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Abstract. Currently, many community mining methods for signed net-
works with positive and negative links have been proposed, however,
these methods can only efficiently find the community of signed net-
works and unable to find other structure, such as bipartite, multipar-
tite and so on. In this study, we present a mathematically principled
community mining method for signed networks. Firstly, a probabilistic
model is proposed to model the signed networks. Secondly, a variational
Bayesian approach is deduced to learn the proximation distribution of
model parameters. In our experiments, the proposed method is validated
in the synthetic and real-word signed networks. The experimental results
show the proposed method not only can efficiently find communities of
signed networks but also can find the other structure.
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1 Introduction

Signed networks usually are composed of the nodes, positive links and negative
links, in which the nodes represent the individuals, the positive links represent
like, trust or support relationship and the negative links represent dislike, distrust
or oppose relationship [13,14]. In contrast to the unsigned networks [4,6,8], the
signed networks may contain more information by extending the single relation-
ship to the positive and negative relationships. Structure analysis is an important
problem in the network studies since network structures are closely related to
the functions and evolution of systems. Community structure, which is the dense
subnetwork within a larger network, is the best-studied structure in networks.
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In general, the links in communities are dense but the links between communi-
ties are sparse [9]. Because there are the negative links in the signed networks,
the communities in the signed networks also show another characteristic that
is most of the links in communities are the positive links and most of the links
between communities are the negative links. To analyze the signed networks,
until now, many methods have been proposed to find the communities in the
signed networks. The representative methods is as follows: Doreian and Mrvar
proposed a frustration-based method (referred to as DM) [3]. Traag et al. pro-
posed a modularity-optimization-based algorithm for signed networks [11]. Yang
et al. proposed a fast method based on Markov stochastic process (referred to
as FEC) [12]. Anchuri et al. proposed a generalized spectral method for signed
network partition [1]. For these methods, their common drawback is it is very
difficult to design a good objective. To address the above problems, Zhao et al.
proposed an EM-based community detection method for the signed networks
[14]. Yang et al. proposed a signed stochastic block model and its variational
Bayes learning algorithm for the signed networks [13]. However, these methods
mainly focus on the community structure.

Block modelling is a form of statistical inference for the networks. The idea of
block modelling for the network analysis is to find the structure of networks by
fitting a specific block model to a network. Based on this idea, in this paper, we
present a mathematically principled community mining method for signed net-
works. Firstly, a probabilistic model is proposed to model the signed networks,
Secondly, a variational Bayesian approach is deduced to learn the proximation
distribution of model parameters. In our experiments, the proposed method is
validated in the synthetic and real-word signed networks. The experimental
results show the proposed method not only can efficiently find community of
signed networks but also can find the other structure.

2 Model and Method

Let aaa denote the adjacency matrix of the signed network N containing n nodes.
The element aij is equal to 1, −1 or 0 if there is a positive, negative or no link
between the node i and the node j. Suppose all of the nodes are divided into
K groups and the nodes in the same group have the similar connection patten
with the nodes of other groups. The proposed model is defined as follows

X = (K,zzz,ωωω,πππ) (1)

where K is the number of groups. ωωω is a K-dimension vector in which the
element ωk denotes the probability that a node is assigned to the group k, and∑K

k=1 ωk = 1. πππ is a K × K × 3 matrix, where πlq1, πlq2 and πlq3 denote the
probability that there is a positive link, no link or negative link between a pair
of nodes in the group l and q, respectively. In addition, the proposed model
contains an indicating variable (or latent variable) zzz, which is the n × K matrix
containing the group information of nodes. zik = 1 if the node i is assigned to
the group k, otherwise zik = 0.
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Given the parameter ωωω, the probability distribution of zzz is as follows

p(zzz|ωωω) =
n∏

i=1

K∏

k=1

ωzik

k (2)

Given zzz, aij follows the following multinomial distribution with parameter
πππ:

p(aij |zzz,πππ) =
K∏

l,q=1

3∏

h=1

π
zilzjqδ(aij ,2−h)
lqh (3)

where δ(x, y) is Kronecker function, if x = y, the function value is 1, otherwise
the value is zero.

When the priors of the model parameters (πππ,ωωω) are specified, we can describe
the proposed model in a full Bayesian framework. Since p(zi|ωωω) and p(aij |zzz,πππ)
satisfy the multinomial distribution, respectively, we can select the Dirichlet
distribution as their conjugate prior distributions, as follows

p(ωωω|ρρρ0 = {ρ01, ..., ρ
0
K}) = Dir(ωωω;ρρρ0) (4)

p(πlq|ηηη0
lqh = {η0

lq1, η
0
lq2, η

0
lq3}) = Dir(πlq;ηηη0

lqh) (5)

where ρρρ0q and ηηη0
lqh are the hyperparameters. In the full Bayesian framework, the

parameters πππ and ωωω can be regarded as the random variables which follow the
distributions with their respective hyperparameters.

To analyze the structure of network, we need to learn the parameters of
model, then analyze the networks based on the learned values of parameters.
Since the posterior distribution of zzz, under the condition of data and model
parameters, cannot be explicitly derived as an input required, we adopt the
variational Bayesian approach [2,7] to learn the approximate distributions of
parameters and variable.

The log-likelihood L(N) of the network N can be decomposed into two terms

L(N) = L(q(·)) + KL(q(·)||p(·|N)) (6)

In Eq. 6, KL(q ‖ p) denotes the Kullback-Leibler divergence between the
two distributions of q(zzz,πππ,ωωω) and p(zzz,πππ,ωωω|N). p(zzz,πππ,ωωω|N) is the true posterior
distribution of the variables zzz and the parameters (πππ,ωωω) given the network N ,
q(zzz,πππ,ωωω) is an approximation of the true posterior distribution. L(q(·)) is called
the lower bound of L(N). The Kullback-Leibler vergence satisfies KL(q ‖ p) ≥ 0,
with equality if, and only if, q(·) = p(·).

The variational approach aims at optimizing a lower bound of L(N) by
approximating the true distributions of the parameters and variable. To obtain a
computationally tractable algorithm, we use mean field approximation, in which
we assume the posterior q(zzz,πππ,ωωω) is a fully factorized approximation, which is
written as follows

q(zzz,πππ,ωωω) = q(πππ)q(ωωω)
n∏

i=1

q(zi) (7)
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where q(zi), q(πππ) and q(ωωω) denote the distributions of variables zi, πππ and ωωω,
respectively.

Next, we need to seek the distributions of q(zi), q(πππ) and q(ωωω), which make
the lower bound L(q(·)) largest. This requires us to deduce the expressions of
the distributions q(zi), q(πππ) and q(ωωω).

According to variational Bayes, the optimal distribution q(zi), q(ωωω) and q(πππ)
are the following multinomial or Dirichlet distribution, respectively.

q(zi) = M(zi; 1, τi1, ..., τiK) (8)

where τik is the probability of node i belonging to group k, and satisfies:

τil ∝e
ψ(ρl)−ψ(

K∑

l=1
ρl) ×

n∏

j �=i

K∏

q=1

(
e
τjq

3∑

h=1
δ(aij ,2−h)(ψ(ηlqh)−ψ(

3∑

h=1
ηlqh))

)
(9)

where ψ(·) is digamma function.

q(ωωω) = Dir(ωωω;ρρρ), ρq = ρ0q +
n∑

i=1

τiq (10)

q(πππ) =
∏

l,q

Dir(πππlq;ηηηlq) (11)

For q �= l, the hyperparameter ηqlh (h = {1, 2, 3}) is given by

ηlqh = η0
lqh +

n∑

i�=j

τilτjqδ(aij , 2 − h) (12)

For ∀q, the hyperparameter ηqqh (h = {1, 2, 3}) is given by

ηqqh = η0
qqh +

n∑

i<j

τiqτjqδ(aij , 2 − h) (13)

The Eqs. 9, 10, 12 and 13, build the main steps of our algorithm. We iterate
to update these equations to convergence. Finally, the values of the learned
hyperparameters (τττ ,ηηη) can be used to analyze the structure of signed networks.
Since the time complexity of the proposed algorithm is mainly determined by
calculating Eqs. 9, 10, 12 and 13, the total time complexity of the algorithm is
O(K2n2).

3 Experiments

The proposed algorithm is called SASN here. SASN is validated in the synthetic
and real-world networks in our experiments. We also make comparisons with
other four algorithms which are respectively DM [3], SSL [13], FEC [12] and
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SISN [14]. In our experiments, the normalized mutual information (NMI) [14] is
used to evaluate the performance of the algorithms.

Firstly, we generate synthetic networks by the generate model in Ref. [12].
The model parameters are set as follows: (4, 32, 32, 0.5, 0.05 ∗ p−, 0) and varying
p− from 0 to 0.5 with the interval 0.05. The larger the value of p− is, the more
the negative links in the communities are. The results of five algorithms running
this type of signed networks are shown in Fig. 1. We can see that, all the NMI
values of the SASN and SSL are 1 when p− varies from 0 to 0.5. This indicates
our method and SSL can correctly find the communities in the networks.
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0

0.2

0.4

0.6

0.8

1

p−

N
M
I

SASN
DM
FEC
SISN
SSL

Fig. 1. Results of five algorithms.

Secondly, we generate the networks with coexisting structure. The type of
networks is generated according to the following way. First, all the nodes are
divided into four groups, each of which includes 32 nodes. Then, the links
within or between the groups are generated according to the following πa,b

value, where a and b denote the labels of groups. π11 = {0.6, 0.1, 0.3}, π12 =
{0.1, 0.2, 0.7}, π13 = {0.1, 0.2, 0.7}, π14 = {0.1, 0.2, 0.7}, π22 = {0.2, 0.1, 0.7},
π23 = {0.01, 0.4, 0.59}, π24 = {0.01, 0.4, 0.59}, π33 = {0.01, 0.01, 0.98}, π34 =
{0.01, 0.4, 0.59}, π44 = {0.01, 0.01, 0.98}, and other π is zero. The positive, no
and negative links between two nodes within or between groups follow the multi-
nomial distribution with parameter π. Figure 2 illustrates the adjacency matrix
of randomly generated network according to the above parameter set.

The results of five algorithms running in this type of signed networks are
shown in Fig. 3. The NMI values of the results for the SASN, DM, FEC, SISN and
SSL are 1, 0.8641, 0, 0.8827 and 0.8338, respectively. This indicates the SASN
has more excellent performance in such networks with the coexisting structure
than other four algorithms.

For the real-world signed networks, we select two real-world networks with
ground truth community structure to validate the proposed algorithm. The
selected signed network are Slovene parliamentary party network (SPPN) [5]
and Gahuku-Gama subtribes network (GGSN) [10], respectively. For the SPPN,
the nodes in the SPPN are divided into two communities and the results of our
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Fig. 2. Adjacency matrix of network.
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Fig. 3. Results of five algorithms.

algorithm are consistent with their ground truth. For the GGSN, the nodes in
the GGSN are divided into three communities and the results of our algorithm
are consistent with their ground truth.

4 Conclusions

In this paper, we present a mathematically principled community mining method
for the signed network. Firstly, based on block modelling idea, we propose an
probability model for the signed network, which can efficiently model the well-
known structure. Secondly, we deduce the specific equations of parameters in
the variational Bayesian framework. The proposed method is validated in the
synthetic and real-world signed networks. The experimental results show the
proposed method not only can efficiently find community of signed networks but
also can find the other structure.
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