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Abstract. This paper is a brief description of the revamped presenta-
tion based in the original one I had the honor to deliver back in 2009
during the very first SSBSE in London. At this time, the many interna-
tional forces dealing with search, optimization, and learning (SOL) met
software engineering (SE) researchers in person, all of them looking for
a quantified manner of modeling and solving problems in software. The
contents of this work, as in the original one, will develop on the bases of
metaheuristics to highlight the many good ways in which they can help
to create a well-grounded domain where the construction, assessment,
and exploitation of software are not just based in human expertise, but
enhanced with intelligent automatic tools. Since the whole story started
well before the first SSBSE in 2009, we will mention a few previous
applications in software engineering faced with intelligent algorithms, as
well as will discuss on the present interest and future challenges of the
domain, structured in both short and long term goals. If we understand
this as a cross-fertilization task between research fields, then we could
learn a wider and more useful lesson for innovative research. In short,
we will have here a semantic perspective of the old times (before SBSE),
the recent years on SBSE, and the many avenues for future research and
development spinning around this exciting clash of stars. A new galaxy
has been born out of the body of knowledge in SOL and SE, creating
forever a new class of researchers able of building unparalleled tools and
delivering scientific results for the benefit of software, that is, of modern
societies.
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1 Converging Trajectories

Software engineering (SE) and complex search/optimization/learning (SOL) are
two important and historical knowledge areas in Computer Science (CS), and
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the bases for the vast majority of applications of IT in today’s world. But, with
a few exceptions, separate research fields.

As to SE, its history is linked to the very nature of computers, with a deep
relation to programming and the art/engineering task of planning, executing,
and delivering products and services. Since its first conception, it was clear in
SE that building, using, extending, and maintaining software is a very complex
task, where we would need the help of computer tools to complement human
experience and even creativity.

As to SOL, the landscape is still larger and older: optimization is embedded
in most activities of life, and computer procedures aim for maximizing benefits,
reducing costs, and searching in innovative ways, all playing a major role in every
subfield of CS and IT. Indeed, optimization has greatly grown in the company
of machine learning, and both admit a point of view in which the procedure for
searching/learning (or the found result itself) is the focus of the study.

It was just a matter of time that the two areas got together, enriching each
other and merging into a new domain where SE is understood as a real/normal
engineering work, with artifacts that can be numerically modeled, and the man-
agement of the process and product has a quantitative flavor, that however has
been largely dismissed in the SE community (with some important exceptions!).

From seminal works like [2,20] it was clear that SOL could transform the
way in which SE deals with products and services, by measuring software qual-
ity in a numerical manner (performance, but also usability, security, ...), what
would allow automatic and intelligent (both!) decision making and guidance.
In this context, the search for better software solutions has finally converged
to the so called Search-Based Software Engineering, a term coined by Harman
[16] and popularized by an active community of practitioners across the world.
Search and also optimization are there paramount to solve traditional problems
of software (like program testing) and support new ones (like automatic repair or
identification of potential defects), and thus there is a natural interest in know-
ing more on the techniques that would allow such an enhanced management of
software tools.

Among the many techniques for SOL, metaheuristics [15,27] represent a
para-mount field feeding algorithms and operations that would allow numeri-
cal modeling of SE problems, and will ease an important boosting in quality of
the software we all are building nowadays. Metaheuristics exhibit a short list of
requirements to be applied and a long list of benefits. On the requirements, they
need (a) to be able of encoding a solution to the problem (phenotype) in a kind
of vector of symbols (genotype) with no loss of generality (remember that the
memory of a computer is a big vector) and (b) to be able of assessing the relative
quality of two vectors as potential problem solutions. With only this, an iter-
ative improvement of tentative solutions by means of some (non deterministic)
operators is able of reaching solutions for problems out of the reach of classical
methods. This is true because metaheuristics can deal with a list of handy real
settlements: no need for differentiation, able to manage arbitrary constraints, no
need of analytical description of the problem (!), facility to deal with continuous
and discrete representations... all of them wanted in any field where problems
are frequently ill-defined, very large, and of course NP-hard.
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This article contains a brief discussion on what, how, and when these tech-
niques can help SE researchers and practitioners.

In the next section, we will describe the main types of metaheuristics and the
many useful extensions to cover virtually any problem that SE wants to throw to
them. In Sect. 3 we will present some issues on SBSE and a somewhat new twist,
going beyond SBSE to suggest how SE can have an impact in metaheuristics
also, a bit on the contrary of what the reader can expect. Then, in Sect. 4 we
will define some interesting and new open challenges to the community, just to
end in Sect. 5 with conclusions and several of the many future works ahead.

2 A High Level Glimpse on Metaheuristics

Most of works where metaheuristics are used nowadays fit in some manner the
resolution of a global optimization problem. An optimization problem is defined
as a pair (S, f), where S �= ∅ is called the solution space (or search space), and f
is a function named objective function or fitness function, defined as f : S → R

solving an optimization problem consisting in finding a solution i* ∈ S such that:
f(i*) � f(i),∀i ∈ S. Note that assuming either maximization or minimization
does not restrict the generality of the problem. Depending on the domain which
S belongs to, we can speak of binary (S ⊆ B*), integer (S ⊆ N*), continuous
(S ⊆ R*), or heterogeneous optimization problems (S ⊆ (B ∪ N ∪ R)*).

A simple classification of the optimization methods used throughout the his-
tory of CS is shown in Fig. 1. In a first approach, the techniques can be classified
into exact versus approximate (and others as a category for difficult to clas-
sify procedures). Exact techniques are based on the mathematical finding of the
optimal solution, what can also be described as an exhaustive search until the
optimum is found, guaranteeing the optimality of the obtained solution. How-
ever, these techniques present many practical drawbacks. The time they require,
though bounded, may be very large, especially for NP-hard problems. Further-
more, it is not always possible to find such an exact technique for every problem.
Indeed, exact techniques often require from the solved problem to exhibit spe-
cial types of constraints or features (e.g., derivability, continuity, and having an
analytical expression -not that usual!-). This makes exact techniques not to be
a good choice in many occasions, either because their time and memory require-
ments can become unpractical or because the real problem does not really show
the expected requirements to admit a solution with an exact technique. For
this reason, approximate techniques have been widely used by the international
research community in the last few decades. These methods (sometimes) sac-
rifice the guarantee of finding the optimum in favor of providing a satisfactory
solution within reasonable times an real resource consumption.

Among approximate algorithms, we can find two types: ad hoc heuristics,
and metaheuristics. Ad hoc heuristics can be further divided into construc-
tive heuristics and local search methods. Constructive heuristics are usually the
swiftest methods. They construct a solution from scratch by iteratively incor-
porating components until a complete solution is obtained, which is returned as
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Fig. 1. Taxonomy of search algorithms.

the algorithm output. Finding a constructive heuristic that actually produces
high quality solutions is a nontrivial task, since it mainly depends on the prob-
lem, and requires a thorough understanding of it. For example, in problems with
many constraints, it could happen that many partial solutions do not lead to
any feasible solution.

Local search or gradient descent methods start from a complete solution.
They rely on the concept of neighborhood to explore a part of the search space
defined for the current solution until they find a local optimum. The neighbor-
hood of a given solution s, denoted as N(s), is the set of solutions (neighbors)
that can be reached from s through the use of a specific modification operator
(generally referred to as a movement). A local optimum is a solution having equal
or better objective function value than any other solution in its own neighbor-
hood. The process of exploring the neighborhood, finding and keeping the best
neighbor in the way, is repeated until the local optimum is found (or a maximum
search budget has been exhausted). Complete exploration of a neighborhood is
often unapproachable, therefore some modification of this generic scheme has to
be adopted. Depending on the movement operator, the neighborhood varies and
so does the manner of exploring the search space, simplifying or complicating
the search process as a result.

During the 70’s, a new class of approximate algorithms appeared whose basic
idea was to combine operations in a structured (family-like) way in a higher level
to achieve an efficient and effective search of the problem landscape. These tech-
niques are called metaheuristics. The term was first introduced by Glover [14],
and until it was ultimately adopted by the scientific community, these tech-
niques were named modern heuristics [28]. This class of algorithms includes
many diverse techniques such as ant colony, evolutionary algorithms, iterated
local search, simulated annealing, and tabu search. A survey of metaheuristics
can be found in [4,15]. Out of the many descriptions of metaheuristics that can
be found in the literature, the following fundamental features can be highlighted:
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• They are general strategies or templates that guide the search process.
• Their goal is to provide an efficient exploration of the search space to find

(near) optimal solutions.
• They are not exact algorithms and their behavior is generally non determin-

istic (stochastic).
• They may incorporate mechanisms to avoid visiting non promising (or already

visited) regions of the search space.
• Their basic scheme has a predefined structure.
• They may use specific problem knowledge for the problem at hand, by includ-

ing some specific heuristic controlled by the high level strategy.

Fig. 2. Taxonomy of metaheuristics [13].

In other words, a metaheuristic is a general template for a non deterministic
process that has to be filled with specific data from the problem to be solved
(solution representation, specific operators to manipulate them, etc.), and that
can tackle problems with high dimensional search spaces. In these techniques,
the success depends on the correct balance between diversification and intensi-
fication. The term diversification refers to the evaluation of solutions in distant
regions of the search space (with some distance function previously defined for
the solution space); it is also known as exploration of the search space. The term
intensification refers to the evaluation of solutions in small bounded regions, or
within a neighborhood (exploitation in the search space).

The balance between these two opposed aspects is of the utmost importance,
since the algorithm has to quickly find the most promising regions (exploration),
but also those promising regions have to be thoroughly searched (exploitation).
We can distinguish two kinds of search strategies in metaheuristics [4]. First,
there are “intelligent” extensions of local search methods (trajectory-based meta-
heuristics in Fig. 2). These techniques add to the basic local search method some
mechanism to escape from local optima (which would otherwise stuck in it).
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Tabu search (TS) [14], iterated local search (ILS) [15], variable neighborhood
search (VNS) [24] or simulated annealing (SA) [21] are some techniques of this
kind. These metaheuristics operate with a single solution at a time, and one (or
more) neighborhood structures. They are usually fast in converging to a solution
(high exploitation), though suboptimal solutions are frequently found.

A different strategy is followed in ant colony optimization (ACO) [11], par-
ticle swarm optimization (PSO) [9] or evolutionary algorithms (EA) [3]. These
techniques operate with a set of solutions at any time (called colony, swarm or
population, respect.), and use a learning factor as they, implicitly or explicitly,
try to grasp the correlation between design variables in order to identify the
regions of the search space with high-quality solutions (population-based tech-
niques in Fig. 2). In this sense, these methods perform a biased sampling of the
search space. They tend to make a good exploration of the search of potential
solutions to the problem, but a slow final tuning towards the optimal one.

Of course, a combination of trajectory and population-based techniques is in
order, and thus the design of new metaheuristics is a healthy line of research.
Using theoretical results to build algorithms is today a way of avoiding any
useless wandering in the infinite set of combinations, either by analyzing the
components of the algorithms [29], the search space [7] or the way in which the
technique is expected to work versus how it actually works [22].

Finally, metaheuristics are not black boxes nor general recipes to success.
Researchers need to know them, go in deep on their working principles and
extract the most of their power by understanding how they search for the optima.
In order to extend the basic families for difficult applications, it is very common
that researchers need to learn on multiobjective optimization [10], parallel struc-
tured models [1], and combinations to machine learning [6,23].

3 Search for Software and Software for Search: SBSE and
SAAL

In this section we briefly describe some existing ways of profiting from meta-
heuristics to face a variety of problems in SE. In all cases, the first step consists
in describing the problem in a precise and quantitative way, as expected in any
engineering domain. This usually means to define a global optimization problem
in terms of objective functions and some type of constraints [8,18].

From the seminal work introducing the name for this field [17] the leading
“S” has been read as “Search”. We however think that, as of today, this term
should be broaden, so as to talk on search, optimization, and learning. As a
consequence, we propose here the term “SOL” as the modern meaning for the
leading “S” in the term SBSE. Indeed, machine learning tools (like clustering,
predicting, data science, probability analysis...) are ready normal in the field,
as well as many applications put the stress in the optimization process instead
of in the search technique used. Whether “SOL-Based Search Engineering” will
become popular or not depends on the community of researchers in next years.
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The first obvious goal, and the base for SBSE, is then solve problems in SE
by using SOL algorithms. In addition, at the end of this section, we will give a
twist on a different perspective were software knowledge is used to improve SOL
algorithms, a not so well-known task that we here dare to name for the first time
here as Software Aware ALgorithms (SAAL).

To finish this initial introduction to the section we will quickly review the
field at an international level. To this end, we have computed the world questions
on this topic from 2004 to now (according to Google Trends). In Fig. 3 we show
the results (percentage of representative queries on the term SBSE). It can be
seen that in years 2006–2007 a few important peaks of interest existed, that
where later repeated in 2008–2009, and with a lower intensity from 2010–2011
and later years. As of today, the term and domain seems to attract a moderate
attraction, though here we cannot judge because these are just percentages.

Fig. 3. Search-based Software Engineering in the world: interest between 2004 and
2018 according to Google Trends.

In Fig. 4 we include the relative interest raised from 2004 to 2018 but this
time including metaheuristics to have a comparative picture. It seems that the
algorithmic domain is far more developed, since the trend is always well above
SBSE. This is just to say that there is more to be gained in SBSE by taking
algorithms and solutions to SBSE till this field is fully developed at international
level. In a (non shown here) comparison of SBSE to the whole domain of software
engineering the picture shows a much larger interest for software engineering and
SBSE is almost not noticeable (visually it is a plain zero-like line on axis X), a
trend that we all should have to change by providing breakthrough results and
a more intense dissemination in the SE community.

3.1 SOL-Based Software Engineering

Let us begin with the benefits of using SOL in general, and metaheuristics in
particular for software engineering. We can list them here:

• SE Problems will be precisely defined and thus quantification and numerical
comparisons are possible. Though it might look as a minor benefit, it is a
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paramount one, since SE has been playing around for its whole life (and still
now, in many parts of the world) with fuzzy ideas of “flexibility”, “power”,
and other supposedly attractive features that have never been quantified nor
compared in a fair way between products and services in the field.

• Software artifacts, like instructions, variables, objects, classes, functions, and
many others get now a precise numerical definition and manipulation. Met-
rics can be defined, and advances can be objectively stated. This is in the
base of the very definition of Science and Engineering, and metaheuristics
give the intelligent and automatic manner of evolving, testing, designing, and
understanding them.

• Scalability is another important benefit here. No more solving problems of
one page of code, since actual software systems have millions of lines of code.
The use of parallelism, cloud computing, and the fundamentals like numerical
efficiency, robustness, and SOL theory work together to offer a unique domain
of tools for the researcher and practitioner.

• Generality of studies, knowledge, and results. Indeed, metaheuristics can be
applied to any SBSE problem. Investing time in them is worth, since you
learn for future applications as you solve your current one. Also, getting sur-
prising results on apparently different activities like how to prioritize software
tests/tasks, assign persons to software projects, and dealing with the com-
plexity of the execution flow, is only possible because of them, and offer a
unique unified point of view. Your time in learning and using metaheuristics
will pay you back for sure.

• The understanding on the problem and its context, and the solutions you get
(e.g., by using genetic programming or constructive algorithms like ACO)
allows knowledge accumulation. While other techniques are obscure in the
solutions they provide (notably neural networks) metaheuristics offer you a
white box access to solutions and even to the process by which you got them,
an appreciated feature for any tool in Science.

The following sensible question is now: where can we use and find these
benefits in software engineering? Well, the list will never be comprehensive, but

Fig. 4. SBSE and metaheuristics in the world: interest between 2004 and 2018 accord-
ing to Google Trends.
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here we have some of the major fields endorsed because of the utilization of SOL
techniques:

• Software Planning
• Requirement Analysis and Design
• Coding Tools and Techniques
• Testing, Validation, Verification, and Debugging
• Distribution, Maintenance, Enhancement
• General Management of Software Products and Services
• Concurrent Systems
• Networks and Critical Systems
• Human Decision Making
• Evolution of Interfaces
• Web Services
• Web Ontologies
• Evolution of Architectures

There are applications of difficult classification, like the domain of quanti-
tative quality [5], that usually touches many sub-fields. Also, the list does not
inform on the relative importance in terms of attention received in research, and
thus, e.g. the reader should be aware of the massive number of scientific articles
on the different flavors of testing compared to the rest of research lines.

Before we close this first SBSE section, let us mention some high level hints
for researchers. Of course, this is an informal exercise, so others could think
differently. The first key factor in a good design of metaheuristics for SE is
the decision on whether or not we need non-traditional representations (trees,
graphs, Petri nets, automata...) that could suit the problem much better than
a simple vector of symbols. The second key factor is the definition of a smart
fitness function: we are not forced to use any particular function, so let us select
(devise!) one with nice properties for the induced landscape, so as to ease the
location of the optima. And finally, the third key factor is to use specialized
operators in the algorithms, since the basic ones (one point crossover, immediate
neighborhood search, arithmetical operations) are far from being good to find a
solution for complex problems, where efficiency and efficacy are mandatory. The
more the problem knowledge used, the better.

There are of course more hints, but this could become and endless list, so
let us summarize in a brief manner some guidelines in a nutshell, organized
according to what you need:

• According to the representation, some advices are those: if it is binary then
try SA, GA, CHC, EDA or ILS. If it is a tree, go for GP. If you have a
float representation go for ES, PSO, DE or CMAES. If it is a permutation
representation, try to use GAs with special operators for permutations, or
VNS and specialized algorithms for your problem.

• If your search problem has an underlying graph structure, go for ACO.
• If you face a very expensive fitness function, then use parallel metaheuris-

tics. Also, use theory to lean the algorithm. Finally, try to use a kind of
surrogates (like e.g. neuronal networks) for the fitness calculation.
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• If your environment/function is dynamic, go for cellular GAs, PSO, ES or
SA. Distributed versions of metaheuristics also pay off. In all cases, using
an explicit memory on past experiences and a strong exploration component
(e.g. hypermutation) is in place.

• If your problem is multimodal then go for structured EAs like cellular EAs
or distributed EAs (nothing to do with parallelism, this is on structuring the
population).

• If constraints are the hard part of your problem, then try to build hybrids
(memetic algorithms?) and use specific operators considering them; search in
the contour of the feasible regions defined by the constraints, optimal solutions
often live there.

We stop here, though we could go on in talking on the means for a proper
initial population (seeding with latin squares, Voronoi initialization, ad hoc sets
of representative individuals merged with random ones...), the way in which the
random numbers are generated (beyond random, random48 standard methods,
like using white noise from atmosphere or at least using Meresenne twister), and
details like whether a new solution is accepted if its fitness is equal to the best
existing one (yes, do accept it to scape from plateaus!).

3.2 Software Aware Algorithms (SAAL)

We now will discuss in a brief manner a kind of very related topic, but a non
well-known one. The very nature of algorithms describes them as procedures to
solve a problem, and then no mention to computer programs is often done. In this
sense, algorithms are developed by mathematicians and other researchers whose
goal is to develop the abstract technique and think in their theoretical behavior
and complexity. However, for the vast majority of situations in modern research,
algorithms need to be implemented in a computer, and thus they will enter the
realm of programming artifacts. As any other software, algorithms running on a
computer use data structures, flow-control sentences, and have a wide variety of
details on how to best implement them.

The research questions here are many: are SOL algorithms well/correctly
implemented? Is there a best way to do so? What data structures should we
use? If using object orientation, what is the best way to define the system of
classes? Are we paying attention to compiler directives and operating systems?
...and a long etcetera.

It may seem that these questions are marginal, but think in the following
problems if we dismiss them:

Implementing the idea. Like for any software, we will always have a reason-
able doubt that the implemented algorithm is the designed abstract algo-
rithm. In fact, SOL algorithms are seldom having a specification for guiding
a later implementation. Errors and defects might appear, taking the actual
runs far from their expected behavior. Since metaheuristics are non deter-
ministic techniques, it can be hard to know whether a bad or unexpected
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results is due to the actual behavior of the correct algorithm or to the wrong
implementation of the correct algorithm.

Representation of vectors. Since we will have thousands and millions of tem-
porary variables containing the bits/integer/float variables, using high level
data structures could lead to an unaffordable management of memory, either
using too much of it and thus preventing it from running, or making the
algorithm very slow. Some applications could even need to pack variables
into basic data types like integers, with an additional time cost of pack-
ing/unpacking for their interpretation.

Object orientation. Many important issues appear when using OO for imple-
menting metaheuristics: should we explicitly call the garbage collector? Static
objects are managed far more efficiently than normal ones, so should we define
static data structures as often as possible? Are operators part of the class of
the individual or part of the algorithm?

Compiler directives. Different languages compile (or interpret) according to
explicit directives that the researcher can use to improve efficiency. Should we
use -O3 in gcc? What is the best way to optimize a compiled Java program?
Should we compile for the processor architecture? When making one run
becomes a task of one week (or we aim real time response), this is relevant.

Variables. Many guidelines on programming exist, and most are up when imple-
menting metaheuristics. A first question is whether researchers are following
them or not...A paramount issue is for example on using global variables,
something not good for the quality (understanding, error analysis, extensi-
bility) of a program, but at the same time often more efficient than using
local variables. Finding the right balance is difficult in most languages, do
we even care about this? If not, then why to bother on not using goto jumps,
raising/catching exceptions or giving meaningful names to variables? Why
should we only take arbitrary best practices? Let us take them “all”.

Toolboxes versus languages. Many researchers select their implementation
tools so as to only focus on the application, and this means going into closed
packages like MATLAB, SPSS and similar ones. The many advantages (all is
inside, the researcher already knew them, no need of advanced programming
skills) sometimes do not compensate for the long running times, the many
unknown internal calls to intermediate procedures, and the lack of extensions
available in them (parallelism, for example). General purpose programing
languages (Java, C, C++, Python, R, Javascript...) allow much more freedom
(and problems) for implementation. Of course, every language also has a
baseline speed that needs to be considered when starting a new project.

After reading the previous list, any sensible researcher should be now con-
cerned on whether he/she is actually able of getting much more from his/her
present implementation. Here an intriguing question: what is the actual qual-
ity of the many libraries we all are using with no formal proof that they are
implementing the actual expected algorithms and (at least) show a reasonable
efficiency? We take software as a black box and apply it, take correctness for
granted, and then try to explain results that could be unexplainable due to soft-
ware errors. Also, we might be missing tons of new research lines in not making
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our algorithms aware of the operating system, not to mention being aware of the
energy consumption (for running algorithms e.g. in smartphones) or the under-
lying hardware (processor power, available memory, network communications).

In summary, it seems weird that the entire world is developing software for
search, optimization and learning while not using for this the well-known SE
tools and knowledge to do so. In the domain of SBSE, it is especially weird
that researchers are dismissing this in their papers and public libraries. The
reader might think that this is just a personal tick or some kind of luxury
task, however research results show how you can save 30% or more time with a
good implementation [25]. This time can be used for additional runs, a deeper
understanding, or to write more scientific papers per year. Indeed, efficiency is
just part of the quality of any software package; other factors like maintainability,
reliability, extensibility, usability, also apply to public SOL software, and thus
should be relevant in future studies.

4 Open Challenges and Ideas for the Future

In this section we will find an analysis of the potential challenges and good
directions for the interplay between SE and metaheuristics in the future. They
will be presented in two parts: a first set of challenges for SBSE (short and long
term), and some final challenges for SAAL. Of course, mentioning challenges is
not a formal scientific task, so this is clearly subject to debate. Indeed, since
the whole existing community, plus the newcomers to arrive, will be deciding on
how and what is important as a future challenge, this is just an exercise of good
guessing to help interested readers.

Let us start with potentially interesting SBSE challenges. We can there define
the following ones in the short term:

• Stopping Criteria
Analyze the techniques both under a predefined effort (to later evaluate
the resulting fitness), solution quality (to later evaluate the needed fitness
effort), study the algorithm convergence (phenotype and genotype ones),
and explore combined stopping condition and their effect on the results.
Limited budget, for example, are of great interest to set the interest of
any new technique. Also, what is the meaning of the results for the SBSE
problem?

• Landscape Visualization
Knowing the problem you are solving is very important to design a good
algorithm. Visualization of search landscapes, of the work of search opera-
tors, or of the contents of the resulting solution is very important. Looking
for new tools like parallel coordinates [19] or local optima networks [26]
could be worth.

• Landscape Characterization
We really need to know, visualize and use the properties of the
search landscape of our problem: multimodality, epistasis, discontinuities,
pla-teaus, etc. Metrics encoding this, such as the number of suboptimal
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solutions, or the fitness-distance correlation, are of much interest to allow
the designer to arrive to a good algorithm design.

• Human Competitive Results
Having an intelligent technique to beat a human is difficult, we indeed
should go for specialized sub-domains and very concrete tasks, and then
computer aided software management would become universal. To this
end, programming interfaces, testing GUIs, and web services to assess
software packages, are interesting and expected for all of us.

Let us now shift to a short discussion on potential long term challenges:

• Multiobjective Optimization
There is a rich set of information in the metaheuristic field: goals, algo-
rithms, metrics, statistics are available to study and use for SE. Decision
making (versus optimization) is a growing field also here, and higher level
tools are wanted to help innovation in SBSE. It seems that this is presently
happening, but when going to the details of existing articles, they can
be classified as out of the main stream in multiobjective optimization,
because of their lack of basic contents in the paper in this sense.

• Interactive Optimization
Humans work better with visual concepts, and then a better relation to
GUIs is expected to appear, so that we approach the industry of software
with usable tools embedding our SBSE solutions inside.

• Prediction
The software industry (well, we all) need an assisted prediction of what
is going to happen, so that we can react in advance and have a global
better management of product and services. Predicting how and why we
need a next release of software packages, where will be hidden the next
defect, error or failure (not the same!) in software, the future status of a
project, etc. are all very welcomed SBSE outputs.

• Hybrid SOL Algorithms
SBSE is a field where a natural handshaking between exact and approx-
imate algorithms is happening. Also in a natural way, researchers should
build hybrid techniques with existing knowledge, wherever it is coming
from. In this sense, personal preferences for a technique just create an
unwanted bias: let us use the best techniques for the (sub)problem at
hands and combine them to make more powerful ones.

• On Line (Dynamic) Optimization
Up to now, most SBSE problems are static, that is, the target func-
tion to optimize behaves the same along the whole run of the algorithm.
However, for more complex problems in databases, shared programming
environments, testing, etc. could need to rely on the existing knowledge
on dynamic optimization problems (DOP), like adding memory to our
algorithm, use hypermutation for a enhanced exploration, and relying to
self-adaptation for improved performance.
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• Applying New Models of Search
SBSE researchers know a great deal of SOL algorithms, but this last
domain is so large and evolves so quickly that they should be continuously
looking for new trends, like running algorithms on GPUs, programming
for smartphones to execute solvers on them, using cloud computing to
deal with real-size software testing, or refactoring/repairing big software
projects found in Github.

We now finish this section with some open challenges for SAAL research,
where our solvers are seen as software programs to be understood and improved:

• Software Libraries
Here, we should start designing libraries with (e.g.) extended UML tools,
discuss on the best class architecture for complex algorithms, find errors
in them by testing the source code, and analyze quality metrics (from
specification/requirements to real usability). Taking the correctness and
quality of optimization, search and learning libraries for granted is a risk
that we cannot take in the domain, if we think in ourselves as good
scientists and engineers.

• Data Structures
Since there are so many variables and objects in a complex SBSE solver,
we should care on how a population or an individual should be better
implemented in any population-based technique. The more a data struc-
ture is used in our solver, the deeper the analysis on its memory and CPU
consumption should be addressed.

• Profiling
Once our solver is programmed, or while it is being improved, profiling is a
must. Gathering information on the solver components, on how executions
are done, and proposing a better implementation, all come handy to make
better and more efficient research. Of course, after the profiling analysis
we should act, and thus review the design and the implementation of our
software before putting it to solve a SBSE problem.

• Program Complexity
It is very common that papers lack of any information on the computa-
tional complexity of their solutions. As so, many solvers published today
have a low impact in research. Characterizing program complexity of
well-known techniques is a must, to know whether we should lose our
time in learning them or not, because they would not work even in simi-
lar slightly larger conditions of problem size. Something similar happens
with the parameterization used to solve a problem: the robustness (sensi-
tivity) of the parameters as implemented in the solver has to be assessed
by researchers in every research paper.

• New Frontiers
There are many goals that researchers need to consider if aiming a wide
impact: deal with programs having million of lines, going for complete
Github repositories as a routine task, create SBSE tools for software com-
panies, etc. Besides, lots of specialized information are needed in SBSE
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before going to implement parallel solvers, properly analyzing multiobjec-
tive approaches (yes, this can not be done in one month), target drivers
and operating systems as the goal of research, apply data science to soft-
ware, and a plethora of points of view to come.

5 One Conclusion, Many Future Works

This article is a summary of the talk delivered at SSBSE 2018, what in turns is a
fresh view of the talk offered in the very first SSBSE 2009 in London. The topic
is a perspective on how metaheuristics can help researchers and practitioners in
software engineering. In this sense, this is not a normal research paper, but
a position paper showing a filtered vision on the last years in this domain,
according to the opinion to the author. Of course, others can think differently.

Our main conclusion here is a positive one: SBSE is a healthy domain and
getting more specialized every day. There is much to find in metaheuristics to
help SBSE researchers define SOL problems in the domain of software engineer-
ing, so as to quantify and give fair numerical analyses in a field where industry
and even academia have neglected a bit the engineering part: quantify, under-
stand, manage, optimize. That should be normal in any engineering activity [12],
and thanks (in part) to SBSE, this is happening.

We have summarized many types of metaheuristics to help readers, as well
as gave some hints to guide newcomers. We have introduced the idea of changing
“search” by “search, optimization, and learning” as a new meaning for the first
“S” in “SOL-Based Software Engineering”. We do think that more than search
is happening, so such a re-interpretation of the leading “S” comes in place. We
even dared to introduce for the first time the concept of going on the other
way, and using software engineering concepts, tools and research for building
algorithms: SAAL. Much can be gained if we all consider going that way in a
structured manner, and some existing works point to the right direction.

A big deal of cross-fertilization is needed between SOL and SE. Challenges
are many in scientific areas like the algorithm types (many-objective, dynamic,
uncertain problems) as well as on the new definition of problems (complex mod-
eling of real world SE tasks) and the overall needed set of best practices for
researchers, something that should come as soon as possible to avoid meaningless
studies showing, sometimes, minor/incremental contributions to the community.
Being able of understanding and reading results in the two domains will lead
sooner than later to a completely new/separate body of knowledge for this field,
with a potential huge impact in today’s economy and science.
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