
A Deep Network Based on Multiscale
Spectral-Spatial Fusion for Hyperspectral

Classification

Zhaokui Li(&), Lin Huang, Deyuan Zhang, Cuiwei Liu(&),
Yan Wang, and Xiangbin Shi

School of Computer Science, Shenyang Aerospace University, Shenyang,
Liaoning, People’s Republic of China
{lzk,liucuiwei}@sau.edu.cn

Abstract. In this paper, we propose a deep network based on multiscale
spectral-spatial fusion (MSS-Net) for Hyperspectral Image (HSI) classification.
For the purpose of extracting better joint spectral-spatial features, the proposed
network adopts multiscale spectral-spatial fusion method because different scale
regions contain different spatial structure, texture features and more abundant
neighborhood correlation which are helpful for classification. For every scale of
input, we take the 3-D cubes from the raw data to the spatial and spectral
learning module respectively. These two learning modules can extract the fea-
tures with more abundant and original spectral-spatial correlation from the 3-D
raw input data and then these features are combined as fusion spectral-spatial
features. And we can get multiscale fusion spectral-spatial features which are fed
to the two consequent residual learning block. Every residual block contains two
3-D convolutional layers and it can make full use of fusion features to learn
more discriminative and high-level features. Furthermore, it also can help the
network maintain higher accuracy when the network is deeper. After residual
learning, multiscale fusion spectral-spatial features are concatenated and sent to
fully convolutional layer for classification. The validation of our method is
proved on three HSI data sets and the experimental results show that our method
outperforms the other state-of-the-art methods.
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1 Introduction

Hyperspectral Image (HSI) has hundreds of continuous spectral bands and high spatial
correlation, so it contains abundant spectral and spatial information which is useful for
classification of different materials. Due to the high dimension of spectral, it causes the
difficulties of classification and calculation. So the dimensionality reduction (DR) is
required for HSI classification. Feature selection and feature extraction are the tradi-
tional methods to implement the DR [1]. Feature selection aims to find more dis-
criminative bands to represent the entire image [2]. Compared with feature selection,
feature extraction finds more useful features through mathematical transformation to
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help learning of model. Currently, many deep learning models are proposed and they
can learn more distinguished features with the goal of high classification accuracy [3–
5]. The typical deep learning model stacked autoencoders (SAEs) can combine spatial
and spectral features for HSI classification [6]. Deep convolutional neural network
(CNN) [7, 8] is adopted to get the spatial feature and it has no requirement for the input
dimensions. [9] proposes an end-to-end framework to learn the spectral and spatial
features, but in this framework the input of spectral data is 1-D dimension. It misses the
neighborhood information of spatial dimension and the classification accuracy will
decrease when the network is deeper. [10] proposes a supervised spectral–spatial
residual network and the residual block mitigates the decreasing-accuracy phe-
nomenon, but this network firstly learns the spectral features which are as the input to
extract the spatial information, so the spatial features are got from data which has been
transformed and it misses the original spatial correlation.

To solve these problems and extract more discriminative spectral-spatial features,
we propose a deep network based on multiscale spectral-spatial fusion (MSS-Net) for
Hyperspectral Image classification. Because HSI has abundant spectral and spatial
information which is most important for classification, so we consider different scale 3-
D cubes from the raw data as the inputs to spatial learning and spectral learning module
simultaneously. Then the features with the same scale are combined as fusion spectral-
spatial features and these multiscale spectral-spatial features are fed to the two con-
sequent residual learning block. The residual learning [11] can maintain a higher
accuracy when the network is deeper and make the network more robustness. After
average pooling, multiscale outputs as vectors are concatenated and adopted to the
softmax layer to classify image.

The three major contributions of this paper includes: (1) multiscale spectral-spatial
fusion is proposed to extract the fusion spectral-spatial features which contain different
neighborhood correlation and low-level feature, such as spatial structure, texture fea-
ture. This advantage is more suitable for finding the discriminative features, (2) the
input of spectral learning module is 3-D cube and it includes more abundant spectral-
spatial correlation. The spatial learning is started from the raw image rather than the
transformed data and it can extract more accurate and original spatial structure infor-
mation, and (3) the spectral-spatial feature is combined at beginning, the fusion
spectral-spatial feature as an input is fed to the convolutional layers and residual
learning layers. The residual layers can make full use of fusion features to learn more
high-level features for classification and it can help the network maintain a higher
accuracy with deeper layers.

2 Proposed Framework

HSI data can be denoted as R 2 <M�N�L, Ri 2 <M�N is i th band image, M;N; L
denote that the Hyperspectral Image has M � N pixels, L bands respectively. Mul-
tiscale 3-D data cubes as the inputs to do the same convolution operation which
contains the spatial learning and spectral learning on these inputs respectively. After
that, we fuse the same scale of spectral-spatial features as an input to the next layer.
Then we use the two consequent residual blocks to get more discriminative features
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which are learned from the fusion spectral-spatial features. The equation of residual
learning is described as:

y ¼ Fðx; fWgÞþ x ð1Þ

Where x; y are the input and output cube respectively. The convolutional filters W
need to be learned and the function F is the residual mapping of W . The function is
defined as:

F ¼ RðxÞ �W þ b ð2Þ

Where b is the bias on the next layer of input x and W is convolutional kernels. R is the
rectified linear unit activation function which sets elements with negative numbers to
zero. In the residual learning, we use the batch normalization (BN) to regularize the
learning process for every convolutional operation and BN is formulated as:

Yn ¼ Rðyn�1 �Wn þ bnÞ ð3Þ

And Yn represents the output of n th layer after BN operation, Wn; bn mean the
convolutional kernels and bias respectively on the n th layer. And the yn�1 is defined as:

yn�1 ¼ Yn�1 � EðYn�1Þ
VarðYn�1Þ ð4Þ

Which Yn�1 is the output of (n − 1) th layer after BN operation. After the residual
block layer, the average pooling operation is done for the output of the residual block
and we can get multiscale 1-D vectors which are concatenated and the equation of
fusion is:

Y ¼ gfWlast � ½yinput1 � yinput2 � � � � � yinputi� þ blastg ð5Þ

gðxÞ ¼ maxð0; xÞ ð6Þ

Where Y means the final output, � is concatenating the outputs from the multiscale
input, Wlast; blast denote the convolutional kernels and bias in the last layer respectively
and yinputi is the output of pooling from i th size of input. After concatenating the
features, the softmax operation is done for the HSI classification.

For the architecture of MSS-Net, We take the Indian Pines Data Set as an example
to describe our method in Fig. 1. Choosing the sample with size of 7 � 7 � 200 as the
input data. Through the convolutional operation of spatial learning and spectral
learning module with the size of 128, 3 � 3 and 128, 1 � 1 respectively to get the
features with size of 7 � 7 � 128. The outputs of spectral-spatial features are fused to
do the next convolutional and BN operation, finally it can generate the size of
7 � 7 � 128 feature map and it is used as an input to the residual learning layer which
contains two residual blocks. The residual block uses the size of 24, 3 � 3 � 128
filters to extract features from the fusion spectral-spatial feature tensor, and it generates
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the feature cube of 5 � 5 � 24 and BN operation is used after every convolutional
layer. Then the average pooling operation is conducted to transform the 5 � 5 � 24
feature tensor into 1 � 1 � 24 vector. Changing the scale of input data as
9 � 9 � 200, 11 � 11 � 200 and these inputs are done the same operation as the
mentioned above. These multiscale vectors after pooling are concatenated as the final
vector with the size of 1 � 1 � 72 and sent to softmax layer for classification.

3 Experiments

3.1 Data Sets and Experimental Setting

We use three data sets which contain the Indian Pines Data Set, Pavia University Data
Set and KSC Data Set to validate the effectiveness of our method. The Overall
Accuracy (OA) and the Average Accuracy (AA) are used to evaluate the classification
performance of all methods.

The Indian Pines Data Set (IN) has 16 vegetation classes and 224 bands with spatial
size of 145 � 145 pixels and the spatial resolution is 20 m per pixel. Because of water
absorption and noise, some bands are discarded and 200 bands are remained. The Pavia
University Data Set (UP) has 610 � 340 pixels with a resolution of 1.3 m per pixel and
9 urban land-cover classes. The number of remaining bands is 103 after discarding the
useless bands. The KSC Data Set contains 512 � 614 pixels with spatial resolution of
18 m per pixel and the ground-truth classes are 13. After removing the noise bands,
176 bands are retained and used for the experiment.

To reduce the random effects due to choosing different training samples every time,
we do the experiment twenty times then choose the average effect as the final result.
For the IN, we randomly choose 20%, 10%, 70% samples per class to form the training,

Fig. 1. Architecture of the proposed MSS-Net for hyperspectral classification. The size of
multiscale inputs are 7 � 7 � 200, 9 � 9 � 200, 11 � 11 � 200 and these three inputs are
done the same operation. Finally the outputs of pooling from these three inputs are concatenated
and used to classify the HSI image.
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validation, testing set and the training iteration is set to 100. And in UP and KSC, the
ratio is 5%, 10%, 85% and 10%, 10%, 80% respectively. In our implementation, the
50% dropout operation is adopted, the optimizer adopts the standard stochastic gradient
descent method. The batch size is set to 64, the optimum learning rates in IN, UP, KSC
data set are fixed as 0.0003, 0.0001 and 0.0001 respectively, and the momentum is set
to 0.9.

3.2 Experimental Results

The proposed method is compared with state-of-the-art methods including the SVM
[12], ResNet [11], SAE [4], 3-D CNN [4] and deep joint spectral-spatial CNN (Two-
CNN) [9]. The SVM and ResNet is considered as a baseline in HSI classification. The
framework of ResNet adopts the same residual blocks as our method and it does not
contain the spectral-spatial learning module.

We change the size of input on the three data sets to find the more suitable
multiscale for HSI classification. The results are showed in Table 1 and we can see the
accuracy is higher with larger spatial size. The accuracy changes smaller when the size
of the spatial domain larger than 11 � 11 on the three data sets and the accuracy is
relatively higher when the size is 7 � 7. For the purpose of selecting the relatively
small size of input with higher classification accuracy, we choose the suitable size of
the spatial domain 7 � 7, 9 � 9, 11 � 11 are as multiscale inputs to do the next
experiment.

In order to validate the multiscale input is more beneficial for HSI classification
than single input, we take some experiments in these three data sets. From Table 2, it
illustrates the performance of multiscale inputs have obvious advantage than the single
input when the percentage of training samples per class is 5% on the three data sets and
it means multiscale inputs are more effective even if the training sample is limited.
Because multiscale inputs can generate multiscale fusion spectral-spatial features and
these features contain more abundant spectral-spatial correlation and spatial structure
information than the single input. The classification accuracy of most situations are
improving accuracy with increasing the training samples and the multiscale inputs
outperform the single input. The results prove multiscale inputs can get more dis-
criminative features and are more useful for HSI classification.

Table 1. Classification results (OA%) of our methods on the three data sets with different input
size. (The percentage of training samples of IN, UP and KSC are 20%, 5%, 10% respectively.)

Spatial size IN UP KSC

3 � 3 85.32 94.24 89.11
5 � 5 97.83 96.49 92.56
7 � 7 98.26 98.28 97.14
9 � 9 99.35 99.14 97.47

11 � 11 99.41 99.31 99.29
13 � 13 99.27 99.35 99.32
15 � 15 99.31 99.40 99.36
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Changing the number of training samples is considered to illustrate the impact of
different number of samples to the classification accuracy. From Fig. 2(a), it shows the
classification accuracy of each method in IN is improving when the percentage of
training samples is increasing and it proves abundant labeled sample is helpful for HSI
classification. MSS-Net has a great advantage than other methods in all cases. Com-
pared with ResNet, MSS-Net is better than it and the result illustrates multiscale fusion
spectral-spatial features contain more abundant neighborhood correlation and it can
make the network learn more representative features. The Fig. 2(b) shows all methods’
performance in UP. MSS-Net is better than other methods when the percentage of
training samples is 5%, and it proves our method constantly performs better than others
with limited labeled samples. Because of the resolution of 1.3 m per pixel in UP, so the
accuracy of MSS-Net, ResNet and CNN are closer when the percentage of training set
is increasing. Figure 2(c) displays the results of methods on the KSC. Our method
performs better than Two-CNN, it shows the spectral learning module in our method
can extract more useful spectral-spatial correlation from the 3-D input cube than the 1-
D input cube in Two-CNN.

Table 2. Classification results (OA%) of our methods on the three data sets with different input
size when the percentage of training samples is changing.

Data Set Size of input 5% 7% 9% 10%

IN 7 � 7 86.47 92.02 93.76 95.43
9 � 9 89.38 93.79 95.38 96.82
11 � 11 92.66 95.05 96.17 97.26
7 � 7, 9 � 9, 11 � 11 96.13 96.96 97.52 98.34

UP 7 � 7 98.28 99.11 99.25 99.57
9 � 9 99.14 99.27 99.38 99.61
11 � 11 99.31 99.36 99.43 99.67
7 � 7, 9 � 9, 11 � 11 99.62 99.68 99.74 99.81

KSC 7 � 7 94.97 96.02 96.49 97.14
9 � 9 95.72 96.29 97.33 97.47
11 � 11 96.55 97.62 98.37 99.29
7 � 7, 9 � 9, 11 � 11 97.83 98.31 99.16 99.54

Fig. 2. The Overall Accuracy of changing the percentage of training samples by all methods on
the three data sets. (a) Overall Accuracy on IN. (b) Overall Accuracy on UP. (c) Overall
Accuracy on KSC.
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Comparison results in Table 3 illustrate that our method has better performance
than other state-of-the-art methods. From the Table 3, we can see the methods of deep
learning have a great advantage than SVM and the accuracy is higher than the baseline.
In these data sets, MSS-Net has an obvious advantage than Two-CNN, because mul-
tiscale spectral-spatial features contain more abundant neighborhood correlation than
the single fusion spectral-spatial features in Two-CNN. And MSS-Net outperforms the
ResNet, because our method learns more representative features through the spectral-
spatial learning module rather than directly using the raw data to the residual learning
block. The residual learning block can solve the problem of declining accuracy due to
the deeper layers, so it makes our network has an excellent performance in deeper
network.

4 Conclusions

A deep network based on multiscale spectral-spatial fusion (MSS-Net) for Hyper-
spectral Image classification is proposed in this paper. Multiscale spectral-spatial
learning contains more abundant neighborhood correlation and spatial structure
information which are beneficial for extracting more discriminative features and the
effective of multiscale spectral-spatial fusion is proved on the experiments. The fusion
spectral-spatial features are gotten from the 3-D raw input data and it means the
following learning is based on the original correlation of spatial and spectral domain.
The residual learning block makes this network more robustness and maintain a higher
accuracy for the deeper layers. The experimental results show our method has better
performance with limited labeled samples on the three data sets over other state-of-the-
art methods.

Acknowledgment. This work was supported in part by the Natural Science Foundation of
China (NSFC) under Grant No. 61602320, and the Natural Science Foundation of Liaoning
under Grant Nos. 201601180 and 201601172.

Table 3. Classification accuracy (%) of different methods on the three data sets. (The percentage
of training samples of IN, UP and KSC are 20%, 5%, 10% respectively.)

Data Set IN UP KSC

Metric OA AA OA AA OA AA

Two-CNN 94.86 ± 0.45 94.94 ± 0.29 94.63 ± 0.27 93.31 ± 0.22 87.74 ± 0.34 85.77 ± 0.25

SAE 86.16 ± 0.51 85.72 ± 0.38 92.27 ± 0.35 92.58 ± 0.29 91.04 ± 0.36 89.75 ± 0.28
SVM 81.41 ± 0.45 80.14 ± 0.56 85.63 ± 0.31 84.17 ± 0.34 74.76 ± 0.25 72.93 ± 0.41

CNN 97.58 ± 0.27 97.03 ± 0.32 96.89 ± 0.17 96.75 ± 0.25 93.58 ± 0.24 93.65 ± 0.37
ResNet 98.26 ± 0.37 97.31 ± 0.34 97.48 ± 0.20 97.03 ± 0.23 95.37 ± 0.26 94.86 ± 0.27
MSS-Net 99.62 – 0.27 99.47 – 0.36 99.62 – 0.14 99.34 – 0.19 99.54 – 0.21 98.92 – 0.28
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