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Abstract. In this study, a novel pulmonary nodule detection and classi-
fication system with 2D convolutional neural networks is proposed. The
objective is to effectively address the challenges in lung cancer diag-
nosis and early treatment. The system consists of two stages: nodule
detection and false positive reduction. For nodule detection, we intro-
duce a detection framework based on Faster R-CNN, which integrates a
deconvolution layer to enlarge the feature map and two region proposal
networks to concatenate the useful information from the lower layer. In
order to ensure high sensitivity, the conditions at this stage are sim-
ple and loose. Therefore, a boosting architecture based on 2D CNNs is
designed for false positive reduction. In order to improve classification
accuracy, every training model pays attention to those data that are not
easy to classify. In experiments, our method is conducted on LUNA16
challenge. The sensitivity of nodule candidate detection achieves 86.42%.
For false positive reduction, sensitivities of 73.4% and 74.4% at 1/8 and
1/4 false positives per scan are obtained, respectively. It proves that our
method can maintain a satisfactory sensitivity even with extremely low
false positive rates.
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1 Introduction

As reported in global cancer statistics in 2012, nearly 1.83 million new cases of
lung cancer occurred, with a fatality rate of up to 82% [26]. Since early lung
cancer has no obvious symptoms, the time of clinical diagnosis often reaches the
middle and late stages which leads to the high cost and bad treatment. Therefore,
early detection and diagnosis of lung cancer are particularly important. Espe-
cially, in the initial stage, lung nodule detection is worth of attention to give
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Fig. 1. Examples of pulmonary nodules on the right green rectangle and false positives
on the left red rectangle. The right part displays the various sizes, shapes, locations
and types of the diseased nodules. False positive candidates that are not related with
cancers have quite similar morphological appearance to the true nodules. (Color figure
online)

patients the best chance of recovery and survival. The National Lung Screen-
ing Trial has shown that, screening with low-dose computed tomography (CT)
images reduces overall mortality among individuals at high risk for developing
lung cancer [25]. Thus, millions of medical CT images are needed to be further
analysed by radiologists, however, which consumes lots of time and effort.

To speed the reading process and reduce the burdens of radiologists,
computer-aided diagnosis system (CADs) has been a prosperous field in medi-
cal image processing. The predictions of CAD systems are used as the second
diagnosis result before making final decision. In the diagnosis of lung cancer,
automated pulmonary nodule detection in CT scans plays an important role in
CAD systems [12,21,28]. Although the improvement of CAD systems has been
proved, the use of CADs is still a challenging task because most nodules are
not found at low false positive rates. The pulmonary nodules with various sizes,
shapes, locations, types and false positive candidates with similar morphology
are shown in Fig. 1. As we can see, the false positive candidates which carry sim-
ilar appearance with nodules would heavily make the task challenging. Recently,
the revolution of convolutional neural networks (CNNs) has attracted plenty
of academic groups and industries to pay their attention to the extraordinary
learning power of deep learning in CADs. In this paper, we propose a novel
automated pulmonary nodule detection and classification framework to assist
the CT reading process. The main contributions of this paper are as follows:

– To adapt to the detection task, we design the structure of Faster R-CNN
with two region proposal networks and a deconvolutional layer. To integrate
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more spatial information of the lung scans, three detection architectures are
trained for three kinds of adjacent slices respectively, and then results fusion
is conducted.

– For false positive reduction, a set of 2D patches from multiple view planes
are used to train three 2D CNNs. To boost the sensitivity, we keep the mis-
classified samples and use them to re-train next model. Finally, the classifi-
cation results are voted out.

The performance of our system is validated on LUNA16 dataset [1]. For nod-
ule candidate detection, the sensitivity achieves 86.42%. For the false positive
reduction, the sensitivities can reach 73.4% and 74.4% at 1/8 and 1/4 FPs/scan
respectively. It illustrates that our system achieves promising results for auto-
mated pulmonary nodule detection and classification.

2 Related Work

Current automated pulmonary nodule detection systems mainly consist of two
stages: (1) nodule candidate detection [6,8]; (2) false positive reduction [19]. In
nodule candidate detection stage, a number of candidates are screened using
some hand-crafted features such as morphological features, voxel clustering
and pixel thresholding [29]. Some researchers use convolutional neural network
to describe the characteristic of nodules, and then the candidate regions are
obtained. In false positive reduction stage, a classifier is designed to reduce a
large number of false positive candidates.

Recently, CAD systems based on deep convolutional neural network are
designed for automatic lung cancer detection [14]. For candidate detection,
ZNET system applys CNN which is generated from the probability map given
by U-Net [17] on each axial slice. Then 64× 64 patches from the axial, sagit-
tal and coronal views are extracted for each candidate. Each patch is processed
separately by the wide residual networks. The predicted output values of the
network for these three different patches are averaged to obtain the final predic-
tion. Traverso et al. [27] propose a WEB and Cloud-based CAD system, which
is the combination of two independent CAD sub-systems: the Channeler Ant
Model (lungCAM) and the Voxel-Based Neural Approach (VBNA). These two
algorithms have a common starting point, which is the parenchymal volume
obtained with a 3D region growing segmentation algorithm.

Because of the 3D nature of CT scans, some researchers propose 3D con-
volutional networks to handle the challenge. Dou et al. [15] propose a nodule
detection framework based on 3D CNN, which screens the candidates with the
fully convolutional network, and retrieves the high-probability locations as can-
didates. In false positive reduction, they employ the residual network which
can ease the gradients flow within the network. Hangzhou Jian Pei science and
Technology Co., Ltd. [2] proposes a multi-scale rule-based screening method to
obtain nodule candidates. The false positive reduction uses 3D CNN with wide
channels, which is trained using data augmentation to prevent overfitting. Zhu
et al. designed a 3D Faster Regions with Convolutional Neural Net (R-CNN)



200 N. Sun et al.

for nodule detection with 3D dual path blocks and a U-net-like encoder-decoder
structure to effectively learn nodule features. For nodule classification, gradient
boosting machine (GBM) with 3D dual path network features is proposed [30].

Although most CAD systems achieve encouraging performance based on 3D
CNN, it requires more training time and the model size also has quadratic growth
compared to 2D CNN. For example, the model size of a 11-layer 3D CNN, i.e.,
C3D [9] networks, is 321 MB which is even larger than that (235 MB) of a 152-
layer 2D ResNet (ResNet152) [11], making it extremely difficult to train a very
deep 3D CNN. Besides, the CT scans usually have different slice thicknesses
(0.6–5 mm), so the preprocessing of 3D lung CT images is complicated [13]. On
the contrary, 2D lung CT images are not influenced by the slice thickness. Both
training time and the resources needed for processing are less. Hence, using 2D
CNN networks is a more widespread way to detect the lung nodules.

3 Method

We bring up an automated pulmonary nodule detection system, which consists of
two stages: nodule candidate detection and false positive reduction. Two 2D deep
convolutional networks are designed for nodule detection and classification. Our
candidate detection framework is based on Faster Region-based Convolutional
Neural Network (Faster R-CNN) [16] which is a well-known approach for object
detection. The goal is to identify locations of possible nodules at a very high
sensitivity, which means that some false positives will be generated. Therefore,
we propose a boosting classifier base on 2D CNN to reduce these false positive
candidates. The whole framework is illustrated in Fig. 2. The method is described
in detail as follows.

3.1 Nodule Candidate Detection

Inspired by the successful use of DCNNs in object recognition [16], we design a
detection structure based on Faster R-CNN. In the upper part of the Fig. 2, it
presents the nodule candidate detection network. Using raw CT scans, the aim
is to detect nodule candidates, and assign a probability for being a nodule to
each location. To make fully use of the spatial information of the CT scans, we
extract not only the middle slice of the nodule, but also two neighboring slices.
Three 2D CNNs are trained with these three kinds of slices separately. When
testing, the detection results are merged to get the nodule candidates regions.
The network is composed of three sub-networks: (1) feature extraction network;
(2) region proposal network; (3) Region-of-Interest classifier.

Firstly, for feature extraction network, our method is VGG16 [20] with 5-
group convolutions, which is shared by the subsequently sub-networks. Owing
to the much smaller size of lung nodules compared with common objects in
natural images, the selection of receptive field is important for the pulmonary
nodule candidates detection. After a series of convolution and pooling layers, the
receptive field becomes larger. The size of the feature map in the last convolution
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Fig. 2. The architecture of our CAD system consists of two parts. The top part is
nodule detection network which is composed of three sub-networks. The basic fea-
ture extraction network is VGG16, and a deconvolution layer is used to enlarge the
feature map. Meanwhile, two region proposal networks with designed seven anchors
are applied to obtain the proposals. The sizes of seven anchors are: 12× 12, 18× 18,
27× 27, 36× 36, 51× 51, 75× 75 and 120× 120. Finally, Region-of-Interest classifier is
employed to get the candidates. For nodule candidates, we conduct false positive reduc-
tion shown in the bottom part. Firstly, we use different methods of data preprocessing
for positive and negative samples. Then, in the boosting classifier part, training data
of each model comes from two parts: training subsets and mis-classified data from the
last model. Finally, the results are voted out through three classification CNNs.

layer of VGG16 (conv5 3) is 38× 38, which leads to a limited performance in
detecting RoIs of nodules, because the small feature map cannot clearly represent
the features of objects. To conduct region proposals in a feature map, we add a
deconvolution layer to obtain a 148× 148 feature map after conv5 3 inspired by
[6].

Secondly, two region proposal networks are applied to integrate lower layer
information [10]. These two region proposal networks are concatenated to decon-
volution layer and the middle convolution layer (conv3 3) respectively, which
have approximately same size of feature maps. We can obtain different useful
information of the nodule by using different perspectives of two region proposal
networks.

Thirdly, to fit the size of nodules, seven anchors with different sizes are
designed: 12× 12, 18× 18, 27× 27, 36× 36, 51× 51, 75× 75 and 120× 120.
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A 3× 3 sliding window is applied to the feature maps (deconvolution layer and
conv3 3), and the designed anchors are employed to predict multiple RoIs at each
location of sliding window. Then, the region proposal network maps each 3× 3
sliding window to a 512-d feature, which is fed into two sibling fully-connected
layers for regressing the bounding box of region and predicting score simultane-
ously. With these definitions, the multi-task loss for an image is defined as:

L(pi, ti, p1kj , t
1
kj) =

∑

i

L1(pi, ti) +
2∑

k=1

∑

j

L2(p1kj , t
1
kj), (1)

Here, L1 and L2 can be written as:

L1(pi, ti) = Lcls(pi, p∗
i ) + λp∗

i Lreg(ti, t∗i ). (2)

L2(p1kj , t
1
kj) =

1
Ncls

Lcls(p1j , p
∗
j ) + λ

1
Nreg

p∗
jLreg(t1j , t

∗
j ). (3)

where i is the index of proposals produced by region proposal networks, pi is
the predicted probability of proposal i being a nodule. The ground-truth label
p∗
i is 1 if the proposal is positive, otherwise 0. ti is a vector representing the 4

parameterized coordinates of the predicted bounding box, and t∗i is that of the
ground-truth box associated with a positive proposal. The classification loss Lcls

is log loss over two classes (nodule vs. not nodule). j is the index of an anchor
which is chosen as a training sample in an region proposal network training
mini-batch, k is the index of the two region proposal networks, p1kj and t1kj are
similar to the symbols mentioned above but in the k-th region proposal network,
parameter λ controls the balance between Lcls and Lreg and λ is set to 1 in all
of our experiments.

3.2 False Positive Reduction

For the acquisition of candidate nodules, isomorphic sampling is conducted
before extracting 2D patches. The pixel size and coarse granularity of surfaces
scanned from multifarious medical devices are different. So in our system, all
the objects are sampled in 1× 1× 1 (mm) pixels. Similar to [19], nine patches on
multi-view planes are extracted which is shown in the nodule augmentation parts
of Fig. 2. Three planes are known as sagittal, coronal, and axial planes, and the
rest of planes cuts two opposite faces of cubes in diagonals. We can obtain more
context information about one nodule and alleviate the ratio between positive
and negative samples. However, for non-nodules, we only conduct downsampling
using 2D CNN firstly which is detailed in Sect. 4.1.

Boosting [18] is a commonly used statistical learning method which is effec-
tive and has a broad application. Combined with this classifier idea, several
CNNs are trained and the final result is obtained by voting. We divide the
dataset into 5 subsets: 3 subsets for training, 1 subset for validation and 1 sub-
set for testing. And then the training subset is divided into 3 parts, and each
part is used to independently train the classification model. In the experiment,
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the input of the network is a 35× 35 patch. We adjust and fine-tune the AlexNet
[14] based on a pilot study on a smaller dataset. We refer readers to [3] for more
network architecture details. The first subset is employed to train a weak classi-
fication model1, and then the misclassified samples from the model1 and second
subset are used to independently train a new model2 from scratch. Similarly,
model3 is independently trained with wrong data from model1 and model2 and
third subset. In the training process, we take the misclassified samples of previ-
ous round as the training data for the next model and the networks pay attention
to those samples that are not easy to classify. To discriminate the hard mimics
correctly, it can be inferred that hard mining is important for improving the
accuracy of CNN.

4 Experiments and Results

4.1 Dataset

LUNA16 dataset is collected from the largest publicly available reference
database for pulmonary nodules: the LIDC-IDRI [5], containing a total of 1018
CT scans. LUNA16 dataset removes CTs with slice thickness greater than
2.5 mm, slice spacing inconsistent or missing slices from LIDC-IDRI dataset, and
also removes the annotated nodules of size smaller than 3 mm. The remaining
888 scans are divided into 10-folds with the objective to perform cross valida-
tion. The total candidates in LUNA16 are 754, 976, and the corresponding class
label (0 for non-nodule and 1 for nodule) for each candidate is provided. Note
that there can be multiple candidates per nodule. For false positive reduction
stage, there is a challenge in the dataset: a serious imbalance between the false
positive candidates and the true nodules (approximately 500:1). In the data
preprocessing phase, we randomly choose the same number of positive and neg-
ative samples to train a small CNN. Only the mis-judged negative samples are
left, and we conduct downsampling with these false positives. For true nodules,
we adopt image translations and horizontal reflections on image data similar to
[14]. In addition, we also extract different orientational patches of the same true
nodule.

4.2 Evaluations Metrics

In the binary classification problem of false positive reduction stage, we use
the area under the ROC curve (AUC) to show the performance of ConvNets.
In addition, we adopt the same evaluation metrics as LUNA challenge. The
performance of our method is evaluated based on the results of cross validation
using the Free Receiving Operating Curve (FROC) and competition performance
metric (CPM). The sensitivities are measured at: 1/8, 1/4, 1/2, 1, 2, 4 and 8 FPs
per patient. Sensitivities at those particular points are averaged to get CPM for
the system.
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Table 1. Results of the nodule candidate detection.

Teams 0.125 0.25 0.5 1 2 4 8 CPM

OUR ND 0.493 0.688 0.796 0.852 0.864 0.864 0.864 0.775

MOT M5Lv1 0.597 0.670 0.718 0.759 0.788 0.816 0.843 0.742

VisiaCTLung 0.577 0.644 0.697 0.739 0.769 0.788 0.793 0.715

Etrocad [24] 0.250 0.522 0.651 0.752 0.811 0.856 0.887 0.676

M5LCAD 0.306 0.360 0.540 0.691 0.762 0.797 0.798 0.608

JianPeiCAD [2] 0.848 0.916 0.947 0.961 0.965 0.966 0.967 0.939

Resnet(QiDou) [15] 0.659 0.745 0.819 0.865 0.906 0.933 0.946 0.839

4.3 Results

For training nodule candidate detector, we perform 10-fold cross validation on
LUNA16 dataset with given patient-level split. The number of iterations is
100000 in total with stochastic gradient descent optimization and momentum
as 0.9. We use weight decay as 0.0005, and the base learning rate is 0.001. The
FROC curve of nodule candidate detection is visualized in Fig. 3. The solid line
is interpolated FROC based on true prediction, and the dash lines are upper
bound and lower bound for the bootstrapped FROC performance. The sensitiv-
ity of the nodule candidate detection method achieves 86.42%. For the conve-
nience of description, Table 1 shows the sensitivities measured at: 1/8, 1/4, 1/2,
1, 2, 4 and 8 FPs per scan and the CPM score of several other methods [4]. The
average number of candidates per scan is 4.67. As can be seen, the result of this
implementation is competitive in comparison with other traditional methods,
although the methods based on 3D CNNs are better than the methods based
on 2D CNNs. But 3D CNNs need much resource and time. Note that, we have
better performance than other teams which utilize variants of 2-D CNNs.

We perform evaluation in 5-fold cross-validation across selected 888 LIDC-
IDRI cases. The pixel intensity range (−1000, 4000 Houndsfield Unit) is rescaled

Table 2. Results of the false positive reduction track in LUNA16 challenge.

Team CNN 0.125 0.25 0.5 1 2 4 8 CPM

OUR 2D 0.734 0.744 0.763 0.796 0.824 0.832 0.834 0.790

DIAG CONVNET [19] 2D 0.636 0.727 0.792 0.844 0.876 0.905 0.916 0.814

iitem03 2D 0.394 0.491 0.570 0.660 0.732 0.795 0.851 0.642

LUNA16CAD 2D 0.113 0.165 0.265 0.465 0.596 0.695 0.785 0.440

LungNess 2D 0.453 0.535 0.591 0.635 0.696 0.741 0.797 0.635

UACNN 2D 0.655 0.745 0.807 0.849 0.880 0.907 0.925 0.824

LUNA16CAD 3D 0.640 0.698 0.750 0.804 0.847 0.874 0.897 0.787

CUMedVis [7] 3D 0.677 0.737 0.815 0.848 0.879 0.907 0.922 0.827
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Fig. 3. Sensitivity (Recall) rate of nodule detection network with respect to false posi-
tives per scan. The CPM score (average recall rate at the false positives as 0.125, 0.25,
0.5, 1, 2, 4, 8) is 77.5%. The proposed nodule candidate detection has a recall rate
86.4% for all the nodules. The dash lines are lower bound and upper bound FROC for
95% confidence interval using bootstrapping with 1,000 bootstraps [4]. The solid line
is the interpolated FROC based on prediction.

Fig. 4. FROC of boosting 2D CNN CAD systems on LUNA16. The solid line is inter-
polated FROC based on true prediction, and the dash lines are upper bound and lower
bound for the bootstrapped FROC performance.

to (0, 1), and we subtract the mean gray-scale value to fit the distribution of
training and testing data. The mini-batch size is set to 256, the momentum [23] is
set to 0.9, and the dropout [22] is set to 0.5 which is implemented in convolutional
and fully connected layers as regularization. The FROC curve of our 2D CNN
CAD system is presented in Fig. 4. The area under ROC (AUC) score is as high
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as 0.954 when we apply our 2D CNN to nodules/non-nodules classification task
for a set of candidates. It is observed that the average detection sensitivity is
0.790 at seven operating points. There were seven teams participating in the
ISBI challenge,and the sensitivities of teams under different false positive rates
are listed in Table 2. In these 2D approaches, we have achieved good results. For
example, sensitivity of 0.734 and 0.744 at 1/8 and 1/4 FPs/scan are obtained,
respectively. It also proves that our system can maintain a satisfactory sensitivity
even with extremely low false positive rates.

5 Conclusion and Discussion

In this paper, a novel and effective pulmonary nodule detection system in CT
scans based on 2D CNNs is proposed. For the detection stage, we improve the
architecture of Faster R-CNN to detect small pulmonary nodules. Then a boost-
ing based classifier is trained to reduce the false positive candidates detected
by the first stage. Experiments are conducted on LUNA16, and it demonstrates
that our system can accurately detect the latent pulmonary nodules. In future
work, we will still improve the architecture of our system and evaluate it on more
medical images with the aid of radiologists and surgeons.
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