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Abstract. Metamodels frequently change over time by adding new con-
cepts or changing existing ones to keep track with the evolving prob-
lem domain they aim to capture. This evolution process impacts sev-
eral depending artifacts such as model instances, constraints, as well
as transformation rules. As a consequence, these artifacts have to be co-
evolved to ensure their conformance with new metamodel versions. While
several studies addressed the problem of metamodel/model co-evolution
(Please note the potential name clash for the term co-evolution. In this
paper, we refer to the problem of having to co-evolve different depen-
dent artifacts in case one of them changes. We are not referring to the
application or adaptation of co-evolutionary search algorithms.), the co-
evolution of metamodels and transformation rules has been less studied.
Currently, programmers have to manually change model transformations
to make them consistent with the new metamodel versions which require
the detection of which transformations to modify and how to properly
change them. In this paper, we propose a novel search-based approach to
recommend transformation rule changes to make transformations coher-
ent with the new metamodel versions by finding a trade-off between max-
imizing the coverage of metamodel changes and minimizing the number
of static errors in the transformation and the number of applied changes
to the transformation. We implemented our approach for the ATLAS
Transformation Language (ATL) and validated the proposed approach
on four co-evolution case studies. We demonstrate the outperformance of
our approach by comparing the quality of the automatically generated
co-evolution solutions by NSGA-II with manually revised transforma-
tions, one mono-objective algorithm, and random search.
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1 Introduction

Model-driven engineering (MDE) [2] relies on metamodels as first-class enti-
ties [21] which evolve to accommodate new features, improve structural and
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semantical concerns and fix errors [27]. While this evolution process is vital, it
impacts several depending artifacts such as model transformations since trans-
formation rules need to be adapted to new metamodels versions as they use the
metamodel elements as part of their type system [15]. Thus, a systematic pro-
cess is needed to guide the co-evolution of the transformations when the involved
metamodels evolve [27]. However, currently, this co-evolution process is mostly
done manually which leads to significantly increased fault-proneness and cost of
maintenance [14,15].

Several studies have been proposed for automated co-evolution within the
MDE literature, cf. [14] for a survey. The co-evolution of metamodels and their
models have been addressed using various techniques to make model instances
consistent with new metamodel versions by translating metamodel changes into
model changes using a set of manually defined rules [8] or automatically adapt-
ing models towards reducing the number of conformance errors with the meta-
models [18]. In addition, the co-evolution of metamodels and constraints writ-
ten in the Object Constraint Language (OCL) has also been studied to reduce
OCL errors when evolving metamodels by localizing the set of constraints to
repair, and then, fixing them either manually [19] or automatically [1]. How-
ever, the co-evolution of metamodels and transformation rules—although it is
considered as a significant problem [15]—is still less studied with only a few
studies that identify metamodel changes, then manually define templates to
map the metamodel changes into co-changes applied to the transformations,
e.g., cf. [9,10,12,20,23,24,26]. None of the existing studies addressed the cen-
tral question of how to automate the metamodel/transformation co-evolution
without the need to manually define higher-order transformations to map meta-
model changes into transformation changes. These higher-order transformations
are language specific and require the correct identification of metamodel changes
which is a challenge on its own. As a result, the co-evolution of metamodels and
transformations is still far from being automated.

This paper remedies the gap by proposing, as one of the first studies in the
MDE literature, an automated approach to revise transformation rules when
metamodels evolve. In particular, we focus on the automated co-evolution of
transformations expressed in the ATLAS Transformation Language (ATL) [16].
We leverage the use of search-based software engineering algorithms [13] to deal
with the large search space of possible co-evolution solutions to repair the rules
based on three main criteria: maximizing the coverage of metamodel changes and
minimizing the number of static errors in the transformation and the number
of applied changes to the transformation. Since these objectives are intuitively
conflicting, we used a multi-objective algorithm, based on NSGA-II [7], to find
a trade-off between them when exploring the search space of possible transfor-
mation co-evolutions. We considered differently-sized transformations available
in the ATL Zoo1, a public repository of model transformations, to validate our
approach by comparing the newly generated ATL rules by our approach and the
expected rules that are manually co-evolved. Since it is the first formulation of

1 https://git.eclipse.org/c/gerrit/www.eclipse.org/atl.git/tree/atlTransformations.

https://git.eclipse.org/c/gerrit/www.eclipse.org/atl.git/tree/atlTransformations
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the metamodels and transformation rules co-evolution as a search problem, we
also compared our results to a mono-objective algorithm, combining the differ-
ent objectives, and random search. Furthermore, we evaluated the performance
of our automated co-evolution approach comparing to the manual correction
of co-evolution issues by a total of 6 participants on one of the case studies.
On average, for all of our four studied ATL projects, 89% of the proposed edit
operations were correct while the random search, mono-objective and manual
techniques have a correctness of respectively 41%, 66% and 76%.

2 Background

2.1 Metamodels and Model Transformation

Model transformations are considered as the heart and soul of MDE [31]. Model
transformations are not only used for deriving implementations out of models,
but also to analyze, compare, merge, and improve models [25]. In this context,
metamodels contribute important information for model transformations. In par-
ticular, they introduce the type systems which can be used in model transforma-
tion programs [6]. The elements contained in a metamodel are accessible through
model transformation languages and represent essential information needed to
formulate transformations. Figure 1(a) shows the model transformation pattern
which illustrates that on the metamodel level the transformation is defined and
executed on the model level. Of course, when metamodels change, this has a
direct impact on the existing transformations as the referred types and features
have to exist in the metamodels. Figure 1(b and c) show the cases of source
metamodel evolution and target metamodel evolution and the required trans-
formation co-evolutions, respectively. Please note that both cases may occur
simultaneously. The quest is to find the corresponding delta (i.e., changes) to
patch the transformation for a given metamodel delta.

ATL [16] is a model transformation language which follows the mentioned
model transformation pattern. In particular, ATL transformations are rule-based
programs (cf. rule keyword in Listing 1.1) which are executed on fixed input
models to produce output models. For this process, matches in the input model
are computed based on the input patterns (cf. from keyword in Listing 1.1) of the
transformation rules which trigger the creation of output elements based on the
output patterns (cf. to keyword in Listing 1.1) of the transformation rules. Please
note that ATL transformations are typed by the source and target metamodels,
i.e., the input and output pattern elements have to refer to existing elements
in the involved metamodels. In addition, OCL expressions may be employed
for filter definitions to restrict the matches in the input model as well as for
computing values with so-called bindings for setting features of the produced
output elements.
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Fig. 1. Metamodel evolution/transformation co-evolution context: (a) model trans-
formation pattern, (b) source metamodel evolution/transformation co-evolution, and
(c) target metamodel evolution/transformation co-evolution; (b) and (c) may occur in
combination.

2.2 Metamodel/Transformation Co-evolution: A Motivating
Example

To further introduce ATL as well as to motivate the need of automatically repair-
ing ATL transformations when metamodels evolve, an excerpt of an example
ATL transformation is shown in Listing 1.1. Furthermore, we show in Fig. 2 an
evolution scenario for the input metamodel of the given ATL transformation.

The transformation example we are using is a simple transformation for gen-
erating documentation from class diagrams. In particular, we focus on trans-
forming the features into list items. The content of the items is derived from the
feature names and types–cf. the binding at line 8 of Listing 1.1.

ModelElement
name : String

Class Feature
type : String

[0..*]
features

Doc

UL

LI
content : String

[0..*] lis

ModelElement
name : String

Class A ribute[0..*]
a ributes

Type
[1..1]

typedBy

Body

name : DTs

<<enum>>

DTs
 String
 Integer
 Boolean

TypedElement

DataType

[0..*] uls

[1..1]
type

Class Diagram Document Markup Language

v0

v1

[0..1]
primi ve

Fig. 2. Motivating example: metamodel evolution
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Listing 1.1. Excerpt of the initial and migrated Class2Doc Transformation.

1 -- deletions are shown in red , additions in green
2 module Class2Doc;
3 create OUT : Doc from IN : Class;
4 ...
5 rule Attribute2ListItem {
6 from f : Class! AttributeFeature
7 to li : Doc!LI (
8 content <- f.name + ’�:�’ + f.typetypedBy.primitive.name
9 )

10 }
11 ...

Let us assume that the class diagram language evolves by some rename refac-
torings as well as by explicating the types of features. This process results in a
new metamodel version which now speaks about attributes instead of features.
Attributes are typed elements whereas a typed element refers to an explicit type
object which may describe the used types in more detail. Given the discussed
changes in the source metamodel, the excerpt of the transformation example
shown in Listing 1.1 has to be adapted. In particular, the type of the input pat-
tern has to be changed as well as the binding for the content feature. The type
of an attribute has now to be retrieved by following a navigation path before the
required value can be accessed.

While there are already existing approaches for dealing with transforma-
tion co-evolution, most of them are based on certain change patterns such as the
renaming refactoring in metamodels which may have an associated co-refactoring
for the transformation rules. For more complex change patterns, as it is the case
for retrieving the type information in our example by following a longer naviga-
tion path with several hops is currently not supported by existing approaches.
Thus, we motivate our approach by the fact that for more complex evolution
scenarios, a sophisticated search process is needed to repair the transformations
to get rid of static typing errors in the transformation, but still have as much
as possible the same behaviour as for the initial transformation. Furthermore,
detecting metamodel changes precisely is still a challenge, especially when it
comes to the detection of refactorings as is the case in our example. Our app-
roach does not rely on computing such metamodel changes. Finally, while there
are approaches for detecting static type errors in ATL programs [6], there are no
approaches which consider this kind of information explicitly in the co-evolution
process. Thus, one may end up with co-evolved transformations which have static
type errors.

3 Multi-objective Metamodel/Transformation
Co-evolution

3.1 Approach Overview

A co-evolution solution to our problem consists of a sequence of rule-level change
operations to revise the existing transformation rules to make them conformed
to the evolved source or target metamodel. The search space is determined not
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only by the number of possible rule-level change operations combination but
also by the number of existing transformation rules, and the order in which
these changes are applied. A heuristic-based optimization method is used to
generate co-evolution solutions. The best solution should optimize 3 objectives:
(1) minimize the number of errors; (2) minimize the number of recommended
change operations to the transformation rules; and (3) maximize the coverage of
the evolved source or target metamodel. To handle these conflicting objectives,
we formulate this co-evolution problem as a multi-objective one using the Non-
Dominated Sorting Genetic Algorithm (NSGA-II) [7].

Our approach takes as inputs a model transformation program and the
evolved source and target metamodels. It generates as output a sequence of
recommended changes to the initial transformations program. To calculate the
fitness functions, we used AnATLyzer [6] to identify the number of static type
errors in the transformation rules and the ATL footprint tool [3] to estimate
the coverage of the evolved source or target metamodels by the newly revised
transformation rules.

3.2 NSGA-II Adaptation for Metamodel/Transformation
Co-evolution

Solution Representation. A candidate solution to the problem is a set of
revised transformation rules, i.e., a set of change operators applied to the initial
transformation rules. A valid solution assigns a set of different rule-level changes
to the transformation rules. We used a set of 27 types of operations that are
defined in a previous study [5]. A complete description of all change operators
for ATL can be found in [17].

We adopt the vector-based encoding where a candidate solution is repre-
sented as a vector of n positions, where n is the number of change opera-
tions to be applied to a transformation program. Each position corresponds
to specific change operation. For instance, Fig. 3 shows an example of a solution
composed of three change operations applied to the transformation rules dis-
cussed in the motivating example (Listing 1.1). The generated solution included
two types of change operations that were instantiated: NavigationModifica-
tion(variable, navigationExpression, replacement) and InPatternElementModi-
fication(objectToModify, oldFeatureValue, replacement). Thus, the generation
of solutions consists of selecting the type of operations and their parame-
ters (objects to modify, rules to revise, etc.). The initial population is com-
pletely random where a maximum number of rule-level change operations n is
fixed; then the generated changes are randomly assigned to several rules of the
transformation.

Fig. 3. Solution encoding.
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Fitness Functions. We defined three objective functions in our adaptation.

Minimize the Number of Recommended Rule-Level Changes. The underlying
assumption to minimize the number of changes to the transformation is to reduce
the effort of understanding the new program after evolution. Thus, this fitness
function is defined as:

Minf1(S) = |S| (1)

Where S is the solution to evaluate. Thus, this fitness function calculates the
size of S (number of changes) which corresponds to the number of dimensions in
the vector.

Minimize the Number of Transformation Errors. We used AnATLyzer [6] to
identify the number of errors in the transformation after applying the solution
on the initial transformation. Thus, the second fitness function is defined as
follows:

Minf2(S) = r (2)

Where r is the number of errors identified in the revised transformation program.
The errors are mainly the non-conformance between the metamodels and rules
that can be statically detected by static semantic constraints for ATL transfor-
mations [6].

Maximize the Metamodel Coverage. The footprint tool of Burgueno et al. [3]
estimates the coverage of the evolved source or target metamodels by the newly
revised transformation after applying the recommended rule-level changes. The
third fitness function is as follows:

Maxf3(S) = |re ∩ mme| (3)

Where re is the set of covered metamodel elements by the revised transforma-
tion rules as identified by the footprint tool and mme is the set of the evolved
metamodel elements.

Evolutionary Operators. Population-based search algorithms deploy cross-
over and mutation operators to improve the fitness functions of the solutions
in the population in each iteration. Change operators such as crossover and
mutation aim to drive the search towards near-optimal co-evolution solutions.
The crossover operator is responsible for creating new solutions based on already
existing ones, e.g., re-combining solutions. In our adaptation, we use a single
random cut-point crossover to construct offspring co-evolution solutions. It starts
by selecting and splitting at random two-parent co-evolution solutions. Then
crossover creates two child solutions by putting, for the first child, the first part
of the first parent with the second part of the second parent, and vice versa for
the second child.

The mutation operator is used to introduce slight random changes into can-
didate co-evolution solutions. This operator guides the algorithm into areas of
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the search space that would not be reachable through recombination alone and
avoids the convergence of the population towards a few elite solutions. In our
adaptation, we used a mutation operator that picks at random one or more posi-
tions (change operation) from their vector and replaces them by either another
type of change operator or modifying the parameters of the operation type to
apply it for another rule.

When applying crossover and mutation operators, we ensure the validity
of the solution using a repair function. This function consists of removing edit
operations from the solution when conflicts are detected using a set of constraints
(redundancy, inapplicable edit operations after changes, etc.).

4 Validation

4.1 Research Questions and Evaluation Metrics

Our study addresses the following research questions:

– RQ1 Solution Correctness: To what extent do the co-evolution solutions
generated by our approach compare to manually developed solutions?

– RQ2 Benefits: To what extent can our approach reduce the number of
changes and manual effort to evolve the rules after a metamodel evolution?

– RQ3.1 Search Validation: Do we need a metaheuristic search for the meta-
model/transformation co-evolution problem?

– RQ3.2 Search Quality: How does the proposed multi-objective approach
based on NSGA-II perform compared to a mono-objective one (aggregating
the three objectives)?

Our research questions are evaluated using the following four ATL case stud-
ies. We selected to use ATL to validate our approach since it is one of the widely
used model transformation languages [4,30]. Each case study consists of one
model transformation and all the necessary artifacts to execute the transfor-
mation, i.e., the input and output metamodels and a sample input model. For
replication purposes, the different case studies used in our experiments along
with a description of the used ATL change operations, the implementation of
our approach, and the detailed 30 runs result of the different approaches can be
found in [17].

We have selected these case studies due to their difference in size, structure
and number of dependencies among their transformation artifacts, i.e., rules and
helpers. Furthermore, the metamodel evolution scenarios used in our experiments
were defined in a previous work based on the selected ATL case studies [11].
Table 1 summarizes, for each case study, the number of rules in the transfor-
mation (R), the number of rules to co-evolve/modify (CR) and the number of
expected operations to fix the rules based on the manually created solutions
in [11].

To see whether our approach produces sufficiently good results (RQ1), we
compare our generated set of solutions with a set of manually created solutions
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Table 1. Selected ATL case studies.

ID Name Rules (R) Coevolved
rules (CR)

Edit operations
(EOp)

Case study 1 (CS1) Ecore2Maude 40 12 21

Case study 2 (CS2) R2ML2RDM 58 16 34

Case study 3 (CS3) XHTML2XML 31 8 17

Case study 4 (CS4) XML2Ant 29 7 13

based on a manual correctness measure (MC) defined as the intersection between
the recommended changes operations and expected ones then divided by the
number of expected operations. Since the number of correct recommendations
may not be sufficient to evaluate the correctness, we evaluate the number of
rules (FR) fixed by the recommended changes.

To evaluate the benefits of our approach (RQ2), we reported the execution
time (T) of the different search algorithms to obtain good co-evolution solu-
tions compared to manually fixing the transformation programs. Furthermore,
we evaluate the ability of our approach to recommend the best co-evolution
solutions with a minimum number of change operations (NOp).

To validate the problem formulation of our approach (RQ3.1), we compared
our multi-objective approach with Random Search (RS), using MC, FR, and
NOp, to justify the use of a metaheuristic search. If RS outperforms an intelligent
search method, we can conclude that there is no need to use a metaheuristic
search. To allow such a comparison, we used the knee-point [28] strategy to
select a unique solution from each of the final Pareto sets of RS and NSGA-II.
Thus, we identified the solution from the set of non-dominated ones providing
the maximum trade-off using the following strategy when comparing between
RS and NSGA-II. To find the maximal trade-off solution of the multi-objective
algorithm, we use the trade-off worthiness metric proposed by Rachmawati and
Srinivasan [28] to evaluate the worthiness of each non-dominated solution in
terms of compromise between the objectives. This metric is expressed as follows:

μ(xi, S) = Min
xj∈S,xi⊀xj ,xj⊀xi

T (xi, xj) where, T (xi, xj) =
∑M

m=1 max

[

0,
fm(xj)−fm(xi)

fmax
m −fmin

m

]

∑M
m=1 max

[

0,
fm(xi)−fm(xj)

fmax
m −fmin

m

]

We note that xj denotes members of the set of non-dominated solutions S that
are non-dominated with respect to xi. The quantity μ(xi, S) expresses the least
amount of improvement per unit deterioration by substituting any alternative xj

from S with xi. We note also that fm(xi) corresponds to the mth objective value
of solution xi and fmax

m /fmin
m corresponds to the maximal/minimal value of the

mth objective in the population individuals. In the above equations, normaliza-
tion is performed to prevent some objectives being predominant over others. In
the last equation, the numerator expresses the aggregated improvement gained
by substituting xj with xi. However, the denominator evaluates the deterioration
generated by the substitution.
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To evaluate the need for a multi-objective approach, we compared the results
of our NSGA-II approach with the results retrieved from a mono-objective
Genetic Algorithm (GA) aggregating the three fitness functions into one (with
equal weights to all the objectives after normalizing them in the range [0,1]).

We limited the investigation of the relevance of our automated approach
comparing to manually fixing the co-evolution issues to only CS1. CS1 repre-
sents the average case among the four case studies regarding the complexity
(rules, expected edit operations and co-evolved rules) since the most complex
case study is CS2 and the simplest one is CS4. Thus, the use of CS1 can be
a good representative among all the case studies. Our study involved 6 master
students in Software Engineering. All the participants are volunteers and famil-
iar with MDE and co-evolution/refactoring since they are part of a graduate
course on Software Quality Assurance (SQA). All the graduate students have
already taken at least one position as software developer/engineer in industry
for at least three years and most of them (5 out of 6 students) participated in
similar experiments in the past, either as part of a research project or during the
SQA graduate course. Furthermore, 3 out of the 6 students are currently work-
ing as full-time or part-time developers in the software industry. Participants
were first asked to fill out a pre-study questionnaire containing four questions.
The questionnaire helped to collect background information such as their mod-
eling experience, and their familiarity with MDE and co-evolution/refactoring.
Also, all the participants attended one lecture about model transformations and
ATL, and passed four tests to evaluate their performance in evaluate and suggest
co-evolution solutions.

4.2 Parameters Setting and Statistical Tests

The initial population/solution of NSGA-II, GA and RS are completely random.
The stopping criterion for all the studied search algorithms is 100,000 evalua-
tions. After several trial runs of the algorithms, the parameter values of the
three techniques are fixed to 100 as population size and 20,000 iterations. For
the change operators, we set crossover rate to 0.8 and mutation at 0.3 proba-
bility. We used a high mutation rate to ensure the diversity of the population
and avoid premature convergence to occur. Indeed, there are no general rules
to determine these parameters, and thus, we set the combination of parameter
values by the trial-and-error method.

Our experimental study is based on 30 independent simulation runs for each
problem instance, and the obtained results are statistically analyzed by using
the Wilcoxon rank sum test with a 95% confidence level (α = 5%). In fact,
for each problem instance, we compute the p-value obtained by comparing the
results of the different algorithms with our approach. In this way, we determine
whether the performance difference between our technique and one of the other
approaches is statistically significant or just a random result. The Wilcoxon rank
sum test verifies whether the results are statistically different or not; however,
it does not give any idea about the difference in magnitude. Thus, we used the
Vargha-Delaney A measure which is a non-parametric effect size measure.
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Table 2. Mean manual correctness (MC) based on 30 runs for NSGA-II, RS, and GA.

Manual correctness Case study 1 Case study 2 Case study 3 Case study 4

NSGA-II 19/21 (90%) 29/34 (85%) 14/17 (82%) 13/13 (100%)

Genetic algorithm 13/21 (61%) 19/34 (55%) 13/17 (76%) 10/13 (74%)

Random search 9/21 (42%) 10/34 (29%) 8/17 (45%) 6/13 (48%)

Table 3. Mean number of fixed rules (FR) based on 30 runs for NSGA-II, RS, and
GA.

Fixed rules Case study 1 Case study 2 Case study 3 Case study 4

NSGA-II 11 14 7 7

Genetic algorithm 6 9 5 4

Random search 5 6 3 3

4.3 Results

Results for RQ1. As reported in Table 2, the majority of the ATL changes
recommended by our multi-objective approach were correct and similar to the
ones manually applied by developers in [11], for the different evolution scenar-
ios. On average, for all of our four studied projects, 89% of the proposed ATL
change operations are correct. We decided to compare our recommendations with
the ones manually proposed in another study (rather than manually checking
the proposed solutions) to avoid biasing our experiments with our judgments.
The highest MC score is 100% where all the changes applied to the ATL pro-
gram were correct for the XML2Ant program, and the lowest score is 82% for
the R2ML2RDM transformation program. Thus, it is clear that the results are
independent of the size of the ATL programs and the number of recommended
changes. The deviation between the expected and recommended rule-level change
operations is limited up-to four which means that the number of recommended
changes was similar to the expected ones.

Table 3 shows that the recommended co-evolution solutions fixed most of the
ATL transformation rules to make them consistent with the source or target
metamodel evolution. The maximum number of rules that were not fixed are
two (the case of R2ML2RDM) and for the remaining cases, up-to only one rule
remains to be fixed by the designer manually. Some of these rules are hard to
fix automatically due to a significant number of non-trivial metamodel changes
that renamed several elements.

Results for RQ2. Table 4 shows that our approach requires a reasonable exe-
cution time to converge towards good co-evolution solutions within less than
20 min. The highest execution time was reported on the largest case study of
Ecore2Maude (19.5 min) and the lowest one on XML2Ant (9 min). The execu-
tion time is significantly lower than the average of two hours spent by developers



240 W. Kessentini et al.

Table 4. Mean execution time (T) based on 30 runs for NSGA-II, GA, and RS.

Execution
time (minutes)

Case study 1 Case study 2 Case study 3 Case study 4

NSGA-II 19.5 17.4 12 9

Genetic
algorithm

15.4 14.2 8.2 7.1

Random
search

8.3 7.2 2.5 3

Table 5. Number of edit operations (NOp) mean values of NSGA-II, GA, and RS over
30 independent runs.

Recommendation Case study 1 Case study 2 Case study 3 Case study 4

NSGA-II 18 30 15 13

Genetic Algorithm 24 37 22 15

Random Search 29 42 26 20

to fix the ATL programs manually as reported in [11]. Furthermore, the number
of errors detected after applying the recommended changes to the ATL rules was
limited up-to two rules which may require low effort from the developers to fix
them rather than writing all the co-evolution changes manually.

Table 5 describes the number of changes to be applied on the ATL programs
to make them consistent with the new metamodels. It is clear that the number
of changes is correlated with the number of rules to evolve and the metamodel
changes. However, our multi-objective approach generated the minimum number
of changes compared to the two other approaches as detailed later. The highest
number of changes is 29 to evolve a total of 16 rules, which is reasonable since
our tool enables the automated execution and testing of these changes.

Table 6. Statistical tests summary. A “+” symbol at the ith position means that the
evaluation metric value of algorithm A is statistically different from algorithm B on
CSi. A “−” symbol at the ith position means the opposite.

Results for RQ3.1 and RQ3.2. The results summarized in Tables 2, 3, 4
and 5 confirm that NSGA-II is better than random search based on the different
evaluation metrics of MC, FR, and Nop on all four ATL case studies. The average
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manual correctness values of random search on the different ATL programs are
lower than 41%. RS also proposed the highest number of errors and number
of recommendations among all the algorithms with the lowest number of fixed
rules. This can be explained by the huge search space to explore to generate
relevant rule-level changes.

Tables 2, 3, 4 and 5 confirm the average superior performance of our multi-
objective approach compared to a mono-objective GA. Table 2 shows that our
approach provides significantly higher manual correctness results (MC) than a
mono-objective formulation having MC scores between 55% and 76% on the
different ATL programs. The same observation is valid for FR and NOp as
described in Tables 3 and 5. Thus, it is clear that all the three different objectives
considered in our formulation are conflicting justifying the outperformance of
NSGA-II.

Since our proposal is based on multi-objective optimization, it is important to
evaluate the execution time (T). It is evident that NSGA-II requires a higher exe-
cution time than RS and GA since NSGA-II is considering more objectives and
evolutionary operators. All the search-based algorithms under comparison were
executed on machines with Intel i7 processors 4 GHz and 8 GB RAM. Overall,
RS and GA algorithms were faster than NSGA-II. In fact, the average execution
times for NSGA-II, GA and RS were respectively 14.5, 11 and 6 min. However,
the execution for NSGA-II is still reasonable because the algorithm is not exe-
cuted daily by the developers, and the co-evolution of ATL programs is not a
real-time problem.

An average of 16 edit operations (mean value among all participants) were
correctly identified manually by the subjects, which corresponds to 76% as aver-
age manual correctness. Our automated multi-objective approach successfully
recommended an average of 19 edit operations out of the expected 21 opera-
tions (91% of manual correctness). The minimum number of manually identified
correct edit operations is 14 (one participant), and the maximum is 17 (two par-
ticipants) while three participants correctly identified 16 operations. Our auto-
mated approach successfully fixed, on average, a total of 11 out of 12 rules which
outperforms the average number of rules fixed manually, which corresponds to 9
rules. A maximum of 10 rules was fixed manually by two participants while one
participant was able only to fix 8 rules. The controlled experiment was limited
to two hours thus all the results are obtained in two hours, which is significantly
higher than the execution time of our approach limited to an average of 19 min.
Thus, our automated approach can significantly improve the productivity of
developers during the evolution process.

The results of our experiments, on all the case studies, algorithms and the
evaluation metrics, were found to be statistically significant on 30 independent
runs using the Wilcoxon rank sum test with a 95% confidence level when com-
paring our multi-objective approach to the remaining techniques (RS, GA and
manual) as described in Table 6. In our experiments, we have found the following
results as well: (a) on small-scale programs (XHTML2XML and XML2Ant) our
approach is better than all the other algorithms based on all the performance
metrics with an A effect size higher than 0.92; and (b) on medium and large-scale
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programs (Ecore2Maude, and R2ML2RDM), our approach is better than all the
other algorithms with an A effect size higher than 0.88 using all the evaluation
metrics.

4.4 Threats to Validity

Conclusion validity is concerned with the statistical relationship between the
treatment and the outcome. The parameters tuning of the different optimiza-
tion algorithms used in our experiments creates an internal threat that we need
to evaluate in our future work. The parameters’ values used in our experiments
are found by trial-and-error. However, it would be an interesting perspective to
design an adaptive parameter tuning strategy for our approach so that parame-
ters are updated during the execution to provide the best possible performance.

Internal validity is concerned with the causal relationship between the treat-
ment and the outcome. We dealt with internal threats to validity by performing
30 independent simulation runs for each problem instance. This makes it highly
unlikely that the observed results were caused by anything other than the applied
multi-objective approach. However, the comparison between multi-objective and
mono-objective approaches is challenging since multiple solutions are generated
by NSGA-II while the GA algorithm can generate only one co-evolution solu-
tion. We selected, in our experiments, the solution that represents the maximum
trade-off between the three objectives (knee-point [7]) to compare with the GA’s
solution. However, we treated the different objectives with equal weights in our
GA adaptation, which can be considered as an internal threat.

External validity refers to the generalizability of our findings. In this study,
we performed our experiments on four different ATL programs belonging to
different domains and having different sizes. However, we cannot assert that our
results can be generalized to other programs. In addition, our study was limited
to the use of specific change types related to ATL rules. Furthermore, the manual
evaluation was limited to only one case study and a total of 6 participants. Thus,
the main threats are the difficulty in generalizing the obtained manual results
and the impact of participants expertise on them. To deal with these threats,
we selected CS1 that represents the average case among the four case studies
regarding the complexity (#rules, #expected edit operations, and #co-evolved
rules). Furthermore, the participants are selected based on their experience in
MDE, thus they can be representative of the average expertise of developers in
practice.

5 Related Work

Co-evolution in the area of MDE has been heavily studied in the last decade [14].
The starting point was the metamodel/model co-evolution challenge [8] which
attracted much research interest in dealing with large migration spaces [29]. In
this context, search-based approaches have been proposed [18]. However, other
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co-evolution scenarios are understudied. We now outline work which has been
done for co-evolving OCL expressions and model transformations.

Concerning the co-evolution of OCL expressions, dedicated approaches have
been presented very recently. Approaches which are based on coupling changes
for metamodels with co-changes for OCL expressions are presented in [19,22].
The main goal of these approaches is to repair OCL expressions for a set of
provided metamodel change types. A search-based formulation of this problem
has been also proposed [1].

Concerning transformation co-evolution, several approaches followed the idea
of building on a set of metamodel changes for which co-changes for transforma-
tions can be derived [9,10,12,20,23,24,26]. For instance, Levandovsy et al. [23]
proposed a higher-order transformation to adapt existing transformations. They
classify metamodel changes, with respect to the effect on transformations into
three categories [23]: (i) fully automated, i.e., changes affecting existing trans-
formations that can be automatically migrated without user intervention, (ii)
partially automated, i.e., changes or modifications that affect existing transfor-
mations which can be adapted automatically, even though some manual fine-
tuning is required to complete the adaptation, and (iii) fully semantic, i.e.,
changes that effect transformations that cannot be automatically migrated, and
the user has to completely define the adaptation.

All the mentioned approaches require the full correctness of the detected
metamodel changes, which is still a challenge, especially when it comes to the
intention behind the changes. Furthermore, the co-evolution is only possible for
a set of predefined change types. In our work, we do not require the metamodel
changes and use a larger set of transformation co-evolution rules and a sophisti-
cated search algorithm which allows migrating a transformation in any promising
direction.

6 Conclusion

We propose, in this paper, an automated approach for metamodel/transforma-
tion co-evolution that finds a trade-off between different three objectives. Our
approach allows developers to benefit from search-based rule-level change rec-
ommendations without defining a generic template to map metamodel changes
into rule-level changes. To evaluate the effectiveness of our tool, we conducted
a study based on four evolution scenarios of the source or target metamodels
of ATL programs and compared it with random search, mono-objective formu-
lation and manual technique. Our evaluation results provide evidence that our
tool improves the applicability and automation of existing co-evolution tech-
niques between metamodels and transformation rules.

Future work involves validating our technique with additional types of rule-
level changes, more multi-objective algorithms and other transformation lan-
guages to conclude about the general applicability of our methodology. We
focused, in this paper, on checking the correctness of the co-evolution solutions.
We will use the quality indicators, such as the Hypervolume, when we compare
between intelligent search algorithms such as MOPSO vs. NSGA-II.
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