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Abstract. Completely Automated Public Turing test to tell Comput-
ers and Humans Apart (CAPTCHA) is a widely used type of challenge-
response test to determine whether or not the user is human in many
web applications. The traditional CAPTCHAs with English and Chi-
nese characters can be automatically recognized with high accuracy.
Yet current methods are limited in recognizing new CAPTCHAs such
as character-matching CAPTCHA. We present an approach that com-
bines convolution neural network with triple loss to solve character-
matching CAPTCHA. We evaluate our approach on five types of
CAPTCHAs including character-matching CAPTCHA. The experimen-
tal results show that our approach outperforms other four common recog-
nition methods in the aspects of both accuracy and convergence speed.

Keywords: CAPTCHA · Convolutional neural network · Triple loss
Recognition

1 Introduction

This century witnesses the expansion of information, inferable from which, an
extensive number of data is put away on Cloud services. Furthermore, there
are data interchange between people and network constantly in our daily life.
However, the wide use of web spiders has brought about the main problem
that a large number of users’ data is stolen, which exerts a pernicious influence
on people’s life. Therefore, what should be taken into consideration is how to
protect users’ privacy and data from being stolen. CAPTCHA [1] is a test to
distinguish computers and humans automatically. CAPTCHA is adopted for
protecting service and the data from being abused or crawled by automatic
program. Currently, a vast number of internet service providers will ask users to
recognize CAPTCHA correctly when registering or operating other action.

As computer vision develops, regular CAPTCHA like Fig. 1 is easy enough
for computers to accurately recognize, which urges people to develop a more
complex CAPTCHA. One of the novel CAPTCHA systems based on images
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is designed by Datta et al. [5], which asks users to match the given images to
their introductions in 30 s. Meanwhile, in order to prevent computers recognizing
images, some semitransparent color lumps are added to blend them up. With
respect to these novel CAPTCHAs, a complex CAPTCHA (Character-Matching
CAPTCHA) that based on Chinese characters tends to be used, which requires
users to match four characters to the given pictures in proper order like Fig. 6(e).
There are some difficulties to recognize this CAPTCHA: 1. Due to more com-
plicated stroke and structure, CAPTCHA based on Chinese characters is quite
different from CAPTCHA based on regular English characters. Furthermore, it
will be difficult for computer to recognize when resizing characters and adding
interference lines on image. 2. Unlike the regular CAPTCHAs shown in figure
two (a)(b)(c)(d), whose each character corresponds to a signal label, Character-
Matching CAPTCHA cannot predict character directly for there are more than
three thousands Chinese characters and the total amount of Chinese characters
tends to be up to ten thousands, which is much more than English characters.
Though in [13], there are some Chinese characters have been recognized, the data
set just comprises of two hundred Chinese characters which can lessen the trou-
ble of recognition. In this paper, we develop a method based on convolutional
neural network to solve this novel CAPTCHA and evaluate the performance of
our method.

Fig. 1. Google’s RECAPTCHA [20] include a distorted word and a word scanned from
a book, it also adds interference lines. Users need to enter two words together would
they be able to approve.

2 Related Work

Generally, there exists three kinds of CAPTCHAs: text-based [20], image-
based [5], and audio-based [2,6,21] CAPTCHAs. We mainly focus on text-based
CAPTCHAs in this paper.

For early CAPTCHAs, the procedure to the recognition CAPTCHAs is like
[10]. For the most CAPTCHAs, people separated it into two sections: First, rec-
ognize the area that the individual character occupies and then divide it [14].
Second, recognize each character individually [17]. For example, the CAPTCHAs
problem can be solved by means of separating individual character and recog-
nizing them by Chellapilla et al. [4]. After that, LeCun et al. [12] asserted that
convolutional neural network (called LeNet network) is adopted for recognizing
handwritten text and obtained high accuracy. However, when Mori et al. [15]
pointed out in 2003 that text-based CAPTCHAs could be recognized with a
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high recognition rate, all the CAPTCHAs have been designed to a more com-
plex format. Ligature and torsion resistance are used for some CAPTCHAs,
which lead to the failure of recognizing by separating them into single charac-
ter. LeNet is unable to solve the more complicated CAPTCHAs above. Stark
et al. [19] achieved a high accuracy by recognizing English characters directly on
small data set rather than separating them. Bursztein et al. [3] researched and
developed Decaptcha and recognized CAPTCHAs of 13 websites successfully,
including Google. In 2014, Goodfellow et al. proposed a recognition method of
multi-character text based on deep CNN with localization, segmentation, and
recognition. Yunhang Shen et al. [8] proposed a Multi-Scale Corner Structure
Model for Chinese Touclick CAPTCHA recognition.

The above research has obtained good results in CAPTCHAs recognition.
However, as CAPTCHAs develops, more novel CAPTCHAs tend to be designed,
that is, the regular CAPTCHAs recognition loses its efficiency in these novel
CAPTCHAs. These novel CAPTCHAs are applied to many famous websites,
including Alibaba and ebay. In this paper, we develop a new method to recognize
one of these novel CAPTCHAs. As shown in Table 1, we compare several models
to find whether they can finish five tasks of data sets.

Table 1. We consider the model can complete the task if it achieves a accuracy of 95%
or higher. LeNet can achieve a high success rate in task one only. The structure of Lin
et al. can achieve high success rate in both Chinese and English CAPTCHAs but not
in the new matching CAPTCHAs. The structure of Stark F et al. can achieve task one
and task three only. However, we can achieve all five tasks with high success rate.

Task one Task two Task three Task four Task five

LeNET
√ × × × ×

Lin et al.
√ √ √ √ ×

Shark F et al.
√ × √ × ×

OURS
√ √ √ √ √

3 Methods

3.1 Binary Option

For text based CAPTCHAs, color image tends to be less effective to improve the
accuracy of recognition. The binary option can significantly reduce the amount
of computation required without reducing accuracy. We first process graying
operation on image:

Gray = R × 0.299 + G × 0.587 + B × 0.114, (1)

where R, G, and B denotes three channel of a color image. Then we will process
binary operation. Nowadays, the best method of image binary option is called
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Maximum Between-Class Variance from Nobuyuki Otsu [9] and its abbreviation
is Otsu. Otsu is a self-adaptive threshold determination method. It divides the
image into two parts by threshold value T based on the gray feature of the image.
These two parts of image are called front image and back image. When we get the
best threshold, these two parts should be the most different. In Otsu algorithm,
the metric to measure the difference is Maximum Between-Class Variance. The
probability of being wrongly divided attain minimum when the segmentation
of threshold values makes the largest variance. It is assumed that T means the
threshold of front image and back image. Meanwhile, the ratio of front and back
images to total image is W0,W1 and average gray value is U0, U1. The average
variance of front image and back image is U :

U = W0 × U0 + W1 × U1 (2)

g = W0 × (U0 − U)2 + W1 × (U1 − U)2 (3)

yielding:
g = W0 × W1 × (U0 − U1)2 (4)

when g gets maximum, the difference between front and back image is the largest
and the threshold value T is the best. Figure 2 shows examples after binary
operation.

Fig. 2. Examples of a binary operated image with background noise and rotational
deformation.

3.2 Image Noise Reduction

Image noise has a significant influence on the accuracy of CAPTCHA recogni-
tion, it is important to reduce image noise before recognition. Compared to other
linear filtering like average filtering, median filtering is a non-linear image noise
reduction method, which can remove spot and spiced salt noise effectively and
protect image edges. Although, Median filtering is a domain operation which is
similar to convolution, it is not a weighted sum. Median filtering sorts the pixels
in order by grayscale and then selects the median as the output of pixels. Median
filtering is defined as follows:

g(x, y) = median
(i,j)∈W

{f(x ± i, y ± j)}, (5)

where g(x, y) is the output of the pixel gray scale, f(x ± i, y ± j) is the input
of the pixel gray scale, and W indicates template window that can be Line font,
rhombus, or rectangle and so on. As shown in Fig. 3, a result of image noise
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reduction can be obtained by selecting a specific window in accordance with the
images in five tasks. After image noise reduction, the image still has interference
lines that make it difficult for our model to recognize characters. Compared to
characters, the interference line has smaller width. The equation is written as:

n = sum
(i,j)∈N∗

(Sgn(f(x ± i, y ± j))), (6)

where i, j are positive integer and f(x−i, y−i) indicates input pixel. After selecting
the specific threshold value, f(x, y) is isolated and interference lines should be
removed when n is smaller than threshold value. Figure 4 shows the image after
removing interference lines.

Fig. 3. It is assumed that W is square and the size of window W can be set according
to the task. Apart from interference lines, spiced salt noise has been removed effectively
after median filtering noise reduction.

Fig. 4. Interference line has been removed.

3.3 Segmentation

Since Arithmetic CAPTCHA has diverse characters number for different exam-
ples and the method we use to recognize character-matching CAPTCHA, we
need to segment characters on these two CAPTCHAs. We use a method called
X-axis Pixel Projection. The process of the method is that we sum the number
of black spots on each vertical axis. Obviously, if one vertical line is background,
the number of the black spots should be close to zero. Otherwise, if one vertical
line passes a character, there are more black dots on this vertical line. For two
standalone characters, there must be at least one vertical line that has no black
spot. However, if the characters are cohesive, we cannot find a vertical line that
has no black spot. In these cases, we find a vertical line having a minimum of
black spot between two cohesive characters can be a connection between two
characters. Threshold value can be set in accordance with different situations.
When black spot for one vertical line is less than threshold value, we segment
character on this vertical line. Figure 5 shows an image after segmentation.
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Fig. 5. Image has been segmented into single characters.

4 Experiment

In experiment section, we outline two experiments to solve five undertakings
we have depicted previously. Experiment one is based on regular CAPTCHA
from task one to task four. While experiment two focuses on novel CAPTCHA
(character-matching CAPTCHA). From this, our model’s performance can be
evaluated. All experiments have been executed using Tensorflow 1.5 on a NVIDA
GeForce 1080 Ti GPU.

4.1 Data Sets

The data set that provided by In spur Technologies Co., Ltd. is used for our
model. The data set mainly has five parts: I. Arithmetic CAPTCHA, which
contains arithmetic. As shown in Fig. 6(a), results can be obtained by arithmetic.
II. English Alphabet and Digital CAPTCHA, which contains five characters. As
shown in Fig. 6(b), results can be obtained by typing all the characters, which
should be converted to uppercase. III. English Alphabet and Digital CAPTCHA,
which is as same as type two but has four characters like Fig. 6(c). IV. Chinese
rotational characters CAPTCHA. which contains four Chinese characters. Users
are requested to select one of the four characters that is rotated by 90◦ like
Fig. 6(d). V. character-matching CAPTCHA, which contains an image with four
Chinese characters (called verification image) and nine images (called matching
image) including a single character. As shown in Fig. 6(e), results are the order
number of matching images in conformity with the verification image.

Fig. 6. Examples for different CAPTCHAS in our data set.
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4.2 Network Design

Based on LeNet structure, we add two convolutional layers. Figure 7 shows the
structure of our CNN network. Our CNN consists of four convolutional layers,
which has a size of 16, 32, 64, 128 and have a kernel of 3 × 3. To make it sure
that after every convolutional operation the feature maps have the same size,
we use Zero-Padding. After each convolutional layer, there are a max pooling
layers that each filter has a stride of 2 × 2 and size of 2 × 2. Then, the network
has one fully connected layer with a size of 512 and the final output layer is
designed depending on the task. We use ReLu function to activate feature map
and a method called dropout [18] is used to prevent overfitting.

Fig. 7. Convolutional neural network structure.

4.3 Experiment I

For task one Arithmetic CAPTCHA, we define a bisection Θ1(x) that maps a
character x ∈ {′0′...′9′,′ +′,′ −′,′ ×′} to a positive integer :

Θ1(x) = {0...9, ifx = ′0′...′9′
10,11,12 if x= ′+′,′−′,′×′ (7)

For task two and task three, apart from uppercase and lowercase of English
character, we define a bisection Θ2(x) that maps a character l ∈ {′0′, ...′11′} to
a positive integer l ∈ {′0′, ...′35′}:

Θ2(x) = {0...9, ifx = ′0′...′9′

10...35 if x= ′a/A′...′z/Z′ (8)

Softmax loss function can be used in task one and four while sigmoid cross
entropy loss function in task two and three. Image segmentation is adapted for
task one and five. Due to adherence of characters, it is difficult to segment in task
three. Conversely, task two and three can achieve a high accuracy without image
segmentation. For task two and three, we assign the first 36 output neurons to
the first character of the sequence, the second 36 neurons to the second character,
and so on. Hence, for the i-th character, the neuron n is calculated as follows:

n = 36 × i + Θ2(xi), (9)

where i ∈ {0, 1, 2, 3, 4} (for task two) or i ∈ {0, 1, 2, 3}{0, 1, 2, 3, 4}(for task three).
For task two, the output layer has 36 × 5 = 180 neurons and for task three, the
output layer has 36 × 3 = 144 neurons. Figure 8 shows an instance of a network
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Fig. 8. Output of the network for the CAPTCHA ‘CHPV’.

output for task three. The predicted index for the first character is 12, so the
character is ‘C’. Xavier initialization [7] is adopted for training the model. Then
the model is optimized by Adam [11] algorithm, with batch size of 64. The
learning rates for task one to four are 0.0001, 0.00005, 0.00005, and 0.0001.

The performances of our model with other common machine learning meth-
ods including LeNet are shown in Table 2. On account that task one is easy
to recognize, our model doesn’t reveal enormous advantage when compared to
other methods. When it comes to task two, three, and four, the accuracy of our
model is much higher than other methods. As shown in Fig. 9, when compared to
LeNet, our model has a faster convergence in all tasks and has a higher accuracy
in task two,three, and four. We get high accuracy which is close to 100% within
a short 50 iterations in task one. An accuracy of 99.0% can be obtained in task
four after 300 iterations while an accuracy of 99.9% can be obtained in task two
after 500 iterations. Our model has a slower convergence and in task two than
that of other tasks. Due to the problem of uppercase, lowercase and more noises,
it is difficult to recognize in task two. As indicated in Fig. 9, with the increase
of iterations, the accuracy of LeNet doesn’t develop in task two, that is, LeNet
cannot obtain effective features in task two.

Table 2. The performance of different machine learning methods.

Machine learning method Task one Task two Task three Task four

Our model 1.000 0.999 1.000 0.998

LeNet 1.000 0.182 0.881 0.932

SVM 1.000 0.000 0.000 0.776

Decision tree 0.980 0.040 0.011 0.572

KNN 0.982 0.100 0.000 0.495

4.4 Experiment II

It is hard to achieve high accuracy with a limited data set in task five, inferable
from which, there are around three thousands basic Chinese characters and a
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Fig. 9. In all four tasks, our model tends to be faster convergence and higher accuracy.

large number of Chinese characters in total. Inspired by Schroff et al. [16] from
Google, we use triple loss in our task five.

As indicated in Fig. 10, a triple can be defined as follows: first, after image
segmentation, we select a sample from data set that is called Anchor, and then
selected two samples, one belongs to the same class as anchor (called Positive)
and the other one belongs to the different class (called Negative). With respect
to each element in the triple, we project the sample onto a single point in the
embedding space by a parameters-shared network, which is written as f(xi

a),
f(xi

p), and f(xi
n). It is preferred that the distance between an Anchor and a

Positive is as close as possible and the distance between the Anchor and a Neg-
ative is far. Meanwhile, there should be a margin that indicates the distance
between ||f(xa

i ) − f(xp
i )||22 and ||f(xa

i ) − f(xn
i )||22, yielding:

Fig. 10. Every triple can be classified into three components, Anchor, Positive, and
Negative. We want CNN to learn to minimize the distance between an Anchor and a
Positive and maximize the distance between the Anchor and a Negative.
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||f(xa
i ) − f(xp

i )||22 + a < ||f(xa
i ) − f(xn

i )||22 (10)

The triple loss is defined as:

N∑

i

[||f(xa
i ) − f(xp

i )||22 − ||f(xa
i ) − f(xn

i )||22 + a]+ (11)

The difficulty of using triple loss to train CNN is that triple loss is hard to be
convergent to the minimum. Thus, The Anchor’s distance between the positive
should be as far as possible, while the distance between the Negative should
be as close as possible. However, our amount of triples is 10, 000 × C1

4 × C1
8 =

320, 000 which is much smaller than the data set in [16]. Therefore, we will not
select triples manually. With the increase of iteration, the maximum, minimum,
and average distance of Anchor-Positive and the Anchor-Negative are shown in
Fig. 11. During training, the maximum, minimum, and average distance keep
increasing but the average distance attains 9.954 after 20 iterations, that is, our
CNN structure learns base difference between different samples rapidly. After 180
iterations, the difference between Anchor-Positive average distance and Anchor-
Negative average distance attain 14.05, that is, our model could distinguish the
otherness between different samples and can get high accuracy. However, the
Anchor-Positive max distance is still larger than Anchor-Negative min distance,
that is, there are still some samples that our model cannot distinguish well.
When testing our model, we first project the sample onto a single point in the
embedding space that we describe above. Then, we calculate the L2 distance
between verification images and matching images. We select a verification image
and matching image that have minimum L2 distance, which means that this
verification matches the matching image. After this, we remove the verification
image and the matching image. Then, repeat the process until all the verification

Fig. 11. The maximum, minimum, and average distance between the Anchor and Pos-
itive and between the Anchor and Negative with the increase of iteration.
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images match matching images. Finally, the accuracy of out model tends to be
97.9% and the LeNet is 46.6%, that is, our model can finish the task better.

5 Conclusion

Keeping in mind the goal to tackle novel CAPTCHAs, we advance a model
based on convolutional neural network, which can get high accuracy on com-
mon CAPTCHAs as well as on novel CAPTCHAs. With respect to character-
matching CAPTCHA, the accuracy rate tends to be 97.9% by using convolu-
tional neural network with triple loss. Meanwhile, compared with LeNet, our
model can get higher accuracy on all five tasks.
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