θn) + · · · + f(θN).
By using a smoothed W ECDF F̃(x, γ), we can obtain γ = F̃

−1(x, γ).

Critical Fractile Optimization Method Using Truncated Halton Sequence 467

Fig. 1. RS: ξn ∈ Ξ Fig. 2. HS: θn ∈ Θ Fig. 3. THS: θn ∈ S

3.3 Truncated Halton Sequence (THS)

In our previous paper [16], we supposed that all of the random variables ξj ∈ �,
j = 1, · · · , K are mutually independent. Besides, for composing W ECDF in
(7) from θn ∈ Θ, the region Θ ⊆ �K of HS was given by a hyper-cube.

In this paper, Truncated HS (THS) is proposed to compose W ECDF more
efficiently. The region S ⊆ Θ of THS is defined with Θ ⊆ �K as

S = {θn ∈ Θ | f(θn) ≥ fmin} (8)

where the minimum PDF value fmin is a parameter given in advance.
By using the points θn ∈ S, n = 1, · · · , N of THS for composing W ECDF,

we can eliminate futile points θn ∈ Θ such as f(θn) ≈ 0. The correlation between
two random variables ξi and ξj , i �= j is also reflected in θn ∈ S naturally.

Example of W ECDF with THS. Let’s consider a stochastic function:

g(x, ξ) = x ξT = x1 ξ1 + x2 ξ2 (9)

where ξ ∈ Ξ ⊆ �2 is following a 2-dimensional normal distribution such as

ξ = (ξ1, ξ2) ∼ N2(μ1, μ2, σ2
1 , σ2

2 , ρ) = N2(1, 2, 0.12, 0.22, −0.8) (10)

where ρ denotes the correlation coefficient between ξ1 and ξ2.
Figure 1 shows ξn ∈ Ξ, N = 100 generated by the Random Sampling (RS)

of ξ ∈ Ξ in (10). Figure 2 shows θn ∈ Θ, N = 100. Figure 3 shows θn ∈ S,
N = 100. Since HS [5] is deterministic, the randomized HS [19] is used in this
paper.

From the theory of probability [1], the PDF of ξ ∈ Ξ in (10) is

f(ξ) =
1

2π
√|Σ| exp

(
−1

2
(ξ − μ)Σ−1 (ξ − μ)T

)
(11)

where μ = (μ1, μ2) and the covariance matrix Σ is given as

Σ =
(

σ1 0
0 σ2

) (
1 ρ
ρ 1

) (
σ1 0
0 σ2

)
=

(
σ2
1 σ1 σ2 ρ

σ1 σ2 ρ σ2
2

)
. (12)

468 K. Tagawa

Fig. 4. ECDF in (6) Fig. 5. W ECDF in (7) Fig. 6. Estimation error

From the linearity of the normal distribution, the value of g(x, ξ) in (9) also
follows a normal distribution with mean μg(x) and variance σ2

g(x) as

g(x, ξ) ∼ N (μg(x), σ2
g(x)) = N (x μT , x Σ xT). (13)

From (13), the CDF of g(x, ξ) in (9) can be derived exactly as

F (x, γ) = Pr
(

g(x, ξ) − μg(x)
σg(x)

≤ γ − μg(x)
σg(x)

)
= Φ

(
γ − μg(x)

σg(x)

)
(14)

where Φ denotes the CDF of the standard normal distribution [1].
ECDF and W ECDF are used to approximate F (x̂, γ) in (14) for a solution

x̂ = (1, 1). Figure 4 shows an example of the step function of ECDF and its
smoothed one. ECDF is composed from N = 10 samples g(x̂, ξn), ξn ∈ Ξ.
Similarly, Fig. 5 shows W ECDF and its smoothed one composed from N = 10
samples g(x̂, θn), θn ∈ S. From Figs. 4 and 5, the samples g(x̂, θn) for W ECDF
are distributed wider than the samples g(x̂, ξn) for ECDF.

From (14), the critical fractile γ̂ = F−1(x̂, α) ≈ 3.17 is obtained exactly for
α = 0.9. Figure 6 compares between THS, HS, and RS in the estimation error
|F̃−1(x̂, α) − γ̂| averaged over 10 runs. For generating θn ∈ S from θn ∈ Θ,
fmin = 0.01 is used in (8) and about 40% of θn ∈ Θ are dumped. From Fig. 6,
the estimation error with THS is small even if the sample size N is small.

4 Critical Fractile Optimization Method

4.1 Differential Evolution with Sample Saving Technique

By using the smoothed W ECDF composed of N samples and a correction level
β ≥ α, the CCP in (4), namely the critical fractile formula, is written as

min
x∈X

γ(x) = F̃
−1(x, β) (15)

where the correction level is initialized as β := α and regulated in the procedure
of the proposed optimization method as noted below if it is necessary.

The original versions of many EAs including DE have been developed to solve
unconstrained optimization problems. Therefore, they can be applied directly to

Critical Fractile Optimization Method Using Truncated Halton Sequence 469

the CCP in (15). In this paper, one of the most successful ADE, namely JADE
without archive [20], is used. As well as DE, JADE has a set of solutions xi ∈ Pt,
i = 1, · · · , NP called population. An initial population P0 ⊆ X is generated
randomly. Then every solution xi ∈ P0 is evaluated N times and the objective
function γ(xi) in (15) is estimated from g(xi, θn), θn ∈ S, n = 1, · · · , N as
stated above. At each generation t, xi ∈ Pt, i = 1, · · · , NP is assigned to a
parent in turn. By using the strategy named “DE/current-to-pbest/1/bin” [20],
a child ui ∈ X is generated from the parent xi ∈ Pt and evaluated N times. If
γ(ui) ≤ γ(xi) holds, the parent xi ∈ Pt is replaced by the child ui ∈ X.

JADE applied to a real-world optimization problem spends most of time to
evaluate children. The proposed sample saving technique called “pretest” can
find and eliminate fruitless children with a few samples. When a newborn child
ui ∈ X is compared with its parent xi ∈ Pt, the pretest takes its samples
g(ui, θn) one by one. Let m ≤ N be the number of samples obtained so far.
From these samples, the empirical probability is calculated with weights as

P̂r(γ(ui) > γ(xi)) =
1
W

m∑
n=1

f(θn) 1l(g(ui, θn) > γ(xi)) (16)

where P̂r(A) denotes the predicted value of Pr(A) through observations.
If P̂r(γ(ui) > γ(xi)) > 2 (1 − β) holds on the way, ui ∈ X is regarded as

worse than xi ∈ Pt and discarded without evaluating γ(ui) = F̃
−1(ui, β).

JADE combined with Pretest is named JADEP. In the global optimization
process of JADEP, the pretest is used locally in the competition between parent
and child. Therefore, the pretest doesn’t degrade the performance of JADE.

4.2 Verification of Solution Using Monte Carlo Simulation

We verify the feasibility of the solution xb ∈ X obtained by JADEP for the
CCP in (15). Specifically, by using a huge number of random samples g(xb, ξn),
ξn ∈ Ξ, n = 1, · · · , N̂ , we calculate the empirical probability that the chance
constraint of the CCP in (2) is satisfied with the solution xb ∈ X as

P̂r(g(xb, ξ) ≤ γ(xb)) =
1
N̂

N̂∑
n=1

1l(g(xb, ξn) ≤ γ(xb)). (17)

If P̂r(g(xb, ξ) ≤ γ(xb)) ≥ α holds, we regard that xb ∈ X is a feasible
solution of the CCP in (2). Otherwise, we increase the value of the correction
level β just a little and apply JADEP to the CCP in (15) again.

The sample size N̂ in (17) is determined as follows. Let x� ∈ X be the
optimum solution of the CCP in (2) and yn = 1l(g(x�, ξn) ≤ γ). Therefore,
Pr(yn = 1) = α and Pr(yn = 0) = (1 − α) hold. Let ŷ be the sample mean of
yn, n = 1, · · · , N̂ . From the central limit theorem [1], the confidence interval of
the sample mean ŷ is obtained for a confidence level q ∈ (0, 1) as

470 K. Tagawa

(a) Sufficiency level α = 0.7 (b) Sufficiency level α = 0.9

Fig. 7. Landscapes of the critical fractile γ(x) of h(x, ξ) in (21)

Pr(|ŷ − α| ≤ ε) = Pr

⎛
⎝|ŷ − α| ≤ zq/2

√
α (1 − α)

N̂

⎞
⎠ ≥ 1 − q (18)

where ε is a margin of error and zq/2 is the z-score for q/2 ∈ (0, 0.5].
From desired ε and q in (18), the sample size N̂ is determined as

N̂ =
(zq/2

ε

)2

α (1 − α). (19)

In this paper, ε = 10−3 and q = 0.01 are chosen in (18). Therefore, if α = 0.9
is given by the CCP in (2), we have N̂ = 597, 128 from (19).

5 Numerical Experiment on Test Problem

5.1 Test Problem of CCP

The following function h(x), x ∈ [0, 1] has five unequal valleys [18].

h(x) =

{
1 − e(x) | sin(5π x)|0.5 if 0.4 < x ≤ 0.6

1 − e(x) sin(5π x)6 otherwise
(20)

where e(x) = exp(−2 log2((x − 0.1)/0.8)2).
A random variable ξ ∈ � is added to the function h(x) in (20) as

h(x, ξ) = h(x + ξ), ξ ∼ N (0, σ2). (21)

Figure 7 illustrates the landscapes of the critical fractiles γ(x) = F−1(x, α)
evaluated from the CDF of h(x, ξ) in (21). From Fig. 7, the value of γ(x) depends
not only on the sufficiency level α but also on the variance σ2 in (21).

As an instance of the CCP in (2), g(x, ξ) is defined as

g(x, ξ) =
√

h(x1, ξ1)h(x2, ξ2) (22)

where h(xj , ξj) is given by (21). ξ1 and ξ2 are mutually independent.

Critical Fractile Optimization Method Using Truncated Halton Sequence 471

Table 1. Comparison of JADE and JADEP on the CCP defined by (22)

α σ2 JADE JADEP Rate

γ(xb) ̂Pr(A) β γ(xb) ̂Pr(A) β

0.305 0.718 0.805 0.305 0.718 0.809 0.139

0.7 0.022 (0.003) (0.002) (0.013) (0.003) (0.001) (0.003) (0.034)

0.083 0.719 0.810 0.082 0.716 0.807 0.192

0.7 0.012 (0.000) (0.002) (0.000) (0.001) (0.005) (0.004) (0.029)

0.340 0.908 0.950 0.340 0.908 0.949 0.385

0.9 0.022 (0.001) (0.002) (0.000) (0.001) (0.003) (0.002) (0.048)

0.213 0.909 0.949 0.196 0.909 0.943 0.407

0.9 0.012 (0.035) (0.002) (0.002) (0.008) (0.006) (0.004) (0.049)

5.2 Comparison Between JADEP and JADE

JADEP is compared with JADE on the CCP defined by g(x, ξ) in (22). They
are coded by MATLAB. The population size NP = 20 is used. The maximum
number of generations is fixed to Gmax = 100. The sample size N = 30 is used
to compose W ECDF. JADEP and JADE are run 20 times in each case.

Table 1 shows the result of experiment averaged over 20 runs. In Table 1,
γ(xb) is the critical fractile attained with the best solution xb. The feasibility
of xb is ensured by the empirical probability P̂r(A) as stated above. The rate
denotes the percentage of children eliminated by the pretest of JADEP.

From the rate in Table 1, the pruning effect of the pretest depends on the
case, but its works in all cases. From the result of Wilcoxon test about the value
of γ(xb), it is confirmed that there is no difference between JADE and JADEP
in all cases. Consequently, the proposed pretest can reduce the number of the
children examined N times without spoiling the quality of obtained solution.

6 Application to SAW Filter Design

6.1 Structure and Mechanism of SAW Filer

A SAW filter consists of some electrodes and reflectors, namely Inter Digital
Transducers (IDTs) and Shorted Metal Strip Arrays (SMSAs), fabricated on a
piezoelectric substrate. Figure 8 shows the symmetric structure of a resonator
type SAW filter. The input-port of SAW filter is connected to two transmitter
IDTs (IDT-Ts). The output-port is connected to a receiver IDT (IDT-R).

IDT-T converts electric input signals into acoustic signals. The acoustic signal
of a specific frequency resonates between two SMSAs. The resonant frequency
depends on the geometrical structure of SAW filter. Then IDT-R reconverts the
enhanced acoustic signal to electric output signal. As a result, the resonator type
SAW filter in Fig. 8 works as an electro-mechanical band-pass filter.

472 K. Tagawa

Fig. 8. Symmetric structure of resonator type SAW filter

Table 2. Design parameters of SAW filter

xj ej [xj , xj] Description

x1 — [0.25, 0.35] Thickness of electrode

x2 — [0.45, 0.55] Metallization ratio of IDT: dm/dg

x3 — [0.45, 0.55] Metallization ratio of SMSA: sm/sg
x4 — [1.0, 1.1] Pitch ratio of SMSA: dg/sg
x5 — [1.0, 1.1] Gap between IDT R and IDT T

x6 — [250.0, 350.0] Overlap between electrodes

x7 5.0 [50, 200] Number of strips of SMSA

x8 1.0 [10.5, 30.5] Number of finger-pairs of IDT R

x9 0.5 [10, 30] Number of finger-pairs of IDT T

Table 3. JADEP

Parameter Value

NP 100

Gmax 200

N 100

6.2 Design of SAW Filer Under Uncertainty

In order to describe the structure of SAW filter in Fig. 8, design parameters, or
decision variables x = (x1, · · · , x9), are chosen as shown in Table 2. Each design
parameter takes either a continuous value xj ∈ � or a discrete value at ej ∈ �
interval. In the procedure of JADEP, a decision variable xj ∈ � is rounded to the
nearest discrete value if it has to take a discrete value. Figure 8 also illustrates
graphically the design parameters of SAW filter listed in Table 2.

We consider processing errors ξ = (ξ1, ξ2, ξ3) ∈ �3 for the thickness of
electrode x1 and the metallization ratios of IDT and SMSA xj , j = 2, 3 as

x1 (1 + ξ1), ξ1 ∼ EXP(λ) = EXP(100) (23)

where EXP(λ) denotes the exponential distribution with mean 1/λ and

xj + ξj , j = 2, 3 (24)

where (ξ2, ξ3) ∼ N2(μ2, μ3, σ2
2 , σ2

3 , ρ) = N2(0, 0, 0.012, 0.012, 0.5).
Each of IDT and SMSA can be modeled by an elemental circuit. Therefore,

the equivalent circuit model of SAW filter is built up from the elemental circuits
of IDT and SMSA [6,17], and then transformed to a network model as[

b1
b2

]
=

[
s11 s12
s21 s22

] [
a1

a2

]
(25)

Critical Fractile Optimization Method Using Truncated Halton Sequence 473

Fig. 9. Reference points R(ωk) in (27) Fig. 10. Convergence plots

where ap, p = 1, 2 denotes the input signal at port-p, while bp denotes the output
signal at port-p. Scattering parameter spq gives the transition characteristic from
port-q to port-p, while spp gives the reflection characteristic at port-p.

From (25), the attenuation of SAW filter is defined as

L(x, ξ, ω) = 20 log10(|s21(x, ξ, ω)|) (26)

where s21 depends on x ∈ X, ξ ∈ Ξ, and frequency ω ∈ �.
For the attenuation in (26), some reference points R(ωk) and weights ck are

specified at frequencies ωk, k = 1, · · · , M . Thereby, the design of SAW filter is
formulated as the CCP in (2) by using the following function:

g(x, ξ) =
M∑

k=1

ck (L(x, ξ, ωk) − R(ωk))2 (27)

where M = 5 reference points are specified as shown in Fig. 9. Three points are
given in the pass-bound and two points are given in the stop-bound.

6.3 Result of Experiment and Discussion

JADEP is compared with JADE on the above design problem of SAW filter.
Table 3 shows the values of the parameters of JADEP. The same parameter
values are used for JADE. Thereby, JADE and JADEP are run on a personal
desktop computer (CPU: Intel Core i7@3.40GHz, OS: Windows 7).

Figure 10 shows a typical example of the convergence plots of JADEP and
JADE which start from the same initial population. Figure 11 compares JADEP
with JADE in the critical fractiles γ(xb) of the obtained solutions xb ∈ X for
some sufficiency levels α. From Fig. 11, we can confirm the trade-off between the
values of γ(xb) and α. From Figs. 10 and 11, there is no significant difference
between JADEP and JADE in γ(xb), namely the quality of solution.

Since each sample g(ui, θn) has to be evaluated through the simulation of
SAW filter, the efficiency of JADEP is much higher than JADE. In order to
obtain a solution of the CCP in (15), JADEP spent 642 [sec] on average except

474 K. Tagawa

Fig. 11. Trade-off between γ and α Fig. 12. Prediction interval in (28)

the verification of solution using the Monte Carlo simulation, while JADE spent
1, 464 [sec]. The pretest of JADEP discarded more than 70% of the children.

The prediction interval of the attenuation in (26) is defined as

Pr(L(x, ω) ≤ L(x, ξ, ω) ≤ L(x, ω)) = (1 − q). (28)

From the inverse CDF of L(x, ξ, ω), the upper and lower bounds are(
L(x, ω) = F−1(x, ω, (1 − q/2))
L(x, ω) = F−1(x, ω, q/2).

(29)

By approximating the CDF in (29) with W ECDF, the prediction interval in
(28) can be estimated for a solution xb ∈ X found by JADEP. Figure 12 shows
an example the prediction interval of L(xb, ξ, ω) estimated for q = 0.1. The
reference points in Fig. 9 exist within the prediction interval in Fig. 12.

By using Figs. 11 and 12, which are provided by the proposed method, we
can guarantee the performance of SAW filter under uncertainties.

7 Conclusion

For solving CCP efficiently, two new techniques were contrived to improve the
optimization method based on JADEP and W ECDF. Firstly, THS was used to
compose W ECDF from fewer samples. Secondly, the sample saving technique
called Pretest was introduced into JADE. Finally, the contribution of this paper
was demonstrated on the design of SAW filter formulated as CCP.

In this paper, an appropriate value of fmin in (8) was decided empirically
considering the range of PDF and the number of points θn ∈ S. Future work
includes how to decide the value of fmin theoretically for generating THS.

Acknowledgment. This work was supported by JSPS (17K06508).

Critical Fractile Optimization Method Using Truncated Halton Sequence 475

References

1. Ash, R.B.: Basic Probability Theory. Dover, Downers Grove (2008)
2. Bauer, T., Eggs, C., Wagner, K., Hagn, P.: A bright outlook for acoustic filtering.

IEEE Microwave Mag. 16(7), 73–81 (2015)
3. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization. Princeton Uni-

versity Press, Princeton (2009)
4. Geoffrio, A.M.: Stochastic programming with aspiration or fractile criteria. Manag.

Sci. 13(9), 672–679 (1967)
5. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in

evaluating multi-dimensional integrals. Numer. Math. 2(1), 84–90 (1960)
6. Hashimoto, K.: Surface Acoustic Wave Devices in Telecommunications - Modeling

and Simulation. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-662-
04223-6

7. Jiekang, W., Jianquan, Z., Guotong, C., Hongliang, Z.: A hybrid method for opti-
mal scheduling of short-term electric power generation of cascaded hydroelectric
plants based on particle swarm optimization and chance-constrained programming.
IEEE Trans. Power Syst. 23(4), 1570–1579 (2008)

8. Liu, B., Zhang, Q., Fernández, F.V., Gielen, G.G.E.: An efficient evolutionary
algorithm for chance-constrained bi-objective stochastic optimization. IEEE Trans.
Evol. Comput. 17(6), 786–796 (2013)

9. Lubin, M., Dvorkin, Y., Backhaus, S.: A robust approach to chance constrained
optimal power flow with renewable generation. IEEE Trans. Power Syst. 31(5),
3840–3849 (2016)

10. Martinez, A.R., Martinez, W.L.: Computational Statistics Handbook with MAT-
LAB R©, 2nd edn. Chapman & Hall/CRC, Boca Raton (2008)

11. Parkinson, A., Sorensen, C., Pourhassan, N.: A general approach for robust optimal
design. J. Mech. Des. 115(1), 74–80 (1993)

12. Poojari, C.A., Varghese, B.: Genetic algorithm based technique for solving chance
constrained problems. Eur. J. Oper. Res. 185, 1128–1154 (2008)

13. Prékopa, A.: Stochastic Programming. Kluwer Academic Publishers, Alphen aan
den Rijn (1995)

14. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution - A Practical
Approach to Global Optimization. Springer, Heidelberg (2005). https://doi.org/
10.1007/3-540-31306-0

15. Tagawa, K.: A statistical sensitivity analysis method using weighted empirical dis-
tribution function. In: Proceedings of the 4th IIAE International Conference on
Intelligent Systems and Image Processing, pp. 79–84 (2016)

16. Tagawa, K., Miyanaga, S.: Weighted empirical distribution based approach to
chance constrained optimization problems using differential evolution. In: Proceed-
ings of IEEE CEC2017, pp. 97–104 (2017)

17. Tagawa, K., Sasaki, Y., Nakamura, H.: Optimum design of balanced SAW filters
using multi-objective differential evolution. In: Dep, K., et al. (eds.) SEAL 2010.
LNCS, vol. 6457, pp. 466–475. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17298-4 50

18. Tsutsui, S.: A comparative study on the effects of adding perturbations to pheno-
typic parameters in genetic algorithms with a robust solution searching scheme.
In: Proceedings of IEEE SMC, pp. 12–15 (1999)

19. Wang, X.: Randomized Halton sequences. Math. Comput. Model. 32, 887–899
(2000)

20. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional
external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

https://doi.org/10.1007/978-3-662-04223-6
https://doi.org/10.1007/978-3-662-04223-6
https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1007/978-3-642-17298-4_50
https://doi.org/10.1007/978-3-642-17298-4_50

Directed Locomotion for Modular Robots
with Evolvable Morphologies

Gongjin Lan(B), Milan Jelisavcic, Diederik M. Roijers, Evert Haasdijk,
and A. E. Eiben

Department of Computer Science, VU University Amsterdam,
Amsterdam, The Netherlands

{g.lan,m.j.jelisavcic,d.m.roijers,a.e.eiben}@vu.nl

Abstract. Morphologically evolving robot systems need to include a
learning period right after ‘birth’ to acquire a controller that fits the
newly created body. In this paper, we investigate learning one skill in
particular: walking in a given direction. To this end, we apply the Hyper-
NEAT algorithm guided by a fitness function that balances the distance
travelled in a direction and the deviation between the desired and the
actually travelled directions. We validate this method on a variety of
modular robots with different shapes and sizes and observe that the best
controllers produce trajectories that accurately follow the correct direc-
tion and reach a considerable distance in the given test interval.

Keywords: Evolutionary robotics · Evolvable morphologies
Modular robots · Gait learning · Directed locomotion

1 Introduction

While it can already be hard to design robots for known environments, it is
considerably harder for (partially) unknown environments, like the deep sea or
Venus. In unknown environments, robots should be able to respond to the cir-
cumstances they encounter. The problem with this however, is that there is no
way to predict what the robots will encounter. Therefore, in such environments,
it would be highly useful to have robots that evolve over time, changing their
controllers and their morphologies to better adapt to the environment.

The field that is concerned with such evolving robots is Evolutionary Robotics
[6,10]. To date, the research community has mainly been focussing on evolving
only the controllers in fixed robot bodies. The evolution of morphologies has
received much less attention even though it has been observed that adequate
robot behaviour depends on both the body and the brain [3,4,30]. To unlock
the full potential of the evolutionary approach one should apply it to both bodies
and brains. At present, we can only do this in simulation, as there are still key
obstacles to overcome for evolving robots in real hardware [12,13,21].

One of the challenges inherent to evolving robot bodies – be it simulated
or real – is rooted in the fact that ‘robot children’ are random combinations
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 476–487, 2018.
https://doi.org/10.1007/978-3-319-99253-2_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_38&domain=pdf

Directed Locomotion for Modular Robots with Evolvable Morphologies 477

of the bodies and brains of their parents. In general it cannot be assumed that
simply recombining the parents’ controllers results in a controller that fits the
recombined body. Hence, a ‘robot child’ must learn how to control its body, not
unlike a little calf that spends the first hour of its life learning to walk. It is
vital that the learning method is general enough to work for a large variety of
morphologies and fast enough to work within practical time intervals.

A generic architecture of robot systems, where both morphologies and con-
trollers undergo evolution has been introduced recently [11,14]. The underlying
model, called the Triangle of Life (ToL), describes a life cycle that runs from
conception (being conceived) to conception (conceiving offspring) through three
principal stages: Birth, Infancy, and Mature Life. Within this scheme, the learn-
to-control-your-own-body problem can be positioned in the Infancy phase, where
a newborn robot acquires the basic sensory-motor skills. Formerly, we have inves-
tigated the most elementary case: gait learning [21–23,35]. However, although
gait learning is a popular problem in evolutionary robotics, in practice we are
not really interested in a robot that just walks without purpose. For most cases,
a robot has to move in a given direction, e.g., to move towards a destination.
Here we focus on the task of directed locomotion, where the robot must follow
a given direction, e.g. “go left”. Our specific research goals are the following:

1. Develop a dedicated evaluation function that balances the distance travelled
in a direction and the deviation between the desired and the actually travelled
directions.

2. Provide a method to learn a controller for directed locomotion in different
modular robots.

3. Evaluate the method on a test suite consisting of robots with different shapes
and sizes.

2 Related Work

The design of locomotion for modular robots is a difficult task. Several
approaches based on various types of controllers and algorithms for locomo-
tion of robots have proposed in [1,32]. An early approach is based on gait
control tables that in essence are a simple cyclic finite state machines [5]. A
second major approach is based on neural networks, for instance, HyperNEAT.
In previous work we have implemented evolutionary controllers for locomotion
in modular robots [16,35] using HyperNEAT. Other studies also have shown
that HyperNEAT can evolve the good controllers for the efficient gaits of a
robot [8,36]. Other successful approaches that have been extensively investi-
gated for robot locomotion are based on Central Pattern Generators (CPGs) [19].
CPGs are neural networks that can produce rhythmic patterned outputs without
rhythmic sensory or central input [17]. The use CPG-based controllers reduces
the dimensionality of the locomotion control problem while remaining flexible
enough to continuously adjust velocity, direction, and type of gait depending on
the environmental context [20]. This technique has been shown to produce well-
performing and stable gaits for modular robots [24,25,27]. Last, an alternative

478 G. Lan et al.

approach based on machine learning for adaptive locomotion was proposed by
Cully et al., to account for changes in body properties [9].

Although there are extensive existing studies on the locomotion of robots,
most of them focus on the controllers in fixed robot bodies for gait learning, and
only the research described in [24,32] tested on multiple shapes. Our own previ-
ous work [21–23,35] focussed on gait learning for modular robots with evolvable
morphologies. For directed locomotion, most related studies with robots concern
the control of vertebrates with fixed shapes, such as a bipeds. The different neural
control systems involved in directed vertebrates locomotion are reviewed in [15].
A CPG approach based on phase oscillators towards directed biped locomotion
is presented in [28]. A special snake-like robot with screw-drive units is presented
in [7] for directed locomotion using a reinforcement learning approach. There are
few studies on the directed locomotion of the modular robots, and they focus on
fixed morphologies or the special structures.

3 Experimental Set-Up

In this study, the controllers for all modular robots are learned in an infinite
plane environment [18], using our Gazebo-based1 custom simulator Revolve.

3.1 Robots

Our robot design is based on RoboGen [2]. We use a subset of those 3D-printable
components: fixed bricks, a core component, and active hinges. The fixed bricks
are cubic components with slots that can attach other components. The core
component holds a controller board. It also has slots on its four lateral faces to
attach other components. The active hinge is a joint moved by a servo motor.
It can attach to other components by inserting its lateral faces into the slots of
these other components. Each robot’s genotype describes its layout and consists
of a tree structure with the root node representing a core module from which
further components branch out. These models are used in simulation, but also
could be used for 3D printing and the construction of the real robots.

As a test suite we chose nine robots in three different shapes and sizes, to
examine the generality and scalability of our method, see Fig. 1. We refer to these
three shapes as spider, gecko, and baby. The ‘baby’ robots were created through
recombination of the ‘spider’s’ and ‘gecko’s’ [22] morphological genotypes.

3.2 Controllers

Controllers based on Central Pattern Generators (CPGs) have been proven to
perform well for modular robots. In this work, we use CPGs whose main compo-
nents are differential oscillators. Each oscillator is defined by two neurons that

1 http://gazebosim.org/.

http://gazebosim.org/

Directed Locomotion for Modular Robots with Evolvable Morphologies 479

Fig. 1. Images of the used robots. Note that the top leg of gecko17 and babyC are
different; babyC has one more active hinge where gecko17 has a brick.

Fig. 2. Controller concept used in the robots. In (b) the rectangular shapes indicate
passive body parts, the circles show active hinges, each with their own differential
oscillator, and the arrows indicate the connections between the oscillators for the body
shown in the top-left panel of Fig. 1.

are recursively connected as shown in Fig. 2a. These generate oscillatory pat-
terns by calculating their activation levels x and y according to the following
differential equation:

ẋ = wyxy + biasx

ẏ = wxyx + biasy

480 G. Lan et al.

with wxy and wyx denoting the weights of the connections between the neurons;
biasx and biasy are parameters of the neurons. If wyx and wxy have different
signs the activation of the neurons x and y is periodic and bounded.

We used Compositional Pattern-Producing Networks (CPPNs) to generate
the weights of the CPG controller. CPPNs are a variation of artificial neural
networks (ANNs) that have an architecture whose evolution is guided by Hyper-
NEAT algorithm [33], so that the substrate network’s performance is optimised
[34]. The CPG nodes are positioned in a three-dimensional space. Such modular
differentiation allows specialisation of the active hinge’s movements depending
on its relative position in the robot. The hinge coordinates are obtained from a
top-down view of the robot body. Thus, two coordinates of a node in the CPG
controller correspond to the relative position of the active hinge it is associated
with. The third coordinate depends on the role of the node in the CPG network:
output nodes have a value of 0 and differential nodes have values of 1 for x
and −1 for y nodes. Therefore the CPPNs have six inputs denoting the coordi-
nates of a source and a target node when querying connection weights or just
the position of one node when obtaining node parameters with the other three
inputs being initialised as zero. The CPPNs have three outputs: the weight of
the connection from source to target as well as the bias and gain values when
calculating parameters for a node.

The CPPNs return the connection weights for the CPG network that in turn
constitutes the controller that induces the behaviour for directed locomotion.
The behaviour is evaluated by a fitness function (Sect. 4) and the fitness value
is fed to HyperNEAT which in turn generates new CPPNs. The CPPNs evolve
until a termination condition is triggered; in our experiments this is reaching a
maximum number of generations.

3.3 Experimental Parameters

An initial population of 20 CPPNs are randomly generated in the first gener-
ation. Each CPPN generates the weights of a CPG network whose topology is
based on a robot’s morphology. The fitness of the CPG is evaluated in Revolve
for a given evaluation time. We set this evaluation time to be 60 s to balance com-
puting time and accurately evaluating a complex task as directed locomotion.
We found this 60 s to be a suitable value empirically. Each EA run is terminated
after 300 generations, that is, 300 ∗ 20 = 6000 fitness evaluations – this amounts
to 100 h of (simulated) time.

The robots used in the experiments include three small robots (spider9,
gecko7, babyA), three medium size robots (spider13, gecko12, babyB) and three
large robots (spider17, gecko17, babyC). For each robot we tested the EA on
five target directions (−40◦, −20◦, 0◦, 20◦, and 40◦ relative to the robot) to
simulate the robot’s limited field of view in the real-world. This resulted in 45
test cases. For each test case the EA runs were repeated five times. All together,
we performed 225 HyperNEAT runs per 100 h of simulated time each (Table 1).

Directed Locomotion for Modular Robots with Evolvable Morphologies 481

Table 1. Experimental parameters

Parameter Value Description

Population size 20 Number of individuals per generation

Generations 300 Termination condition for each run

Tournament size 4 Number of individuals used in tournament selection

Mutation 0.8 Probability of mutation for individuals

Evaluation time 60 Duration of the test period per fitness evaluation in seconds

4 Fitness Function

In this section, we propose a fitness function for directed locomotion and illus-
trate how the performance of a controller is evaluated. We provide a step-by-step
derivation that leads to our final fitness function shown in Eq. 5.

β1β0
T0

T1

x

y

p(xp, yp)

l1l0

(x0, y0)

(x1, y1)
Tra.2

Tra.1

Fig. 3. Illustration of the fitness calculation for each evaluation. T0 is the starting
position of the robot, with coordinate (x0, y0). T1 is the end position of the robot, with
coordinate (x1, y1). l0 is a given target direction. The point p is the projected point on
the target direction l0. The red lines Tra.1 and Tra.2 show two different trajectories
of the robot. (Color figure online)

The scenario for an evaluation in our experiments is illustrated in Fig. 3. We
can collect the following measurements from the Revolve simulator:

1. c0 = (x0, y0) is the coordinate of the core component of the robot at the start
of the simulation, i.e., time T0.

2. c1 = (x1, y1) is the coordinate of the core component of the robot at the end
of the simulation, T1.

3. The orientation of the robot in T0 and T1.
4. The length of the trajectory that the robot travelled from c0 to c1

The target direction, β0, is an angle with respect to the initial orientation
of the robot at T0. In Fig. 3 we drew lines in the target direction, l0, and the
line through c0 and c1, l1. The angle between l1 and x−axis, β1 = atan2((y1 −
y0), (x1 − x0)), is the actual direction of the robot displacement between T0

and T1.

482 G. Lan et al.

The absolute intersection angle between l0 and l1, δ, is the deviation between
the actual direction of the robot locomotion and the target direction. It can be
calculated as:

δ =

{
2 ∗ π − |β1 − β0| (|β1 − β0| > π)
|β1 − β0| (|β1 − β0| ≤ π)

(1)

Note that we pick the smallest angle between the two lines. To perform well
on a directed locomotion task, δ should be as small as possible. However, just
minimizing δ is not enough to for successful directed locomotion.

In addition to moving in the right direction, i.e., minimizing δ, the robot
should move as far as possible in the target direction. Therefore, we calculate
distance travelled by the robot in the target direction by projecting the final
position at T1, (x1, y1), onto l0; we denote this point as p = (xp, yp). The distance
travelled is then

distProjection = sign |p − c0|, (2)

where |p − c0| is the Euclidean distance between p and c0, and sign = 1 if
δ < π

2 (noting that δ is an absolute value) and sign = −1 otherwise. The
distProjection is thus negative when the robot moves in the opposite direction.

To further penalize deviating from the target direction we calculate the dis-
tance between (x1, y1) and (xp, yp):

penalty = fp ∗ |c1 − p|, (3)

where |c1 − p| is the Euclidean distance between c1 and its projection on the
target direction line l0, p. fp is a constant scalar penalty factor, determining the
relative importance of the deviation. In our experiments we use fp = 0.01.

A naive version of the fitness would be:

fitnessPro =
distProjection

δ + 1
− penalty, (4)

where (δ + 1) aims to guarantee that the denominator does not equal zero.
While fitnessPro is proportional to distProjection, and inversely propor-

tional to δ and penalty, this does not yet entirely express all desirable features
of a good trajectory for the robot. Specifically, we not only care about the final
position of the robot, but also about how the robot moves to the end point. To
illustrate this please compare the trajectories marked Tra.1 and Tra.2 in Fig. 3.
Although the robot has the same starting and end position for both trajectories,
Tra.1 is a more efficient way of moving between the two points. Therefore, we
would want the controller of Tra.1 to have a higher fitness than that of Tra.2. In
general, we aim to evolve a controller to move from start to finish as efficiently as
possible, i.e., in a straight line. Therefore, we make the fitness function inversely
proportional to the length of the trajectory (noted as lengthTra) that the robot
performs. We thus propose the following fitness function to measure the perfor-
mance of controllers for directed locomotion:

fitness =
|distProjection|
lengthTra + ε

∗ (
distProjection

δ + 1
− penalty) (5)

Directed Locomotion for Modular Robots with Evolvable Morphologies 483

0.4

0.8

1.2

1.6

0 100 200 300
Generations

D
el

ta
 (r

ad
ia

n)

spider9

0.4

0.8

1.2

1.6

0 100 200 300
Generations

D
el

ta
 (r

ad
ia

n)

gecko7

0.4

0.8

1.2

1.6

0 100 200 300
Generations

D
el

ta
 (r

ad
ia

n)

babyA

0.4

0.8

1.2

1.6

0 100 200 300
Generations

D
el

ta
 (r

ad
ia

n)

spider13

0.4

0.8

1.2

1.6

0 100 200 300
Generations

D
el

ta
 (r

ad
ia

n)

gecko12

0.4

0.8

1.2

1.6

0 100 200 300
Generations

D
el

ta
 (r

ad
ia

n)

babyB

0.4

0.8

1.2

1.6

0 100 200 300
Generations

D
el

ta
 (r

ad
ia

n)

spider17

0.4

0.8

1.2

1.6

0 100 200 300
Generations

D
el

ta
 (r

ad
ia

n)

gecko17

0.4

0.8

1.2

1.6

0 100 200 300
Generations

D
el

ta
 (r

ad
ia

n)

babyC

Fig. 4. Deviation (δ) from the target direction during the learning process (Color figure
online).

where ε is an infinitesimal constant. The fitness function is proportional to
distProjection, but inversely proportional to lengthTra and δ. That is, the fit-
ness function rewards higher speeds in the target direction (as measured through
distProjection), and punishes the length of trajectories, lengthTra, and devia-
tions from the target directions.

5 Experimental Results

Inspecting the usual fitness vs. time curves (omitted here because of space lim-
itations) we observe that the controllers of small size robots have the highest
average fitness. The controllers of medium and large size robots reach signifi-
cantly lower values. This is in line with our previous work [22] suggesting that
the parameter settings for the larger robots are more difficult to learn, irrespec-
tive of the algorithm, such as HyperNEAT or RL PoWER.

484 G. Lan et al.

An important metric for directed locomotion is the deviation from the target
direction, δ. The progression of the learning process is shown in Fig. 4 for each of
the nine robots. Each sub-figure shows the average δ for the 20 controllers in a
population over five repetitions. The five target directions are represented by the
colours. These curves show that in all cases δ gradually decreases. Interestingly,
the δ of small size robots is higher than for the larger robots. This means that
small size robots are easier to evolve for speed (as they have higher fitness), but
do worse in terms of deviation. Similar results were shown in our previous work
[22]. We hypothesize that this is because larger robots have more joints, they
have more flexibility, and can control their direction more precisely.

To see the outcome of the learning process we select the best controllers from
the 30000 controllers (6000 evaluations per run, 5 repetitions) for each robot in
each target direction and inspect the trajectories these controllers induce. The
best three trajectories for each robot and direction are shown in Fig. 5.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−2
−1

0
1

2

spider9

x/meters

y/
m

et
er

s

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−2
−1

0
1

2

spider13

x/meters

y/
m

et
er

s

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−2
−1

0
1

2

spider17

x/meters

y/
m

et
er

s

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−2
−1

0
1

2

gecko7

x/meters

y/
m

et
er

s

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−2
−1

0
1

2

gecko12

x/meters

y/
m

et
er

s

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−2
−1

0
1

2

gecko17

x/meters

y/
m

et
er

s

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−2
−1

0
1

2

babyA

x/meters

y/
m

et
er

s

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−2
−1

0
1

2

babyB

x/meters

y/
m

et
er

s

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−2
−1

0
1

2

babyC

x/meters

y/
m

et
er

s

40° 20° 0° −20° −40°

Fig. 5. The best three trajectories for each robot and each direction. The black arrows
show the five target directions.

Directed Locomotion for Modular Robots with Evolvable Morphologies 485

In general, the trajectories follow the target directions well. For example,
the trajectories of spider9 are almost exactly on the target directions and they
display faster speed than other robots. Because maximizing the distance in the
target directions, distProjection, is rewarded in the fitness function, as well as
minimizing the deviation from the target directions, evolution can lead to differ-
ent trade-offs between these two preferences. For example, one of the trajectories
(purple point-line) for −40◦ of spider13 deviates quite far from the target direc-
tion but travels a long distance, while the other trajectories for this robot and
direction get less far but stick more closely to the target direction. In addition,
although the trajectories (black point-line) for 0◦ of babyA have high values for
lengthPath, and thus receive a punishment in the fitness function for the devi-
ation from the straight line in the target direction of 0◦, they have top fitness
because of the high speed (distProjection) and a good final δ. The small size
robots have the better trajectories, especially in terms of speed. The medium size
robots have the second-best trajectories. The large size robots also have good
trajectories but not as good as the small and medium size robots, especially in
terms of speed. In summary, we conclude that using our method, successful con-
trollers can be evolved for directed locomotion for modular robots with evolvable
morphologies. Furthermore, the small-sized robots have the better performance
for directed locomotion, especially in terms of speed in the target direction.

6 Concluding Remarks

We addressed the problem of learning sensory-motor skills in morphologically
evolvable robot systems where the body of newborn robots can be a random
combination of the bodies of the parents. In particular, we presented a method
to learn good robot controllers for directed locomotion based on HyperNEAT and
a new fitness function that balances the distance travelled in a desired direction
and the angle between the desired direction and the direction actually travelled.
We tested this method on nine modular robots for five different target direc-
tions and found that the robots acquired good controllers in all cases. From the
resulting trajectories it is apparent that our fitness function adequately balances
the speed and direction of the robots.

These experiments were, while well-performing, not too efficient, as the learn-
ing speed of HyperNEAT is not very high. Currently we are comparing Hyper-
NEAT to other methods for training the controllers, such as reinforcement learn-
ing [26] and Bayesian optimisation [29]. Furthermore, we aim to investigate which
other trade-offs between deviation from the target direction and the speed exist
by using a vector-valued, i.e., multi-objective, rather than a scalar fitness func-
tion [31]. Finally, we aim to validate our results by replicating the experiments
in real hardware and consider more scenarios and other skills.

486 G. Lan et al.

References

1. Aoi, S., Manoonpong, P., Ambe, Y., Matsuno, F., Wörgötter, F.: Adaptive con-
trol strategies for interlimb coordination in legged robots: a review. Front. Neuro-
robotics 11, 39 (2017)

2. Auerbach, J., et al.: RoboGen: robot generation through artificial evolution. In:
Sayama, H., Rieffel, J., Risi, S., Doursat, R., Lipson, H. (eds.) Artificial Life 14:
Proceedings of the Fourteenth International Conference on the Synthesis and Sim-
ulation of Living Systems, pp. 136–137. The MIT Press, New York, July 2014

3. Auerbach, J.E., Bongard, J.C.: On the relationship between environmental and
morphological complexity in evolved robots. In: Proceedings of the 14th Annual
Conference on Genetic and Evolutionary Computation, pp. 521–528. GECCO 2012.
ACM, New York (2012)

4. Beer, R.D.: The Dynamics of Brain–Body–Environment Systems: A Status Report
(2008)

5. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-
modeling. Science 314(5802), 1118–1121 (2006)

6. Bongard, J.C.: Evolutionary robotics. Commun. ACM 56(8), 74–83 (2013)
7. Chatterjee, S., et al.: Reinforcement learning approach to generate goal-directed

locomotion of a snake-like robot with screw-drive units. In: 2014 23rd Interna-
tional Conference on Robotics in Alpe-Adria-Danube Region (RAAD), pp. 1–7,
September 2014

8. Clune, J., Beckmann, B.E., Ofria, C., Pennock, R.T.: Evolving coordinated
quadruped gaits with the hyperneat generative encoding. In: 2009 IEEE Congress
on Evolutionary Computation, pp. 2764–2771, May 2009

9. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like ani-
mals. Nature 521, 503 (2015)

10. Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.: Evolutionary robotics: what,
why, and where to. Front. Robot. AI 2(4) (2015)

11. Eiben, A., et al.: The triangle of life: evolving robots in real-time and real-space. In:
Liò, P., Miglino, O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) Advances In Artificial
Life, ECAL 2013, pp. 1056–1063. MIT Press (2013)

12. Eiben, A., Kernbach, S., Haasdijk, E.: Embodied artificial evolution. Evol. Intell.
5(4), 261–272 (2012)

13. Eiben, A., Smith, J.: From evolutionary computation to the evolution of things.
Nature 521(7553), 476–482 (2015)

14. Eiben, A.E.: In vivo veritas: towards the evolution of things. In: Bartz-Beielstein,
T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 24–39.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2 3

15. Grillner, S., Wallén, P., Saitoh, K., Kozlov, A., Robertson, B.: Neural bases of
goal-directed locomotion in vertebrates-an overview. Brain Res. Rev. 57(1), 2–12
(2008)

16. Haasdijk, E., Rusu, A.A., Eiben, A.E.: HyperNEAT for locomotion control in mod-
ular robots. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010. LNCS,
vol. 6274, pp. 169–180. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15323-5 15

17. Hooper, S.L.: Central pattern generators. In: Encyclopedia of Life Sciences, pp.
1–12, April 2001. https://doi.org/10.1038/npg.els.0000032

https://doi.org/10.1007/978-3-319-10762-2_3
https://doi.org/10.1007/978-3-642-15323-5_15
https://doi.org/10.1007/978-3-642-15323-5_15
https://doi.org/10.1038/npg.els.0000032

Directed Locomotion for Modular Robots with Evolvable Morphologies 487

18. Hupkes, E., Jelisavcic, M., Eiben, A.E.: Revolve: a versatile simulator for online
robot evolution. In: Sim, K., Kaufmann, P. (eds.) EvoApplications 2018. LNCS,
vol. 10784, pp. 687–702. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-77538-8 46

19. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and
robots: a review. Neural Netw. 21(4), 642–653 (2008). Robotics and Neuroscience

20. Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.M.: From swimming to walking
with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–
1420 (2007)

21. Jelisavcic, M., et al.: Real-world evolution of robot morphologies: a proof of con-
cept. Artif. Life 23(2), 206–235 (2017)

22. Jelisavcic, M., Carlo, M.D., Haasdijk, E., Eiben, A.E.: Improving RL power for
on-line evolution of gaits in modular robots. In: 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), pp. 1–8, December 2016

23. Jelisavcic, M., Haasdijk, E., Eiben, A.: Acquiring moving skills in robots with
evolvable morphologies: recent results and outlook. In: Proceedings of the Genetic
and Evolutionary Computation Conference Companion, GECCO 2017 (2017)

24. Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.:
Automatic locomotion design and experiments for a modular robotic system.
IEEE/ASME Trans. Mech. 10(3), 314–325 (2005)

25. Kamimura, A., Kurokawa, H., Yoshida, E., Tomita, K., Kokaji, S., Murata, S.: Dis-
tributed adaptive locomotion by a modular robotic system, M-TRAN II. In: 2004
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(IEEE Cat. No. 04CH37566), vol. 3, pp. 2370–2377, September 2004

26. Kohl, N., Stone, P.: Policy gradient reinforcement learning for fast quadrupedal
locomotion. In: IEEE International Conference on 2004 Proceedings of Robotics
and Automation, ICRA 2004, vol. 3, pp. 2619–2624 (2004)

27. Marder, E., Bucher, D.: Central pattern generators and the control of rhythmic
movements. Curr. Biol. 11(23), R986–R996 (2001)

28. Matos, V., Santos, C.P.: Towards goal-directed biped locomotion: combining CPGs
and motion primitives. Robot. Auton. Syst. 62(12), 1669–1690 (2014)

29. Paul, S., Chatzilygeroudis, K., Ciosek, K., Mouret, J.B., Osborne, M.A., Whiteson,
S.: Alternating optimisation and quadrature for robust control. In: The Thirty-
Second AAAI Conference on Artificial Intelligence, AAAI 2018 (2018)

30. Pfeifer, R., Bongard, J.C.: How the Body Shapes the Way We Think: A New View
of Intelligence (Bradford Books). The MIT Press, Cambridge (2006)

31. Roijers, D.M., Whiteson, S.: Multi-objective decision making. Synth. Lect. Artif.
Intell. Mach. Learn. 11(1), 1–129 (2017)

32. Sproewitz, A., Moeckel, R., Maye, J., Ijspeert, A.J.: Learning to move in modular
robots using central pattern generators and online optimization. Int. J. Robot. Res.
27(3–4), 423–443 (2008)

33. Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of
development. Genet. Program. Evolvable Mach. 8(2), 131–162 (2007)

34. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

35. Weel, B., D’Angelo, M., Haasdijk, E., Eiben, A.: Online gait learning for modular
robots with arbitrary shapes and sizes. Artif. life 23(1), 80–104 (2017)

36. Yosinski, J., Clune, J., Hidalgo, D., Nguyen, S., Zagal, J.C., Lipson, H.: Evolving
robot gaits in hardware: the hyperneat generative encoding vs. parameter opti-
mization. In: Proceedings of the 20th European Conference on Artificial Life, pp.
890–897 (2011)

https://doi.org/10.1007/978-3-319-77538-8_46
https://doi.org/10.1007/978-3-319-77538-8_46

Optimisation and Illumination
of a Real-World Workforce Scheduling

and Routing Application (WSRP)
via Map-Elites

Neil Urquhart(B) and Emma Hart

School of Computing, Edinburgh Napier University, Scotland, UK
{n.urquhart,e.hart}@napier.ac.uk

Abstract. Workforce Scheduling and Routing Problems (WSRP) are
very common in many practical domains, and usually have a number of
objectives of interest to the end-user. Illumination algorithms such as
Map-Elites (ME) have recently gained traction in application to design
problems, in providing multiple diverse solutions as well as illuminating
the solution space in terms of user-defined characteristics, but typically
require significant computational effort to produce the solution archive.
We investigate whether ME can provide an effective approach to solv-
ing WSRP, a repetitive problem in which solutions have to be produced
quickly and often. The goals of the paper are two-fold. The first is to
evaluate whether ME can provide solutions of competitive quality to an
evolutionary algorithm in terms of a single objective function, and the
second to examine its ability to provide a repertoire of solutions that
maximise user choice. We find that very small computational budgets
favour the EA in terms of quality, but ME outperforms the EA at larger
budgets, provides a more diverse array of solutions, and lends insight to
the end-user.

1 Introduction

Workforce scheduling and routing problems (WSRP) [3] are challenging prob-
lems for organisations with staff working in areas including health care [2] and
engineering [5]. Finding solutions is the responsibility of a planner within the
organisation who will have an interest in the wider organisational policy deci-
sions surrounding the solution. Such wider issues could include the implications
of solutions with a lower environmental impact, the effects of switching to public
transport, or the impact of changing the size of the workforce.

Multi-objective optimisation approaches are commonly used to find solutions,
to WSRP instances, as they can provide a front of solutions that trade-off objec-
tives [13]. However, fronts may only comprise a small section of the total solution
space, and are difficult to visualise if there are many dimensions. Thus, it can
be difficult for a planner to understand the range of solutions, why solutions
were produced, and in particular to know whether other compromise solutions
might exist.
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 488–499, 2018.
https://doi.org/10.1007/978-3-319-99253-2_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_39&domain=pdf

Optimisation and Illumination of WSRP Problems 489

A class of algorithms known as illumination algorithms have recently been
introduced by Mouret et al. [7], with a number of variants following, e.g. [8,10].
Fundamentally different to a traditional search algorithm, the approach provides
a holistic view of how high-performing solutions are distributed throughout a
solution space [7]. The method creates a map of high-performing solutions at
each point in a space defined by dimensions of variation that are chosen by a
user, according to characteristics of a solution that are of interest. The result-
ing map (a Multi-dimensional Archive of Phenotypic Elites) enables the user to
gain specific insight into how different combinations of characteristics of solutions
correlate with performance, hence providing insight as well as multiple potential
solutions. In addition, as the approach encourages diversity, it has often been
shown to more capable of fully exploring a search-space, outperforming state-
of-the-art search algorithms given a single-objective, and can be particularly
helpful in overcoming deception [9]. We therefore hypothesise that an illumi-
nation algorithm might provide particular benefit to real-world problems such
as WRSP, which contain multiple, and sometimes conflicting, objectives. How-
ever, in contrast to the majority of previous applications of Map-Elites which
fall mainly in the domain of design problems (e.g. designing robot morphology),
WSRP is a repetitive problem, which requires solving new instances repeatedly
and obtaining acceptable solutions in reasonable time. While investing effort into
producing an archive of solutions can pay off in a design domain, it may prove
prohibitive for repetitive problems. Therefore, in the context of a WSRP based
on the city of London, using real geographical locations and real transport infor-
mation. Previous approaches to solving the problem [14] has utilised a portfolio
of multi-objective Evolutionary Algorithms to produce a non-dominated front,
the principle contribution lies in the application of MAP-Elites to illuminate
a combinatorial ESRP problem. To assess the success of MAP-Elites in this
context we consider the following questions:

1. How does the relative performance of ME compare to a standard Evolutionary
Algorithm (EA) in terms of satisfying a single objective-function over a range
of evaluation budgets?

2. Does MAP-Elites provide useful insights into problem characteristics from a
real-world perspective through providing a range of diverse but high-quality
solutions?

Using 10 realistic problem instances, we demonstrate that for a small fixed
evaluation budget, MAP-Elites does not outperform an EA in terms of the objec-
tive function, but as the budget increases, it outperforms the EA on the majority
of instances tested. Furthermore, even when it is outperformed by an EA in terms
of the single objective, it can discover solutions that have better values for the
individual characteristics. From a user-perspective, it may therefore present an
acceptable trade-off between overall quality and insight.

490 N. Urquhart and E. Hart

2 Previous Work

The Workforce Scheduling and Routing Problem (WSRP) was defined in [3]
as a scenario that involves the mobilisation of personnel in order to perform
work related activities at different locations. It has been tackled by a variety
of methods including meta-heuristics [1] and hyper-heuristics [5]. It can involve
consideration of many constraints and objectives, for example transport modal-
ity, time-windows, transport cost, travel cost etc. and hence is often treated as
multi-objective problem, e.g. [13]. The reader is referred to [3] for a detailed
survey on previous approaches.

The Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) was first
introduced by Mouret et al. [7] and as discussed in the introduction, provides
a mechanism for illuminating search spaces by creating an archive of high-
performing solutions mapped onto solution characteristics defined by the user.
To date, the majority of applications of illumination algorithms have been to
design problems [7,16]. Another tranche of work focuses on behaviour evolution
in robotics, for example Cully et al. [4], who evolve a diverse set of behaviours for
a single robot in a “pre-implementation” simulation phase: these are then used
in future when the robot is in operation to guide intelligent choice of behaviour
given changing environmental conditions.

To the best of our knowledge, an illumination algorithm has never been
used to solve repetitive problems, i.e. problems faced in the real-world where
acceptable solutions to problems have to be discovered in short time-frames,
often many times a day. Typically these types of problems are combinatorial
optimisation problems, e.g. scheduling, routing and packing, that often utilise
indirect genotypic representations as a result of having to deal with multiple
constraints. This contrasts to much of the existing work using MAP-Elites which
uses a direct representation of design parameters (although the use of MAP-
Elites with an indirect representation was discussed in [11]).

3 Methodology

We consider a WSRP characterised by time-windows, multiple transport modes
and service times. Variations of this scenario include the scheduling of health and
social care workers as well as those providing other services such as environmental
health inspections.

We assume an organisation has to service a set of clients, who each require
a single visit. Each of the visits v must be allocated to an employee, such that
all clients are serviced, and an unlimited number of employees are available.
Each visit v is located at gv, where g represents a real UK post-code, has a
service time dv and a time-window in which it must commence described by
{ev, lv}, i.e. the earliest and latest time at which can start and finish. Visits
are grouped into journeys, where each journey contains a subset Vj of the V
visits and is allocated to an employee. Each journey j starts and ends at the
central office. Two modes of travel are available to employees: the first mode

Optimisation and Illumination of WSRP Problems 491

uses private transport (car), the second makes uses of available public-transport,
encouraging more sustainable travel. The overall goal is to minimise the total
distance travelled across all journeys completed and forms the objective function
for the problem. However, in addition, discussions with end-users [14] highlights
four characteristics of solutions that are of interest:

– The total emissions incurred by all employees over all visits
– The total employee cost the total cost (based on £/hour) of paying the

workforce
– The total travel cost the cost of all of the travel activities undertaken by

the workforce
– The % of employees using car travel

We develop an algorithm based on Map-Elites to minimise the distance objec-
tive through projecting solutions onto a 4-dimensional map, with each axis repre-
senting one of the above characteristics. Solution quality is compared to an Evo-
lutionary Algorithm that uses exactly the same distance function as an objective,
and an identical representation, crossover and mutation operators.

Both the Map-Elites algorithm and the EA use an identical representation
of the problem, previously described in [14]. The genotype defines a grand-tour
[6], i.e. a single permutation of all v required visits. This is subsequently divided
into individual feasible journeys using a decoder. The genotype also includes v
additional genes that denote the model of transport to be used for the visit, i.e.
public or private.

The decoder converts the single grand tour into a set of journeys to be under-
taken by an employee. It examines each visit in the grand tour in order. Initially,
the first visit in the grand tour specified by the genotype is allocated to the first
journey. The travel mode(car or public transport) associated with this visit in
the genome is then allocated to the journey: this travel mode is then adopted
for the entire journey (regardless of the information associated with a visit in
the genome). The decoder then examines the next visit in the grand tour: this
is added to the current journey if it is feasible. Feasibility requires that the
employee arrives from the previous visit using the mode of transport allocated
to the journey within the time window associated with the visit. Note that a
travel mode cannot be switched during a journey. Subsequent visits are added
using the journey mode until a hard constraint is violated, at which point the
current journey is completed and a new journey initiated.

3.1 The MAP-Elites Algorithm

The implementation of MAP-Elites used in this paper is given in Algorithm 1
and is taken directly from [7]. G random-solutions are initially generated and
mapped to a disrete archive as follows. For each solution x′ a feature-descriptor b
is obtained by discretising the four features of interest associated with the solu-
tion (Sect. 3) into 20 bins; for 4 dimensions this gives a total of 204 = 160, 000
cells. The upper and lower bounds required for discretisation are taken as the

492 N. Urquhart and E. Hart

maximum and minimum values observed by [14] for each dimension during an
extensive experimental investigation. A solution is placed in the cell in the
archive corresponding to b if its fitness (p, calculated as total distance travelled)
is better than the current solution stored, or the cell is currently empty. Par-
ents are selected at random from the archive. The RandomVariation() method
applies either crossover followed by mutation, or just mutation, depending on the
experiment. All operators utilised are borrowed from [14]. The mutation oper-
ator moves a randomly selected entry in the grand-tour to another randomly
selected point in the tour. The crossover operator selects a random section of
the tour from parent-1 and copies it to the new solution. The missing elements
in the child are copied from parent-2 in the order that they appear in parent-2.

Algorithm 1. MAP-Elites Algorithm, taken directly from [7]
procedure Map-elites Algorithm

(P ← ∅,X ← ∅)
for iter = 1 → I do

if iter < G then
x′ ← randomSolution()

else
x′ ← randomSelection(X)
x′ ← randomVariation(X)

end if
b′ ← feature descriptor(x’)
p′ ← performance(x’)
if P(b′) = ∅ or P(b′) < p′ then

P(b′) ← p′

X (b′) ← x′

end if
end for
return feature-performance map(P and X)

end procedure

3.2 The Evolutionary Algorithm

The EA uses exactly the same representation and operators as the Map-Elites
algorithm. The EA uses a population size of 100, with 40 children being created
each generation. Each child is created by cloning from one parent or crossover
using two parent. Parents are selected using a tournament of size 2. A mutation-
rate of 0.7 is applied to each child. The children are added back into the pop-
ulation, replacing the loser of a tournament, providing the child represents an
improvement over the loser. The parameters for the EA were derived from the
authors’ previous experience with similar algorithms applied to the same prob-
lem instances.

Optimisation and Illumination of WSRP Problems 493

3.3 Problem Instances

We use a set of problem instances based upon the city of London, divided into
two problem sets, termed London (60 visits) and BigLondon (110 visits). These
instances were first introduced in [14]. Each visit represents a real post-code
within London. For each of the problem sets, 5 instances are produced in which
the duration of each visit is fixed to 30 min. Visits are randomly allocated to
one of n time-windows, where n ∈ {1, 2, 4, 8}. For n = 1, the time-window has a
duration of 8 hours, for n = 2, the time-windows are “9am–1pm” and“1pm–5pm”
etc. These instances are labelled using the scheme <set>−numTimeWindows,
i.e. Lon-1 refers to an instance in the London with one time-window and Blon-2
refers to an instance of the BigLondon problem with 2 time windows. The fifth
instance represents a randomly chosen mixture of time windows based on 1,2,4
and 8 h.

If a journey is undertaken by car, paths between visits and distance is cal-
culated according to the real road-network using the GraphHopper library1.
This relies on Open StreetMap data2. Car emissions are calculated as 140 g/km
based upon values presented in [12]. For journeys by public-transport, data is
read from the Transport for London (TfL) API3 which provides information
including times, modes and routes of travel by bus and train. Public transport
emissions factors are based upon those published by TfL [12].

3.4 Experimental Parameters

The function evaluation budget is fixed in all experiments. We tests two values:
one million evaluations and five million. Each treatment is repeated 10 times
on each instance. The best objective (distance) value is recorded for both treat-
ments in each run. We apply Vargha and Delaney’s Â statistic [15] to assess
difference between the algorithms. This is regarded as a robust test when assess-
ing randomised algorithms. The test returns a statistic, Â, that takes values
between 0 and 1; a value of 0.5 indicates that the two algorithms are stochas-
tically equivalent, while values closer to 0 or 1 indicate an increasingly large
stochastic difference between the algorithms. One of the most attractive proper-
ties of the Vargha-Delaney test is the simple interpretation of the Â statistic: for
results from two algorithms, A and B, then is simply the expected probability
that algorithm A produces a superior value to algorithm B. We follow the stan-
dard interpretation that a value in the range 0.5 ± 0.06 indicates a small effect,
0.5 ± 0.14 a medium effect and .5 ± 0.21 a large effect.

In addition we use two metrics to further analyse Map-Elites that are now
de-facto in the literature:

– Coverage represents the area of the feature-space covered by a single run of
the algorithm, i.e. the number of cells filled. For a single run x of algorithm

1 https://graphhopper.com/.
2 https://openstreetmap.org/.
3 https://api.tfl.gov.uk/.

https://graphhopper.com/
https://openstreetmap.org/
https://api.tfl.gov.uk/

494 N. Urquhart and E. Hart

y, coverage = noOfCellsF illed/CMax where CMax is the total number of
cells filled by combining all runs of any algorithm on the problem under
consideration.

– Precision is also defined as opt-in reliability: if a cell is filled in a specific run,
then the cell-precision is calculated as the inverse of the performance-value
(distance) found in the that cell in that run, divided by the best-value ever
obtained for cell in any run of any algorithm (as this is minimisation). Cell-
precision is averaged over all filled cells in an archive to give a single precision
value for a run.

From the perspective of a planner, this represents the choice of solutions
available to them, while precision indicates whether a cell contains a solution
that is likely to of potential use to the planner. The averaged precision for a run
indicates the overall quality of the solutions produced.

4 Results

The first research question aims to compare the performance of MAP-Elites and
EA algorithms under different evaluation budgets to determine whether MAP-
Elites might be useful in producing a set of acceptable solutions quickly. Two
values are tested : the first is relatively small with 1 million evaluations (as in
[14]); the second increases this to 5 million.

Figure 1(a,b) show the objective fitness values achieved by ME and the EA
under both budgets on each of the problem instances. Table 1 shows effect size
and direction according to the Vargha-Delaney metric.

Table 1. Comparison of Map-Elites (ME) to Evolutionary Algorithm (EA) at n million
evaluations. Arrows show Vargha-Delaney A test effect size and direction

London problems Big London problems

Lon-1 Lon-2 Lon-4 Lon-8 Lon-rnd Blon-1 Blon-2 Blon-4 Blon8 Blon-rnd

ME(1M) vs
EA(1M)

↔ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓

ME(5M) vs
EA(5M)

↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑ ↓↓↓ ↓↓ ↑ ↑ ↓↓↓

We note firstly that for 1M evaluations for both sets of problems, the EA
outperforms Map-Elites: the median of the EA is lower than ME, and the effect
size is large in each case. However, when the budget is increased to 5M, Map-
Elites outperforms the EA on all of the smaller problems with a large effect size;
it also outperforms the EA on two of the larger problems, although the effect
size is small. In the remaining 3 cases, the EA still wins.

Note that the Fig. 1a and b only show performance in terms of distance and
do not take into account the four characteristics which provide insight to the end-
users. These values are given in Table 2. Firstly we note that for the smaller lon

Optimisation and Illumination of WSRP Problems 495

lon1 lon2 lon4 lon8 lon−rnd

200

225

250

275

300

di
st

an
ce

Algorithm EA (1M) MapElites (1M) EA (5M) MapElites (5M)

blon1 blon2 blon4 blon8 blon−rnd

700

800

900

di
st

an
ce

Algorithm EA (1M) MapElites (1M) EA (5M) MapElites (5M)

Fig. 1. Performance of MAP elites and the EA with budgets of 1 million and 5 million
evaluations.

problems, the best-value for each characteristic is obtained from the MAP-Elites
algorithm in call cases. This includes lon−8 in which the best objective value for
a solution is obtained by the EA, but the solution has poorer values for each of
the 4 characteristics than the best solution obtained by MAP-Elites. Examining
the results for the larger BLon problem demonstrates that MAP-Elites, despite
a sub-optimal performance (w.r.t the objective function), can still find solutions
that out perform the EA in terms of the individual characteristics.

4.1 Coverage and Precision

The coverage metric evaluates the ability of an individual run of an algorithm
to place individuals in each of the cells. Note that it is possible that some of the
cells cannot be filled in because the characteristics of that instance do not allow
a feasible solution in that area.

The coverage achieved is displayed in Fig. 2a and b. Observe that coverage
of over 70% is common with MAP-Elites, but the EA gives very poor coverage
as it converges to a single solution. In real-world terms, the EA leaves the user
with little choice of solution and no insight into the problem.

Figure 2c and d show the precision achieved by MAP Elites and the EA. We
note that the highest precision achieved by the EA outperforms MAP Elites.
Recall that precision is calculated over only those cells that are filled. The EA
allocates all of its evaluations to very few cells, and thus find good solutions
for those cells. In contrast, MAP-Elites has to distribute the same budget of

496 N. Urquhart and E. Hart

Table 2. A detailed comparison of the best results found over 10 runs for performance
(distance) and the 4 characteristics associated with the solutions, based on an evalua-
tion budget of 5 million for each run. Values are shown for MAP elites on the left and
the EA on the right.

Dist StaffCost TravelCost CO2 CarUse

Lon-1 204.64 : 206.93 841 : 974.67 82.54 : 85.79 133.83 : 163.75 0 : 0.25

Lon-2 223.3 : 231.02 870.67 : 1014.67 89.71 : 103.04 148.94 : 192.85 0.06 : 0.33

Lon-4 225.37 : 244.09 904.33 : 1276 94.63 : 116.74 158.77 : 194.59 0.04 : 0.33

Lon-8 230.8 : 230.34 967.33 : 1376.67 103.5 : 140.1 159.07 : 240.54 0.04 : 0.35

Lon-Rnd 244.91 : 259.11 944 : 1140.33 99.48 : 107.4 155.17 : 216.53 0.04 : 0.33

Blon-1 698.48 : 619.15 1987 : 2182.33 222.63 : 207.17 527.27 : 506.02 0.04 : 0.25

Blon-2 729.21 : 644.07 2107.67 : 2385.67 244.54 : 243.55 584.99 : 581.16 0.07 : 0.32

Blon-4 708.25 : 722.53 2183.33 : 2545.67 267.85 : 272.34 584.19 : 637.26 0.08 : 0.33

Blon-8 688.94 : 658.52 2209 : 2772 272.22 : 311.52 586.81 : 637.5 0.08 : 0.38

Blon-rnd 730.3 : 666.29 2256 : 2717.67 251.31 : 263.1 580.16 : 602.47 0.09 : 0.36

evaluations across a much larger number cells, making it hard to always find
a high-performing solution in each cell. In addition,many of the low-precision
scores for MAP-Elites occur when one run does not find as high-performing a
solution in a cell as another run of MAP-Elites. Running MAP-Elites for more
evaluations would likely improve precision (without danger of convergence due
to its propensity to enforce diversity).

4.2 Gaining Insight into the Problem Domain

Figure 3 plots the cells, and the elite solutions contained, for each 2-dimensional
pairing of the 4 dimensions. Although the archive could be drawn in 4-
dimensions, discussion with users suggested that presenting 2-dimensional maps
provides more insight. Within each plot, each cell that is occupied is coloured
to represent the distance objective value of the elite solution - lowest (best) val-
ues being green, highest being red. Note that most of the cells have a solution
within them. Where there is an area with no solutions it tends to be at a corner
of the plot. For instance, there are a lack of solutions with low CO2 and high
travel costs (Fig. 3e) or high car use and low CO2 (Fig. 3a). From a planning
perspective, Fig. 3 indicates (1) combinations of objectives that have no feasible
solutions, and (2) quality of feasible solutions.

MAP-Elites tends to cover a larger part of the solution space. A common
trend is that the solutions that are better in terms of one or two of the four
characteristics are not always solutions that exhibit the lowest distance objec-
tive. The map also quantifies trade-offs in objective value: for example, the extent
to which increased car use increases CO2 compared to options that utilise more
public transport. Another insight to be gained is the effects of higher public
transport use (i.e. low car use) and staff cost: staff costs rise as public transport

Optimisation and Illumination of WSRP Problems 497

Fig. 2. Coverage and precision for map-elites and the EA on both problem sets

usage increases (Fig. 3a and c). This is due to the longer journey times experi-
enced with public transport leading to increased working hours for staff.

A planner with responsibility for determining policies regarding staff schedul-
ing may make use of the diagrams in Fig. 3c to understand what solutions are
possible given a specific priority. For instance, if it is determined that reducing
CO2 is a priority then they can determine what possible trade-offs exist for low
CO2 solutions. Where a balance is required (i.e. lowering CO2 but also keeping
financial costs in check) MAP-Elites allows the planner to find compromise solu-
tions that are not optimal in any single dimension, but may prove useful when
meeting multiple organisational targets or aspirations.

5 Conclusions

In this paper we have applied MAP-Elites to a real world combinatorial opti-
misation problem domain—a workforce scheduling and routing problem. Unlike
previous applications of MAP-Elites that have tended to concentrate on design
problems, WSRP is an example of a repetitive problem, requiring an optimisa-
tion algorithm to find acceptable solutions in a short period of time. In addition
to an acceptable solution however, a user also requires choice, in being able to
select potential solutions based on additional criteria of relevance to a particular
company.

With reference to the research questions in Sect. 1, we note that MAP-Elites
tends to require a larger evaluation budget to produce results that are com-

498 N. Urquhart and E. Hart

8

12

16

20

5 10 15

normcaruse

no
rm

co
2

800

1000

1200

1400

min_obj

8

12

16

20

10 15 20

normstaffcost

no
rm

co
2

800

1000

1200

1400

min_obj

10

15

20

5 10 15

normcaruse

no
rm

st
af
fc
os

t

800

1000

1200

1400

min_obj

5

10

15

20

5 10 15

normcaruse

no
rm

tr
av

el
co

st

800

1000

1200

1400

min_obj

8

12

16

20

5 10 15 20

normtravelcost

no
rm

co
2

800

1000

1200

1400

min_obj

5

10

15

20

10 15 20

normstaffcost

no
rm

tr
av

el
co

st

800

1000

1200

1400

min_obj

Fig. 3. Maps produced from a single run of the blon-1 problem: rather than display the
single 4-dimensional map produced from map-elites, we display the data as all possible
pairings of the 4 characteristics (Color figure online)

parable with a straightforward EA for the problems tested. However, for small
problems, affording a larger evaluation budget to Map-Elites enables it to dis-
cover improved solutions, compared to the EA. For larger problems, although
our results show that MAP-Elites cannot outperform the EA in terms of objec-
tive performance, it does find solutions that outperform the EA in terms of the
individual characteristics. It is likely that running MAP-Elites for longer would
continue to improve its performance, without risking convergence. The increased
cpu-time required for such a budget may be easily obtained through the use of
multi-core desktop computers or cloud based resources in a practical setting.
We also note that the illumination aspect of MAP-Elites may aid the ability of
planners to understand the factors that lead to good solutions and subsequently
influence policy planning/determine choices based on organisational values, and
that this aspect is of considerable benefit. Illumination of the solution-space also
provides additional insight to planners, who can gain understanding into the
influence of different factors on the overall cost of a solution.

Future work will focus on further exploration of the relationship between
objective quality and function evaluations, to gain insight into the anytime
performance of Map-Elites, for use in a real-world setting. The granularity of
the archive clearly influences performance and should be investigated by depth.
Finally, an additional comparison to multi-objective approaches is also worth
pursing — while this may improve solution quality however it is unlikely to offer
the same insight into the entire search-space.

Optimisation and Illumination of WSRP Problems 499

References

1. Bertels, S., Fafle, T.: A hybrid setup for a hybrid scenario: combining heuristics
for the home health care problem. Comput. Oper. Res. 33(10), 2866–2890 (2006)

2. Braekers, K., Hartl, R.F., Parragh, S.N., Tricoire, F.: A bi-objective home care
scheduling problem: analyzing the trade-off between costs and client inconvenience.
Eur. J. Oper. Res. 248(2), 428–443 (2016)

3. Castillo-Salazar, J.A., Landa-Silva, D., Qu, R.: A survey on workforce scheduling
and routing problems. In: Proceedings of the 9th international conference on the
practice and theory of automated timetabling, pp. 283–302 (2012)

4. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like ani-
mals. Nature 521(7553), 503 (2015)

5. Hart, E., Sim, K., Urquhart, N.: A real-world employee scheduling and routing
application. In: Proceedings of the Companion Publication of the 2014 Annual Con-
ference on Genetic and Evolutionary Computation, pp. 1239–1242. ACM (2014)

6. Laporte, G., Toth, P.: Vehicle routing: historical perspective and recent contribu-
tions. EURO J. Transp. Logistics 2(1–2), 1–4 (2013)

7. Mouret, J., Clune, J.: Illuminating search spaces by mapping elites. CoRR (2015)
8. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolu-

tionary computation. Front. Robot. AI 3, 40 (2016)
9. Pugh, J.K., Soros, L.B., Stanley, K.O.: Searching for quality diversity when diver-

sity is unaligned with quality. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez,
M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 880–889.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6 82

10. Smith, D., Tokarchuk, L., Wiggins, G.: Rapid phenotypic landscape exploration
through hierarchical spatial partitioning. In: Handl, J., Hart, E., Lewis, P.R.,
López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) Parallel Problem Solving from
Nature - PPSN XIV, pp. 911–920. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-319-45823-6 85

11. Tarapore, D., Clune, J., Cully, A., Mouret, J.B.: How do different encodings influ-
ence the performance of the map-elites algorithm? In: Proceedings of the Genetic
and Evolutionary Computation Conference 2016, GECCO 2016, pp. 173–180.
ACM, New York (2016)

12. TFL: Travel in london: Key trends and developments. Technical report Transport
for London (2009)

13. Urquhart, N., Fonzone, A.: Evolving solution choice and decision support for a
real-world optimisation problem. In: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2017, pp. 1264–1271. ACM (2017)

14. Urquhart, N.B., Hart, E., Judson, A.: Multi-modal employee routing with time
windows in an urban environment. In: Proceedings of the Companion Publication
of the 2015 Annual Conference on Genetic and Evolutionary Computation. pp.
1503–1504. ACM (2015)

15. Vargha, A., Delaney, H.D.: A critique and improvement of the cl common language
effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2), 101–132
(2000)

16. Vassiliades, V., Chatzilygeroudis, K., Mouret, J.B.: Using centroidal voronoi tes-
sellations to scale up the multi-dimensional archive of phenotypic elites algorithm,
p. 1. August 2017

https://doi.org/10.1007/978-3-319-45823-6_82
https://doi.org/10.1007/978-3-319-45823-6_85
https://doi.org/10.1007/978-3-319-45823-6_85

Prototype Discovery Using
Quality-Diversity

Alexander Hagg1,2(B), Alexander Asteroth1, and Thomas Bäck2

1 Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin, Germany
{alexander.hagg,alexander.asteroth}@h-brs.de
2 Leiden Institute of Advanced Computer Science,

Leiden University, Leiden, The Netherlands
t.h.w.baeck@liacs.leidenuniv.nl

Abstract. An iterative computer-aided ideation procedure is intro-
duced, building on recent quality-diversity algorithms, which search for
diverse as well as high-performing solutions. Dimensionality reduction is
used to define a similarity space, in which solutions are clustered into
classes. These classes are represented by prototypes, which are presented
to the user for selection. In the next iteration, quality-diversity focuses on
searching within the selected class. A quantitative analysis is performed
on a 2D airfoil, and a more complex 3D side view mirror domain shows
how computer-aided ideation can help to enhance engineers’ intuition
while allowing their design decisions to influence the design process.

Keywords: Ideation · Quality-diversity · Prototype theory
Dimensionality reduction

1 Introduction

Conceptual engineering design is an iterative process [5]. Under the paradigm
commonly called ideation [3] a design problem is defined, the design space
explored, candidate solutions evaluated, and finally design decisions are taken,
which put constraints onto the next design iteration.

In a 2014 interview study by Bradner [3] on the real-world usage of automa-
tion in design optimization, “participants reported consulting Pareto plots iter-
atively in the conceptual design phase to rapidly identify and select interesting
solutions”. This process of a posteriori articulation of preference [9] is described
by the “design by shopping” paradigm [1,23]. A Pareto front of optima is created
by a multi-objective optimization algorithm, after which engineers choose a solu-
tion to their liking. That participants used optimization algorithms to develop
preliminary solutions to solve a problem surprised the interviewers.

Design optimization has been applied to multi-modal problems, using niching
and crowding to enforce diversity in evolutionary optimization algorithms [21,
22]. For optimization algorithms to operate effectively in cases where evaluation
of designs is computationally expensive, surrogate assistance is applied, using
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 500–511, 2018.
https://doi.org/10.1007/978-3-319-99253-2_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_40&domain=pdf

Prototype Discovery Using Quality-Diversity 501

predictive models that replace most of the evaluations [10]. Recently introduced
quality-diversity (QD) algorithms, like NSLC [11] and MAP-Elites [13], are evo-
lutionary algorithms capable of producing a large array of solutions constituting
different behaviors or design features. Surrogate assistance was introduced for
QD algorithms [6] as well. It enables finding thousands of designs, using orders
of magnitude fewer evaluations than running MAP-Elites without a surrogate.
However, this large number of solutions can hinder the engineer’s ability to select
interesting designs.

As automated diversity gives too many solutions, their more concise presen-
tation makes QD more useful to designers. In this paper we apply the design by
shopping paradigm to QD, assisting design decisions by representing similar solu-
tions succinctly with a representative solution using prototype theory. Therein,
objects are part of the same class based on resemblance. Wittgenstein [26] ques-
tioned whether classes can even be rigidly limited, implying that there is such
a thing as a distance to a class. Rosch later introduced prototype theory [18],
stating that natural classes consist of a prototype, the best representative of its
class, and non-prototypical examples, which can be ranked in terms of distance
to the prototype. However, while feature diversity is enforced, surrogate-assisted
QD uses no metric for genotypic similarity in terms of the actual design space.

Fig. 1. Computer-aided ideation loop. Step 1: QD algorithm is used to discover diverse
optimal solutions. Step 2: similar solutions are grouped into classes. Step 3: prototypes
are visualized to allow the engineer to select the prototype they want to further explore.
Step 4: QD focuses on the user’s selection to generate further solutions.

By applying prototype theory to the variety of designs produced by QD algo-
rithms, computer-aided ideation (CAI) is introduced (Fig. 1), allowing the same
a posteriori articulation of preference as in the design by shopping paradigm.
Although performance and diversity can both be formally described and opti-
mized, design decisions are based on the intuition of the engineer, and cannot
be automated. QD is used to discover a first set of optimal solutions. Then, by
clustering similar solutions into classes and representative prototypes, the opti-
mization process is guided by extracting seeds from the classes selected by the
user, zooming in on a particular region in design space.

502 A. Hagg et al.

QD allows a paradigm shift in optimal engineering design, but integration
of QD algorithms into the ideation process has yet to be studied extensively.
In this work we introduce a CAI algorithm that takes advantage of recently
introduced QD algorithms [11,13]. Prototype Discovery using Quality-Diversity
(PRODUQD) [pr@"d2kt], which performs a representative selection of designs,
enables engineers to make design decisions more easily and influence the search
for optimal solutions. PRODUQD can find solutions similar to a selection of
prototypes that perform similarly well as solutions that were found by searching
the entire design space with QD. By integrating QD algorithms and ideation a
new framework for design is created; a paradigm which uses optimization tools
to empower human intuition rather than replace it.

2 Related Work

2.1 Quality-Diversity and Surrogate Assistance

QD algorithms, like Novelty Search with Local Competition (NSLC) [11] and
Multidimensional Archive of Phenotypic Elites (MAP-Elites) [13], use a low-
dimensional behavior or feature characterization, such as neural network com-
plexity or curvature of a design, to determine similarity between solutions [16].
Solutions compete locally in feature space, superseding similar yet less fit solu-
tions. In MAP-Elites, the feature space consists of a discrete grid of behavior or
feature dimensions, called a feature map. Every bin in the map is either empty
or holds a solution, called an elite, that is currently the best performing one in
its niche. QD is able to produce many solutions with a diverse set of behaviors
and is very similar to the idea of Zwicky’s morphological box [27] as it allows
new creations by combining known solution configurations. QD algorithms per-
form many evaluations, making them unsuitable for design problems that need
computationally expensive or real world evaluation.

To decrease the number of expensive objective evaluations, approximative
surrogate models replace the objective function close to optimal solutions using
appropriate examples [10]. To sample the design space effectively and efficiently,
Bayesian Optimization is used. Given a prior over the objective function, evi-
dence from known samples is used to select the next best observation. This
decision is based on an acquisition function that balances exploration of the
design space, sampling from unknown regions, and exploitation, choosing sam-
ples that are likely to perform well. This way, the surrogate model becomes more
accurate in optimal regions during sampling. The most common surrogates used
are Gaussian Process (GP) regression models [17].

Surrogate assistance has been applied to QD with Surrogate-Assisted Illu-
mination (SAIL) [6]. In SAIL the GP model is pretrained with solutions evenly
sampled in the parameter space with a Sobol sequence [14]. The sequence allows
iteratively finer sampling, approximating a uniform distribution. Then, using
the upper confidence bound (UCB) acquisition function, an acquisition map is
created, containing a diverse set of candidate training samples. UCB, described
by the function UCB(x) = μ(x) + κσ(x), is a balance between exploitation

Prototype Discovery Using Quality-Diversity 503

(μ(x), the mean prediction of the model), and exploration (σ(x), the model’s
uncertainty), parameterized by κ.

The acquisition map is first seeded with the previously acquired samples,
assigning them to empty bins or replacing less performant solutions. MAP-Elites
is then used in conjunction with the GP model to fill and optimize the acquisition
map, using UCB as a fitness function and combining existing solutions from bins,
illuminating the surrogate model through the “lens” of feature map. A candidate
sample is created for every bin in the map. Then, the acquisition map is sampled
using a Sobol sequence and selected solutions are evaluated using the expensive
evaluation function. After gathering a given number of samples, the acquisition
function is adapted by removing the model’s uncertainty and the final prediction
map, seeded with the set of known samples, is illuminated, producing a discrete
map of diverse yet high-performing solutions.

2.2 Dimensionality Reduction

Clustering depends on a notion of distance between points. The curse of dimen-
sionality dictates that the relative difference of the distances of the closest and
farthest data points goes to zero as the dimensionality increases [2]. Clustering
methods using a distance metric break down and cannot differentiate between
points belonging to the same or to other clusters [25]. Dimensionality reduction
(DR) methods are applied to deal with this problem. Data is often located at or
close to a manifold of lower dimension than the original space. DR transforms
the data into a lower-dimensional space, enabling the clustering method to bet-
ter distinguish clusters [25]. Common DR methods are Principal Component
Analysis (PCA) [15], kernel PCA (kPCA) [20], Isomap [24], Autoencoders [8]
and t-distributed Stochastic Neighbourhood Embedding (t-SNE) [12].

t-SNE is commonly used for visualization and has been shown to be capa-
ble of retaining the local structure of the data, as well as revealing clusters at
several scales. It does so by finding a lower-dimensional distribution of points Q
that is similar to the original high-dimensional distribution P. The similarity of
datapoint xj to datapoint xi is the conditional probability (pj|i for P and qj|i
for Q, Eq. 1), that xi would pick xj as its neighbor if neighbors were picked in
proportion to their probability density under a Gaussian distribution centered
at xi. The Student-t distribution is used to measure similarities between low-
dimensional points yi ∈ Q in order to allow dissimilar objects to be modeled far
apart in the map (Eq. 1).

pj|i =
e

−‖x i−x j‖2

2σ2
i

∑
k �=i

(

e
−‖x i−xk‖2

2σ2
i

) , qj|i =
1 + ‖yi − yj‖2)−1

∑
k �=i(1 + ‖yi − yk‖2)−1)

(1)

The local scale σi is adapted to the density of the data (smaller in denser parts).
σi is set such that perplexity of the conditional distribution equals a predefined
value. The perplexity of a distribution defines how many neighbors for each data

504 A. Hagg et al.

point have a significant pj|i and can be calculated using the Shannon entropy
H(Pi) of the distribution Pi around xi (Eq. 2).

Perp(Pi) = 2− ∑
j pj|ilog2pj|i (2)

KL(P‖Q) =
∑

i�=j

pij log(
pij
qij

) (3)

Using the bisection method, σi are changed such that Perp(Pi) approximates
the preset value (commonly 5–50). The similarity of xj to xi and xi to xj is
absorbed with the joint probability pij . A low-dimensional map is learned that
reflects all similarities pij as well as possible. Locations yi are determined by
iteratively minimizing the Kullback-Leibler divergence of the distribution Q from
the distribution P (Eq. 3) with gradient descent.

3 Prototype Discovery Using Quality-Diversity

PRODUQD is an example of a CAI algorithm (Fig. 2). Initially, the design space
is explored with a QD algorithm. SAIL [6] is used to explore the design space,
creating high-performing examples of designs with varying features. These fea-
tures can be directly extracted from design metrics, for instance the amount
of head space in a car. SAIL produces a prediction map that contains a set of
diverse high-performing solutions.

Fig. 2. PRODUQD cycle - steps as in Fig. 1. Step 1: the design space is explored with
the goal of filling the feature map. Step 2: (a) classes are extracted in a low-dimensional
similarity space, and (b) prototypes are defined. Step 3: a selection is made. Step 4:
seeds are extracted for the next iteration.

A similarity space is constructed using t-SNE. In this space, similar solutions
are clustered into classes. Since no prior knowledge on the structure of optimality
in design space is available and due to the stochastic nature of QD, the number

Prototype Discovery Using Quality-Diversity 505

and density of clusters is unknown. To group the designs into clusters we use
the well-known density based clustering algorithm DBSCAN [4]1.

A prototype is then extracted for every class. According to prototype the-
ory [18], prototypes are those members of a class, “with the most attributes in
common with other members of the class and least attributes in common with
other classes”. The most representative solution of a class is the member of a
cluster that has the minimum distance to other members. The medoid is taken
rather than a mean of the parameters, as this mean could lie in non-optimal or
even invalid regions of the design space.

The prototypes are presented to the user, offering them a concise overview
of the diversity in the generated designs. After the user selects one or more
prototypes, the affiliated class members are used as seeds for the next SAIL
iteration, serving as initial solutions in the acquisition and prediction maps.
Initializing SAIL with individuals from the chosen class forces SAIL to start
its search within the class boundaries. Using a subset of untested solutions of
a particular class stands in contrast to SAIL, which focuses on searching the
entire design space, seeding both maps with actual samples. Within each SAIL
iteration, the GP surrogate is retrained whenever new solutions are evaluated.

A precise definition of PRODUQD can be found in Algorithm 1, including
the use of the selected seeds S in SAIL. This ideation process explores the design
space while taking into account on-line design decisions.

Algorithm 1. Prototype Discovery using Quality-Diversity (PRODUQD)

X ← Sobol1:G, Y ← PE(X), S0 ← X
� PE = precise eval., S0 = initial seed
for iter = 1 → PE budget do

[1] Explore Design Space
(Xpred, Ypred) = SAIL(X , Siter−1)
[2] Extract Classes
Xred = T-SNE(X)
C = DBSCAN(Xred)

� C = class assignments
[3] Determine Prototypes
for j = 1 → |C| do

P ← MEDOID(xred, cj)
end for
[4] Select Prototype(s)
psel = SELECT(P)

� psel = user selected prototype
[5] Extract Seeds
S = X , x ∈ csel

� csel class belonging to psel

end for

� Surrogate-Assisted Illumination
function SAIL(X , S) � samples, seeds

[1] Produce Acquisition Map
for iter = 1 → PE budget do

D ← (X , Y) � observation set
acq() ← UCB(GP model(D))
(Xacq, Yacq) = MAP-E.(acq, S)

� MAP-E. = MAP-Elites
x ← Xacq(Soboliter)

� Select from acquisition map
X ← X ∪ x, S ← S ∪ x
Y ← Y ∪ PE(x)

end for
[2] Produce Prediction Map
D ← (X , Y)
GP ← GP model(D)
pred() ← mean(GP(x))
(Xpred, Ypred) = MAP-E.(pred, S)

return (Xpred, Ypred)
end function

1 DBSCAN’s parameterization is automated using the L Method [19].

506 A. Hagg et al.

4 Evaluation

PRODUQD is a tool for CAI which allows the optimization and exploration of
QD to be focused to produce designs which resemble user-chosen prototypes. We
show that PRODUQD creates solutions of comparable performance to SAIL,
produces models with the same level of accuracy, while directing the search
towards design regions chosen by the user.

2D Domain. PRODUQD and SAIL are applied to a classic design problem,
similar to [6], but with a different representation. A high-performing 2D airfoil is
optimized using free form deformation, with 10 degrees of freedom (Fig. 3). The
base shape, an RAE2822 airfoil, is evaluated in XFOIL2, at an angle of attack
of 2.7◦ at Mach 0.5 and Reynolds number 106.

Fig. 3. Left: 2D airfoil with control points and features (Xup, Yup), right: control points
of 3D mirror representation and features (curvature and length).

The objective is to find diverse deformations, minimizing the drag coefficient
cD while keeping a similar lift force and area, described by fit(x) = drag(x) ×
pcL

(x) × pA(x),drag = −log(cD(x)), A = area and Eqs. 4–5. The feature map,
consisting of the x and y coordinates of the highest point on the foil (Xup and
Yup, see Fig. 3), is divided into a 25× 25 grid.

pcL
(x) =

{
cL(x)
cL0

2
, cL(x) < cL0

1, otherwise .
(4)

pA(x) =
(

1 − |A − A0|
A0

)7

(5)

3D Domain. To showcase CAI on a more complex domain, the side mirror of
the DrivAer [7] car model is optimized with a 51 parameter free form deformation
(Fig. 3 (right)). The objective is to find many diverse solutions while minimizing
the drag force (in Newtons) of the mirror. The numerical solver OpenFOAM3 is
2 http://web.mit.edu/drela/Public/web/xfoil/.
3 https://openfoam.org, simulation at 11 m/s.

http://web.mit.edu/drela/Public/web/xfoil/
https://openfoam.org

Prototype Discovery Using Quality-Diversity 507

used to determine flow characteristics and calculate the drag force. The feature
map, consisting of the curvature of the edge of the reflective part of the mirror
and the length of the mirror in flow direction, is divided into a 16× 16 grid.

Choice of Dimensionality Reduction Technique. Various DR methods
are analyzed as to whether they improve the clustering behavior of DBSCAN
compared to applying clustering on the original dimensions. Ḡ+, a measure of
the discordance between pairs of point distances and is robust w.r.t. differences
in dimensionality [25], is used as a metric. It indicates whether members of the
same cluster are closer together than members of different clusters. A low value
(≥0) indicates a high quality of clustering. PCA, kPCA, Isomap, t-SNE4 and an
Autoencoder are compared using DBSCAN on the latent spaces. t-SNE has been
heavily tested for a dimensionality reduction to two dimensions. To allow a fair
comparison, the same reduction was performed with the alternative algorithms.

Table 1. Quality of DR methods. Variance of the Autoencoder in parentheses.

Original PCA kPCA Isomap t-SNE Autoencoder

Avg. G+ score 0.36 0.33 0.22 0.30 0.05 0.454 (0.17)

Avg. number of clusters 4 5 7 4 10 4 (1.23)

SAIL is performed 30 times on the 2D airfoil domain. For every run of SAIL,
the dimensionality of the resulting predicted optima is reduced with the various
methods and the optima are clustered with DBSCAN. Table 1 shows that t-SNE
allows DBSCAN to perform about an order of magnitude better than using
other methods. Although t-SNE is not a convex method, it shows no variance,
indicating that the method is quite robust. The number of clusters found is
about twice as high as using other methods, and since the cluster separation is
of higher quality, t-SNE is selected as a DR method in the rest of this evaluation.

Quantitative Analysis. To show PRODUQD’s ability to produce designs
based on a chosen prototype, it is replicated five times, selecting a different
class in each run. In every iteration of PRODUQD 10 iterations of SAIL are
run to acquire 100 new airfoils. The first iteration starts with an initial set of
50 samples from a Sobol sequence. Then, the five classes containing the largest
number of optima are selected, and the algorithm is continued in separate runs
for each class. After each iteration, the we select the prototype that is closest to
the one that was selected in the first iteration. PRODUQD runs are compared
to the original SAIL algorithm, using the same number of samples, a total of
500.
The similarity of designs to prototypes of optima found in four separate runs,
selecting a different prototype in each one, are shown in Fig. 4 (left). The usage
4 Perplexity is set to 50, but at most half the number of samples.

508 A. Hagg et al.

Fig. 4. PRODUQD (P) produces designs that are more similar to the selected pro-
totype than using SAIL (S), which is also visible in the smaller parameter spread.
The produced designs have similar performance compared to SAIL’s and the surrogate
model is equally accurate. Left: final prototype similarity of four different PRODUQD
prediction maps.

of seeds does not always prevent the ideation algorithm of finding optima outside
of the selection, but PRODUQD produces solutions that are more similar to the
selected prototype than SAIL. The parameter spread in solutions found with
PRODUQD is lower than with SAIL. Yet the true fitness scores and surrogate
model prediction errors of both SAIL and PRODUQD are very similar.

Figure 5 shows the similarity space of three consecutive iterations. The effect
of selection, zooming in on a particular region, can be seen by the fact that
later iterations cover a larger part of similarity space, close to the prototype
that was selected. Some designs still end up close to non-selected classes (in
gray), which cannot be fully prevented without using constraints. PRODUQD
is able to successfully illuminate local structure of the objective function around
a prototype. It finds optima within a selected class of similar fitness to optima
found in SAIL using no selection, and is able to represent the solutions in a
class in a more concise way, using prototypes as representatives, shown by the
decreased variance within classes (Fig. 4).

The performance of PRODUQD’s designs is comparable to SAIL while direct-
ing the search towards design regions chosen by the user.

Fig. 5. The region around the selected class is enlarged in similarity space and structure
is discovered as more designs are added in later iterations. In each iteration the feature
map is filled with solutions from the selected class.

Prototype Discovery Using Quality-Diversity 509

Fig. 6. Phylogenetic tree of two PRODUQD runs diverging after first iteration, and
predicted drag force maps (ground truth values are shown underneath).

Qualitative Analysis. A two-dimensional feature map, consisting of the cur-
vature and the length of the mirror in flow direction (Fig. 3), is illuminated from
an initial set of 100 car mirror designs from a Sobol sequence. After acquir-
ing 200 new samples with SAIL, a prediction map is produced and from this
set of solutions the two prototypes having the greatest distance to each other
are selected and PRODUQD is continued in two separate instances, sampling
another 100 examples. Then the newly discovered prototype that is closest to the
one first selected is used to perform two more iterations, resulting in a surrogate
model trained with 600 samples. The two resulting runs are shown in Fig. 6.
Every branch in the phylogenetic tree of designs represents a selected prototype
and every layer contains the prototypes found in an iteration. 18.8 prototypes
were found on average in each iteration. The surrogate model gives an accurate
prediction of the drag force of all classes.

5 Conclusion

Quality-diversity algorithms can produce a large array of solutions, possibly
impeding an engineer’s capabilities of making a design decision. We introduce
computer-aided ideation, using QD in conjunction with a state of the art dimen-
sionality reduction and a standard clustering technique, grouping similar solu-
tions into classes and their representative prototypes. These prototypes can be
selected to constrain QD in a next iteration of design space exploration by seed-
ing it with the selected class. A posteriori articulation of preference allows auto-
mated design exploration under the design by shopping paradigm. Decisions can
be based on an engineer’s personal experience and intuition or other “softer”
design criteria that can not be easily formalized. PRODUQD, an example of
such a CAI algorithm, allows an engineer to partially unfold a phylogenetic tree
of designs by selecting prototypical solutions.

The similarity space can be used continuously as it is decoupled from the
feature map. This allows the diversity metric, the feature characterization, to
change between iterations. The order in which the feature dimensions are chosen
can be customized depending on the design process. For example, the engineer

510 A. Hagg et al.

can start searching the design space in terms of diversity of design and later on
switch to functional features. In future work, changes in the feature map and
their effects on PRODUQD will be analyzed. Although seeding the map proves
to be sufficient to guide QD towards the selected prototype, it is not sufficient
to guarantee that QD only produces solutions within its class. Constraints could
limit the search operation. Adding the distance to the selected prototype to the
acquisition function could bias sampling to take place within the class. Finally,
although the median solution might be most similar to all solutions within a
class, one indeed might choose the fittest solution of a class as its representative.

CAI externalizes the creative design process, building up a design vocabulary
by concisely describing many possible optimal designs with representative proto-
types. Engineers can cooperate using this vocabulary to make design decisions,
whereby ideation allows them to understand the design space not only in gen-
eral, but around selected prototypes. CAI, a new engineering design paradigm,
automates human-like search whilst putting the human back into the loop.

Acknowledgments. This work received funding from the German Federal Ministry
of Education and Research (BMBF) under the Forschung an Fachhochschulen mit
Unternehmen programme (grant agreement number 03FH012PX5 project “Aeromat”).
The authors would like to thank Adam Gaier for their feedback.

References

1. Balling, R.: Design by shopping: a new paradigm? In: Third World Congress of
Structural and Multidisciplinary Optimization, pp. 295–297. ISSMO, New York
(1999)

2. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “Nearest Neighbor”
meaningful? In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp.
217–235. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49257-7 15

3. Bradner, E., Iorio, F., Davis, M.: Parameters tell the design story: ideation and
abstraction in design optimization. In: Symposium on Simulation for Architecture
& Urban Design, pp. 172–197. SCSI, San Diego (2014)

4. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discover-
ing clusters in large spatial databases with noise. In: 2nd International Conference
on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press, Portland
(1996)

5. Flager, F., Haymaker, J.: A comparison of multidisciplinary design, analysis and
optimization processes in the building construction and aerospace industries. In:
24th W78 Conference on Bringing ITC Knowledge to Work, pp. 625–630. Elsevier,
Maribor (2007)

6. Gaier, A., Asteroth, A., Mouret, J.: Data-efficient exploration, optimization, and
modeling of diverse designs through surrogate-assisted illumination. In: Genetic
and Evolutionary Computation Conference, pp. 99–106. ACM, Berlin (2017)

7. Heft, A.I., Indinger, T., Adams, N.A.: Introduction of a new realistic generic car
model for aerodynamic investigations. SAE 2012 World Congress, Technical report.
SAE, Detroit (2012)

8. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786), 504–507 (2006)

https://doi.org/10.1007/3-540-49257-7_15

Prototype Discovery Using Quality-Diversity 511

9. Hwang, C.L., Masud, A.S.M.: Multiple Objective Decision Making - Methods and
Applications: A State-of-the-Art Survey, vol. 164. Springer, New York (1979).
https://doi.org/10.1007/978-3-642-45511-7

10. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future
challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)

11. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty
search and local competition. In: Genetic and Evolutionary Computation Confer-
ence, pp. 211–218. ACM, Dublin (2011)

12. van der Maaten, L., Hinton, G.: Visualizing data using T-SNE. J. Mach. Learn.
Res. 9, 2579–2605 (2008)

13. Mouret, J.B., Clune, J.: Illuminating Search Spaces by Mapping Elites.
arXiv:1504.04909 (2015)

14. Niederreiter, H.: Low-discrepancy and low-dispersion sequences. J. Number Theory
30, 51–70 (1988)

15. Pearson, K.: On lines and planes of closest fit to systems of points in space. Lond.
Edinb. Dublin Philos. Mag. J. Sci. 2, 559–572 (1901)

16. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolu-
tionary computation. Front. Robot. AI 3, 1–17 (2016)

17. Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT press, Cambridge
(2006)

18. Rosch, E.: Cognitive reference points. Cognit. Psychol. 7(4), 532–547 (1975)
19. Salvador, S., Chan, P.: Determining the number of clusters/segments in hierarchical

clustering/segmentation algorithms. In: 16th IEEE International Conference on
Tools with Artificial Intelligence, pp. 576–584. IEEE, Boston (2003)

20. Schölkopf, B., Smola, A., Müller, K.-R.: Kernel principal component analysis.
In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997.
LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0020217

21. Shir, O.M., Bäck, T.: Niching in evolution strategies. In: 7th Annual Conference on
Genetic and Evolutionary Computation, pp. 915–916. ACM, Washington (2005)

22. Singh, G., Deb, K.: Comparison of multi-modal optimization algorithms based on
evolutionary algorithms. In: 8th Annual Conference on Genetic and Evolutionary
Computation, pp. 1305–1312. ACM, Seattle (2006)

23. Stump, G.: Design space visualization and its application to a design by shopping
paradigm. In: International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference, pp. 795–804. ASME, Chicago
(2003)

24. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global framework for nonlinear
dimensionality reduction. Science 290(5500), 2319–2323 (2000)

25. Tomašev, N., Radovanović, M.: Clustering evaluation in high-dimensional data.
In: Celebi, M.E., Aydin, K. (eds.) Unsupervised Learning Algorithms, pp. 71–107.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24211-8 4

26. Wittgenstein, L.: Philosophische Untersuchungen. Basil Blackwell, Oxford (1953)
27. Zwicky, F.: Discovery, Invention Research Through the Morphological Approach.

Macmillan, New York (1969)

https://doi.org/10.1007/978-3-642-45511-7
http://arxiv.org/abs/1504.04909
https://doi.org/10.1007/BFb0020217
https://doi.org/10.1007/BFb0020217
https://doi.org/10.1007/978-3-319-24211-8_4

Sparse Incomplete LU-Decomposition
for Wave Farm Designs Under Realistic

Conditions

Dı́dac Rodŕıguez Arbonès1,4, Nataliia Y. Sergiienko2, Boyin Ding2,
Oswin Krause1, Christian Igel1, and Markus Wagner3(B)

1 Department of Computer Science,
University of Copenhagen, Copenhagen, Denmark

2 School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
3 School of Computer Science, University of Adelaide, Adelaide, Australia

markus.wagner@adelaide.edu.au
4 NETS A/S, Ballerup, Denmark

Abstract. Wave energy is a widely available but still largely unexploited
energy source, which has not yet reached full commercial development. A
common design for a wave energy converter is called a point absorber (or
buoy), which either floats on the surface or just below the surface of the
water. Since a single buoy can only capture a limited amount of energy,
large-scale wave energy production requires the deployment of buoys
in large numbers called arrays. However, the efficiency of these arrays
is affected by highly complex constructive and destructive intra-buoy
interactions. We tackle the multi-objective variant of the buoy placement
problem: we are taking into account the highly complex interactions
of the buoys, while optimising critical design aspects: the energy yield,
the necessary area, and the cable length needed to connect all buoys –
while considering realistic wave conditions for the first time, i.e., a real
wave spectrum and waves from multiple directions. To make the problem
computationally feasible, we use sparse incomplete LU decomposition
for solving systems of equations, and caching of integral computations.
For the optimisation, we employ modern multi-objective solvers that are
customised to the buoy placement problems. We analyse the wave field
of final solutions to confirm the quality of the achieved layouts.

Keywords: Ocean wave energy · Wave energy converter array
Simulation speed-up · Multi-objective optimisation

1 Introduction

With ever-increasing global energy demand and finite reserves of fossil fuels,
renewable forms of energy are becoming increasingly important to consider [16].
Wave energy is a widely available but unexploited source of renewable energy
with the potential to make a considerable contribution to future energy produc-
tion [12]. A multitude of techniques for extracting wave energy are currently
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 512–524, 2018.
https://doi.org/10.1007/978-3-319-99253-2_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_41&domain=pdf

Sparse Incomplete LU-Decomposition for Wave Farm Designs 513

being explored [12,13]. A wave energy converter (WEC) is a device that cap-
tures and converts wave energy to electricity. One common WEC design is the
point absorber or buoy, which typically floats on the surface or just below the
surface of the water, and captures energy from the movement of the waves [12].
In our research, we consider three-tether WECs (Fig. 1) inspired by the next
generation of CETO systems developed by the Australian wave energy company
called Carnegie Clean Energy. These buoys operate under water surface (fully
submerged) and tethered to the seabed in an offshore location.

Submerged buoy
Tether

Power take-off
system

Sea floor

Fig. 1. Schematic representation of
a three-tether WEC [28].

One of the central goals in designing and
operating a wave energy device is to max-
imise its overall energy absorption. As a
result, the optimisation of various aspects of
wave energy converters is an important and
active area of research. Three key aspects
that are often optimised are geometry, con-
trol, and positioning of the WECs within the
wave energy farm (or array). Geometric opti-
misation seeks to improve the shape and/or
dimensions of a wave energy converter (or some part of it) with the objective of
maximising energy capture [17,19]. On the other hand, the optimisation of con-
trol is concerned with finding good strategies for actively controlling a WEC [22].
A suitable control strategy is needed for achieving high WEC performance in
real seas and oceans, due to the presence of irregular waves [6]. In this article we
focus on the third aspect, namely the positioning of multiple wave energy con-
verters while considering constraints, additional objectives, and realistic wave
conditions.

To evaluate the performance of our arrays, we use a frequency domain model
for arrays of fully submerged three-tether WECs [24]. This model enables us to
investigate design parameters, such as number of devices and array layout. In
addition to the objective of producing energy, we consider two more objectives:
the area needed to place all buoys, and the cable length needed to connect all
buoys. This results in an optimisation problem: what are the best trade-offs of
the area needed, the buoys’ locations, and the cable length needed? To the best
of our knowledge, this study is the first to investigate this question to reduce
costs and to increase efficiency, while considering realistic wave conditions in a
multi-objective setting. A first related study is that by Wu et al. [28] where a
single objective (power output) was considered and only a single wave frequency
and single direction to keep the computational cost at bay. Arbonès et al. [1]
investigated multiple objectives by considering parallel architectures and varying
numbers of wave frequencies, while again being limited to a single wave direction.
Neshat et al. [21] characterised the intra-buoy effects given realistic conditions
and exploited this knowledge in custom single-objective hillclimbers.

We take this as a starting point for our four contributions here: (i) we use a
realistic wave scenario with multiple directions, (ii) we speedup the calculations,

514 D. R. Arbonès et al.

(iii) we employ a different constraint handling approach to allow the use of other
algorithms, and (iv) we provide insights by characterising the wave field.

We proceed as follows. In Sect. 2, we describe the WEC power generation
model used in our study and introduce the multi-objective buoy placement prob-
lem. We describe the different objectives that are subject to our investigations,
and the constraints used and how we implemented them. We note the problem
complexity, which is the factor preventing study of large farms. Then, we present
in Sect. 3 our methods to reduce running times and the constraint handling used.
We describe and present our experiments in Sect. 4, provide a discussion of the
results in Sect. 5, and conclude with a summary in Sect. 6.

Peak wave period (s)

Si
gn

ifi
ca

nt
 w

av
e

he
ig

ht
 (m

)

5 10 15

1

2

3

4

5

6

7

Pr
ob

ab
ili

ty
, %

0

2

4

6

8

5%

10%

15%

EW

S

N

0
1
2
3
4
5
6
7
8
9
10

Si
gn

ifi
ca

nt
 w

av
e

he
ig

ht
 (m

)

Fig. 2. Australia/New South Wales (NSW) test site near Sydney: wave data statistics
(left) and the directional wave rose [2] (right).

2 Preliminaries

The total performance of a wave energy farm is not only dependent on the
number of WEC units in the array, but also on their mutual arrangement and
separating distances. The total capital expenditure per single unit decreases sig-
nificantly with increase in the farm scale [20]. When operating in a group, WECs
interact with each other modifying the incident wave front which can lead to the
significant reduction in generated power [3]. Moreover, the interference between
converters can be destructive as well as constructive which purely depends on
their hydrodynamic parameters and coupling. Thus, the array layout is of great
importance for the efficient operation of the whole farm, as well as the wave
conditions (dominant wave periods and wave directions).

The WEC chosen for this study is a fully submerged spherical buoy connected
to three tethers (taut moored) that are equally distributed around the buoy hull
(Fig. 1). Each tether is attached to the individual power generator at the sea
floor, which allows to extract energy from surge and heave motions simultane-
ously [23]. The geometric parameters of the buoys are as follows: they have a
5 m radius, are submerged at 6 m below the water surface, have a weight of 376
tons, and the tether inclination angle from the vertical is 55◦. A particular site
on the east coast of Australia has been selected as one of the potential locations
for the farm installation (see Fig. 2 for sea site statistics).

Sparse Incomplete LU-Decomposition for Wave Farm Designs 515

2.1 Objectives

We consider a multi-objective optimisation scenario, using various evolutionary
algorithms, where multiple goals are leveraged to obtain a set of solutions.

Power Output. The frequency domain model of this kind of WEC arrays has
been derived by Sergiienko et al. [24], and used by in related work [1,28]. In the
model, the hydrodynamic interaction of submerged spheres is taken from [27] and
the machinery force of each power take-off unit is modelled as a linear spring-
damper system. The output from the model is a power absorbed by the array
of WECs P (x,y, ω, β) that is a function of their spatial position (coordinates)
(x,y), wave frequency ω, and wave angle β. As a result, the optimisation problem
that corresponds to the power production of the array is expressed:

max(x,y)

∫
β

fβ · (∫
ω

fω · P (x,y, ω, β) dω
)
dβ, (1)

There is no closed form solution for this equation. The result is computed by a
discrete set of wave frequencies and angles sampled from the distribution.

Additional Objectives. As the second objective after the wave farm’s power
output, we use the Euclidean minimum spanning tree (MST) to calculate the
minimum length of cable or pipe required to connect all buoys.

Thirdly, the cost of the convex hull is defined as the area contained by the set
of buoys that form the convex hull. This corresponds to the minimum land area
that is required for a wave farm layout. While we omit it here, a safety distance
at the perimeter of the wave farm should be included for production purposes.

Constraints. The problem uses two types of constraints. Box constraints
restrict the available sea surface, and prevent the use of unrealistic amounts
of space. The second constraint ensures that no two buoys are placed closer
than 50 m. This prevents damage and allows for installation and maintenance
ships (such as the Atlantic Hawk vessel) to navigate between the buoys
safely.

2.2 Problem Complexity

The main computational burden is coming from the evaluation of the power out-
put, which involves (i) the approximation of singular numerical integrals involved
in the hydrodynamic model [27], and (ii) solution of the linear system of 3 × N
motion equations of the form Ax = b, where N corresponds to the number of
buoys in the array. As a result, the complexity of a function evaluation depends
on a number of factors, including, but not limited to, the number of buoys, wave
directions and number of frequencies considered. To obtain a reliable power
prediction, we sample a set of wave frequencies and angles. The accuracy of the
result depends on quantity and probability of parameters chosen. Therefore there
is an accuracy/time trade-off. The problem quickly becomes untractable for farm
sizes of practical interest. In this article, we prioritize reducing the runtime of
the power output computation to obtain the largest benefits.

516 D. R. Arbonès et al.

Furthermore, the interbuoy-distance constraint is non-convex, which prevents
the use of some algorithms that cannot handle this type of constraints. Relax-
ation of this constraint is not considered, as it would discard potentially good
solutions.

3 Computational Speed-Ups and Constraint Handling

Numerical Integration. The integrals in the hydrodynamic model span over
an infinite interval and contain a singularity at some point K. To obtain an
approximation, we use an implementation of Cauchy principal value for the
interval (0, 1.5K), and an algorithm based on a 21-point Gauss-Kronrod rule
(provided by the GNU Scientific Library [5]) for the remaining infinite interval.

Caching. During evaluation of the power output function, the integral is evalu-
ated several times with different parameters, pertaining to the positioning of the
buoys. These integrals appear often with the same parameters, and thus, do not
have to be recomputed. We cache the results, which allows for a more efficient
use of computational resources and avoids unnecessary calculations.

Linear Algebra. The linear systems of the form Ax = b become the bottleneck
after the approximation of the integrals. The typical choice for solving this type
of system of equation is the LU -factorization with partial pivoting. However, for
our application this approach is too slow as we need to solve several thousand
systems of equations throughout the optimisation process. Instead, we make use
of the fact that this system has many variables with values very close to zero
and thus their contribution to the final solution is negligible. One approach is
to compute a sparse incomplete LU -decomposition as a pre-conditioner for an
iterative algorithm. This procedure adds the cost of computing the approximate
decomposition in trade for fast solving of the system of equations. This approach
works best when the system has to be solved with several right hand sides as in
this case, where the cost of computing the LU -decomposition amortises.

In our case, we can not reuse the LU -decomposition. Instead we use the
fact that for a low percentage of zero-entries the incomplete LU -decomposition
gives a good approximation to the original system. Thus we can approximate the
original system by a sparse variation where we discard the smallest percentile of
values and solve it approximately using the incomplete LU -decomposition. This
saves time approximately linear in the percentage of discarded values.

We have to evaluate experimentally at which percentage of discarded values
we can still obtain a reasonable accuracy. For this, we generate 100 random feasi-
ble buoy layouts. While keeping the layouts fixed, we discard values and compare
the computed power output to the dense solution. Figure 3 shows the obtained
solutions with respect to matrix sparsity, where the power output of each layout
has been subtracted for comparison. We can see that run-time decreases linearly
with the increasing number of discarded values. The accuracy of the solution
remains stable until 75% sparsity, where it starts to degrade. The accuracy loss
of the 70% sparse solution with respect to the dense implementation is shown
in Fig. 4. To obtain the error of the linear system Ax = b, we use the formula
‖As − b‖/‖b‖, where s is the solution obtained.

Sparse Incomplete LU-Decomposition for Wave Farm Designs 517

Fig. 3. Relative power output (left) and time per iteration (right), against sparsity per-
centage; medians of 100 runs (blue), 5%/95% percentiles (green). (Color figure online)

Fig. 4. Relative residual error of 100 different random feasible layouts using dense and
sparse solver. For the sparse, 70% of the smallest values were discarded.

Constraint Handling. The box constraint to allow buoy placements only in
the designated area is enforced by a sinusoidal function of the form [7]: x =
a + (b − a) ∗ (1 + cos(π ∗ x/(b − a) − π))/2. The range of this function is (a, b),
and provides a smooth transition near the boundaries which is beneficial for the
algorithms. By setting a, b ∈ R to the box limits, we guarantee that any solution
obtained will lay within the feasible range.

We implemented the inter-buoy constraint with a penalty function propor-
tional to the square of the violation distance. The function takes the set of
all buoys (b1 . . . bn), and a minimum distance parameter M : v (b1 . . . bn) =∑n

i=1

∑n
j �=i max(M2−‖bi −bj‖2, 0). The objectives F of a given layout are then

scaled according to a penalty regularisation parameter K: F ′ = F (1 + K v).
Other constraint handling approaches, e.g. as they are used for handling

geo-constraints, could have been considered [14,15], however, this is beyond the
scope of this present paper.

518 D. R. Arbonès et al.

4 Experimental Study

Experimental Setup. To obtain a realistic output estimate and to generate
solutions robust to the changing nature of the sea we choose to use 25 linearly-
spaced frequencies and 7 wave directions sampled from Fig. 2. Note that a direc-
tion of 0◦ indicates waves coming from the south.

We run experiments for farms of 4, 9, 16, 25 and 36 buoys. We set the
boundaries of the farm depending on the amount of buoys to be placed, using
20.000 m2 per buoy. This results in squares of sides 283 m, 424 m, 566 m, 707 m,
and 849 m. We limit most of our report here to 4, 9, and 36 buoys.

We use Unbounded-Population-MO-CMA-ES (UP-MO-CMA-ES)
[11], Steady-State-MO-CMA-ES (SS-MO-CMA-ES) [9], SMS-EMOA [4].
Furthermore, for comparison purposes, we use the variant of SMS-EMOA with
custom operators presented in [1] (SMS-EMOA�). These operators are specific to
our kind of placement problem and have been used in wind farm turbine place-
ment as well as WEC placement optimisation [1,25,26]. In particular, Move-
mentMutation moves single WECs along corridors for local search purposes,
and BlockSwapCrossover recombines sub-layouts from complete layouts in
order to potentially recombine good sub-layouts into higher-performing ones. We
run each combination of algorithm and amount of buoys 100 times.

We initialise with a population size of μ = 50, and run the experiments for
8000 iterations (for 25 and 36 buoys the budget is 10000). For SS-MO-CMA-ES
and UP-MO-CMA-ES we set σ = 50. We initialise the algorithms with μ = 50
grids of different sizes, i.e., from the smallest grid (inter-buoy distance 50 m) to
the largest grid where the outermost buoys are at the boundary.

We use K = 100 in the regularisation of infeasible layouts, as we found this
to be a good trade-off between preventing the algorithms from using infeasible
solutions, and allowing exploration of regions close to the boundaries.

We focus on the power output because it is the objective of highest practical
importance. The convex hull and minimum spanning tree attempt to decrease
the cost and resource utilization of the final solution, while the power output is
the target driving the funding and development of the farm infrastructure.

Experimental Results. We present the results of our experiments for the
different multi-objective algorithms used. Our inter-buoy penalty does not guar-
antee that infeasible solutions will not be produced, therefore we ignore them
here.

As the power objective is most important, we first present the evolution of
the points with the highest power output. For all farm sizes considered, we show
the means over the points with highest power output of all fronts and their 75%
confidence intervals for each iteration. Additionally, Fig. 5 shows the values of
minimum spanning tree (MST) and convex hull (CH) of those points.

To compare the performance of the multi-objective algorithms we use the
so-called hypervolume, which is the volume of the space dominated by the found
solutions and a chosen reference point as in [4]. We show the evolution of the
volume over the course of optimisation in Fig. 6 for all algorithms.

Sparse Incomplete LU-Decomposition for Wave Farm Designs 519

Fig. 5. Evolution of the three objectives for all algorithms. Shown are the means of
100 runs with 75% confidence intervals.

Table 1. Objectives attained by initial and optimised individuals.

Buoys Highest power initial solution Highest overall power solution

Power (MW) MST (m) CH (m2) Power (MW) MST (m) CH (m2)

4 1.8258 396 17635 1.8497 152.29 10.8

9 4.1042 1008 63635 4.1590 493 10465

16 7.2873 1734 124906 7.3254 1263 98797

25 11.3506 2520 183542 11.4145 1823 156958

36 16.3215 5082 640442 16.3757 3080 323946

Fig. 6. Hypervolumes: means of 100 runs with 75% confidence intervals. The reference
point is based on the worst values obtained for each objective.

In Fig. 7, we show the set of non-dominated feasible solutions found by any
algorithm after the last iteration. The objective value achieved by the layouts
with highest power outputs are given in Table 1. As we can see, the power output

520 D. R. Arbonès et al.

of the best solutions always increased slightly over the initial best layouts, while
the MST length and the area needed both decreased significantly. This means
that the newly found layouts not only produce more energy, but also require
shorter pipes and a smaller area.

5 Discussion

Optimisation Interpretation. The modified SMS-EMOA worked better for
the best individuals except in 4 dimensions. In terms of hypervolume, the UP-
MO-CMA consistently outperformed the other variants for larger layouts. We
obtained a roughly 1% improvement on average over the best initial grid.

The SS-MO-CMA-ES consistently performs well on the 4-buoy layout, how-
ever it becomes worse on the larger layouts and fails for layouts with more
than 9 buoys. The UP-MO-CMA-ES performs better in comparison. We argue
that the reason for this is the complex function landscape with constraints in
conjunction with the different measures of progress. The UP-MO-CMA-ES
only requires a point to be non-dominated to make progress. Thus it have more
chances to adapt to the function landscape. The SS-MO-CMA-ES in compari-
son must create points which non-dominated but also an improvement in covered
volume. Thus the SS-MO-CMA-ES will quickly adapt to evaluate solutions
close to existing solutions and thus might easily get stuck in local optima.

The SMS-EMOA has good performance when used in farm sizes of 4 buoys,
but lags behind for larger farms. In contrast, SMS-EMOA� consistently outper-
forms all other algorithms and produces the best solutions. This shows that the
operators developed for wind turbine placement generalise to the similar task of
WEC positioning. However, in terms of hypervolume covered, it lags behind the
UP-MO-CMA-ES.

One might wonder whether our best performing layouts (in terms of power
output) are optimal. While we have no means of proving optimality, we do know
that the UP-MO-CMA-ES used in the experiment uses 20% of the given budget
on the corner points. This means it spends a considerable amount of effort on

Fig. 7. Aggregated fronts of all algorithms’ non-dominated solutions. The three dimen-
sional objective space is plotted twice into the two-dimensional space.

Sparse Incomplete LU-Decomposition for Wave Farm Designs 521

exploring extreme trade-offs, among which are the layouts with highest power
output. Therefore, the results of UP-MO-CMA-ES given here provide a good
intuition of how UP-MO-CMA-ES’s single-objective cousin CMA-ES [8] would
perform, albeit with a smaller budget.

Hydrodynamic Interpretation. In order to analyse the optimisation results,
it is necessary to understand how a particular array layout modifies the wave field
and how much power propagates downstream as waves travel through the farm.
Firstly, we explore the behaviour of the wave farm for the dominant wave period
of 9 s (ω = 0.7 rad/s) and the wave angle of 0◦. For the following interpretation
we use WAMIT, which a state-of-the-art tool used by the industry and research
community for analysing wave interactions.

When a wave hits the buoy, a part of the wave front passes through the
object creating a wake field behind, a part of the wave is diffracted back and the
rest is absorbed by the converter. Other wave types are the radiated waves that
spread uniformly in all directions from the oscillating structure (wave source).
Depending on the phase information, these three types of waves can be superim-
posed on each other creating a more energetic wave field, or in other case they
can eliminate each other leading to the smaller or zero wave amplitude. Thus,
for the wave farm design it is important to place buoys in such locations when
waves create a constructive interaction resulting in more wave power.

Fig. 8. The wave field around the 4 and 9-unit arrays of WECs with the initial (left)
and optimised (right) layouts. White circles show the location of submerged spherical
buoys. The wave propagates from left.

In Fig. 8 (left), we show the wave energy transport per unit frontage of the
incident and radiated wave for the 4-unit array. It can be seen that the ini-
tial square layout has two converters located in a wake of the first row which
decreases their power output. The incident wave energy transport for this wave
period is around 35 kW/m, while only 25 kW/m are propagated to the back row.
As has been stated in [3], the park effect in the wave farm is the most significant
for the front buoys as they benefit from radiated waves of a row behind. Inter-
estingly, WECs in the optimised layout are lined up perpendicular to the wave
front. An inter-buoy distance is about 51 m which is equal to 0.43λ, if we consider
only one dominant frequency of the spectrum (here λ is a wavelength). Com-
paring this result with existing literature, this particular scenario buoys should

522 D. R. Arbonès et al.

be separated by 0.85λ = 100 m [10,18] in order to achieve the maximum con-
structive interaction in the array leading to a quality factor of 1.5. However, the
other optimisation objectives came into place limiting the inter-buoy distance.

Similar behaviour of the optimisation algorithm is observed for the case of 9
buoys (see Fig. 8, right) resulting in the decreased number of rows as compared
to the initial layout. From the hydrodynamic point of view, it would be even
better to have only one row perpendicular to the wave front. However, single-
line initialisation is not robust when a spectrum of wave directions is considered,
and they would also require larger-than-allowed maximal dimensions.

With increasing number of units in the array, a more complex interaction
between buoys takes place leading to the non-trivial optimisation results. In
comparison to the 4-buoys array, more interesting effects can be observed look-
ing at the wave field created by the 9-buoy array with the initial layout (see
Fig. 8 left). It becomes obvious that initially all converters have been placed
to the areas, where radiated waves from adjacent buoys create disadvantageous
conditions for power generation. In contrast, the coordinates of all converters in
the optimised layout (see Fig. 8 right) coincide with locations where more energy
can be captured (similar to the local maxima on the surface plot), especially it
is observed for the buoys placed in front.

Fig. 9. Levels of absorbed power
by the 9-unit arrays for the initial
(left) and optimised (right) layouts.
WECs sizes are not to scale.

Going deeper in the analysis, power out-
puts from all WECs within the 9-unit array
are shown in Fig. 9 for the initial and opti-
mised layouts. As expected, for arrays with
a regular grid (initial case), the amount of
generated power from each row is reduced by
about 10% as compared to the row ahead.
In the final layout almost all WECs have
power output higher than 450 kW, which
proves the effectiveness of the optimisation
algorithms.

6 Conclusions

Wave energy is widely available around the globe, however, it is a largely unex-
ploited source of renewable energy. Over the last years, the interest in it has
increased tremendously, with dozens of wave energy projects being at various
stages of development right now. In our studies we focused on point absorbers
(also known as buoys). As the energy capture of a single buoy is limited, the
deployment of large numbers of them is necessary to satisfy energy demands.
In such scenarios, it is important to consider realistic intra-buoy interactions in
order to optimise the operations of a wave energy farm.

In this article, we investigated the placement optimisation with respect to
three competing objectives. To speed up the simulations of the intra-buoy inter-
actions, we considered the use of sparse incomplete decompositions to solve linear
systems. We tested different evolutionary optimisation algorithms, including cus-
tom variation operators developed for wind turbine placement. All simulations

Sparse Incomplete LU-Decomposition for Wave Farm Designs 523

were done assuming realistic scenarios with waves coming from various directions
with different probabilities and different wave spectra.

The volume covered by the solutions of the different algorithms showcases
the complexity of the wave energy model for larger farm sizes. The highest power
obtained from the experiments achieved a 1% increase in power on average over
the best grid-based initial layout, In addition, the optimised layouts require
significantly shorter cables (or pipes) for the interconnection, and a significantly
smaller area for the installation.

In summary, our results show that the fast and effective multi-objective place-
ment optimisation of wave energy farms under realistic conditions is possible and
yields significant benefit. Furthermore, our results are consistent with previous
results obtaining optimal separation between buoys.

References

1. Arbonès, D.R., Ding, B., Sergiienko, N.Y., Wagner, M.: Fast and effective multi-
objective optimisation of submerged wave energy converters. In: Handl, J., Hart,
E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016.
LNCS, vol. 9921, pp. 675–685. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45823-6 63

2. Australian Wave Energy Atlas (2016). http://awavea.csiro.au/. Accessed 07 June
2016

3. Babarit, A.: On the park effect in arrays of oscillating wave energy converters.
Renew. Energy 58, 68–78 (2013)

4. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

5. GNU Scientific Library. Version 1.16 (2013). http://www.gnu.org/software/gsl/.
Accessed 2 Apr 2017

6. Hals, J., Falnes, J., Moan, T.: A comparison of selected strategies for adaptive
control of wave energy converters. J. Offshore Mech. Arctic Eng. 133(3), 031101
(2011)

7. Hansen, N.: CMA-ES Source Code: Practical Hints (2014). https://www.lri.fr/
∼hansen/cmaes inmatlab.html. Accessed 2 Apr 2017

8. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions
in evolution strategies: the covariance matrix adaptation. In: IEEE Congress on
Evolutionary Computation, pp. 312–317 (1996)

9. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective
optimization. Evol. Comput. 15(1), 1–28 (2007)

10. Justino, P., Clément, A.: Hydrodynamic performance for small arrays of submerged
spheres. In: 5th European Wave Energy Conference (2003)

11. Krause, O., Glasmachers, T., Hansen, N., Igel, C.: Unbounded population MO-
CMA-ES for the Bi-objective BBOB test suite. In: Genetic and Evolutionary Com-
putation Conference, pp. 1177–1184. ACM (2016)

12. Lagoun, M., Benalia, A., Benbouzid, M.: Ocean wave converters: state of the art
and current status. In: IEEE International Energy Conference, pp. 636–641 (2010)

13. López, I., Andreu, J., Ceballos, S., de Alegŕıa, I.M., Kortabarria, I.: Review of wave
energy technologies and the necessary power-equipment. Renew. Sustain. Energy
Rev. 27, 413–434 (2013)

https://doi.org/10.1007/978-3-319-45823-6_63
https://doi.org/10.1007/978-3-319-45823-6_63
http://awavea.csiro.au/
http://www.gnu.org/software/gsl/
https://www.lri.fr/~hansen/cmaes_inmatlab.html
https://www.lri.fr/~hansen/cmaes_inmatlab.html

524 D. R. Arbonès et al.

14. Lückehe, D., Wagner, M., Kramer, O.: On evolutionary approaches to wind tur-
bine placement with geo-constraints. In: Genetic and Evolutionary Computation
Conference, pp. 1223–1230. ACM (2015)

15. Lückehe, D., Wagner, M., Kramer, O.: Constrained evolutionary wind turbine
placement with penalty functions. In: IEEE Congress on Evolutionary Compu-
tation (CEC), pp. 4903–4910 (2016)

16. Lynn, P.A.: Electricity from Wave and Tide: An Introduction to Marine Energy.
Wiley, Hoboken (2013)

17. McCabe, A., Aggidis, G., Widden, M.: Optimizing the shape of a surge-and-pitch
wave energy collector using a genetic algorithm. Renew. Energy 35(12), 2767–2775
(2010)

18. McIver, P.: Arrays of wave-energy devices. In: 5th International Workshop on
Water Waves and Floating Bodies, Oxford, UK (1995)

19. Mohamed, M., Janiga, G., Pap, E., Thévenin, D.: Multi-objective optimization of
the airfoil shape of Wells turbine used for wave energy conversion. Energy 36(1),
438–446 (2011)

20. Neary, V.S., et al.: Methodology for design and economic analysis of marine energy
conversion (MEC) technologies. Technical report, Sandia National Laboratories
(2014)

21. Neshat, M., Alexander, B., Wagner, M., Xia, Y.: A detailed comparison of meta-
heuristic methods for optimising wave energy converter placements. In: Genetic
and Evolutionary Computation. ACM (2018, accepted)

22. Nunes, G., Valério, D., Beirao, P., Da Costa, J.S.: Modelling and control of a wave
energy converter. Renew. Energy 36(7), 1913–1921 (2011)

23. Scruggs, J.T., Lattanzio, S.M., Taflanidis, A.A., Cassidy, I.L.: Optimal causal con-
trol of a wave energy converter in a random sea. Appl. Ocean Res. 42(2013), 1–15
(2013)

24. Sergiienko, N.Y., Cazzolato, B.S., Ding, B., Arjomandi, M.: Frequency domain
model of the three-tether WECs array (2016). http://tiny.cc/ThreeTether. Code:
http://tiny.cc/OptEn. Accessed 1 Mar 2018

25. Tran, R., Wu, J., Denison, C., Ackling, T., Wagner, M., Neumann, F.: Fast and
effective multi-objective optimisation of wind turbine placement. In: Genetic and
Evolutionary Computation, pp. 1381–1388. ACM (2013)

26. Wagner, M., Day, J., Neumann, F.: A fast and effective local search algorithm for
optimizing the placement of wind turbines. Renew. Energy 51, 64–70 (2013)

27. Wu, G.X.: Radiation and diffraction by a submerged sphere advancing in water
waves of finite depth. Math. Phys. Sci. 448(1932), 29–54 (1995)

28. Wu, J., et al.: Fast and effective optimisation of arrays of submerged wave energy
converters. In: GECCO, pp. 1045–1052. ACM (2016)

http://tiny.cc/ThreeTether
http://tiny.cc/OptEn

Understanding Climate-Vegetation
Interactions in Global Rainforests

Through a GP-Tree Analysis

Anuradha Kodali1, Marcin Szubert2, Kamalika Das1(B), Sangram Ganguly3,
and Joshua Bongard2

1 USRA, NASA Ames Research Center, Moffett Field, CA, USA
anu.uconn@gmail.com, kamalika.das@nasa.gov
2 University of Vermont, Burlington, VT, USA

{marcin.szubert,jbongard}@uvm.edu
3 BAERI Inc., NASA Ames Research Center, Moffett Field, CA, USA

sangram.ganguly@nasa.gov

Abstract. The tropical rainforests are the largest reserves of terrestrial
carbon and therefore, the future of these rainforests is a question that
is of immense importance in the geoscience research community. With
the recent severe Amazonian droughts in 2005 and 2010 and on-going
drought in the Congo region for more than two decades, there is grow-
ing concern that these forests could succumb to precipitation reduction,
causing extensive carbon release and feedback to the carbon cycle. How-
ever, there is no single ecosystem model that quantifies the relationship
between vegetation health in these rainforests and climatic factors. Small
scale studies have used statistical correlation measure and simple linear
regression to model climate-vegetation interactions, but suffer from the
lack of comprehensive data representation as well as simplistic assump-
tions about dependency of the target on the covariates. In this paper we
use genetic programming (GP) based symbolic regression for discovering
equations that govern the vegetation climate dynamics in the rainforests.
Expecting micro-regions within the rainforests to have unique character-
istics compared to the overall general characteristics, we use a modified
regression-tree based hierarchical partitioning of the space to build indi-
vidual models for each partition. The discovery of these equations reveal
very interesting characteristics about the Amazon and the Congo rain-
forests. Our method GP-tree shows that the rainforests exhibit tremen-
dous resiliency in the face of extreme climatic events by adapting to
changing conditions.

Keywords: Hierarchical modeling · Symbolic regression
Genetic programming · Earth science · Nonlinear models

A. Kodali—Currently at AllState Innovations.
M. Szubert—Currently at Google Inc., Zürich.

This is a U.S. government work and its text is not subject to copyright protection in the
United States; however, its text may be subject to foreign copyright protection 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 525–536, 2018.
https://doi.org/10.1007/978-3-319-99253-2_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_42&domain=pdf

526 A. Kodali et al.

1 Introduction

Physics based modeling and perturbation theory has long been used to study the
eco-climatic interactions by scientists in order to explain observed phenomena.
However, these models, derived under various assumptions of equilibrium, are
often only suitable for ideal conditions, and fail to explain the complex dynam-
ics of ecosystem responses to varying environmental factors, especially in the
context of a progressively warming global climate. Given the vast amounts of
data being collected by different ground-based and remote sensing instruments
over long periods of time, the Earth Science research community is extremely
data rich. As a result, there has been a slow and steady shift towards the use
of machine learning for answering many of their science questions. Ensemble
approaches for climate modeling, uncertainty analysis for model evaluation, net-
work based analysis for discovery of new climate phenomena are examples [1].
However, most of the analysis approaches used for climate-vegetation dynamics
have been restricted to simple statistical correlation analysis or linear regres-
sion [17], thereby limiting discoveries to only linear dependencies. In this work,
we formulate the problem of understanding vegetation-climate relationship in
rainforests as a regression problem where different climate variables and other
influencing factors form the set of independent regressors, and data represent-
ing vegetation in the rainforests is the target. In the hope of understanding
how climate affects vegetation, we discover regression equations that best fit
the observed data. We alleviate the limitation of linear models through the use
of a genetic programming based symbolic regression [5] which is a data driven
white-box model that allows us to learn both the structure and weights of the
regression equation, thereby revealing previously unknown nonlinear interactions
in the data. We combine symbolic regression with hierarchical modeling using
regression trees in order to partition the large space of spatio-temporal interac-
tions for discovering micro regions within the vast rainforest expanses.

The tropical rainforests are the largest reserves of terrestrial carbon sink,
predominantly due to the presence of homogeneous, dense, moist forests over
extensive regions. The Amazon forests, for example, are a critical component
of the global carbon cycle, storing about 100 billion tons of carbon in woody
biomass [7], and accounting for about 15% of global net primary production
(NPP) and 66% of its inter-annual variability [19]. Together with the Congo
basin in Africa and the Indo-Malay rainforests in Southeast Asia, tropical forests
store 40–50% of carbon in terrestrial vegetation and annually process approxi-
mately six times as much carbon via photosynthesis and respiration as humans
emit from fossil fuel use [6]. With the recent severe Amazonian droughts in
2005 and 2010 [13,17] and on-going multi-decadal drought in the Congo region
[20], there is growing concern that these forests could succumb to precipitation
reduction, causing extensive carbon release and feedback to the carbon cycle [3].
Interestingly, the two largest rainforests display different characteristic drought
patterns with Amazonia encountering episodic and abrupt droughts during the
dry season (July–September) and Congo experiencing a gradual and persistent

Climate Vegetation Interactions Through GP-Tree Analysis 527

water shortage. Individual studies of these forests or small areas within them
fail to identify any unifying theory that holds for these global rainforests.

In this work we learn from the various observations pertaining to these rain-
forests in the context of a single modeling framework. We develop a regression
tree approach called GP-tree where the models at each node of the tree are
built using symbolic regression [5]. This framework discovers dynamics that are
local to different partitions within the forests and can be used to explain why
certain areas of the rainforests have responded very differently to the extreme cli-
mate events of the recent times. The discoveries have been validated by domain
scientists conversant with the rainforest ecosystem modeling problem. Precipi-
tation and temperature are the two most relevant climatic factors affecting the
rainforests. Other relevant physiological factors that have been included based
on domain science expertise are elevation and slope which directly affect how
rainfall (or lack thereof) can influence vegetation. Given that forest greenness is
an established indicator of tree health, we use satellite-based vegetation green-
ness observations as our target for this ecosystem model. The goal of the GP
tree method is to learn the dependency of greenness on the climatic and phys-
iological factors from historical data spanning multiple years of observations.
An additional goal is to identify boundaries in this spatial data set where the
equations of dependency change.

2 Related Work

Standard methods in ecosystem modeling use pairwise correlation analysis of
vegetation with each climate variable [16]. Trend analysis on standard anomalies
of different time series is commonly used for understanding long term dependen-
cies. Nemani et al. [10] use trend analysis for understanding limiting environ-
mental factors in different zones of the earth. Ordinary least squares regression
has been used to model the relationship between vegetation and multiple cli-
mate variables [8]. Geographic Weighted Regression (GWR) has also been tra-
ditionally used to allow for local spatial correlations while explaining climate-
vegetation interactions [18]. However, GWR suffers from serious scaling issues.
Cubist [11] is another popular analysis tool that automatically partitions the
data into geographic regions while learning linear models in each partition.
However, none of the methods allow discovery of nonlinear relationships, which
severely restricts the discovery process. Nature inspired learning techniques such
as deep learning, although very powerful in extracting nonlinear relationships,
are not particularly useful in this context due to their blackbox nature.

3 Modeling Framework

Genetic programming based symbolic regression (SR) [5] allows for discovery of
nonlinear dependencies in the data by allowing to learn the equation structure
along with the regression coefficients. Occasionally when the data is diverse, a
single nonlinear model does not suffice. Hierarchical partitioning techniques such

528 A. Kodali et al.

as classification and regression trees (CART) [2] and model trees [11] help in the
identification of low variance regions in the data for building individual models.
In this paper we describe GP-tree that combines these two powerful algorithms
in order to build nonlinear regression models at each partition.

3.1 Symbolic Regression

Symbolic regression’s (SR’s) main defining features are that it is data driven,
white box, and nonlinear. Given training and validation data, SR distills equa-
tions of arbitrary form and complexity to explain the data. An example equation
explaining vegetation-climate interactions for a specific spatio-temporal extent
may look like

Y = −0.01log(eX8(0.03e4X6+X8+2X9((X5 + X6)2 − X2 − X3)2 + 0.2eX10))

where Xi,∀i and Y represent the independent climate variables and greenness
respectively. Symbolic regression is instantiated using population-based stochas-
tic optimization method, genetic programming (GP), whose underlying search
algorithm is biologically-inspired and consists of 3 major operations, namely,
mutation, crossover, and selection [5]. Using these operations, the algorithm
iteratively searches the space of possible models by probabilistically recombin-
ing previous expressions, modifying their components and adding new random
terms to the randomly initialized model population. In each iteration the candi-
date solutions are evaluated and less accurate and less parsimonious models are
replaced by randomly-modified copies of more accurate and more parsimonious
models. A squared error measure is used to judge the goodness of fit of the var-
ious candidate solutions The set of solutions form a Pareto front where error on
the validation set and model complexity are two competing parameters.

3.2 Regression Trees

Decision tree is a machine learning technique for recursively partitioning a space
of explanatory (independent) variables in order to better describe a discrete
target variable. When the target variables are continuous instead of discrete,
regression trees are used. In a regression tree each intermediate node splits the
data using a greedy search algorithm that minimizes variance at that node and
the leaf nodes contain constant values. A special kind of regression tree called
model tree contain leaf nodes which have linear models that can predict the value
of a previously unknown example. Regression trees are used in place of a global
simple linear regression model where the data has many features that interact in
complicated nonlinear ways, and the assumption of linearity falls apart on the
entire data set, but might hold true in small subsets. There are different variants
of the regression tree algorithms. The original model tree approach proposed by
Quinlan [11] relies on building a regression tree with the objective of reducing
the standard deviation of the target variable at each split whereas CART [2]
chooses to minimize the mean squared error (MSE) of the predicted target value

Climate Vegetation Interactions Through GP-Tree Analysis 529

at each node using decision thresholds. The goodness of fit is determined using
the squared error on a validation set and overfitting is handled through tree
pruning and cross validation.

3.3 GP-Tree

Our approach, GP-tree consists of two steps: induction of a model tree to par-
tition the data into subsets and then learning of governing equations for each
partition using symbolic regression. The overall approach for the GP-tree frame-
work is described in Algorithm 1. The details of the framework are described
next.

Algorithm 1. Hierarchical regression: GP-tree
Input: X ∈ R

n×D,y ∈ R
n,max depth, gp params

Output: Tree: T, Models: Mi, i ∈ k (no. of partitions)
Step 1: Build tree: Partition data into k groups

T = PolynomialRegressionTree(X, y, max depth)
[X1,, Xk] = Partitiondata(X, T)

Step 2: Train GP models
for each data partition (Xi,yi) (i ∈ k) do

Mi = learnGP(Xi, yi, gp params)
end for

Our tree induction differs from the model tree approach in that, instead
of the target variance, we consider the MSE approach of CART. Since we are
interested in nonlinear models, we compute the MSE for each split using a sec-
ond order polynomial regression. We hypothesize that the standard deviation
of the target variable may not be enough to find homogeneous partitions with
respect to the models. In each recursive call of the algorithm (see Algorithm 2),
we attempt to find the best binary splitting criterion that divides the dataset X
into two subsets that can be accurately explained by second order polynomial
models, which is equivalent of running LASSO on the second order feature com-
binations of the original data set. To this end, for each feature f we consider
a fixed number (100) of scalar threshold values (evenly distributed in the fea-
ture domain). For every such pair (feature, threshold) we evaluate the quality
of the resulting split by running polynomial regression on the two data subsets
S1 = {X|Xf < t} and S2 = {X|Xf ≥ t}. The best pair is the one that mini-
mizes the sum of mean squared errors in these subsets. Finally, we invoke the
algorithm recursively for the resulting partitions until we reach the maximum
depth of the tree. The output of the algorithm is a regression tree with 2depth−1

internal nodes and 2depth leaves which correspond to partitions of the original
dataset. Various methods are available for determining the choice of depth for
the model tree [12]; here we use model complexity at the leaf nodes. Although
the model tree described above could be used as a predictive model by itself,
we attempt to further improve its prediction performance by replacing the sec-
ond order polynomial models in the terminal leaves of the tree with symbolic
regression based models. For each partitions we perform an independent GP

530 A. Kodali et al.

run (see Algorithm 3) using a variant of the Age-Fitness Pareto Optimization
(AFPO, [14]) algorithm – a multi-objective method that relies on the concept
of genotypic age of an individual (model), defined as the number of generations
its genetic material has been in the population. The age attribute is intended
to protect young individuals before being dominated by older already optimized
solutions.

Algorithm 2. Polynomial Regression Tree
1: Input: X ∈ R

n×D,y ∈ R
n, depth

2: Output: Tree: T
3: if depth == 0 then
4: return TerminalNode(LASSO(X,y))
5: else
6: feature, threshold ← arg minf,t(LRerror(X|Xf < t,y) + LRerror(X|Xf ≥ t,y))

7: leftSubtree ← LinearRegressionTree(X|Xf < t,y, depth − 1)
8: rightSubtree ← LinearRegressionTree(X|Xf ≥ t,y, depth − 1)
9: return InternalNode(feature, threshold, leftSubtree, rightSubtree)

10: end if

Algorithm 3. Genetic Programming
1: Input: X ∈ R

n×D,y ∈ R
n, gp params

2: Output: GP model: M
3: Initialize population of n random models
4: for number of generations do
5: Select random parents
6: Recombine and mutate parents to produce n offspring
7: Add offspring to the population
8: Calculate (error, age, size, complexity) for each model in the population
9: while population size > n do

10: Select k random models from the population
11: Determine local Pareto front among k selected models
12: Remove Pareto-dominated models from the population
13: end while
14: end for

The algorithm starts with a population of n randomly initialized individuals
each of which has age of one which is then incremented by one every generation.
In each generation, the algorithm proceeds by selecting random parents from
the population and applying crossover and mutation operators (with certain
probability) to produce n offsprings. The offspring is added to the population
extending its size to 2n. Then, Pareto tournament selection is iteratively applied
by randomly selecting a subset of individuals and removing the dominated ones
until the size of the population is reduced back to n. To determine which individ-
uals are dominated, the algorithm identifies the Pareto front using four objec-
tives (all minimized): prediction error, age, size and expressional complexity. We
measure the size of an individual (candidate solution) as the number of nodes
in its tree representation. It should be noted here that the regression equation is
derived as a tree structure and this tree is different than the hierarchical model
tree that is being constructed for the data. For assessing the model complexity,
we estimate the order of nonlinearity of the model [15].

Climate Vegetation Interactions Through GP-Tree Analysis 531

4 Data and Computation

MODIS (MODerate-resolution Imaging Spectroradiometer1) product MYD13Q1
at 250 m-16day spatio-temporal resolution is used to obtain the Normalized Dif-
ference Vegetation Index (NDVI), the most commonly used surrogate for veg-
etation [9]. Land surface temperature (LST) is similarly derived from MODIS
product MYD11A1, but at 1 km-1day spatio-temporal resolution. TRMM (Trop-
ical Rainfall Measuring Mission2) observations at 25 km-1month spatio-temporal
resolution is used for precipitation measurements. GTOPO303 is a global digital
elevation model (DEM) at 1 km resolution that is used for obtaining elevation
data for the rainforests. Slope is derived from elevation using standard differen-
tials [4]. Since broadleaf evergreens constitute the largest vegetation type found
in rainforests, we use a MODIS-derived landcover mask MCD12Q1 to retain
only the broadleaf evergreen pixels from the MODIS imagery of the rainforests.
All data sets (temporal and spatial resolutions) are selected on the basis of data
quality and availability.

Fig. 1. Data preprocessing pipeline for regression analysis.

For setting up the regression problem, significant amount of preprocessing
is needed for colocating and aligning these data products from various sources.
Figure 1 shows the end-to-end data preprocessing pipeline. Based on the need
of the problem, and the various data sets available, all data sets have been
reprojected into the same viewing angle and aligned at 1 km spatial resolution
through nearest neighbor interpolation, and averaging based compression. Since
seasons largely determine how rainforests respond to environmental influences,
we choose a monthly temporal granularity for the study and define the seasons

1 https://modis.gsfc.nasa.gov/.
2 https://pmm.nasa.gov/trmm.
3 https://lpdaac.usgs.gov/.

https://modis.gsfc.nasa.gov/
https://pmm.nasa.gov/trmm
https://lpdaac.usgs.gov/

532 A. Kodali et al.

by aggregating monthly time series for each variable as follows: dry season (D)
from July to September, dry-to-wet transition (DW) during October, wet season
(W) from November to February, and wet-to-dry transition (WD) from March
to June. Noise removal is achieved using QA flags available from the MODIS
data products. Spatial smoothing over a square neighborhood surrounding each
pixel also helps in noise reduction. Land cover filtering indicates removing non-
broadleaf pixels while elevation and wetlands filtering removes highly elevated
and flooded areas, respectively. Lastly, drought pixels are anomalies with lower
vegetation values over years and are removed from the training data.

Regression Setup. Our regression problem is modeling the dry season vegeta-
tion as a function of climate and physiological variables in the current (dry)
season as well as past seasons going back up to one year. It is set up as
follows: NDV Ik = f(LSTi, TRMMi, Elev, Slope), where k = currentD and
i ∈ (Dcurrent,Dlast,WD,W,DW) are season indices up to one year back in
time. The assumption that vegetation in the current season is only affected by
rainfall and precipitation within the last one year is based on Subject Mat-
ter Expert (SME) feedback and exploratory analysis with different temporal
dependencies. We randomly pick 100K examples (out of 700K) from the years
2003–2006 for training our GP-tree model. Year 2007 containing 160K samples
is used for validation. The training years chosen using domain knowledge repre-
sent drought years and normal years in precipitation. We set the depth of the
polynomial decision tree to 2 based on analysis of MSE and model complexity
at each leaf node. A tree of depth 2 produces 4 partitions. Once the partitions
are obtained using the polynomial regression tree, we spawn the GP optimiza-
tion routines on each partition with 5000 generations and population size of 50.
We use crossover probability of 0.9 and mutation probability of 0.1. Our list
of mathematical operations include addition, subtraction, multiplication, loga-
rithm, exponential, square, and cubic. We initialize 30 different optimizations
that generate 30 Pareto fronts of GP models. We pick the best model by com-
paring a subset of models from each front based on size, model complexity, and
mean squared error on validation set.

Infrastructure. The data preprocessing pipeline, as well as the modeling and
analysis framework have been run on NASA’s Pleiades Supercomputer with the
following hardware and software configuration. Each of the worker nodes are
based on the Intel Sandy Bridge architecture with dual 8 core 2.6 GHz pro-
cessors and with 32 GB of memory. All nodes’ operating systems are running
SGI ProPack for Linux kernel version 3.0. Pleiades utilizes a PBS scheduler
for job submission. The GP-tree algorithm is centralized and uses a master-
slave architecture only for parallelizing the splitting decisions for the various
feature-threshold choices (see Sect. 3.3). Once the data is partitioned, the sym-
bolic regression equations are computed at each node using massively parallel
search based optimization through genetic programming.

Climate Vegetation Interactions Through GP-Tree Analysis 533

5 Results Analysis

The GP-tree analysis yields 4 different partitions: two of them are temperature
limited and precipitation limited zones while two other partitions have a mix
of temperature, precipitation, and elevation affecting vegetation. Figure 2 shows
the nonlinear equations for each partition. Partitions are identified using blue
(leaf 0), cyan (leaf 1), yellow (leaf 2), and red (leaf 3) colors corresponding to
the spatial partitions in Fig. 3.

Fig. 2. Equations at 4 leaf nodes. Colored boxes indicate matching colors in spatial
map in Fig. 3 (Color figure online)

Fig. 3. (a) Partitions of the rainforests obtained through GP-tree (Color figure online)

Figure 3 makes it evident that the Amazonian and African rainforests have
characteristically different responses to climate, whereas the Indo-Malay rain-
forests have no defining nature, comprising of an equal mix of the different
partitions. The two main partitions encompassing the bulk of the Amazon river
basin are yellow described by Eq. 3 and blue described by Eq. 1 in Fig. 2.

The blue region occupying the central Amazon area is heavily dependent
on temperature from the month of October (LSTDW), the positive sign indi-
cating that vegetation in that area prefers colder temperatures during the dry
to wet season transition. The presence of the TRMM terms in Eq. 1 indicates
vegetation dependence on seasonal rainfall as well. It shows resilience since a
relatively dry wet season (low rainfall during November–February) is compen-
sated by a wetter transition and vice versa. it also shows that vegetation in this

534 A. Kodali et al.

Fig. 4. Partitioning (a) 2005 and (2010) pixels of Amazon and Africa using learned
GP-tree model (Color figure online)

region does not thrive in excessive rainfall. This can be explained as an effect
of the interruption of the adiabatic cooling process that forces temperatures to
rise in extreme cloud conditions, thereby effecting vegetation negatively. The
yellow partition in the north of the Amazon governed by Eq. 3 requires colder
temperatures along with longer rainfall spells overflowing from the wet season
to the transition season for increased greening of the trees. The cyan and red
partitions representing Eqs. 2 and 4 respectively are spread across the peripheral
regions of the Amazon basin. The southern periphery (cyan region) is heavily
dominated by wet season rainfall, as seen in Eq. 2. A similar cyan area can also
be seen flanking the southern Congo basin Africa. Geographically, both these
regions represent a transitional zone in the rainforests, where there is a mix
of broadleaf evergreens and savannas (grasslands) that completely depend on
rainfall for greening. On the other hand, it is apparent that bulk of the African
forests is governed by Eq. 4 described in red in Fig. 3. This is the most complex
model including precipitation and temperature covariates from almost all sea-
sons. Lack of copious rainfall in this region for the last two decades has ruined all
seasonal patterns for the broadleaf evergreens as they try to sustain themselves
through the low to moderate rainfall received during all seasons, while relying
on lower temperatures in this region.

These equations enable domain scientists to explain several observations
made in the last decade about these rainforests. Given the dependence of any
rainforest on appropriate rainfall and temperatures, the permanent state of
drought in the African Congos in the last 15 years have led the trees in that
region to gradually succumb to the drought indicated by a decreasing NDVI
trend [20] over the years. Even slight improvement in rainfall in certain years
results in those trees trying to adapt to a different steady state behavior, evident
from the appearance of yellow patches in the African red partition in Fig. 4a.
The Amazon droughts of 2005 and 2010 also manifest themselves similarly. The
trees in the drought-stricken regions of the Amazon, in an attempt to survive
under these extreme climatic conditions, adapt to a different steady state behav-
ior (a different equation). As seen in Fig. 4a, a large part of the blue river basin
region affected by the 2005 drought turns yellow to account for the sudden water
deficiency through increased photosynthetic activity [13]. Similarly, a small part
of the yellow region near the mouth of the Amazon river becomes blue after the
2010 drought hits that area, thereby resisting tree dieback due to the unfavor-
ably low rainfall and high temperatures caused by the El Niño phenomenon in

Climate Vegetation Interactions Through GP-Tree Analysis 535

that year. This study shows how the global rainforests, although suffering from
frequent droughts and rising temperatures, generally show very strong resilience
by adapting to changing conditions.

Model Performance. We compare performance of the GP-tree model with
4 different baselines: (i) a single linear model, (ii) a single symbolic regression
model, (iii) linear regression tree with linear models at the leaves, and (iv) poly-
nomial regression tree with linear models. We compare mean squared error on
a standard validation set (examples for year 2007) for each model. The MSEs
are shown in Table 1. The progressive improvement of error as we go from linear
to nonlinear model, and from a single global model to multiple models obtained
through hierarchical partitioning is evident from the error values. Our method
improves the state of the art (first baseline) by almost 43%.

Table 1. Table showing mean squared error for GP-tree and the baseline methods for
ecosystem modeling

GP-tree Baseline 1 Baseline 2 Baseline 3 Baseline 4

0.28 0.49 0.31 0.45 0.38

6 Conclusion

For ages, scientists have been trying to understand the effect on climate and other
environmental variables on vegetation. Given that the rainforests are the largest
carbon sinks, it is particularly important to understand how these forests react
under changing climatic conditions, and whether their future is at risk. Existing
studies using simple correlation analysis or linear regression models built at a
global level, have failed to capture the nuanced dependencies of vegetation in
micro regions within these rainforests on environmental factors. In this study
we use genetic programming based approach symbolic regression for discovering
equations that model the vegetation climate dynamics in the rainforests of the
world. Expecting micro-regions within the rainforests to have unique character-
istics compared to the overall general characteristics, we hierarchically partition
the space using a regression tree approach called GP-tree and nonlinear regres-
sion models for each partition. Our GP-tree framework discovers that these rain-
forests exhibit very different characteristics in different regions. We also see that
in the face of extreme climate events, the trees adapt to reach a different steady
state and therefore, exhibit resiliency.

Acknowledgments. This research is supported in part by the NASA Advanced Infor-
mation Systems Technology (AIST) Program’s grant (NNX15AH48G) and in part by
the NASA contract NNA-16BD14C. The authors would also like to thank Dr. Ramakr-
ishna Nemani, a senior Earth Scientist and an expert on this topic, for his insightful
comments and perspective on some of the research findings.

536 A. Kodali et al.

References

1. Banerjee, A., Monteleoni, C.: Climate change: challenges for machine learning.
Tutorial at NIPS 2014 (2014)

2. Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regression
Trees. Taylor & Francis, Milton Park (1984)

3. Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A., Totterdell, I.J.: Acceleration of
global warming due to carbon-cycle feedbacks in a coupled climate model. Nature
408(6809), 184–187 (2000)

4. Horn, B.: Hill shading and the reflectance map. IEEE Proc. 69, 14–47 (1981)
5. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means

of Natural Selection, vol. 1. MIT Press, Cambridge (1992)
6. Lewis, S.L., et al.: Increasing carbon storage in intact african tropical forests.

Nature 457(7232), 1003–1006 (2009)
7. Malhi, Y., et al.: The regional variation of aboveground live biomass in old-growth

amazonian forests. Glob. Change Biol. 12(7), 1107–1138 (2006)
8. Mao, K., et al.: Estimating relationships between NDVI and climate change in

Quizhou province, Southwest China. In: 2010 18th International Conference on
Geoinformatics, pp. 1–5, June 2010

9. Myneni, R., Hall, F., Sellers, P., Marshak, A.: The interpretation of spectral vege-
tation indexes. IEEE Trans. Geosci. Remote Sens. 33(2), 481–486 (1995)

10. Nemani, R.R., et al.: Climate-driven increases in global terrestrial net primary
production from 1982 to 1999. Science 300(5625), 1560–1563 (2003)

11. Quinlan, J.R.: Learning with continuous classes. In: Proceedings of the Aus-
tralasian Joint Conference on Artificial Intelligence, pp. 343–348. World Scientific,
Singapore (1992)

12. Rokach, L., Maimon, O.: Top-down induction of decision trees classifiers - a survey.
IEEE Trans. Syst. Man. Cybern. Part C (Appl. Rev.) 35(4), 476–487 (2005)

13. Saleska, S.R., Didan, K., Huete, A.R., Da Rocha, H.R.: Amazon forests green-up
during 2005 drought. Science 318(5850), 612–612 (2007)

14. Schmidt, M., Lipson, H.: Age-fitness Pareto optimization. In: Riolo, R.,
McConaghy, T., Vladislavleva, E. (eds.) Genetic Programming Theory and Prac-
tice VIII. GEVO, vol. 8, pp. 129–146. Springer, New York (2011). https://doi.org/
10.1007/978-1-4419-7747-2 8

15. Vladislavleva, E.J., Smits, G.F., den Hertog, D.: Order of nonlinearity as a com-
plexity measure for models generated by symbolic regression via pareto genetic
programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2009)

16. Xiao, J., Moody, A.: Geographical distribution of global greening trends and their
climatic correlates: 1982–1998. Int. J. Rem. Sens. 26(11), 2371–2390 (2005)

17. Xu, L., Samanta, A., Costa, M.H., Ganguly, S., Nemani, R.R., Myneni, R.B.:
Widespread decline in greenness of Amazonian vegetation due to the 2010 drought.
Geophys. Res. Lett. 38(7) (2011)

18. Yuan, F., Roy, S.: Analysis of the relationship between NDVI and climate variables
in minnesota using geographically weighted regression and spatial interpolation,
vol. 2, pp. 784–789 (2007)

19. Zhao, M., Running, S.W.: Drought-induced reduction in global terrestrial net pri-
mary production from 2000 through 2009. Science 329(5994), 940–943 (2010)

20. Zhou, L., Tian, Y., Myneni, R.B., Ciais, P., Saatchi, S., et al.: Widespread decline
of congo rainforest greenness in the past decade. Nature 509, 86 (2014)

https://doi.org/10.1007/978-1-4419-7747-2_8
https://doi.org/10.1007/978-1-4419-7747-2_8

Author Index

Aalvanger, G. H. I-146
Abreu, Salvador I-436
Aguirre, Hernán II-181, II-232
Aldana-Montes, José F. I-274, I-298
Amaya, Ivan II-373
Antipov, Denis II-117
Arbonès, Dídac Rodríguez I-512
Arnold, Dirk V. I-16
Ashrafzadeh, Homayoon I-451
Asteroth, Alexander I-500
Auger, Anne I-3

Bäck, Thomas I-54, I-500
Baioletti, Marco II-436
Bakurov, Illya I-41, I-185
Barba-González, Cristóbal I-274, I-298
Barbaresco, Frédéric I-3
Bartashevich, Palina I-41
Bartoli, Alberto I-223
Bartz-Beielstein, Thomas II-220
Bazzan, Ana II-477
Benítez-Hidalgo, Antonio I-298
Bian, Chao II-165
Blot, Aymeric I-323
Bongard, Joshua I-525
Bosman, P. A. N. I-146
Brabazon, Anthony II-387
Brockhoff, Dimo I-3
Browne, Will II-477
Buzdalov, Maxim I-347

Castelli, Mauro I-185
Chen, Gang II-347
Chicano, Francisco II-449
Coello Coello, Carlos A. I-298, I-335, I-372,

II-373
Conant-Pablos, Santiago Enrique II-373
Corus, Dogan II-16, II-67
Cotta, Carlos I-411
Covantes Osuna, Edgar II-207
Cussat-Blanc, Sylvain II-490

Daniels, Steven J. II-296
Daolio, Fabio II-257

Das, Kamalika I-525
De Lorenzo, Andrea I-223
de Sá, Alex G. C. II-308
Deb, Kalyanmoy II-477
Del Ser, Javier I-298
Derbel, Bilel II-181, II-232
Diaz, Daniel I-436
Ding, Boyin I-512
Doerr, Benjamin II-117
Doerr, Carola I-54, II-29, II-360, II-477
Duan, Qiqi I-424
Ðurasević, Marko II-477
Durillo, Juan J. I-298

Eiben, A. E. I-476
Ekárt, Anikó I-236
ElHara, Ouassim Ait I-3
Emmerich, Michael T. M. II-477
Epitropakis, Michael G. II-477, II-490
Everson, Richard M. II-296

Fagan, David I-197
Falcón-Cardona, Jesús Guillermo I-335
Fieldsend, Jonathan E. II-296
Flasch, Oliver II-220
Fontanella, Francesco I-185
Forstenlechner, Stefan I-197
Frahnow, Clemens II-129
Freitas, Alex A. II-308
Friedrich, Tobias I-134

Gallagher, Marcus II-284, II-490
Ganguly, Sangram I-525
García, Marcos Diez II-194
García-Nieto, José I-274, I-298
García-Valdez, J. Mario I-399
Ghasemishabankareh, Behrooz I-69
Glasmachers, Tobias II-411
Göbel, Andreas I-134
Griffiths, Thomas D. I-236

Haasdijk, Evert I-476
Hagg, Alexander I-500
Hansen, Nikolaus I-3

Haqqani, Mohammad I-451
Haraldsson, Saemundur O. II-477
Hart, Emma I-170, I-488
Helsgaun, Keld I-95
Herrmann, Sebastian II-245
Hirsch, Rachel II-55
Hoos, Holger II-271
Horn, Daniel II-399

Igel, Christian I-512
Imada, Ryo I-384
Ishibuchi, Hisao I-249, I-262, I-311, I-384

Jakobovic, Domagoj I-121, II-477
Jansen, Thomas II-153, II-490
Jelisavcic, Milan I-476
Jourdan, Laetitia I-323
Jurczuk, Krzysztof II-461

Karunakaran, Deepak II-347
Kassab, Rami I-3
Kayhani, Arash I-16
Kazakov, Dimitar II-321
Kerschke, Pascal II-477, II-490
Kessaci, Marie-Éléonore I-323
Kodali, Anuradha I-525
Kordulewski, Hubert I-29
Kötzing, Timo II-42, II-79, II-92, II-129
Kramer, Oliver II-424
Krause, Oswin I-512
Krawiec, Krzysztof II-477
Krejca, Martin S. II-79, II-92
Kretowski, Marek II-461

Lagodzinski, J. A. Gregor II-42
Lan, Gongjin I-476
Lardeux, Fréderic I-82
Le, Nam II-387
Legrand, Pierrick I-209
Lehre, Per Kristian II-105, II-477
Lengler, Johannes II-3, II-42
Leporati, Alberto I-121
Li, Xiaodong I-69, I-451, II-477, II-490
Liefooghe, Arnaud II-181, II-232
Lissovoi, Andrei II-477
Liu, Yiping I-262, I-311
Lobo, Fernando G. II-490
López, Jheisson I-436
López, Uriel I-209

López-Ibáñez, Manuel I-323, II-232, II-321
Luong, N. H. I-146

Malo, Pekka II-477
Manoatl Lopez, Edgar I-372
Mariot, Luca I-121
Markina, Margarita I-347
Martí, Luis II-477
Masuyama, Naoki I-262, I-311, I-384
McDermott, James II-334
Medvet, Eric I-223
Mei, Yi II-347, II-477
Melnichenko, Anna II-42
Merelo Guervós, Juan J. I-399, II-477
Miettinen, Kaisa I-274, I-286
Milani, Alfredo II-436
Miller, Julian F. II-477, II-490
Moraglio, Alberto II-194, II-334, II-477
Mostaghim, Sanaz I-41
Mukhopadhyay, Anirban II-55
Müller, Nils II-411
Múnera, Danny I-436

Nagata, Yuichi I-108
Narvaez-Teran, Valentina I-82
Nebro, Antonio J. I-274, I-298, II-477
Neumann, Aneta I-158
Neumann, Frank I-69, I-158, II-141
Nguyen, Phan Trung Hai II-105
Nguyen, Su II-477
Nicolau, Miguel I-197
Nogueras, Rafael I-411
Nojima, Yusuke I-262, I-311, I-384

O’Neill, Michael I-197, II-387
Ochoa, Gabriela II-245, II-257, II-477
Ojalehto, Vesa I-274
Okulewicz, Michał I-29
Oliveto, Pietro S. II-16, II-67, II-477, II-490
Ortiz-Bayliss, José Carlos II-373
Ozlen, Melih I-69

Paechter, Ben I-170
Pappa, Gisele Lobo II-308, II-477
Picek, Stjepan I-121, II-477
Pillay, Nelishia II-477
Pinto, Eduardo Carvalho II-29
Prellberg, Jonas II-424
Preuss, Mike II-477, II-490

538 Author Index

Purshouse, Robin II-490
Pushak, Yasha II-271

Qian, Chao II-165
Quinzan, Francesco I-134

Rahat, Alma A. M. II-296
Reska, Daniel II-461
Rodriguez-Tello, Eduardo I-82
Roijers, Diederik M. I-476
Roostapour, Vahid I-158

Saleem, Sobia II-284
Santucci, Valentino II-436
Schoenauer, Marc II-477
Semet, Yann I-3
Senkerik, Roman II-477
Sergiienko, Nataliia Y. I-512
Shang, Ke I-262, I-311
Sharma, Mudita II-321
Shi, Yuhui I-424
Shir, Ofer II-477
Sinha, Ankur II-477
Squillero, Giovanni II-490
Stone, Christopher I-170
Stork, Jörg II-220
Sudholt, Dirk II-207, II-477
Sun, Lijun I-424
Sutton, Andrew M. II-141
Szubert, Marcin I-525

Tabor, Gavin R. II-296
Tagawa, Kiyoharu I-464
Tanabe, Ryoji I-249
Tanaka, Kiyoshi II-181, II-232
Tang, Ke II-165
Tarlao, Fabiano I-223

Terashima-Marín, Hugo II-373
Thierens, D. I-146
Tinós, Renato I-95, II-449
Tomassini, Marco II-257
Tonda, Alberto II-490
Trujillo, Leonardo I-209

Uliński, Mateusz I-29
Urquhart, Neil I-488

van Rijn, Sander I-54
Vanneschi, Leonardo I-41, I-185
Varadarajan, Swetha II-55
Varelas, Konstantinos I-3
Verel, Sébastien II-181, II-232, II-257

Wagner, Markus I-134, I-512, II-360, II-490
Weise, Thomas II-490
Whitley, Darrell I-95, II-55, II-449, II-477
Wilson, Dennis II-490
Wineberg, Mark II-477
Wood, Ian II-284
Woodward, John II-477
Wróbel, Borys II-490

Yazdani, Donya II-16, II-67
Yu, Xinghuo I-451

Zaborski, Mateusz I-29
Zaefferer, Martin II-220, II-399
Zamuda, Aleš II-490
Zarges, Christine II-153, II-490
Zhang, Hanwei I-359
Zhang, Mengjie II-347, II-477
Zhou, Aimin I-359
Zhou-Kangas, Yue I-286
Żychowski, Adam I-29

Author Index 539

	Preface
	Organization
	Invited Talks
	The Shape of Art History in the Eyes of the Machine
	Self-organization, Emergence and Stigmergy: Coordination from the Bottom-up
	On Physarum Computations
	Contents – Part I
	Contents – Part II
	Numerical Optimization
	A Comparative Study of Large-Scale Variants of CMA-ES
	1 Introduction
	2 The bbob-Largescale COCO Testbed
	3 The CMA-ES Algorithm and Some Large-Scale Variants
	3.1 The (/w,)-CMA-ES
	3.2 Large-Scale Variants of CMA-ES

	4 Experimental Results
	5 Discussion and Conclusion
	References

	Design of a Surrogate Model Assisted (1+1)-ES
	1 Introduction
	2 Related Work
	3 Analysis
	4 Step Size Adaptation and Experiments
	5 Conclusions
	References

	Generalized Self-adapting Particle Swarm Optimization Algorithm
	1 Introduction
	2 Particle Swarm Optimization: Modification and Hybridization Approaches
	3 Generalized Particle Swarm Optimization
	4 Adaptation Scheme
	5 Experiment Setup
	6 Results
	7 Conclusions and Future Work
	References

	PSO-Based Search Rules for Aerial Swarms Against Unexplored Vector Fields via Genetic Programming
	1 Introduction
	2 Background
	3 Semantics for VFPS Evolution in EDDA
	4 Experimental Study
	5 Evolved VFPS
	6 Analysis and Discussion of the Evolved VFPS
	7 Conclusions and Future Work
	References

	Towards an Adaptive CMA-ES Configurator
	1 Introduction
	2 Modular CMA-ES
	3 Data Processing
	3.1 Generation and Pre-processing of the Data
	3.2 Constructing Optimal Adaptive Configurations
	3.3 Discarding Partially Successful Configurations

	4 Results
	4.1 Maximally Adaptive
	4.2 Single Split
	4.3 Discussion

	5 Conclusion and Future Work
	References

	Combinatorial Optimization
	A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow Problems
	1 Introduction
	2 Preliminaries
	2.1 Priority-Based Representation

	3 Proposed Method
	3.1 Probabilistic Tree-Based Representation
	3.2 Genetic Algorithm with PTbR

	4 Experimental Studies
	4.1 Parameter Settings
	4.2 Results and Analysis

	5 Conclusion
	References

	Comparative Study of Different Memetic Algorithm Configurations for the Cyclic Bandwidth Sum Problem
	1 Introduction
	2 Memetic Algorithms for the CBSP
	2.1 Solution Encoding and Initialization
	2.2 Selection
	2.3 Crossover
	2.4 Mutation
	2.5 Inversion
	2.6 Survival Strategy
	2.7 Local Search

	3 Experimental Results
	4 Conclusions and Future Work
	References

	Efficient Recombination in the Lin-Kernighan-Helsgaun Traveling Salesman Heuristic
	1 Introduction
	2 LKH Algorithm
	3 Partition Crossover
	3.1 IPT
	3.2 GPX2

	4 Results
	5 Conclusions
	References

	Escherization with a Distance Function Focusing on the Similarity of Local Structure
	1 Introduction
	2 Related Work
	2.1 Isohedral Tilings
	2.2 Koizumi and Sugiharas's Formulation and Its Extension
	2.3 The Weighted Normal Distance

	3 Proposed Method
	3.1 The Proposed Similarity Measure
	3.2 The Extended Koizumi and Sugihara's Formulation with the AD Distance
	3.3 A Tabu Search Algorithm

	4 Experimental Results
	5 Conclusion
	References

	Evolutionary Search of Binary Orthogonal Arrays
	1 Introduction
	2 Basic Definitions
	3 Specification of GA and GP
	3.1 Solutions Encoding
	3.2 Fitness Function
	3.3 Variation Operators

	4 Analysis of the Search Space
	5 Experiments
	5.1 Problem Instances
	5.2 Evolutionary Algorithms Parameters
	5.3 Results

	6 Conclusions and Perspectives
	References

	Heavy-Tailed Mutation Operators in Single-Objective Combinatorial Optimization
	1 Introduction
	2 Algorithms and Setting
	2.1 The (1+1) Evolutionary Algorithm and Mutation Rates
	2.2 Non-uniform Mutation Rates

	3 Artificial Landscapes
	3.1 General Bounds and the OneMax Function
	3.2 A Comparison with Static Uniform Mutations

	4 An Application to the Minimum Vertex Cover Problem
	5 Maximizing Submodular Functions
	5.1 A General Upper-Bound
	5.2 An Application to the Maximum Directed Cut Problem
	5.3 Experiments on Large Real Graphs

	6 Discussion
	References

	Heuristics in Permutation GOMEA for Solving the Permutation Flowshop Scheduling Problem
	1 Introduction
	2 Permutation GOMEA
	2.1 Solution and Model Encoding
	2.2 Model Building
	2.3 Optimal Mixing
	2.4 Population Sizing Scheme

	3 Permutation Flowshop Scheduling Benchmark
	3.1 Problem Instances
	3.2 Comparing Results

	4 Heuristics for the PFSP
	4.1 Constructive Heuristics
	4.2 Constructive Heuristics Seeding: Results
	4.3 Improvement Heuristics

	5 Permutation GOMEA vs. VNS4 Iterated Local Search
	6 Conclusions
	References

	On the Performance of Baseline Evolutionary Algorithms on the Dynamic Knapsack Problem
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Algorithms

	3 Benchmarking for the Dynamic Knapsack Problem
	3.1 The Dynamic Knapsack Problem
	3.2 Benchmark and Experimental Setting

	4 Experimental Results
	4.1 Dynamic Uniform Constraint
	4.2 Dynamic Linear Constraint

	5 Conclusions and Future Work
	References

	On the Synthesis of Perturbative Heuristics for Multiple Combinatorial Optimisation Domains
	1 Introduction
	2 Background
	3 Method
	3.1 Grammatical Evolution
	3.2 Grammar and Mechanics of the Operator
	3.3 Problem Domains and Training Examples

	4 Experiments
	5 Results and Analysis
	6 Conclusions
	References

	Genetic Programming
	EDDA-V2 – An Improvement of the Evolutionary Demes Despeciation Algorithm
	1 Introduction
	2 Geometric Semantic Genetic Programming
	3 Evolutionary Demes Despeciation Algorithm
	4 Experimental Study
	4.1 Test Problems
	4.2 Experimental Settings

	5 Results
	6 Conclusions
	References

	Extending Program Synthesis Grammars for Grammar-Guided Genetic Programming
	1 Introduction
	2 Related Work
	2.1 Grammar-Guided Genetic Programming

	3 General Program Synthesis Benchmark Suite Remarks
	4 Extending Program Synthesis Grammars
	4.1 Data Type Char
	4.2 Recursion
	4.3 List Operations
	4.4 Additional Methods

	5 Experimental Setup
	6 Results
	6.1 Successful Solutions
	6.2 Char Analysis
	6.3 Recursion Analysis

	7 Conclusion and Future Work
	References

	Filtering Outliers in One Step with Genetic Programming
	1 Introduction
	2 Background
	2.1 Outliers
	2.2 Robust Regression

	3 Outlier Removal with Genetic Programming
	3.1 Proposed Algorithm
	3.2 Discussion
	3.3 Related Works in GP

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Conclusions and Future Work
	References

	GOMGE: Gene-Pool Optimal Mixing on Grammatical Evolution
	1 Introduction
	2 Related Works
	3 Grammatical Evolution
	3.1 GOMGE: Gene-Pool Optimal Mixing EA for GE

	4 Experimental Evaluation
	5 Concluding Remarks
	References

	Self-adaptive Crossover in Genetic Programming: The Case of the Tartarus Problem
	1 Introduction
	2 Parameter Modification Approaches
	3 The Tartarus Problem
	3.1 Improved State Evaluation

	4 Self-adaptive Crossover Operator
	5 Conclusion
	References

	Multi-objective Optimization
	A Decomposition-Based Evolutionary Algorithm for Multi-modal Multi-objective Optimization
	1 Introduction
	2 Proposed MOEA/D-AD
	3 Experimental Settings
	4 Experimental Results
	4.1 Performance Comparison
	4.2 Analysis of MOEA/D-AD

	5 Conclusion
	References

	A Double-Niched Evolutionary Algorithm and Its Behavior on Polygon-Based Problems
	1 Introduction
	2 Related Works
	2.1 Multi-modal Multi-objective Optimization Problems
	2.2 Diversity Maintenance in the Objective and Decision Spaces

	3 A Double-Niched Evolutionary Algorithm
	4 Experiments
	4.1 Polygon-Based Problems
	4.2 Competing Algorithms and Parameter Settings
	4.3 Results and Discussions

	5 Conclusions
	References

	Artificial Decision Maker Driven by PSO: An Approach for Testing Reference Point Based Interactive Methods
	1 Introduction
	2 Background
	3 Artificial Decision Maker Driven by PSO
	4 Experimental Results
	5 Conclusions and Future Work
	References

	A Simple Indicator Based Evolutionary Algorithm for Set-Based Minmax Robustness
	1 Introduction and Background
	2 Preliminaries
	3 The SIBEA-R Method
	4 Numerical Results
	5 Conclusions
	References

	Extending the Speed-Constrained Multi-objective PSO (SMPSO) with Reference Point Based Preference Articulation
	1 Introduction
	2 Background
	3 Algorithm Proposal
	4 Experimental Setup
	5 Results and Discussion
	6 Use Case
	7 Conclusions and Future Research Lines
	References

	Improving 1by1EA to Handle Various Shapes of Pareto Fronts
	1 Introduction
	2 Preliminaries
	2.1 A Brief Introduction to 1by1EA
	2.2 Motivation

	3 1by1EA-II
	4 Experiments and Discussions
	5 Conclusions
	References

	New Initialisation Techniques for Multi-objective Local Search
	1 Introduction
	2 Background
	2.1 Scalarisation-Based Local Search (SBLS)
	2.2 Bi-objective Permutation Flowshop Scheduling

	3 Archive-Aware SBLS Strategies
	4 New SBLS Strategies: ChangeRestart, ChangeDirection
	4.1 ChangeRestart
	4.2 ChangeDirection

	5 Experimental Setup
	6 Experimental Results
	6.1 Known SBLS Strategies vs. Their Archive-Aware Variants
	6.2 Performance of the Two New SBLS Strategies
	6.3 Analysis of Parameters Nscalar and Nsteps

	7 Conclusion
	References

	Towards a More General Many-objective Evolutionary Optimizer
	1 Introduction
	2 Previous Related Work
	3 Our Proposed Approach
	3.1 Fast IGD+ Contribution
	3.2 IGD+-MaOEA

	4 Experimental Results
	4.1 Parameters Settings
	4.2 Comparison with MaOEAs Based on Convex Weight Vectors
	4.3 Comparison with SMS-EMOA

	5 Conclusions and Future Work
	References

	Towards Large-Scale Multiobjective Optimisation with a Hybrid Algorithm for Non-dominated Sorting
	1 Introduction
	1.1 Non-dominated Sorting: Definition and Algorithms
	1.2 Our Motivation and Contribution

	2 Preliminaries: The Algorithms to Hybridise
	2.1 The Divide-and-Conquer Algorithm
	2.2 The ENS-NDT Algorithm

	3 The Proposed Algorithms
	3.1 Loss of Monotonicity in HelperB
	3.2 The ENS-NDT-ONE Algorithm
	3.3 The Hybrid Algorithm

	4 Experiments and Discussion
	5 Conclusion
	References

	Tree-Structured Decomposition and Adaptation in MOEA/D
	1 Introduction
	2 The Proposed Method
	2.1 Algorithm Framework
	2.2 Domain Decomposition
	2.3 Domain Adaptation

	3 Subdomain Measurement
	4 External Population
	5 Comparison Study
	6 Conclusions
	References

	Use of Reference Point Sets in a Decomposition-Based Multi-Objective Evolutionary Algorithm
	1 Introduction
	2 Basic Concepts
	3 Our Proposed Approach
	3.1 General Framework
	3.2 Archiving Process
	3.3 Reference Set

	4 Experimental Results
	4.1 Methodology
	4.2 Parameterization
	4.3 Discussion of Results

	5 Conclusions and Future Work
	References

	Use of Two Reference Points in Hypervolume-Based Evolutionary Multiobjective Optimization Algorithms
	Abstract
	1 Introduction
	2 Empirical Discussions on Reference Point Specification
	3 Proposed Idea and Its Simple Implementation
	4 Experimental Results by the Proposed Idea
	5 Conclusions
	Acknowledgments
	References

	Parallel and Distributed Frameworks
	Introducing an Event-Based Architecture for Concurrent and Distributed Evolutionary Algorithms
	1 Introduction
	2 State of the Art
	3 Event-Based Architectures and Implementing Evolutionary Algorithms over Them
	4 Experiments and Results
	5 Conclusions
	References

	Analyzing Resilience to Computational Glitches in Island-Based Evolutionary Algorithms
	1 Introduction
	2 Methodology
	3 Experimentation
	4 Conclusions
	References

	Spark Clustering Computing Platform Based Parallel Particle Swarm Optimizers for Computationally Expensive Global Optimization
	Abstract
	1 Introduction
	2 Review
	3 Spark-Based Parallel PSOs
	3.1 Comparing Spark with Other Parallel Computing Technologies
	3.2 Amdahl’s Law for the Master-Slave Model
	3.3 Spark-Based PEAs Framework for the Master-Slave Model

	4 Numerical Experiments
	4.1 The Spark Clustering Computing Platform
	4.2 Analyses of Continuous Benchmark Functions
	4.3 Comparisons on Computationally Expensive Functions
	4.4 Comparisons on Functions with Linear Time Complexity

	5 Conclusions and Future Research Directions
	Acknowledgements
	References

	Weaving of Metaheuristics with Cooperative Parallelism
	1 Introduction
	2 The PHYSH Framework
	3 PHYSH10: A Prototype Implementation
	4 Experimental Evaluation
	4.1 Evaluation of PHYSH-QAP on QAPLIB
	4.2 Evaluation of PHYSH-QAP on Harder Instances

	5 Conclusion and Future Directions
	References

	Applications
	Conditional Preference Learning for Personalized and Context-Aware Journey Planning
	1 Introduction
	2 Background on CP-Net
	3 Multimodal Journey Planning Tool
	3.1 Journey Plan Attributes
	3.2 Contextual Attributes

	4 Algorithms' Evaluation
	4.1 Experimental Setup
	4.2 Result Analysis

	5 Conclusions
	References

	Critical Fractile Optimization Method Using Truncated Halton Sequence with Application to SAW Filter Design
	1 Introduction
	2 Background and Problem Formulation
	3 Approximation of CDF
	3.1 Empirical CDF (ECDF)
	3.2 Weighted Empirical CDF (W_ECDF)
	3.3 Truncated Halton Sequence (THS)

	4 Critical Fractile Optimization Method
	4.1 Differential Evolution with Sample Saving Technique
	4.2 Verification of Solution Using Monte Carlo Simulation

	5 Numerical Experiment on Test Problem
	5.1 Test Problem of CCP
	5.2 Comparison Between JADEP and JADE

	6 Application to SAW Filter Design
	6.1 Structure and Mechanism of SAW Filer
	6.2 Design of SAW Filer Under Uncertainty
	6.3 Result of Experiment and Discussion

	7 Conclusion
	References

	Directed Locomotion for Modular Robots with Evolvable Morphologies
	1 Introduction
	2 Related Work
	3 Experimental Set-Up
	3.1 Robots
	3.2 Controllers
	3.3 Experimental Parameters

	4 Fitness Function
	5 Experimental Results
	6 Concluding Remarks
	References

	Optimisation and Illumination of a Real-World Workforce Scheduling and Routing Application (WSRP) via Map-Elites
	1 Introduction
	2 Previous Work
	3 Methodology
	3.1 The MAP-Elites Algorithm
	3.2 The Evolutionary Algorithm
	3.3 Problem Instances
	3.4 Experimental Parameters

	4 Results
	4.1 Coverage and Precision
	4.2 Gaining Insight into the Problem Domain

	5 Conclusions
	References

	Prototype Discovery Using Quality-Diversity
	1 Introduction
	2 Related Work
	2.1 Quality-Diversity and Surrogate Assistance
	2.2 Dimensionality Reduction

	3 Prototype Discovery Using Quality-Diversity
	4 Evaluation
	5 Conclusion
	References

	Sparse Incomplete LU-Decomposition for Wave Farm Designs Under Realistic Conditions
	1 Introduction
	2 Preliminaries
	2.1 Objectives
	2.2 Problem Complexity

	3 Computational Speed-Ups and Constraint Handling
	4 Experimental Study
	5 Discussion
	6 Conclusions
	References

	Understanding Climate-Vegetation Interactions in Global Rainforests Through a GP-Tree Analysis
	1 Introduction
	2 Related Work
	3 Modeling Framework
	3.1 Symbolic Regression
	3.2 Regression Trees
	3.3 GP-Tree

	4 Data and Computation
	5 Results Analysis
	6 Conclusion
	References

	Author Index

