
Thelma Elita Colanzi
Phil McMinn (Eds.)

 123

LN
CS

 1
10

36

10th International Symposium, SSBSE 2018
Montpellier, France, September 8–9, 2018
Proceedings

Search-Based
Software Engineering

Lecture Notes in Computer Science 11036

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Thelma Elita Colanzi • Phil McMinn (Eds.)

Search-Based
Software Engineering
10th International Symposium, SSBSE 2018
Montpellier, France, September 8–9, 2018
Proceedings

123

Editors
Thelma Elita Colanzi
State University of Maringá
Maringá
Brazil

Phil McMinn
University of Sheffield
Sheffield
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-99240-2 ISBN 978-3-319-99241-9 (eBook)
https://doi.org/10.1007/978-3-319-99241-9

Library of Congress Control Number: 2018951245

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2018
Chapter “Deploying Search Based Software Engineering with Sapienz at Facebook” is licensed under the
terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/). For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-9761-1999
http://orcid.org/0000-0001-9137-7433
http://dx.doi.org/http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/http://creativecommons.org/licenses/by/4.0/

Foreword

Message from the General Chair

I welcome all readers to these proceedings of the 10th edition of the Symposium on
Search-Based Software Engineering (SSBSE). Over the past 10 years, SSBSE has
nurtured the blooming field of search-based software engineering, which has explored
the exploitation of various automatic search techniques to solve all sorts of hard
software engineering issues, ranging from requirements analysis to test generation and
performance optimization. For this 10th edition, we designed a program that mixes
significant contributions of the past decade (most influential papers, keynote and
tutorial) with the current progress in the field. We also wished to open and inspire the
next decade of research with a keynote that addresses the exploitation of SBSE in
industry and a second one that opens the field of bio-inspired search to runtime soft-
ware evolution.

Here, I wish to thank the great organizing team of SSBSE 2018 that worked hard to
host this event in beautiful Montpellier. I thank Phil and Thelma, with whom I have
worked very closely to set the program, plan the special events for the 10th anniver-
sary, and synchronize all tracks. I thank Aldeida and Annibale for their engagement in
the Hot-Off-the-Press Track and Wesley and José for designing the challenge track.
I thank Mat for the professional interactions between Springer and the whole com-
mittee, Erik for spreading the word about SSBSE 2018, and Oscar for the Web design.

Very special thanks go to our sponsors for their great contribution to keep SSBSE an
accessible scientific event: Facebook, SAAB, and Université de Montpellier. And final
thanks go to the local organizing team, led by Djamel, who arranged all the logistics,
interactions, with ASE and social events.

July 2018 Benoit Baudry

Message from the Program Chairs

Welcome to the proceedings of the 2018 International Symposium on Search-Based
Software Engineering. It has been a privilege to be program chairs for this, the tenth
edition of the symposium. We have several people to thank for their help and support in
putting on a strong program for the event, which included special talks to celebrate the
ten years of the symposium, all of which we hope to have captured as faithfully as
possible as a permanent record in the form of these proceedings.

Firstly, we would like to thank the authors of papers submitted to the main technical
track. Over the past decade, SBSE has experienced a great increase in popularity, has
seen guided search techniques being applied to a wider variety of problems, and has
been employed in a number of industrial applications and contexts. As a result of the
great prior efforts of the community in organizing events such as SSBSE and others,
research in search-based software engineering has matured to the point that is now
strongly and proudly represented at the very top conferences and journals in our field.
One downside to this, perhaps, is that SSBSE itself has been starting to receive fewer
submissions. In organizing SSBSE 2018 then, our aim was very much to go back to
and be cognizant of the original goal of the symposium — that being to “nurture and
develop the SBSE research community.”1 As such, one change we made this year was
to adjust the review process to build in support for authors to help them improve their
work for publication and presentation at the event, through the inclusion of an explicit
shepherding phase. We initially received 19 abstracts, of which 12 matured into papers
for the full-paper deadline. These were then reviewed by three expert reviewers from
our Program Committee. Following the reviews and discussions, six papers were
accepted. The remaining six papers were given an additional three weeks to address the
comments of the reviewers, under the guidance of a shepherd. Ultimately, all of these
papers were also accepted. We would like to thank all of our Program Committee
members for their reviews, especially those who worked extra hard in their additional
role as shepherds; namely, Shaukat Ali, Andrea Arcuri, Marcio Barros, Erik Fredericks,
Gregory Kapfhammer, and Marouane Kessentini.

We would also like to thank our keynote speakers. At SSBSE 2018, we continued
the tradition of inviting a keynote from the software engineering community, and one
from the search community. We were therefore delighted to announce our two
esteemed keynote speakers. Mark Harman, the general chair of the first SSBSE in
2009, gave an industrial keynote on the use of SBSE for software testing at Facebook.
Our search speaker was Guillaume Beslon, who gave a keynote on closing the gap
between evolutionary biology and engineering through in silico experimentation. Big
thanks are also due to our tutorial speakers, Marouane Kessentini and Matias Martinez,
for their respective tutorials on search-based refactoring and repair, and for relating

1 Message from the General Chair, Mark Harman, First International Symposium on Search-Based
Software Engineering, 2009.

their expertise on these topics. Many keynote and tutorial speakers have written papers
that appear in these proceedings to accompany their talk. We hope that the ideas for
future work and industrial applications in Mark’s keynote, coupled with new ideas for
search techniques in Guillaume’s talks, supported by the practical advice in the form
of the tutorials will help inspire researchers develop new, interesting, and
ground-breaking future work in SSBSE.

As the tenth edition of the symposium, SSBSE 2018 was a special event that we
decided to celebrate by inviting back one keynote speaker, one tutorial speaker, and
one technical paper author regarded as the “best” from the last nine symposiums. This
was decided through an online vote, in which the entire SSBSE community was invited
to partake. We therefore congratulate and thank Enrique Alba, for being voted best
keynote, and giving an updated version of his talk from 2009 entitled “How Can
Metaheuristics Help Software Engineers?”; as well as Gordon Fraser, who was voted as
giving the best tutorial, originally at last year’s event, on his EvoSuite search-based test
generation tool for Java. We also thank Jefferson Souza for presenting his 2010 paper a
second time, entitled “The Human Competitiveness of Search-Based Software Engi-
neering,” which included a perspective of the work eight years later. We congratulate
him and his co-authors for being voted the best paper of SSBSE to date. All specially
invited “tenth edition of SSBSE” speakers provided papers to accompany their talks,
which appear in a dedicated section of these proceedings.

We have a number of people to thank for helping to coordinate this event with us.
Firstly, we wish to thank our general chair, Benoit Baudry, for his organization and
oversight of all aspects of the symposium. In addition to our main track, SSBSE 2018
featured a popular Hot-off-the-Press Track for late breaking work. We thank Aldeida
Aleti and Annibale Panichella for organizing this, along with Wesley K. G. Assunção
and José Miguel Rojas for managing the Challenge Track. Finally, a big thanks to
Mathew Hall for managing the proceedings, collecting all the camera-ready versions
of the papers, and ensuring everything was ready for publication; and to Oscar Luis
Vera Pérez for constructing the symposium website and tirelessly handling all of our
updates.

These proceedings feature work from industry and on a wide variety of research
topics; from software testing to automated program repair, from optimizing an appli-
cation’s energy efficiency to model transformation to cloud-based resource provi-
sioning. We hope you will enjoy reading the papers contained within them, and that
you will find them stimulating and thought-provoking. Please do continue to support
the event by submitting a paper and participating in next year’s and future events of
SSBSE. We very much hope to see you there.

July 2018 Thelma Elita Colanzi
Phil McMinn

VIII Message from the Program Chairs

Organization

Organizers

General Chair

Benoit Baudry KTH Royal Institute of Technology, Sweden

Program Chairs

Thelma Elita Colanzi Universidade Estadual de Maringá, Brazil
Phil McMinn University of Sheffield, UK

Hot-off-the-Press Track Chairs

Aldeida Aleti Monash University, Australia
Annibale Panichella Université du Luxembourg, Luxembourg

Challenge Track Chairs

Wesley K. G. Assunção Federal University of Technology Paraná, Brazil
José Miguel Rojas University of Leicester, UK

Local Arrangements Chair

Djamel Seriai University of Montpellier, France

Publicity Chair

Erik Fredericks Oakland University, USA

Web Chair

Oscar Luis Vera Pérez Inria, France

Proceedings Chair

Mathew Hall University of Sheffield, UK

SSBSE Steering Committee

Andrea Arcuri Westerdals, Norway, and University of Luxembourg
Gordon Fraser University of Passau, Germany
Gregory Gay University of South Carolina, USA
Lars Grunske Humboldt University Berlin, Germany
Marouane Kessentini University of Michigan, USA
Tim Menzies North Carolina State University, USA
Mohamed Wiem Mkaouer Rochester Institute of Technology, USA

Annibale Panichella University of Luxembourg
Federica Sarro University College London, UK
Shin Yoo KAIST, South Korea

Technical Program Committee

Shaukat Ali Simula Research Laboratory, Norway
Giuliano Antoniol École Polytechnique de Montréal, Canada
Andrea Arcuri Westerdals, Norway, and University of Luxembourg
Marcio Barros UNIRIO, Brazil
Francisco Chicano University of Málaga, Spain
Robert Feldt Blekinge Institute of Technology, Sweden
Erik Fredericks Oakland University, USA
Juan Pablo Galeotti University of Buenos Aires, Argentina
Gregory Gay University of South Carolina, USA
Lars Grunske Humboldt University Berlin, Germany
Hadi Hemmati University of Calgary, Canada
Muhammad Zohaib Iqbal FAST-NUCES, Pakistan
Gregory Kapfhammer Allegheny College, USA
Marouane Kessentini University of Michigan, USA
Anne Koziolek Karlsruhe Institute of Technology, Germany
Claire Le Goues Carnegie Mellon University, USA
Alessandro Marchetto Independent Researcher, Italy
Tim Menzies North Carolina State University, USA
Leandro Minku University of Leicester, UK
Justyna Petke University College London, UK
Pasqualina Potena RISE SICS Västerås AB, Sweden
Federica Sarro University College London, UK
Christopher Simons University of the West of England, UK
Paolo Tonella Fondazione Bruno Kessler, Italy
Silvia Vergilio UFPR, Brazil
Tanja Vos Open Universiteit, The Netherlands,

and Universitat Politècnica de València, Spain
David White University of Sheffield, UK
Shin Yoo KAIST, South Korea

Challenge Track Program Committee

Wasif Afzal Mälardalen University, Västerås, Sweden
Jonathan M. Aitken University of Sheffield, UK
Shaukat Ali Simula Research Laboratory, Norway
Gordon Fraser University of Passau, Germany
Erik Fredericks Oakland University, USA
Gregory Gay University of South Carolina, USA
Roberto E. Lopez-Herrejon École de technologie superieuré, Montreal, Canada
Inmaculada Medina-Bulo University of Cadiz, Spain

X Organization

Héctor Menéndez University College London, UK
José Raúl Romero University of Cordoba, Spain
Sevil Sen Hacettepe University, Turkey
Christopher Simons University of West England, UK
Tanja Vos Open Universiteit, The Netherlands,

and Universitat Politècnica de València, Spain

Hot-off-the-Press Track Program Committee

Xavier Devroey Delft University of Technology, The Netherlands
Fitsum M. Kifetew Fondazione Bruno Kessler, Italy
Anne Koziolek Karlsruhe Institute of Technology, Germany
Shiva Nejati SnT Centre, University of Luxembourg
Sebastiano Panichella University of Zurich, Switzerland
Outi Sievi-Korte Tampere University of Technology, Finland
Markus Wagner The University of Adelaide, Australia

Sponsoring Institutions

Organization XI

Contents

Keynotes

Deploying Search Based Software Engineering with Sapienz at Facebook . . . 3
Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia, Ke Mao,
Alexander Mols, Taijin Tei, and Ilya Zorin

Evolving Living Technologies—Insights from the EvoEvo Project 46
Guillaume Beslon, Santiago F. Elena, Paulien Hogeweg,
Dominique Schneider, and Susan Stepney

Tutorials

Ultra-Large Repair Search Space with Automatically Mined Templates:
The Cardumen Mode of Astor . 65

Matias Martinez and Martin Monperrus

Special Tenth SSBSE papers – “Best of Previous SSBSEs”

How Can Metaheuristics Help Software Engineers?. 89
Enrique Alba

A Tutorial on Using and Extending the EvoSuite Search-Based
Test Generator . 106

Gordon Fraser

A Preliminary Systematic Mapping Study of Human Competitiveness
of SBSE . 131

Jerffeson Souza, Allysson Allex Araújo, Raphael Saraiva,
Pamella Soares, and Camila Maia

Main Track Papers

Search-Based Stress Testing the Elastic Resource Provisioning
for Cloud-Based Applications . 149

Abdullah Alourani, Md. Abu Naser Bikas, and Mark Grechanik

Injecting Social Diversity in Multi-objective Genetic Programming:
The Case of Model Well-Formedness Rule Learning 166

Edouard Batot and Houari Sahraoui

Automated Optimization of Weighted Non-functional Objectives
in Self-adaptive Systems . 182

Kate M. Bowers, Erik M. Fredericks, and Betty H. C. Cheng

Comparison of Search-Based Algorithms for Stress-Testing
Integrated Circuits . 198

Basil Eljuse and Neil Walkinshaw

Damage Reduction via White-Box Failure Shaping 213
Thomas B. Jones and David H. Ackley

Automated Co-evolution of Metamodels and Transformation Rules:
A Search-Based Approach . 229

Wael Kessentini, Houari Sahraoui, and Manuel Wimmer

Learning Without Peeking: Secure Multi-party Computation
Genetic Programming . 246

Jinhan Kim, Michael G. Epitropakis, and Shin Yoo

Towards Minimizing the Impact of Changes Using
Search-Based Approach . 262

Bogdan Korel, Nada Almasri, and Luay Tahat

Exploring Evolutionary Search Strategies to Improve Applications’
Energy Efficiency . 278

Irene Manotas, James Clause, and Lori Pollock

Optimization Experiments in the Continuous Space: The Limited Growth
Optimistic Optimization Algorithm . 293

David Issa Mattos, Erling Mårtensson, Jan Bosch,
and Helena Holmström Olsson

Incremental Control Dependency Frontier Exploration for Many-Criteria
Test Case Generation. 309

Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella

Single-objective Versus Multi-objectivized Optimization for Evolutionary
Crash Reproduction . 325

Mozhan Soltani, Pouria Derakhshanfar, Annibale Panichella,
Xavier Devroey, Andy Zaidman, and Arie van Deursen

Hot off the Press Papers

A New Approach for Search Space Reduction and Seeding
by Analysis of the Clauses . 343

Atieh Monemi Bidgoli and Hassan Haghighi

XIV Contents

Learning Fault Localisation for both Humans and Machines Using
Multi-objective GP . 349

Kabdo Choi, Jeongju Sohn, and Shin Yoo

Mapping Class Dependencies for Fun and Profit . 356
Allen Kanapala and Gregory Gay

Evolving Better Software Parameters . 363
William B. Langdon and Justyna Petke

On the Placebo Effect in Interactive SBSE: A Preliminary Study 370
Jerffeson Souza, Allysson Allex Araújo, Italo Yeltsin,
Raphael Saraiva, and Pamella Soares

EvoIsolator: Evolving Program Slices for Hardware Isolation
Based Security . 377

Mengmei Ye, Myra B. Cohen, Witawas Srisa-an, and Sheng Wei

Challenge Paper

Detecting Real Faults in the Gson Library Through Search-Based
Unit Test Generation . 385

Gregory Gay

Author Index . 393

Contents XV

Keynotes

Deploying Search Based Software
Engineering with Sapienz at Facebook

Nadia Alshahwan, Xinbo Gao, Mark Harman(B), Yue Jia, Ke Mao,
Alexander Mols, Taijin Tei, and Ilya Zorin

Facebook, London, UK
{markharman,kemao}@fb.com

Abstract. We describe the deployment of the Sapienz Search Based
Software Engineering (SBSE) testing system. Sapienz has been deployed
in production at Facebook since September 2017 to design test cases,
localise and triage crashes to developers and to monitor their fixes. Since
then, running in fully continuous integration within Facebook’s produc-
tion development process, Sapienz has been testing Facebook’s Android
app, which consists of millions of lines of code and is used daily by hun-
dreds of millions of people around the globe.

We continue to build on the Sapienz infrastructure, extending it to
provide other software engineering services, applying it to other apps
and platforms, and hope this will yield further industrial interest in and
uptake of SBSE (and hybridisations of SBSE) as a result.

1 Introduction and Background

Sapienz uses multi-objective Search Based Software Engineering (SBSE) to
automatically design system level test cases for mobile apps [49]. We explain
how Sapienz has been deployed into Facebook’s central production continuous
integration system, Phabricator, how it collaborates with other Facebook tools
and technologies: the FBLearner Machine Learning Infrastructure [38], the One
World Mobile Platform [20] and Infer, the Facebook Static Analysis tooling [13].
We also outline some open problems and challenges for the SBSE community,
based on our experience.

Our primary focus for this paper is the deployment of the SBSE technology,
rather than the SBSE aspects themselves. We believe the deployment throws
up interesting new challenges that we would like to surface and share with the
SBSE community as one potential source of stimulus for on-going and future

This paper was written to accompany the keynote by Mark Harman at the 10th Sym-
posium on Search-Based Software Engineering (SSBSE 2018), Montpellier Septem-
ber 8–10, 2018. The paper represents the work of all the authors in realising the
deployment of search based approaches to large-scale software engineering at Face-
book. Author name order is alphabetical; the order is thus not intended to denote
any information about the relative contribution of each author.

c© The Author(s) 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 3–45, 2018.
https://doi.org/10.1007/978-3-319-99241-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_1&domain=pdf

4 N. Alshahwan et al.

work on deployable SBSE. The details of the SBSE algorithms, the SBSE app-
roach adopted by Sapienz and its evaluation against state-of-the-art and state-
of-practice automated mobile test techniques can be found elsewhere [49].

Sapienz augments traditional Search Based Software Testing (SBST) [33,55],
with systematic testing. It is also designed to support crowd-based testing [48] to
enhance the search with ‘motif genes’ (patterns of behaviour pre-defined by the
tester and/or harvested from user journeys through a system under test [50]).

Many SBSE testing tools, both more and less recent instances [26,45,71], tend
to focus on unit level testing. By contrast, Sapienz is a system-level testing tool,
in which the representation over which we design a test is the event sequence at
GUI level, making Sapienz approach more similar to the Exsyst1 approach [30]
than it is to other more unit-testing orientated approaches. Such system-level
SBSE testing has been found to reduce the false positives that plague automated
test data generation at the unit level [30]. However, it does pose other challenges
to deployment, particularly on a mobile platform at scale, as we shall discuss.

In September 2017 the Sapienz system first went live at Facebook, deployed
on top of Facebook’s FBLearner machine learning infrastructure [38] and draw-
ing on its One World Platform which is used to supply mobile devices and emu-
lators [20]. Since then, Sapienz has run continuously within Facebook’s Continu-
ous Integration platform, testing every diff that lands into the Facebook Android
app’s code base. A ‘diff’ refers to a code commit submitted to the repository by
an engineer. Since February 2018, Sapienz has additionally been continuously
testing every smoke build of diffs, as they are submitted for review.

The Facebook Android app is one of the largest Android apps available and
is one of the most widely used apps in production at the time of writing. It
supports social networking and community building for hundreds of millions of
users world wide. Since April 2018, we extended Sapienz to test the Messen-
ger app for Android, another large and popular app, with hundreds of millions
of users world wide, who use it to connect and communicate with people and
organisations that matter to them.

These two apps are not the only communications products available, nor the
only large apps for which testing is needed. Nevertheless, the challenges of scale
and deployment are likely to be similar for other apps, and so lessons learned
will hopefully generalise to other apps and also to the issues associated with
SBSE deployment into many other Continuous Integration scenarios.

We are currently extending Sapienz to iOS and to other apps in the Facebook
app family. With these extensions we aim to widen the benefits of automated
test design from the hundreds of millions who currently use the Android Face-
book social media app to the entire Facebook community. At the time of writing,
this community numbers more than 2.2 billion monthly active users world wide,
thereby representing a significant route to research impact for software engineer-
ing scientific research communities.

The ‘debug payload’ delivered to the engineer by Sapienz, when it detects
a crashing input sequence, includes a stack trace, various reporting and

1 http://exsyst.org/.

http://exsyst.org/

Deploying Search Based Software Engineering with Sapienz at Facebook 5

cross-correlation information and a crash-witness video (which can be walked
through under developer control and correlated to activities covered), all of which
combine to ensure a high fix rate, an approximate lower-bound on which is 75%
at the time of writing.

Determining a guaranteed true fix is a challenging problem in itself, so we
use a conservative mechanism to give a lower bound, as explained in Sect. 3.2.
The true fix rate is likely higher, with remaining crashes reported being believed
to be either unimportant to users or false positives (See Sect. 7.8).

A video presentation, by Ke Mao and Mark Harman from the Sapienz team,
recorded at Facebook’s F8 developer conference on 1st May 2018 is available2.
There is also a video of Ke Mao’s presentation at the conference FaceTAV 20173,
on the Sapienz deployment at Facebook4.

SBSE is now starting to achieve significant uptake in the industrial and
practitioner sectors and consequent real world impact. This impact is being
felt, not only at Facebook, but elsewhere, such as Ericsson [2], Google [77], and
Microsoft [70] as well as the earlier pioneering work of Wegener and his colleagues
at Daimler [72]. SBSE has been applied to test embedded systems software in
the Automotive domain, for example with industrial case studies involving the
Ford Motor Company, Delphi Technologies and IEE S.A. [1,54,61], and the space
domain at SES S.A. [69]. It has also been deployed in the financial services sector
for security testing [42] and in the maritime sector at Kongsberg Gruppen for
stress testing [3].

Such industrial applications allow us to evaluate in both laboratory and in
industrial/practitioner settings [52]. As has been argued previously [32], both
forms of evaluation are important in their own right and each tends to bring to
light complementary evaluation findings. That is, laboratory evaluations tend to
be more controlled, but less realistic, while industrial/practice evaluations tend
to be more realistic, but less controlled.

However, despite the widespread uptake of SBSE, indeed arguably because
of it, we now have an even richer set of exciting scientific problems and intel-
lectual challenges to tackle. In our own deployment work in the Sapienz Team
at Facebook, we encountered many open problems, some of which are currently
the subject of some scientific study, but some of which appeared to be largely
overlooked in the literature.

As we moved from the research prototype of Sapienz to a fully scaled-up
version, deployed in continuous production, we took the conscious decision to
document-but-not-solve these research challenges. Our goal was to focus on
deployment first, and only once we had a fully scaled and deployed automated
test design platform, did we propose to try to address any open research prob-
lems.

2 developers.facebook.com/videos/f8-2018/friction-free-fault-finding-with-sapienz/.
3 facetavlondon2017.splashthat.com/.
4 Sapienz presentation starts at 46.45 in this video: www.facebook.com/andre.steed.

1/videos/160774057852147/.

https://developers.facebook.com/videos/f8-2018/friction-free-fault-finding-with-sapienz/
https://facetavlondon2017.splashthat.com/
www.facebook.com/andre.steed.1/videos/160774057852147/
www.facebook.com/andre.steed.1/videos/160774057852147/

6 N. Alshahwan et al.

We were not surprised to discover that, after 15 months of intensive deploy-
ment focus, we had already accrued more exciting and interesting research chal-
lenges than we could hope to solve in reasonable time. In this paper we set out
some of these challenges and open problems in the hope of stimulating inter-
est and uptake in the scientific research community. We would be interested to
partner and collaborate with the academic community to tackle them.

2 Sapienz at Facebook: Overview

Sapienz is deployed using FBLearner, Facebook’s Machine Learning Infrastruc-
ture. In particular, Sapienz uses the FBLearner flow operators and workflows for
continuous deployment and availability. The Sapienz infrastructure also supports
sophisticated and extensive facilitates for experimentation, statistical analysis
and graphic reporting (see Sect. 5). This section outlines the principal compo-
nents of the deployment.

2.1 Top Level Deployment Mode

The overall top level depiction of the deployment of Sapienz at Facebook is
presented in Fig. 1.

Fig. 1. Overall deployment mode for Sapienz at Facebook

2.2 Phabricator

Phabricator is the backbone Facebook’s Continuous Integration system5. It is
used for modern code review, through which developers submit changes (diffs)

5 http://phabricator.org.

http://phabricator.org

Deploying Search Based Software Engineering with Sapienz at Facebook 7

and comment on each others’ diffs, before they ultimately become accepted into
the code base (or are discarded). More than 100,000 diffs are committed to the
central repository every week at Facebook, using Phabricator as a central gate-
keeper, reporting, curating and testing system [37]. In 2011 Facebook released
Phabricator as open source.

Sapienz reports the test signals it generates directly into the Phabricator
code review process. It has been found with earlier tool deployment, such as the
previous Infer deployment [13,37], that the code review system is an ideal carrier
for the signals that originate in testing and verification technologies. The Sapienz
deployment therefore followed a similar pattern to the Infer static analysis tool,
which also deployed through Phabricator, commenting on developers’ diffs. Infer
also originated in the research community via a London-based start up Monoidics
[13] in 2013, while Sapienz came from the London-based start up Majicke [24]
in 2017.

2.3 Diff Time and Land Time Testing

Sapienz comments on diffs at two different points in the code review process:
diff submit time, and post land time. A diff is first submitted by a developer,
to be reviewed by other developers, and cannot land into the code base until it
has passed this review stage, so diff submit time always occurs strictly earlier in
the code development life cycle than land time. The post-land stage is the point
at which diffs may be encountered by dogfooding, allowing Sapienz to cross-
check whether crashes it has found have also been witnessed in pre-production
dogfooding of release candidates.

At diff submit time, Sapienz receives smoke builds from Facebook’s ‘Sandcas-
tle’ test infrastructure, using these to test individual diffs as they are submitted
by developers (and batches of such diffs where possible, for efficiency reasons).
The aim of diff time testing is to run a selection of tests at least once per diff,
selected from those previously-generated by Sapienz. This selection is run as soon
as possible after the diff is submitted, in order to give early signal to the devel-
opers as they submit their changes to be reviewed. Often, through this mode,
Sapienz is able to comment on a crashing diff before a human reviewer has had
time to comment, thereby saving precious human reviewer effort. Furthermore,
as has been widely-observed in the software testing literature [10,11], the earlier
we can detect faults, the cheaper and quicker they can be corrected.

In order to comment at diff time, it is necessary for Sapienz to be able to
test the diff quickly. This requires a scheduling system that prioritises recently-
submitted diffs, and fast selection of a likely fault-revealing subset of test
sequences. We are continuing to work on both the scheduling process, and
smarter sampling of appropriate tests; a problem well-studied in the research
community [5,16,22,59,67,74] for over two decades. At this stage we use infor-
mation retrieval approaches, popular elsewhere in software engineering, such as
Term Frequency–Inverse Document Frequency (TF*IDF) [68] to promote diver-
sity and relevance of test sequences to diff under test.

8 N. Alshahwan et al.

When Sapienz executes on diffs that have been landed into the debug build of
the code base, the primary role, here, is to generate a good set of test sequences,
rather than to test the app (although testing does occur, and any crashes found
and triaged, will be reported and their fixes tracked). More importantly, by using
the debug build as a representative cut of the current user interface of the app,
Sapienz is able to maintain, update and curate the Activity Transition Graph
(ATG), that captures Sapienz’s inferred representation of the GUI structure of
the app. This testing phase is where the SBSE algorithms are used to generate
new test sequences.

2.4 FBLearner

FBLearner is a Machine Learning (ML) platform through which most of Face-
book’s ML work is conducted [38]. Sapienz is one many tools and services that
is built on top of the FBLearner framework. Facebook uses FBLearner for many
other problems, including search queries for videos, photos, people and events,
anomaly detection, image understanding, language translation, and speech and
face recognition.

Tens of trillions of ML operations are executed per day; a scale that allows
Facebook to deploy the benefits of machine learning in real time. For example,
Facebook performs natural language translation between approximately 2000
language pairs, serving approximately 4.5 billion translated post impressions
every day, thereby allowing 600 million people to read translated posts in their
mother tongue [38]. This considerably lowers linguistic barriers to international
communication.

Sapienz currently uses the FBLearner Flow components to deploy detection
of crashing behaviour directly into the work flow of engineers, integrated with
Phabricator for reporting and actioning fixes to correct the failures detected
by Sapienz. The current deployment does not yet exploit the other two phases
of the FBLearner infrastructure, namely the FBLearner Feature Store and the
FBLearner Predictor. Nevertheless, there are many exciting possibilities for pre-
dictive modelling in software testing at scale, and this infrastructure will nat-
urally support investigation of these possibilities and potential future research
directions. The team at Facebook would be very interested to explore collabora-
tion possibilities with those in the research community who would like to tackle
these challenges.

3 The Sapienz FBLearner Workflows

Three of the more important Sapienz FBLearner workflows are depicted in Fig. 2.
Each of these three workflows is explained in more detail below.

The Evolution Workflow: The evolution workflow is used to generate test
inputs and record information about them and, where they crash, to report
this to developers. The evolution workflow has six principal operators, which
execute cyclically. At the time of writing, the periodicity is every 30 min for test

Deploying Search Based Software Engineering with Sapienz at Facebook 9

Fig. 2. The three principal Sapienz FBLearner flow workflows and their operators

generation and, for diff time test selection, every 10 min to process the queue
of scheduled diff-tine requests. These repeat cycle periodicities are, of course,
control parameters that remain under review and are subject to analysis and
tuning.

The purpose of these operators is to test the debug build of the application
file that contains all of the submitted diffs that have landed into the master
build. The overall workflow is broken into 6 separate FBLearner Flow operators.
The build operator builds an APK file.

The database of servers, maintained on the emulator by the APK file is
updated by Sapienz with a redirection that uses a proxy server to taint the
Sapienz requests so that these can be identified in production, when they hit
back-end servers, and thereby diverted where they might otherwise affect pro-
duction. Other than this ability to taint requests via the proxy server, the APK
file has the same functionality as that downloaded onto phones by dogfooders,
and ultimately, by real users, once the next cut of the debug build has been
rendered into one of many release candidates.

The ‘Evolve’ operator runs the Sapienz evolutionary workflow, executing
the Sapienz multi objective evolutionary algorithm to generate new test input
sequences from the master build. The details of the evolutionary algorithm
are relatively similar to those described in the previous ISSTA paper about
the Sapienz research prototype [49]. The primary difference lies the additional
technology required to lease and communicate with the emulators used by the
MotifCore component, which executes test cases and records, inter alia, cover-
age and crashes. Many 100 s of emulators per app-under-test can be leased for

10 N. Alshahwan et al.

each execution of the operator, through the OneWorld platform, rather than by
the more direct connection to a specific device or devices implemented in the
research prototype.

The ‘Jobs’ operator records information about the evolutionary algorithm
executions so that these can be harvested and examined later on, while the
‘Crash’ operator records information about crashes detected in each run. This
is used in reporting and fix detection. The ‘FPs’ operator is inserted into the
workflow to detect false positives, and remove these so that they are not reported
to developers. False positives can occur, for example, because the emulator may
lack (or differently implement) technical features compared to any device, for
example, augmented reality features offered in advanced handsets. Where these
are not present in the emulator this may lead to a crash that would not occur
on a real device and clearly it would be a nuisance to developers to report these
false positive crashes to them.

Finally, the Sapienz Automated Fault Triage (‘SAFT’) operator identifies the
diff responsible (and the line of code within that diff) that is the likely root cause
of each crash detected. When the SAFT operator is able to triage to a particular
line of code, this is reported to the developer through the Phabricator Continuous
Integration system. The developer receives a ‘Debugging payload’, consisting of
information about the crash, the stack trace, video(s) showing steps to reproduce
the crash, and pointers to collections of information about potentially related
crashing behaviour, and debugging support technology.

3.1 Crash Reproduction Workflow

The problem of flaky tests means that many failing test cases will not reliably
fail on every test execution, even in apparently identical circumstances. The
crash reproduction workflow assesses and records information about the degree
of flakiness for each crashing test sequence, using repeated execution.

Several authors have commented on the reasons for this flakiness [28,37,46,
56,62], finding that one of the most common causes lies in the prevalent use of
asynchronous waits; functions make asynchronous calls to services, but may not
wait sufficient time for those services to respond, producing a different result to
that had they waited slightly longer.

The result of this async wait issue is that different pauses between test events
can significantly affect the behaviour of the app under test. Sapienz runs a
crash reproduction workflow in order to determine the level of repeatability for
the failing test cases it discovers. Those found to have higher repeatability are
archived and logged as such.

For diff submit time deployment of Sapienz, test flakiness is less of a perni-
cious problem. This is because any crash, on any occasion, even if not repeatable,
has two properties that tend to promote a quick fix:

1. The crash is reported early, at diff submit time, so the developer concerned
has the full context in his or her head and is able to act immediately to
remediate.

Deploying Search Based Software Engineering with Sapienz at Facebook 11

2. The crash serves as a proof of existence; it is possible that this diff can cause
the app to crash, in some circumstance, and this is typically sufficient signal
to occasion a change at this stage in the development process.

On the other hand, when Sapienz discovers a crash that relates to a longer-
standing problem, and cannot triage the crash to a recent diff submitted or
landed into the code base by developer, then repeatability of tests becomes
more important. A single flaky test will likely fail to give the developer sufficient
signal that he or she will want to invest time effort on a fix attempt.

However, as we have argued elsewhere [37], this does not necessarily mean
that flaky tests cannot be useful. Indeed, we believe that more research is needed
on combinations of flaky tests, such that the combined signal they produce can
be highly actionable.

We believe that promising research avenues may exist, for example using
techniques such as information theory and other probabilistic interpretations
of test outcomes [6,17,73,75]. This is important because, in many situations,
particularly with automated test data generation, we may have to work in a
world where it is safer to assume that All Tests Are Flaky (ATAF) [37].

3.2 Fix Detection Workflow

It turns out that detecting whether a crash is fixed or not is an interesting
challenge, and one that would benefit from further scientific investigation by
the research community. This is a problem to which the Search Based Software
Engineering community could contribute. The problem consists of two parts:

1. Determining when two or more crashes likely originate from the same cause.
This involves grouping crashes and their likely causes.

2. The problem of ‘proving a negative’. That is, how long should we wait, while
continually observing no re-occurrence of a failure (in testing or production)
before we claim that the root causes(s) have been fixed? Since absence of proof
is not proof of absence, we can really only more precisely speak of ‘appar-
ent fixes’ or ‘failure symptom non-reoccurrence’. Addressing this question
requires a fix detection protocol.

Grouping Crashes and Their Likely Causes. The starting point for this
problem is the difference between faults and failures, a problem well-known to
the testing literature [10]. While a single fault may lead to multiple failures,
a particular failure may also be caused by multiple faults. Therefore, there is
a many-to-many mapping between faults and failures. An automated dynamic
test design technology such as Sapienz is only able to directly detect a failure
(not a fault), and has to use further reasoning to indirectly identify the likely
candidate fault (or faults) that may have caused the failure.

In order to identify a particular failure, and distinguish it from others, we
need some kind of ‘failure hash’, or ID, that uniquely identifies each individual
failure. However, what we are really interested in, is the fault(s) that lead to these

12 N. Alshahwan et al.

failures. The failure hash ID is thus an attempt to capture fault(s), through these
symptoms observed as a failure.

Inevitably, how ever we choose this ‘failure hash ID’, we are effectively group-
ing failures that we believe, ultimately, may share a similar cause. This ‘failure
signal grouping problem’ is one that has been known for some time [66]. If the
grouping is too coarse grained, then we over approximate, with the result that we
falsely group together multiple distinct failures with distinct (unrelated) causes.
Conversely, if the granularity is too fine, we separate two or more different failure
observations that originate in the same root cause (false splitting).

Whatever approach we choose, there will likely be some false grouping and
also some false splitting. We can bias in favour of one or the other, but it is
unlikely that we shall find an approach that guarantees freedom from both,
since it is a challenge to be sure of root causes. Indeed, even the very concept
of causality itself, can become somewhat ‘philosophical’ and, thereby, open to
interpretation.

Hedging in favour of finer granularity, we could consider the identity of a
failure to be the precise stack trace that is returned when the failure occurs.
However, different executions may follow slightly different paths, leading to
slightly different stack traces, while ultimately denoting the same failure and,
more importantly, the same root cause (in a fault or set faults). Therefore, using
the precise sequence of calls in a stack trace for a failing execution is too fine-
grained for our purpose.

Instead, we use a ‘message identifier’, or mid, which identifies the principal
method call in a stack trace that is used as the ‘hash’ for the failure. In so-doing
we err on the side of a coarser granularity, though we cannot guarantee that
there is no false splitting. Nevertheless, the use of mids does tend to reduce the
cognitive burden on developers who might otherwise be spammed by hundreds
(or perhaps thousands) of messages concerning ultimately the same fault.

However, it does raise the problem of false grouping, in which two entirely
independent faults can become grouped together by the same mid, and thereby
appear to contribute to the same failure. False grouping poses problems for fix
detection, because the developer may respond to a signal from the tool, and fix
the fault that leads to failure, yet the false grouping of this failure with another,
otherwise independent fault, leads to the testing tool apparently re-witnessing
the failure. As a result of this apparent re-witness of the failure, the test tool
will inadvertently infer that the bug has not yet been fixed, when in fact it has.

Our motivation for adopting the more coarse-grained failure hashing app-
roach derives from the trade off in dis-benefits: We did not wish to over-claim
the fix rate for our technology, preferring to be conservative, giving a lower
bound to the claimed fix rate. We also cannot afford to spam developers or
we risk losing their trust in, and consequent engagement with, our technology.
We therefore chose to suffer this false grouping problem rather than the more
pernicious problem of giving developea of spammy signal.

Although we use a mid at Facebook, similar problems would occur in any
real-world testing system in which we need to identify and distinguish different

Deploying Search Based Software Engineering with Sapienz at Facebook 13

failures. There is always a trade-off between the fine-grained representation and
the risk of a spammy signal, contrasted to more coarse-grained representation
which may suffer from the false grouping problem. We continue to refine and
optimise for this trade-off, but it is likely to remain a trade-off, and therefore
the challenge is to find ways to balance the two competing constraints of not
spamming developers, and not falsely grouping; a problem well-fitted to the
SBSE research community.

This crash ID problem is compounded by the nature of the continuous inte-
gration system and Internet deployment. Continuous integration results in high
levels of code churn, in which the particular identity of the method may change.
This further fuzzes the information available to the testing technology in stack
traces, over time, since code changes may introduce apparent differences in two
otherwise identical stack traces. The deployment of Internet-based systems also
tends to elevate the degree of flakiness of test cases, since productionised tests
will tend to rely on external services, that lie outside the testers’ control.

Fix Detection Protocol. Figure 3 depicts an example Fix Detection Proto-
col with which we have recently been experimenting within the Sapienz Team
at Facebook. We do not claim it is the only possible protocol, nor that it is
best among alternatives. Rather, we present it here to illustrate the subtleties
that arise when one attempts to automate the process of detecting whether a
fix can be said to have occurred in a Continuous Integration and Deployment
environment.

We are not aware of any research work on the problem of automated fix
detection for Continuous Integration and Deployment in the presence of flaky
tests. We would like to suggest this as an important open problem for the research
community and hope that this section adequately motivates this as an interesting
open research problem.

In Fig. 3, when printed in colour, green edges represent the absence of a
failure observation, denoted by mid M , within a given time window, while the red
edges denote the observation of mid M , within a given observation window. We
distinguish two observation windows; the cooling window and the resurrection
window. When printed in black and white, these colour-augmentations may be
lost, but this should not unduly affect readability.

The cooling window is the period we require the protocol to wait before we
initially claim that the mid M is deαd. When it is not observed for this cooling
window duration, we claim that the bug is ‘α-fixed’; it initially appears to be
fixed. We mark the mid M as deαd and increase our count of α-fixes, but the
mid is not yet ‘buried’.

If a deαd mid is re-observed during the resurrection window, then the mid
is said to be ‘undead’, whereas those mids that remain undetected during the
cooling window and the subsequent resurrection window are claimed to be ‘dead
and buried’, and we call this a ‘β-fix’. A mid, M which is dead and buried is one
for which we have high confidence that, should M subsequently be re-observed
after the resurrection window, then this is a ‘recycled’ mid; one that has re-

14 N. Alshahwan et al.

entered our protocol as a result of new, previously unwitnessed, failure and its
corresponding cause(s). A recycled mid is a special instance of false grouping
in which the resurrection window allows us to accrue evidence that the mid is,
indeed, falsely grouped.

We count the overall number of α and β fixes. The aim in choosing the window
durations is to have a reasonable chance of the true fix count lying between these
two numbers, without making them so wide as to become impractical.

The five nodes along to top of the state machine protocol follow the a rel-
atively simple path from initialisation of the protocol through detection of the
first observation of a brand new (never before observed) mid M , its subsequent
non-observation during both cooling and resurrection window periods and the
ultimate declaration of our claim that M is dead and buried, with consequent
increments to both the α and β fix counters along the way. This path through
the state machine represents the ideal scenario that we would like to witness for
all failures, in which we detect them, they get fixed, and that is all there is to
be said about them.

The remainder of the state machine denotes the complexities involved in fix
detection, arising from the problems of flaky tests, false grouping/splitting, and
the inevitable attempt to ‘prove a negative’ inherent in fix detection. Moving
from left to right, when we first encounter a mid M after some period, it may
turn out to be one that we previously believed was dead and buried, in which
case we claim a false grouping (of faults and their failures) has occurred because,
by definition (of buried), M has not been observed for, at least, the duration of
the cooling and resurrection windows combined. The combination of these two
windows can be thought of as the duration after which we believe any mid to
be ‘recycled’ should it re-occur. The duration denoted by these two windows in
sequence therefore represents that time after which we believe it is sufficiently
safe to assume that any new mid M observation arises due to some newly-
introduced root cause.

Another possibility is that the mid M is observed for a new revision, R
in which case the mid M is already at some stage in the protocol (prior to
being dead and buried). This observation also occasions a false grouping claim,
because we know the mid arises from a different code change to the previous
observation of the same mid through testing a different revision. For this reason,
our protocol effectively treats the ‘crash hash’ for Sapienz-detected crashes as
the combination of the failure hash identifier M (the mid), and the revision, R
(the testing of which encounters M). For mids observed in production we may do
not always know the corresponding revision, but for mids reported to developers
by Sapienz we only report those that we can triage to a specific diff, so this pair
is well-defined for all Sapienz crashes reported.

When we detect a (mid, revision) pair (M,R), we initialise a count of the
number of occasions on which M has cycled from being deαd to undead, MUDM .
Mid UNdead (MUD) is an appropriate acronym for this counter since the status
of mids that cycle between deαd and undead statuses is somewhat muddy itself,
and denotes a primary source of uncertainty in our protocol.

Deploying Search Based Software Engineering with Sapienz at Facebook 15

If M was previously buried, we ‘dig it up’ and note that M has been recycled
whereas, if it was not buried previously, we do not treat it as recycled. In either
case we believe a false grouping has occurred and claim it. Of course, we cannot
be sure, so this false grouping claim, like our other claims, is just that; a claim.

Once we have determined whether a newly-observed mid is a brand-new
(never before seen) mid, or one of these two categories of falsely-grouped mids,
we enter the main sequence of the protocol for the mid M and corresponding
revision R. At this stage, we wait for a duration determined by the cooling
window. This is a potentially infinite wait, since the cooling window is a sliding
window protocol. A mid therefore remains unfixed until it passes the cooling
window non-observation criterion.

If it does survive unobserved through the cooling window, we claim it is
deαd and increment the α-fix count. We then start waiting again, to see if the
mid re-occurs. If the mid re-occurs within the (re-initialised) cooling window,
it becomes undead, from which status it can either return to being deαd (if it
does not become re-observed during the cooling window), can remain undead,
can oscillate between deαd and undead states, or may finally exit the protocol
as a ‘dead and buried’ mid.

Overall, the protocol ensures that no mid can be claimed to be dead and
buried unless it has undergone both the cooling window and subsequent resur-
rection window. The undead status is recorded for subsequent analysis, since
it may have a bearing on the false grouping problem, the test flakiness prob-
lem, and the determination of suitable durations for the cooling window and
resurrection window. However, the undead status plays little role in the external
claims made by Sapienz about fixes; it is merely recorded as an aid to further
‘healthiness’ analysis for our window duration, mid groupings, and test flakiness.

The external claims made by the protocol concern the number of α- and β-
fixes, and the claims concerning the deαd, and the dead and buried statuses of
the mids observed by the fix detection protocol.

3.3 The Evolve FBLearner Flow Operator

The ‘Evolve’ operator in the evolution workflow, is the core Sapienz FBLearner
operator. It is depicted in Fig. 4. This architecture of the Sapienz operator
remains similar to that envisaged for the Sapienz Research prototype [49], as
can be seen.

The Evolve operator is used to generate test inputs. These are used for test-
ing; if they find a failure then it is reported through the evolution workflow.
However, perhaps more importantly, the test inputs are archived and curated
into an Activity Transition Graph (ATG). This pool of tests is then used as
a source of pre-computed test inputs for diff time testing, so that Sapienz can
quickly find a set of pre-vvovled test sequences to apply to each diff as it is
submitted, using its smoke build, or a batch of such builds combined.

The Sapienz operator workflow starts by instrumenting the app under test,
and extracting statically-defined string constants by reverse engineering the
APK. These strings are used as inputs for seeding realistic strings into the app, a

16 N. Alshahwan et al.

IN
IT

IA
LI

Z
E

re
cy

cl
e_

m
 =

 0

D
E

TE
C

TE
D

M
ID

_m
M

U
D

_m
 =

 0

M
ID

_m
ha

s
b

ee
n

se
en

C
LA

IM

M
ID

 D
E

A
D

+
+

C
LA

IM
M

ID
 B

ur
ie

d

C
LA

IM
R

E
C

Y
C

LE
D

FA

LS
E

G

R
O

U
P

cl
ai

m
 m

 d
ug

 u
p

re
cy

cl
e_

m
+

+

C
LA

IM
C

O
N

C
U

R
R

E
N

T
FA

LS
E

G

R
O

U
P

M
ID

_m
 is

 n
ot

b

ur
ie

d
 a

nd
 n

ot

b
ra

nd
 n

ew

C
LA

IM
 M

ID
U

N
D

E
A

D
M

U
D

_m
+

+

C
LA

IM
M

ID
 D

E
A

D

m
 n

ot
 b

ur
ie

d

ne
ve

r
se

en

co
ol

in
g

w
in

d
ow

no
 M

ID
_m

re
su

rr
ec

tio
n

w
in

d
ow

no
 M

ID
_m

resurrection window

no MID_m

co
ol

in
g

w
in

d
ow

no
 M

ID
_m

re
su

rr
ec

tio
n

w
in

d
ow

M
ID

_m
 d

et
ec

te
d

cooling window

MID_m detected

co
ol

in
g

w
in

d
ow

M
ID

_m
 d

et
ec

te
d

cooling window

MID_m detected

MID_m is not buried

and has been seen

M
ID

_m

bur
ied

S
A

FT
b

la
m

ed

F
ig
.
3
.
A

n
ex

a
m

p
le

o
f
a
n

F
D

P
(F

ix
D

et
ec

ti
o
n

P
ro

to
co

l)
w

it
h

w
h
ic

h
w

e
a
re

ex
p
er

im
en

ti
n
g
.
In

g
en

er
a
l,

m
u
ch

m
o
re

re
se

a
rc

h
is

n
ee

d
ed

o
n

th
e

p
ro

b
le

m
o
f
a
u
to

m
a
te

d
fi
x

d
et

ec
ti

o
n
;
a

la
rg

el
y

ov
er

lo
o
k
ed

,
y
et

h
ig

h
ly

in
te

ll
ec

tu
a
ll
y

st
im

u
la

ti
n
g

p
ro

b
le

m
.
(C

o
lo

r
fi
g
u
re

o
n
li
n
e)

Deploying Search Based Software Engineering with Sapienz at Facebook 17

Fig. 4. Sapienz evolution operator workflow (Taken from the ISSTA 2016 paper [49])

technique that has been found to improve the performance of other search based
software testing techniques too [4,27].

Sapienz’s multi-objective search algorithm initialises the first population via
the MotifCore component which runs on the device or emulator. On android,
when evaluating individual fitnesses, Sapienz communicates with the App Exer-
ciser via the Android Debugging Bridge (ADB) and monitors the execution
states, returning measurement data, such as Android activities covered to the
fitness evaluator.

Sapienz uses a Search Based Software Engineering (SBSE) approach to opti-
mise for three objectives: code coverage, sequence length and the number of
crashes found. Its computational search is a pareto-optimal approach, based on
NSGA-II, a widely-used multi-objective evolutionary search algorithm, popu-
lar in SBSE research [35], but hybridised with other search techniques, such as
localised systematic search on devices/emulators. More details on the Sapienz
algorithms and their evaluation against the state of the art and the state of prac-
tice can be found in the ISSTA paper [49] and in Ke Mao’s PhD dissertation [47].

4 Integration with Other Facebook Tools and Systems

In this section we briefly explain some of the ways in which the Sapienz infras-
tructure inter-operates with other tools, systems and services at Facebook.

4.1 Collaboration Between Static and Dynamic Analysis: Infer
and Sapienz

Facebook has a static analysis technology, Infer [13], for scalable compositional
static analysis. Infer reviews potential faults, pinpointing the line of code con-
cerned, and reporting the fault candidate to the developer with a suitable mes-
sage. For example, Infer statically analyses program flows to highlight potential

18 N. Alshahwan et al.

Null Pointer Exceptions and reports these to developers through the Phabricator
code review interface.

Naturally, it can happen that the developer decides that this fault reporting
is inaccurate, deeming a reported fault to be a false positive. The developer
has domain knowledge and may believe, for example, that execution cannot
cause this statically-inferred issue to arise in practice. Occasionally, the developer
maybe correct, but also, on other occasions he or she might be mistaken.

When the developer is incorrect in setting aside advice from Infer, it would
be highly useful to use dynamic analysis to provide a positive existence proof
that the fault can, indeed, lead to a failure. Sapienz seeks to provide just such
an existence proof, by checking whether a crash can be triaged to a line of code
on which Infer as previously commented. When such a failure is traced to a line
of code on which Infer has previous commented, a specific task is created and
reported to the developer to fix the fault, augmented with the additional signal
that this fault does really lead to a demonstrable failure (a constructive existence
proof), including a witness video, stack trace and line at which the crash occurs.

At the time of writing, the fix detection workflow has detected an almost
100% fixed rate for such Sapienz-Infer (‘SapInf’) faults. This is evidence that,
when static and dynamic analysis techniques can collaborate to provide a com-
bined (and thereby strengthened) signal to developers, it is highly likely that
such faults are likely to be true positives, and also that they are actionable and,
thereby, tend to get fixed. We believe are many more ways in which static and
dynamic analysis could collaborate and so we set out this collaboration as a
remaining open problem that requires further research work (see Sect. 7.7).

4.2 Combining with Feedback from Field Trials

It can happen that a crash hits real world users of the app, who experience the
crash in production. Clearly we try to avoid this where possible. In fact, the
‘real world’ user may well, in the first instance, be a Facebook dogfooder who is
running the app on their own device. We use such dogfooding as a line of defence
in preventing crashes hitting our end users.

When any user, dogfooder or end user, experiences a crash, the crash can
be logged and used to help improve testing and fault remedy. Sapienz has a
continuously running workflow which tracks the crashes it has reported to devel-
opers against the real world crashes found in production. Sapienz files a task for
the developer when this happens. Once again, this production-firing evidence
provides a stronger signal to the developer that a crash really is a true positive.

4.3 Bug Severity Prediction

Sapienz uses a simple tree-based machine learning classification technique (C4.5)
to predict whether the crashes it detects are likely to have a high number of real
world affected users. This is a measure of bug severity. After some experimenta-
tion, we determined that the simple C4.5 classifier produced a high prediction
accuracy (of approximately 75%), and therefore adopted for this approach.

Deploying Search Based Software Engineering with Sapienz at Facebook 19

The classification algorithm takes as input, drivers of bug severity, such as:

1. Crash Metadata Features: e.g., new mid, number of hits, has the mid
been seen in prod;

2. Crash Stack Trace Features: e.g., crash type, stack depth;
3. Diff Features: duration to find crash, code churn metrics, reviewer comment

metrics, location in file tree.

5 Automated Scientific Experimental Reporting (ASER)
Workflow

The Automated Scientific Experimental Reporting (ASER) seeks to achieve
automated empirical software engineering, at scale, and fully in production,
using best-practice recommended inferential statistical evaluation and report-
ing for empirical SBSE [7,36]. The ASER is an example of a broader company-
wide (and increasingly sector-wide) approach to evidence-based decision making.
For all the challenges of Continuous Integration and Deployment, such demand-
ing modes of deployment do also have the exciting potential to facilitate such
evidence-based decision making, through support for automated experimenta-
tion.

As well as ensuring the team retains its scientific roots and culture, the
ASER also allows the team to collaborate efficiently and effectively with other
researchers from the academic and scientific community; new ideas, concern-
ing SBSE algorithms and more general automated Software Testing techniques,
originating from outside the team, can be empirically evaluated quickly and
systematically on a level playing field.

The ASER has four phases, starting with an initial proof of concept exper-
iment, through to full evaluation in parallel with (and evaluated against) the
production release of Sapienz. The motivation for these four phases is to allow
the experimenter to devote increasingly larger levels of resource to evaluating a
proposed new approach to test generation. As a result, promising techniques are
placed under increasingly strong scrutiny in order to evaluate them against ever-
increasingly demanding criteria, while less promising approaches can be quickly
identified as such and discarded.

Our aim is to explore and experiment, but also to ‘fail fast’ with those less
promising approaches, so that we can divert human and machine resources to
the most promising avenues of research and development. At each phase of the
ASER, metrics reporting on the performance of the approach are collected and
used as the inputs to inferential statistical analyses. These analyses are per-
formed automatically and the results of confidence intervals, significance tests,
effect sizes and the corresponding box plots and other visualisations are auto-
matically computed and returned to the experimenter and the overall team, for
inspection and assessment.

The overall flows through the four phases from initial proof of concept to
full deployment are depicted in Fig. 5. The migration through each of the four

20 N. Alshahwan et al.

phases of evaluation is placed under human control. Movement through the
ASER is informed by inferential statistical analysis; should the newly-proposed
approach significantly outperform a baseline benchmark version of the deployed
technology, the newly-proposed technique moves from the initial proof of concept
to a more thorough evaluation against the production deployment.

Fig. 5. Experimental workflow into production

The first three phases are christened ‘Lite’, ‘Standard’ and ‘ProdExp’. The
fourth phase is a deployment into production for up to one month alongside
production deployment so that we can fully assess the number of faults triaged
and fixed by the newly-proposed technique. The Lite phase is designed to give
proof-of-concept feedback within an hour. It uses only five emulators on a choice
of search based parameter settings that ensures the algorithms terminate quickly.

Ideally, for any testing or verification technique, we should evaluate the
signal-to-noise ratio of the technique, rather than give an arbitrary time limit,
or we may fall in to the Cherry-Picked Budget (CTB) trap [37]. Using our Lite
experiment, it is possible that the reliance on CTB for the Lite phase can cause
techniques with a long startup time to be prematurely discarded.

Fortunately, at this stage of the deployment of Sapienz, we are blessed by
the large number of potentially promising ideas to explore. Therefore, it is more
important that we are able to quickly dismiss those that appear unpromising
(albeit initially with a CTB that favours early-stage effectiveness). As the tech-
nology matures, we will revisit these assumptions that underpin the ASER.

Newly proposed techniques that pass the initial Lite phase move into the
‘Standard’ ASER experimental phase. The Standard phase of the ASER deploys
best practice [7,36] (thus ‘standard’) inferential statistical experimental assess-
ment of effectiveness using 30 emulators. This number balances the efficiency of
time and computational resources against statistical test reliability.

We believe it sufficient to yield meaningful inferential statistical feedback
on the relative performance of the newly-proposed technique against a produc-
tionised alternative. We tend balance in favour of avoiding Type I errors (incor-
rectly rejecting the Null Hypothesis) at the expense of risking Type II errors

Deploying Search Based Software Engineering with Sapienz at Facebook 21

(incorrectly accepting the Null Hypothesis), reflecting the current opportunity-
rich environment in which we seek large effect sizes to motivate further inves-
tigations. In terms of resource bounds, our aim is to obtain results within less
than a week, so that a decision can be made relatively quickly about whether to
move the newly proposed technique to the ‘ProdExp’ phase.

In the ‘ProdExp’ phase, the ASER deploys A/B testing, over a period of a
week, comparing the number of crashes triaged against the production deploy-
ment. The final phase is a longer A/B test, against production, for a period of
up to one month before the new technique is finally allowed to become part of
the new production deployment. This is necessary because Fix Detection has a
natural window (the cooling window; see Sect. 3.2) within which it is not possi-
ble to reliably compute a fix rate for any newly-proposed technique. As a result,
we can compute the fault reporting rate (the number of crashes triaged) during
ProdExp phase, but not the rate at which these crashes are fixed.

The ASER is fully parallelised for scalability, so multiple experiments can be
run at any given time, each of which resides at a different stage of the ASER pro-
cess. Overall, this ensures that less promising techniques are dismissed within a
week and that, after one week, we have sufficient evidence to put those techniques
that pass standard empirical SBSE evaluation into full A/B testing, yielding their
benefit in terms of triages and fixes.

For inferential testing we use a paired Wilcoxon (non Parametric) test, and
highlight, for follow up, those results with p values lower than 0.05. We do not
perform any p value corrections for multiple statistical testing, since the number
of tests is essentially unbounded and unknowable. This choice poses few practical
problems, because the final A/B testing phase would allow us to dismiss any
Type I errors before their effects hit production. The effect of Type I error is
thus an opportunity lost (in terms of time that would have been better spent on
other approaches), but it is not a computational cost in terms of the performance
of the deployed Sapienz technology.

In the following subsections we give 3 examples of the applications of the
ASER framework to evaluate new generation and selection algorithms and tech-
niques we considered for improving fitness computation, the motif core interface
and solution representations. Within the first 3 months of deployment of the
ASER, we had conducted tens of different high level experimental investiga-
tions to answer our research questions, with (overall) hundreds of specific low
level experimental algorithm comparisons (thousands of experimental runs), each
with different parameter settings and choices.

In the subsections that follow, we chose one example that allowed us to fail
fast, one that initially seemed promising, yet failed subsequent more demanding
phases of the ASER, and one that made it through the full ASER process to
production deployment. Each example also illustrates different aspects of the
automated reporting: box plots, scatter-plots and inferential statistical analy-
sis. We show the completely unvarnished output from ASER, exactly as it is
automatically rendered to the engineer in these three examples.

22 N. Alshahwan et al.

5.1 ASER Example: Fail Fast Speed up Experiment

Sapienz communicates with the device or emulator using the Android Debug
Bridge (ADB). We had available to us, a modified ADB for which others had
previously reported prima facae evidence for high performance. Naturally, we
wanted to investigate whether it could reduce the time Sapienz required for each
test case.

RQ: New adb: Can the new adb version increase performance of the Sapienz
MotifCore and thereby the overall test execution time?

We used the ASER to run an experiment comparing execution time for the
modified ADB with the original ADB. Figure 6 illustrates the output from ASER’s
initial ‘Lite’ phase.

This Lite experiment immediately revealed that the modified ADB was, in fact,
slower, for our use-case, not faster so it was discarded, quickly and without our
engineers investing time building a full implementation. This example illustrates
the way in which ASER allows us to move fast and fail fast, with those ideas
that appear promising yet which, for a myriad of practical reasons, fail to deliver
benefits in practice.

5.2 ASER Example: Longer Test Sequences

We considered dropping the test sequence length constraint of Sapienz, to allow it
to search for longer test sequences that might achieve higher coverage. This chal-
lenged a core assumption in our earlier work. That is, we had initially assumed
that shorter test sequences would be inherently good for efficiency and effective-
ness of debugging. As a result, length formed part of the original multi objective
optimisation approach.

We used a pareto optimal multi objective approach, so length could only
be reduced if such reduction could be achieved without sacrificing coverage.

Fig. 6. Answer to RQ: New adb: ‘No. The new adb is not faster for Sapienz test design’.
An example of a box plot outcome that enabled us to Fail fast box plot. Vertical axis
shows execution time per overall run, in minutes.

Deploying Search Based Software Engineering with Sapienz at Facebook 23

To challenge the assumption that length should be an objective, we created
a bi-objective version (crashes and coverage only) of our original tri-objective
algorithm, as formulated in the 2016 ISSTA paper [49].

RQ: Length: What is the efficiency and effectiveness of a bi-objective SBSE
algorithm compared to the production tri-objective algorithm?

Initial results from ASER’s ‘Lite’ phase were promising, as were inferential
statistical results from ASER’s subsequent ‘Standard’ phase; maybe our test
sequence length objective should be dropped. The results, as obtained directly
and automatically by ASER, are presented in Fig. 7. The figure shows the bi-
objective runs (red plots with data points marked as ‘+’) maintaining and
slightly improving the activity coverage as the population evolves.

The bi-objective version found 90 mids, while production found 57 with 40
overlaps). The bi-objective version also covered 130 Android activities, while
prod covered fewer (114, with 107 overlaps). Inferential statistical analysis
from ASER’s ‘Standard’ phase also gave cause for optimism: The unique crash
count improved by 109% (p = 0.003), while the unique activity coverage count
improved 31% (p < 0.001). However, set against this, run time slowed down by
21% (p < 0.001), largely because the bi-objective version’s mean test sequence
length was longer.

Based on the inferential statistical analysis from ASER’s ‘Standard’ phase,
we were highly optimistic for the bi-objective version of our algorithm: surely a
modest test system slow down of 21% was a small price to pay for extra cover-
age. However, when we deployed the bi-objective version alongside production
Sapienz in a full A/B test, we found that the bi-objective version found rela-
tively few extra crashes in practice compared to production and reported fewer
per unit time.

This illustrates the importance of the final A/B testing phase, rather than
merely relying on (purely) laboratory-condition experimental results alone. The
result also underscored, for us, the importance of time-to-signal; bugs-per-
minute, being more practically important than coverage or total bugs found,
in terms of their immediate impact on our developers, something that has been
noted elsewhere [37].

5.3 ASER Example: ATG Test Selection

As described in Sect. 2.3 we use a generate-and-select approach in which we
generate a set of tests from the debug build of the app (reporting any errors this
uncovers) and use the generated tests as a pool from which we subsequently select
tests to be run against each submitted diff. The generate and select approach was
first trialed using the ASER against the then production version (which solely
used generation). The research question we addressed using the ASER was thus:

RG: ATG: What is the efficiency and effectiveness of an Activity Transition
Graph (ATG) generate-and-select algorithm compared to a purely generation-
based algorithm?

24 N. Alshahwan et al.

Figure 8 presents the results obtained from ASER for an experiment on the
Activity Transition Graph (ATG) approach, selecting from the ATG, the top
activity-covering sequences, rather than simply running in production to gener-
ate tests on each and every occasion.

The results were very promising for ASER’s ‘Standard’ phase, as can be seen
from Fig. 8. In this case, when we deployed the ATG selection approach alongside
prod, in A/B testing the optimism derived from the inferential statistical analysis
was fully borne out in practice. As a result of the successful final A/B phase, we
moved from purely generation-based testing to a generate-and-select approach.

6 DevOps Results Monitoring

The results obtained from deployment of Sapienz include many of those that we
would typically wish to collect for scientific evaluation. That is, in common with
any scientific evaluation of a research prototype, we collect information about
the key performance indicators of the Sapienz deployment. These include the
number of crashes triaged to developers, and breakouts of this data, by Android
API level, application under test, and so on. These data are plotted, typically,
as timeseries data, and are available on dashboards.

In essence, this can be thought of as a continuous empirical software engi-
neering experiment of efficiency and effectiveness of the production deployment
against a sequence of recent debug builds and submitted diffs. The comparatively
rapid rate at which diffs are submitted ensures that regressions are detected
quickly.

In addition to the continuous monitoring of efficiency and effectiveness, the
Sapienz infrastructure also needs to collect a large number of DevOps infrastruc-
tural ‘health’ monitoring metrics. These health metrics help engineers to detect
any issues in continuous deployment.

Facebook provides much infrastructural support to make it easy to mash
up such dashboards, data analysis, and inferential statistical analysis. This pro-
vides the deployment of Sapienz with detailed and continuous empirical evalua-
tion feedback. We developed the Automated Scientific Experimental Reporting
(ASER) framework, described in Sect. 5, to allow us to use these data science
infrastructural features to quickly prototype new experiments and ideas. We use
the same infrastructural support to monitor the ongoing performance and health
of the Sapienz fault triage and reporting system and its fault detection protocols
and workflows.

Many continuous integration and deployment organisations use a so-called
‘DevOps’ approach such as this, in which system deployment is continuously
monitored by engineers. This DevOps process is supported by key ‘health met-
rics’ reporting, which we briefly describe in this section. We also briefly illus-
trate the kind of performance indicators that we continually monitor to under-
stand the signal that the Sapienz deployment gives to our user community of
developers.

Deploying Search Based Software Engineering with Sapienz at Facebook 25

F
ig
.
7
.
S
a
m

p
le

A
S
E

R
o
u
tp

u
t:

S
ca

tt
er

p
lo

ts
.
T

h
e

u
p
p
er

(r
ed

)
sc

a
tt

er
p
lo

t
(s

m
a
ll
er

‘+
’
p
o
in

ts
)
sh

ow
s
th

e
re

su
lt

o
f
B

i-
O

b
je

ct
iv

e
A

lg
o
ri

th
m

s.
T

h
e

lo
w

er
p
lo

t
(l

a
rg

er
‘X

’
p
o
in

ts
)

is
th

e
o
ri

g
in

a
l
tr

i-
o
b
je

ct
iv

e
a
lg

o
ri

th
m

.
T

h
e

b
i-
O

b
je

ct
iv

e
a
lg

o
ri

th
m

a
p
p
ea

rs
to

b
e

su
p
er

io
r

to
th

e
tr

i-
o
b
je

ct
iv

e
a
lg

o
ri

th
m

;
a
n

o
b
se

rv
a
ti

o
n

re
-e

n
fo

rc
ed

b
y

th
e

in
fe

re
n
ti

a
l
st

a
ti

st
ic

a
l
a
n
a
ly

si
s

o
f

eff
ec

ti
v
en

es
s

(b
u
t

n
o
t

effi
ci

en
cy

).
In

su
b
se

q
u
en

t
A

/
B

te
st

in
g
,

th
e

tr
i-
o
b
je

ct
iv

e
a
lg

o
ri

th
m

’s
fa

st
er

ex
ec

u
ti

o
n

p
ro

v
ed

p
iv

o
ta

l
fo

r
b
u
g

d
et

ec
ti

o
n

ra
te

.
T

h
is

d
em

o
n
st

ra
te

d
th

a
t

th
e

m
o
d
es

t
effi

ci
en

cy
h
it

su
ff
er

ed
b
y

th
e

b
i-
o
b
je

ct
iv

e
a
p
p
ro

a
ch

p
ro

v
ed

to
b
e

p
iv

o
ta

l
in

p
ra

ct
ic

e,
w

h
en

A
/
B

te
st

ed
a
g
a
in

st
th

e
tr

i-
o
b
je

ct
iv

e
v
er

si
o
n
.

(C
o
lo

r
fi
g
u
re

o
n
li
n
e)

26 N. Alshahwan et al.

Fig. 8. RG: ATG: sample ASER output: inferential statistics

6.1 Health

As explained in Sect. 3, Sapienz deployment contains many ‘moving parts’, and
such large-scale infrastructure typically cannot be expected to run continuously
without individual components occasionally failing, due to timeouts, temporary
interoperability mismatches and other resource-based exigencies.

The role of Sapienz health metrics is to understand whether these are rou-
tine, temporary incursions into deployment, or whether a more serious problem
has occurred which needs engineer intervention. Supporting the Sapienz team
in making these decisions are a number of automated monitoring and control
systems, that report continually to a dashboard monitored by the team member
who is the designated ‘on-call’ for each week.

These dashboards report on many aspects of the health of the deployment,
including the

1. number of failed production worflow runs,
2. activity coverage,
3. number of tested smoke builds currently deployed on Sapienz testing tasks,
4. number of crashes detected,
5. number of requests sent to server,
6. logging of various internal soft error warnings,
7. numbers of replication of production failures,
8. the number and proportion of reproducibility (non flakiness) of test cases.

The DevOps reporting also includes a suite of data concerning the perfor-
mance of the triage, and the response of developers to the signal provided to
them.

As an illustration, consider Fig. 9, which depicts a graph plot for six days in
April 2018, showing activity coverage. The vertical axis is not shown and is not
necessary for this illustration. As can be seen from the figure, activity coverage
retains an apparently consistent level, which we regard as ‘healthy’, but on the
29th April a sudden drop is noticed. This points to potential problems in the
deployment, occasioning further investigation, as necessary.

Fortunately, in this case, the sudden drop proved to be merely the result of
a temporary quota limit on emulators being reached and within a few minutes,
normal behaviour resumed. This example is included as an illustration of the

Deploying Search Based Software Engineering with Sapienz at Facebook 27

Fig. 9. Example DevOps monitoring: activity coverage over three days’ worth of pro-
duction runs in April 2018 (vertical axis deliberately occluded).

way in which a DevOps approach is used to tackle availability and resilience of
the Sapienz infrastructure. Naturally, an interesting challenge is to automate, to
the greatest extent possible, this resilience, so that little human intervention is
required to maintain healthy operation.

6.2 Key Performance Indicators

Figure 10 shows the two key performance indicators of crashes triaged to devel-
opers by Sapienz, and fixes detected by the automated fix detection protocol
described in Sect. 3.2. We are interested in fixes detected as a proxy for assessing
a bound on the likely false positive rate (more precisely, the signal-to-noise ratio
[37]) from Sapienz. Currently Sapienz enjoys a fix rate of approximately 75%,
indicating that the signal carries low noise. As explained in Sect. 3.2, this is both
an estimate on fix rate and a likely lower bound.

The figure covers the period from the first minimal viable product, in the
summer of 2017, through deployment, in full production, at the end of Septem-
ber 2017, to the end of May 2018. Up to the end of September 2017, all crashes
triaged to developers (and consequent fixes detected), were implemented by
hand, as a result of experiments with the initial minimal viable product. Since the
end of September 2017, after successful experimentation, the Sapienz automated
fault triage system went live, and Sapienz started commenting, automatically,
on diffs that had landed into the debug build of the Facebook android app.

In February 2018, the Activity Transition Graph (ATG) diff time generate-
and-select approach, described in Sect. 2.3, was deployed, following successful
experimentation with the ASER scientific experimentation framework (described
in Sect. 5.3). As can be seen from the figure, this produced a significant uptick
in the number of crashes detected and fixed.

28 N. Alshahwan et al.

Facebook follows the DevOps approach, in which developers are personally
responsible for the code they deploy, but also supports developers in maintaining
their work-life balance, and thereby respects its own responsibility to developers:

“The flip side of personal responsibility is responsibility toward the engi-
neers themselves. Due to the perpetual development mindset, Facebook
culture upholds the notion of sustainable work rates. The hacker culture
doesn’t imply working impossible hours. Rather, engineers work normal
hours, take lunch breaks, take weekends off, go on vacation during the
winter holidays, and so on” [25].

As can be seen, Fig. 10 reveals a relatively ‘quiet time’ for developers around
the end of the year, which corresponds to the winter holiday vacation period.
Looking more closely, one can also see a roughly weekly cyclical periodicity, post
February (when Sapienz was deployed at diff submit time) which is accounted
for by weekends off.

7 Open Problems and Challenges

In this section, we outline a few interesting research challenges we have encoun-
tered during our attempts to improve the deployment of Sapienz at Facebook.
Some of these problems have been partially tackled, but we believe all of them
would benefit from further research work.

We eagerly anticipate results from the scientific research community on these
open research challenges and problems. We believe that progress will likely
impact, not only the Sapienz deployment, but also other automated test design
initiatives elsewhere in the software engineering sector.

7.1 Flaky Tests

As previously observed [37], it is better for research to start from the assumption
that all tests are flaky, and optimise research techniques for a world in which
failing tests may not fail reliably on every execution, even when all controllable
variables are held constant. This raises a number of research challenges, and
provides rich opportunities for probabilistic formulations of software testing, as
discussed in more detail elsewhere [37].

7.2 Fix Detection

As we described in Sect. 3.2, it remains challenging to determine whether a fix
has occurred, based solely on the symptoms of a fault, witnessed/experienced as
a failure. More research is needed to construct techniques for root cause analysis,
allowing researchers and practitioners to make more definite statements about fix
detection. Given the assumption that tests are flaky (described in the previous
section), it seems likely that statistical inferences about causal effects are likely

Deploying Search Based Software Engineering with Sapienz at Facebook 29

F
ig
.
1
0
.

E
x
a
m

p
le

K
ey

P
er

fo
rm

a
n
ce

In
d
ic

a
to

rs
:
th

e
fi
rs

t
1
k

cr
a
sh

es
tr

ia
g
ed

a
n
d

(d
et

ec
te

d
a
s)

fi
x
ed

b
y

S
a
p
ie

n
z

si
n
ce

d
ep

lo
y
m

en
t

fo
r

th
e

F
a
ce

b
o
o
k

A
n
d
ro

id
A

p
p
.

T
h
e

u
p
p
er

cu
rv

e
d
ep

ic
ts

cr
a
sh

es
tr

ia
g
ed

to
a

d
ev

el
o
p
er

;
lo

w
er

li
n
e

d
ep

ic
ts

th
o
se

d
et

ec
te

d
a
s

fi
x
ed

.
A

s
w

it
h

sc
ie

n
ti

fi
c

ev
a
lu

a
ti

o
n

a
n
d

re
p
o
rt

in
g
,
a

k
ey

co
n
ce

rn
is

th
e

ra
te

o
f
d
et

ec
ti

o
n

o
f
fa

il
u
re

s
a
n
d

th
e

p
ro

p
o
rt

io
n

th
a
t

g
et

fi
x
ed

(a
p
ro

x
y

in
d
ic

a
to

r
o
f

tr
u
e

p
o
si

ti
v
es

).
T

h
e

p
er

io
d

b
ef

o
re

th
e

en
d

o
f

S
ep

te
m

b
er

2
0
1
7

in
v
o
lv

ed
o
n
ly

in
it

ia
l

ex
p
er

im
en

ts
o
n

(b
y
-h

a
n
d
)

tr
ia

g
e.

T
h
e

eff
ec

t
o
f

d
ep

lo
y
in

g
,
in

fu
ll

p
ro

d
u
ct

io
n

m
o
d
e,

a
t

th
e

en
d

o
f
S
ep

te
m

b
er

2
0
1
7

ca
n

cl
ea

rl
y

b
e

se
en

fr
o
m

th
e

fi
g
u
re

.
T

h
e

q
u
ie

te
r

p
er

io
d

a
ro

u
n
d

th
e

en
d

o
f

th
e

y
ea

r
ca

n
a
ls

o
b
e

se
en

in
th

e
d
a
ta

.
T

h
e

ta
p
er

in
g

o
f

th
e

fi
x

ra
te

is
a

co
n
se

q
u
en

ce
o
f

th
e

n
ee

d
fo

r
a

co
o
li
n
g

w
in

d
ow

,
d
u
ri

n
g

w
h
ic

h
n
o

fi
x

ca
n

b
e

d
et

ec
te

d
,
a
n
d

a
ls

o
re

ce
n
cy

eff
ec

ts
;
cr

a
sh

es
ta

k
e

so
m

e
n
o
n
-z

er
o

ti
m

e
to

fi
x
,
so

o
ld

er
cr

a
sh

es
a
re

m
o
re

li
k
el

y
to

b
e

d
et

ec
te

d
a
s

fi
x
ed

.
F
in

a
ll
y,

th
e

n
o
ti

ce
a
b
le

st
ep

ch
a
n
g
e

in
p
er

fo
rm

a
n
ce

in
F
eb

ru
a
ry

2
0
1
8

re
su

lt
ed

fr
o
m

th
e

su
cc

es
sf

u
l

d
ep

lo
y
m

en
t

o
f

th
e

A
ct

iv
it
y

T
ra

n
si

ti
o
n

G
ra

p
h

A
p
p
ro

a
ch

a
t

d
iff

su
b
m

it
ti

m
e

(S
ee

S
ec

t.
2
.3

).

30 N. Alshahwan et al.

to play a role in this work, due to the probabilistic nature of testing continuously
deployed Internet-based systems.

Fortunately, there has been much recent progress on causal inference [63],
which has seen applications elsewhere in software engineering [53], as well as
in defect prediction [14]. Therefore, the opportunity seems ripe for the further
development and exploitation of causal analysis as one technique for informing
and understanding fix detection. Empirical software engineering research is also
needed to understand whether different classes of fault have different fix detection
characteristics, and whether different approaches to fixing faults could lead to
different fix detection characteristics.

In general, the problem of fix detection can shed light on a collection of inter-
related software testing problems, such as the mapping between faults and fail-
ures, the flaky test problem, the cost benefit trade-offs in testing, fault severity,
debugging and social aspects of software testing and repair (whether automated
or otherwise).

Part of the fix detection problem arises from the subproblem of tackling the
mapping between faults and failures. We need techniques for inferring this map-
ping from observed failures. We need techniques that can use plausible reasoning
and inference to identify likely groupings of failures that originate with the same
cause, minimizing false grouping and false splitting according to their likely root
causing fault(s). Research might also develop techniques for adaptive testing
that could be used to drive the search for test cases that help to distinguish such
falsely grouped and/or falsely split crashes.

7.3 Automated Oracle

In our work on Sapienz deployment, we opted for a simple and unequivocal
implicit oracle [9]; any test which exposes crashing behaviour is a test that is
deemed to lead to a failure. Furthermore, if it is possible for a test to witness
a crash only once, and even if this test is flaky, this is a strong signal to the
developer that action is needed:

A Sapienz-detected crash is, essentially, a constructive existence proof; it
proves that there does exist a configuration in which the app can crash on
the input sequence constructed by Sapienz.

This use of an implicit oracle was important, both for us to be able to fully
automate deployment and to increase the actionability of the signal Sapienz
provided the developers. However, we believe it is merely a first step, with an
obvious starting point, using an implicit oracle.

Much more work is needed to find techniques to automate more sophisticated
and nuanced test oracles. Naturally, if the developers use assertions or excep-
tion handling, then these can lead to soft errors that can be exploited by an
automated search-based testing technique.

Nevertheless, it remains an open question how to either augment or improve
the existing test oracles provided by developers [41]. It is also important to

Deploying Search Based Software Engineering with Sapienz at Facebook 31

find techniques that generate, from scratch, likely test oracles using techniques
such as assertion inference [23]. As test input generation becomes more mature,
and more widely-deployed in industry, we can expect a natural migration of the
research challenges from the problems of automatically generating test inputs,
to the problems of automatically generating test oracles.

Ultimately, if we can automate the generation of oracles and the genera-
tion of repairs, then we are very close to the grand challenge of FiFiVerify [34];
automatically finding, fixing and verifying software. By tackling the FiFiVer-
ify challenge, we would have practical deployed approaches that would take an
existing software system (which may be buggy), and return a new version of the
software, guaranteed to be free of certain classes of bugs, entirely automatically.

7.4 Fitness Evaluation Resource Requirements

One of the practical problems in deploying search-based software testing lies in
the resources required for fitness evaluation. This problem falls inbetween engi-
neering detail and research question. Undoubtedly, some of the solution involves
specific platforms and their characteristics and therefore is more a matter of
engineering implementation excellence than it is for scientific research.

Nevertheless, there is insufficient guidance in the research literature, and
insufficient evaluation in the empirical software engineering literature, of tech-
niques for reducing time spent on fitness evaluation. Fitness evaluation reduction
techniques essentially trade the computing resources needed for individual fit-
ness evaluation, against the quality of signal returned by fitness evaluation. The
ultimate efficacy of fitness evaluation optimisation depends upon the observed
impact on higher-level system-wide metrics, such as fault detection rate.

A fast-but-imprecise fitness computation may significantly reduce correctness
and thereby guidance provided by an individual fitness evaluation. Neverthe-
less, such an apparently suboptimal individual fitness evaluation, when executed
many millions of times over the lifetime of an evolutionary process, may have a
profound effect in reducing the execution time for the overall technique.

As a result, a relatively imperfect fitness evaluation that is fast may be prefer-
able to a much more precise fitness evaluation. These questions naturally centre
on cost-benefit trade-offs, which are at the very heart of any engineering disci-
pline. In taking scientific ideas from the evolutionary computation community
and turning these into practical engineering techniques for the software engineer-
ing research community, much more work is needed on the question of reducing
fitness evaluation resource consumption.

7.5 Wider Search Spaces

In common with most system-level approaches to search based testing in par-
ticular, and automated test data generation in general, Sapienz considers the
input to the program to consist solely of user interactions. Other approaches to
search-based testing, at the unit level, typically consider a vector of values that
can be presented to the unit under test.

32 N. Alshahwan et al.

However, there has been little work on extending the test data generation
search space to include the app’s user state and environment. User state and the
users’ device environment can play a critical role in both elevating coverage of
the application under test, and in revealing faults. Some of the faults revealed
through different state/environment settings may occur only in certain specific
user state and environment settings.

These observations are not peculiar to Facebook, but apply to any software
system in which the history of interactions of the user and other state variables
and configurations can play a role in determining which path is executed. More
research is needed in order to define general approaches to tackling this wider
search space.

In our particular situation, we are concerned, naturally, with the ‘social state’
of the user. For example, a fault may not be witnessed by a test input sequence,
unless the user has already responded to at least one post by another user, or
has at least one connection in their social network. The user state is thus a part
of the wider space in which we search for test cases using SBSE. Characterising
the circumstances under which a crash occurs, in terms of this state, would yield
highly actionable signal to the developer. It may also prove pivotal in helping to
debug otherwise very subtle bugs.

For other apps, and other organisations, the details of the user state will
clearly differ, but the general problem of characterising the user state, and the
search space it denotes, and defining fitness functions on that representation
remains an important, generic, and open research problem. Scientific progress
on this open problem is highly likely to yield impactful and actionable research.

We distinguish the user state from the user environment. The environment is
general to all applications, while the state is particular to a particular application
under test. The environment will, nevertheless, have different impact on different
applications. For example, for a photo sharing app, it will likely be important
that the user has photos in their photo library on the device. For a map or travel
application, GPS settings may prove to be important, although both apps will
have access to photos and GPS settings and may use both. In most applications,
the network environment will also play an important role.

As devices become more sophisticated, the environment will become ever
richer, offering interesting opportunities for SBSE-based characterisations of the
search space. More work is needed to characterise this environment in which users
execute applications, particularly on mobile devices, to tease out notations for
eloquently and succinctly defining this environment. Once characterised, tech-
niques such as Combinatorial Interaction Testing (CIT) [43,60,64] can be used
to explore interaction faults, for example.

For the SBSE community, we also need to consider different representations
for those environments that promote efficient and effective search. Such work
will enrich the search space and tackle several practical problems, such as device
fragmentation and context-aware test case generation.

More work is also needed to provide general notations for describing the user
state, such that the generic properties of state-based testing can be explored

Deploying Search Based Software Engineering with Sapienz at Facebook 33

scientifically and empirically. Such work will shed light on the nature of state-
based testing for Internet-deployed, device-executed, applications. This notation
may also use and benefit from work on CIT.

Research on user state and environment will have multiple benefits to the
research community and to practitioners. For researchers, this work will pro-
vide a rich avenue of untapped research questions, with potential insights that
may help the research community to understand different kinds of deployment
mode, applications, environments and properties of states. For practitioners, this
research may help us to better understand the applications we are testing, may
help us to go beyond merely revealing faults, and also help us to characterise
salient properties that yield deep insights into app performance, usability, and
different use-case scenarios for different sub-communities of users.

7.6 Smarter, Unobtrusive and Controllable White Box Coverage

After so many years of software testing, in which instrumentation of the sys-
tem under test has often played a central role, the reader could be forgiven for
believing that the problem of white box coverage assessment is entirely solved.
However, while it may be true that white box coverage techniques exist for most
languages, platforms and systems, for search based software testing there are
more stringent requirements than simply the ability to collect coverage informa-
tion.

Instrumentation of a system under test changes the behaviour of the system,
and these changes can impact on the test data generation technique. Search-
based software testing, in particular, may be vulnerable to such influences, where
the instrumentation changes timing properties, possibly occluding or revealing
race conditions, and other time-based behaviours, differently in the app under
the test, when compared to the app in the field.

We need smarter control of white box coverage information, that is minimally
obtrusive on the execution characteristics of the app under test. Such techniques
need to be smarter. That is, for effective SBSE we need a greater level of con-
trol over the parameters that affect the trade-offs between quality of white box
coverage information and the impact of collecting this signal.

Some of this work is necessary engineering and implementation detail, but
there are also interesting high-level scientific problems. The challenge is to tease
out and empirically investigate these trade-offs between quality of signal from
white box coverage, and impact of collecting any signal on the system under
test.

7.7 Combining Static and Dynamic Analysis and Hybrids of SBSE

Although there has been a great deal of research on static analysis techniques,
and dynamic analysis techniques, there has been comparatively less work on the
combination of static and dynamic analysis. This ‘blended’ analysis (as it has
been called [19]), has the potential for practical impact, since we can leverage the
strengths of both techniques to overcome some of the weaknesses of the other.

34 N. Alshahwan et al.

Equally importantly, such combinations of static and dynamic analysis may
yield insights into fundamental questions of computation, touching on the limits
imposed by decidability constraints and the connections between statistical and
logical inferences.

7.8 False Positives and Pseudo False Positives

It is sometimes claimed, partly as an aphorism [18], that static analysis uses a
conservative over approximation, thereby avoiding false negatives (at the expense
of some false positives), while dynamic analysis suffers many false negatives, but
does not suffer from false positives because it is an under approximation.

This claim is based on an attractive (but misplaced) assumption that the
symmetries of over and under approximation, inherent in the theoretical char-
acterisation of static and dynamic analysis, carry over into practice. They do
not [37]. Both static and dynamic analysis, whether over or under approximat-
ing their respective models of computation in production, suffer from both false
positives and false negatives.

It is well known that static analysis yields false positives when it seeks to
offer a conservative over-approximation. However, static analysis, even when con-
strued as a conservative (i.e., ‘safe’) approach, can also yield false negatives. For
example, a static slicing algorithm is only conservative with respect to a set of
assumptions, and these assumptions always allow some false negatives; depen-
dencies that exist between elements of real systems, yet which go undetected by
the slicing algorithm [12].

Dynamic analysis is well-known to suffer from false negatives, due to the
inability to exhaustively test (apart from in special circumstances and with
respect to strong assumptions, such as integration testing with stream X-
machines [39,40]).

At the unit level, dynamic analysis has also been shown to suffer from false
positives [30]. However, even at the system level, dynamic analysis also suffers
from false positives. System level false positives occur in dynamic analyses, such
as the testing deployed by Sapienz. We generate tests on a version of the system
as close to production as possible. Nevertheless, since the testing tool is not the
real end user, there can be differences in behaviour that will cause the testing
tool to detect crashes that no real user will ever encounter.

This occurs, for example, due to differences in the device used for testing,
and devices used by end users. False positives are also caused by differences in
the abilities of the automated testing tool compared to real user abilities; the
test tool has an arbitrary number of ‘fingers’ at its disposal. Finally, due to
differences in the deployment environment for the test infrastructure and the
production infrastructure used by the end users can also cause false positives.

Sapienz uses emulators to perform test execution. We have found that,
because Facebook has 2.2 billion monthly active users (at the time of writing),
this means that almost any crash we can find with an emulator can be found on
some device in the real world. Therefore, we have not experienced a large number
of false positives, simply due to our use of emulators, rather than real devices.

Deploying Search Based Software Engineering with Sapienz at Facebook 35

Nevertheless, we have witnessed a kind of pseudo false positive due to imple-
mentation details concerning emulators, such as inadequate emulation of Aug-
mented Reality (AR) features in earlier instances of the Android emulator API
(e.g., API 19, which lacks the relevant AR library support). This leads to crashes
which are ‘true’ positives, strictly speaking (since the system should not crash
if the AR library is not present). However, we need to treat such a crash like a
‘pseudo false positive’, since it instantly crashes the app and thereby prohibits
further testing, yet it is unlikely to be a priority for fixing (since such a crash
tends not to fire in the field, although it could in theory).

This observation of ‘pseudo’ false positives suggests a spectrum in which a
completely false positive lies at one extreme, but for which a pseudo false positive,
that is exceptionally unlikely to occur in practice, lies close to the ‘fully false’
positives; it shares many of the practical characteristics of ‘fully false’ positives.

In deployment scenarios where there are only relatively few end users, and
these end users only use a strict subset of the available Android devices available,
deployment of automated testing techniques, like Sapienz, may also yield further
pseudo false positives (which we do not tend to witness at Facebook) due to the
differences in test devices and end-user devices.

The degree of ‘pseudo falseness’ of a crash signal is, effectively, a function
of the number of likely end users, since this is a determinant of the probability
that a test-time crash will be found in production. As testers at Facebook, we
are thus blessed by the relatively large number of end users we serve, because
of the way in which this number tends to reduce pseudo false positiveness to a
minimum; almost any signal concerning crashes is treated as a true positive by
our developer community.

End user abilities may also differ from those of the automated testing sys-
tem. The primary difference we have noticed lies in the speed with which the
automated test sequence can be executed on an emulator; potentially far faster
than that achieved by any human. Once again, this has led to fewer false posi-
tives than we initially expected. The wide variety of different Android devices in
circulation means that test sequences executed by a user on a slower device may
have similar characteristics to a faster-executed test sequence on a higher-end
device. Nevertheless, some false positives can occur due to speed of test sequence
execution.

A further source of difference between test user ability and real user ability,
lies in the exceptionally dextrous nature with which an automated test tech-
nique can interact with the device or emulator. Effectively, the test user is not
hampered by physical constraints imposed by the number fingers and thumbs
on a typical human hand, and their varying degrees of freedom to articulate.
Previously, it was proposed to use robotic testing to achieve fully black box
testing, thereby avoiding this potential source of false positives [51]. This is not
something we have currently deployed, but it remains an option, should the false
positive problem ever become more pernicious.

36 N. Alshahwan et al.

7.9 Unit Tests from System Tests

Sapienz generates system-level tests, that test the application, end to end, imi-
tating as closely as possible the behaviour of real users. This system-level app-
roach significantly reduces the propensity of automated test design to produce
false positives, that have been widely reported to occur for more lower-level,
unit level, testing [30]. However, an interesting research problem lies in convert-
ing system level test sequences into corresponding unit level test information,
thereby circumventing the unit level false positive problem, while simultaneously
facilitating unit testing through automated test design.

One possibility lies in generating a set of system-level tests [21], instrumented
towitness the pre- and post-condition state for some unit under test, and the subse-
quent use of likely invariant inference, such as Daikon [23], to infer the constraints
that apply at the unit level. With these inferred constraints in hand, automated
test design (at the unit level) can now proceed within the constrained search space,
thereby reducing the incidence of unit-level false positives.

7.10 Combining Human- and Machine- Designed Tests

Humans have designed tests for many years. Automated test design techniques,
like Sapienz, might reduce human effort and thereby minimize the ‘friction’ of
the test design process, but they are unlikely to fully replace humans. After all,
humans have domain knowledge and engineers can link this domain knowledge to
specific aspects of code. There is a productive benefit in finding hybrids that can
combine human- and machine-designed tests, but this remains an open research
challenge.

One possibility is to extract assertions from human-designed tests and re-use
them as partial oracles for machine-designed test cases. Humans’ domain knowl-
edge is an important resource, while automating the test oracle design process is
non-trivial. Perhaps human-written tests can be mined for re-usable test oracle
information in the form of assertions extracted from human-designed test cases.

Another possibility would be for the human test to act as a prefix to the
machine-designed test. Perhaps the human test might move the system into a
state that is hard to reach, but important, or it may simply do so more efficiently
than a machine-designed test. Perhaps a human-designed test prefix might estab-
lish a state of interest or set up a particular environmental configuration that
enables machine-designed tests. For all these reasons, it makes sense to use a
human-designed test as a prefix for a Sapienz (or other automatically designed)
test. More research is needed on techniques to best combine human-designed
and machine-designed test cases.

7.11 Enhancing the Debug Payload

Far too little research is undertaken on the important problem of debugging [37].
Many problems in software debugging can be characterised in terms of multi-
objective search. Therefore, we believe the SBSE community has a role to play
in tackling this important and under-researched set of challenges.

Deploying Search Based Software Engineering with Sapienz at Facebook 37

In some cases, as much as 50% of engineers’ time spent on programming
may be devoted to the problem of debugging in its various forms. It is there-
fore surprising (and disappointing) that there is not a single dedicated annual
international academic conference, nor any scientific journal dedicated to the
perennially important problem of automated support for debugging.

We would like to encourage the software engineering community, more gen-
erally, and the Search Based Software Engineering community, in particular, to
renew research interest and activity on debugging. Even if automated software
repair were ultimately able to remove the need for human debugging effort, the
problem of automated debugging would remain a pressing one. That is, tech-
niques that supply additional context and guidance to a human concerned with
complex debugging tasks, would also be likely to provide useful input to improve
the efficiency and effectiveness of automated program repair. This potential dual
use of debugging support, for both human-based debugging activity and auto-
mated program repair, makes it all the more important that we should see signif-
icant attention and energy devoted to techniques to support debugging activity,
whether that activity be by machine or by human hand.

7.12 Search in the Presence of Inherent Flakiness

Search-based software engineering is well-adapted to tackle the problems of test
flakiness [37,46,57,62]. We envisage a bright future for probabilistic approaches
to testing, and believe that the SBSE community has an important role to play
here. By making flakiness of first class property of test cases, and test suites,
we can optimise for this property. Furthermore, by measuring the signal and
signal-to-noise ratio [37] produced by automated testing tools, we can define
these evaluation criteria, and potentially also surface them as fitness functions.

Addressing the Assume Tests Are Flakey (ATAFistic) world [37], we may
construct a fully probabilistic formulation of software testing and verification.
We hope to formulate and investigate new concepts of correctness, better-fitted
to Internet-based deployment than their precursors that were generally initially
constructed in the era of mainframes and stand alone desk tops with low numbers
of inter-connections.

Probabilistic testing and verification is nascent in the work in information
theory for testing [73,75] and probabilistic model checking [15,44], but more work
is required on theoretical foundations to unify testing and verification within a
fully probabilistic framework. More work is also required to develop the fruits of
such foundations in practical, scalable and deployable techniques for probabilistic
testing and verification.

7.13 New Search Algorithms that Fully Realize Efficiently
Deployable Parallelism at Scale

Search-based software testing systems have rested on evolutionary computing
as one of the primary search techniques to explore the space of all candidate
inputs to the system under test [33,55]. While there has been some work on

38 N. Alshahwan et al.

parallelisation to achieve the, oft-stated but seldom witnessed, ‘embarrassing
parallelism’ of SBSE [8,58,76], there has been little work on the formulation of
SBSE algorithms to better fit modern distributed computational resources.

The bottleneck for most search based testing (and much of SBSE, more gen-
erally), lies in the computation of fitness for a candidate test input sequence
(more generally, of a software engineering artefact). The distribution of com-
putation times for SBSE fitness inherently involves a high degree of variance,
due to the highly stochastic nature of software deployment for Internet-based
computing.

Therefore, any approach based on iterative generations of the population is
inherently inefficient when we require that all members of the population have
to be evaluated in lockstep. We believe there is further work to be done on
extending, rethinking, and redefining the underlying evolutionary algorithms.
We need to fully decouple unnecessary interdependence between fitness compu-
tations, so that maximal parallelism can be achieved; algorithms that can fully
exploit asynchronous fitness evaluation will scale well with available parallel
computation resources.

Furthermore, closer integration of evolutionary algorithm technology with
predictive modelling and machine learning is required in order to better use
computational resources for static fitness estimation. For example, predicting
likely fitness outcomes and maximising the quantity of information derived from
each fitness outcome are both important concerns to maximise the impact of
Search Based Software Engineering.

7.14 Automated Fixing

Automated software repair remains an active topic in the research community
[29]. At Facebook we find ourselves in an excellent position to act as both a pro-
ducer and consumer of research and development on deployable automated pro-
gram repair; as this paper explains we have infrastructure in place for automated
testing and for fix detection. We would be particularly interested to collaborate
with the academic research community on this topic.

7.15 Automated Performance Improvement

Generalising from automated repair to genetic improvement [65], and related
topics in program synthesis [31], we also see great potential for research in
automating program improvement, particularly for non-functional properties,
such as performance-related behaviours and resource consumption characteris-
tics [34].

We would also be very interested to collaborate with the academic community
on scalable and deployable automated program improvement techniques. With
Sapienz now deployed at Facebook, we are in a good position to provide the
automated test input generation infrastructure that would be a natural pre-
requisite for the deployment of test-based program improvement and synthesis
techniques such as genetic improvement.

Deploying Search Based Software Engineering with Sapienz at Facebook 39

Facebook also has static analysis and verification technology in the form of
Infer [13], as well as dynamic test design infrastructure (Sapienz) and manually-
designed automated execution frameworks (such as the Buddy end-to-end test-
ing system). We are therefore also in an excellent position to offer collaborative
support to academics seeking to tackle the FiGiVerify challenge; Finding issues
(bugs, performance, resource-related), Genetically Improving them (to synthe-
size improvements), and Verifying the improvements’ correctness [37].

8 The History of Sapienz Deployment to Date

Sapienz was developed as a research prototype, which was initially proposed
by Ke Mao and grew out of his PhD work [47]. The first version of Sapienz
was described in the Ke’s thesis [47] and at ISSTA 2016 [49], the International
Symposium on Software Testing and Analysis (ISSTA 2016). This version was
made publicly available as a research prototype6. The research prototype found
558 unique crashes among the top 1,000 Android apps, several of which were
reported and fixed [49].

The three authors of the ISSTA 2016 paper (Ke Mao and his two PhD super-
visors, Mark Harman and Yue Jia) launched an Android testing start-up, called
Majicke Ltd., in September 2016, with Ke at the CTO, Yue as CEO and Mark as
scientific advisor. Majicke’s technical offering was based on Sapienz. The three
subsequently moved to Facebook7 on February 6th 2017, where they founded the
Sapienz team at Facebook London, with Ke moving into the role of technical
lead, Yue focusing on long term technical issues (the vital ‘important but not
urgent’) and Mark taking up the role of team manager.

The Facebook Sapienz Team’s role is to deploy, develop and research SBSE-
related techniques for automated test case design so that we can have Friction-
Free Fault Finding and Fixing. The team has been strongly supported by Face-
book’s Developer Infrastructure team (DevInfra).

The Sapienz team has grown significantly since then and now includes (or has
included) the authors of this paper. Taijin Tei subsequently moved to work for
another team, while Alexander Mols has worked and continues to work part time
on Sapienz and other projects. The remaining authors of this paper have worked
full time, continuously, on Sapienz since starting work at Facebook. Many others
at Facebook have helped with support, advice and other contributions and we
thank them in the acknowledgements of this paper.

The Sapienz team’s many partners, collaborators and supporters in the Face-
book developer community have also provided a wealth of support, advice and
collaboration. Their willingness to try new technologies and to explore and exper-
iment was evident from the very outset. Facebook’s open engineering culture has
greatly accelerated the deployment of SBSE at Facebook.

6 https://github.com/Rhapsod/sapienz.
7 http://www.engineering.ucl.ac.uk/news/bug-finding-majicke-finds-home-

facebook/.

https://github.com/Rhapsod/sapienz
http://www.engineering.ucl.ac.uk/news/bug-finding-majicke-finds-home-facebook/
http://www.engineering.ucl.ac.uk/news/bug-finding-majicke-finds-home-facebook/

40 N. Alshahwan et al.

9 Conclusions

We have outlined the primary features of the deployment of the Sapienz Search
Based Testing system at Facebook, where it is currently testing Facebook’s
Android social media and messaging apps. These are two of the largest and
most widely-used apps in the overall international Android ecosystem. Work is
under way to extend to other apps and platforms and to improve the algorithms
and technology on which Sapienz relies.

To achieve rapid development of research into production, we use an Auto-
mated Scientific Experimental Reporting (ASER) framework, which automates
experiments from proof of concept, through inferential statistical testing to full
experiment-to-prod A/B testing.

We also outline some of the challenges and open problems that we believe are
suitable for tackling by the automated testing and SBSE research communities,
based on our experience from this Search Based Software Testing deployment
work.

Acknowledgement. Thanks to all our colleagues at Facebook and in the scientific
research, open source and developer communities for their support, both technical and
non-technical, that has allowed us to so-rapidly deploy search based system-level test-
ing into regular production. Many people at Facebook have helped with the deploy-
ment work reported on here in this keynote paper. We would like to thank these
colleagues who gave of their time and support while at Facebook, including Sharon
Ayalde, Michelle Bell, Josh Berdine, Kelly Berschauer, Andras Biczo, Megan Bro-
gan, Andrea Ciancone, Satish Chandra, Marek Cirkos, Priti Choksi, Wojtek Chmiel,
Dulma Churchill, Dino Distefano, Zsolt Dollenstein, Jeremy Dubreil, Jeffrey Dunn,
David Erb, Graham French, Daron Green, Lunwen He, Lawrence Lomax, Martino
Luca, Joanna Lynch, Dmitry Lyubarskiy, Alex Marginean, Phyllipe Medeiros, Devon
Meeker, Kristina Milian, Peter O’Hearn, Bryan O’Sullivan, Lauren Rugani, Evan Sny-
der, Don Stewart, Gabrielle Van Aacken, Pawel Wanat, and Monica Wik. We sincerely
apologise to any who we omitted to mention here.

References

1. Abdessalem, R., Nejati, S., Briand, L., Stifter, T.: Testing vision-based control
systems using learnable evolutionary algorithms. In: 40th International Conference
on Software Engineering (ICSE 2018) (to appear)

2. Afzal, W., Torkar, R., Feldt, R., Wikstrand, G.: Search-based prediction of fault-
slip-through in large software projects. In: Second International Symposium on
Search Based Software Engineering (SSBSE 2010), Benevento, Italy 7–9 September
2010, pp. 79–88 (2010)

3. Alesio, S.D., Briand, L.C., Nejati, S., Gotlieb, A.: Combining genetic algorithms
and constraint programming to support stress testing of task deadlines. ACM
Trans. Softw. Eng. Methodol. 25(1), 4:1–4:37 (2015)

4. Alshahwan, N., Harman, M.: Automated web application testing using search based
software engineering. In: 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), Lawrence, Kansas, USA, 6th–10th November
2011, pp. 3–12 (2011)

Deploying Search Based Software Engineering with Sapienz at Facebook 41

5. Alshahwan, N., Harman, M.: Coverage and fault detection of the output-uniqueness
test selection criteria. In: International Symposium on Software Testing and Anal-
ysis (ISSTA 2014), pp. 181–192. ACM (2014)

6. Androutsopoulos, K., Clark, D., Dan, H., Harman, M., Hierons, R.: An analysis
of the relationship between conditional entropy and failed error propagation in
software testing. In: 36th International Conference on Software Engineering (ICSE
2014), Hyderabad, India, pp. 573–583, June 2014

7. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess ran-
domized algorithms in software engineering. In: 33rd International Conference on
Software Engineering (ICSE 2011), pp. 1–10. ACM, New York (2011)

8. Asadi, F., Antoniol, G., Guéhéneuc, Y.: Concept location with genetic algorithms:
a comparison of four distributed architectures. In: 2nd International Symposium on
Search based Software Engineering (SSBSE 2010), pp. 153–162. IEEE Computer
Society Press, Benevento (2010)

9. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem
in software testing: a survey. IEEE Trans. Softw. Eng. 41(5), 507–525 (2015)

10. Beizer, B.: Software Testing Techniques. Van Nostrand Reinhold (1990)
11. Bertolino, A.: Software testing research: achievements, challenges, dreams. In:

Briand, L., Wolf, A. (eds.) Future of Software Engineering 2007. IEEE Computer
Society Press, Los Alamitos (2007)

12. Binkley, D., Gold, N.E., Harman, M., Islam, S.S., Krinke, J., Yoo, S.: ORBS and
the limits of static slicing. In: 15th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM 2015), pp. 1–10. IEEE, Bremen,
September 2015

13. Calcagno, C., et al.: Moving fast with software verification. In: Havelund, K., Holz-
mann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 3–11. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-17524-9 1

14. Ceccarelli, M., Cerulo, L., Canfora, G., Penta, M.D.: An eclectic approach for
change impact analysis. In: Kramer, J., Bishop, J., Devanbum, P.T., Uchitel, S.
(eds.) 32nd ACM/IEEE International Conference on Software Engineering (ICSE),
vol. 2, pp. 163–166. ACM (2010)

15. Chechik, M., Gurfinkel, A., Devereux, B.: ξChek: a multi-valued model-checker.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 505–509.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 41

16. Chen, Y.F., Rosenblum, D.S., Vo, K.P.: TestTube: a system for selective regression
testing. In: 16th International Conference on Software Engineering (ICSE 1994),
pp. 211–220. IEEE Computer Society Press (1994)

17. Clark, D., Hierons, R.M.: Squeeziness: an information theoretic measure for avoid-
ing fault masking. Inf. Process. Lett. 112(8–9), 335–340 (2012)

18. Dijkstra, E.W.: Structured programming (1969). http://www.cs.utexas.edu/users/
EWD/ewd02xx/EWD268.PDF, circulated privately

19. Dufour, B., Ryder, B.G., Sevitsky, G.: Blended analysis for performance under-
standing of framework-based applications. In: International Symposium on Soft-
ware Testing and Analysis, ISSTA 2007, 9–12 July, London, UK, pp. 118–128.
ACM (2007)

20. Dunn, J., Mols, A., Lomax, L., Medeiros, P.: Managing resources for large-
scale testing, 24 May 2017. https://code.facebook.com/posts/1708075792818517/
managing-resources-for-large-scale-testing/

21. Elbaum, S.G., Chin, H.N., Dwyer, M.B., Jorde, M.: Carving and replaying differ-
ential unit test cases from system test cases. IEEE Trans. Softw. Eng. 35(1), 29–45
(2009)

https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/3-540-45657-0_41
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD268.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD268.PDF
https://code.facebook.com/posts/1708075792818517/managing-resources-for-large-scale-testing/
https://code.facebook.com/posts/1708075792818517/managing-resources-for-large-scale-testing/

42 N. Alshahwan et al.

22. Engström, E., Runeson, P., Skoglund, M.: A systematic review on regression test
selection techniques. Inf. Softw. Technol. 52(1), 14–30 (2010)

23. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Trans. Softw. Eng.
27(2), 1–25 (2001)

24. Facebook Research: Facebook Research post describing the move of Majicke to
Facebook (2017). https://facebook.com/academics/posts/1326609954057075

25. Feitelson, D.G., Frachtenberg, E., Beck, K.L.: Development and deployment at
Facebook. IEEE Internet Comput. 17(4), 8–17 (2013)

26. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: 8th European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering (ESEC/FSE 2011),
pp. 416–419. ACM, 5th–9th September 2011

27. Fraser, G., Arcuri, A.: The seed is strong: seeding strategies in search-based soft-
ware testing. In: Antoniol, G., Bertolino, A., Labiche, Y. (eds.) 5th International
Conference on Software Testing, Verification and Validation (ICST 2012), pp. 121–
130. IEEE, Montreal, April 2012. http://ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=6200016

28. Gao, Z., Liang, Y., Cohen, M.B., Memon, A.M., Wang, Z.: Making system user
interactive tests repeatable: when and what should we control? In: Bertolino, A.,
Canfora, G., Elbaum, S.G. (eds.) 37th International Conference on Software Engi-
neering (ICSE 2015), pp. 55–65. IEEE Computer Society, Florence, 16–24 May
2015

29. Goues, C.L., Forrest, S., Weimer, W.: Current challenges in automatic software
repair. Softw. Qual. J. 21(3), 421–443 (2013)

30. Gross, F., Fraser, G., Zeller, A.: Search-based system testing: high coverage, no false
alarms. In: International Symposium on Software Testing and Analysis (ISSTA
2012), pp. 67–77 (2012)

31. Gulwani, S., Harris, W.R., Singh, R.: Spreadsheet data manipulation using exam-
ples. Commun. ACM 55(8), 97–105 (2012)

32. Harman, M., Burke, E., Clark, J.A., Yao, X.: Dynamic adaptive search based
software engineering (keynote paper). In: 6th IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM 2012), Lund, Sweden,
pp. 1–8, September 2012

33. Harman, M., Jia, Y., Zhang, Y.: Achievements, open problems and challenges for
search based software testing (keynote paper). In: 8th IEEE International Confer-
ence on Software Testing, Verification and Validation (ICST 2015), Graz, Austria,
April 2015

34. Harman, M., Langdon, W.B., Jia, Y., White, D.R., Arcuri, A., Clark, J.A.: The
GISMOE challenge: constructing the Pareto program surface using genetic pro-
gramming to find better programs (keynote paper). In: 27th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE 2012), Essen,
Germany, pp. 1–14, September 2012

35. Harman, M., Mansouri, A., Zhang, Y.: Search based software engineering: trends,
techniques and applications. ACM Comput. Surv. 45(1), 11:1–11:61 (2012)

36. Harman, M., McMinn, P., de Souza, J.T., Yoo, S.: Search based software engi-
neering: techniques, taxonomy, tutorial. In: Meyer, B., Nordio, M. (eds.) LASER
2008-2010. LNCS, vol. 7007, pp. 1–59. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-25231-0 1

https://facebook.com/academics/posts/1326609954057075
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6200016
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6200016
https://doi.org/10.1007/978-3-642-25231-0_1
https://doi.org/10.1007/978-3-642-25231-0_1

Deploying Search Based Software Engineering with Sapienz at Facebook 43

37. Harman, M., O’Hearn, P.: From start-ups to scale-ups: opportunities and open
problems for static and dynamic program analysis (keynote paper). In: 18th IEEE
International Working Conference on Source Code Analysis and Manipulation
(SCAM 2018), Madrid, Spain, 23rd–24th September 2018, to appear

38. Hazelwood, K., et al.: Applied machine learning at Facebook: a datacenter infras-
tructure perspective. In: 24th International Symposium on High-Performance Com-
puter Architecture (HPCA 2018), Vienna, Austria, 24–28 February 2018

39. Hierons, R.M., Harman, M.: Testing against non-deterministic stream X-machines.
Formal Aspects Comput. 12, 423–442 (2000)

40. Ipate, F., Holcombe, M.: Generating test sequences from non-deterministic
X-machines. Formal Aspects Comput. 12(6), 443–458 (2000)

41. Jahangirova, G., Clark, D., Harman, M., Tonella, P.: Test oracle assessment and
improvement. In: International Symposium on Software Testing and Analysis
(ISSTA 2016), pp. 247–258 (2016)

42. Jan, S., Panichella, A., Arcuri, A., Briand, L.: Automatic generation of tests to
exploit XML injection vulnerabilities in web applications. IEEE Transactions on
Software Engineering (2018, to appear)

43. Jia, Y., Cohen, M.B., Harman, M., Petke, J.: Learning combinatorial interaction
test generation strategies using hyperheuristic search. In: 37th International Con-
ference on Software Engineering (ICSE 2015), Florence, Italy, pp. 540–550 (2015)

44. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46029-2 13

45. Lakhotia, K., Harman, M., Gross, H.: AUSTIN: an open source tool for search
based software testing of C programs. J. Inf. Softw. Technol. 55(1), 112–125 (2013)

46. Luo, Q., Hariri, F., Eloussi, L., Marinov, D.: An empirical analysis of flaky tests.
In: Cheung, S.C., Orso, A., Storey, M.A. (eds.) 22nd International Symposium on
Foundations of Software Engineering (FSE 2014), pp. 643–653. ACM, Hong Kong,
16–22 November 2014

47. Mao, K.: Multi-objective Search-based Mobile Testing. Ph.D. thesis, University
College London, Department of Computer Science, CREST centre (2017)

48. Mao, K., Capra, L., Harman, M., Jia, Y.: A survey of the use of crowdsourcing in
software engineering. J. Syst. Softw. 126, 57–84 (2017)

49. Mao, K., Harman, M., Jia, Y.: Sapienz: multi-objective automated testing for
Android applications. In: International Symposium on Software Testing and Anal-
ysis (ISSTA 2016), pp. 94–105 (2016)

50. Mao, K., Harman, M., Jia, Y.: Crowd intelligence enhances automated mobile test-
ing. In: Proceedings of the 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2017, pp. 16–26 (2017)

51. Mao, K., Harman, M., Jia, Y.: Robotic testing of mobile apps for truly black-box
automation. IEEE Softw. 34(2), 11–16 (2017)

52. Marculescu, B., Feldt, R., Torkar, R., Poulding, S.: Transferring interactive search-
based software testing to industry. J. Syst. Softw. 142, 156–170 (2018)

53. Martin, W., Sarro, F., Harman, M.: Causal impact analysis for app releases in
Google Play. In: 24th ACM SIGSOFT International Symposium on the Founda-
tions of Software Engineering (FSE 2016), Seattle, WA, USA, pp. 435–446 Novem-
ber 2016

54. Matinnejad, R., Nejati, S., Briand, L., Bruckmann, T.: Test generation and test
prioritization for simulink models with dynamic behavior. IEEE Trans. Softw. Eng.
(2018, to appear)

https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/3-540-46029-2_13

44 N. Alshahwan et al.

55. McMinn, P.: Search-based software test data generation: a survey. Softw. Test.
Verif. Reliab. 14(2), 105–156 (2004)

56. Memon, A.M., Cohen, M.B.: Automated testing of GUI applications: models, tools,
and controlling flakiness. In: Notkin, D., Cheng, B.H.C., Pohl, K. (eds.) 35th Inter-
national Conference on Software Engineering (ICSE 2013), pp. 1479–1480. IEEE
Computer Society, San Francisco, 18–26 May 2013

57. Memon, A.M., et al.: Taming Google-scale continuous testing. In: 39th Interna-
tional Conference on Software Engineering, Software Engineering in Practice Track
(ICSE-SEIP), pp. 233–242. IEEE, Buenos Aires, 20–28 May 2017

58. Mitchell, B.S., Traverso, M., Mancoridis, S.: An architecture for distributing the
computation of software clustering algorithms. In: IEEE/IFIP Working Conference
on Software Architecture (WICSA 2001), pp. 181–190. IEEE Computer Society,
Amsterdam (2001)

59. Mansour, N., Bahsoon, R., Baradhi, G.: Empirical comparison of regression test
selection algorithms. Syst. Softw. 57(1), 79–90 (2001)

60. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43(2),
11:1–11:29 (2011)

61. Ouni, A., Kessentini, M., Sahraoui, H.A., Inoue, K., Deb, K.: Multi-criteria code
refactoring using search-based software engineering: an industrial case study. ACM
Trans. Softw. Eng. Methodol. 25(3), 23:1–23:53 (2016)

62. Palomba, F., Zaidman, A.: Does refactoring of test smells induce fixing flakey tests?
In: International Conference on Software Maintenance and Evolution (ICSME
2017), pp. 1–12. IEEE Computer Society (2017)

63. Pearl, J.: Causality. Cambridge University Press, Cambridge (2000)
64. Petke, J., Cohen, M.B., Harman, M., Yoo, S.: Efficiency and early fault detection

with lower and higher strength combinatorial interaction testing. In: European
Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE 2013, pp. 26–36. ACM, Saint
Petersburg, August 2013

65. Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White, D.R., Woodward,
J.R.: Genetic improvement of software: a comprehensive survey. IEEE Trans. Evol.
Comput. (2018, to appear)

66. Podgurski, A., et al.: Automated support for classifying software failure reports. In:
25th International Conference on Software Engineering (ICSE 2003), pp. 465–477.
IEEE Computer Society, Piscataway, 3–10 May 2003

67. Rothermel, G., Harrold, M.J.: Analyzing regression test selection techniques. IEEE
Trans. Softw. Eng. 22(8), 529–551 (1996)

68. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Inf. Process. Manag. 24(5), 513–523 (1988)

69. Shin, S.Y., Nejati, S., Sabetzadeh, M., Briand, L., Zimmer, F.: Test case prioriti-
zation for acceptance testing of cyber physical systems: a multi-objective search-
based approach. In: International Symposium on Software Testing and Analysis
(ISSTA 2018) (to appear)

70. Tillmann, N., de Halleux, J., Xie, T.: Transferring an automated test generation
tool to practice: from Pex to Fakes and Code Digger. In: 29th ACM/IEEE Interna-
tional Conference on Automated Software Engineering (ASE), pp. 385–396 (2014)

71. Tracey, N., Clark, J., Mander, K.: The way forward for unifying dynamic test-
case generation: the optimisation-based approach. In: International Workshop on
Dependable Computing and Its Applications (DCIA), IFIP, pp. 169–180, January
1998

Deploying Search Based Software Engineering with Sapienz at Facebook 45

72. Wegener, J., Baresel, A., Sthamer, H.: Evolutionary test environment for automatic
structural testing. Inf. Softw. Technol. 43(14), 841–854 (2001)

73. Yang, L., Dang, Z., Fischer, T.R., Kim, M.S., Tan, L.: Entropy and software sys-
tems: towards an information-theoretic foundation of software testing. In: 2010
FSE/SDP Workshop on the Future of Software Engineering Research, pp. 427–
432, November 2010

74. Yoo, S., Harman, M.: Regression testing minimisation, selection and prioritisation:
a survey. J. Softw. Testing Verif. Reliab. 22(2), 67–120 (2012)

75. Yoo, S., Harman, M., Clark, D.: Fault localization prioritization: comparing
information theoretic and coverage based approaches. ACM Trans. Softw. Eng.
Methodol. 22(3), Article no. 19 (2013)

76. Yoo, S., Harman, M., Ur, S.: GPGPU test suite minimisation: search based software
engineering performance improvement using graphics cards. J. Empir. Softw. Eng.
18(3), 550–593 (2013)

77. Yoo, S., Nilsson, R., Harman, M.: Faster fault finding at Google using multi objec-
tive regression test optimisation. In: 8th European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering (ESEC/FSE 2011), Szeged, Hungary, 5th–9th September 2011. Industry
Track

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Evolving Living Technologies—Insights
from the EvoEvo Project

Guillaume Beslon1(B), Santiago F. Elena2,3,4, Paulien Hogeweg5,
Dominique Schneider6, and Susan Stepney7

1 Université de Lyon, INSA-Lyon, INRIA, LIRIS UMR5205, Beagle Team,
Villeurbanne, France

guillaume.beslon@inria.fr
2 Instituto de Bioloǵıa Molecular y Celular de Plantas

(CSIC-Universitat Politècnica de València), Valencia, Spain
sfelena@ibmcp.upv.es

3 Instituto de Bioloǵıa Integrativa de Sistemas (CSIC-Universitat de València),
Paterna, Valencia, Spain

4 Santa Fe Institute, Santa Fe, USA
5 Theoretical Biology and Bioinformatics Group, Utrecht University,

Utrecht, The Netherlands
p.hogeweg@uu.nl

6 Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
dominique.schneider@univ-grenoble-alpes.fr

7 Department of Computer Science, and York Cross-disciplinary Centre for Systems
Analysis, University of York, Heslington, York, UK

susan.stepney@york.ac.uk

Abstract. The EvoEvo project was a 2013–2017 FP7 European project
aiming at developing new evolutionary approaches in information science
and producing novel algorithms based on the current understanding of
molecular and evolutionary biology, with the ultimate goals of address-
ing open-ended problems in which the specifications are either unknown
or too complicated to express, and of producing software able to oper-
ate even in unpredictable, varying conditions. Here we present the main
rationals of the EvoEvo project and propose a set of design rules to evolve
adaptive software systems.

1 Introduction

Evolution by natural selection is the major source of biological complexity on
earth, the origin of all the species we can observe, interact with, or breed. On a
smaller scale, evolution is at the heart of the adaptation process for many species,
in particular microorganisms (e.g. viruses, bacteria or unicellular eukaryotes).
Microbial evolution not only results in the emergence of the species itself but also
contributes to real-time adaptation of the organisms when facing perturbations
or environmental changes. These organisms are not only built up by evolution,
they are also organized to evolve.
c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 46–62, 2018.
https://doi.org/10.1007/978-3-319-99241-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_2&domain=pdf

Evolving Living Technologies—Insights from the EvoEvo Project 47

As far as information science is concerned, evolution has inspired genera-
tions of researchers since the pioneers of the 1950s and 1960s. Nevertheless, most
evolutionary algorithms do not take into account the fact that all the molecu-
lar systems involved in the evolutionary process are themselves shaped by past
evolution. This implies that evolution can influence its own course. This evolu-
tion of evolution (“EvoEvo”) is at the heart of many phenomena overlooked by
evolutionary algorithms, like second-order evolution, evolution of robustness, of
evolvability, of mutation operators and rates, co-evolution. . . Yet, all these pro-
cesses are at work in living organisms from viruses to whales. Particularly in the
case of microorganisms, possibly accelerating their evolution and enabling them
to quickly adapt in response to environmental changes like new drugs, pollution,
response of their host immune system, or emergence of new ecological niches.

The EvoEvo project was a 2013–2017 FP7 European project aiming at devel-
oping new evolutionary approaches in information science and producing novel
algorithms based on the current understanding of molecular and evolutionary
biology, with the ultimate goals of addressing open-ended problems in which the
specifications are either unknown or too complicated to express, and of produc-
ing software able to operate even in unpredictable, varying conditions. To do
so, the project consortium proposed to start from experimental observations of
the evolution of microorganisms under laboratory conditions and to use these
observations to reproduce EvoEvo, first in computational models, and then in
application software. Our aim was to observe EvoEvo in action, model EvoEvo,
understand EvoEvo and, ultimately, reproduce EvoEvo to exploit it in software
and computational systems.

In this article we briefly present the rationale of the EvoEvo project. We then
focus on the main outcomes of the project, with specific emphasis on those that
are likely to have an influence on evolutionary computation and evolutionary
software development, as detailed in the project deliverables1.

2 Overview of the EvoEvo Project

2.1 Introduction

One ultimate goal of Information and Communications Technologies (ICT) is to
improve human life through the extension of human capacities, abilities or com-
munications. Yet, one of the profound movements that traverse modern social
and human sciences is that the world cannot be described as a stable system.
Humans and societies continuously change due to the many interactions that lead
to instability, to the emergence of new social groups, ideas, modes, media. But
today’s ICT can barely tackle such highly unstable situations: Every encountered
situation needs to be foreseen long before it occurs, at the time the software is

1 The following text is massively derived from the EvoEvo project documents. In par-
ticular, many paragraphs are derived from the EvoEvo Description of Work (DoW)
and from the project Final Report (EvoEvo Deliverable 6.8), available at www.
evoevo.eu.

www.evoevo.eu
www.evoevo.eu

48 G. Beslon et al.

designed; and the development cycle of ICT systems is so long that its environ-
ment is likely to have changed before the first release of a system. A consequence
of this necessary stability of today’s ICT systems is that users – individuals and
society – must adapt to the ICT systems that are supposed to serve them. Inside
the ICT world, the same difficulties are at work since software systems cannot
efficiently adapt to the emergence of other pieces of software (or new releases of
existing ones) in their environment. Thus, one of the challenges of modern ICT
is to develop technologies that are able to adapt dynamically to the evolution of
their context, of their user, of the data they receive, and of other systems they
interact with – in a single word, of their environment.

The situation in completely different when looking at biology: Evolution,
the process that created (and still creates) all the diversity of life, is a pro-
cess by which generations of organisms continually adapt to their environment.
Moreover, the environment of an organism is never stable as it also depends
on the evolution of other organisms. Higher eukaryotes have evolved complex
sensori-motor systems to adapt their behavior to their changing environment.
Microorganisms are less sophisticated systems that lack complex sensori-motor
abilities, yet they efficiently use mutation and selection to dynamically adapt to
new conditions. Recent experimental evolution results have shown that they are
able to evolve at an amazing speed: in virtually all experimental studies that
have used bacteria or viruses, important phenotypic innovations have emerged
in only a few tens of generations [16]. These results show that, more than being
adapted to a specific condition, microorganisms are adapted to evolve: evolution
has optimized their own ability to evolve, as a primary means to react to environ-
mental changes. The central idea of the EvoEvo project is that this “evolution
of evolution” could offer ICT new paradigms to enable computational systems
to dynamically adapt to their environment, i.e. to their users, domain of use or
condition of use.

2.2 How Can Evolution Evolve?

Variation and selection are the two core engines of Darwinian Evolution. Yet,
both are directly regulated by many processes that are themselves products of
evolution (e.g. DNA repair, mutator genes, transposable elements, horizontal
transfer, stochasticity of gene expression, sex, network modularity, niche con-
struction. . .). Moreover, in a biological system, variation and selection do not
act at the same organization level. While variation modifies organisms at the
genetic level (by modification of their DNA content), selection acts at the pheno-
typic level (on the whole organism). The genotype-to-phenotype mapping sum-
marizes in a single conceptual entity (the “mapping”) the complex molecular
processes by which information flows from the genetic sequence to the organ-
ism’s phenotype. It captures in a single abstract process different phenomena
such as mRNA transcription, gene translation, protein folding, biochemistry
and cell dynamics. Again, all these process are themselves dependent on the
genetic material that encodes the decoding machinery. Hence the genotype-to-
phenotype mapping is itself evolving. Since this mapping directly influences the

Evolving Living Technologies—Insights from the EvoEvo Project 49

phenotypic consequences of a DNA modification, the evolution of the genotype-
to-phenotype mapping is likely to change the evolutionary dynamics, e.g. by
buffering the effect of mutations.

“Evolution of Evolution”, or “EvoEvo”, encompasses all the processes by
which evolution is (or may be) able to influence its own dynamics and to accel-
erate (or slow down) its own course depending on the environmental conditions.
EvoEvo is thus a very general concept that can be difficult to study as a whole,
given the wide diversity of mechanisms at stake. That is why, in the context of
the EvoEvo project, we decided to focus on four simpler concepts, directly linked
to EvoEvo but easier to define, hence to measure in vivo, to model in silico and,
ultimately, to exploit in evolutionary software.

Variability. Variability is the ability to generate new phenotypes, by genetic or
epigenetic mutations or by stochastic fluctuations. It is a necessary condition
for any evolutionary process to take place. In biological organisms, the amount
of variability is controlled by complex pathways that e.g. correct DNA mis-
matches or double strand-breaks. In an ICT context, evolution of variability
could help the evolving system to quickly discover new solutions either on a
transient or on a stable way through efficient exploration of the functional
space. Moreover, in real biological systems, mutational operators are highly
diversified: they include not only point mutations, but also large chromoso-
mal rearrangements that can rapidly reshuffle the chromosome organization,
extend or reduce the gene repertoire of an organism, or even duplicate its
entire genome through whole genome duplication. Current evolutionary algo-
rithms exploit only a tiny part of this complex mutation repertoire.

Robustness. Although necessary, variation is a dangerous process since it pro-
duces deleterious mutations that lead to maladapted individuals. Robustness
may evolve to correct these deleterious effects. It enables evolving systems to
support mutational events without losing fitness, through e.g. canalization or
the selection of structures that create neutral landscapes. In an ICT context,
selection of robustness may favor the emergence of an “organism” structured
such that its service will not be perturbed by the random occurrence of muta-
tional events.

Evolvability. Depending on the genotype-to-phenotype mapping, the propor-
tion of deleterious/neutral/favorable mutational events may vary. Evolvabil-
ity is the ability of a specific genotype-to-phenotype mapping to increase the
proportion of favorable events. This can be done by the selection of specific
genome structures or by the selection of specific networks structures. In an
ICT context, evolvability would enable evolution to exploit past events to
increase the system’s ability to adapt to new users or conditions.

Open-Endedness. Biological evolution is not directed towards a specific tar-
get. On the contrary, evolution has the ability to generate new challenges
while evolving, e.g. by exploiting new niches created by the evolution of other
species. In an ICT context, open-endedness [2] can be exploited when an appli-
cation is made from an ecosystem of evolving individuals. In such a structure,
new functions would arise continuously by emergence of new species in the
ecosystem and/or the extinction of maladapted ones.

50 G. Beslon et al.

2.3 A Route from Biological Evolution to Artificial Evolution

The idea of using a bio-inspired evolutionary metaphor in ICT has led to many
powerful developments such as genetic algorithms, evolutionary strategies, and
genetic programming. However, most of these developments stay far from current
knowledge in evolutionary and molecular biology. The EvoEvo project aimed at
creating a true interdisciplinary consortium gathering experimental and compu-
tational biologists as well as computer scientists. This gives rise to a difficult
question: how can one guarantee that the biological foundations of EvoEvo –
which we aimed to observe in vivo – are effectively and efficiently transfered
to the ICT world and to the computational application? To tackle this issue,
we proposed a particular route from evolutionary biology to artificial evolution
through modeling. The project was organized to benefit from the pivotal role of
computational modeling of evolution, aka in silico experimental evolution [3,16].
These models are computational artifacts that mimic the phenomenon observed
in vivo. They thus constitute an intermediate step between life science and ICT.
Now, models must not be mistaken for application code. Their objectives are –
and must stay – clearly different. That is why the transition from life science
to application code was organized in two steps. The in vivo experiments were
modeled in silico, and those models were then reinterpreted to develop a com-
putational framework that benefited from them but enabled the introduction of
simplification and/or generalization of the full model’s bio-like structures.

2.4 EvoEvo. . .What For?

As explained above, the EvoEvo project covered a large range of research
domains, from experimental biology to software development. To ensure that
EvoEvo would produce results that fulfill the target of the EVLIT European
program2 (designing “empirical, theoretical and synthetic approaches that define
the key bio-inspired principles that can drive future living technologies and the
environment to use them in a controlled way”), we proposed to develop proof-of-
concept applications aiming to demonstrate the power of EvoEvo. This opened a
difficult discussion within the consortium on which kind of application were (1)
doable in a reasonable time and (2) likely to benefit from the EvoEvo principles.
We finally decided to develop “personal evolutionary companions”: software sys-
tems that continuously evolve through the interaction with their user by means
of sensor networks. To keep the system’s complexity low enough, we focused on a
very specific situation: the interaction between a dancer and the music. This led
to the development of the EvoMove system, a personal companion that learned
to play music while the dancer is dancing through continuous adaptation to the
dancer’s moves. EvoMove is briefly described in Sect. 4.2.

2 ICT-2013.9.6 – FET Proactive: Evolving Living Technologies (EVLIT).

Evolving Living Technologies—Insights from the EvoEvo Project 51

3 Results: EvoEvo Insights from Biological and in Silico
Evolutionary Experiments

3.1 What Is Evolution?

After Darwin and “The Origin of Species” (1859), evolution can be basically
defined by the process of species emergence through the simultaneous action of
variation and selection. Given that evolution takes place in the context of pop-
ulations, a third mechanism was later added by Kimura [20]: Neutral genetic
drift, which accounts for the unavoidable effect of sampling in finite popula-
tions. This mechanistic definition of evolution can easily be shared by different
disciplines, from evolutionary biology to computer sciences, even though the
underlying mechanisms can be very different. However, the disciplines are much
less in agreement when defining evolution by its consequences on the organisms
and on the species. While computer scientists and mathematicians tends to con-
sider that evolution is an optimization process, this notion of optimization is not
clearly defined in biology, not least because there is no universal definition of an
“optimum” and of what must be considered as the “fitness” of the organisms
(i.e. their reproductive success). When dealing with a “simple” artificial system,
the fitness can often be easily computed though a predefined algorithm. But this
is not the case for a real organism in which the fitness encompass many different
effects (e.g. number of offspring, offspring viability, sexual selection. . .). If Dar-
winian evolution is an optimization process, we are completely blind to what it
optimizes.

During the EvoEvo project, we developed many computational models of
evolution with different formalisms [9,28,31]. Hence, the definition of fitness
in these different models also varied. However, a strong point of convergence
of all these models is that the measured fitness is generally different from the
specified fitness (i.e. from the coded criteria of success at the individual level).
In these models, which all encoded an optimization process through selection
at the individual level, the evolutionary outcome was a much more complicated
process that involved different levels of organization: the interaction between
the multiple levels of organization encoded in the models (genotype, phenotype,
population. . .) blurred the optimization criterion that acted at a single level
(the phenotype). Hence, we were facing the same kind of problem biologists face
when measuring the evolutionary success of an organism. On the one hand, this
is an interesting result for biology (as it enabled us to identify new evolutionary
mechanisms) but on the other hand, it makes it difficult to transfer our models
and results to the computational world since the outcome of evolution is no
longer clearly defined.

To overcome this difficulty, we propose an alternative definition of the evolu-
tionary outcome. Even if evolution is not optimization, it can still be defined as
the process by which an organism (or a species) accumulates information about
its environment while thriving in it. This definition opens interesting issues.
Information is evidently accumulated in the inherited material (the genome), but
it can also be accumulated in other characteristics of the organisms, providing

52 G. Beslon et al.

these characteristics can be transmitted to the next generation. An example of
this process is the spatial or temporal organization of the population (Sect. 3.2).
The information accumulation in the genome depends on many parameters that
are likely to vary during evolution (the genome size, the coding proportion,
the genome structure, the epigeneetic methylation patterns) and this opens a
clear path to EvoEvo mechanisms (Sect. 3.3). Viewing evolution as information
accumulation also poses the question of information stability: information can
accumulate to the extent that the organisms are able to transmit it efficiently
to the next generation. This directly links the notion of fitness to the notion of
robustness and evolvability (Sect. 3.4).

3.2 Long-Term Information Integration

Long-term information integration – the capacity of evolving systems to accu-
mulate information over long time scales, possibly overriding immediate disad-
vantages – has long been taboo for explaining what has evolved, because without
explicit modeling it invites just-so stories. Moreover, classical evolutionary mod-
els and algorithms in which evolution is limited to modifying allele frequencies,
or few parameters, do not allow long-term information integration.

All the models we designed or used during the EvoEvo project included not
only a genetic information level but also many additional degrees of freedom.
These degrees of freedom were different in the various models, but included:
the spatial position of the organisms (and subsequently the spatial interaction
between the organisms); non-coding sequences and relative position of the genes
along the genomic sequence; waste production and release in a shared environ-
ment... In virtually all in silico experiments we conducted with these models,
evolution found ways to use these degrees of freedom to accumulate information
about its environment. This information was then empowered to regulate evolu-
tion (e.g. in the case of additional degrees of freedom at the genomic sequence
level, see next section) or led to transitions from individual levels of selection
to higher level selection of composite entities, one of the “major evolutionary
transition” [30] and a clear stepping-stone for open-ended evolution [2].

One example is the in silico experiments of Colizzi at Utrecht University [9],
which shows how such higher level selection can overcome the well known tragedy
of the commons problem. When the production of an essential “common good”
is costly, individual level selection will reduce its production leading to eventual
extinction of the whole population. However when the population is embedded
in space this is no more the case. Instead, when the cost of production is high
enough, the population splits in a subpopulation of cheaters, not producing
the common good, and a subpopulation that produces much of it. But space
enables both subpopulations to self-organize, hence evolving stable higher-level
entities: both subpopulations together form traveling waves, the producers in
front, and the cheaters in the tail (Fig. 1). It is this robust spatial organization
which overcomes individual level selection to avoid the cost, and thus prevents
the tragedy of the commons. Strikingly the system as a whole will produce more
common good the higher the cost! Interestingly, the structure of the traveling

Evolving Living Technologies—Insights from the EvoEvo Project 53

waves is not encoded in the genome of the organisms. It is rather encoded in the
dynamic eco-evolutionary interactions between producers and cheaters, i.e. at a
higher organization level.

Fig. 1. Example of the high-level structures (traveling waves) created by the interaction
between producers (gray) and cheaters (black). The producers form an expanding front
that colonizes free space. The cheaters follow common good gradient, hence the front,
thereby leading to the extinction of the wave. This frees space that hence become
available for another wave. This interaction between front expansion and space freeing
results in a stable high-level spatial temporal dynamics which enables evolution of high
production common good despite high cost to individuals (reproduced from [9]).

The “real world” (in our case, the biotic world) contains many of such degrees
of freedom (e.g. spatial interactions, non-specific interactions between molecular
compounds, non-genetic inheritance) and evolution can empower them to accu-
mulate information. Our results suggest that including similar “messy” interac-
tions between all levels and components could be a way to increase the innova-
tion power (the “open-endedness”) of evolutionary algorithms, although maybe
not their optimization efficiency. A first, easy, step would be to embed popu-
lations in space (providing individuals can spatially interact with each others),
as it improves even simple evolutionary search. Similarly, exploiting long term
information integration by using sparse fitness evaluation, in which subproblems
co-evolve with solutions, could improve evolutionary search [11,22].

3.3 Evolution of Genetic Architecture and the Role of Non-coding
Sequences

One fundamental mechanism we identified is the evolution of the size and the
structure of the genome. The size and structure determines the dimensionality

54 G. Beslon et al.

of the evolutionary search space and the overall mutation pressure; it also deter-
mines the relative pressure due to the different mutational operators and the
kind of genomic changes these mutational operators can achieve.

While most evolutionary theory in biology, as well as in computer science,
has focused on point mutations and crossovers, we have highlighted the role of
mutations which change the size of the genome – e.g. large and small duplica-
tions and deletions – thereby changing the dimensionality of the fitness land-
scape and search space. We have shown that this increases the effectiveness of
evolutionary search in several ways. Typically, successful evolutionary adapta-
tion involves early genome expansion, followed by streamlining, whereas in the
absence of genome expansion less fitness is obtained in the end: the gradual
reduction of the dimensionality of the search space facilitates optimization [10].
These operators hence increase the evolutionary potential: by allowing the infor-
mation content of the genome to evolve, they facilitate adaptation to changing
conditions. We should note however they also impose strong robustness con-
straints on the genome size, hence bounding the quantity of information the
genome can accumulate [13].

Structuring of genomes goes beyond the effect on genome size and so does its
impact on evolution. Indeed, the variation operators modifying the genetic con-
tent are differently impacted by the genome structure (e.g. including non-coding
sequence between two genes does not change the effect of point mutations while
it strongly changes the effect of duplications). Hence, an evolvable genetic struc-
ture enables evolution to fine tune the distribution of offspring fitness, selecting
for robustness and/or evolvability when needed. This fine tuning can even allow
for simultaneous selection of robustness and evolvability, as exemplified by the
results of Rutten [29]. His experiments show that organisms in which the point
mutation rate is raised by a factor of 100 react by reorganizing their genome.
While theoretical results with simpler models predict a fitness loss due to the
loss of robustness, genome reorganization enables the organisms to change the
distribution of offspring fitness, and so to increase evolvability. Although the
high mutation rate occasionally leads to fitness loss through loss of the master
sequence, the increased evolvability enables the population to quickly recover,
hence keeping the fitness of the best individuals at the same level (and some-
times at a higher level) than that of the wild-type individuals that evolved under
a constant mutation rate. Similar results have been obtained in another class of
model studied in the course of the project: by evolving RNA sequences, Colizzi
[8] has shown that the RNA structure (the equivalent of the genome structure
in the RNA model) is selected such that the population contains an efficient
proportion of mutated sequences and such that the mutants help the master
sequence to thrive.

In conclusion, genome structuring, mediated by a plethora of mutational
operators, is a powerful mechanism for EvoEvo. It helps explain recent obser-
vations of very fast adaptation to novel environments in experimental evolution
[27], and may help regulate evolutionary dynamics by changing the impact of
the different kinds of mutation, hence the distribution of sequences/fitnesses in
the population.

Evolving Living Technologies—Insights from the EvoEvo Project 55

3.4 On the Importance of Long Jumps

One of the difficult open questions in evolutionary biology (and so far an unsolved
issue in artificial evolution) is the question of evolutionary innovation: When
trapped on a local optimum, how does a population escape to find a new, higher,
peak in the fitness landscape? Different hypotheses have been proposed in the
literature, one of the most popular being exploration of the so-called “neutral
landscape”. In this view, a local optimum can be changed into a plateau when
the number of dimensions increases, and this plateau is likely to be connected
to higher peaks, whereas in lower dimensions (a shorter genome), it would have
been surrounded by fitness valleys. Though this theory has many advocates, it
suffers from a major drawback: the curse of dimensionality. When the number of
dimensions increases, the time needed to explore the plateau increases exponen-
tially [6], making it very unlikely to find an escape route in a reasonable time.
Moreover, as we explain above, increasing the size of the genome may have a
strong effect on robustness [13], hence limiting the interest of this strategy.

We studied evolutionary innovation in the Aevol in silico experimental evolu-
tion platform (www.aevol.fr) by evolving populations for a very long time. Once
these populations get stuck on local fitness optima, we cloned them and resumed
the evolution of the clones. This procedure enabled us to isolate the clones that
innovate from those that stay stuck on the initial optimum, and so to analyze
the route to innovation [4]. The results emphasize again the role of large scale
modifications of the genome structure: In a large majority of the “innovator
clones” innovation was triggered by a specific mutational event that strongly
increased the evolvability of the clone by increasing the size of its genome, gen-
erally through duplication of a small sequence. This result sheds new light on the
innovation dynamics: rather than randomly diffusing on a neutral landscape or
accumulating deleterious mutations to cross a fitness valley, the innovator clones
stay on the top of their local fitness peak but try “long jumps”: mutations that
directly connect them to a distant part of the fitness landscape. Of course, the
vast majority of these jumps are deleterious, but their combinatorics is much
larger than the one of point mutations: the number of possible point mutations
in a genome is proportional to N , the size of the genome, while the number of
possible sequence duplications is proportional to N3. Hence, a population can
quickly explore the whole set of available point mutations (if the population
is large enough), ending stuck on a local optimum. Exploring the whole set of
chromosomal duplications does takes time, but leads to innovation.

Following this result, a strong recommendation for evolutionary algorithms
is to include a set of mutations with a very high combinatorics, that enables long
jumps in the fitness landscape. In our experiments this role is played by chro-
mosomal duplications, but other operators could play the same role. One could
for instance consider Horizontal Gene Transfer (HGT), providing the source and
destination of the gene are different enough (this is not the case in the classical
crossover operators used in evolutionary computation) or large scale modification
of the genome conformation and folding.

56 G. Beslon et al.

4 Results: EvoEvo Algorithms and Applications for
Living Technologies

4.1 EvoEvo Algorithms and Computational Concepts

Based on the insights gained from studying various evolutionary phenomena
(Sect. 3), the EvoEvo project developed several novel evo-evolutionary algo-
rithms and architectures.

EvoMachina. EvoMachina [19] is a novel meta-evolutionary algorithm that
incorporates several of key findings: that genomic reorganization is an important
factor in the evolution of evolvability; that the machinery of evolution (expres-
sion, replication, etc.) is implemented by machines that are themselves encoded
on the genome, and hence are themselves subject to evolution; that spatial orga-
nization of replicating entities provides an extra level of information integration.

EvoMachina allows multiple different types of genomes, allowing appropriate
representations and machinery to be used for different parts of the application.
For example, the mutation machinery can be encoded in a separate genome,
allowing the mutation operators to evolve in a different manner, and at a different
rate, from the application’s candidate solutions.

An implementation of EvoMachina is available as an open-source Java frame-
work at github/evoevo-york/evomachina. The framework includes a variety of
evolutionary variants such as classic EA and microbial GA, as well as the Evo-
Machina specific operators, and a variety of spatial options, including a well-
mixed option and a 2D toroidal grid.

Bio-reflective Architecture. We have argued that computational reflection
is an essential component of computational novelty generation [2]. Based on this,
we developed a new bio-reflective architecture [14]. It is a synthesis of concepts
from: von Neumann’s Universal Constructor Architecture; procedural compu-
tational reflection; evolutionary algorithms; computational open-ended novelty
mechanisms; the EvoMachina architecture of evolvable active machines and pas-
sive genomic structures.

Parts of this architecture were realised in the stringmol automata chemistry
and used to demonstrates a form of semantic closure [7]. Parts were realised in
a stand-alone evolutionary music application [15], and also informed the “com-
mensual architecture” of the dance application [1] (Sect. 4.1).

The Commensal Architecture. One of the core universal properties of liv-
ing beings is their autonomy. Even if some forms of cooperation or altruism
can be observed in nature, every biological system is fundamentally selfish and
cooperation can emerge only when multiple levels co-evolve, the selfishness of
some constraining the cooperativeness to others. On the opposite, one of the
core universal properties of technology is its controllability.

Evolving Living Technologies—Insights from the EvoEvo Project 57

These two antagonistic properties immediately conflict when one wants to
design “living technologies”. They also conflict when one wants to design open-
ended technologies: if open-ended systems are to continuously produce novelty
[2], how can they be designed? So when designing living technologies, one of the
central problems is to design a system that is autonomous enough to surprise its
user (by producing novelties) and, at the same time, is constrained enough to
serve the goals it has been built for (as a technology). Since the very beginning
of this project, this tension has been at the heart of EvoEvo: if autonomy is one
of the core properties of life, how can a technology be simultaneously alive and
controllable?

As said above, biological systems can be cooperative or altruistic provided
they are embedded in higher/lower levels of evolution that constrain them. We
propose here a bio-inspired approach to resolve the autonomy vs. controllability
conundrum. We called this approach “commensal computation” [1]. In biology a
commensal (from the Latin cum mensa, at the same table) interaction is a form
of mutualism between two organisms where the association is not detrimental
but not obviously beneficial to the partners [17]. Indeed, the idea of commensal
computation is based on one of the main functions of the gut microbiota: nutri-
ent processing. Gut microbes degrade ingested substances that would otherwise
be non-digestible or even harmful to the gut [18]. This role enables the organ-
ism to uptake nutrients originating from a wider variety of sources than would
otherwise be the case: microbes preprocess the complex flow of nutrients and
transfer the results to the host, helping it to regulate its feeding and to extract
specific nutrients. While doing so, the microbiota live their own lives, and change
and evolve according to their environment: what the host eats: The commensal
association of the microbiota and the host contains a part of autonomy (the
microbes) and a part of control (the host).

We propose to organize living computational system following the manner in
which host and microbiota are engaged in a mutualistic association. In commen-
sal computation, the complex data (e.g., data generated by the sensor networks)
are pre-processed by a virtual microbiome that transforms them in digestible
data that the processing system can use. Such an architecture differs from clas-
sical pre-processing in that here the pre-processing is performed by an evolving
community of virtual bacteria that uptake data, transform them in recognizable
objects (symbols, clusters, classes, . . .) and feed them to the main processing
system. In the context of the EvoEvo project, we used a subspace-clustering layer
to implement the commensal level3: virtual bacteria evolve subspace classifiers
and send the result to the processing layer. The interest of subspace classification

3 Clustering is a data-mining task that aims to group objects sharing similar charac-
teristics into a same cluster over the whole data space. Subspace clustering similarly
aims at identifying groups of similar objects, but it also aims at detecting the sub-
spaces where similarity occurs. Hence it can be conceived as “similarity examined
under different representations” [23]. Subspace clustering is recognized as a more
complicated and general task than standard clustering. Moreover, retrieving mean-
ingful subspaces is particularly useful when dealing with high dimensional data [21].

58 G. Beslon et al.

here is that it enables a sensor network (or more generally the source of data)
to change its dimensionality (e.g., adding/removing sensors) without causing a
complete failure of the classification: new dimensions can be dynamically added
to the system and will (or will not) be integrated to the clustering depending on
their pertinence with regards to the existing clusters and to the data.

We designed an evolutionary subspace clustering algorithm using the evo-
lutionary principles detailed in the previous sections. In particular, we tried
to empower the principle of an evolvable genomic structure (variable number of
genes, regulation of coding proportion. . .) and the principle of using a large vari-
ety of mutational operators (point mutations, gene duplication and deletion. . .).
Simultaneously we tried to simplify as much as possible the models that were
used as a source of inspiration in order to reduce the computational load and to
enable real-time execution of the algorithm, a mandatory property for its use in
an evolving personal companion.

These principles led to a series of algorithms from “Chameleoclust” [24] to
“SubCMedian” [26]. All these algorithms have been tested on public benchmarks
and have shown state-of-the-art levels of performances.

4.2 Proof of Concept: Evolving a Living Personal Companion

One of the objectives of EvoEvo was to produce not only concepts but to test
these concepts in proof-of-concept applications. This has been done in two steps
corresponding to the commensal architecture described previously. In a first step,
we designed the “commensals”: artificial entities able to evolve in an environ-
ment composed of static and dynamic data (the evolutionart subspace clustering
algorithms described above). Then, in a second step, we used these algorithms
as a commensal pre-treatment layer in a musical personal companion: EvoMove.

The ultimate proof-of-concept of our EvoEvo approach of evolving software
was to evolve a real application and to have it used by a real “naive” user. That is
why we choose to implement a personal companion, software able to continuously
evolve through interaction with its user. Then, in order both to address naive
users and to test the software in short training sessions, we decided to design
a musical personal companion: a system that would be able to evolve music
depending on the performance of a dancer and that would evolve in real time
while the performance is ongoing. This resulted in the EvoMove System [25].

The principles of EvoMove are detailed in Fig. 2. The system leverages the
evolutionary subspace clustering algorithm described above, by embedding it
into a commensal architecture: the moves of the dancer are captured through
Inertial Measurement Units (IMU) and transmitted to the subspace clustering
algorithm that identifies moves similar to those it has seen before. The subspace
clustering is then computed in complete autonomy, intentionless and without any
need for calibration. The identified clusters are then transmitted to the “host”,
here a sound generating system that triggers new sounds each time a new cluster
is identified and that repeats this sound each time this cluster is activated again.
The commensal architecture hence results in a host fed by motion data and
producing music, and a bacterial community that processes the motion data,

Evolving Living Technologies—Insights from the EvoEvo Project 59

helping the host to interpret the moves. Both organisms thus “eat at the same
table” (the motion) and co-evolve. The music produced by the host depends on
the command objects produced by the virtual bacteria. The motion fed to the
bacteria depends on the movements the users make in reaction to the music they
hear.

Fig. 2. The EvoMove feed-back loop. (A) Dancer moves are captured by Inertial Mea-
surement Unit (IMU). (B) The sensors produce a high-dimensional data-stream. (C)
This data-stream is clustered by SubCMedian algorithm that outputs a set of clusters.
(D) The sound system outputs sounds that are immediately perceived by the dancers
who can adapt their dance, leading to reciprocal adaptation of the clusters, hence of
the music. This feedback loop produces coherent music due to the close integration
of dancers and clustering algorithm: the duration of the loop is less than 1 second,
enabling real-time response of the system.

Thus, this system creates a feedback loop including the human user. One
iteration of the loop is run approximately every second. This timing is short
enough to allow interaction. Contrary to most software where the human is
acting on a system, here the users are acting in the system. They do not have
full freedom about what sounds will be produced, but they can influence them.
They have to decide how they react to what could be called “sound proposals”
from the system, and this decision changes the shape of what the system produces
next. And contrary to most of music software, the output of the system is not
only the sound produced, but what is produced at each step of the loop and
especially what is visible: music and moves.

[12] presents a short video of an EvoMove test with a EvoMove-naive dancer
(an experienced dancer who had not used the system before and who did not
know its mechanisms). EvoMove has also been used during the “Meute” dance

60 G. Beslon et al.

performance, which has been publicly presented at several dance festivals in
Lyon (France). It is difficult to claim that such a system “works” or not since it
is strongly dependent on the sensations of the user. But in all these situations,
EvoMove has convinced the dancers by stimulating them in such a way that
they were all eager to use it again and interact with it on other occasions. Our
supposition about what produces this, besides the possibilities offered by the
commensal layer, is the integration of the human user in the feedback loop. As
a consequence, the dancers are always adapting their own moves and actions
to fit what they understand of the state of the system. Thus, even though the
machine part of the system is deviating from what would be seen as interaction,
the human is able to follow it so as to keep this interaction alive. This process
does not have to be conscious from the user perspective. Just by investing effort
into being understood by the system, the user adapts their actions alongside
the system state changes. Hence, the “living technology” is not (or not only) in
the system; it is rather in the close interaction of the system and its user, both
reacting to each other’s proposal.

5 Conclusion

As the 2011 FET Consultation Report “Living Technology, Artificial Systems,
Embodied Evolution” shows, many approaches have been proposed to create
living technologies. Now at the end of the EvoEvo project, and having created
what we think is a living technology (“EvoMove”), one can draw the big picture
of the design principles we identified and briefly exposed here. Indeed, we claim
that the key insight into building evolutionary living technologies is to go back to
a fundamental property of living systems. Living systems are in essence strongly
integrated systems, while technological systems are, by construction, strongly
modular systems. Evolutionary living technologies will only be efficient if they
are strongly integrated within the systems (in order to enable the system to
innovate) and with their users, be it a real person (as in EvoMove), or a software
entity (as in commensal architecture).

In some sense, this proposal is not a total surprise, since it is a similar mind
shift as the one that happened at the end of the 1980s in robotics. The devel-
opment of Behavior-Based Robotics under the impulsion of Rodney Brooks was
nothing else than the close integration of robots with their environments and of
robots’ components one with the others [5]. We now propose that software sys-
tems themselves, although they are not physical entities, follow the same path
in order to be able to leverage Darwinian evolution to dynamically react and
adapt to their users. This will enable living software systems to co-construct
their behavior with a user who, in that same moment, will become a partner of
this behavior.

Acknowledgments. This work was supported by the European Commission 7th

Framework Program (FP7-ICT-2013.9.6 FET Proactive: Evolving Living Technolo-
gies) EvoEvo project (ICT- 610427, http://www.evovo.eu/). The authors thank all the
partners of the EvoEvo project for fruitful discussions.

http://www.evovo.eu/

Evolving Living Technologies—Insights from the EvoEvo Project 61

References

1. Abernot, J., Beslon, G., Hickinbotham, S., Peignier, S., Rigotti, C.: Evolving instru-
ment based on symbiont-host metaphor: a commensal computation. J. Creative
Music Syst. 2(1), 1–10 (2017)

2. Banzhaf, W., et al.: Defining and simulating open-ended novelty: requirements,
guidelines, and challenges. Theory Biosci. 135(3), 131–161 (2016)

3. Batut, B., Parsons, D.P., Fischer, S., Beslon, G., Knibbe, C.: In silico experimental
evolution: a tool to test evolutionary scenarios. In: BMC Bioinformatics, vol. 14,
no. 15, p. S11 (2013)

4. Beslon, G., Liard, V., Elena, S.F.: Evolvability drives innovation in viral genomes.
In: 2nd EvoEvo Workshop, Satellite Workshop of CCS2016, Amsterdam, Septem-
ber 2016, 6 p. (2016)

5. Brooks, R.A.: Elephants don’t play chess. Rob. Auton. Syst. 6(1–2), 3–15 (1990)
6. Chatterjee, K., Pavlogiannis, A., Adlam, B., Nowak, M.A.: The time scale of evo-

lutionary innovation. PLoS Comput. Biol. 10(9), e1003818 (2014)
7. Clark, E.B., Hickinbotham, S.J., Stepney, S.: Semantic closure demonstrated by

the evolution of a universal constructor architecture in an artificial chemistry. J.
R. Soc. Interface 14, 20161033 (2017)

8. Colizzi, E.S., Hogeweg, P.: Evolution of functional diversification within quasis-
pecies. Genome Biol. Evol. 6(8), 1990–2007 (2014)

9. Colizzi, E.S., Hogeweg, P.: High cost enhances cooperation through the interplay
between evolution and self-organisation. BMC Evol. Biol. 16(1), 31 (2016)

10. Cuypers, T.D., Hogeweg, P.: Virtual genomes in flux: an interplay of neutrality
and adaptability explains genome expansion and streamlining. Genome Biol. Evol.
4(3), 212–229 (2012)

11. de Boer, F.K., Hogeweg, P.: Co-evolution and ecosystem based problem solving.
Ecol. Inform. 9, 47–58 (2012)

12. https://youtu.be/p eJFiQfW1E
13. Fischer, S., Bernard, S., Beslon, G., Knibbe, C.: A model for genome size evolution.

Bull. Math. Biol. 76(9), 2249–2291 (2014)
14. Hickinbotham, S., Stepney, S.: Bio-reflective architectures for evolutionary innova-

tion. In: A Life 2016, Cancun, Mexico, pp. 192–199. MIT Press (2016)
15. Hickinbotham, S., Stepney, S.: Augmenting live coding with evolved patterns. In:

Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds.) EvoMUSART 2016.
LNCS, vol. 9596, pp. 31–46. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-31008-4 3

16. Hindré, T., Knibbe, C., Beslon, G., Schneider, D.: New insights into bacterial adap-
tation through in vivo and in silico experimental evolution. Nat. Rev. Microbiol.
10, 352–365 (2012)

17. Hooper, L.V., Gordon, J.I.: Commensal host-bacterial relationships in the gut.
Science 292, 1115–1118 (2001)

18. Hooper, L.V., Midtvedt, T., Gordon, J.I.: How host-microbial interactions shape
the nutrient environment of the mammalian intestine. Ann. Rev. Nutr. 22(1), 283–
307 (2002)

19. Hoverd, T., Stepney, S.: EvoMachina: a novel evolutionary algorithm inspired by
bacterial genome reorganisation. In: 2nd EvoEvo Workshop, CCS 2016, Amster-
dam, Netherlands (2016)

20. Kimura, M.: Evolutionary rate at the molecular level. Nature 217, 624–626 (1968)

https://youtu.be/p_eJFiQfW1E
https://doi.org/10.1007/978-3-319-31008-4_3
https://doi.org/10.1007/978-3-319-31008-4_3

62 G. Beslon et al.

21. Kriegel, H.-P., Kröger, P., Zimek, A.: Clustering highdimensional data: a survey
on subspace clustering, pattern-based clustering, and correlation clustering. ACM
Trans. Knowl. Discov. Data 3(1), 1–58 (2009)

22. Pagie, L., Hogeweg, P.: Evolutionary consequences of coevolving targets. Evol.
Comput. 5(4), 401–418 (1997)

23. Patrikainen, A., Meila, M.: Comparing subspace clusterings. IEEE Trans. Knowl.
Data Eng. 18(7), 902–916 (2006)

24. Peignier, S., Rigotti, C., Beslon, G.: Subspace clustering using evolvable genome
structure. In: Proceedings of the 2015 Annual Conference on Genetic and Evolu-
tionary Computation, pp. 575–582 (2015)

25. Peignier, S., Abernot, J., Rigotti, C., Beslon, G.: EvoMove: evolutionary-based
living musical companion. In European Conference on Artificial Life (ECAL), pp.
340–347 (2017)

26. Peignier, S., Rigotti, C., Rossi, A., Beslon, G.: Weight-based search to find clusters
around medians in subspaces. In: ACM Symposium on Applied Computing, p. 10
(2018)

27. Plucain, J., et al.: Epistasis and allele specificity in the emergence of a stable
polymorphism in Escherichia coli. Science 343, 1366–1369 (2014)

28. Rocabert, C., Knibbe, C., Consuegra, J., Schneider, D., Beslon, G.: Beware batch
culture: seasonality and niche construction predicted to favor bacterial adaptive
diversification. PLoS Comput. Biol. 13(3), e1005459 (2017)

29. Rutten, J., Hogeweg, P., Beslon, G.: (in prep) Adapting the engine to the fuel:
mutator populations can reduce the mutational load by reorganizing their genome
structure. in prep

30. Szathmáry, E., Maynard-Smith, J.: The major evolutionary transitions. Nature
374(6519), 227–232 (1997)

31. van Dijk, B., Hogeweg, P.: In silico gene-level evolution explains microbial popula-
tion diversity through differential gene mobility. Genome Biol. Evol. 8(1), 176–188
(2016)

Tutorials

Ultra-Large Repair Search Space
with Automatically Mined Templates:

The Cardumen Mode of Astor

Matias Martinez1(B) and Martin Monperrus2

1 University of Valenciennes, Valenciennes, France
matias.martinez@univ-valenciennes.fr

2 KTH Royal Institute of Technology, Stockholm, Sweden
martin.monperrus@csc.kth.se

Abstract. Astor is a program repair library which has different modes.
In this paper, we present the Cardumen mode of Astor, a repair approach
based mined templates that has an ultra-large search space. We evaluate
the capacity of Cardumen to discover test-suite adequate patches (aka
plausible patches) over the 356 real bugs from Defects4J [11]. Cardumen
finds 8935 patches over 77 bugs of Defects4J. This is the largest number
of automatically synthesized patches ever reported, all patches being
available in an open-science repository. Moreover, Cardumen identifies
8 unique patches, that are patches for Defects4J bugs that were never
repaired in the whole history of program repair.

Keywords: Automated program repair
Test-suite based repair approaches · Code templates · Patch dataset

1 Introduction

There have been major contributions in the field of automatic program repair
in recent years. The program repair community explores different directions,
most notably Generate and Validate (G&V) repair approaches [9] as well as
synthesis-based approaches [25,39].

In this paper, we aim at creating an ultra-large search space, possibly the
largest repair search space ever. To maximize the number of synthesized test-
suite adequate patches, we design a new program repair algorithm. This algo-
rithm is called Cardumen. Cardumen extracts code templates from the code
under repair. Those templates contain placeholders to be bound to available
variables at a potential repair location. Moreover, in order to speed up explo-
ration of the search space, Cardumen uses a probability model for prioritizing
candidates patches.

We evaluate the capacity of Cardumen for discovering test-suite adequate
patches over the 356 real bugs from Defects4J [11]. The results go beyond our
initial vision. First, Cardumen finds 8935 patches over 77 bugs of Defects4J.

c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 65–86, 2018.
https://doi.org/10.1007/978-3-319-99241-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_3&domain=pdf

66 M. Martinez and M. Monperrus

This is the largest number of automatically synthesized patches ever reported
for Defects4J. It demonstrates the width of Cardumen’s search space. Second,
Cardumen identifies 8 unique patches, i.e., patches for Defects4J bugs that were
never handled by any system in the whole history of program repair. This shows
that Cardumen’s search space is unique, it explores completely uncharted terri-
tories of the repair search space.

To sum up, our contributions are:

1. Cardumen: a novel program repair algorithm that is designed to maximize the
number of test-suite adequate patches. It is based on mining repair templates.
It uses a novel probabilistic heuristic for prioritizing candidate patches.

2. An analysis of the execution of Cardumen over 356 real bugs from Defects4J.
Cardumen is capable of finding test-suite adequate patches for 77 bugs from
Defects4J, including 8 uniquely fixed bugs that no other program repair sys-
tem has ever fixed. For those uniquely fixed bugs, we discuss the unicity of
Cardumen’s search space.

3. A publicly available list of 8935 test-suite adequate patches for 77 bugs from
Defects4J. We envision that this list will support future research in program
repair, for instance to improve synthesis of patches, ranking of patches, and
dynamic analysis of patches.

The paper is organized as follows: Sect. 2 presents the approach Cardumen.
Section 3 evaluates Cardumen over bugs from Defects4J. Section 4 presents the
related works. Section 5 presents a discussion about the experiment and the
threats of validity. Section 6 concludes the paper.

2 Program Repair with Automatically Mined Templates

We now present the design and the main algorithms of Cardumen.

2.1 Cardumen in a Nutshell

Cardumen is a repair system designed for discovering the maximum number of
test-adequate patches. It takes as input: (a) the source code of a buggy program,
and (b) the test-suite of that program with at least one failing test case that
exposes the bug.

Cardumen first applies a spectra fault localization [29] to detect suspicious
buggy pieces of code. For a given source code location, Cardumen introduces
a novel patch synthesis. The repair always consists of a replacement of the
suspicious code element by an instance of a code template. The code tem-
plates are mined and instantiated in a unique two-step process. The first step
is the Automated Code Template Mining, which mines code templates from the
code of the application under repair for creating a template-based search space
(explained in Sect. 2.4). The second step is Probabilistic-based Template Space
Navigation, which uses a probabilistic model for navigating the space of candi-
date patches, each synthesized from template mined from the application under
repair (explained in Sect. 2.5).

Ultra-Large Repair Search Space with Automatically Mined Templates 67

Once a candidate patch is synthesized from a template instantiation, the
patched version of the buggy program is executed first on the originally failing
test cases and then, if all of them pass, on the remaining test cases (i.e., regression
test, which originally pass over the buggy version).

Example of Patch Generated by Cardumen. Cardumen is able to find
test-suite adequate patches for bug Math-73 from the bug dataset Defects4J
[11]. One of them, presented in Listing 1.1, modifies the expression of a return
statement at line 138 from class BrentSolver.

Listing 1.1. Patch for bug Math-73 by Cardumen at BrentSolver class

138 − re turn s o l v e (f , min , yMin , max , yMax , i n i t i a l , y I n i t i a l) ;
138 + return s o l v e (f , yMin , yMax) ;

The template used by Cardumen for synthesizing that patch is presented in
Listing 1.2 and it was mined from the statement return solve(f, min, max)
written at line 68 of the same class.

Listing 1.2. Template used for synthesize a patch for bug Math-73

s o l v e (Univar iateRea lFunct ion 0 , double 1 , doub l e 2)

The template has 3 placeholders: the first one UnivariateRealFunction 0
of type UnivariateRealFunction, the other two double 1 and double 2 of type
Double. Cardumen creates candidate patches by binding those placeholders with
variables available at the repair location. There, it synthesized 196 patches using
the 14 variables of type double and the unique variable of type UnivariateReal-
Function available at the line 138. Cardumen then selected one of them using a
probability model which prioritized those patches according to the frequency of
the variable names used by each patch. For example, the patch from Listing 1.1,
which uses variables f, yMin, yMax, is prioritized before than another patch
which uses variables f, initial, functionValue, due to the variables of the for-
mer patch are used more frequently together in the code than those from the
latter patch. Finally Cardumen evaluated the selected patch using the test-suite
of the buggy program.

2.2 Cardumen Repair Algorithm

Algorithm 1 presents the main workflow of Cardumen. Cardumen first executes a
fault localization approach for obtaining the suspicious line (Line 1) and it then
creates a list of modification points from the suspicious code elements (Line 2).
Cardumen proceeds to mine code templates from the application code under
repair (Line 4) and to create the probability model of variables names (Line
5). After that, Cardumen starts navigating the search space during an amount
of time (Line 7). On each step, Cardumen carries out the following steps. It
first randomly selects a modification point mpi (Line 8) and a template (Line
9). Then, from mpi and ti, it creates a list of template instances tinstancesi
(Line 10), and from that list, it selects one template instance (tii) using the

68 M. Martinez and M. Monperrus

Algorithm 1. Cardumen’s main algorithm
Input: A buggy program P
Input: A Test suite TS for P
Output: A list of patches tsa patches to the buggy program P
1: suspicious ← runFaulLocalization(P, TS)
2: mpl ← createModifPoint(suspicious)
3: tsa patches ← ∅
4: templates ← mineTemplates(P)
5: varNameProbModel ← createV arNameProbModel(P)
6: t ← 0
7: while t to MAX TIME do
8: mpi ← chooseMPRandom(mpl)
9: ti ← chooseTemplateRandom(mpi)

10: tinstancesi ← createInstances(mpi, ti)
11: tii ← chooseInstance(tinstancesi, varNameProbModel)
12: pci ← createPatchCode(tii)
13: nbFTi ← getNbOfFailingTests(TS, P, pci)
14: if nbFTi = 0 then
15: tsa patches ← tsa patches ∪ pci
16: end if
17: end while
18: return tsa patches

probabilistic model (Line 11). Finally, it synthesizes the patch code from the
selected instance (Line 12), and runs the test-suite over the patched application
(Line 13). If there is not any failing test case (Line 14), Cardumen adds the
patch to a list of test-suite adequate patches (Line 15). At the end, Cardumen
returns that list (Line 18).

Now, let us describe in detail each step from the mentioned algorithm.

2.3 Identifying Potential Modification Points

The first step carried out by Cardumen is the creation of a representation of the
buggy program, which only includes buggy suspicious code elements. This allows
to reduce the search space. Then, Cardumen generates patches by modifying only
those elements, ignoring the rest of the code not included in that representation.

Reducing Search Space Using Fault Localization. For calculating the sus-
piciouness of code elements, Cardumen uses a spectrum based fault localization
called GZoltar [2] which produces as output a suspicious value (between 0 and 1)
for each statement and method of the program. Cardumen first orders decreas-
ing statements according to suspiciousness value and takes the first X statement
with suspicious greater than a given threshold γ.

Ultra-Large Repair Search Space with Automatically Mined Templates 69

Creation of Modification Points. We call Modification Point. a code element
from the program under repair that could be transformed to synthesize a can-
didate repair. Cardumen creates modification points from the filtered suspicious
statement returned by the fault localization approach.

Previous approaches on automated work at the level of statements. For exam-
ple, the original GenProg [33] and its Java implementation contained in the Astor
framework [23] work at that level. For instance, Astor framework represents each
suspicious element with a modification point. In GenProg, program statements
are labeled with the suspicious values and later manipulated by applying oper-
ator over them (i.e., replacing, removing or adding statements).

In Cardumen, a Modification point is related to fine-grained code elements
rather than statements. Our approach has two main differences w.r.t previous
works. First, it is flexible with respect to the kind of code element that it can
manipulate. Cardumen receives as input a set of kinds of code element to consider
as modification points. We call them Target code types. For a code c, its Target
code type is the type of the AST node root corresponding to c. For example, the
target type of code a + b is binary operator.

Second, Cardumen considers the type of the object returned by the evaluation
of a code element. For example, the Return code type of the expression (a or
b), where a and b are Boolean variables, is a Boolean, whereas the return type
of (c − d), where c and d are Integer variables, is Integer.

For creating modification points, Cardumen receives as input the Target code
types tct and the Return type ert, then it parses the AST of suspicious code
elements, filtering those AST nodes of types according to sets tct and ert, and
finally creates one modification point mp for each filtered AST node. By default,
the implementation of Cardumen considers expressions as target code type, and
every kind of object as return type.

As we will see later, the Target code types and the Return type are also used
for navigating the search space.

Note that, as Cardumen considers fine-grained elements as modification
points, it could exist the case that multiples modification points refer to dif-
ferent code elements included in a single statement. For example, for the code
(a > b) && ((d − e) > 3), Cardumen creates four modification points: one for
reference to the whole Boolean expression, the other for the Boolean expression
(a > b), a third one for a Boolean expression (d − e) > 3, and the last one for
the Integer expression (d − e).

2.4 Definition of Cardumen’s Template-Based Search Space

Once Cardumen has created a list of potential modification points, it then creates
a pool of code templates that are later used to synthesize candidate patches.

Intuition Behind the Use of Code Templates. Cardumen redefines the
idea presented by [33] and empirically validated by [24] and [1] which states
that the code of a patch have been already written in the program under repair,

70 M. Martinez and M. Monperrus

they are called the “repair ingredients” or “patch ingredients”. In GenProg, a
candidate patch c = s1, s2, .., sn is synthesized from statements taken as-is from
somewhere else in the application.

The core idea of Cardumen is to reuse code templates rather than reusing
raw, unmodified code elements (such as raw statements in GenProg). Contrary
to previous works such as PAR [13] or SPR [18], where candidate patches are
synthesized from predefined manually written templates, Cardumen parses the
source code of the buggy program and automatically creates the code templates.

Mining Code Templates from Source Code. For mining templates, Car-
dumen parses the AST of the program under repair. For each AST node, Cardu-
men replaces all variable names by a placeholder composed of the variable type
and one numeric identifier. For example, the code element ((a > b) && (c >
a)), where a, b and c are Integer variables, now becomes ((int 1 > int 2)
&& (int 3 > int 1)), where, for instance, int 1 is a placeholder. After the
variable renaming, Cardumen obtains a template which is stored in a template
pool. Note that Cardumen also stores for a template the Target code type and
the return type (as described in Sect. 2.3): those types take the same value than
the Target code type and the Return type of the code where template was mined.

Cardumen stores each mined template in a structure called Templates pool,
which is later used when navigating the search space.

2.5 Probabilistic-Based Navigation of the Code Template Search
Space

Once Cardumen has created a list of potential modification points and a template
pool, it proceeds to navigate the search space for finding test-suite adequate
patches. For synthesizing a patch, Cardumen applies different steps explained in
the rest of this section.

Selecting a Modification Point. Cardumen starts the navigation of the
search space by selecting one modification point using weighted random selec-
tion. The weight of a modification point mp corresponds to the suspicious value
that the fault localization approach assigned to the code pointed by mp.

Selecting a Code Template. Once a modification point mpi is selected, Car-
dumen proceeds to select a template that is used for synthesizing candidates
patches at mpi. For that, Cardumen first queries the template pool (defined in
Sect. 2.4) which returns a list of templates compatible with the suspicious code
to be replaced at mpi. Then, Cardumen selects one of of the templates.

Let us dwell on those steps: template pool querying and template selection.
When templates are searched for, the template pool of Cardumen applies two
filters: Compatibility filter and Location filter.

Ultra-Large Repair Search Space with Automatically Mined Templates 71

Filtering Templates Based on Compatible Types. When selecting a template from
the pool, Cardumen must guarantee that the Return types of the replacement
and of the replaced code are compatible. For example, suppose that a modifica-
tion point is the expression (a > b). The Return type of (a > b) is Boolean.
Cardumen can only replace this expression by an expression whose return type
is also Boolean. Otherwise, the patch will produce an incorrect, uncompilable
AST.

In this example, Cardumen would replace the modification point (a > b)
by, for example, a template (isGreater(int 1, int 2)) with two placeholders
int 1 and int 2, whose method invocation isGreater returns a Boolean value.

Filtering Templates Based on Code Location. Cardumen also proposes a mecha-
nism to reduce the number of potential templates that is based on code location.
It filters the candidate templates for mpi according to the location where the
template was extracted. We call to this filter, the location filter.

Cardumen handles three template location filters, configured by the user:
local, package and global. If the scope filter is set to local, Cardumen keeps in
the pool all templates mined from code contained in the same file f as the
one from where the selected modification point mpi is located (i.e., mpi ∈ f).
For the package scope filter, it keeps all templates deduced from all files of the
package containing mpi, whereas for the global scope filter, Cardumen considers
templates deduced from all statements of the program under repair.

Selecting a Code Template. For selecting a template from the list of filtered tem-
plates, Cardumen carries out a weighted random selection, where the probability
of selecting a template ti corresponds to the proportion of code elements that
can be represented by ti (i.e., whose placeholders correspond to the actual values
of the expression under consideration).

Instantiating a Code Template. Given a template ti and a modification
point mp, a template instance is a binding of each placeholder from ti to a
particular variable that are in the scope of mp.

The process of instantiating a template ti at one location mp consists on
finding all template instances, product of the binding of placeholders of the
template and variables on the scope of mp. For example, the instantiation of a
template with one placeholder ph of type long at a mp with two variables long
in scope, v1 and v2, produces two instances: one bound v1 to ph, the other v2
to ph. Then, from each instance, Cardumen is able of synthesizing a candidate
patch.

Creating Template Instances for a Modification Point. Given a modification
point mp and a template ti, the template instantiation process has the following
steps:

1. for each placeholder phi from the template, Cardumen finds all variables
with compatible types from the scope of mp, obtaining the set cvi =
mv1,mv2, ...,mvn.

72 M. Martinez and M. Monperrus

2. if there is no compatible variable for at least one placeholder from the tem-
plate t, i.e., ∃phi|cvi = ∅, it means that the template cannot be instantiated
at mp. Thus, the template is discarded and Cardumen continues by selecting
another template. We say that t is sterile for mp.

3. if all placeholders from the template have compatibles variables, i.e.,
∀phi|cvi �= ∅, Cardumen creates a template instance by choosing,
for each placeholder phi, a compatible variable mvi from cvi. Hence,
a template instance tii binds each placeholders to a variable: tii =
{(ph1,mv11), ..., (phn,mvn1)}, where n is the number of placeholders from
template t and mvij is a variable that belongs to cvi.

Prioritizing Template Instances Based on Variable Names. The num-
ber of template instances for a modification point mpi and a template tj is :
∏|v|

i=1 |cvi|. In practice, this number of instances can be large. For example, the
instantiation of template ((int 1 > int 2) && (int 3 > int 4)) at the place
of mpi with ten integer variables in the scope of mpi, produces 10000 instances
(i.e., 104).

With the goal of reducing the search spaces, Cardumen prioritizes the tem-
plate instances based on variable names as we explain now.

Defining a Probabilistic Model Based on Variable Name Occurrences. For priori-
tizing instances, Cardumen automatically creates a binomial distribution model
pml (Eq. 1) to capture the probability mp of n variable names {v1, ..., vn} to
appear together in a statement.

pmln({v1, ..., vn}) =
(number statements containing{v1, ..., vn})

all statements with n names
,

pmln ∈ [0, 1].
(1)

In turn, Cardumen defines different models, pmli(v1, ..., vi), where each of
one captures the probability of occurrence of a set of i variables in a statement
with at least i variables. Note that i ∈ [1, n] where n is the maximum number
of variables that a statement (from the program under repair) has.

For creating the model pmln, Cardumen scans all the statements of the
program under repair. For each statement si, it collects all variable names:
vs = {vi1, ..., vin}. Then, it updates the model as follows: it first creates subsets
of variables of size i, (i ∈ [1, n]), corresponding to all combinations1 of size i
that can be created from vs. Finally, Cardumen updates the model according to
each subset.

As example, suppose a model build pml from three statements s1, s2 and s3
composed by the variables v1 = a, b, c, x, v2 = a, b, d and v3 = a, d, f , respec-
tively. In that model, the probability of having a variable named “a” together
with another named “b” is pml2(a, b) = 2/3 , and is larger than the probability
of having “a” together with “f” (pml2(a, f) = 1/3) . As consequence, using that

1 Cardumen does not takes in account the order of variable names inside a statement.

Ultra-Large Repair Search Space with Automatically Mined Templates 73

model, for instantiating a template with two placeholders, Cardumen prioritizes
an instance with bindings to variables “a” and “b”, over another instance with
bindings to “a” and “f”.

Adding Localness to the Probability Model. Inspired on the work by Tu et al.
[31] about the localness of code, which proposes an extended version of n-gram
model to capture local regularities, Cardumen creates two sub-models, which
conform the probability model pml: one, called ‘Global’ pmlg, which consider
all statements from the program under repair, the other, called ‘Cache’ pmlc,
that only considers the statements from one file (called Local) or from one pack-
age (called Package). With the same spirit that [31], the Global model aims at
capturing large global and static model of variable names, whereas the cache
model aims at modeling a small local (dynamic) name model estimated from
the proximate local context (File or Package). Consequently, pml (Eq. 2) is a
linear combination of the two models:

pml({v1, ..., vn}) = λ · pmg({v1, ..., vn})
+ (1 − λ) · pmc({v1, ..., vn})

(2)

Finally, Cardumen uses the model pml to obtain the probability of each
template instance. Then, it selects the � instances with higher probability.

Selecting an Instance Template. Cardumen selects one instance from the
list of instances by applying weighted random selection, where the weight of an
instance is given by the probability of its variables’ names, calculated using the
probability model presented in Sect. 2.5.

Synthesizing Candidate Patch Code. For synthesizing the code of a candi-
date patch from a template instance, Cardumen first takes the template, creates
a clone of it, and replaces each placeholder by the variable bound to it, accord-
ing to the template instance. After that, the patch is ready to be applied in the
place related to the modification point. Then, the patched version of the buggy
program can be evaluating using the test-suite of the original program.

2.6 Example: Synthesizing Candidate Patches for Math-70

In this section, we show how Cardumen creates multiple candidate patches for a
real-world Java bug included in the bug dataset Defects4J by [11]. The subject
under study, identified as Math-70, has a bug in class ‘BisectionSolverImpl’.

Cardumen first identifies 12 modification points (Sect. 2.3), 10 of them ref-
erence statements located on the buggy class ‘BisectionSolver’, the other two
reference statements from class ‘UnivariateRealSolverImpl’.

Then, Cardumen creates a pool of templates (Sect. 2.4) mined from the appli-
cation code under repair. For instance, from the code element:

if (abs(max − min) <= absoluteAccuracy) located at line 100 of class Bisec-
tionSolverImpl, Cardumen mined three templates:

74 M. Martinez and M. Monperrus

Table 1. Top-5 most frequent var names used in file BisectionSolver (Local) and in
the entire buggy application code (Global) from buggy revision Math-70.

(1) ‘abs((double 0 − double 1))) <= (double 2)’, of type “Binary Operator”
(<=) and return type “Boolean”;

(2) ‘abs((double 0 − double 1)))’, of type “Method Invocation” and Return
type “Double”(mined from left-most term of the − operator);

(3) ‘(double 0 − double 1)’, of type “Binary Operator” (−), and Return type
“Double” (mined from argument of method abs).

For creating a candidate patch, Cardumen first chooses a modification
point and a template. In this example, we suppose that Cardumen first
selects: (a) the modification point mp corresponding to the Boolean condition
(i < maximalIterationCount) from line 87, which has a suspicious value of 0.5 (see
Sect. 2.3), and (b) the template (double 0 ∗ double 1) > 0.0, which is a Boolean
binary operator mined from line 92 if (fm ∗ fmin > 0.0) (see Sect. 2.5).

Instantiating a Template. In the next step, Cardumen tries to instantiate the
selected template by replacing each of its placeholders (double 0 and double 1)
by compatible variables that are in the scope at the place of the selected modifica-
tion point (line 87 of BisectionSolverImpl). Cardumen found 13 variables of type
Double in scope of line 87: 4 fields on class UnivariateRealSolverImpl (parent
class of BisectionSolver), other 4 fields on ConvergingAlgorithmImpl (parent
class of UnivariateRealSolverImpl), 2 parameters for the method solves (which
includes line 87), and 3 local variables from that method declared before the line
87. Using those variables, Cardumen then creates 169 instances of the template
obtained from the combination of those variables i.e., 132 = 169. For example,
a mapping relates the placeholder double 0 with variable “max” and double 1

with “min”, both variables are parameters of method solver. After that, Cardu-
men prioritizes those 169 instances, using a probability model based on variable

Ultra-Large Repair Search Space with Automatically Mined Templates 75

name frequency (Sect. 2.5). A portion of this model for subject Math-70 is pre-
sented in Table 1. It shows the probabilities of the variable names according to
the number of variables per statements (column ‘#Vars’). For example, the first
row shows that the probability of having a variable named “min” in statements
(a) with only one variable, and (b) from class BisectionSolver (i.e., local model)
is 6.9%.

Synthesizing the Patch. Cardumen selects one instance using the probability
model. For example, suppose that Cardumen selects the instance with the map-
ping between placeholders and variables: (double 0= max) and (double 1= min).
Then, Cardumen proceeds to synthesize the candidate patch by replacing the
placeholders from the template (double 0 ∗ double 1) > 0 by the bound vari-
ables given by the instance: double 0 by “max” and placeholder double 0 by
“min”. This step gives as result the candidate patch (max ∗ min) > 0.0, which
can be applied at line 87 of BisectionSolverImpl class.

2.7 Implementation

Cardumen is a new mode in the Astor framework [23] for repairing Java code.
Cardumen’s implementation uses Spoon [26] to create the code model of the
application under repair. For sake of open-science, the source code of Cardumen
is publicly available at https://github.com/SpoonLabs/astor.

3 Evaluation

The research questions that guide the Cardumen evaluation are:

RQ 1: To what extent does Cardumen generate test-suite adequate patches?
RQ 2: (a) Is Cardumen able to identify multiple test-suite adequate patches,
i.e., does it have a rich search space? (b) How many bugs can be repaired by
a high number of test-suite adequate patches (6 or more patches)? (c) Does
the presence of multiple patches happen often, in several projects?
RQ 3: To what extent is Cardumen able to generate (a) patches located in
different locations, and (b) different kind of patches for a bug?

3.1 Methodology

We run Cardumen over the Defects4J bug benchmark [11]. Each execution trial
is configured as follows. Maximum execution time: 3 h, maximum number of
modification points: 1000 (Sect. 2.3), scope of template ingredients: ‘package’
(Sect. 2.5), and maximum number of tried template instances: 1000 (Sect. 2.5).
Since Cardumen is randomized algorithm, we executed 10 trials for each bug
from Defects4J. Note that we do not evaluate Cardumen over bugs from Mockito
project included in Defects4J due to a technical issue when parsing the Mockito’s

https://github.com/SpoonLabs/astor

76 M. Martinez and M. Monperrus

Table 2. Identifiers of the 77 bugs from Defects4J repaired by Cardumen, together
with the number of different test-suite adequate patches found for each bug (Column
#Patches). Column #Loc displays the number of different locations the patches are
applied. Column #KindP displays the number of different kind of expression involved
on the patches.

Ultra-Large Repair Search Space with Automatically Mined Templates 77

code. Bugs from that project were also discarded by the automated repair liter-
ature (e.g., [3,15,21,35,37]). All the experimental results, including the patches
found by Cardumen, are publicly available at https://github.com/SpoonLabs/
astor-experiments/tree/master/cardumen-patches.

3.2 RQ 1: To What Extent Does Cardumen Generate Test-Suite
Adequate Patches?

Table 2 shows the results of our experiment. It displays the identifier of the bugs
from Defects4 repaired by Cardumen (column Id), and the number of unique
patches for each bug (column #Patches). The other columns will be explained
later.

In total, Cardumen discovers 8935 different test-suite adequate patches for
77 bugs of Defects4J. Cardumen found one patch (at least) for 15 out of 27 bugs
from Chart project, 37 out of 105 for Math, 6 out of 27 for Time, 7 out of 65 for
Lang, and 12 out of 135 for Closure.

Response to RQ1: Cardumen finds 8935 test-suite adequate patches
for 77 bugs of Defects4J.

Implication for program repair research: So far program repair research
has neglected the exploration of the complete search space: most papers
report a single patch. However, this experiment shows that the search space
is much richer than that. This represents a mine of information on the
behavior of the program under repair.

Additionally, we found that, between those 77 bugs, Cardumen is the first
repair system to find test-suite adequate patches for 8 new bugs of Defects4J,
for which no system ever has managed to find a single one. Those 8 uniquely
repaired bugs are: 1 bug from Chart (id 11), 3 from Math (ids 62, 101 and
104), 1 from Lang (id 14), 2 from Closure (ids 13 and 46), and 1 from Time
(id 9). For the other 69 bugs repaired by Cardumen, there is at least one other
approach that also proposes a test-suite adequate patch. The repair system that
we analyzed where those that: (1) the evaluation was done over the dataset
Defects4J; (2) the identifiers of the repaired bugs from Defect4J are given on the
respective paper or included in the appendix. They are: ACS [38], Nopol [6,39],
jGenProg [21], DynaMoth [7], DeepRepair [35], GP-FS [34], JAID [3], ssFix [37]
and HDRepair [15] (for this approach, as neither the identifiers of the repaired
bugs nor the actual patches were reported, we considered the results reported
by ssFix’s authors [37]).

https://github.com/SpoonLabs/astor-experiments/tree/master/cardumen-patches
https://github.com/SpoonLabs/astor-experiments/tree/master/cardumen-patches

78 M. Martinez and M. Monperrus

3.3 Is Cardumen Able to Identify Multiple Test-Suite Adequate
Patches per Bug?

Now, let us study the number of patches per bug. Between the 77 patches, 67 of
them (87%) have 2 or more test-suite adequate patches. We observe that for 32
out of 77 (41.5%) the number of patches that Cardumen finds is smaller than
5, whereas 10 (13%) has a single patch. On the contrary, 19 bugs (24.7%) can
be repaired by more than 100 test-suite adequate patches, and even one bug
(Chart-13) has 1227 patches.

Response to RQ 2: The results show that: (a) for 67 out of 77 bugs
Cardumen found 2+ patches; (b) a high abundance of patches occurs fre-
quently (e.g., 45 bugs (58%) with 6+ patches); and (c) a high abundance
of patches is not project-specific, it is valid to all projects from Defects4J.

3.4 RQ 3 (a): To What Extent Is Cardumen Able to Generate
Patches Located in Different Locations for a Bug?

Each test-suite adequate patch is applied at a specific location (i.e., file name
and line). For each bug, we study the locations of Cardumen’s patches. Column
#Loc from Table 2 displays the number of different locations where the patches
are applied. For instance, bug Chart-11 has two patches, one is applied to class
ShapeUtilities at line 274 and the other one is applied to in the same class at
line 275.

For 36 out of 77 (46.7%) bugs, the patch are all applied in a single location.
For 41 (53.3%) bugs, the Cardumen test-adequate patches are applied to different
locations of the buggy application (2+), whereas for 11 out of 77 (14%) bugs,
the number of locations is 5+. For them, the number of patches is always high
(+50). However, abundance does not depend on number of locations: there are
bugs with low number of locations (i.e., 3 or less) but with a large number of
patches (Closure-21, Lang-39, Chart-1 and Math-73).

Response to RQ 3: (a) The results show that Cardumen has the ability
to discover patches applied at different locations of the buggy application.
This happens for 53% of the repaired bugs.

Implication for program repair research: The program repair search space
is a combination of the location space and the modification space at a given
location. This is known, but nobody has ever reported on the actual number
of different locations, and we are the first to do so at this scale. Comparing
the behavior of patches happening at different locations seems very promis-
ing: we envision that the patches would have different execution traces that
could be compared one against the other.

Ultra-Large Repair Search Space with Automatically Mined Templates 79

3.5 RQ 3 (b): To What Extent Is Cardumen Able to Generate
Different Kind of Patches for a Bug?

Cardumen has the ability to synthesize patches at the level of expression. We
now study the kinds of expressions involved in each patch to know whether
Cardumen is able to synthesize patches that are fundamentally different.

We define the kind of a patch as the concatenation of (a) the kind of expres-
sion of the patch, with (b) the kind of the parent element where that expression
is applied. For example, Math-32 has two test-adequate patches, both replac-
ing the right size of a variable initialization. The first one, replaces it by a
method invocation (FastMath.max), the second one by a binary expression
(x * x). The kind of expression introduced by the patch are different: the first
patch replaces the buggy code by an expression of kind “Method invocation”,
the second one by another kind of expression: Binary Operator (*, i.e., mul-
tiplication). Then, the parent element of both method invocation (first patch)
and binary operator (second patch) is a variable declaration. Consequently, the
kinds of patches of Math-32 are “Method Invocation|LocalVariableDeclaration”
and “BinaryOperator|LocalVariableDeclaration”.

Column #KindP from Table 2 gives the number of different kinds of patches
per bug. For 50 out of 77 bugs (65%), Cardumen found patches with different
kinds. Math-18 is one of those bugs. Cardumen found 4 patches: 2 correspond to
a change in a for condition, one a change in a if condition, and the last a change
in right side of an assignment. For 11 bugs (14%), the number of different kinds
involved in the patch is 10 or more.

The remaining 27 out of 77 bugs (35%) have patches that all involve the same
kind of patch. For instance, Math-6 has 2 patches, both applied to the same
location, which replace a buggy method invocation inside a return statement,
but those invocations are different (be the message or the called object).

Response to RQ 3: (b) For the majority of the repaired bugs (65%),
Cardumen found test-suite adequate patches whose kinds are different, the
patches are made over different kinds of code elements. This shows the
richness and variety of Cardumen’s repair search space.

Implication for program repair research: So far, program repair has
mostly focused a handful of specific kind of patches (e.g., conditions or
RHS of assignments). The open-ended search space of Cardumen enables
the community to identify novel kinds of patches for which dedicated repair
algorithms will eventually be devised in the future.

80 M. Martinez and M. Monperrus

4 Related Work

4.1 Repair Approaches

Test-Suite Based Repair Approaches. One of the most popular families of
automated program repair recently proposed are Generate-and-validate repair
techniques. Those kind of techniques first search within a search space to gen-
erate a set of patches, and then validate the generated patches. The Test-suite
based repair approach family uses test-suites for validating the generated patches.
GenProg [9,33], one of the earliest generate-and-validate techniques, uses genetic
programming to search the repair space and generates patches created from
existing code from elsewhere in the same program. It has three repair operators:
add, replace or remove statements. Other approaches have extended GenProg:
for example, AE [32] employs a novel deterministic search strategy and uses
program equivalence relation to reduce the patch search space. RSRepair [27]
has the same search space as GenProg but uses random search instead, and the
empirical evaluation shows that random search can be as effective as genetic
programming. The original implementation of GenProg [33] targets C code and
was evaluated against dataset with C bugs such as ManyBugs and IntroClass [8].
It exists other implementations of GenProg for targeting other code languages,
for example, jGenProg, built over the framework Astor [23], is an implementa-
tion of the approach in Java language that targets Java bugs. Wen et al. [34]
presented a systematic empirical study that explores the influence of fault space
on search-based repair techniques. For the experiment, they created GP-FS, a
modified GenProg (i.e., the java implementation jGenProg [23]) which receives
as input a faulty space. In their experiment, the authors generated several fault
spaces with different accuracy, and then they feed GenProg with those spaces,
finding that GP-FS is capable of fixing more bugs correctly when fault spaces
with high accuracy are fed.

Cardumen has two main differences with respect to those approaches. The
first one is it works at a fine-grained level rather than statements: Cardumen is
able to repair expressions insides a statement. The second is the use of templates
derived from the program under repair, rather than the reuse of statements
without applying any modification.

The approach ACS (Automated Condition Synthesis) [38], targets to insert or
modify an “if” condition to repair defects. ACS combines three heuristic ranking
techniques that exploit (1) the structure of the buggy program, (2) the document
of the buggy program (i.e., Javadoc comments embedded in the source code),
and (3) the conditional expressions in existing projects. NpeFix [5] focuses on
repairing null-pointer exceptions.

Contrary to them, Cardumen targets to any kind of code elements (due to
its works at the expression level) rather than to a particular defect case (such
as “If” conditions for ACS).

Template Based Repair Approaches. Other approaches have proposed new
set of repair operators. PAR [13], which shares the same search strategy with

Ultra-Large Repair Search Space with Automatically Mined Templates 81

GenProg, uses patch templates derived from human-written patches to construct
the search space. SPR [18] uses a set of predefined transformation schemas to con-
struct the search space, and patches are generated by instantiating the schemas
with condition synthesis techniques. JAID [3] is a state-based dynamic program
analyses which synthesizes patches based on schemas (5 in total). Each schema
triggers a fix action when a suspicious state in the system is reached during a
computation. JAID has 4 types of fix actions, such as modify the state directly
by assignment, and affects the state that is used in an expression. Contrary to
them, Cardumen does not have neither any predefined transformation schema
nor template: it automatically mines them from the application under repair.

Approaches Guided by Examples. There are approaches that leverage on
human written bug fixes. For example, Genesis [17] automatically infers code
transforms for automatic patch generation. The code transformation used Gen-
esis are automatically infer from previous successful patches. HRD [15] lever-
ages on the development history to effectively guide and drive a program repair
process. The approach first mines bug fix patterns from the history of many
projects and then employs existing mutation operators to generate fix candi-
dates for a given buggy program. Both approaches need as input, in addition
to the buggy program and its test suite, a set of bug fixes. Two approaches
leveraged on semantics-based examples. SearchRepair [12] uses a large database
of human-written code fragments encore as satisfiability modulo theories (SMT)
constraints on their input-output behavior for synthesizing candidates repairs. S3
(Syntax- and Semantic-Guided Repair Synthesis) [14], a repair synthesis engine
that leverages programming-by-examples methodology to synthesize repairs.
Contrary to them, Cardumen does not use any extra information rather than
the buggy program code and its test-suite: it deduces the templates on-the-fly,
(i.e., during the repair of a give buggy program) from the code of the application
under repair.

The approach ssFix [37] performs syntactic code search to find existing code
from a code database (composed by the application under repair and external
applications) that is syntax-related to the context of a bug statement. The app-
roach applies code transformation to adapt the selected code existing code into
the buggy location, leveraging the candidate patch. Contrary or it, Cardumen
leverages on templates mined from the application under repair and does not
transform the template code: it binds template placeholders with variables from
the context of the buggy statement.

Probabilistic Models Based Repair Approaches. As Cardumen, there are
other approaches that leverage on probabilistic model. An extension of SPR,
Prophet [20] applies probabilistic models of correct code learned from successful
human patches to prioritize candidate patches so that the correct patches could
have higher rankings. DeepRepair [35], an extension of jGenProg, which navi-
gates the patch search space guided by method and class similarity measures
inferred deep unsupervised learning. Martinez et Monperrus [22] proposed to

82 M. Martinez and M. Monperrus

probabilistic model built from bug fixes to guide the navigation of the search
space. Contrary to those works, Cardumen builds the probability model from
the code under repair, without leverage on provided human bug fixes.

4.2 Patches Analysis

Recent studies have analyzed the patches generated by some of the approaches we
listed before. The results of those studies show that generated patches may just
overfit the available test cases, meaning that they will break untested but desired
functionality. For example, Qi et al. [28] find that the vast majority of patches
produced by GenProg, RSRepair, and AE avoid bugs simply by functionality
deletion. A subsequent study by Smith et al. [30] further confirms that the
patches generated by of GenProg and RSRepair fail to generalize. An empirical
study [21] reveals that among the 47 bugs fixed by jGenProg, jKali, and Nopol,
only 9 bugs are correctly fixed, the rest being overfitting. Jiang et al. [10] analyzed
the Defects4J dataset for finding bugs with weak test cases. They results shows
that 42 (84%) of the 50 defects could be fixed with weak test suites, indicating
that, beyond the current techniques have a lot of rooms for improvement, weak
test suites may not be the key limiting factor for current techniques.

4.3 Analysis of Repair Search Spaces

Long et al. [19] presented a systematic analysis of the SPR and Prophet search
spaces. The analysis focused on the density of correct and plausible patches in
the search spaces, on the ability of those approaches to prioritize correct patches.
Some of the finding were: the relatively abundant plausible (i.e., overfitted test-
adequate) patches in the search space compare to the correct, sparse correct
patches, and the effectiveness of both SPR and Prophet at isolating correct
patches within the explored plausible patches.

Weimer et al. [32] presented an study of the size of the search space considered
by AE and GenProg approaches. Their goal was to compare the improvement
introduced by AE (such as program equivalence) over GenProg. Their results
shows and that AE dramatically reduces the search space by 88%, when com-
pared with GenProg and, at the same time, keeps the same repair effectiveness
than GenProg.

4.4 Repair Approaches Extension for Avoiding Overfitted Patches

Due to the problematic of test overfitting, recent works [16,41] propose to extend
existing automated repair approach such as Nopol, ACS and jGenProg. Those
extended approaches generate new test inputs to enhance the test suites and use
their behavior similarity to determine patch correctness. For example, Lui et al.
[16] reported that their approach, based on patch and test similarity analysis,
successfully prevented 56.3% of the incorrect patches to be generated, without
blocking any correct patches. Yang et al. [40] presented a framework named

Ultra-Large Repair Search Space with Automatically Mined Templates 83

Opad (Overfitted PAtch Detection) to detect overfilled patches by enhancing
existing test cases using fuzz testing and employing two new test oracles. Opad
filters out 75.2% (321/427) overfitted patches generated by GenProg/AE, Kali,
and SPR.

5 Discussion

5.1 Threats to Validity

Internal Threats: Due to Cardumen being stochastic, we executed Cardumen
over each bugs 10 times for 3 h, each trial with a different seed. In total, our
evaluation took approximately 10710 h of execution equivalent to 446 days.2

Running more executions will involve that Cardumen navigates places from the
search space not yet visited and thus potentially discovers new patches. More-
over, the experimental setup could impact on the repairability, for instance, we
decide to consider the 1000 most suspicious modification points. Between the
excluded modification points it could exist one or more places where Cardumen
could generate a test-suite adequate patch.

External Threats: We run Cardumen over 356 bugs from 5 open-source Java
projects. More bugs from other kind of applications (all evaluated are libraries)
could help to validate the efficacy of Cardumen. As studied by [21,28], test-
suite based repair approaches can generate plausible patches, yet incorrect. That
means, they pass all the test cases from a suite but they are incorrect due to the
limitation of the bug oracle: when using test suite as oracle, this limitation is
the missing of inputs and outputs for correctly exercising the patch. Currently,
approaches by [36,41] aim at improving the quality of test suite for avoiding
accepting incorrect patches. However, in this work, we do not focus on the cor-
rectness of patches, which demands another correctness oracle, yet manual or
automated: our goal is Cardumen finds the most quantity of code changes that
produce a buggy version of a program passing a test-suite (either the original
test suite or one augmented).

5.2 Limitations

As described previously in Sect. 2.1, Cardumen synthesizes patches that only
modify expressions. Thus, Cardumen is not able to synthesize patches that add
new statement or remove code. However, we believe that each repair approach
focuses on particular defect classes. We envision that the general process of repair
a bug automatically is composed by the execution of different approaches, each
targeting on particular set of defect classes. We aim at implement that vision in
our repair framework Astor, which already includes different repair approaches
such as jGenProg, jKali, jMutRepair (an implementation of approached proposed
by [4]), DeepRepair and, from now, Cardumen.
2 Total execution time: 10710 = 357 bugs X 10 trials X 3 h.

84 M. Martinez and M. Monperrus

6 Conclusion

In this paper, we take an original approach to program repair: we aim at find-
ing as many test-suite adequate patches as possible for a given bug. For that,
we created an automated repair approach named Cardumen. Cardumen found
in total 8935 test-suite adequate patches, repairing 77 bugs from Defects4J, 8
of them not previously repaired by any other repair system. This result shows
the richness of Cardumen’s search space. Furthermore, 53% of repaired bugs
have patches applied on different locations; and 65% of the repaired bugs have
different kinds of patches.

As future work, we envision a new repair system that would perform: (1)
a first reduction of the complete search space to a subspace only composed of
test-adequate patches; and (2) a second reduction of that space to a subspace
with only correct patches. For implementing this approach, our future plan is to
study and compare the 8935 patches generated by Cardumen.

References

1. Barr, E.T., Brun, Y., Devanbu, P., Harman, M., Sarro, F.: The plastic surgery
hypothesis. In: Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2014, pp. 306–317. ACM, New York
(2014)

2. Campos, J., Riboira, A., Perez, A., Abreu, R.: GZoltar: an eclipse plug-in for
testing and debugging. In: 2012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pp. 378–381, September 2012

3. Chen, L., Pei, Y., Furia, C.A.: Contract-based program repair without the con-
tracts. In: Proceedings of the 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2017, pp. 637–647. IEEE Press, Piscataway
(2017)

4. Debroy, V., Wong, W.E.: Using mutation to automatically suggest fixes for faulty
programs. In: Proceedings of the 2010 Third International Conference on Software
Testing, Verification and Validation, ICST 2010, pp. 65–74 (2010)

5. Durieux, T., Cornu, B., Seinturier, L., Monperrus, M.: Dynamic patch generation
for null pointer exceptions using metaprogramming. In: 2017 IEEE 24th Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER),
pp. 349–358, February 2017

6. Durieux, T., Danglot, B., Yu, Z., Martinez, M., Urli, S., Monperrus, M.: The
patches of the Nopol automatic repair system on the bugs of Defects4J version
1.1.0. Research Report hal-01480084, Université Lille 1 - Sciences et Technologies
(2017)

7. Durieux, T., Monperrus, M.: DynaMoth: dynamic code synthesis for automatic
program repair. In: Proceedings of the 11th International Workshop on Automation
of Software Test, AST 2016, pp. 85–91. ACM, New York 2016

8. Le Goues, C., et al.: The ManyBugs and introclass benchmarks for automated
repair of C programs. IEEE Trans. Softw. Eng. 41(12), 1236–1256 (2015)

9. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method
for automatic software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012)

Ultra-Large Repair Search Space with Automatically Mined Templates 85

10. Jiang, J., Xiong, Y.: Can defects be fixed with weak test suites? An analysis of 50
defects from defects4j. arXiv preprint arXiv:1705.04149 (2017)

11. Just, R., Jalali, D., Ernst, M.D.: Defects4J: a database of existing faults to enable
controlled testing studies for Java programs. In: Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), San Jose, CA, USA, 23–25
July 2014, pp. 437–440 (2014)

12. Ke, Y., Stolee, K.T., Le Goues, C., Brun, Y.: Repairing programs with semantic
code search (t). In: Proceedings of the 2015 30th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), ASE 2015, pp. 295–306. IEEE
Computer Society, Washington, D.C. (2015)

13. Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation learned from
human-written patches. In: Proceedings of the 2013 International Conference on
Software Engineering, ICSE 2013, pp. 802–811. IEEE Press, Piscataway (2013)

14. Le, X.-B.D., Chu, D.-H., Lo, D., Le Goues, C., Visser, W.: S3: syntax- and
semantic-guided repair synthesis via programming by examples. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, pp. 593–604. ACM, New York (2017)

15. Le, X.B.D., Lo, D., Le Goues, C.: History driven program repair. In: 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1, pp. 213–224. IEEE (2016)

16. Liu, X., Zeng, M., Xiong, Y., Zhang, L., Huang, G.: Identifying patch correctness
in test-based automatic program repair (2017)

17. Long, F., Amidon, P., Rinard, M.: Automatic inference of code transforms for
patch generation. In: Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2017, pp. 727–739. ACM, New York (2017)

18. Long, F., Rinard, M.: Staged program repair with condition synthesis. In: Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pp. 166–178. ACM, New York (2015)

19. Long, F., Rinard, M.: An analysis of the search spaces for generate and validate
patch generation systems. In: Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, pp. 702–713. ACM, New York (2016)

20. Long, F., Rinard, M.: Automatic patch generation by learning correct code. SIG-
PLAN Not. 51(1), 298–312 (2016)

21. Martinez, M., Durieux, T., Sommerard, R., Xuan, J., Monperrus, M.: Automatic
repair of real bugs in Java: a large-scale experiment on the Defects4J dataset.
Empirical Softw. Eng. 22, 1–29 (2016)

22. Martinez, M., Monperrus, M.: Mining software repair models for reasoning on the
search space of automated program fixing. Empirical Softw. Eng. 20, 1–30 (2013)

23. Martinez, M., Monperrus, M.: ASTOR: a program repair library for Java (demo).
In: Proceedings of the 25th International Symposium on Software Testing and
Analysis, ISSTA 2016, pp. 441–444. ACM, New York (2016)

24. Martinez, M., Weimer, W., Monperrus, M.: Do the fix ingredients already exist? An
empirical inquiry into the redundancy assumptions of program repair approaches.
In: Companion Proceedings of the 36th International Conference on Software Engi-
neering, ICSE Companion 2014, pp. 492–495 (2014)

25. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: SemFix: program repair
via semantic analysis. In Proceedings of the 2013 International Conference on Soft-
ware Engineering, ICSE 2013, pp. 772–781. IEEE Press, Piscataway (2013)

26. Pawlak, R., Monperrus, M., Petitprez, N., Noguera, C., Seinturier, L.: Spoon: a
library for implementing analyses and transformations of java source code. Softw.:
Pract. Exp. 49, 1155–1179 (2015)

http://arxiv.org/abs/1705.04149

86 M. Martinez and M. Monperrus

27. Qi, Y., Mao, X., Lei, Y., Dai, Z., Wang, C.: Does genetic programming work
well on automated program repair? In: 2013 Fifth International Conference on
Computational and Information Sciences (ICCIS), pp. 1875–1878. IEEE (2013)

28. Qi, Z., Long, F., Achour, S., Rinard, M.: An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems. In: Proceedings of
the 2015 International Symposium on Software Testing and Analysis, ISSTA 2015,
pp. 24–36. ACM, New York (2015)

29. Reps, T., Ball, T., Das, M., Larus, J.: The use of program profiling for software
maintenance with applications to the year 2000 problem. In: Jazayeri, M., Schauer,
H. (eds.) ESEC/SIGSOFT FSE - 1997. LNCS, vol. 1301, pp. 432–449. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63531-9 29

30. Smith, E.K., Barr, E.T., Le Goues, C., Brun, Y.: Is the cure worse than the disease?
Overfitting in automated program repair. In: Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, pp. 532–543. ACM (2015)

31. Tu, Z., Su, Z., Devanbu, P.: On the localness of software. In: Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, FSE 2014, pp. 269–280. ACM, New York (2014)

32. Weimer, W., Fry, Z.P., Forrest, S.: Leveraging program equivalence for adaptive
program repair: models and first results. In: 2013 IEEE/ACM 28th International
Conference on Automated Software Engineering (ASE), pp. 356–366, November
2013

33. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches
using genetic programming. In: Proceedings of the 31st International Conference
on Software Engineering, ICSE 2009, pp. 364–374 (2009)

34. Wen, M., Chen, J., Wu, R., Hao, D., Cheung, S.-C.: An empirical analysis of the
influence of fault space on search-based automated program repair (2017)

35. White, M., Tufano, M., Martinez, M., Monperrus, M., Poshyvanyk, D.: Sorting and
transforming program repair ingredients via deep learning code similarities (2017)

36. Xin, Q., Reiss, S.P.: Identifying test-suite-overfitted patches through test case gen-
eration. In: Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2017, pp. 226–236. ACM, New York (2017)

37. Xin, Q., Reiss, S.P.: Leveraging syntax-related code for automated program repair.
In: Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 660–670. IEEE (2017)

38. Xiong, Y., et al.: Precise condition synthesis for program repair. In: Proceedings
of the 39th International Conference on Software Engineering, ICSE 2017, pp.
416–426. IEEE Press, Piscataway (2017)

39. Xuan, J., et al.: Nopol: automatic repair of conditional statement bugs in Java
programs. IEEE Trans. Softw. Eng. 43, 34–55 (2016)

40. Yang, J., Zhikhartsev, A., Liu, Y., Tan, L.: Better test cases for better automated
program repair. In: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, pp. 831–841. ACM, New York (2017)

41. Yu, Z., Martinez, M., Danglot, B., Durieux, T., Monperrus, M.: Alleviating patch
overfitting with automatic test generation: a study of feasibility and effectiveness
for the Nopol repair system. Empirical Softw. Eng., 1–35 (2018)

https://doi.org/10.1007/3-540-63531-9_29

Special Tenth SSBSE papers – “Best of
Previous SSBSEs”

How Can Metaheuristics Help Software
Engineers?

Enrique Alba(B)

Universidad de Málaga, Málaga, Spain
eat@lcc.uma.es

http://www.lcc.uma.es/∼eat

Abstract. This paper is a brief description of the revamped presenta-
tion based in the original one I had the honor to deliver back in 2009
during the very first SSBSE in London. At this time, the many interna-
tional forces dealing with search, optimization, and learning (SOL) met
software engineering (SE) researchers in person, all of them looking for
a quantified manner of modeling and solving problems in software. The
contents of this work, as in the original one, will develop on the bases of
metaheuristics to highlight the many good ways in which they can help
to create a well-grounded domain where the construction, assessment,
and exploitation of software are not just based in human expertise, but
enhanced with intelligent automatic tools. Since the whole story started
well before the first SSBSE in 2009, we will mention a few previous
applications in software engineering faced with intelligent algorithms, as
well as will discuss on the present interest and future challenges of the
domain, structured in both short and long term goals. If we understand
this as a cross-fertilization task between research fields, then we could
learn a wider and more useful lesson for innovative research. In short,
we will have here a semantic perspective of the old times (before SBSE),
the recent years on SBSE, and the many avenues for future research and
development spinning around this exciting clash of stars. A new galaxy
has been born out of the body of knowledge in SOL and SE, creating
forever a new class of researchers able of building unparalleled tools and
delivering scientific results for the benefit of software, that is, of modern
societies.

Keywords: Search · Optimization · Learning · Metaheuristic
Software engineering · Computational intelligence

1 Converging Trajectories

Software engineering (SE) and complex search/optimization/learning (SOL) are
two important and historical knowledge areas in Computer Science (CS), and

Supported by the Spanish-FEDER projects TIN2017-88213-R and TIN2016-81766-
REDT.

c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 89–105, 2018.
https://doi.org/10.1007/978-3-319-99241-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_4&domain=pdf

90 E. Alba

the bases for the vast majority of applications of IT in today’s world. But, with
a few exceptions, separate research fields.

As to SE, its history is linked to the very nature of computers, with a deep
relation to programming and the art/engineering task of planning, executing,
and delivering products and services. Since its first conception, it was clear in
SE that building, using, extending, and maintaining software is a very complex
task, where we would need the help of computer tools to complement human
experience and even creativity.

As to SOL, the landscape is still larger and older: optimization is embedded
in most activities of life, and computer procedures aim for maximizing benefits,
reducing costs, and searching in innovative ways, all playing a major role in every
subfield of CS and IT. Indeed, optimization has greatly grown in the company
of machine learning, and both admit a point of view in which the procedure for
searching/learning (or the found result itself) is the focus of the study.

It was just a matter of time that the two areas got together, enriching each
other and merging into a new domain where SE is understood as a real/normal
engineering work, with artifacts that can be numerically modeled, and the man-
agement of the process and product has a quantitative flavor, that however has
been largely dismissed in the SE community (with some important exceptions!).

From seminal works like [2,20] it was clear that SOL could transform the
way in which SE deals with products and services, by measuring software qual-
ity in a numerical manner (performance, but also usability, security, ...), what
would allow automatic and intelligent (both!) decision making and guidance.
In this context, the search for better software solutions has finally converged
to the so called Search-Based Software Engineering, a term coined by Harman
[16] and popularized by an active community of practitioners across the world.
Search and also optimization are there paramount to solve traditional problems
of software (like program testing) and support new ones (like automatic repair or
identification of potential defects), and thus there is a natural interest in know-
ing more on the techniques that would allow such an enhanced management of
software tools.

Among the many techniques for SOL, metaheuristics [15,27] represent a
para-mount field feeding algorithms and operations that would allow numeri-
cal modeling of SE problems, and will ease an important boosting in quality of
the software we all are building nowadays. Metaheuristics exhibit a short list of
requirements to be applied and a long list of benefits. On the requirements, they
need (a) to be able of encoding a solution to the problem (phenotype) in a kind
of vector of symbols (genotype) with no loss of generality (remember that the
memory of a computer is a big vector) and (b) to be able of assessing the relative
quality of two vectors as potential problem solutions. With only this, an iter-
ative improvement of tentative solutions by means of some (non deterministic)
operators is able of reaching solutions for problems out of the reach of classical
methods. This is true because metaheuristics can deal with a list of handy real
settlements: no need for differentiation, able to manage arbitrary constraints, no
need of analytical description of the problem (!), facility to deal with continuous
and discrete representations... all of them wanted in any field where problems
are frequently ill-defined, very large, and of course NP-hard.

How Can Metaheuristics Help Software Engineers? 91

This article contains a brief discussion on what, how, and when these tech-
niques can help SE researchers and practitioners.

In the next section, we will describe the main types of metaheuristics and the
many useful extensions to cover virtually any problem that SE wants to throw to
them. In Sect. 3 we will present some issues on SBSE and a somewhat new twist,
going beyond SBSE to suggest how SE can have an impact in metaheuristics
also, a bit on the contrary of what the reader can expect. Then, in Sect. 4 we
will define some interesting and new open challenges to the community, just to
end in Sect. 5 with conclusions and several of the many future works ahead.

2 A High Level Glimpse on Metaheuristics

Most of works where metaheuristics are used nowadays fit in some manner the
resolution of a global optimization problem. An optimization problem is defined
as a pair (S, f), where S �= ∅ is called the solution space (or search space), and f
is a function named objective function or fitness function, defined as f : S → R

solving an optimization problem consisting in finding a solution i* ∈ S such that:
f(i*) � f(i),∀i ∈ S. Note that assuming either maximization or minimization
does not restrict the generality of the problem. Depending on the domain which
S belongs to, we can speak of binary (S ⊆ B*), integer (S ⊆ N*), continuous
(S ⊆ R*), or heterogeneous optimization problems (S ⊆ (B ∪ N ∪ R)*).

A simple classification of the optimization methods used throughout the his-
tory of CS is shown in Fig. 1. In a first approach, the techniques can be classified
into exact versus approximate (and others as a category for difficult to clas-
sify procedures). Exact techniques are based on the mathematical finding of the
optimal solution, what can also be described as an exhaustive search until the
optimum is found, guaranteeing the optimality of the obtained solution. How-
ever, these techniques present many practical drawbacks. The time they require,
though bounded, may be very large, especially for NP-hard problems. Further-
more, it is not always possible to find such an exact technique for every problem.
Indeed, exact techniques often require from the solved problem to exhibit spe-
cial types of constraints or features (e.g., derivability, continuity, and having an
analytical expression -not that usual!-). This makes exact techniques not to be
a good choice in many occasions, either because their time and memory require-
ments can become unpractical or because the real problem does not really show
the expected requirements to admit a solution with an exact technique. For
this reason, approximate techniques have been widely used by the international
research community in the last few decades. These methods (sometimes) sac-
rifice the guarantee of finding the optimum in favor of providing a satisfactory
solution within reasonable times an real resource consumption.

Among approximate algorithms, we can find two types: ad hoc heuristics,
and metaheuristics. Ad hoc heuristics can be further divided into construc-
tive heuristics and local search methods. Constructive heuristics are usually the
swiftest methods. They construct a solution from scratch by iteratively incor-
porating components until a complete solution is obtained, which is returned as

92 E. Alba

Fig. 1. Taxonomy of search algorithms.

the algorithm output. Finding a constructive heuristic that actually produces
high quality solutions is a nontrivial task, since it mainly depends on the prob-
lem, and requires a thorough understanding of it. For example, in problems with
many constraints, it could happen that many partial solutions do not lead to
any feasible solution.

Local search or gradient descent methods start from a complete solution.
They rely on the concept of neighborhood to explore a part of the search space
defined for the current solution until they find a local optimum. The neighbor-
hood of a given solution s, denoted as N(s), is the set of solutions (neighbors)
that can be reached from s through the use of a specific modification operator
(generally referred to as a movement). A local optimum is a solution having equal
or better objective function value than any other solution in its own neighbor-
hood. The process of exploring the neighborhood, finding and keeping the best
neighbor in the way, is repeated until the local optimum is found (or a maximum
search budget has been exhausted). Complete exploration of a neighborhood is
often unapproachable, therefore some modification of this generic scheme has to
be adopted. Depending on the movement operator, the neighborhood varies and
so does the manner of exploring the search space, simplifying or complicating
the search process as a result.

During the 70’s, a new class of approximate algorithms appeared whose basic
idea was to combine operations in a structured (family-like) way in a higher level
to achieve an efficient and effective search of the problem landscape. These tech-
niques are called metaheuristics. The term was first introduced by Glover [14],
and until it was ultimately adopted by the scientific community, these tech-
niques were named modern heuristics [28]. This class of algorithms includes
many diverse techniques such as ant colony, evolutionary algorithms, iterated
local search, simulated annealing, and tabu search. A survey of metaheuristics
can be found in [4,15]. Out of the many descriptions of metaheuristics that can
be found in the literature, the following fundamental features can be highlighted:

How Can Metaheuristics Help Software Engineers? 93

• They are general strategies or templates that guide the search process.
• Their goal is to provide an efficient exploration of the search space to find

(near) optimal solutions.
• They are not exact algorithms and their behavior is generally non determin-

istic (stochastic).
• They may incorporate mechanisms to avoid visiting non promising (or already

visited) regions of the search space.
• Their basic scheme has a predefined structure.
• They may use specific problem knowledge for the problem at hand, by includ-

ing some specific heuristic controlled by the high level strategy.

Fig. 2. Taxonomy of metaheuristics [13].

In other words, a metaheuristic is a general template for a non deterministic
process that has to be filled with specific data from the problem to be solved
(solution representation, specific operators to manipulate them, etc.), and that
can tackle problems with high dimensional search spaces. In these techniques,
the success depends on the correct balance between diversification and intensi-
fication. The term diversification refers to the evaluation of solutions in distant
regions of the search space (with some distance function previously defined for
the solution space); it is also known as exploration of the search space. The term
intensification refers to the evaluation of solutions in small bounded regions, or
within a neighborhood (exploitation in the search space).

The balance between these two opposed aspects is of the utmost importance,
since the algorithm has to quickly find the most promising regions (exploration),
but also those promising regions have to be thoroughly searched (exploitation).
We can distinguish two kinds of search strategies in metaheuristics [4]. First,
there are “intelligent” extensions of local search methods (trajectory-based meta-
heuristics in Fig. 2). These techniques add to the basic local search method some
mechanism to escape from local optima (which would otherwise stuck in it).

94 E. Alba

Tabu search (TS) [14], iterated local search (ILS) [15], variable neighborhood
search (VNS) [24] or simulated annealing (SA) [21] are some techniques of this
kind. These metaheuristics operate with a single solution at a time, and one (or
more) neighborhood structures. They are usually fast in converging to a solution
(high exploitation), though suboptimal solutions are frequently found.

A different strategy is followed in ant colony optimization (ACO) [11], par-
ticle swarm optimization (PSO) [9] or evolutionary algorithms (EA) [3]. These
techniques operate with a set of solutions at any time (called colony, swarm or
population, respect.), and use a learning factor as they, implicitly or explicitly,
try to grasp the correlation between design variables in order to identify the
regions of the search space with high-quality solutions (population-based tech-
niques in Fig. 2). In this sense, these methods perform a biased sampling of the
search space. They tend to make a good exploration of the search of potential
solutions to the problem, but a slow final tuning towards the optimal one.

Of course, a combination of trajectory and population-based techniques is in
order, and thus the design of new metaheuristics is a healthy line of research.
Using theoretical results to build algorithms is today a way of avoiding any
useless wandering in the infinite set of combinations, either by analyzing the
components of the algorithms [29], the search space [7] or the way in which the
technique is expected to work versus how it actually works [22].

Finally, metaheuristics are not black boxes nor general recipes to success.
Researchers need to know them, go in deep on their working principles and
extract the most of their power by understanding how they search for the optima.
In order to extend the basic families for difficult applications, it is very common
that researchers need to learn on multiobjective optimization [10], parallel struc-
tured models [1], and combinations to machine learning [6,23].

3 Search for Software and Software for Search: SBSE and
SAAL

In this section we briefly describe some existing ways of profiting from meta-
heuristics to face a variety of problems in SE. In all cases, the first step consists
in describing the problem in a precise and quantitative way, as expected in any
engineering domain. This usually means to define a global optimization problem
in terms of objective functions and some type of constraints [8,18].

From the seminal work introducing the name for this field [17] the leading
“S” has been read as “Search”. We however think that, as of today, this term
should be broaden, so as to talk on search, optimization, and learning. As a
consequence, we propose here the term “SOL” as the modern meaning for the
leading “S” in the term SBSE. Indeed, machine learning tools (like clustering,
predicting, data science, probability analysis...) are ready normal in the field,
as well as many applications put the stress in the optimization process instead
of in the search technique used. Whether “SOL-Based Search Engineering” will
become popular or not depends on the community of researchers in next years.

How Can Metaheuristics Help Software Engineers? 95

The first obvious goal, and the base for SBSE, is then solve problems in SE
by using SOL algorithms. In addition, at the end of this section, we will give a
twist on a different perspective were software knowledge is used to improve SOL
algorithms, a not so well-known task that we here dare to name for the first time
here as Software Aware ALgorithms (SAAL).

To finish this initial introduction to the section we will quickly review the
field at an international level. To this end, we have computed the world questions
on this topic from 2004 to now (according to Google Trends). In Fig. 3 we show
the results (percentage of representative queries on the term SBSE). It can be
seen that in years 2006–2007 a few important peaks of interest existed, that
where later repeated in 2008–2009, and with a lower intensity from 2010–2011
and later years. As of today, the term and domain seems to attract a moderate
attraction, though here we cannot judge because these are just percentages.

Fig. 3. Search-based Software Engineering in the world: interest between 2004 and
2018 according to Google Trends.

In Fig. 4 we include the relative interest raised from 2004 to 2018 but this
time including metaheuristics to have a comparative picture. It seems that the
algorithmic domain is far more developed, since the trend is always well above
SBSE. This is just to say that there is more to be gained in SBSE by taking
algorithms and solutions to SBSE till this field is fully developed at international
level. In a (non shown here) comparison of SBSE to the whole domain of software
engineering the picture shows a much larger interest for software engineering and
SBSE is almost not noticeable (visually it is a plain zero-like line on axis X), a
trend that we all should have to change by providing breakthrough results and
a more intense dissemination in the SE community.

3.1 SOL-Based Software Engineering

Let us begin with the benefits of using SOL in general, and metaheuristics in
particular for software engineering. We can list them here:

• SE Problems will be precisely defined and thus quantification and numerical
comparisons are possible. Though it might look as a minor benefit, it is a

96 E. Alba

paramount one, since SE has been playing around for its whole life (and still
now, in many parts of the world) with fuzzy ideas of “flexibility”, “power”,
and other supposedly attractive features that have never been quantified nor
compared in a fair way between products and services in the field.

• Software artifacts, like instructions, variables, objects, classes, functions, and
many others get now a precise numerical definition and manipulation. Met-
rics can be defined, and advances can be objectively stated. This is in the
base of the very definition of Science and Engineering, and metaheuristics
give the intelligent and automatic manner of evolving, testing, designing, and
understanding them.

• Scalability is another important benefit here. No more solving problems of
one page of code, since actual software systems have millions of lines of code.
The use of parallelism, cloud computing, and the fundamentals like numerical
efficiency, robustness, and SOL theory work together to offer a unique domain
of tools for the researcher and practitioner.

• Generality of studies, knowledge, and results. Indeed, metaheuristics can be
applied to any SBSE problem. Investing time in them is worth, since you
learn for future applications as you solve your current one. Also, getting sur-
prising results on apparently different activities like how to prioritize software
tests/tasks, assign persons to software projects, and dealing with the com-
plexity of the execution flow, is only possible because of them, and offer a
unique unified point of view. Your time in learning and using metaheuristics
will pay you back for sure.

• The understanding on the problem and its context, and the solutions you get
(e.g., by using genetic programming or constructive algorithms like ACO)
allows knowledge accumulation. While other techniques are obscure in the
solutions they provide (notably neural networks) metaheuristics offer you a
white box access to solutions and even to the process by which you got them,
an appreciated feature for any tool in Science.

The following sensible question is now: where can we use and find these
benefits in software engineering? Well, the list will never be comprehensive, but

Fig. 4. SBSE and metaheuristics in the world: interest between 2004 and 2018 accord-
ing to Google Trends.

How Can Metaheuristics Help Software Engineers? 97

here we have some of the major fields endorsed because of the utilization of SOL
techniques:

• Software Planning
• Requirement Analysis and Design
• Coding Tools and Techniques
• Testing, Validation, Verification, and Debugging
• Distribution, Maintenance, Enhancement
• General Management of Software Products and Services
• Concurrent Systems
• Networks and Critical Systems
• Human Decision Making
• Evolution of Interfaces
• Web Services
• Web Ontologies
• Evolution of Architectures

There are applications of difficult classification, like the domain of quanti-
tative quality [5], that usually touches many sub-fields. Also, the list does not
inform on the relative importance in terms of attention received in research, and
thus, e.g. the reader should be aware of the massive number of scientific articles
on the different flavors of testing compared to the rest of research lines.

Before we close this first SBSE section, let us mention some high level hints
for researchers. Of course, this is an informal exercise, so others could think
differently. The first key factor in a good design of metaheuristics for SE is
the decision on whether or not we need non-traditional representations (trees,
graphs, Petri nets, automata...) that could suit the problem much better than
a simple vector of symbols. The second key factor is the definition of a smart
fitness function: we are not forced to use any particular function, so let us select
(devise!) one with nice properties for the induced landscape, so as to ease the
location of the optima. And finally, the third key factor is to use specialized
operators in the algorithms, since the basic ones (one point crossover, immediate
neighborhood search, arithmetical operations) are far from being good to find a
solution for complex problems, where efficiency and efficacy are mandatory. The
more the problem knowledge used, the better.

There are of course more hints, but this could become and endless list, so
let us summarize in a brief manner some guidelines in a nutshell, organized
according to what you need:

• According to the representation, some advices are those: if it is binary then
try SA, GA, CHC, EDA or ILS. If it is a tree, go for GP. If you have a
float representation go for ES, PSO, DE or CMAES. If it is a permutation
representation, try to use GAs with special operators for permutations, or
VNS and specialized algorithms for your problem.

• If your search problem has an underlying graph structure, go for ACO.
• If you face a very expensive fitness function, then use parallel metaheuris-

tics. Also, use theory to lean the algorithm. Finally, try to use a kind of
surrogates (like e.g. neuronal networks) for the fitness calculation.

98 E. Alba

• If your environment/function is dynamic, go for cellular GAs, PSO, ES or
SA. Distributed versions of metaheuristics also pay off. In all cases, using
an explicit memory on past experiences and a strong exploration component
(e.g. hypermutation) is in place.

• If your problem is multimodal then go for structured EAs like cellular EAs
or distributed EAs (nothing to do with parallelism, this is on structuring the
population).

• If constraints are the hard part of your problem, then try to build hybrids
(memetic algorithms?) and use specific operators considering them; search in
the contour of the feasible regions defined by the constraints, optimal solutions
often live there.

We stop here, though we could go on in talking on the means for a proper
initial population (seeding with latin squares, Voronoi initialization, ad hoc sets
of representative individuals merged with random ones...), the way in which the
random numbers are generated (beyond random, random48 standard methods,
like using white noise from atmosphere or at least using Meresenne twister), and
details like whether a new solution is accepted if its fitness is equal to the best
existing one (yes, do accept it to scape from plateaus!).

3.2 Software Aware Algorithms (SAAL)

We now will discuss in a brief manner a kind of very related topic, but a non
well-known one. The very nature of algorithms describes them as procedures to
solve a problem, and then no mention to computer programs is often done. In this
sense, algorithms are developed by mathematicians and other researchers whose
goal is to develop the abstract technique and think in their theoretical behavior
and complexity. However, for the vast majority of situations in modern research,
algorithms need to be implemented in a computer, and thus they will enter the
realm of programming artifacts. As any other software, algorithms running on a
computer use data structures, flow-control sentences, and have a wide variety of
details on how to best implement them.

The research questions here are many: are SOL algorithms well/correctly
implemented? Is there a best way to do so? What data structures should we
use? If using object orientation, what is the best way to define the system of
classes? Are we paying attention to compiler directives and operating systems?
...and a long etcetera.

It may seem that these questions are marginal, but think in the following
problems if we dismiss them:

Implementing the idea. Like for any software, we will always have a reason-
able doubt that the implemented algorithm is the designed abstract algo-
rithm. In fact, SOL algorithms are seldom having a specification for guiding
a later implementation. Errors and defects might appear, taking the actual
runs far from their expected behavior. Since metaheuristics are non deter-
ministic techniques, it can be hard to know whether a bad or unexpected

How Can Metaheuristics Help Software Engineers? 99

results is due to the actual behavior of the correct algorithm or to the wrong
implementation of the correct algorithm.

Representation of vectors. Since we will have thousands and millions of tem-
porary variables containing the bits/integer/float variables, using high level
data structures could lead to an unaffordable management of memory, either
using too much of it and thus preventing it from running, or making the
algorithm very slow. Some applications could even need to pack variables
into basic data types like integers, with an additional time cost of pack-
ing/unpacking for their interpretation.

Object orientation. Many important issues appear when using OO for imple-
menting metaheuristics: should we explicitly call the garbage collector? Static
objects are managed far more efficiently than normal ones, so should we define
static data structures as often as possible? Are operators part of the class of
the individual or part of the algorithm?

Compiler directives. Different languages compile (or interpret) according to
explicit directives that the researcher can use to improve efficiency. Should we
use -O3 in gcc? What is the best way to optimize a compiled Java program?
Should we compile for the processor architecture? When making one run
becomes a task of one week (or we aim real time response), this is relevant.

Variables. Many guidelines on programming exist, and most are up when imple-
menting metaheuristics. A first question is whether researchers are following
them or not...A paramount issue is for example on using global variables,
something not good for the quality (understanding, error analysis, extensi-
bility) of a program, but at the same time often more efficient than using
local variables. Finding the right balance is difficult in most languages, do
we even care about this? If not, then why to bother on not using goto jumps,
raising/catching exceptions or giving meaningful names to variables? Why
should we only take arbitrary best practices? Let us take them “all”.

Toolboxes versus languages. Many researchers select their implementation
tools so as to only focus on the application, and this means going into closed
packages like MATLAB, SPSS and similar ones. The many advantages (all is
inside, the researcher already knew them, no need of advanced programming
skills) sometimes do not compensate for the long running times, the many
unknown internal calls to intermediate procedures, and the lack of extensions
available in them (parallelism, for example). General purpose programing
languages (Java, C, C++, Python, R, Javascript...) allow much more freedom
(and problems) for implementation. Of course, every language also has a
baseline speed that needs to be considered when starting a new project.

After reading the previous list, any sensible researcher should be now con-
cerned on whether he/she is actually able of getting much more from his/her
present implementation. Here an intriguing question: what is the actual qual-
ity of the many libraries we all are using with no formal proof that they are
implementing the actual expected algorithms and (at least) show a reasonable
efficiency? We take software as a black box and apply it, take correctness for
granted, and then try to explain results that could be unexplainable due to soft-
ware errors. Also, we might be missing tons of new research lines in not making

100 E. Alba

our algorithms aware of the operating system, not to mention being aware of the
energy consumption (for running algorithms e.g. in smartphones) or the under-
lying hardware (processor power, available memory, network communications).

In summary, it seems weird that the entire world is developing software for
search, optimization and learning while not using for this the well-known SE
tools and knowledge to do so. In the domain of SBSE, it is especially weird
that researchers are dismissing this in their papers and public libraries. The
reader might think that this is just a personal tick or some kind of luxury
task, however research results show how you can save 30% or more time with a
good implementation [25]. This time can be used for additional runs, a deeper
understanding, or to write more scientific papers per year. Indeed, efficiency is
just part of the quality of any software package; other factors like maintainability,
reliability, extensibility, usability, also apply to public SOL software, and thus
should be relevant in future studies.

4 Open Challenges and Ideas for the Future

In this section we will find an analysis of the potential challenges and good
directions for the interplay between SE and metaheuristics in the future. They
will be presented in two parts: a first set of challenges for SBSE (short and long
term), and some final challenges for SAAL. Of course, mentioning challenges is
not a formal scientific task, so this is clearly subject to debate. Indeed, since
the whole existing community, plus the newcomers to arrive, will be deciding on
how and what is important as a future challenge, this is just an exercise of good
guessing to help interested readers.

Let us start with potentially interesting SBSE challenges. We can there define
the following ones in the short term:

• Stopping Criteria
Analyze the techniques both under a predefined effort (to later evaluate
the resulting fitness), solution quality (to later evaluate the needed fitness
effort), study the algorithm convergence (phenotype and genotype ones),
and explore combined stopping condition and their effect on the results.
Limited budget, for example, are of great interest to set the interest of
any new technique. Also, what is the meaning of the results for the SBSE
problem?

• Landscape Visualization
Knowing the problem you are solving is very important to design a good
algorithm. Visualization of search landscapes, of the work of search opera-
tors, or of the contents of the resulting solution is very important. Looking
for new tools like parallel coordinates [19] or local optima networks [26]
could be worth.

• Landscape Characterization
We really need to know, visualize and use the properties of the
search landscape of our problem: multimodality, epistasis, discontinuities,
pla-teaus, etc. Metrics encoding this, such as the number of suboptimal

How Can Metaheuristics Help Software Engineers? 101

solutions, or the fitness-distance correlation, are of much interest to allow
the designer to arrive to a good algorithm design.

• Human Competitive Results
Having an intelligent technique to beat a human is difficult, we indeed
should go for specialized sub-domains and very concrete tasks, and then
computer aided software management would become universal. To this
end, programming interfaces, testing GUIs, and web services to assess
software packages, are interesting and expected for all of us.

Let us now shift to a short discussion on potential long term challenges:

• Multiobjective Optimization
There is a rich set of information in the metaheuristic field: goals, algo-
rithms, metrics, statistics are available to study and use for SE. Decision
making (versus optimization) is a growing field also here, and higher level
tools are wanted to help innovation in SBSE. It seems that this is presently
happening, but when going to the details of existing articles, they can
be classified as out of the main stream in multiobjective optimization,
because of their lack of basic contents in the paper in this sense.

• Interactive Optimization
Humans work better with visual concepts, and then a better relation to
GUIs is expected to appear, so that we approach the industry of software
with usable tools embedding our SBSE solutions inside.

• Prediction
The software industry (well, we all) need an assisted prediction of what
is going to happen, so that we can react in advance and have a global
better management of product and services. Predicting how and why we
need a next release of software packages, where will be hidden the next
defect, error or failure (not the same!) in software, the future status of a
project, etc. are all very welcomed SBSE outputs.

• Hybrid SOL Algorithms
SBSE is a field where a natural handshaking between exact and approx-
imate algorithms is happening. Also in a natural way, researchers should
build hybrid techniques with existing knowledge, wherever it is coming
from. In this sense, personal preferences for a technique just create an
unwanted bias: let us use the best techniques for the (sub)problem at
hands and combine them to make more powerful ones.

• On Line (Dynamic) Optimization
Up to now, most SBSE problems are static, that is, the target func-
tion to optimize behaves the same along the whole run of the algorithm.
However, for more complex problems in databases, shared programming
environments, testing, etc. could need to rely on the existing knowledge
on dynamic optimization problems (DOP), like adding memory to our
algorithm, use hypermutation for a enhanced exploration, and relying to
self-adaptation for improved performance.

102 E. Alba

• Applying New Models of Search
SBSE researchers know a great deal of SOL algorithms, but this last
domain is so large and evolves so quickly that they should be continuously
looking for new trends, like running algorithms on GPUs, programming
for smartphones to execute solvers on them, using cloud computing to
deal with real-size software testing, or refactoring/repairing big software
projects found in Github.

We now finish this section with some open challenges for SAAL research,
where our solvers are seen as software programs to be understood and improved:

• Software Libraries
Here, we should start designing libraries with (e.g.) extended UML tools,
discuss on the best class architecture for complex algorithms, find errors
in them by testing the source code, and analyze quality metrics (from
specification/requirements to real usability). Taking the correctness and
quality of optimization, search and learning libraries for granted is a risk
that we cannot take in the domain, if we think in ourselves as good
scientists and engineers.

• Data Structures
Since there are so many variables and objects in a complex SBSE solver,
we should care on how a population or an individual should be better
implemented in any population-based technique. The more a data struc-
ture is used in our solver, the deeper the analysis on its memory and CPU
consumption should be addressed.

• Profiling
Once our solver is programmed, or while it is being improved, profiling is a
must. Gathering information on the solver components, on how executions
are done, and proposing a better implementation, all come handy to make
better and more efficient research. Of course, after the profiling analysis
we should act, and thus review the design and the implementation of our
software before putting it to solve a SBSE problem.

• Program Complexity
It is very common that papers lack of any information on the computa-
tional complexity of their solutions. As so, many solvers published today
have a low impact in research. Characterizing program complexity of
well-known techniques is a must, to know whether we should lose our
time in learning them or not, because they would not work even in simi-
lar slightly larger conditions of problem size. Something similar happens
with the parameterization used to solve a problem: the robustness (sensi-
tivity) of the parameters as implemented in the solver has to be assessed
by researchers in every research paper.

• New Frontiers
There are many goals that researchers need to consider if aiming a wide
impact: deal with programs having million of lines, going for complete
Github repositories as a routine task, create SBSE tools for software com-
panies, etc. Besides, lots of specialized information are needed in SBSE

How Can Metaheuristics Help Software Engineers? 103

before going to implement parallel solvers, properly analyzing multiobjec-
tive approaches (yes, this can not be done in one month), target drivers
and operating systems as the goal of research, apply data science to soft-
ware, and a plethora of points of view to come.

5 One Conclusion, Many Future Works

This article is a summary of the talk delivered at SSBSE 2018, what in turns is a
fresh view of the talk offered in the very first SSBSE 2009 in London. The topic
is a perspective on how metaheuristics can help researchers and practitioners in
software engineering. In this sense, this is not a normal research paper, but
a position paper showing a filtered vision on the last years in this domain,
according to the opinion to the author. Of course, others can think differently.

Our main conclusion here is a positive one: SBSE is a healthy domain and
getting more specialized every day. There is much to find in metaheuristics to
help SBSE researchers define SOL problems in the domain of software engineer-
ing, so as to quantify and give fair numerical analyses in a field where industry
and even academia have neglected a bit the engineering part: quantify, under-
stand, manage, optimize. That should be normal in any engineering activity [12],
and thanks (in part) to SBSE, this is happening.

We have summarized many types of metaheuristics to help readers, as well
as gave some hints to guide newcomers. We have introduced the idea of changing
“search” by “search, optimization, and learning” as a new meaning for the first
“S” in “SOL-Based Software Engineering”. We do think that more than search
is happening, so such a re-interpretation of the leading “S” comes in place. We
even dared to introduce for the first time the concept of going on the other
way, and using software engineering concepts, tools and research for building
algorithms: SAAL. Much can be gained if we all consider going that way in a
structured manner, and some existing works point to the right direction.

A big deal of cross-fertilization is needed between SOL and SE. Challenges
are many in scientific areas like the algorithm types (many-objective, dynamic,
uncertain problems) as well as on the new definition of problems (complex mod-
eling of real world SE tasks) and the overall needed set of best practices for
researchers, something that should come as soon as possible to avoid meaningless
studies showing, sometimes, minor/incremental contributions to the community.
Being able of understanding and reading results in the two domains will lead
sooner than later to a completely new/separate body of knowledge for this field,
with a potential huge impact in today’s economy and science.

References

1. Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley, Hoboken
(2005)

2. Alba, E., Troya, J.M.: Genetic algorithms for protocol validation. In: Voigt, H.-M.,
Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141,
pp. 870–879. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61723-
X 1050

https://doi.org/10.1007/3-540-61723-X_1050
https://doi.org/10.1007/3-540-61723-X_1050

104 E. Alba

3. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Compu-
tation. Institute of Physics Publishing Ltd., Bristol (1997)

4. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and
conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

5. Boehm, B.W., Brown, J.R., Lipow, M.: Quantitative Evaluation of Software Qual-
ity. In: Proceedings of the 2nd International Conference on Software Engineering
(ICSE 1976), pp. 592–605. IEEE Computer Society Press (1976)

6. Calvet, L., De Armas, J., Masip, D., Juan, A.A.: Learnheuristics: hybridizing
metaheuristics with machine learning for optimization with dynamic inputs. Open
Math. 15, 261–280 (2017). https://doi.org/10.1515/math-2017-0029

7. Chicano, F., Ferrer, J., Alba, E.: Elementary landscape decomposition of the test
suite minimization problem. In: Cohen, M.B., Ó Cinnéide, M. (eds.) SSBSE 2011.
LNCS, vol. 6956, pp. 48–63. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-23716-4 7

8. Clark, J.A., et al.: Formulating software engineering as a search problem. IEE Proc.
Softw. 150(3), 161–175 (2003)

9. Clerc, M.: Particle Swarm Optimization. Wiley, Hoboken (2010)
10. Coello Coello, C., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms

for Solving Multi-Objective Problems. Springer, New York (2007). https://doi.org/
10.1007/978-0-387-36797-2

11. Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Politec-
nico di Milano (1992)

12. Fenton, N.E.: Software measurement: a necessary scientific basis. IEEE Trans.
Softw. Eng. 20(3), 199–206 (1994)

13. Ferrer, F. J.: Optimization techniques for automated software test data generation.
Ph.D. thesis, Universidad de Málaga (2016). https://riuma.uma.es/xmlui/handle/
10630/13056. Accessed 25 June 2018

14. Glover, F.: Future paths for integer programming and links to artificial intelligence.
Comput. Oper. Res. 13(5), 533–549 (1986)

15. Glover, F.: Handbook of Metaheuristics. Kluwer, Dordrecht (2003)
16. Harman, M., Afshin Mansouri, S., Zhang, Y.: Search-based software engineering:

trends, techniques and applications. ACM Comput. Surv. 451, 1–64 (2012)
17. Harman, M., Jones, B.F.: Search-based software engineering. Inf. Softw. Technol.

43(14), 833–839 (2001)
18. Harman, M., Jones, B.F.: Software engineering using metaheuristic innovative algo-

rithms: workshop report. Inf. Softw. Technol. 43(14), 905–907 (2001)
19. Inselberg, A.: Parallel Coordinates: Visual Multidimensional Geometry and Its

Applications. Springer, New York (2009). https://doi.org/10.1007/978-0-387-
68628-8

20. Jones, B.J., Sthamer, H.-H., Eyres, D.: Automatic structural testing using genetic
algorithms. Softw. Eng. J. 11, 299–306 (1996)

21. Kirkpatrick, K., Gelatt, G.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

22. Luque, G., Alba, E.: Math oracles: a new day of designing efficient self-adaptive
algorithms. In: Proceedings of GECCO (Companion), pp. 217–218 (2013)

23. Memeti, S., Pllana, S. Binotto, A., Kolodziej, J., Brandic, I.: Using Metaheuristics
and Machine Learning for Software Optimization of Parallel Computing Systems:
A Systematic Literature Review. arXiv:1801.09444v3 [cs.DC], https://doi.org/10.
1007/s00607-018-0614-9 (2018)

24. Mladenovic, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097–1100 (1997)

https://doi.org/10.1515/math-2017-0029
https://doi.org/10.1007/978-3-642-23716-4_7
https://doi.org/10.1007/978-3-642-23716-4_7
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-0-387-36797-2
https://riuma.uma.es/xmlui/handle/10630/13056
https://riuma.uma.es/xmlui/handle/10630/13056
https://doi.org/10.1007/978-0-387-68628-8
https://doi.org/10.1007/978-0-387-68628-8
http://arxiv.org/abs/1801.09444v3
https://doi.org/10.1007/s00607-018-0614-9
https://doi.org/10.1007/s00607-018-0614-9

How Can Metaheuristics Help Software Engineers? 105

25. Nesmachnow, S., Luna, F., Alba, E.: An empirical time analysis of evolutionary
algorithms as C programs. Softw. Pract. Exp. 45(1), 111–142 (2015)

26. Ochoa, G., Veerapen, N.: Mapping the global structure of TSP fitness landscapes.
J. Heuristics 24(3), 265–294 (2018)

27. Osman, I.H., Laporte, G.: Metaheuristics: a bibliography. Ann. Oper. Res. 63,
513–623 (1996)

28. Reeves, C.R. (ed.): Modern Heuristic Techniques for Combinatorial Problems.
Wiley, Hoboken (1993)

29. Villagra, A., Alba, E., Leguizamósn, G.: A methodology for the hybridization based
in active components: the case of cGA and scatter search. Comput. Int. Neurosci.
2016, 8289237:1–8289237:11 (2016)

A Tutorial on Using and Extending the
EvoSuite Search-Based Test Generator

Gordon Fraser(B)

University of Passau, Passau, Germany
gordon.fraser@uni-passau.de

Abstract. EvoSuite is an automated unit test generation tool for Java.
It takes as input a Java class under test, and produces JUnit tests opti-
mised for code coverage, and enhanced with regression assertions, as out-
put. This paper is a tutorial on how to use EvoSuite to generate tests,
on how to build and extend EvoSuite, and how to use EvoSuite to run
experiments on search-based testing.

1 Introduction

EvoSuite [6] is a tool that automatically generates JUnit test cases for Java
classes. It applies search-based techniques, such as genetic algorithms, to gener-
ate these tests. Besides various optimisations at the algorithmic level proposed
over time (e.g., [3,9,11]), EvoSuite also implements many different Java-specific
optimisations (e.g., mocking of interactions with the filesystem [4] or network [5])
and has reached a good level of maturity (read: it does not crash too often).
While the principle techniques underlying EvoSuite and their empirical evalu-
ations have been published (e.g., [7]), the aim of this article is to provide an
introduction to the tool from a user and researcher point of view.

The tutorial is structured in three parts: First, we describe how to gener-
ate tests with EvoSuite from the command line. Second, we show how to build
and extend EvoSuite. Finally, in the third part we provide an example of how
EvoSuite can be used to run experiments, for example to evaluate different con-
figurations or extensions to EvoSuite. This tutorial covers a subset of the online
tutorial available at http://www.evosuite.org.

2 Using EvoSuite

There are plugins [2] to use EvoSuite within different IDEs (e.g., IntelliJ and
Eclipse), and there is a Maven plugin that simplifies the usage in larger projects.
In this tutorial, however, we will focus on the basic use case as a standalone appli-
cation, on the command line. For this, EvoSuite is available as an executable jar
(Java Archive) file. The latest release of EvoSuite is always available at http://
www.evosuite.org/downloads/, or in the release section on EvoSuite’s GitHub
page at http://github.com/EvoSuite/evosuite/. At the time of this writing, the
c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 106–130, 2018.
https://doi.org/10.1007/978-3-319-99241-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_5&domain=pdf
http://www.evosuite.org
http://www.evosuite.org/downloads/
http://www.evosuite.org/downloads/
http://github.com/EvoSuite/evosuite/

A Tutorial on Using and Extending the EvoSuite 107

latest release version was 1.0.6; the filenames stated in this article refer to this
version number, but obviously new releases will lead to changed filenames. There
are two different jar files:

– evosuite-1.0.6.jar is the main file used to generate tests, including all its
dependencies.

– evosuite-standalone-runtime-1.0.6.jar is an archive containing only
those parts of EvoSuite and its dependencies that are necessary in order
to execute tests generated by EvoSuite.

In this tutorial, we will assume that you have these jar-files. Furthermore,
for several parts of the tutorial you will need Apache Maven1.

2.1 Invoking EvoSuite

As the name suggests, the executable jar file can be executed. To do so, call
EvoSuite like this:

java -jar evosuite-1.0.6.jar

You should see the following output:

* EvoSuite 1.0.6

usage: EvoSuite

...

This output is EvoSuite listing all the possible command-line options, as we
haven’t told EvoSuite what to do yet. To make the rest of this tutorial easier to
read, we will create an environment variable to point to EvoSuite, e.g.:

export EVOSUITE="java -jar $(pwd)/evosuite-1.0.6.jar"

Now we can simply invoke EvoSuite by typing:

$EVOSUITE

(If you are not using the Bash shell, the commands to create an alias $EVOSUITE
might differ.)

2.2 Generating Tests

As a running example in this tutorial, we will use the tutorial.Stack class
shown in Fig. 1. We will assume that this file is part of a standard Java
project structure, where the source code of the Stack class is kept in the file
src/main/java/tutorial/Stack.java, and the compiled bytecode is placed in
the directory target/classes. You can find a project set up like this as a Maven
project in our online tutorial2.

To generate tests with EvoSuite, there are two essential pieces of information
that EvoSuite needs: (1) What is the class under test, and (2) what is the class-
path where it can find the bytecode of the class under test and its dependencies.
1 https://maven.apache.org/.
2 http://evosuite.org/files/tutorial/Tutorial Stack.zip.

https://maven.apache.org/
http://evosuite.org/files/tutorial/Tutorial_Stack.zip

108 G. Fraser

package tutorial;

import java.util.EmptyStackException;

public class Stack<T> {
private int capacity = 10;
private int pointer = 0;
private T[] objects = (T[]) new Object[capacity];

public void push(T o) {
if(pointer >= capacity)

throw new RuntimeException("Stack exceeded capacity!");
objects[pointer++] = o;

}

public T pop() {
if(pointer <= 0)

throw new EmptyStackException();
return objects[--pointer];

}

public boolean isEmpty() {
return pointer <= 0;

}
}

Fig. 1. Example Java class tutorial.Stack used in the tutorial.

The class under test is specified using the -class argument (assuming we are
targeting a single class). Note that we need to use the fully qualified class name;
that is, we need to include the package name. Thus, in our example, we need to
use -class tutorial.Stack.

The classpath is specified using the -projectCP argument. This takes a reg-
ular classpath entry, like you would specify when using java -cp or by setting
export CLASSPATH=.... As we assumed that compiled bytecode is placed in
target/classes (as is, for example, done by Maven), this is the classpath which
we specify using -projectCP target/classes. Thus, we can now run EvoSuite
as follows:

$EVOSUITE -class tutorial.Stack -projectCP target/classes

Note that this assumes that the Stack class has been compiled, and there
exists a resulting file target/classes/tutorial/Stack.class. If you don’t
have this and don’t know how to produce it, consider getting the example project
set up2. If everything worked correctly, then EvoSuite has now produced two files:

evosuite-tests/tutorial/Stack_ESTest.java

evosuite-tests/tutorial/Stack_ESTest_scaffolding.java

A Tutorial on Using and Extending the EvoSuite 109

Let’s take a closer look at these two files. If we look into the scaffolding
file, we’ll see lots of things happening in methods annotated with @Before and
@After. These are JUnit annotations which ensure that these methods are exe-
cuted before/after execution of each individual test. The reason for all this is
that EvoSuite avoids flaky tests by controlling everything that might be non-
deterministic. The scaffolding ensures that tests are always executed in the same
consistent state, so they should really only fail if they reveal a bug, not because
they are flaky. The scaffolding may look a bit scary, but the good news is that
you’ll probably never need to look at it.

The tests are in the main Stack ESTest.java file. The test class inherits
from the scaffolding, such that all the setup/pulldown happens without showing
all the overhead to ensure tests are not flaky:

@RunWith(EvoRunner.class) @EvoRunnerParameters(mockJVMNonDeterminism

= true, useVFS = true, useVNET = true, resetStaticState = true,

separateClassLoader = true)

public class Stack_ESTest extends Stack_ESTest_scaffolding {

// ...

Besides inheriting from the scaffolding, we also see some annotation that
is specific to EvoSuite. The test class declares that it will be executed with the
EvoRunner, rather than a default JUnit runner. The test runner takes a couple of
parameters that tell it which parts of the execution environment are controlled.
You can safely ignore these for now – the values for these parameters are set
automatically by EvoSuite.

The rest of the file consists of the actual tests. The tests use JUnit 4 and are
annotated with @Test. Because automatically generated tests sometimes do silly
things causing infinite loops, all tests have a specified timeout, with a default
value of 4 seconds.

2.3 Running Tests

Let’s compile the tests. The compiler will need several things on the classpath:

– target/classes: This is the classpath directory containing the compiled
bytecode, which we need for the tutorial.Stack class.

– evosuite-standalone-runtime-1.0.6.jar: This is the EvoSuite runtime
library (you can also use the full EvoSuite jar file instead of this, although
that will lead to more output since it uses EvoSuite’s logger configuration).

– evosuite-tests: This is the root directory where EvoSuite put the test class
files.

– junit-4.12.jar and hamcrest-core-1.3.jar: We need JUnit to execute
JUnit tests.

To automatically resolve the JUnit and Hamcrest dependencies, an easy way
is to use the Maven-version of our example project2 and use Maven to retrieve
the dependencies:

mvn dependency:copy-dependencies

110 G. Fraser

This will download the two jar files and put them into target/dependency.
Now we need to tell the Java compiler where to find all these things, for

which we set the CLASSPATH environment variable:3

export CLASSPATH=target/classes:evosuite-runtime-1.0.6.jar:\

evosuite-tests:target/dependency/junit-4.12.jar:\

target/dependency/hamcrest-core-1.3.jar

For now, we will simply compile the tests in place. Check the online tutorial4

if you want to see how to integrate EvoSuite into the Maven project properly,
such that Maven takes care of compiling the tests. Type the following command:

javac evosuite-tests/tutorial/*.java

Check that there are the two .class files in evosuite-tests/tutorial. If
they are not there, then check what error messages the Java compiler gave you –
most likely some part of the classpath is not set correctly. If they were compiled
correctly, we can now run the tests on the commandline:

java org.junit.runner.JUnitCore tutorial.Stack_ESTest

If you followed all the steps so far correctly, you should see the following
output:

JUnit version 4.12

.....

Time: 2.021

OK (5 tests)

Congratulations! You just generated and executed an EvoSuite test suite!

2.4 Configuring EvoSuite

Now let’s take a closer look at how we can influence what EvoSuite does. First,
we had to wait quite a while until test generation completed – even though this is
such a simple class. A simple way to tell EvoSuite that we’ve waited long enough
for test generation is to simply hit Ctrl+C while it is generating tests. EvoSuite
will stop the search, and write the test cases generated up to that point. If you
hit Ctrl+C a second time, this will kill EvoSuite completely. To try this out,
generate some more tests:

$EVOSUITE -class tutorial.Stack -projectCP target/classes

After a couple of seconds, when you think coverage is sufficient, hit Ctrl+C
and wait for the tests to be written. If you wait 10–20 s, you will notice that the
tests we got still cover all the lines in the Stack class. So why does EvoSuite

3 Note that, as is common, wrapped lines at the commandline are indicated with a
backslash “\” in this paper. These lines are only wrapped to fit the text in the paper,
you can also type these commands on a single line.

4 http://www.evosuite.org/documentation/tutorial-part-2/.

http://www.evosuite.org/documentation/tutorial-part-2/

A Tutorial on Using and Extending the EvoSuite 111

take so long? The reason is that EvoSuite by default targets not only lines of
code, but attempts to satisfy a range of different testing criteria, including things
like mutation testing. Some of the testing goals described by these criteria are
infeasible, which means that there exist no tests that satisfy; some other goals
are just so difficult to cover that EvoSuite cannot easily produce the tests. This
is a well-known aspect of test generation, and to deal with it, EvoSuite uses a
fixed amount of time for test generation, and stops generating tests once this
time has been used up. By default, this is 60 s. If we want to change this, then
besides manually stopping EvoSuite, we have two options: Either we change the
testing criteria to avoid the stronger criteria that may not be satisfiable, or we
set the timeout explicitly.

Let’s start by generating tests for a weaker criterion. We’ll use branch cover-
age, which requires that all if-conditions evaluate to true and false, and all lines
of code are covered. We can set the criterion using the -criterion argument.
To generate branch coverage tests, type:

$EVOSUITE -class tutorial.Stack -projectCP target/classes \

-criterion branch

EvoSuite will work for a couple of seconds, but once it has reached 100%
branch coverage it will terminate and give us a branch coverage test suite.

Alternatively, we can tell EvoSuite how much time to spend on test gen-
eration. EvoSuite uses search-based techniques, so the time it spends on test
generation is called the search budget. Unlike the target criterion, the search
budget is not a command line argument, but one of many properties that config-
ure how EvoSuite behaves. To set properties, we can use the -Dproperty=value
command line argument. For example, to specify the search budget to 20 s, we
would use the following command:

$EVOSUITE -class tutorial.Stack -projectCP target/classes \

-Dsearch_budget=20

EvoSuite has many properties that can all be set using the -Dproperty=value
syntax. To get an overview of the available properties, type the following com-
mand:

$EVOSUITE -listParameters

For example, by default EvoSuite will apply minimization to test cases,
which means that it removes all statements that are not strictly needed to
satisfy the coverage goals; this can be deactivated using -Dminimize=false.
EvoSuite also minimizes the assertions it adds, and this can be changed by
switching the assertion generation strategy, e.g. to -Dassertion strategy=all.
Thus, to generate long tests with loads of assertions we could use the following
command:

$EVOSUITE -class tutorial.Stack -projectCP target/classes \

-Dsearch_budget=20 -Dminimize=false -Dassertion_strategy=all

112 G. Fraser

package tutorial;

import org.junit.Test;
import org.junit.Assert;

public class StackTest {
@Test
public void test() {
Stack<Object> stack = new Stack<Object>();
stack.push(new Object());
Assert.assertFalse(stack.isEmpty());

}
}

Fig. 2. Manually written test class for the Stack class.

2.5 Working with Existing Tests

Let’s assume we have previously written some tests for our Stack class manu-
ally. For example, suppose the file src/test/java/tutorial/StackTest.java
contains a test suite consisting of a single test shown in Fig. 2. This is not a
very exciting test, and also one that EvoSuite could easily generate. However,
in practice you might have already written some tests at the point you invoke
EvoSuite, and so maybe you don’t want to see generated tests for code you have
already covered.

We can tell EvoSuite to only output tests that are not already covered using
the junit property. For example, to tell EvoSuite to only give us tests that are
not already covered by tutorial.StackTest, we would set the property using
-Djunit=tutorial.StackTest. If we have multiple test classes, we can use a
colon-separated list for the property.

We also need to tell EvoSuite where to find this test, as it needs to execute
the test. So let’s first make sure that the test is compiled and passes. If we have
set up our project as a Maven project, we can simply run the following command:

mvn test

(If you are not using Maven or the example project provided online, you can also
invoke JUnitCore as described above, but with the corresponding classname).
This should give you the following output (among some other messages):

T E S T S

Running tutorial.StackTest

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.091 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

A Tutorial on Using and Extending the EvoSuite 113

If the test doesn’t pass then most likely you have edited (and broken?) the Stack
class and should fix it.

If you are using Maven to run tests, then for EvoSuite the interest-
ing part is that Maven placed the bytecode of this test into the direc-
tory target/test-classes. If we want to know how great this test
suite is, we can ask EvoSuite to measure the coverage for us. EvoSuite
supports the command -measureCoverage, and we need to specify the
class under test (-class tutorial.Stack), the tests we are interested in
(-Djunit=tutorial.StackTest), the classpath containing the class under
test and the tests (-projectCP target/classes:target/test-classes), and
optionally, which criteria we are interested (e.g., -criterion branch):

$EVOSUITE -measureCoverage -class tutorial.Stack \

-Djunit=tutorial.StackTest -criterion branch\

-projectCP target/classes:target/test-classes

This should give you the following output (among other messages):

* Total number of covered goals: 3 / 7

* Total coverage: 43%

If we now only want to have tests that cover the remaining 4 branch coverage
goals, we would invoke EvoSuite as follows:

$EVOSUITE -class tutorial.Stack -Djunit=tutorial.StackTest \

-projectCP target/classes:target/test-classes \

-criterion branch

Take a look at the file evosuite-tests/tutorial/Stack ESTest.java to check
that it worked.

2.6 Running EvoSuite on Multiple Classes

Our example project only has a single class, so all calls to EvoSuite so far used
the argument -class. However, sometimes we might want to target more than
just a single class, for example when generating a regression test suite. In this
case, we can replace the -class argument with either -prefix or -target.

The -target argument specifies a classpath entry (e.g., directory or jar file).
EvoSuite will then be invoked sequentially on every testable class it can find
in that classpath entry. If you want to know which classes EvoSuite thinks are
testable (e.g., public), then type the following command:

$EVOSUITE -listClasses -target target/classes

Since our example project only contains one class, the output should be just our
example class:

tutorial.Stack

To invoke EvoSuite on all the classes in a classpath entry, type the following:

$EVOSUITE -target target/classes

114 G. Fraser

EvoSuite will now go and test each class it finds, one at a time. Alternatively,
we might want to test all classes in a certain package. To test all classes in the
tutorial package, type the following command:

$EVOSUITE -prefix tutorial

As our project has only one class this will again just test the Stack.
The arguments -target and -prefix will run EvoSuite sequentially on each

class they find. If your project is large, this might not be the ideal strategy. In
fact, if your project is large and you want to use EvoSuite repeatedly, you will
probably not want to run things manually on the command line, but instead use
Maven to automate and parallelise things. This is not covered in this paper, but
you can find a tutorial for this online4.

3 Extending EvoSuite

EvoSuite is not only intended to serve as a test generator for developers, but
also as a platform to support experimentation in search-based software testing.
Often, this involves modifying or extending EvoSuite. In this section, we take a
look at how one can build EvoSuite from sources, and how one can extend it.

3.1 Obtaining the EvoSuite Source Code

The source code of EvoSuite is available on GitHub in a public Git repository.
The first step of this part of the tutorial thus consists of checking out the source
code. How to do this will differ depending on which IDE you prefer to use. On
the command line, we would check out the repository with Git directly:

git clone https://github.com/EvoSuite/evosuite.git

The source code is organised into several Maven sub-modules. That is, there
is one parent pom.xml in the main directory of the source code you just checked
out, and then there are several separate sub-projects in subdirectories. Let’s have
a closer look at the main sub-modules:

– master: EvoSuite uses a master-client architecture because things can go
wrong when executing randomly generated tests (e.g., we could run out of
memory). The client sends the current search result to the master process
every now and then, so that even if things go wrong, we still get some tests
in the end. The master module handles the user input on the command line
(e.g., parsing of command line options), and then spawns client processes to
do the actual test generation.

– client: The client contains all the heavy lifting. The genetic algorithm is
in here, the internal representation of test cases and test suites used by the
algorithm, the search operators, mechanisms to execute the test cases, all the
bytecode instrumentation that is needed to produce trace information from
which to calculate fitness values.

A Tutorial on Using and Extending the EvoSuite 115

– runtime: This is the runtime library, i.e., all the instrumentation that is
needed to make test execution deterministic, the mocked Java API, etc.

– plugins: There are several sub-projects in here that are plugins for various
third-party tools, such as Maven, IntelliJ, Eclipse, or Jenkins.

Besides these, there are several other modules or sub-directories. You will
not usually need to access any of these, but in case you are curious what they
are:

– standalone runtime: There is no source code in this library, this is simply a
Maven sub-module that produces a standalone jar file, i.e., one that includes
all the dependencies of the runtime library.

– shaded: There is no source code in here either; this is a Maven module that
produces a version of EvoSuite where the package name is renamed from
org.evosuite to something else. This is to allow EvoSuite to be applied to
itself (which otherwise wouldn’t work, as EvoSuite refuses to instrument its
own code).

– generated: This is a sub-module in which we are putting tests generated by
EvoSuite to test EvoSuite. This is still work in progress.

– release results: This is not a Maven sub-module, it is just a collection of
data that represents the results of the experiment on the SF110 dataset we
conduct every time we perform a release.

– src: No Java source code in here, only some Maven-related meta-data.
– removed: Some source code files that are not used in the main source tree

but have been useful to keep as a reference.

3.2 Building EvoSuite

If you know Maven, then it will probably not come as a surprise to you that,
using Maven, Evosuite can be compiled using:

mvn compile

Most likely, your IDE will do this for you automatically. However, it is important
that your IDE supports Maven, and that you have configured the project as a
Maven project. If you haven’t done this, what you will get are error message com-
plaining that the compiler cannot find classes in the package org.evosuite.xsd.
These classes are generated automatically by jaxb based on an XML schema –
and this is only done if you properly compile the project with Maven.

Recall that the EvoSuite distribution consists of two jar files – one with the
standalone runtime dependencies, and one for test generation. You can generate
these by invoking:

mvn package

The main EvoSuite jar file is generated in the master sub-module:
master/target. You can validate that this is the case by invoking the executable
with Java:

java -jar master/target/evosuite-master-1.0.7-SNAPSHOT.jar

116 G. Fraser

You should now see the help text with the usage instructions. The standalone
runtime library is in directory standalone runtime/target/.

Building EvoSuite can take a while, but a lot of that time is spent executing
unit tests. Although we don’t recommend doing that, if you do need to build
a jar file quickly and can’t wait for the unit tests to complete, you can add
-DskipTests to the Maven command line.

3.3 Testing EvoSuite

As with any Maven project, you will find the source code in src/main/java for
every sub-module, and the tests in src/test/java.

EvoSuite has a fair number of unit tests, but it has a lot more system and
integration tests (executing all system tests takes somewhere between 1–2 h,
depending on your machine). You can distinguish between the two types of tests
based on the classname: all system tests have the suffix SystemTest in their
name. Most of these system tests consist of a class under test that captures a
specific testing challenge, and then invoke EvoSuite to check that it is able to
cover the class fully, using a specific configuration.

In the test directories of the various sub-packages, you will find two main
packages of classes: Everything with a package name starting with org.evosuite
are the actual tests; the package com.examples.with.different.packagename
package contains example classes under test used in the tests.

Let’s take a closer look at one of the system tests. For example, open the class
org.evosuite.basic.NullStringSystemTest, which you can find in the file
master/src/test/java/org/evosuite/basic/NullStringSystemTest.java
(Fig. 3).

The first thing worth noting is that this system test extends SystemTestBase.
This is important for system tests, as it resets the state of EvoSuite (e.g., prop-
erties) and prepares everything for test execution (e.g., classpath). It also sets
a couple of important properties for tests - if you are interested to see which
ones they are, check out method setDefaultPropertiesForTestCases in the
SystemTestBase class. In particular, it sets this property:

Properties.CLIENT_ON_THREAD = true;

This tells EvoSuite not to spawn a new process for the client (i.e., the part that
runs the search and executes the tests). The reason for this is that a standard
Java debugger will only allow you to work in the process it is attached to,
not in any child processes spawned. So, if you want to, for example, set some
breakpoints, it is essential that Properties.CLIENT ON THREAD is set to true,
otherwise the debugger will not be involved when the breakpoint is passed.

The testNullString test starts by creating a new instance of EvoSuite
(Line 5); then, it tells EvoSuite what the class under test is, by setting the prop-
erty Properties.TARGET CLASS to the fully qualified name of the class under
test. As you can see, if you want to set any specific properties of EvoSuite for
your test, you can simply set them in the test. The SystemTestBase will ensure

A Tutorial on Using and Extending the EvoSuite 117

1 public class NullStringSystemTest extends SystemTestBase {
2

3 @Test
4 public void testNullString() {
5 EvoSuite evosuite = new EvoSuite();
6

7 String targetClass = NullString.class.getCanonicalName();
8

9 Properties.TARGET_CLASS = targetClass;
10

11 String[] command = new String[] { "-generateSuite", "-class",
targetClass };

12

13 Object result = evosuite.parseCommandLine(command);
14 GeneticAlgorithm<?> ga = getGAFromResult(result);
15 TestSuiteChromosome best =
16 (TestSuiteChromosome) ga.getBestIndividual();
17 System.out.println("EvolvedTestSuite:\n" + best);
18

19 int goals = TestGenerationStrategy.getFitnessFactories().get(0)
20 .getCoverageGoals().size(); // assuming single fitness

function
21 Assert.assertEquals("Wrong number of goals: ", 3, goals);
22 Assert.assertEquals("Non-optimal coverage: ", 1d,
23 best.getCoverage(), 0.001);
24 }
25 }

Fig. 3. Example system test checking that EvoSuite can assign null values to param-
eters of type String.

that these properties are reset to their defaults after test execution. In our exam-
ple, the class under test is NullString, which the class shown in Fig. 4. On this
class, we can only achieve 100% branch coverage if EvoSuite is able to provide
a null and a non-null value for String parameters. Thus, this class serves to test
whether EvoSuite properly supplies null values for strings.

The test next invokes EvoSuite for the target class in Line 13. This essen-
tially is the same as calling EvoSuite on the command line and passing in some
arguments, which are captured in the command array here. EvoSuite will then
generate some tests, and return an object that summarizes the test generation.
SystemTestBase provides a helper function getGAFromResult to extract the
genetic algorithm instance from this result object, called in Line 14. This GA
object can be queried about various things, and most importantly, we can ask
it for the best individual, i.e., the result of the test generation; this is done in
Line 16. Given this test suite, we can do what we want with it – for example
print it to stdout, like done in Line 17. Or, more importantly, we can write some
assertions to check that the result is as expected. In this particular test, there
are two assertions. The first assertion (Line 21) checks if the number of cover-
age goals for the class under test is 3. The second assertion (Line 23) checks

118 G. Fraser

package com.examples.with.different.packagename;

public class NullString {

public boolean isNull(String s){
if(s==null){
return true;

} else {
return false;

}
}

}

Fig. 4. NullString example class that is used as a target to check if EvoSuite can
produce null values as parameters for methods that expect Strings.

that we have achieved 100% coverage. Checking the number of coverage goals
has proven quite useful over time, as a change in the number of coverage goals
(for whatever reason) will usually have implications on the coverage that can be
achieved. Debugging this case is much easier if we know explicitly that this has
happened, rather than when trying to guess why the coverage percentage is not
as expected.

Try to execute the test and see if it passes. Then, insert the following line
before the call to evosuite.parseCommandLine:

Properties.NULL_PROBABILITY = 1.0;

Re-run the test again – EvoSuite is now configured to only generate null objects
(i.e., with a probability of 1.0), so it should only achieve 67% branch coverage (it
covers the default constructor and the true branch in the target method ‘isNull’).

Now let’s remove that line again from the test to make sure we don’t have
a broken test! (Re-run the test after removing the line to make sure it passes
again.)

3.4 Extending the Search Algorithm

Now let’s make some changes to EvoSuite. As you might know, EvoSuite uses
a Genetic Algorithm to drive the test generation. In a nutshell, this means that
there is a population of candidate solutions (chromosomes, which are test suites
in this case), and these test suites are evolved using search operators that are
intended to simulate natural evolution. A fitness function estimates how good
each candidate solution is. The fittest individuals have the highest likelihood of
reproducing, and if they are selected for reproduction, then two parent individ-
uals are combined to produce two new offspring individuals using a crossover
operator, and then mutation makes smaller changes to these offspring.

All this is implemented in the client module, in the org.evosuite.ga
package. For the abstract superclass org.evosuite.ga.metaheuristics.
GeneticAlgorithm there are several concrete implementations, such as

A Tutorial on Using and Extending the EvoSuite 119

StandardGA (a default textbook genetic algorithm), a SteadyStateGA, or Evo-
Suite’s default, the MonotonicGA. If you look at the GeneticAlgorithm class
you will see that the search algorithm has plenty of members, such as a selec-
tion operator selectionFunction, the crossover operator crossoverFunction,
and a population (population). The population is a list because individuals are
ranked by their fitness value; this value is calculated by the fitnessFunctions.
This, in turn, is a list because EvoSuite typically is used with several fitness
functions at the same time, and there is a fitness value for every fitness function.

The GeneticAlgorithm class is configured with a SinglePointCrossOver
by default. Let’s have a closer look at how this class looks like – open up the
class org.evosuite.ga.operators.crossover.SinglePointCrossover in an
editor. The class extends the abstract class CrossOverFunction, and implements
the method crossOver. The method receives two individuals as parents and
chooses two crossover points point1 and point2 randomly, one for each of the
two individuals. Then, it clones the parents, and on the resulting individuals
it invokes the crossover method to do the actual work. This is the beauty
of meta-heuristic search algorithms: The algorithm is independent of what the
chromosomes represent.

Let’s assume that we would like to implement an alternative crossover
operator, which always cuts chromosomes in the middle, unlike the existing
crossover operators which all choose random crossover points. Let’s create a
new Java class org.evosuite.ga.operators.crossover.MiddleCrossOver in
the client module (in the directory client/src/main/java/org/evosuite/
ga/operators/crossover). The class should extend the abstract class
CrossOverFunction, which means it has to implement the method crossOver.
The skeleton thus looks like this:

package org.evosuite.ga.operators.crossover;

import org.evosuite.ga.Chromosome;

import org.evosuite.ga.ConstructionFailedException;

public class MiddleCrossOver extends CrossOverFunction {

@Override

public void crossOver(Chromosome parent1, Chromosome parent2)

throws ConstructionFailedException {

// TODO

}

}

In order to implement this crossover function, we need to understand one
important aspect: Textbook examples on genetic algorithms will usually assume
a fixed number of genes in a chromosome. However, unlike many other standard
applications of genetic algorithms, the size of individuals in EvoSuite can vary,
as we cannot know the right number of test cases before we even start the search.
Consequently, what is the “middle” is different for every individual.

120 G. Fraser

Thus, the first thing we need to check is whether our individuals even have
more than one test case. If they don’t there’s no way we can do any crossover:

if (parent1.size() < 2 || parent2.size() < 2) {

return;

}

After this, we can assume that both parent chromosomes have at least 2
tests, and so we can calculate the middle of each of them:

int middle1 = (int) Math.round(parent1.size() / 2.0);

int middle2 = (int) Math.round(parent2.size() / 2.0);

The crossover operator in EvoSuite changes a chromosome in place. That
means we first need to create the offspring as direct copies of the parents:

Chromosome t1 = parent1.clone();

Chromosome t2 = parent2.clone();

Now we can change the offspring using the crossOver method, which takes as
parameters (1) the other chromosome with which to cross over, (2) the crossover
point in the chromosome the method is invoked on, and (3) the crossover point
in the other chromosome:

parent1.crossOver(t2, middle1, middle2);

parent2.crossOver(t1, middle2, middle1);

That’s it! Let’s write a test case MiddleCrossOverTest.java to find out if
it works. Add the new file in the appropriate directory in the client module
(client/src/test/java/org/evosuite/ga/operators/crossover/).

The tests in the client module have a DummyChromosome implementation that
we use for the test. A DummyChromosome takes a list of integers, and does muta-
tion and crossover. For example, we could create to parents with different sizes
(e.g., 4 and 2), and then check if the resulting individuals have the right genes.
For example, the test could look like this:

@Test

public void testSinglePointCrossOver() throws

ConstructionFailedException {

DummyChromosome parent1 = new DummyChromosome(1, 2, 3, 4);

DummyChromosome parent2 = new DummyChromosome(5, 6);

MiddleCrossOver xover = new MiddleCrossOver();

DummyChromosome offspring1 = new DummyChromosome(parent1);

DummyChromosome offspring2 = new DummyChromosome(parent2);

xover.crossOver(offspring1, offspring2);

assertEquals(Arrays.asList(1, 2, 6), offspring1.getGenes());

assertEquals(Arrays.asList(5, 3, 4), offspring2.getGenes());

}

If you did everything correctly, then this test should pass. Does it?

A Tutorial on Using and Extending the EvoSuite 121

Now that we’ve got this wonderful new crossover operator, the next big ques-
tion is: How do we make EvoSuite use it? EvoSuite is highly configurable, and
the configuration is controlled by the class org.evosuite.Properties in the
client module. In this class, you’ll find all the different properties that EvoSuite
supports – there are a lot of them. Each property consists of a public static
field in all caps, which is how the properties are accessed from within code. In
addition, each property has @Parameter annotation, in which we define a key
– this is the key we use on the command line, if we set properties using the
-Dkey=value syntax. If we look for crossover, we will find the following relevant
code:

public enum CrossoverFunction {
SINGLEPOINTRELATIVE, SINGLEPOINTFIXED, SINGLEPOINT, COVERAGE

}

@Parameter(key = ”crossover function”, group = ”Search Algorithm”,
description = ”Crossover function during search”)

public static CrossoverFunction CROSSOVER FUNCTION =
CrossoverFunction.SINGLEPOINTRELATIVE;

Thus, there is a property Properties.CROSSOVER FUNCTION, and it is of type
of the enum class CrossoverFunction, which contains all the possible crossover
functions. In the future maybe EvoSuite will see some way to make it extensible
at runtime, but for now we need to add our new crossover operator to the enum:

public enum CrossoverFunction {

SINGLEPOINTRELATIVE, SINGLEPOINTFIXED, SINGLEPOINT,

COVERAGE, MIDDLE

}

The final thing we need to change is the place where this property is
read and the crossover function is instantiated. If we look up where in the
source code the property Properties.CROSSOVER FUNCTION field is used, we
see that it is used in org.evosuite.strategy.PropertiesSuiteGAFactory and
PropertiesTestGAFactory. These are two factory classes that create and con-
figure a genetic algorithm object based on the values in the Properties class.
As we are doing whole test suite generation (it’s EvoSuite’s default), let’s edit
PropertiesSuiteGAFactory. Find the method getCrossoverFunction(). It
contains a switch over the value of our property, and calls the corresponding
constructor. Thus, we need to add a new case:

case MIDDLE:

return new MiddleCrossOver();

That’s it! Now we’re ready to generate a jar file and use EvoSuite with our
new crossover function. Recall that you can generate the jar file (which will be
located in master/target) using:

mvn package

When we now run EvoSuite with this jar file, we can specify to use our
new crossover function using -Dcrossover function=Middle. Likely this oper-
ator will not make a difference – it’s just an example for illustration purposes.

122 G. Fraser

However, in the next section we will look at how to run experiments with Evo-
Suite in general, and you could investigate this crossover operator with some
similar experiments.

4 Running Experiments with EvoSuite

4.1 Preparing the Experiment

For the third part of the tutorial, we will be looking at how one can collect
data about the test generation. We will use a simple example scenario: EvoSuite
by default uses a combination of different coverage criteria [10]. What are the
effects of this combination over using just branch coverage as target criterion?
A reasonable hypothesis would be that the combination leads to more tests, and
better test suites. But is that actually true? Let’s run an experiment to find out!

The experiment will involve running EvoSuite on a number of classes with
its default configuration and configured to only use branch coverage, and then to
take different measurements of the resulting test suites. When doing experiments
of this kind, the selection of classes has implications on how much our results
generalize: If we use a very specific and small selection of classes, then what-
ever our findings, they may only be relevant to that particular type of classes.
Therefore, we generally would want to select as many as possible, as diverse as
possible, and as representative as possible classes in order to get results that gen-
eralize. However, this is not the aim of this tutorial, so let’s just use a selection of
classes we’ve prepared for this tutorial. The tutorial assumes that you download
and extract the archive containing the selection of example classes (but note you
can, in principle, use any collection of Java classes instead):

wget http://evosuite.org/files/tutorial/Tutorial_Experiments.zip

unzip Tutorial_Experiments.zip

Change into the main directory again, and compile the example project with
Maven:

cd Tutorial_Experiments

mvn compile

We will be invoking EvoSuite directly in this part of the tutorial. To avoid
having to set the classpath repeatedly, let’s set up EvoSuite. First, we need to
download all dependency jar files of the example project. To make things slightly
more challenging, the class tutorial.Bank has a (quite artificial) dependency on
the Apache Commons Collections library. When running EvoSuite from Maven,
then Maven downloads all dependencies and sets up the classpath for us auto-
matically – but when we run EvoSuite directly it is our responsibility to set up
a correct classpath. Fortunately, this is easy enough: To download all dependen-
cies, type the following Maven command:

mvn dependency:copy-dependencies -DincludeScope=runtime

This command downloads all dependency jar files, and puts them into the
target/dependency directory. The reason for specifying the scope to be run-
time using -DincludeScope=runtime is that the project has test dependencies

A Tutorial on Using and Extending the EvoSuite 123

on JUnit and EvoSuite – but neither of these dependencies are necessary in
order to generate some tests for the classe under test, we really just need the
compile and runtime dependencies. Thus, the full project classpath consists of
the classes in target/classes and the jar file target/dependency/commons-
collections-3.2.2.jar. We can store this information by creating an
evosuite.properties file that saves this classpath, by use the following com-
mand:

$EVOSUITE -setup target/classes

target/dependency/commons-collections-3.2.2.jar

Check that the resulting evosuite-files/evosuite.properties at the top has the
correct classpath set:

CP=target/classes:target/dependency/commons-collections-3.2.2.jar

4.2 Collecting Data with EvoSuite

Let’s start by invoking EvoSuite on the Stack class in our project, targeting
only branch coverage:

$EVOSUITE -class tutorial.Person -criterion branch

We have already had a closer look at the test suites that EvoSuite produces.
However, EvoSuite also produces data to document what happened. This is
stored in the following file:

evosuite-report/statistics.csv

Use your favourite editor to have a closer look at this file. You should see some-
thing like this:

TARGET_CLASS,criterion,Coverage,Total_Goals,Covered_Goals

tutorial.Person,BRANCH,1.0,3,3

This file is in comma-separated value format. The first row contains head-
ers showing what the individual columns contain, and then the rows contain
the actual data. The first column contains the name of the class we tested
(tutorial.Person). The second column shows us the coverage criteria that we
used – in this case we see the full list of criteria that EvoSuite uses by default,
separated by semicolons. The third column tells us the achieved coverage – 1.0
in this case, which means we have 100% coverage (yay!). This is calculated based
on the ratio of coverage goals covered to total goals (last two columns).

Let’s test the same class again, but this time using line and branch coverage:

$EVOSUITE -class tutorial.Person -criterion line:branch

If we look at evosuite-report/statistics.csv again we’ll see a new row:

TARGET_CLASS,criterion,Coverage,Total_Goals,Covered_Goals

tutorial.Person,BRANCH,1.0,3,3

tutorial.Person,LINE;BRANCH,1.0,9,9

124 G. Fraser

As you can see, we now have a new entry for our second call to EvoSuite, where
we specified branch and line coverage as target criteria.

Let’s try another class and criterion:

$EVOSUITE -class tutorial.Company -criterion line

Again, the evosuite-report/statistics.csv file will now contain a new line:

TARGET_CLASS,criterion,Coverage,Total_Goals,Covered_Goals

tutorial.Person,BRANCH,1.0,3,3

tutorial.Person,LINE;BRANCH,1.0,9,9

tutorial.Company,LINE,1.0,4,4

The tutorial.Company class has four lines of code, and the generated tests
cover all of them. Great!

4.3 Setting Output Variables

We now know where to find data about the test generation. However, the data we
have seen does not help us to answer the questions we would like to investigate.
Recall that our scenario was that we wanted to know if the default combination
of criteria leads to more tests, and better test suites. We cannot answer this
with the data in the statistics.csv files currently—the coverage values cannot be
compared (they refer to different criteria), and neither can the numbers of goals.

Fortunately, we can generate more data than just the columns our data file
has shown us so far. EvoSuite has a property output variables which deter-
mines which values should be written to the statistics.csv file. Before we do
that, let’s remove the old statistics.csv file:

rm evosuite-report/statistics.csv

This is important if we decide to change the columns of the data files – our
data file currently has a header row and three data rows that assume there are
five columns; if we change the columns, and additional rows will not match the
existing data.

Now, let’s include some new values. There are two main types of output
variables: runtime variables, which are the result of computation (e.g., the
coverage), whereas properties are the input properties we can set. For exam-
ple, TARGET CLASS and criterion are properties, whereas Total Goals and
Covered Goals are runtime variables. There are some inconsistencies in terms
of which variables are capitalised – this is for historic reasons, as changing the
runtime variable names may break existing experimental infrastructure. How-
ever, in a future major release we may decide to change the variable names to a
consistent format.

Let’s think about what values we would like to include. Our first question
is whether the combination of criteria leads to more tests. The corresponding
output variable is Size, which reports the number of tests. However, let’s not
forget that these are unit tests, where a single test can consist of several state-
ments. Thus, we can also use the Length variable to count the total number of
statements, which is maybe a better representation of the size of a test suite.

A Tutorial on Using and Extending the EvoSuite 125

Our second question is whether the combination of criteria leads to better
tests. A standard way to evaluate test suites is by measuring coverage – but
which criterion would we use to measure this? A better way might be to compare
the test suites in terms of their mutation scores. The mutation score is a metric
based on the idea of Mutation Analysis, and quantifies how many artificial faults
a test suite can find. There are several mutation analysis frameworks for Java
available, but EvoSuite also has a basic mutation functionality integrated [8], as
it can aim to generate tests that kill mutants directly. The output variable for
this is MutationScore.

To summarize, for our experiment we would like to have the following data:

– Class under test (TARGET CLASS)
– Criteria (criterion)
– Size (Size)
– Length (Length)
– Mutation score (MutationScore)

The list of variables is passed as a comma separated list to the
output variables property. Let’s try this out:

$EVOSUITE -class tutorial.Company -criterion branch

-Doutput_variables=TARGET_CLASS,criterion,Size,Length,MutationScore

If you look at the resulting evosuite-report/statistics.csv file, you should
see something like this:

TARGET_CLASS,criterion,Size,Length,MutationScore

tutorial.Company,BRANCH,1,2,1.0

Thus, we have just generated one test consisting of two statements, and this test
killed all the mutants EvoSuite generated for the class.

If we look at the test suite in evosuite-tests/tutorial/Company
ESTest.java you should see something like this:

@Test(timeout = 4000)

public void test0() throws Throwable {

Company company0 = new Company("");

String string0 = company0.getName();

assertEquals("", string0);

}

Note that the assertion is not included in EvoSuite’s statement count. This is
because assertions are not generated as part of the search-based test generation,
but are added in a post-processing step.

4.4 Running an Experiment

Now let’s run an actual experiment and gather some data. We would like to get
information on all classes in our project, so we need to run EvoSuite on all of
them. Furthermore, let’s not forget that EvoSuite is randomized: If you run it
twice in sequence, you will get different results. That also means that if you get

126 G. Fraser

a very large test suite in one run, you may get a test suite with a different size in
the next run. In general, when we have randomized algorithms, we need to run
repetitions, and statistically analyze our data. Therefore, we’ll generate tests on
all our classes, and repeat this 10 times. Furthermore, we need to do all this
twice, once with only branch coverage, and once with the default criteria. Before
we start the experiment, let’s remove the old statistics.csv file again:

rm evosuite-report/statistics.csv

Now, let’s run the experiment. We will tell EvoSuite to test all classes in the
tutorial package using the -prefix argument, and pass in the target criterion
(branch) as well as our output variables.

$EVOSUITE -criterion branch -prefix tutorial -Dshow_progress=false \

-Doutput_variables==TARGET_CLASS,criterion,Size,Length,MutationScore

We added -Dshow progress=false; this isn’t essential, but the progress bar
does tend to clutter up log files if we perform larger numbers of runs, so we
deactivated it here. If you look at the data file, you should see something like
this:

TARGET_CLASS,criterion,Size,Length,MutationScore

tutorial.ATM,BRANCH,10,75,0.3888888888888889

tutorial.ATMCard,BRANCH,8,40,1.0

tutorial.Bank,BRANCH,4,15,0.8

tutorial.BankAccount,BRANCH,2,6,0.8

tutorial.Owner,BRANCH,1,1,1.0

tutorial.CurrentAccount,BRANCH,2,7,0.6521739130434783

tutorial.SavingsAccount,BRANCH,2,7,0.8529411764705882

tutorial.Company,BRANCH,1,2,1.0

tutorial.Person,BRANCH,2,4,0.0

We now have data for all classes, for the first configuration we are interested in
(branch coverage). If we re-run this command without the -criterion branch
argument, we’ll get some more data for all classes for the other configura-
tion (default coverage criteria). When analysing this data, we need to distin-
guish between the two configurations; we can either use the criterion col-
umn we have already added, or we can also label our configurations, using the
-Dconfiguration id=name syntax, and then including this property in the out-
put variables. Thus, to run our experiment, we will need the following two com-
mands, one for branch coverage, one for the default combination:

$EVOSUITE -Dconfiguration_id=Default \

-prefix tutorial -Doutput_variables=configuration_id,\

TARGET_CLASS,criterion,Size,Length,MutationScore

$EVOSUITE -Dconfiguration_id=Branch -criterion branch \

-prefix tutorial -Doutput_variables=configuration_id,\

TARGET_CLASS,criterion,Size,Length,MutationScore

A Tutorial on Using and Extending the EvoSuite 127

This will result in something like the following in statistics.csv:

configuration_id,TARGET_CLASS,criterion,Size,Length,MutationScore

Default,tutorial.ATM,[...],14,109,0.3611111111111111

Default,tutorial.ATMCard,[...],13,65,1.0

Default,tutorial.Bank,[...],6,22,0.8

Default,tutorial.BankAccount,[...],8,24,1.0

Default,tutorial.Owner,[...],1,1,1.0

Default,tutorial.CurrentAccount,[...],4,12,0.7608695652173914

Default,tutorial.SavingsAccount,[...],4,12,0.8823529411764706

Default,tutorial.Company,[...],3,6,1.0

Default,tutorial.Person,[...],6,12,1.0

Branch,tutorial.ATM,BRANCH,10,77,0.4166666666666667

Branch,tutorial.ATMCard,BRANCH,8,40,1.0

Branch,tutorial.Bank,BRANCH,4,15,0.8

Branch,tutorial.BankAccount,BRANCH,2,6,0.8

Branch,tutorial.Owner,BRANCH,1,1,1.0

Branch,tutorial.CurrentAccount,BRANCH,2,7,0.6739130434782609

Branch,tutorial.SavingsAccount,BRANCH,3,8,0.6470588235294118

Branch,tutorial.Company,BRANCH,1,2,1.0

Branch,tutorial.Person,BRANCH,2,4,0.0

(In this example, we replaced the list of criteria (LINE;BRANCH;...) with [...]
to make it fit into this article.)

Just by eyeballing the results, we can see that the default configuration
leads to more tests in all classes except tutorial.Owner. Your specific data
will look different – in the data down above, the mutation score is higher for
tutorial.Person, tutorial.SavingsAccount, tutorial.CurrentAccount,
but surprisingly, lower for tutorial.ATM. How can that be the case? Recall
that EvoSuite is randomized—sometimes test generation will be lucky to hit a
specific value that is good at killing some mutants, sometimes it isn’t. What we
need to establish, then, is not whether one configuration is better than the other
in one particular run, but on average. Thus, we need to repeat our experiment
several times, and do some more rigorous analysis.

A simple way to do the repetitions would be to simply wrap the call in a
bash-loop to run it, for example, 5 times:

for I in {1..5}; do $EVOSUITE -Dconfiguration_id=Default [...] ; done

for I in {1..5}; do $EVOSUITE -Dconfiguration_id=Branch [...] ; done

This is going to take quite a while. In fact, 5 repetitions is not even a suitably
large number for serious experiments, ideally you’d want 30 repetitions or more
to get representative results.

4.5 Analyzing Results

Now we have some data – from at least one run, and if you were patient enough,
maybe from 5 or more additional runs. What are we going to do with that
data? The best thing to do now is to use statistical analysis package to process

128 G. Fraser

and analyze the data. For example, using Python’s Matplotlib5 we can produce
the boxplots shown in Fig. 5. Besides visualizing the data, you will also need
to statistically analyze it [1]. If we consider the data of our experiment, you
will find that, with statistical significance, we can say that test suites generated
for branch coverage have different sizes, numbers of statements, and mutation
scores than those generated for the default criteria. The effect size tells us that
for all three of these properties there is a medium increase when using the default
configuration over the branch configuration. So all in all, it sounds like a good
idea to use the default configuration! (After all, that is why it is the default
configuration...)

(a) Number of Tests (b) Number of Statements (c) Mutation Score

Fig. 5. Analysis of the results on the branch coverage vs. default criteria comparison.

4.6 Other Useful Variables

To get a full overview of the available output variables, the best place is currently
the source code, in particular the file RuntimeVariable.java in the client
module (package org.evosuite.statistics). For example, if you want to know
how certain values evolved over time, there are timeline variables that capture
this data for you. Assume we would like to see how branch coverage evolves over
the first 30 s of the search, and we want to sample once every second. To do this,
we would add an output variable CoverageTimeline, and specify the sampling
interval using -Dtimeline interval=1000:

5 https://matplotlib.org/.

https://matplotlib.org/

A Tutorial on Using and Extending the EvoSuite 129

$EVOSUITE -class tutorial.ATM -criterion branch \

-Doutput_variables=TARGET_CLASS,BranchCoverage,CoverageTimeline \

-Dtimeline_interval=1000 -Dsearch_budget=30

As we specified a time budget of 30 s in total (-Dsearch budget=30), the
statistics.csv file will now have 30 columns labeled CoverageTimeline T1
up to CoverageTimeline T30, with the individual values for each second of the
search.

As another interesting example, the BranchCoverageBitString variable will
produce a string of 0 and 1 digits, where each digit represents one branch in the
program, and 1 indicates that the branch was covered. This bitstring allows us
to compare whether specific branches were covered by specific configurations.

5 Conclusions

In this tutorial, we covered basic usage of EvoSuite on the command-line, some
simple changes to EvoSuite’s source code, and some basic experiments. If you
want to learn more about EvoSuite, here are some pointers:

– http://www.evosuite.org: The main EvoSuite website contains many papers
related to EvoSuite, experimental data to reproduce past experiments, and
documentation. The documentation includes a more elaborate version of this
tutorial, and instructions on how to use the different plugins (e.g., Maven).

– https://github.com/EvoSuite/evosuite: EvoSuite is open source, licensed
with the GNU Lesser General Public License version 3. The source code
repository is on GitHub, as is an issue tracker. Since EvoSuite is an open
source project, its continued maintenance depends on contributions. If you
produce work or improvements to EvoSuite, please do consider to feed them
back to the project!

References

1. Arcuri, A., Briand, L.: A Hitchhiker’s guide to statistical tests for assessing ran-
domized algorithms in software engineering. Softw. Test. Verif. Reliab. (STVR)
24(3) (2012)

2. Arcuri, A., Campos, J., Fraser, G.: Unit test generation during software develop-
ment: EvoSuite plugins for Maven, IntelliJ and Jenkins. In: IEEE International
Conference on Software Testing, Verification, and Validation (ICST) (2016)

3. Arcuri, A., Fraser, G.: Parameter tuning or default values? An empirical investi-
gation in search-based software engineering. Empir. Softw. Eng. (EMSE) 18(3),
594–623 (2013)

4. Arcuri, A., Fraser, G., Galeotti, J.P.: Automated unit test generation for classes
with environment dependencies. In: ACM/IEEE International Conference on Auto-
mated Software Engineering (ASE), pp. 79–90. ACM (2014)

5. Arcuri, A., Fraser, G., Galeotti, J.P.: Generating TCP/UDP network data for auto-
mated unit test generation. In: ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE), pp. 155–165 (2015)

http://www.evosuite.org
https://github.com/EvoSuite/evosuite

130 G. Fraser

6. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. (TSE)
39(2), 276–291 (2013)

7. Fraser, G., Arcuri, A.: A large-scale evaluation of automated unit test generation
using EvoSuite. ACM Trans. Softw. Eng. Methodol. (TOSEM) 24(2), 8 (2014)

8. Fraser, G., Arcuri, A.: Achieving scalable mutation-based generation of whole test
suites. Empir. Softw. Eng. 20(3), 783–812 (2015)

9. Panichella, A., Kifetew, F.M., Tonella, P.: Reformulating branch coverage as a
many-objective optimization problem. In: IEEE International Conference on Soft-
ware Testing, Verification and Validation (ICST), pp. 1–10. IEEE (2015)

10. Rojas, J.M., Campos, J., Vivanti, M., Fraser, G., Arcuri, A.: Combining multiple
coverage criteria in search-based unit test generation. In: Barros, M., Labiche, Y.
(eds.) SSBSE 2015. LNCS, vol. 9275, pp. 93–108. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-22183-0 7

11. Rojas, J.M., Fraser, G., Arcuri, A.: Seeding strategies in search-based unit test
generation. Softw. Test. Verif. Reliab. 26(5), 366–401 (2016)

https://doi.org/10.1007/978-3-319-22183-0_7
https://doi.org/10.1007/978-3-319-22183-0_7

A Preliminary Systematic Mapping Study
of Human Competitiveness of SBSE

Jerffeson Souza1(B), Allysson Allex Araújo2, Raphael Saraiva1,
Pamella Soares1, and Camila Maia3

1 Optimization in Software Engineering Group, State University of Ceará,
Fortaleza, Brazil

jerffeson.souza@uece.br
2 Optimization in Software Engineering Group, Federal University of Ceará,

Crateús, Brazil
3 Optimization in Software Engineering Group, Federal Data Processing Service,

Fortaleza, Brazil
http://goes.uece.br

Abstract. Search Based Software Engineering (SBSE) seeks to refor-
mulate Software Engineering complex problems as search problems to
be, hereafter, optimized through the usage of artificial intelligence tech-
niques. As pointed out by Harman in 2007, in his seminal paper about
the current state and future of SBSE, it would be very attractive to have
convincing examples of human competitive results in order to champion
the field. A landmark effort in this direction was made by Souza and oth-
ers, in the paper titled “The Human Competitiveness of Search Based
Software Engineering”, published at SSBSE’2010, voted by the SBSE
community as the most influential paper of the past editions in the 10th
anniversary of the SSBSE, in 2018. This paper presents a preliminary
systematic mapping study to provide an overview of the current state of
human competitiveness of SBSE, carried out via a snowball reading of
Souza’s paper. The analyses of the 29 selected papers showed a grow-
ing interest in this topic, especially since 2010. Seven of those papers
presented relevant experimental results, thus demonstrating the human
competitiveness of results produced by SBSE approaches.

Keywords: Human competitiveness
Search based software engineering · SBSE · Systematic mapping study

1 Introduction

Search Based Software Engineering (SBSE) seeks to reformulate Software Engi-
neering (SE) complex problems as “search problems” to be, hereafter, optimized
through the usage of artificial intelligence techniques [1]. This approach to opti-
mization is natural, since several SE problems are characterized by many com-
plex and competing objectives in large search spaces [2]. In these scenarios,
automated optimization techniques pose as natural candidates [3].
c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 131–146, 2018.
https://doi.org/10.1007/978-3-319-99241-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_6&domain=pdf

132 J. Souza et al.

It has been argued that comparisons with results produced by humans are
often couched as a criterion for success for the field of machine intelligence [4].
As stated by Samuel, the aim is to get machines to exhibit behavior, which if
done by humans, would be assumed to involve the use of intelligence [5]. This
assumption has attracted great interest in results that can be said to be human
competitive. A result obtained by automatic computation is said to be human
competitive if it meets any of the eight criteria proposed by Koza et al. [6]. As
we can see in Table 1, many of these criteria refer to patents and existing results.

Table 1. Eight criteria for saying that an automatically created result is human-
competitive [6].

Criterion

A The result was patented as an invention in the past, is an improvement over a patented
invention, or would qualify today as a patent able new invention

B The result is equal to or better than a result that was accepted as a new scientific
result at the time when it was published in a peer-reviewed scientific journal

C The result is equal to or better than a result that was placed into a database or
archiveof results maintained by an internationally recognized panel of scientific experts

D The result is publish able in its own right as a new scientific result—independent ofthe
fact that the result was mechanically created

E The result is equal to or better than the most recent human-created solution to
along-standing problem for which there has been a succession of increasingly better
human-created solutions

F The result is equal to or better than a result that was considered an achievement in its
field at the time it was first discovered

G The result solves a problem of indisputable difficulty in its field

H The result holds its own or wins a regulated competition involving human contestants
(in the form of either live human players or human-written computer programs)

As stated 11 years ago by Harman in his seminal paper about the future of
SBSE, it would be very attractive to have convincing examples of human com-
petitive results in order to champion the field of SBSE [2]. Throughout these
years, a few works have addressed and proved the human competitiveness of
SBSE (e.g. [7–9]). A landmark effort in this direction was made by Souza et
al. in the paper titled “The Human Competitiveness of Search Based Software
Engineering” [10]. This work sparked the interest in discussing the human com-
petitiveness of SBSE, which can be seen through the increasing number of articles
addressing this issue. In addition, this paper was honored by the SBSE commu-
nity as the most influential paper of the past editions in the 10th anniversary of
the Symposium on Search Based Software Engineering (SSBSE’18).

Therefore, motivated by this ongoing interest, the relevance of this particular
subject to the SBSE community and the distinguished award, we performed a
preliminary systematic mapping study to provide an overview of the current
state of human competitiveness of SBSE. We refer to this as a preliminary study

A Preliminary SMS of Human Competitiveness of SBSE 133

because we make no claim for completeness, since we have solely focused in
carrying out a snowball reading of Souza’s et al. paper. Aligned with this goal,
our purpose is three-fold: (1) to discuss when, how many times and in which
context human competitiveness has been addressed in SBSE; (2) to bring up new
results, from other researchers, related to the human competitiveness of SBSE;
and finally, (3) to point out to some open questions and remaining challenges to
be addressed on that issue.

2 Systematic Mapping Study

We have opted for conducting a systematic mapping study instead of a system-
atic literature review due to the type of question that each one answers. While
a systematic literature review asks a fairly specific set of questions, a systematic
mapping study asks more general questions [11]. The main goal of a systematic
mapping study is to provide an overview of a research area and identify the
quantity and type of research and results available within it [12]. To achieve this
goal, we adopted the mapping process proposed by Petersen et al. [13] which is
described along the next three subsections.

2.1 Definition of Research Questions

As we previously discussed, our general goal is to provide an overview of the
research that addresses human competitiveness in SBSE. In order to accomplish
this goal, we formulated the following research questions:

– RQ1: How have the publications addressing human competitiveness in SBSE
evolved over the years? Rationale: this question was formulated aiming at
investigating the number, constancy, publication fora and, finally, which SE
areas the human competitiveness have been covered in SBSE.

– RQ2: In which context the human competitiveness has been discussed by
the SBSE community? Rationale: through this question, we are interested in
analysing whether and how many of the papers empirically evaluated human
competitiveness or merely mentioned it as baseline argument.

2.2 Conduct Search for Primary Sources and Screening of Papers

In this step of the systematic mapping, the list of papers to be further analyzed
is defined. To perform our search, we followed the work of Webster and Watson
[14], which advocate the use of snowballing as the main method for finding
relevant literature. Snowballing refers to using the reference list of a paper or
the citations to the paper to identify additional papers [12]. Thus, we carried out
a snowball reading of Souza’s et al. work as a start paper, by considering both
forward and backward procedures. It is worth to note that human competitive
studies in automatic computation have been widely investigated before (e.g.,
[4,6]), however, we are interested solely in the works in the context of SBSE.

134 J. Souza et al.

According to Wohlin [15], snowballing could benefit from not only looking
at the reference lists and citations, but to complement it with a systematic way
of looking at where papers are actually referenced and where papers are cited.
Using the references and the citations is referred to as backward and forward
snowballing, respectively. In our research, the citations were obtained through
the list provided by Google Scholar1. As depicted in Fig. 1, we identified a set of
53 and 37 papers as to backward and forward, respectively.

Fig. 1. Backward and forward snowballing.

In addition, Fig. 2 summarizes our three-stage approach to search and select
the primary sources. As we previously discussed, we initially defined the article
of Souza’s et al. as a start paper. In Stage 2, we identified a set of 90 papers
through backward and forward snowball readings. Then, we performed the fol-
lowing inclusion/exclusion procedures. We looked for the title, abstract, key-
words, introduction, conclusion and the entire paper whenever necessary. Our
inclusion criteria was solely the clear mention of human competitiveness related
to SBSE. Regarding exclusion, we removed duplicated papers and those who
were not available online. Finally, after the inclusion/exclusion processes were
performed, we have selected 29 papers in Stage 3 to form the primary sources of
our mapping study.

Fig. 2. Three-stage approach to search and select the primary sources.

2.3 Classification Scheme and Data Extraction

After analysing all selected papers, we classified them into three major dimen-
sions: (i) Publication forum (journal, conference or thesis/dissertation) where

1 https://scholar.google.com/scholar?cites=12366459541329916171&as sdt=2005.

https://scholar.google.com/scholar?cites=12366459541329916171&as_sdt=2005

A Preliminary SMS of Human Competitiveness of SBSE 135

T
a
b
le

2
.
M

a
p
p
in

g
p
ri

m
a
ry

so
u
rc

es
.

ID
R
e
fe
re

n
c
e

Y
e
a
r

S
E

a
re

a
s

T
y
p
e
o
f
p
u
b
li
c
a
ti
o
n

C
o
n
te

x
t

R
e
q
u
ir
e
m

e
n
ts
/

sp
e
c
ifi

c
a
ti
o
n
s

T
h
e
o
ry

o
f
S
B
S
E

M
a
n
a
g
e
m
e
n
t

S
o
ft
w
a
re

/

p
ro

g
ra

m

v
e
ri
fi
c
a
ti
o
n

D
is
tr
ib

u
ti
o
n
,

m
a
in
te

n
a
n
c
e
a
n
d

e
n
h
a
n
c
e
m

e
n
t

S
o
ft
w
a
re

p
ro

p
e
rt
ie
s

C
o
n
fe
re

n
c
e

p
a
p
e
r

J
o
u
rn

a
l

p
a
p
e
r

M
a
st
e
r

th
e
si
s

P
h
D

d
is
se

rt
a
ti
o
n

E
m

p
ir
ic
a
l

E
v
a
lu

a
ti
o
n

B
a
se

li
n
e

a
rg

u
m

e
n
t

[S
1
]

[7
]

2
0
0
6

�
�

�
[S

2
]

[2
]

2
0
0
7

�
�

�
[S

3
]

[1
6
]

2
0
0
9

�
�

�
[S

4
]

[1
0
]

2
0
1
0

�
�

�
�

[S
5
]

[1
7
]

2
0
1
0

�
�

�
[S

6
]

[1
8
]

2
0
1
1

�
�

�
[S

7
]

[1
9
]

2
0
1
1

�
�

�
[S

8
]

[2
0
]

2
0
1
1

�
�

�
[S

9
]

[2
1
]

2
0
1
1

�
�

�
[S

1
0
]
[2
2
]

2
0
1
1

�
�

�
[S

1
1
]
[2
3
]

2
0
1
2

�
�

�
[S

1
2
]
[2
4
]

2
0
1
2

�
�

�
[S

1
3
]
[2
5
]

2
0
1
2

�
�

�
[S

1
4
]
[2
6
]

2
0
1
2

�
�

�
[S

1
5
]
[2
7
]

2
0
1
3

�
�

�
[S

1
6
]
[9
]

2
0
1
3

�
�

�
[S

1
7
]
[2
8
]

2
0
1
3

�
�

�
[S

1
8
]
[2
9
]

2
0
1
3

�
�

�
[S

1
9
]
[3
0
]

2
0
1
3

�
�

�
[S

2
0
]
[3
1
]

2
0
1
4

�
�

�
[S

2
1
]
[3
2
]

2
0
1
4

�
�

�
[S

2
2
]
[3
3
]

2
0
1
5

�
�

�
[S

2
3
]
[3
4
]

2
0
1
6

�
�

�
[S

2
4
]
[3
5
]

2
0
1
6

�
�

�
[S

2
5
]
[3
6
]

2
0
1
7

�
�

�
[S

2
6
]
[3
7
]

2
0
1
7

�
�

�
[S

2
7
]
[3
8
]

2
0
1
7

�
�

�
[S

2
8
]
[3
9
]

2
0
1
7

�
�

�
[S

2
9
]
[4
0
]

2
0
1
7

�
�

�

136 J. Souza et al.

the publication appeared; (ii) SE area according to the 2012 ACM Computing
Classification System and, finally, (iii) Context of discussion to which the cat-
egories were (a) works that empirically evaluate the human competitiveness or
(b) works which only mention it as part of their fundamental background.

For gathering the data we created a Google Sheets file to collect the required
information about all papers. In addition to the dimensions previous defined,
the spreadsheet contained the following standard data fields: primary study ID,
reference, title of the paper, name of the authors and year of publication. Hence,
a meeting with the authors was organized in order to classify each single paper
for each criterion. Table 2 lists the details of the 29 papers that form the primary
sources of our mapping study. We have omitted the title of the paper and the
name of the authors. However, by interlinking the ID and Reference, it is possible
to identify these information, if intended.

3 Results and Analyses

In this section we present and analyse the outcomes obtained by our mapping
study. Initially, we discuss the results related to the research question concerned
to the analysis of the publications throughout the years and, then, in which
context they have been discussed by the community.

3.1 RQ1: Number and Frequency of Publications

We can observe by analysing Fig. 3 that human competitiveness is a frequent
topic in SBSE research. Since 2009, it has at least one work dealing with this
subject. In particular, 2007 can be considered a significant year, since it was
the year in which Harman clarified and pointed out the necessity of having
convincing examples of human competitive results in SBSE [S2]. In addition,
we can see that the number of works on this topic considerably increased after
Souza’s et al. paper, published in 2010. Another aspect to be emphasized is the
continuous engagement and interest of the community up to date. For instance,
in 2017, seven years after Souza’s et al. paper, we identified another peak of
works (5) as higher as 2011 and 2013 (5).

Moreover, we have investigated in which publication fora the human compet-
itiveness has been addressed more frequently. As we can see in Fig. 4, the Sym-
posium on Search Based Software Engineering poses as the most frequent venue
for publications, with 5 primary sources [S4, S6, S12, S16, S23]. Considering only
the conference venues, the SSBSE was followed by the Brazilian Symposium on
Software Engineering, with 2 publications [S3, S10]. Among journal publications,
the International Journal of Computer Applications [S9, S13], Journal of Empir-
ical Software Engineering [S18, S24] and the ACM Transactions on Software
Engineering and Methodology [S19, S21] were the most frequent ones, with 2
publications each.

Complementing the previous analyses, we examined how many of the papers
correspond to conference fora, journal publications or final course assignments.

A Preliminary SMS of Human Competitiveness of SBSE 137

Fig. 3. Publication per year since 2006.

Fig. 4. Publication for a summary.

As depicted by the Fig. 5a, there is a certain similarity between the conference
(48.3%) and journal (41.4%) publications. In addition to these results, we iden-
tified 1 Master Thesis [S20] and 2 PhD Dissertations [S27, S29], respectively
representing 3.4% and 6.9% of the total.

Furthermore, we investigated in which SE area the human competitiveness
has been addressed. Figure 5b shows the number of publications classified accord-
ing to the 2012 ACM Computing Classification System. Additionally to this
classification, we included a category named “Theory of SBSE” which reflects
those papers which are focused on discussing the role of SBSE as research field
[S2, S5, S10, S11, S17]. As we can see, human competitiveness was addressed in
5 different SE areas, with Requirements/Specification [S1, S3, S4, S7-S9, S12,
S19, S20, S22] and Software/Product verification [S4, S13-S15, S18, S21, S24,
S26, S27, S29] being the ones with more papers with 32.3% of the total, each

138 J. Souza et al.

area. We believe these numbers denote on one hand the concern in investigating
human-intensive processes such as release planning [41] and, on the other hand,
the usual role of software testing as the most addressed area in SBSE [42].

3.2 RQ2: Context of Discussion

More than how many works addressed human competitiveness in SBSE over
the years, we are also interested in contextualizing which new results have been
published throughout this period. As we can see in Fig. 6, the majority (75.86%)
of the papers discussed human simply as a baseline argument. Beyond these
works, we identified a set of seven papers (24.14%) that, in fact, empirically
evaluated the human competitiveness in the SBSE context. In particular, we will
focus on these empirical works along this section and discuss their approaches
and contributions.

(a) Type of publications. (b) SE areas.

Fig. 5. Information about the primary sources.

Fig. 6. Context of discussion of the primary sources.

As exposed in Fig. 6, two papers with human competitiveness contribu-
tions were published before Souza’s et al. work, respectively in 2006 and 2009.
The first one was conducted by Baker et al. [S1]. They presented results of

A Preliminary SMS of Human Competitiveness of SBSE 139

automated approaches to solve two requirements engineering problems: Compo-
nent Selection and Component Prioritisation. These problems require optimi-
sation of more than one objective aiming to minimize risk and maximize fiscal
return while respecting a given bound of total cost. The authors evaluated a real
world dataset from a large telecommunications organisation.

For the experiment, 40 components were used and ordered according to an
expert ranking. Five of these components were considered as basic and essential
and were not included in the list of candidates for the experiment, remaining
35 components. An analysis was performed to compare the results from Greedy
Algorithm, Simulated Annealing, and human experts. The results showed that
both search algorithms produced significantly better sets of components than
those selected by expert judgment. For example, by considering a more restric-
tive bound, the fitness of the Greedy Algorithm was around 136% better when
compared to the human evaluation. The fitness for the Simulated Annealing was
even better, with a 158% increase. The authors pointed out that the high fitness
values obtained by the algorithms are due to the fact that them can add many
more features in each run.

The second empirical work was the multiobjective formulation proposed by
Colares et al. to the Software Release Planning [S3]. In this approach, the objec-
tives were to maximize the stakeholders’ satisfaction and to minimize the project
risks by respecting the available resources and the interdependencies among
requirements. The authors picked NSGA-II as search algorithm and the prob-
lem instance was artificially generated, being composed of 19 requirements to be
implemented in 5 releases. Each release had a limited amount of resources and
interdependencies of the requirements were established. It was defined a total
of 5 stakeholders where each one has an importance to the company as well as
some requirements priorities.

In order to prove the applicability in real projects, the authors compared the
outcomes of the proposed approach with the results achieved by a random search
algorithm, by the multiobjective approach proposed by Zhang et al. [43] and
human-based solutions. In this last case, five experienced software engineering
practitioners were required to make a release plan with the same data of the
configured instance. The conclusions indicated that the human subjects results
were outperformed by the proposed approach using NSGA-II.

In 2010, Souza et al. conducted a comprehensive experimental study specif-
ically focused on evaluating the human competitiveness of SBSE [S4]. They
addressed four different SE problem formulations, two instances for each prob-
lem, four search algorithms and a total of 63 SE practitioners. Their evaluation
have focused in one of the eight human competitiveness criteria, more specifi-
cally: “the result holds its own or wins a regulated competition involving human
contestants”. All experimental results supported the capability of SBSE to gen-
erate precise solutions with very little computational effort relative to the results
produced by humans. In other words, it was possible to conclude that SBSE can,
indeed, be said to be human competitive.

Hereafter, all other works were published after Souza’s et al. publication.
In 2011, Freitas, Coutinho and Souza proposed and evaluated the usage of

140 J. Souza et al.

Branch-and-Bound to the Next Release Problem (NRP) under the presence of
dependent requirements [S9]. They performed a comparative study between the
exact technique, metaheuristics and solutions provided by experts. For the eval-
uation, the authors artificially generated five instances of different sizes, namely
NRP-A, NRP-B, NRP-C, NRP-D and NRP-E. As search techniques, Simulated
Annealing and Genetic Algorithms were chosen as well as a random search algo-
rithm as sanity test. In relation to the solutions of the experts, they were col-
lected on forms specifically designed for the task. In total, 21 people solved NRP-
A and 13 NRP-B. The results for NRP-A and NRP-B showed that the exact
optimization approach performed, as expected, better than the metaheuristics.
The Genetic Algorithm performed 2.03% worse than exact technique in NRP-A,
and 0.61% for NRP-B. The Simulated Annealing was 4.67% and 5.76% worse
in NRP-A and NRP-B, respectively. However, when comparing the exact app-
roach to the human evaluation, the results pointed out a significant difference.
For NRP-A, the exact optimization technique obtained overall superiority. The
average solution of specialists was 40.74% worse when compared to the optimal
solution found by the exact technique. Regarding the NRP-B, the average for
the experts was 18.90% worse.

Ramirez et al. introduced AutoRELAX, an approach that generates relaxed
goal models in a fuzzy logic-based specification language (RELAX) for assisting
Dynamically Adaptive Systems (DAS) that must cope with changing system and
environmental conditions [S12]. A Genetic Algorithm was used in AutoRELAX
as a search heuristic for exploring the solution space encompassing all possible
RELAXed goal models. Throughout the search process, AutoRELAX uses an
executable specification of DAS to measure how candidate RELAXed goal mod-
els handle the effects of system and environmental uncertainties. In the proposed
approach, a set of fitness subfunctions reward candidate RELAXed goal models
that enable a DAS to satisfy its functional requirements while also reducing the
number of adaptations the DAS performs and, consequently, the impact of a
dynamic reconfiguration at run time.

The authors validated the approach in an application that handles the
dynamic reconfiguration of a remote data mirroring (RDM) provided by industry
collaborators. In their experiment, the AutoRELAX goal models were compared
to unRELAXed goal models and a model developed by a requirement engineer
that consists of five goal RELAXations. The results demonstrated that AutoRE-
LAX generated RELAXed goal models that perform better than unRELAXed
goal models and manually RELAXed goal models. According to the authors,
there are two reasons for this difference in fitness values. The first one, while the
manually RELAXed goal model introduced RELAXations to five goals, AutoRE-
LAX mostly introduced RELAX operators only to three goals, thereby slightly
boosting its fitness value in comparison. Secondly, the manually RELAXed
goal model contained some goal RELAXations that were too constrained. For
instance, AutoRELAX was able to extend the goal satisfaction boundary of a
goal beyond the bounds applied in the manually RELAXed goal model. Although
the authors did not intend to study human efficacy, AutoRELAX was able to
generate relaxed goal models that perform better than manually.

A Preliminary SMS of Human Competitiveness of SBSE 141

Under the context of software testing, Fraser et al. evaluated the use of
automation techniques in the generation of white box tests [S15]. The authors
assumed that automatically generation of tests facilitates the task of the devel-
oper, which may be reduced to just checking the test results. In their empirical
study, two experiments were carried out comparing a total of 97 individuals
divided into two groups: those who would write tests manually and those who
would write the tests with the help of an evolutionary tool to derive test suites,
named EvoSuite [44]. For each test suite produced, the authors computed sev-
eral metrics, such as statement, branch, method coverage and others. The results
showed that sets of automatically generated tests obtained improvements in the
evaluated quality metrics. For instance, the automatic test suites obtained a
higher structural coverage (increase of up to 300%) when compared to manually
made test suites. However, not all the results were satisfactory. There is no case
in which the ability of subjects to detect faults was improved by using EvoSuite
and, in fact, detection was often slightly decreased. In an illustrative case, the
results showed a slight benefit when using manual testing, with average fault
detection of 0.89 mutants killed compared to 0.38 of EvoSuite. Furthermore, the
paper also underlined there are some questions to be answered in future works,
such as the influence of code ownership and how automated test generation
influences software maintenance.

Finally, Xie et al. proposed a Genetic Programming (GP) approach to resolve
the fault localisation problem [S16]. They applied the GP-evolved risk evaluation
formulae developed by Yoo [8]. Their purpose was not only to demonstrate that
the SBSE results are human competitive, but also to reach provably optimal and
human competitive results is fault localisation.

The authors focused in comparing formulas for risk assessment generated by
GP with formulas manually developed for programs with single fault. Among
the 30 GP-evolved formulae evaluated, four formulae, namely GP02, GP03,
GP13, and GP19 were optimal. GP13 is proved to be equivalent to the human-
discovered optima, while the remaining three formulae form three distinct and
entirely new groups of optima. They justified the achieved results by highlighting
that human beings are more likely to be confined to their intuition and previous
experiences. Thus, it is possible that some maximal formulae may be overlooked
by humans. However, GP does not suffer from this problem and has the advan-
tage of being unbiased. GP not only can deliver maximal formulae having the
same features as some maximal formulae designed by humans, but also can help
to provide novel insights and intuitions about effective formulae that humans
may overlook.

Interestingly, the authors also described some of the optimal GP-evolved
formulae display characteristics as “unintuitive”. This is, once that results are
both optimal, yet counter-intuitive, they are not only human competitive with
respect to the past decade of human efforts, but also unlikely to have been
discovered by a further decade of human efforts.

As we can notice, there is a minority of works that, in fact, evaluate
the human competitiveness of SBSE. Additionally, from the seven empirical

142 J. Souza et al.

works interested in empirically evaluating human competitiveness, more than
a half (71.43%) are related to Requirements/Specifications, while the other
ones addressed Software/Program verification (14.29%) and Distribution, main-
tenance and enhancement (14.29%). Another strong result to be emphasized is
that in all evaluations the SBSE approaches were able to outperform the human-
based solutions.

4 Threats to Validity

In this section we followed the guidelines suggested by Wohlin et al. to discuss
the threats to the validity of our study [45].

A major threat to the Internal validity of our mapping study is that we have
only focused on the Souza’s et al. article as start paper and, consequently, we
did not conduct an in-depth search in scientific databases such as IEEE Xplore,
ACM Digital Library and Scopus, for example. As stated in the definition of our
study, we have focused on carrying out a snowball reading as main method to
find relevant literature [14]. Therefore, those works that do not cite or were not
cited by Souza’s et al. paper were not considered in our analysis. In addition, it
may occur that some works have, indeed, cited Souza’s et al. paper, but Google
Scholar has not accounted it.

A possible threat to the Conclusion validity is the data extraction process
as well as the criteria for inclusion and exclusion. We established the following
steps to mitigate these threats: (i) we initially defined the classification, the
inclusion/exclusion criteria and the standard data fields to be captured; (ii)
we created a Google Sheets file to collect the required information about all
papers and, finally, (iii) we organized a meeting with the authors to perform
the classification based on the papers obtained by the backward and forward
snowball readings.

5 Conclusions

Human competitiveness is a widely investigated subject in the machine intel-
ligence field, in particular by the optimization, genetic and evolutionary com-
putation communities. In this sense, Harman highlighted more than 10 years
ago about the importance of having convincing examples of human competi-
tive results in order to champion SBSE [2]. From that point, SBSE has evolved
and different works showed its ability to produce human competitive results. An
important effort into this direction was made by Souza et al. in the paper titled
“The Human Competitiveness of Search Based Software Engineering”, published
at SSBSE’10, which raised awareness to this issue and motivated additional
works.

Despite the fact that human competitiveness seems to be of growing interest
to the SBSE community, we have not identified any systematic study on this
issue up to date. Therefore, given this research gap and ongoing interest, we
aimed at providing an overview of the current state of human competitiveness

A Preliminary SMS of Human Competitiveness of SBSE 143

in SBSE, through a mapping study by carrying out a snowball reading of Souza’s
et al. paper.

Overall, this study confirms the increasing interest in discussing human com-
petitiveness in SBSE, specially after 2010. We also identified the Symposium
on Search Based Software Engineering as the publication forum with most
papers. Furthermore, there is some similarity between the number of papers
published in conferences (48.3%) and journals (41.4%). In addition, Require-
ments/Specification and Software/Product Verification were identified as the
most common software engineering areas addressed by our primary sources.
Our study also revealed the need for increasing empirical evaluations involv-
ing human competitiveness. Of all the papers that compose our primary sources
(29), 75.86% of them only discussed human competitiveness as baseline argu-
ment. On the other hand, of the seven empirical works identified by our study
that, indeed, produced human competitiveness results, the majority was con-
cerned to the Requirements/Specification area.

Given those results, some open questions and remaining challenges may be
pointed out as motivation for new researches. Firstly, considering the huge spec-
trum where SBSE can be applied, more work could be done in different SBSE
tasks. Moreover, it would be important to produce such results over more realis-
tic settings, considering real-world datasets and environments. To produce more
reliable and acceptable conclusions, studies should involve more human subjects,
with practical experiences dealing with the SE task of interest. Other than that,
different optimization approaches should be evaluated, including human-in-the-
loop approaches. Finally, the SBSE field would benefit if researchers incorporate
the culture of evaluating the human competitiveness of their optimization results
in a regular basis, even over simplified experimental settings, with a handful
of software engineering practitioners and toy datasets, but which could create
a body of results that, together, would increase SBSE acceptance outside its
research community.

References

1. Harman, M., McMinn, P., de Souza, J.T., Yoo, S.: Search based software engi-
neering: techniques, taxonomy, tutorial. In: Meyer, B., Nordio, M. (eds.) LASER
2008-2010. LNCS, vol. 7007, pp. 1–59. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-25231-0 1

2. Harman, M.: The current state and future of search based software engineering. In:
2007 Future of Software Engineering, pp. 342–357. IEEE Computer Society (2007)

3. Harman, M.: Search based software engineering for program comprehension. In:
15th IEEE International Conference on Program Comprehension, ICPC 2007, pp.
3–13. IEEE (2007)

4. Koza, J.R.: Human-competitive results produced by genetic programming. Genet.
Program. Evolvable Mach. 11(3–4), 251–284 (2010)

5. Samuel, A.L.: AI, where it has been and where it is going. In: International Joint
Conference on Artificial Intelligence (IJCAI), pp. 1152–1157 (1983)

https://doi.org/10.1007/978-3-642-25231-0_1
https://doi.org/10.1007/978-3-642-25231-0_1

144 J. Souza et al.

6. Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.:
Genetic Programming IV: Routine Human-Competitive Machine Intelligence, vol.
5. Springer, Heidelberg (2006). https://doi.org/10.1007/b137549

7. Baker, P., Harman, M., Steinhofel, K., Skaliotis, A.: Search based approaches to
component selection and prioritization for the next release problem. In: 22nd IEEE
International Conference on Software Maintenance, ICSM 2006, pp. 176–185. IEEE
(2006)

8. Yoo, S.: Evolving human competitive spectra-based fault localisation techniques.
In: Fraser, G., Teixeira de Souza, J. (eds.) SSBSE 2012. LNCS, vol. 7515, pp. 244–
258. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33119-0 18

9. Xie, X., Kuo, F.-C., Chen, T.Y., Yoo, S., Harman, M.: Provably optimal and
human-competitive results in SBSE for spectrum based fault localisation. In: Ruhe,
G., Zhang, Y. (eds.) SSBSE 2013. LNCS, vol. 8084, pp. 224–238. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39742-4 17

10. de Souza, J.T., Maia, C.L., de Freitas, F.G., Coutinho, D.P.: The human competi-
tiveness of search based software engineering. In: Second International Symposium
on Search Based Software Engineering, SSBSE 2010, pp. 143–152. IEEE (2010)

11. Kitchenham, B.: What’s up with software metrics?–a preliminary mapping study.
J. Syst. Softw. 83(1), 37–51 (2010)

12. Budgen, D., Turner, M., Brereton, P., Kitchenham, B.: Using mapping studies
in software engineering. In: Proceedings of Psychology of Programming Interest
Group (PPIG), vol. 8, pp. 195–204. Lancaster University (2008)

13. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in
software engineering. In: International Conference on Evaluation and Assessment
in Software Engineering, EASE 2008, vol. 8, pp. 68–77 (2008)

14. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a
literature review. MIS Q. xiii-xxiii (2002)

15. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering, EASE 2014, p. 38. ACM
(2014)

16. Colares, F., Souza, J., Carmo, R., Pádua, C., Mateus, G.R.: A new approach to the
software release planning. In: XXIII Brazilian Symposium on Software Engineering,
SBES 2009, pp. 207–215. IEEE (2009)

17. Harman, M.: The relationship between search based software engineering and pre-
dictive modeling. In: Proceedings of the 6th International Conference on Predictive
Models in Software Engineering, PROMISE 2010, p. 1. ACM (2010)

18. Ren, J., Harman, M., Di Penta, M.: Cooperative co-evolutionary optimization of
software project staff assignments and job scheduling. In: Cohen, M.B., Ó Cinnéide,
M. (eds.) SSBSE 2011. LNCS, vol. 6956, pp. 127–141. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23716-4 14

19. Zhang, Y., Harman, M., Finkelstein, A., Afshin Mansouri, S.: Comparing the per-
formance of metaheuristics for the analysis of multi-stakeholder tradeoffs in require-
ments optimisation. Inf. Soft. Technol. 53(7), 761–773 (2011)

20. Brasil, M.M.A., da Silva, T.G.N., de Freitas, F.G., de Souza, J.T., Cortés, M.I.: A
multiobjective optimization approach to the software release planning with unde-
fined number of releases and interdependent requirements. In: Zhang, R., Zhang, J.,
Zhang, Z., Filipe, J., Cordeiro, J. (eds.) ICEIS 2011. LNBIP, vol. 102, pp. 300–314.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29958-2 20

21. Freitas, F.G., Coutinho, D.P., Souza, J.T.: Software next release planning approach
through exact optimization. Int. J. Comput. Appl. (IJCA) 22(8), 1–8 (2011)

https://doi.org/10.1007/b137549
https://doi.org/10.1007/978-3-642-33119-0_18
https://doi.org/10.1007/978-3-642-39742-4_17
https://doi.org/10.1007/978-3-642-23716-4_14
https://doi.org/10.1007/978-3-642-29958-2_20

A Preliminary SMS of Human Competitiveness of SBSE 145

22. Vergilio, S.R., Colanzi, T.E., Pozo, A.T.R., Assunção, W.K.G.: Search based soft-
ware engineering: a review from the Brazilian symposium on software engineering.
In: 25th Brazilian Symposium on Software Engineering, SBES 2011, pp. 50–55.
IEEE (2011)

23. Harman, M.: The role of artificial intelligence in software engineering. In: Proceed-
ings of the First International Workshop on Realizing AI Synergies in Software
Engineering, RAISE 2012, pp. 1–6. IEEE Press (2012)

24. Ramirez, A.J., Fredericks, E.M., Jensen, A.C., Cheng, B.H.C.: Automatically
RELAXing a goal model to cope with uncertainty. In: Fraser, G., Teixeira de
Souza, J. (eds.) SSBSE 2012. LNCS, vol. 7515, pp. 198–212. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33119-0 15

25. Roshan, R., Porwal, R., Sharma, C.M.: Review of search based techniques in soft-
ware testing. Int. J. Comput. Appl. (IJCA), 51(6) (2012)

26. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.C.: Generating test data from ocl con-
straints with search techniques. IEEE Trans. Softw. Eng. 39(10), 1376–1402 (2013)

27. Fraser, G., Staats, M., McMinn, P., Arcuri, A., Padberg, F.: Does automated white-
box test generation really help software testers? In: International Symposium on
Software Testing and Analysis, ISSTA 2013, pp. 291–301. ACM (2013)

28. Colanzi, T.E., Vergilio, S.R., Assunção, W.K.G., Pozo, A.: Search based software
engineering: review and analysis of the field in Brazil. J. Syst. Softw. 86(4), 970–984
(2013)

29. Yoo, S., Harman, M., Ur, S.: Gpgpu test suite minimisation: search based software
engineering performance improvement using graphics cards. Empir. Softw. Eng.
(ESE) 18(3), 550–593 (2013)

30. Harman, M., Krinke, J., Medina-Bulo, I., Palomo-Lozano, F., Ren, J., Yoo, S.:
Exact scalable sensitivity analysis for the next release problem. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 23(2), 19 (2014)

31. Paixao, M.: A robust optimization approach to the next release problem in the pres-
ence of uncertainties (written in portuguese). Master’s thesis, Mestrado Acadêmico
em Ciências da Computacão, Fortaleza (2014)

32. Fraser, G., Staats, M., McMinn, P., Arcuri, A., Padberg, F.: Does automated unit
test generation really help software testers? A controlled empirical study. ACM
Trans. Softw. Eng. Methodol. (TOSEM) 24(4), 23 (2015)

33. do Nascimento Ferreira, T., Araújo, A.A., Neto, A.D.B., de Souza, J.T.: Incorpo-
rating user preferences in ant colony optimization for the next release problem.
Appl. Soft Comput. 49, 1283–1296 (2016)

34. Langdon, W.B., White, D.R., Harman, M., Jia, Y., Petke, J.: API-constrained
genetic improvement. In: Sarro, F., Deb, K. (eds.) SSBSE 2016. LNCS, vol. 9962,
pp. 224–230. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47106-
8 16

35. Ali, S., Iqbal, M.Z., Khalid, M., Arcuri, A.: Improving the performance of OCL
constraint solving with novel heuristics for logical operations: a search-based app-
roach. Empir. Softw. Eng. (ESE) 21(6), 2459–2502 (2016)

36. Paixao, M., Harman, M., Zhang, Y., Yu, Y.: An empirical study of cohesion
and coupling: balancing optimisation and disruption. IEEE Trans. Evol. Comput.
(TEC) (2017)

37. Saeed, A., Hamid, S.H.A., Sani, A.A.: Cost and effectiveness of search-based tech-
niques for model-based testing: an empirical analysis. Int. J. Softw. Eng. Knowl.
Eng. (IJSEKE) 27(04), 601–622 (2017)

38. Wu, F.: Mutation-based genetic improvement of software. Ph.D. thesis, UCL (Uni-
versity College London) (2017)

https://doi.org/10.1007/978-3-642-33119-0_15
https://doi.org/10.1007/978-3-319-47106-8_16
https://doi.org/10.1007/978-3-319-47106-8_16

146 J. Souza et al.

39. Mohan, M., Greer, D.: MultiRefactor: automated refactoring to improve software
quality. In: Felderer, M., Méndez Fernández, D., Turhan, B., Kalinowski, M., Sarro,
F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp. 556–572. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69926-4 46

40. Ali, A., Saeed, A.: Test case generation from state machine with OCL constraints
using search-based techniques. Ph.D. thesis, University of Malaya (2017)

41. Ruhe, G., Wohlin, C.: Software project management: setting the context. In: Ruhe,
G., Wohlin, C. (eds.) Software Project Management in a Changing World, pp. 1–24.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55035-5 1

42. Harman, M., Afshin Mansouri, S., Zhang, Y.: Search based software engineering: a
comprehensive analysis and review of trends techniques and applications. Depart-
ment of Computer Science, King’s College London, Technical report TR-09-03
(2009)

43. Zhang, Y., Harman, M., Afshin Mansouri, S.: The multi-objective next release
problem. In: Proceedings of the 9th Annual Conference on Genetic and Evolution-
ary Computation, GECCO 2007, pp. 1129–1137. ACM (2007)

44. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, pp. 416–419. ACM
(2011)

45. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-319-69926-4_46
https://doi.org/10.1007/978-3-642-55035-5_1
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Main Track Papers

Search-Based Stress Testing the Elastic
Resource Provisioning for Cloud-Based

Applications

Abdullah Alourani(B), Md. Abu Naser Bikas(B), and Mark Grechanik(B)

University of Illinois at Chicago, Chicago, IL 60607, USA
{aalour2,mbikas2,drmark}@uic.edu

Abstract. One of the main benefits of cloud computing is to enable
customers to deploy their applications on a cloud infrastructure that
provisions resources (e.g., memory) to these applications on as-needed
basis. Unfortunately, certain workloads can cause customers to pay for
resources that are provisioned to, but not fully used by their applica-
tions, and as a result their performances then deteriorate beyond some
acceptable thresholds and the benefits of cloud computing may be sig-
nificantly reduced or even completely obliterated. We propose a novel
approach to automatically discover these workloads to stress test elas-
tic resource provisioning for cloud-based applications. We experimented
with four non-trivial applications on the Microsoft Azure cloud to deter-
mine how effectively and efficiently our approach explores a very large
space of the workload parameters’ values. The results show that our app-
roach discovers the first irregular workload faster in the search space of
over 1040 input combinations compared to the random approach, and it
discovers more irregular workloads that result in much higher costs and
performance degradations for applications in the cloud.

Keywords: Cloud computing · Performance testing
Cloud elasticity · Genetic algorithms · Multi-objective optimization
Irregular workloads · Stress testing

1 Introduction

One of the main benefits of cloud computing is to enable customers to deploy
their applications on a cloud infrastructure that provisions resources (e.g., vir-
tual machines (VMs)) to these applications on as-needed basis [26]. That is,
instead of buying and hosting expensive hardware, customers pay for renting
resources for running these applications from cloud computing facilities [22].
A fundamental problem of cloud computing is to provision resources according
to the application’s runtime needs in order to ensure that its performance does
not worsen below a predefined threshold, and it affects the technology spending
in the excess of $1 trillion by 2020 [29].

c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 149–165, 2018.
https://doi.org/10.1007/978-3-319-99241-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_7&domain=pdf

150 A. Alourani et al.

The decisions to provision certain resources are typically made by engineers
who create and maintain cloud-based applications, and they express their deci-
sions in rules. A common and frequently used rule recommended by the Amazon
and Google Cloud documentations is to provision one more VM when the CPU’s
utilization increases above 80% [3,13,24]. There are many different rules like that
for controlling cloud elasticity, a term that designates on-demand resource provi-
sioning to an application [5,14]. Unfortunately, the behaviours of the nontrivial
applications are very complex, so some rules may be far from optimal in terms of
allocating best possible resources for maximizing the applications’ performance.

In performance testing, input workloads are often created that resemble typ-
ical usages of applications and their performance characteristics are analyzed for
regular workloads. In this paper, we are interested in irregular workloads, whose
occurrences are rare and deviate beyond what is normally expected and they
are extremely difficult to predict. Whereas test input workload generation tech-
niques concentrate on finding patterns in the existing past workloads [20], there
is no approach for finding new irregular workloads for stress testing, where appli-
cations are used beyond the normal operational capacity to a breaking point [4].
Unfortunately, when irregular workloads happen, customers pay for resources
that are provisioned to, but not fully used by their applications [18], and the
benefits of cloud computing may be significantly reduced or even completely
obliterated [2].

We propose a novel approach for automatically discovering irregular work-
loads that result in situations when customers pay for resources that are not
fully used by their applications while at the same time, some performance char-
acteristics of these applications are not met, i.e., the Cost-Utility Violations of
Elasticity (CUVE). We implemented our approach for Testing for Infractions
of CLoud Elasticity (TICLE) that combined a search-based heuristic with rule-
guided resource provisioning to discover irregular workloads that led to CUVEs.
These irregular workloads and rules can be reviewed by developers and per-
formance engineers, who optimize the rules to improve the performance of the
corresponding application. To the best of our knowledge, TICLE is the first fully
automatic CUVE approach for discovering irregular workloads for applications
deployed on the cloud. We TICLEd four nontrivial open-source applications
in the Microsoft Azure cloud to determine how automatically and accurately
TICLE explored a large search space of over 1040 input combinations while dis-
covering CUVEs. The results show that TICLE finds the first irregular workload
faster thus enabling stakeholders to investigate its impact sooner, and it finds
more irregular workloads that lead to much higher costs and performance degra-
dations for applications in the cloud compared to the random approach. TICLE’s
source code and all the experimental data are publicly available [1].

2 Problem Statement

In this section, we provide a background on workloads and rules for elastic
resource provisioning, discuss sources of CUVE, and formulate the problem
statement.

TICLE 151

2.1 Rules and Workloads

In general, if-then elasticity rules contain antecedents that describe the level
of resource utilization (e.g., CPU utilization � 80%), and the consequents that
specify (de)provisioning actions (e.g., to (de)provision a VM). Unfortunately,
rule creation is an error-prone manual activity, and provisioning certain resources
using manually created rules does not often improve the application’s perfor-
mance. For example, when the CPU utilization reaches some threshold due to
a lot of page swapping or a lack of the storage space, provisioning more CPUs
does not fix the underlying cause that requires giving more memory and storage
to the application. That is, often rules are not optimal in terms of allocating
required resources based on projected applications’ needs [18].

It is very difficult to create rules that provision resources optimally to maxi-
mize the performance of the application while minimizing the cost of its deploy-
ment. Doing so requires the application’s owners to understand which resources
to (de)provision at what points in execution, how the cost of the provisioned
resources varies, and how to make trade-offs between the application’s perfor-
mance and these costs [16]. Optimal provisioning is difficult even for five basic
resource types (i.e., CPU, RAM, storage, VM, and network connections), where
each type has many different attributes (e.g., the Microsoft Azure documentation
mentions 30 attributes [24], which result in tens of millions of combinations).

Definition 1. An application workload is a time-dependent collection of request
tuples as shown in Fig. 1 that contains a function of time that maps a time
interval to the subset of input requests and its input data.

The application workload includes not only the static part of the input to the
application (i.e., combinations of HTTP requests with their parameter values)
but also the dynamic part that comprises the number of HTTP requests submit-
ted to the application per time unit and how this number changes as a function
of time [23]. For example, a workload specifies how the number of requests to the
application fluctuates periodically according to a circular function yt = α sin ωt,
where α is the amplitude of the workloads that designates the maximum number
of HTTP requests, t is the discrete time of the execution, and ω is the periodicity
coefficient.

Application workloads are often characterized by fast fluctuations and bursti-
ness, where the former designates a fast irregular growth and then a decline in
the number of requests over a short period of time, and the latter means that
many inputs occur together in bursts separated by lulls in which they do not
occur [25]. By changing the coefficients of the function, irregular workloads can
be generated for stress testing in varying degrees of burstiness and fluctuation.

2.2 Sources of Cost-Utility Violations of Elasticity

There are two main sources of CUVE. First, there is a problem of provisioning
resources to an application that are not optimal for achieving the application’s
best performance. For example, the application may not perform better with

152 A. Alourani et al.

additionally provisioned many CPUs instead of some more RAM [18]. Recall
that cloud providers recommend some generic rules for resource provisioning
[3,13,24]. Often, during stress testing, applications are run under regular heavy
workloads that reflect the expected pattern of usage (e.g., loads peak during
evening hours when people shop online), and they are unable to find CUVEs
that result from irregular workloads. As a result, when these workloads occur
during deployment, resources that are provisioned to an application may not
improve its performance; however, its owner still has to pay the cloud provider
for these needlessly provisioned resources.

Second, when the cloud infrastructure allocates resources, there is a delay
between the moment when the cloud assigns a resource to an application and
the moment when this application takes control of this resource. There are at
least a couple of reasons for this delay: the startup time for a VM that hosts
the application or its components includes the VM’s loading and initialization
time by the underlying infrastructure; assigning a new CPU to the existing VM
requires its hosted operating system to recognize this CPU, which takes from
seconds to tens of minutes [21]. Of course, the cloud infrastructure starts charging
the customer for the resources at the moment it provisions them rather than
when the application can control these resources [18]. However, all these may
be done in vain – if the application rapidly changes its runtime behavior during
a resource initialization time, this resource may not be needed any more by
the time it is initialized to maintain the desired performance of the application.
As a result, during irregular workloads, customers pay for resources that are
not used by their applications for some period of time resulting in performance
degradations.

2.3 The Problem Statement

Software engineers make performance enhancements routinely during perfective
maintenance [19] when they use mostly exploratory random performance testing
to identify when the performance of the Application Under Test (AUT) worsens.
In this paper, we address a fundamental problem of performance testing in the
cloud – how to increase the effectiveness and efficiency of obtaining irregular
workloads for software applications deployed on the cloud that lead to instances
of the CUVE. The root of this fundamental problem is that using only regular
workloads for applications as part of random exploratory performance testing
results in a large number of executions, many of which are not effective in deter-
mining CUVE instances. Selecting randomly a subset of workloads often results
in a complete absence of the CUVE instances. To the best of our knowledge,
there is no automatic approach to obtain irregular workloads that can produce
instances of the CUVE.

Specifically, we want to construct irregular workloads automatically using
combinations of inputs to which some functions are applied to cause fluctua-
tions and burstiness to detect situations where the cost increases significantly
while the average throughput (i.e., a measure inverse to the response time) of
the application decreases beyond a certain threshold defined in a service level

TICLE 153

agreement (SLA) that indicates a desired performance level and the provisioned
resources remain under-utilized or even completely unused at the same time.
This is an instance of the multiobjective optimization problem (MOOP). Auto-
matically discovering irregular workloads is very difficult in general, especially
when trying to satisfy multiple conflicting constraints.

3 Our Approach

In this section, we state our key ideas for our approach for Testing for Infractions
of CLoud Elasticity (TICLE), explain the genetic algorithm (GA) with MOOP
(GAMOOP), and describe the algorithm for TICLE.

3.1 Key Ideas

A goal of our approach is to automatically obtain irregular workloads for the
AUT using GAMOOP. In general, GAs are based on natural selection techniques
where solutions to optimization problems are obtained using a stochastic search
[17]. The advantage of a GA is in evolving multiple candidate solutions in parallel
thus allowing it to explore efficiently a large search space of possible solutions.
Thus, TICLE is likely to scale well to modern AUTs with enormous search space.

In TICLE, a workload is represented by a chromosome that contains a
sequence of genes divided into three parts as it is shown in Fig. 1. The first
part refers to the types of periodic circular functions (e.g., sinusoidal) that rep-
resent changes in the number of HTTP requests in the workload, the second part
refers to the functions’ parameters (e.g., amplitudes), and the third part refers
to a set of HTTP requests, where each HTTP request is assigned to a unique ID,
i.e., a HTTP request that includes various parameters is assigned to various IDs.
For each application, we used a spider tool [8] to traverse the web interface of
the application, log all unique HTTP requests sent to the backend of the appli-
cation, and ensure these HTTP requests are valid. Each chromosome contains
one function of time, two function parameters (e.g., amplitude and periodicity),
and a set of HTTP requests, where each function of time uses only two function
parameters. Therefore, modifying the values of these parameters in the second
part of the chromosome by the GA is independent of changing the function of
time in the first part of the chromosome. Once chromosomes are constructed,
they are modified by GAs iteratively to find solutions that satisfy multiple objec-
tives. That is, TICLE generates the combination of inputs (i.e., HTTP requests)
plus the parameters of workloads for formulae that describe them.

We use GAs for finding CUVEs that result from irregular workloads. In GAs,
new solutions, or offsprings are generated using existing solutions, or parents.
New solutions are often “fitter” to meet the objectives of the desired solution.
A predefined fitness function is used to evaluate how close each solution is to
being the optimal solution and fitter solutions have a better chance to “survive”
multiple iterations [17]. In order to create a new generation of workload solutions,
the operator selection, mutation, and crossover are applied to workloads, where

154 A. Alourani et al.

Fig. 1. The representation of the workload and the chromosome.

a selection operator selects parents based on their fitness, a crossover operator
recombines a pair of selected parents and generates new offspring workloads, and
a mutation operator produces a mutant of one workload solution by randomly
altering its gene. It is our hypothesis that GAMOOP can efficiently generate
close to optimal workloads using the properties of their parents.

Our other key idea is to include user-defined rules for SLA violations as
objective constraint functions for TICLE. For example, the Amazon’s SLA rule
limits the response time to 300 ms for its web-based application [10]. Finding
workloads that violate SLA thresholds is one of the main goals of performance
testing. However, if finding workloads that break the SLA rules was the only
objective, simply exponentially increasing the amplitude of the workloads with
a very large burstiness would likely result in a sudden increase of the response
time. Unfortunately, doing so results in ignoring the other two objectives (i.e.,
increasing the cost of the provisioned resources and decreasing the utilization of
resources), since the cost is likely to remain the same if the cloud does not rapidly
provision resources and the utilization will keep increasing with the increasing
workloads. Thus, workload parameters should be chosen in such a way that
delays between resource provisioning and resource availability are exploited by
changing the fluctuations and the burstiness of the workloads in addition to
differences in how applications use resources based on the workload content that
includes HTTP requests, which trigger different execution paths in AUTs.

3.2 TICLE Algorithm

TICLE is shown in Algorithm 1 that includes the following major steps: (i) ran-
domly generate an initial set of workloads, (ii) use these workloads to execute
the cloud-deployed AUT and measure its performance, such as the utilization
of the provisioned resources and the average response time, and (iii) use fitness
functions, as described by Eq. 2 [31] to evaluate the objectives and to select
workload solutions using the quality indicator described by Eq. 1 [31] to select
solutions using GAMOOP. The fitness function is Pareto dominance compliant
since it uses the quality indicator to rank solutions based on their usefulness

TICLE 155

regarding multiple objectives, amplifying the influence of dominating solutions
over dominated solutions. A Pareto optimal solution dominates some other one
if the dominating solution is better in some objectives and it is not worse in all
the other objectives. Each solution can be represented as a point in a multidi-
mensional space of orthogonal objectives. A curve can be drawn to connect non-
dominated solutions that can be selected as optimal when no objective could be
improved without sacrificing the other objectives. The curve is named a Pareto
optimal front and is used by GAMOOP to choose winning workloads that result
in CUVEs.

I(S, S′) = max
{

∀w′ ∈ S′ ∃w ∈ S : gj(w) ≥ gj(w
′) for j ∈ {1, . . . , n}

}
,

S, S′ ∈ Ω, w, w′ ∈ P
(1)

F (w) = Σw′∈P\{w} − e−I
(

{w′},{w}
)
/k, k > 0 (2)

Where Ω indicates the entirety of all Pareto sets, S is a Pareto set and S′

is another Pareto set in all Pareto set approximations. P indicates the initial
population P of workloads, w is a workload (i.e., solution), and w′ is another
workload in the population. I is the quality indicator function that compares the
quality of two Pareto set approximations or solutions with respects to n objective
functions g1, . . . , gn that are described below, k is a fitness scaling factor and is
set to 0.05 experimentally.

We chose Non-dominated Sorting Genetic Algorithm II (NSGA-II) because
previous evaluations showed that it finds a much better spread of solutions and
it converges near the true Pareto optimal front. NSGA-II does not require the
user to prioritize, scale, or weigh objectives like many other algorithms, which
would be a major manual effort in TICLE. Finally, NSGA-II can generate new
non-dominated solutions in unexplored parts of the Pareto front by applying the
crossover operator to take advantage of good solutions with respect to multiple
conflicting objectives [9].

That is, the space of workload parameters (e.g., the amplitude, periodicity) is
explored to optimize three objectives in parallel by evaluating a fitness function
(Eq. 2) that maps workloads to the unused resources of provisioned VMs (objec-
tive 1), the cost of provisioned resources (objective 2), and the average response
time (objective 3). An ideal solution is a workload that maximizes these objec-
tives, as described by Eq. 1, i.e., to achieve the maximum cost of the deployment
with the minimum resource utilization and the application throughput that vio-
lates predefined SLA constraints. These objectives cannot be formally defined,
since their values are obtained from the Microsoft Azure cloud. Since no solu-
tion exists to address this important problem, using NSGA-II to find a better
solution and to compare it with a random performance testing approach is our
major contribution.

The algorithm for TICLE takes in the complete set of input ranges for the
subject AUT and the GAMOOP configurations Ω, including the crossover and
mutation rates, fitness functions for their respective objectives, an SLA thresh-
old, and the termination criterion. In Step 2, the algorithm generates an initial

156 A. Alourani et al.

Algorithm 1. TICLE’s algorithm for automating workload search for instances
of the CUVE problem.
1: Inputs: GAMOOP Configuration Ω, Input Set I
2: P ← InitializePopulation(I)
3: while ¬ Terminate do
4: EvalFitnessObjectiveFunctions(P, Ω)
5: EvalConstraintsFunctions(P, Ω)
6: F ← FastNondominatedSort(P)
7: CrowdingDistanceAssignment(F)
8: S ← SelectParentsByRankDistance(F , |P|)
9: R ← RemoveLowerRankedSolutions(S)

10: C ← CrossoverMutation(R, Ω)
11: P ← P∪ Merge(P, C)
12: end while
13: return P

population of workloads by combining randomly selected HTTP requests. In
TICLE, we create four types of workload fluctuation functions: sinusoidal, where
the workload changes with periodicity, as described by the equation yt = α sin t,
where α is the amplitude of the workloads that designates the maximum number
of HTTP requests, and t is the discrete time of the execution; linear, where the
workload increases or decreases linearly, as described by the equation yt = α × t;
exponential, with a rapid rise or drop of the workload yt = αt; and random, where
a random number generator is used to define the amplitude and the HTTP
requests for the workloads. In the RANDOM approach, a workload contains
AUT’s HTTP requests, the types of periodic circular functions that represent
changes in the number of HTTP requests in the workload, and the functions’
parameters (e.g., amplitudes and periodicities). Once workloads are constructed,
their parameters are modified randomly to find solutions. Based on previous
research, these functions represent a majority of workload shapes [23].

Starting from Step 3, the evolution process begins by evaluating if the termi-
nation condition is satisfied. In Step 4, fitness functions are applied to evaluate
each individual workload and in Step 5 constraint functions are evaluated to
determine if the SLA holds. After the evaluation, in Step 6 the population is
sorted and in Step 7 the distances of the solutions on the Pareto front are esti-
mated. Using those closest to the Pareto front, in Step 8 the solutions are ranked
into a hierarchy of sub-populations based on the ordering of the Pareto dom-
inance. In Step 9, lower ranked solutions are removed from the population. In
Step 10, for each part of the chromosome, the mutation operator replaces the
value of one random gene with another value within the specified range, thus
creating a new (updated) individual.

All newly generated individual workloads are evaluated using the defined
fitness functions, and the fittest workloads are selected for the next generation
that is formed first by the order of dominating precedence of the Pareto front
and then by using the distance within the front. Finally, the new workload

TICLE 157

solutions are added to the population. The cycle of Steps 3–12 repeats until the
termination criterion is satisfied, and the final population is returned in Step 13
as the algorithm terminates.

4 Empirical Evaluation

In this section, we describe the design of the empirical study to evaluate TICLE
and state threats to its validity. We pose the following three Research Questions
(RQs):

RQ1: How effective is TICLE in finding irregular workloads that lead to the
greater cost of the AUT’s deployment?

RQ2: How fast is TICLE in finding the first irregular workload that infracts
the elasticity rules for the AUT?

RQ3: Is TICLE more effective than the random approach in finding more
CUVEs for different elasticity rules?

Table 1. Characteristics of the subject AUTs: their names followed by their versions,
the number of lines of code (LOC), the number of classes, the number of methods and
the approximate size of the search space of the input requests for the AUT.

AUT Version LOC Classes Methods Space

JPetStore v4.0.5 2,762 42 400 1031

JForum v2.1.9 36,401 397 3,487 1049

PhotoV v2.1.0 10,549 81 931 1036

RUBiS v1.4.3 83,640 641 4,396 1014

4.1 Subject Applications

We evaluated TICLE on four web-based, open-source subject applications writ-
ten in Java: JPetStore, JForum, PhotoV, and RUBiS. Their basic characteristics
are shown in Table 1. These applications are written by different programmers,
come from different domains, and have high popularity indexes. Choosing up to
50 input requests from 100+ HTTP requests results in over 1040 combinations.

All subject AUTs have a three-tier architecture. Response time is measured
between the moment when a sent request is received by the AUT and the moment
when a response to the request is issued from the AUT, and the network latency
time is not included. All components of the same AUT are deployed on the same
VM. When the cloud provisions VMs to the AUT, each VM will have a replica
of these three tiers to ensure full horizontal scalability of the AUT.

4.2 Methodology

We use the definition a workload from Sect. 2.1 to specify the set of input requests
and how their quantities change over time. For example, the HTTP request
https://jpetstore:8085/search?cat=FISH is an input to JPetStore, where search

158 A. Alourani et al.

is the path component of the HTTP request, cat is the name of its parameter,
and FISH is the value of this parameter. TICLE generates workloads and uses
JMeter [15] that simulates users sending the workload requests to web servers of
the AUT and collects performance measurements of the provisioned VMs that
host AUT’s components that execute the workload requests. In our experiments,
we set the number of HTTP requests in a workload between 10 and 50 to observe
a wide range of the AUT’s behaviors.

Table 2. The set of predefined if-then elasticity rules.

Rule Provisioning action

Scale in Scale out

R1 CPUutilization < 20% CPUutilization > 50%

R2 CPUutilization < 40% CPUutilization > 60%

R3 CPUutilization < 20% CPUutilization > 80%

Also, we defined three elasticity rules with different ranges for VM
(de)provisioning that are shown in Table 2 to determine how effectively TICLE
finds irregular workloads that infract these elasticity rules for the AUTs. Since
our goal is to find irregular workloads that lead to CUVEs, violating the pre-
defined SLA threshold is an important objective of the experiments. We use
the AUT’s response time as the SLA. To determine the SLA threshold, we first
run each subject AUT under heavy workloads in a single VM to determine the
longest possible response time. Then, we repeat our experiments with 20%, 40%,
and 60% of this longest response time as the SLA threshold.

The experiments for the AUTs were carried out using 10 small VMs/servers
from the A-series in the Microsoft Azure cloud called Standard A1 with 1 GHz
CPU and 1.75 GB of memory. We wrote a client for JMeter [15] that applied
generated workloads to the subject AUTs, and JMeter clients were run externally
on laptops. All experiments were conducted on the same experimental platform.

We implemented TICLE using jMetal, which is an open-source framework
for multi-objective optimization with various evolutionary algorithms [11]. We
used the following GAMOOP settings for TICLE: the crossover rate of 0.9, the
mutation rate of 0.3, the population of 100 individuals, and the tournament
selection of size two. The evolution was terminated if the workload solutions
did not improve after 10 generations. The maximum number of generations was
set to 30. We chose these values experimentally for the platform based on the
limitations of the hardware.

4.3 Threats to Validity

A threat to the validity of our empirical study is that our experiments were
performed on only four open-source, web-based applications, which makes it

TICLE 159

difficult to generalize the results to other types of applications that may have
different logic, structure, or input types. However, the subject AUTs were used
in other empirical studies on performance testing [27]. Therefore, we expect our
results to be generalizable.

Our current implementation of TICLE deals with simple types of inputs,
HTTP requests with basic parameter types (e.g., integer), whereas other pro-
grams may have complex input types (e.g., JSON or XML structures). While
this is a threat, TICLE can be adapted to encode inputs of other types. In order
to apply TICLE to other applications, the user needs to modify only the gene
representation approach so that TICLE recognizes other types of inputs.

One threat to validity is that we deployed an AUT fully in a single VM.
Indeed, deploying an AUT’s components in multiple VMs may lead to perfor-
mance bottlenecks since many shared resources are used in the application layer.
This situation may result in more CUVEs, thus making it easier for TICLE to
find them. However, deploying these layers on the same VM (i.e., it is scaled hor-
izontally) puts TICLE at a disadvantage to find CUVEs since many bottlenecks
do not show up easily, thus making our experiments robust.

We experimented with only three generic elasticity rules using the recom-
mendations from Amazon, Azure, and Google Cloud documentations. This is a
threat for two reasons. First, users may create much more sophisticated rules
that would make it difficult for TICLE to find CUVEs. Second, our rules pro-
vision only VMs, whereas real-world rules could also provision storage, RAM,
network connections, and other virtual hardware. However, understanding the
effect of various resources is currently out of scope for this paper and will be
addressed in future work.

5 Empirical Results

In this section, we describe and analyze the results of the experiments to answer
the three RQs stated in Sect. 4.

5.1 Finding Workloads that Lead to Higher Costs

The results of the experiments are shown in the box-and-whisker plots in Fig. 2a
and b that summarize the deployment costs and the time it takes to find the
first CUVE for the subject AUTs using the TICLE and RANDOM approaches for
three different SLA threshold values of the longest response time. We observe
that the average costs for the found CUVEs using TICLE are consistently higher
than the average costs of the CUVEs found by RANDOM among all SLA threshold
values. The costs for CUVEs have the highest difference between TICLE and
RANDOM at 60% of the SLA threshold, then at 40%, followed by 20%. This result
suggests that the higher threshold values require more sophisticated workloads
to break the threshold and to lead to a higher cost of deployment, because it is
more difficult to construct workloads when longer response times are permitted.
The cost variance for CUVEs computed by TICLE is significantly lower when

160 A. Alourani et al.

Fig. 2. Box-and-whisker plots compare (a) the deployment costs and (b) the time to
the first CUVE discovery for detected CUVEs that are computed using the TICLE

and RANDOM approaches for the subject AUTs for three SLA thresholds (i.e., 0.2, 0.4,
and 0.6) of the longest response time. The cost is measured in dollars and the time is
measured in minutes.

Table 3. The comparison of the results of Mann-Whitney-Wilcoxon U-Tests for TICLE
and RANDOM using three SLA thresholds. The first column designates the null hypothesis
followed by the column for SLA thresholds, and the cells contain the p-values.

Null hypothesis SLA threshold

20% 40% 60%

Cost 9.7 × 10−15 8.2 × 10−3 0.03

Detection time 1.4 × 10−4 5.5 × 10−4 0.02

compared to the RANDOM approach, which suggests that TICLE favors workloads
that have the highest impact on increasing the cost of deployment.

Similarly, it is shown in the box-and-whisker plot in Fig. 2b that TICLE is
consistently faster than RANDOM in finding the first CUVE. This result is impor-
tant not only to answer RQ2, but also to show that TICLE is efficient in practice,
since taking less time to find the first CUVE shows that TICLE beats the RANDOM
approach in notifying stakeholders faster that there is a workload that results in
a CUVE. We expect that TICLE will be used by performance testers, and it is
important for them to find CUVEs faster to report them to developers who will
start looking for fixes to the detected CUVEs. Thus, a faster-to-find-CUVE app-
roach is also more efficient in using fewer computer resources and stakeholders’
time.

In our case, the data cannot be guaranteed to follow the normal distribution,
therefore, we applied Mann-Whitney-Wilcoxon U-Tests to evaluate the statisti-
cal significance of the difference in the median value of deployment cost between
TICLE and RANDOM for the subject AUTs. The results of Mann-Whitney-Wilcoxon
U-Tests for TICLE and RANDOM are shown in Table 3. The results confirm that
the values for the differences between TICLE and RANDOM are always statistically
significant according to the Mann-Whitney-Wilcoxon U-Test, thus positively
addressing RQ1.

TICLE 161

5.2 Finding Workloads Faster

We applied Mann-Whitney-Wilcoxon U-Tests to evaluate the statistical signif-
icance of the difference in the median value of detection time, which indicates
the execution time to find irregular workloads that lead to the CUVE, between
TICLE and RANDOM for the subject AUTs. The results of Mann-Whitney-Wilcoxon
U-Tests for TICLE and RANDOM are shown in Table 3. The results confirm that
the values for the differences between TICLE and RANDOM are always statistically
significant according to the Mann-Whitney-Wilcoxon U-Test, thus positively
addressing RQ2, which states that TICLE is more efficient in finding CUVE
using significantly fewer computational resources compared to the RANDOM app-
roach.

Fig. 3. Comparing TICLE and RANDOM for detecting CUVEs for the subject AUTs with
different elastic rules that are shown in Table 2. The X-axis designates elasticity rules.
The leftmost red bar represents the ratio of the total number of detected CUVEs using
the approaches TICLE and RANDOM, countTICLE

countRANDOM
. The middle green bar represents the

ratio of the average costs for CUVEs, costTICLE
costRANDOM

. The rightmost blue bar represents

the ratio of detection times for the first found CUVE, timeRANDOM
timeTICLE

. (Color figure

online)

5.3 The Impact of the SLA Threshold

An interesting question is how an SLA threshold affects the process of finding
CUVEs. As discussed in Sect. 4.2, a higher percentage of the SLA threshold
means that longer response times are acceptable. Since one of the objectives is
to find CUVEs where the SLA threshold is violated, the higher the percentage

162 A. Alourani et al.

at which the SLA threshold is chosen, the more difficult it is to obtain CUVEs.
Consider the box-and-whisker plots that are shown in Fig. 2a and b – the visual
inspection clearly identifies the rise of the average cost and the detection time
with the increase of the SLA threshold. However, our analysis shows that the
cost of the application deployment increases robustly when using TICLE whereas
for RANDOM, the average cost stays approximately the same, but it shows a
much wider variance. Our explanation is that TICLE is more effective in finding
workloads for CUVEs with much higher SLA thresholds, since it systematically
chooses workloads with a higher cost using the fitness functions.

Alternatively, the detection time to the first occurrence of the CUVE shows
almost an opposite pattern. The detection time increases steadily when using
RANDOM with a large variance of the measurements whereas for TICLE, the aver-
age detection time stays approximately the same, and it shows a much smaller
variance. Again, this observation confirms the efficiency of TICLE when the SLA
threshold increases.

5.4 Impact of Different Elasticity Rules

The results of the experiments to answer RQ3 are presented in the histogram
plot in Fig. 3 that shows ratios for the total numbers of detected CUVEs, deploy-
ment costs, and detection times computed using the approaches TICLE and
RANDOM over subject AUTs for three elasticity rules, which allocate and deal-
locate resources in consonance with the user-specific conditions (i.e., the uti-
lization of CPUs increases above 80%). We used three elasticity rules that are
recommended by the Amazon, Microsoft Azure, and Google Cloud documenta-
tions [3,13,24], and these rules are shown in Table 2. The higher the ratios, the
more effective and efficient TICLE is in finding CUVEs compared to the RANDOM
baseline approach.

We observe that all ratios with the exception of one for the deployment
cost of the rule R1 are greater than one meaning that TICLE finds faster and
more CUVEs when compared to RANDOM. The highest count ratio is for R3

and R1, followed by R2, which suggests that a higher range value between the
lower threshold that triggers the scale-in operation and the upper threshold
that triggers the scale-out operation for elasticity rules results in more detected
CUVEs. In summary, these experimental results demonstrate that TICLE is more
effective and efficient in finding CUVEs for all elasticity rules than the RANDOM
baseline approach, thus positively addressing RQ3.

6 Related Work

Gambi et al. developed a tool that uses predefined workloads to test the automa-
tion of cloud-based elastic systems [12]. Bodik et al. proposed a workload model
that characterizes volume and data spikes to test the robustness of stateful sys-
tems [6]. Chen et al. developed a tool that uses user-defined workloads to analyze
performance and energy consumption for cloud applications [7]. Snellman et al.

TICLE 163

developed a tool that uses user-defined test scripts to evaluate the performance
and scalability of rich internet applications in the cloud [28]. Shen et al. presented
an approach that uses genetic algorithms to find the combinations of inputs that
lead to performance problems [27]. Xiao et al. presented an approach that uses
complexity models to predict workload-dependent performance bottlenecks [30].
However, TICLE is the first fully automatic approach that finds irregular work-
loads that lead to the CUVEs for stress-testing applications deployed on the
cloud.

7 Conclusion

We presented a novel approach for automating the discovery of situations when
customers pay for resources that are not fully used by their applications while
at the same time, some performance characteristics of these applications are
not met, i.e., the cost-utility violations. We implemented our approach for Test-
ing for Infractions of CLoud Elasticity (TICLE) and we TICLEd four nontrivial
open-source applications in the Microsoft Azure cloud. The results show that
TICLE is effective for automatic stress testing of elastic resource provisioning
for applications deployed on the cloud to determine infractions of elastic rules.
With TICLE, experts can analyze the discovered workloads to determine their
impact on applications. To the best of our knowledge, TICLE is the first fully
automatic approach for discovering irregular workloads that are very difficult to
create using other approaches.

Acknowledgments. We warmly thank Prof. Márcio Barros and anonymous reviewers
for their comments and suggestions that helped us to improve the quality of this paper.
This work is supported by NSF EAGER-1650000, NSF CCF-1615563, NSF I-Corps-
1547597, Microsoft, and Grammatech. Any opinions, findings and conclusions expressed
herein are the authors’ and do not necessarily reflect those of the sponsors.

References

1. TICLE source code and experimental data (2018). https://www.dropbox.com/s/
c2rs5afh5g4icdl/TICLEProject.zip?dl=0

2. Albonico, M., Mottu, J.M., Sunyé, G.: Controlling the elasticity of web applications
on cloud computing. In: Proceedings of the 31st Annual ACM Symposium on
Applied Computing, SAC 2016, pp. 816–819. ACM, New York (2016)

3. AWS: What is auto scaling? (2018). http://docs.aws.amazon.com
4. Beizer, B.: Software Testing Techniques. Dreamtech Press, New Delhi (2003)
5. Bikas, M.A.N., Alourani, A., Grechanik, M.: How elasticity property plays an

important role in the cloud: a survey. Adv. Comput. 103, 1–30 (2016). https://
doi.org/10.1016/bs.adcom.2016.04.001

6. Bodik, P., Fox, A., Franklin, M.J., Jordan, M.I., Patterson, D.A.: Characterizing,
modeling, and generating workload spikes for stateful services. In: Proceedings of
the 1st ACM Symposium on Cloud Computing, pp. 241–252. ACM (2010)

https://www.dropbox.com/s/c2rs5afh5g4icdl/TICLEProject.zip?dl=0
https://www.dropbox.com/s/c2rs5afh5g4icdl/TICLEProject.zip?dl=0
http://docs.aws.amazon.com
https://doi.org/10.1016/bs.adcom.2016.04.001
https://doi.org/10.1016/bs.adcom.2016.04.001

164 A. Alourani et al.

7. Chen, F., Grundy, J., Schneider, J.G., Yang, Y., He, Q.: StressCloud: a tool for
analysing performance and energy consumption of cloud applications. In: Proceed-
ings of the 37th International Conference on Software Engineering, vol. 2, pp.
721–724. IEEE Press (2015)

8. crawler4j: Open source web crawler for Java (2018). https://github.com/yasserg/
crawler4j

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. Trans. Evol. Comput. 6(2), 182–197 (2002)

10. DeCandia, G., et al.: Dynamo: Amazon’s highly available key-value store. In: ACM
SIGOPS Operating Systems Review, vol. 41, pp. 205–220. ACM (2007)

11. Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimiza-
tion. Adv. Eng. Softw. 42(10), 760–771 (2011)

12. Gambi, A., Hummer, W., Dustdar, S.: Automated testing of cloud-based elastic
systems with AUToCLES. In: 2013 IEEE/ACM 28th International Conference on
Automated Software Engineering, ASE, pp. 714–717. IEEE (2013)

13. Google: Autoscaling groups of instances (2018). https://cloud.google.com
14. Grechanik, M., Luo, Q., Poshyvanyk, D., Porter, A.: Enhancing rules for cloud

resource provisioning via learned software performance models. In: Proceedings of
the 7th ACM/SPEC International Conference on Performance Engineering, ICPE
2016, Delft, The Netherlands, 12–16 March 2016, pp. 209–214 (2016). https://doi.
org/10.1145/2851553.2851568

15. Halili, E.: Apache JMeter. Packt Publishing, Birmingham (2008)
16. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud computing: what it

is, and what it is not. In: Proceedings of the 10th International Conference on
Autonomic Computing, ICAC 2013, pp. 23–27. USENIX, San Jose (2013)

17. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. U Michi-
gan Press, Ann Arbor (1975)

18. Islam, S., Lee, K., Fekete, A., Liu, A.: How a consumer can measure elasticity for
cloud platforms. In: Proceedings of the 3rd ACM/SPEC International Conference
on Performance Engineering, ICPE 2012, pp. 85–96. ACM, New York (2012)

19. Lientz, B.P., Swanson, E.B.: Software Maintenance Management. Addison-Wesley,
Boston (1980)

20. Liu, Z., Cho, S.: Characterizing machines and workloads on a Google cluster. In:
Proceedings of the 2012 41st International Conference on Parallel Processing Work-
shops, ICPPW 2012, pp. 397–403. IEEE Computer Society, Washington (2012)

21. Mao, M., Humphrey, M.: A performance study on the VM startup time in the cloud.
In: Proceedings of the 2012 IEEE Fifth International Conference on Cloud Com-
puting, CLOUD 2012, pp. 423–430. IEEE Computer Society, Washington (2012)

22. Mendelson, H.: Economies of scale in computing: Grosch’s law revisited. Commun.
ACM 30(12), 1066–1072 (1987)

23. Mian, R., Martin, P., Zulkernine, F., Vazquez-Poletti, J.L.: Towards building per-
formance models for data-intensive workloads in public clouds. In: Proceedings of
the 4th ACM/SPEC International Conference on Performance Engineering, ICPE
2013, pp. 259–270. ACM, New York (2013)

24. MSAzure: Autoscaling (2018). https://docs.microsoft.com
25. Perez-Palacin, D., Mirandola, R., Scoppetta, M.: Simulation of techniques to

improve the utilization of cloud elasticity in workload-aware adaptive software.
In: Companion Publication for ACM/SPEC on International Conference on Per-
formance Engineering, ICPE 2016 Companion, pp. 51–56. ACM, New York (2016)

https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://cloud.google.com
https://doi.org/10.1145/2851553.2851568
https://doi.org/10.1145/2851553.2851568
https://docs.microsoft.com

TICLE 165

26. Mell, P., Grance, T.: The NIST Definition of Cloud Computing (2009). http://
csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc

27. Shen, D., Luo, Q., Poshyvanyk, D., Grechanik, M.: Automating performance bot-
tleneck detection using search-based application profiling. In: Proceedings of the
2015 International Symposium on Software Testing and Analysis, pp. 270–281.
ACM (2015)

28. Snellman, N., Ashraf, A., Porres, I.: Towards automatic performance and scalability
testing of rich internet applications in the cloud. In: SEAA 2011, pp. 161–169. IEEE
(2011)

29. van der Meulen, R.: Gartner says by 2020 “cloud shift” will affect more than $1
trillion in it spending (2018). http://www.gartner.com/newsroom/id/3384720

30. Xiao, X., Han, S., Zhang, D., Xie, T.: Context-sensitive delta inference for iden-
tifying workload-dependent performance bottlenecks. In: ISSTA 2013, pp. 90–100
(2013)

31. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X. (ed.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30217-9 84

http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc
http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc
http://www.gartner.com/newsroom/id/3384720
https://doi.org/10.1007/978-3-540-30217-9_84

Injecting Social Diversity in Multi-
objective Genetic Programming: The Case
of Model Well-Formedness Rule Learning

Edouard Batot(B) and Houari Sahraoui(B)

GEODES, DIRO, Université de Montréal, Montreal, Canada
{batotedo,sahraouh}@iro.umontreal.ca

Abstract. Software modelling activities typically involve a tedious
and time-consuming effort by specially trained personnel. This lack of
automation hampers the adoption of the Model Driven Engineering
(MDE) paradigm. Nevertheless, in the recent years, much research work
has been dedicated to learn MDE artifacts instead of writing them man-
ually. In this context, mono- and multi-objective Genetic Programming
(GP) has proven being an efficient and reliable method to derive automa-
tion knowledge by using, as training data, a set of examples representing
the expected behavior of an artifact. Generally, the conformance to the
training example set is the main objective to lead the search for a solu-
tion. Yet, single fitness peak, or local optima deadlock, one of the major
drawbacks of GP, remains when adapted to MDE and hinders the results
of the learning. We aim at showing in this paper that an improvement
in populations’ social diversity carried out during the evolutionary com-
putation will lead to more efficient search, faster convergence, and more
generalizable results. We ascertain improvements are due to our changes
on the search strategy with an empirical evaluation featuring the case
of learning well-formedness rules in MDE with a multi-objective genetic
algorithm. The obtained results are striking, and show that semantic
diversity allows a rapid convergence toward the near-optimal solutions.
Moreover, when the semantic diversity is used as for crowding distance,
this convergence is uniform through a hundred of runs.

1 Introduction

Model Driven Engineering (MDE) aims at raising the level of abstraction of
programming languages. MDE advocates the use of models as first-class artifacts.
It combines domain-specific modeling languages to capture specific aspects of
the solution, and transformation engines and generators in order to move back
and forth between models while ensuring their coherence, or to produce from
these models low level artifacts such as source code, documentation, and test
suites [1]. Still, designing and developing artifacts able to perform automated

c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 166–181, 2018.
https://doi.org/10.1007/978-3-319-99241-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_8&domain=pdf

Injecting Social Diversity in Multi-objective Genetic Programming 167

tasks in MDE (ensuring the well-formedness of models, transforming models,
etc.) requires one to have both knowledge in the targeted domain as well as in
the design and development tools. If done manually, these activities typically
involve a tedious and time-consuming effort by specially trained personnel. Such
a lack of automation is considered by many MDE specialists as a threat to MDE
adoption [2,3].

Yet, in recent years, many research contributions have shown that it is fea-
sible to automatically learn how to perform a task through examples, or by
analogy to similar, previously-solved tasks. More precisely, many of the pro-
posed learning methods are based on Genetic Programming (GP) algorithms,
and thereby promise to ease the burden of hand-programming growing volumes
of increasingly complex information. As a matter of fact, empirical studies have
shown a strong potential in learning automatically model transformations [4–6]
and model well-formedness rules [7,8] from examples of tasks input/outputs. An
example here must be understood as a couple <inputmodel; expected output>
defining the constraints that bind artifacts’ output to input. The set of train-
ing examples represents the expected behavior of the artifact to learn and thus
constitutes a convenient objective to lead the search of a solution.

Genetic programming and more generally multi-objective evolutionary com-
putation has received increasing attention in the last decades. From early
works [9–12], authors have formulated the idea that optimizing for multi-
objective is to search for multiple solutions, each of which satisfy the different
objectives to different degrees. The selection of the final solution with a partic-
ular combination of objectives’ values is thus postponed until a time when it is
known what combinations exist [13]. Studies have shown the value of such tech-
nics and their suitability to real problems. However, from the very beginning,
authors pointed out two major drawbacks to the application of genetic program-
ming (GP): (i) diversity of populations is difficult to maintain during evolution,
and populations tend to gather around a single fitness peak ; and, (ii) individuals
tend to grow unnecessarily in size – also called bloating effect.

Both bloating and single fitness peak symptoms have been well investigated
by researchers since early works, and valuable research directions were pro-
posed [14–16]. Nevertheless, while adapting GP as an automatic process to learn
well-formedness rules from examples, we encountered these same scenarios in a
great amount of runs. Solutions agree on finding the correct outputs for a large
number of examples, but fail all on a few same examples – a single fitness peak
is reached. The approach seems to favor solutions with a high fitness, i.e., a
high percentage of correct output found, at the expense of the diversity of the
solutions.

On promoting diversity, Vanneshi et al. showed in their work the superior
importance of research on indirect semantic methods that “act on the syntax
of the individuals and rely on survival criteria to indirectly promote a semantic
behavior” [17]. In as much as semantics are considered in GP as a vector of exam-
ples, MDE learning from examples methodology offers an auspicious support for
such investigations. In the present study, we introduce a new Social Semantic
Diversity Measure of individuals (inspired from Natural Language Processing)

168 E. Batot and H. Sahraoui

operating indirectly during the execution of a well-established multi-objective
genetic algorithm [18]. We illustrate our work and assess its value in an empir-
ical study featuring the problem of automatic learning of well-formedness rules
from examples and counter examples.

The following section draws a map of the two main drawbacks of genetic
programming and how researchers tackle them. Section 3 details how employing
our Social Semantic Diversity Measure foster efficiency and accuracy of a GP
run. We illustrate our approach in a case study depicted in Sect. 4. We assess
our assumption through an empirical evaluation in Sect. 5. Section 6 concludes
briefly.

2 Background, Related Work, and Problem Statement

Genetic Programming (GP) execution is best understood using Fig. 1. At the
beginning, an initial population of programs must be created (1). Then, every
program of the population is executed on the example inputs, and fitness is
evaluated by comparing outputs with the expected ones (2). If a termination
criterion is reach (3), the solution program (or a set of near-optimal solutions, in
case of multi-objective) is returned (6). Otherwise, a new population of programs
is created by genetic operations (crossover and mutation) applied on selected
potential reproducers (4). The new population replaces the previous one (5), and
a new iteration starts (2). The loop is repeated until a termination criterion is
reach (commonly, a perfect fitness, or an arbitrary large number of iterations).
Although this process allows to find good solutions for many problems, it is
known to suffer from two issues, bloating and single fitness peak. In the remainder
of this section, we briefly discuss the bloating issue, and then focus more of the
single fitness peak issue and its relation to diversity, which is the main object of
this paper.

(1) Create an initial
population of programs

(2) Execute programs
and evaluate their fitness

(5) Replace the current
population by the new

one

(4) Create new programs
using genetic operators

(3)
Termination

criteria

(6) Return the
best program

No

Yes

Fig. 1. A typical genetic programming cycle

Injecting Social Diversity in Multi-objective Genetic Programming 169

2.1 Bloating

Luke et al. suggest that, from a high level perspective, bloating (or code growth)
happens because adding genetic material to individuals is more positively corre-
lated to the fitness than removing material. They define it as the “uncontrolled
growth of the average size of an individual in the population” [16]. Nonetheless,
much work has been done to reduce the effect of bloating, offering to present
readers a few options to choose from [15]. More precisely, in a multi-objective
context, Pareto-based Multi-objective Parsimony Pressure (i.e., using an objec-
tive devoted to constraining size of individuals) has been found very effective –
with limited side effects [13,19]. We use this technique in our experiments.

2.2 Single Fitness Peak

The second problem with GP is the risk of a single fitness peak [13], consisting in
a premature convergence together with a loss of diversity. Candidate solutions get
stuck in a local optima and often no further improvement in fitness is noticed [20].
To tackle this issue, the level of diversity a population conveys must be given due
consideration during a GP run [21]. More precisely, two phases of such a run are
appropriate: at the initial population creation, to ensure a broad genetic material
base; and/or during the evolution itself, to ensure that diversity does not fall
from one generation to the next. In both cases, diversity exists in two kinds:
genotypic diversity considers the level of variability in individuals’ structure,
whereas phenotypic diversity focuses on the behavior of individuals.

Genotypic Diversity. Genotypic diversity is the variety of individuals among a
population with regards to their structure. It’s a measure of the distance between
individuals’ syntax [22,23]. MDE though, since the syntax of artifacts is (very)
complex, does not bare a single consensual definition of genotypic (or structural)
diversity [24,25]. Nonetheless, to bestow a sufficiently diverse genetic material to
start an evolutionary computation with, teams have used different metrics based
on coverage estimations and showed interesting results. Works vary in nature and
offer automatic generation of diverse models [8,26], or a user visual assistance
helping when eliciting learning inputs data [27–29]. In any case, both techniques
can be employed to provide with diverse initial population of solutions as well
as with qualified input data.

Phenotypic Diversity. As opposed to genotypic diversity, phenotypic diversity
is measured on the behavior of a program – independently to its syntax. A phe-
notypic (or semantic [17]) measure, refers to the proportion of examples correctly
processed by a program (i.e., producing the expected output when executed on
a specific input). It is a tangible fact that phenotypic diversity is more efficient
than genotypic diversity to avoid the single fitness peak problem [17]. Nonethe-
less, if some early studies went as far as to expand the Darwinian metaphor and
considered preference between individuals during GP run [30], to the best of

170 E. Batot and H. Sahraoui

our knowledge, there exists no study explicitly measuring benefits of phenotypic
diversity when learning MDE artifacts.

Indirect Semantic Diversity Methods. Roughly speaking, these methods
combine both genotypic and phenotypic diversities. The rationale behind indi-
rect diversity methods lies in their ability to distinguish between the aim of the
method: individuals with acute Semantic Fitness, and the mean of its applica-
tion: genetic modifications performed on their syntax. Understood as such, the
heuristic remains agnostic of its mean of achievement and is ready to convey a
strong generalization potential [31]. Vanneshi et al. [17] have proven the power
of indirect diversity methods and call for more research in this field. It is to note
here that, in the context of learning artifacts from examples in MDE, Semantic
Fitness measure is a built-in feature and comes at no extra cost.

3 Social Semantic Diversity Measure

Notwithstanding that MDE-artifact learning from examples might be perfectly
fit to GP adaptation, single fitness peaks yet keep happening during evolution.
This leads to a disproportionate number of solutions with a good fitness, at the
expense of their diversity. Processing most examples correctly, these alphas [14]
struggle to solve all examples exhaustively. Meanwhile, unfortunately, solutions
able to solve the remaining corner cases reach a (much) lower fitness. Withal,
since reproducers are chosen with regard to their fitness, the genetic material
these latter partial solutions convey is lost and corner cases are never solved. A
remedy to this deficiency was found using a social diversity measure.

We call Social Diversity Measure a measure that does not take into account
the only individualistic fitness (i.e., how many examples an individual resolves)
but considers as well a social dimension (i.e., what does that individual bring
to the general fitness of the population).

Since we use a Semantic fitness, the remaining of this paper will mention
Social Semantic Diversity Measure (SSDM). Its computation, based on the
inverse example resolution frequency (IERF) is inspired from the term frequency-
inverse document frequency (TF-IDF) numerical statistic [32] from information
retrieval research field. In other words, the SSDM of a solution is the sum of
IERF of the examples it solves.

Paraphrasing TFIDF definition may help the reader to grasp the general
idea of SSDM. We formulate it as follows: “SSDM increases proportionally to
the number of examples solved and is offset by the frequency of which an example
is solved by the population’s individuals, which helps to adjust for the fact that
some examples are more frequently solved in general.”

As a consequence, SSDM favors solutions solving corner cases by considering
how many solutions in the population solve an example.

Injecting Social Diversity in Multi-objective Genetic Programming 171

Modelling Space

Metamodel

Specific Applica on Domain

Example (Valid model)

Counter Example (Invalid model)

Fig. 2. Metamodel, modelling space and application domain (Color figure online)

4 Learning Well-Formedness Rule

In this section, we illustrate how social semantic diversity can be implemented in
a multi-objective genetic-programming algorithm to learn well-formedness rules
(WFRs) from examples. As mentioned in the introduction, researchers offer to
use GP to learn some of MDE artifacts automatically as a substantial alterna-
tive to writing them manually. Indeed, we aim at showing in this paper that,
during the process, which scalability remains at stake [33], an improvement in
populations’ social diversity will lead to more efficient search and more gener-
alizable results. Thus far, the reader is asked to understand the little space left
for implementation details.

After a brief overlook at the use and function of well-formedness rules, we
will depict how much a tangible support GP, and more precisely multi-objective
GP, offers to learn them automatically from examples and counter examples.

4.1 Well-Formedness Rules

In the MDE paradigm, due to their high level of abstraction, metamodels usually
define too-large modelling spaces. They must be enriched with constraints, or
rules, limiting the scope of their possible instantiations, i.e., well-formed models
in contrast to ill-formed models. Figure 2 schematizes the concept of specific
application domain: a metamodel defines a modelling space (within blue line);
of which a specific application domain is a sub-space (within red dashed line).
A set of WFRs allows to automatically differentiate between valid (well-formed)
and invalid (ill-formed) models – it formally describes the limit of that targeted
specific domain.

Representation. In the context of a GP learning process, a solution to our prob-
lem is thus a set of WFRs. More precisely, we represent a WFR as a tree which

172 E. Batot and H. Sahraoui

nodes are logical operators (AND, OR, IMPLIES, and NOT) and first-order
quantifiers (forAll and exists), and which leaves are learning atomic blocks in
the form of OCL patterns instances. Consequently, a solution is a tree with as
root a vector whose elements are pointers to the individual WFR trees. Figure 3
shows an example of a candidate (not necessarily valid) solution with 3 WFRs
for the state-machine metamodel. The first and second rules constrain a final
state to have respectively one incoming transition and no outgoing transition.
The third rule requires that a pseudostate choice must have at least one incom-
ing or outgoing transition. As for their execution, we implement WFRs in the
defacto language Object Constraint Language (OCL1).

OCL Patterns. The rationale behind OCL patterns is beyond the scope of this
paper. They result from empirical studies carried out on more than 400 meta-
models from industry and academe alike [34]. In a nutshell, OCL patterns should
be understood here as a minimalistic set of templates which instantiation and
composition allows to express all and every useful WFR.

Size Concern. Since solutions must be legible by final user (i.e., within human
reach), the size of constraints must be kept as small as possible.

4.2 GP Adaptation

Our goal is to find the minimal set (i.e., size) of WFRs that best discriminates
between the valid and invalid example models (i.e., fitness). Size and fitness
objectives being contradictive in nature, we represent the learning of WFRs as
a multi-objective optimization problem, and we solve it using the Non-Sorting
Genetic Algorithm NSGA-II [18].

Fig. 3. An example of solution containing 3 WFRs.

The idea of NSGA-II [18] is to make a population of candidate solutions
evolve toward the near-optimal solution in order to solve a multi-objective opti-
mization problem. NSGA-II is designed to find a set of optimal solutions, called
1 http://www.omg.org/spec/OCL/.

http://www.omg.org/spec/OCL/

Injecting Social Diversity in Multi-objective Genetic Programming 173

Front 3

Front 1

Front 3

Front 2

Front 5

Front 4

P0

Q0

RejectedG
e

n
e

ti
c

o
p

e
ra

to
rs

Non-dominance
Sorting
(3a)

Crowding distance
Sorting
(3b)

P1

Repeat until end condition is reached (4)
(1)

(2)

Fig. 4. Non Sorting Genetic Algorithm NSGA-II [18]

non-dominated solutions, also Pareto set. A non-dominated solution is the one
which provides a suitable compromise between all objectives without degrad-
ing any of them. As described in Fig. 4, the first step in NSGA-II is to create
randomly a population P0 of N/2 individuals encoded using a specific represen-
tation (1). Then, a child population Q0, of the same size, is generated from the
population of parents P0 using genetic operators such as crossover and mutation
(2). Both populations are merged into an initial population R0 of size N , which is
sorted into dominance fronts according to the dominance principle (3a). A solu-
tion s1 dominates a solution s2 for a set of objectives {Oi} if ∀i, Oi(s1) � Oi(s2)
and ∃j | Oj(s1) > Oj(s2). The first (Pareto) front includes the non-dominated
solutions; the second front contains the solutions that are dominated only by the
solutions of the first front, and so on and so forth. The fronts are included in
the parent population P1 of the next generation following the dominance order
until the size of N/2 is reached. If this size coincides with part of a front, the
solutions inside this front are sorted, to complete the population, according to
a crowding distance which favors “diversity” in the solutions (3b). This process
will be repeated until a stop criterion is reached, e.g., a number of iterations or
a certain value of the Semantic Fitness.

We adapted NSGA-II to our problem as follows.

– Solution Representation and Creation. A solution to our problem is
represented as mentioned in Sect. 4.1, i.e., a set of OCL constraints, each
implementing a WFR represented as a tree. The initial population is created
randomly. For each individual, the average number of nodes in the WFR
trees, the maximum depth, and the maximum width are configurable.

– Reproduction. As genetic operators, we use a single-point crossover applied
to the tree-root vector, and two kinds of mutations. First, a node from a WFR
tree is chosen randomly. If it is a leaf, the pattern instance is either replaced
with a new randomly created one or, if applicable, the pattern parameters
are replaced randomly with applicable values. If the selected node is a logical
operator, this is changed randomly.

174 E. Batot and H. Sahraoui

– Objectives. We consider three objectives: Size is the number of leaves in
the constraint tree, the smaller the better; Semantic Fitness is the number
of examples processed accurately by an individual, to be maximized; and
Diversity is SSDM, which can be represented either as an objective or a
crowding distance, to be maximized as well.

– Termination criteria. Evolution stops if either a Semantic Fitness of 99%,
or an arbitrary large number of iterations, is reach.

4.3 Social Semantic Diversity Implementation

We offer to employ the Social Semantic Diversity Measure (SSDM) in two dif-
ferent ways. The first is as an objective of its own, considered together with
above-mentioned size and fitness (as promoted by Dejong et al. [13]). The other
builds on peculiar limitation of NSGA-II [35] and acts as an alternative to the
computation of a crowding distance. In both cases, SSDM computation remains
the same.

More specifically, implementing SSDM comes to adapting TF-IDF [32] using
examples as documents and solutions as words. This is detailed in Listing 1.1.
At a given iteration, SSDM is calculated from a binary matrix in which each
cell represents the score of an individual against an example of the training set.
The frequency of an example is the number of times it is solved by individuals
(first for loop). Finally, individual’s SSDM value is the sum of inverse example
resolution frequencies of examples that it processes accurately (last for loop).
More precisely, variables are:

– example set, the vector of training examples;
– sol vs examples, which contains the result of the comparison between output

of individuals and output of the oracle when executed on example set;
– and fq ex, which contains examples frequencies, recording how many solu-

tions solve each example from example set;
– ierfi, the vector of inverse example resolution frequencies of training

examples.

5 Evaluation

To assess the improvement brought by our social semantic diversity in the search
strategy, we conducted an empirical evaluation2. We formulate our research ques-
tions as follows:

– RQ0: Are our results a consequence of an efficient exploration of the search
space, or are they due to the vast number of individuals we consider during
the evolution?

2 All experiment data is available at http://www-ens.iro.umontreal.ca/∼batotedo/
ssdm exp/.

http://www-ens.iro.umontreal.ca/~{}batotedo/ssdm_exp/
http://www-ens.iro.umontreal.ca/~{}batotedo/ssdm_exp/

Injecting Social Diversity in Multi-objective Genetic Programming 175

Listing 1.1. Excerpt for SSDM weights calculation.

\\ Compute frequencies of examples solved

for (int i = 0; i < sol_vs_ex.length; i++)

for (int j = 0; j < sol_vs_ex[i]. length; j++)

fq_ex[j] += sol_vs_ex[i][j];

\\ Inverse document frequencies

for (int j = 0; j < fq.length; j++)

ierfi[j] = Math.log10(D/fq_ex[j]);

\\ Weigthing

weight = 0;

for(int j = 0; j < example_set.length; j++)

if(example_set[j]. isAccurate ())

weight += ierfi[j];

– RQ1: Does the use of Social Semantic Diversity as an objective improves the
search strategy, and, if so, how much?

– RQ2: Does the use of Social Semantic Diversity as an alternative crowding
distance exhibit better efficiency and generalizability than as an objective?

5.1 Setting

In order to mitigate the influence of a metamodel specific structure on the learn-
ing process, we selected three metamodels (FamilyTree, Statemachine, and
Project Manager) that demonstrate different levels of structure complexity and
require diverse OCL WFR sets. We provided with oracle (i.e., expected WFRs)
manually. In more details, FamilyTree is the most simple case. Yet, it has been
used as an illustrative example in various publications in the MDE research lit-
erature, such as [36]. Statemachine illustrates structural cardinality restrictions
and define a common, widely used language. Finally, Project Manager is the
most complex case and comes from [37].

Learning Examples. To provide with example sets of quality (i.e., covering at
best the modelling space, yet as small as can be), we used a model generator [8].
Size matters since every generated model example must be, in a real setting,
tagged manually as valid or invalid. For the sake of experiment, we use the
WFRs oracles to mimic the manual tagging. To run the experiment, we used
two sets of examples for each metamodel. On the one hand, 20 models (10 valid,
10 invalid) were required for the learning (a training set). On the other hand,
a test bench of 100 models (50 valid, 50 invalid) was used to measure solutions’
accuracy (or generalizability).

Configurations and Variables. Four configurations were considered to illus-
trate and answer our research questions (see Sect. 4.2 for implementation details).

176 E. Batot and H. Sahraoui

RND is a random exploration of the search space that takes the best among
a given number of solutions randomly generated; STD is a standard run of
NSGA-II [18] with two objectives, size and semantic fitness; OBJ is a run of
NSGA-II with three objectives: size, semantic fitness, and SSDM diversity; and
CD is a run of NSGA-II with size and semantic fitness as objectives, and SSDM
as crowding distance.

We used two dependent variables to quantify experiment results: #GEN, the
number of generation the evolutionary computation needed to find a solution.
A score of 3000 means that there was no solution with perfect fit found during
the search, and ACC, the proportion of examples from the test bench a solution
process accurately.

Evaluation Protocol. For the NSGA-II parameters, we use a maximum num-
ber of iterations of 3000 and a population size of 30 solutions. Crossover and
mutation probabilities are set to 0.9 and 0.3 respectively. In addition, solutions
are created with between 5 to 15 WFRs with each WFR having a maximum
depth of 3 and width of 15. We answer RQ0 with a comparison between the
results given when using SSDM as an objective (OBJ) in the search strategy
and those of a random exploration (RND). Since our strategy explores 3000*30
solutions, the random exploration explores randomly 90000 solutions as well
and considers the best individual so created. We answer RQ1 with a comparison
between the solutions obtained after an execution with and one without social
semantic diversity objective (respectively OBJ and STD). Finally, we answer
RQ2 by comparing the configurations with social semantic diversity objective
(OBJ) and with social semantic diversity crowding distance (CD). We ran each
treatment 100 times to tackle GP indeterminism and we guarantee statistical
significance of the findings using the Mann-Whitney test.

5.2 Results and Analysis

RQ0 - Sanity Check. As can be seen in Table 1, the RND configuration
gives very poor results in comparison with an OBJ execution for the two most
complex metamodels (average accuracy on test bench is 0.5 vs 0.76 for Project
Manager and 0.53 vs. 0.94 for Statemachine). The difference in both cases is
statistically significant (p-value < 0.001) and the effect size is large (Cohen′s d >
5). For the small metamodel FamilyTree, although statistically significant, the
difference and the effect size are small. We can conclude that solutions are
significantly more generalizable when using OBJ configuration .

RQ1 - Social Semantic Diversity Method, an Improvement? Efficiency
shows a significant improvement when SSDM is used, as can be seen in odd
columns of Fig. 5. The number of generations required to find a solution when
employing OBJ is a lot smaller than when employing STD. With Project
Manager metamodel, an STD run hardly find solutions solving all training exam-
ples within 3000 generations, but OBJ do it in an average of 260 generations.

Injecting Social Diversity in Multi-objective Genetic Programming 177

Table 1. Statistical comparison of results between random search and our approach
on three WFR learning scenarios.

More, solutions were found with significantly better accuracy than STD (respec-
tively 0.76 against 0.69) and thus strengthen solutions’ generalizability likewise.
This success is also noticed, if of lesser magnitude, during executions on the
Statemachine metamodel. Here, if solutions are found in both configuration,
yet OBJ is significantly faster (with 782 generations, when STD requires more
than 1782). As for the FamilyTree metamodel (not shown if the figure), solutions
given by OBJ executions output a similar ACC (0.98) but significantly faster
with 25 generations (resp. 76 with STD). We can conclude that injecting the
social semantic diversity significantly improves the learning results.

Crowding
distance

3000-

2000-

1000-

0-

2500-

1500-

500-

A
cc

ur
ac

y
of

 s
ol

ut
io

ns
 fo

un
d

Standard Objec ve

of

 g
en

er
at

io
ns

-0,6

-0,4

-0,2

-0

-0,5

-0,3

-0,1

-0,8
-0,7

-0,9
-1,0

Crowding
distance

Standard Objec ve

StatemachineProject Manager

Fig. 5. Number of generations to find solutions and their accuracy on test bench for
Project Manager and Statemachine metamodels.

RQ2 - Social Semantic Diversity Method as an Alternative Crowd-
ing Distance, Any Better Yet? Results of RQ2 are flagrant (see the third
configuration for both metamodels in Fig. 5). In Fig. 6, a hundred runs show
together how using SSDM (Fig. 6c and b) surges the learning curves and fosters
solution exploration compared to a standard run (Fig. 6a). As for generalizabil-
ity, it doesn’t seem that choosing between SSDM as an objective (OBJ) or in
the crowding distance (CD) has any significant impact on the accuracy of solu-
tions on test bench found (Mann Witney p-value > 0.01; see even columns in
Fig. 5 for an illustration). Thence, the main difference lies in the smaller average
number of iterations CD needs to converge, compared to OBJ runs. Note that
analysis is the strongest with Project Manager and FamilyTree metamodels.

178 E. Batot and H. Sahraoui

Ac
cu

ra
cy

of genera ons

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 500 1000 1500 2000 2500 3000

(a) Standard evolution (STD)

Ac
cu

ra
cy

of genera ons

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 500 1000 1500 2000 2500 3000

(b) SSDM as an objective (OBJ)

Ac
cu

ra
cy

of genera ons

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 500 1000 1500 2000 2500 3000

(c) SSDM as crowding distance (CD)

Fig. 6. Evolution of individuals’ average accuracy value during runs on Project

Manager metamodel, with a hundred runs a plot.

With Statemachine metamodel’s results are slightly mitigated but remains sig-
nificant. In that case, WFRs are more generally focused on structural cardinality
than WFRs of the two other metamodels. We conceive this might be a factor for
slightly different results. We can conclude that social semantic diversity
as a crowding distance is more efficient than as an objective .

In conclusion, as shown in Figs. 5 and 6 and certified with statistical anal-
ysis, the OBJ strategy surpasses significantly a STD exploration of solutions.
Convergence is faster and output more generalizable (i.e., confronting solutions
to a test bench gives better results). A reason for these results might come from
the way size is controlled. As recognized in the literature, we implemented it as
a Pareto-based Multi-objective Parsimony Pressure. We noted, as expected [13],
that solutions were skewed toward a 1.0 size, and the Pareto front grew large.
Solutions’ size was indeed the one expected (i.e., legible by a human), and the
search, passed a few generations, relied mainly on Semantic Fitness. As a pre-
sumed consequence, when putting SSDM as an alternative to crowding distance,
results were breathtaking on the three metamodels. Finally, using Social Seman-
tic Diversity Measure as an alternative crowding distance outperforms its use
as an additional objective. Convergence is boosted, and generalizability is kept
at its maximum. We hope these results are generalizable and claim the need to
explore other applications, with OBJ and CD alike.

5.3 Thread to Validity

Although our approach produced good results on three metamodels, a threat to
validity resides in the generalization of our approach to other scenarios. Still,

Injecting Social Diversity in Multi-objective Genetic Programming 179

metamodels show different characteristic and origin, and while our sample does
not cover all learning scenarios, we believe that it is representative enough of a
wide range of metamodels.

Another threat to the validity of our results relates to the use of a single
set of (20) models to learn each WFR sets. Characterization of example sets is
an ongoing investigation, and different sets might show different results. Yet, to
mitigate what specificities the manual design of models can bring and encourage
replication of our work, we used a generator [8]. Also, using the same set in every
configuration ensures a difference in sets do not interfere in the experiment.

Regarding the applicability to other MDE artifacts, we believe that the idea
to consider the social dimension of individuals’ characteristics shall apply to the
evolutionary computation of model transformation as well. In this case, inverse
example resolution frequency could be used as well and we prospect, as future
work, to replicate this study on model transformation learning.

6 Conclusion

This paper studies the impact of using a social semantic diversity to improve the
search process for the multi-objective optimization problem of learning model
well-formedness rules from examples and counter examples. The Social Semantic
Diversity is measured (SSDM) in a way that does not take into account the
only individualistic fitness (i.e., how many examples an individual resolves) but
considers as well a social dimension (i.e., what does that individual bring to
the general fitness of the population). We integrated SSDM in the NSGA-II
algorithm as (i) an additional objective, and (ii) as an alternative to the crowding
distance.

We evaluated the two options by learning WFRs for three metamodels. Our
results are compiling evidence that injecting the social semantic diversity in the
search process, especial as an alternative to the crowding distance, improves the
convergence and the quality of the learned artifacts. The proposed measure and
its integration in the multi-objective optimization algorithm are agnostic with
respect to the learned artifact and the input/output examples used to guide the
search. This allows to use social semantic diversity for a wide range of problem
that can be solved by a multi-objective genetic programming algorithm. This
claim must, however, be supported by replication studies. We expect to conduct
some of these studies, especially for model transformation learning. Finally, we
encourage further replication of our work to determine whether different multi-
objective GP algorithms could benefit as well from our discovery.

References

1. Schmidt, D.C.: Model-driven engineering. IEEE Comput. Soc. 39(2), 25 (2006)
2. Selic, B.: What will it take? A view on adoption of model-based methods in prac-

tice. Int. J. Softw. Syst. Model. 11(4), 513–526 (2012)
3. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven

engineering. IEEE Softw. 31, 79–85 (2014)

180 E. Batot and H. Sahraoui

4. Kessentini, M., Kessentini, W., Sahraoui, H., Boukadoum, M., Ouni, A.: Design
defects detection and correction by example. In: Proceedings of the International
Conference on Program Comprehension, pp. 81–90 (2011)

5. Saada, H., Dolques, X., Huchard, M., Nebut, C., Sahraoui, H.: Generation of oper-
ational transformation rules from examples of model transformations. In: France,
R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol.
7590, pp. 546–561. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33666-9 35

6. Baki, I., Sahraoui, H.: Multi-step learning and adaptive search for learning complex
model transformations from examples. ACM Trans. Softw. Eng. Methodol. X, 36
(2015)

7. Faunes, M., Cadavid, J., Baudry, B., Sahraoui, H., Combemale, B.: Automatically
searching for metamodel well-formedness rules in examples and counter-examples.
In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS
2013. LNCS, vol. 8107, pp. 187–202. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-41533-3 12

8. Batot, E., Sahraoui, H.: A generic framework for model-set selection for the uni-
fication of testing and learning MDE tasks. In: Proceedings of the International
Conference on Model-Driven Engineering Languages and Systems. ACM (2016)

9. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algo-
rithms. In: Proceedings of the 1st International Conference on Genetic Algorithms,
pp. 93–100. L. Erlbaum Associates Inc., Hillsdale (1985)

10. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

11. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge (1992)

12. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

13. de Jong, E.D., Watson, R.A., Pollack, J.B.: Reducing bloat and promoting diversity
using multi-objective methods. In: Proceedings of the 3rd Annual Conference on
Genetic and Evolutionary Computation, GECCO 2001, pp. 11–18 (2001)

14. Bersano-Begey, T.F.: Controlling exploration, diversity and escaping local optima
in GP: adapting weights of training sets to model resource consumption. In: Koza,
J.R. (ed.) Late Breaking Papers at the 1997 Genetic Programming Conference, pp.
7–10 (1997)

15. Soule, T., Foster, J.A.: Effects of code growth and parsimony pressure on popula-
tions in genetic programming. Evol. Comput. 6(4), 293–309 (1998)

16. Luke, S., Panait, L.: A comparison of bloat control methods for genetic program-
ming. Evol. Comput. 14(3), 309–344 (2006)

17. Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic
programming. Genet. Programm. Evol. Mach. 15(2), 195–214 (2014)

18. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer,
M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45356-3 83

19. Ekárt, A., Németh, S.Z.: A metric for genetic programs and fitness sharing. In:
Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.)
EuroGP 2000. LNCS, vol. 1802, pp. 259–270. Springer, Heidelberg (2000). https://
doi.org/10.1007/978-3-540-46239-2 19

https://doi.org/10.1007/978-3-642-33666-9_35
https://doi.org/10.1007/978-3-642-33666-9_35
https://doi.org/10.1007/978-3-642-41533-3_12
https://doi.org/10.1007/978-3-642-41533-3_12
https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1007/978-3-540-46239-2_19
https://doi.org/10.1007/978-3-540-46239-2_19

Injecting Social Diversity in Multi-objective Genetic Programming 181

20. Wyns, B., De Bruyne, P., Boullart, L.: Characterizing diversity in genetic pro-
gramming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.)
EuroGP 2006. LNCS, vol. 3905, pp. 250–259. Springer, Heidelberg (2006). https://
doi.org/10.1007/11729976 22

21. Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: an
analysis of measures and correlation with fitness. IEEE Trans. Evol. Comput. 8(1),
47–62 (2004)

22. McPhee, N.F., Hopper, N.J.: Analysis of genetic diversity through population his-
tory. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary
Computation, vol. 2, pp. 1112–1120. Morgan Kaufmann Publishers Inc. (1999)

23. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic pro-
gramming. In: O’Neill, M., et al. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 134–
145. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78671-9 12

24. Baudry, B., Monperrus, M.: The multiple facets of software diversity: recent devel-
opments in year 2000 and beyond. ACM Comput. Surv. 48(1), 16:1–16:26 (2015)

25. Giraldo, F.D., EspaÃśa, S., Pastor, O.: Analysing the concept of quality in model-
driven engineering literature: a systematic review. In: 2014 IEEE Eighth Interna-
tional Conference on Research Challenges in Information Science, RCIS, pp. 1–12,
May 2014

26. Wu, H.: Generating metamodel instances satisfying coverage criteria via SMT solv-
ing. In: Proceedings of the International Conference on Model-Driven Engineering
and Software Development, pp. 40–51 (2016)

27. Ferdjoukh, A., Galinier, F., Bourreau, E., Chateau, A., Nebut, C.: Measuring dif-
ferences to compare sets of models and improve diversity in MDE. In: International
Conference on Software Engineering Advances, ICSEA, Athens, Greece, October
2017

28. Sánchez-Cuadrado, J., de Lara, J., Guerra, E.: Bottom-up meta-modelling: an
interactive approach. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
MODELS 2012. LNCS, vol. 7590, pp. 3–19. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33666-9 2

29. López-Fernández, J.J., Guerra, E., de Lara, J.: Example-based validation of
domain-specific visual languages. In: Proceedings of the International Conference
on Software Language Engineering, SLE 2015, pp. 101–112 (2015)

30. Ryan, C.: Racial harmony in genetic algorithms (1994)
31. Dabhi, V.K., Chaudhary, S.: A survey on techniques of improving generalization

ability of genetic programming solutions. CoRR abs/1211.1119 (2012)
32. Sparck Jones, K.: A statistical interpretation of term specificity and its application

in retrieval. In: Willett, P. (ed.) Document Retrieval Systems, pp. 132–142 (1988)
33. Harman, M., Jia, Y., Zhang, Y.: Achievements, open problems and challenges for

search based software testing. In: Proceedings of the International Conference on
Software Testing Verification and Validation, pp. 1–12 (2015)

34. Cadavid, J.J., Combemale, B., Baudry, B.: Ten years of meta-object facility: an
analysis of metamodeling practices. AtlanMod, Research Report RR-7882 (2012)

35. Fortin, F.-A., Parizeau, M.: Revisiting the NSGA-II crowding-distance computa-
tion. In: Proceedings of International Conference on Genetic and Evolutionary
Computation, GECCO. ACM (2013)

36. Gogolla, M., Vallecillo, A., Burgueno, L., Hilken, F.: Employing classifying terms
for testing model transformations. In: Proceedings of the International Conference
on Model-Driven Engineering Languages and Systems, pp. 312–321 (2015)

37. Hassam, K., Sadou, S., Fleurquin, R.: Adapting OCL constraints after a refactoring
of their model using an MDE process. In: 9th Edition of the BElgian-NEtherlands
Software eVOLution Seminar, pp. 16–27 (2010)

https://doi.org/10.1007/11729976_22
https://doi.org/10.1007/11729976_22
https://doi.org/10.1007/978-3-540-78671-9_12
https://doi.org/10.1007/978-3-642-33666-9_2
https://doi.org/10.1007/978-3-642-33666-9_2

Automated Optimization of Weighted
Non-functional Objectives
in Self-adaptive Systems

Kate M. Bowers1(B), Erik M. Fredericks1(B), and Betty H. C. Cheng2(B)

1 Oakland University, Rochester, MI 48309, USA
{kmlabell,fredericks}@oakland.edu

2 Michigan State University, East Lansing, MI 48824, USA
chengb@cse.msu.edu

Abstract. A self-adaptive system (SAS) can reconfigure at run time in
response to adverse combinations of system and environmental condi-
tions in order to continuously satisfy its requirements. Moreover, SASs
are subject to cross-cutting non-functional requirements (NFRs), such
as performance, security, and usability, that collectively characterize how
functional requirements (FRs) are to be satisfied. In many cases, the trig-
ger for adapting an SAS may be due to a violation of one or more NFRs.
For a given NFR, different combinations of hierarchically-organized FRs
may yield varying degrees of satisfaction (i.e., satisficement). This paper
presents Providentia, a search-based technique to optimize NFR satis-
ficement when subjected to various sources of uncertainty (e.g., environ-
ment, interactions between system elements, etc.). Providentia searches
for optimal combinations of FRs that, when considered with different
subgoal decompositions and/or differential weights, provide optimal sat-
isficement of NFR objectives. Experimental results suggest that using
an SAS goal model enhanced with search-based optimization signifi-
cantly improves system performance when compared with manually- and
randomly-generated weights and subgoals.

Keywords: Search-based software engineering
Non-functional requirements · Self-adaptive systems
Evolutionary computation

1 Introduction

A self-adaptive system (SAS) provides adaptation strategies for reconfigura-
tion at run time to mitigate unexpected issues that arise as a result of uncer-
tainty (e.g., adverse environmental conditions or unexpected issues in the system
itself) [15,19]. The SAS generally will use these adaptation strategies to select an
optimal configuration that enables continuous requirements satisficement (i.e.,
degree of satisfaction) [5]. An SAS is governed by functional requirements (FRs)
that can be mathematically quantified to monitor satisficement, as well as by
non-functional requirements (NFRs) that tend to be qualitative and may not be
c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 182–197, 2018.
https://doi.org/10.1007/978-3-319-99241-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_9&domain=pdf

Automated Optimization of Weighted Non-functional Objectives 183

easily mathematically quantifiable (e.g., resiliency and efficiency) [17,34]. How-
ever, this process relies on domain knowledge and may be sub-optimal given
changing environmental conditions. This paper presents Providentia, a search-
based technique to be used at design time to automatically determine an optimal
set of FRs, including the level of impact of each, to support each NFR in an SAS.

NFRs can be modeled as behavioral goals (e.g., KAOS [17]) or soft goals (i.e.,
NFR framework [34] and iStar modeling language [36]). Soft goals describe pref-
erences of system behaviors that tend to be qualitative in nature [23], thereby
making the determination of an optimal reconfiguration strategy more challeng-
ing for SASs. Similar to Providentia, the Analytic Hierarchy Process (AHP)
decomposes NFRs into one or more weighted FRs using an automated weighting
scheme to prioritize FRs [27]. However, prioritizations in an SAS determined at
design time may change drastically as the system experiences various forms of
uncertainty due to changing environmental conditions and unexpected system
changes, such as unwanted feature interactions.

We introduce Providentia to address the challenges with quantifying and
analyzing NFRs at run time via a design-time technique that takes into account
environmental and system uncertainty. Providentia uses a utility function that
specifies a mathematical expression of goal satisficement for each FR. Each NFR
has a linear-weighted expression that specifies the impact that a given FR has
in satisficing the NFR objective [27]. For a given set of SAS FRs with corre-
sponding metrics to assess their satisficement, Providentia explores different
combinations of weights for a linear-weighted expression of FRs that contribute
to the satisficement of their respective NFRs.

To make the overall system robust to adverse conditions, an evolutionary-
based search process assesses the system’s run-time behavior using an executable
specification of the system that is subjected to randomly-generated sources of
uncertainty in order to identify optimal goal model configurations for maximizing
FR/NFR satisficement. Providentia optimizes the FR selection process using
a genetic algorithm as a search heuristic, where the search space is the different
goal model configurations that capture varying combinations of FRs. The genetic
algorithm determines optimal weight assignments that result in the highest sat-
isficement of the NFR when faced with uncertainty. The Providentia-optimized
goal model is then applied to the SAS at run time. The correlated evaluation
of NFR and FR satisficement enables traditionally soft goals to be evaluated
with FR metrics during execution, thereby enabling online SAS reconfiguration
in response to high-level non-functional and functional objectives. Furthermore,
optimizing the weighted contributions of FRs to each NFR according to esti-
mated sources of uncertainty enables the system to perform better at run time
under actual sources of uncertainty, as a requirements engineer may not be able
to foresee the diverse range and scope of cases when deriving their respective
weights.

We illustrate the effectiveness of Providentia with an industry-provided
application, namely, a remote data mirroring (RDM) network [13,14]. The RDM
application must replicate and disseminate messages to each RDM within the

184 K. M. Bowers et al.

network and can experience uncertainty due to dropped or delayed messages,
sensor noise, and unexpected server and network link failures. For run-time
assessment purposes, we use a network simulator that conforms to the specifica-
tions provided by our industrial collaborator. Experimental results suggest that
using Providentia to optimize NFRs based on simulated sources of uncertainty
significantly improves overall requirement fitness as well as decreases the num-
ber of requirement violations of the RDM application when compared to NFRs
using human-generated identification of contributing FRs, their weights, as well
as those assigned by random search. The remainder of this paper is organized as
follows. Section 2 provides relevant background information on the RDM appli-
cation, goal-oriented requirements engineering (GORE), NFRs, and utility func-
tions for assessing metrics. Section 3 details the implementation of Providentia
for automatically determining FR selection and weight assignment for NFRs.
Section 4 presents our experimental results and Sect. 5 discusses related work.
Section 6 summarizes our results and overviews future directions.

2 Background

This section provides relevant background information on the RDM application,
GORE, NFRs, and utility functions.

2.1 Remote Data Mirroring

RDM is a data protection technique for ensuring that data loss is minimized and
data availability is maximized in the context of data replicates that are dissemi-
nated to other servers (i.e., data mirrors) in physically remote locations [13,15].
An RDM network can be modeled as an SAS [26], enabling reconfiguration in
terms of network topology and data propagation parameters to enable contin-
uous requirements satisficement. Uncertainty can impact the RDM in terms of
unexpected dropped or delayed messages, random network link or data mirror
failures, and noise applied to network links and data mirror sensors. These recon-
figuration strategies can be fulfilled by downgrading the status of the affected
data mirrors from active (i.e., can send and receive messages) to passive (i.e.,
can only receive messages) or quiescent (i.e., cannot send or receive messages).

2.2 Goal-Oriented Requirements Engineering

GORE is an approach for graphically specifying a system’s key objectives and
constraints using both functional and non-functional goals [8]. A goal is a system
behavior achieved through the cooperation of its agents, where an agent is a
system component that performs actions based on the behavior specified by
goals. A requirement is a goal under the responsibility of a single agent. An
expectation is a requirement whose agent is a part of the environment. Functional
goals specify a service to be provided and non-functional goals impose a quality
constraint on those functional services [17].

Automated Optimization of Weighted Non-functional Objectives 185

GORE enables goal decomposition using a directed acyclic graph, where each
node represents a goal and each edge represents a goal refinement [17]. GORE has
been extended with additional refinement strategies through KAOS [8,17] and
iStar [35]. KAOS introduces AND- and OR-refinements for additional satisfice-
ment constraints, where an AND-refined goal is satisfied if each sub-goal is also
satisfied and an OR-refined goal is satisfied if at least one sub-goal is satisfied.
KAOS functional goals may be further categorized as invariant or non-invariant,
where invariant goals must always be satisfied and non-invariant goals may be
temporarily unsatisfied due to transient conditions. Invariant goals are denoted
by the keywords “Maintain” or “Avoid” and non-invariant goals are denoted by
the keyword “Achieve.”

Fig. 1. RDM goal model.

186 K. M. Bowers et al.

Figure 1 presents the KAOS goal model of the RDM application that
describes its hierarchical relationships between goals, requirements/expectations,
and agents.1

2.3 Non-functional Requirements

NFRs impose a quality constraint on a system [6]. Such goals are often difficult
to quantify, given their relative subjectivity. Moreover, cross-cutting concerns
may manifest in NFRs, given their broad impacts on the overall system [6].
While rigorous mathematical models have been previously described for calcu-
lating requirements satisfaction [10,24], such models generally require a detailed
understanding of the real-world environment that is often difficult or impos-
sible to derive for NFRs. A sample NFR for the RDM application in Fig. 1 is
Minimize [Power], where many factors (e.g., Goals (A), (E), (I), (V), and (W))
could contribute to either increasing or decreasing power consumption over time,
as illustrated in Fig. 2.

Goal (E):
Achieve[Minimum
Num Links Ac ve]

Goal (A): Maintain
[DataAvailable]

Goal (I):
Achieve[Adapta on

Costs == 0]

Goal (V): Achieve
[Num Passive Data

Mirrors == 0]

Goal (W): Achieve
[Num Quiescent

Data Mirrors == 0]

0.3 0.30.1 0.1
0.2

Minimize
[Power]

NFR7
Goal Requirement /

Expecta on
NFR

Key

Goal Requirement /
Expecta on

NFR

Key

Fig. 2. NFR7: minimize[power].

We use the model in Fig. 2 as an illustrative example to demonstrate the
effectiveness of Providentia, where all functional goals represent FRs and non-
functional goals represent NFRs. Note that although Fig. 2 is presented in a
separate diagram, for discussion, the NFR is intended to depict an extension of
the input goal model shown in Fig. 1, where the NFRs are evaluated in conjunc-
tion with the FRs.

2.4 Utility Functions

A utility function can be used to quantify the degree of satisfaction (i.e., sat-
isficement) of software requirements at run time in autonomic computing sys-
tems [9,24,30]. A utility value of 0.0 indicates a violation, 1.0 indicates complete
satisfaction, and any value within range of (0.0, 1.0) indicates a degree of satisfice-
ment for that requirement [5]. For example, Expression 1 shows the utility value

1 This work does not use the KAOS formal refinement infrastructure.

Automated Optimization of Weighted Non-functional Objectives 187

calculation for Goal (V) to Achieve [Num Passive Data Mirrors == 0], as
introduced in Fig. 1.

util(goalV) =

⎧
⎪⎨

⎪⎩

1.0 if Num Passive Data Mirrors == 0
x if 0 < Num Passive Data Mirrors < 20%of total nodes
0.0 if Num Passive Data Mirrors ≥ 20% of total nodes

(1)

Goal (V) can be quantified by monitoring the state of each RDM within the
network. If there are no RDMs in a passive state, then the utility value is 1.0.
Otherwise, the utility value linearly decreases until a threshold (e.g., 20% of the
total number of nodes for this paper) is met and then the utility value equals
0.0, indicating a requirement violation.

3 Approach

This section introduces Providentia, our technique for automatically optimiz-
ing the selection of FRs and their corresponding weights for satisficing NFR
objectives. We first describe the inputs and outputs of Providentia and then
present the approach.

3.1 Providentia: Inputs and Outputs

Providentia requires the following inputs: a goal model representing both FRs
and NFRs of the SAS, a set of utility functions for run-time requirements moni-
toring, a set of applicable FRs for each NFR, and an executable specification or
prototype of the SAS to be used for run-time simulation, including any defined
sources of uncertainty (for this experiment, environmental and system uncer-
tainty are used). The output of Providentia is a goal model with optimized
FR/NFR relationships. Note that the success of Providentia relies on the accu-
racy of the input data. For example, if the set of applicable FRs for each NFR
is inaccurate or if any sources of uncertainty are omitted, the effectiveness of
the search-based heuristic may not necessarily be optimal. Note that the time
to compute an optimal goal model increases as the size of the input goal model
and requirements data increases.

Goal Model. A KAOS goal model is required to specify the FRs and NFRs of
the SAS.

Utility Functions. A utility function shall be derived for each FR for run-
time monitoring of SAS requirements [9,30]. Each utility function comprises
a mathematical function that maps monitoring data to a scalar value within
[0.0, 1.0], demonstrating how well the FR is satisfied at run time.

Applicable Set of FRs. A requirements engineer shall provide an initial set of
applicable FRs that can have an impact on an NFR. For example, a requirements
engineer may specify that Goals (A), (E), (I), (V), and (W) most critically impact

188 K. M. Bowers et al.

the NFR for reducing power consumption, however that list may be further
expanded at design time (e.g., due to uncertainty factors) to include Goals (B),
(K), (M), (O), (P), and (U). Extending the list of possible FRs for each NFR
allows a larger search space for Providentia to find an optimal solution that a
requirements engineer may not be able to foresee.

Executable Specification. An executable specification, such as a simulation
or prototype, of an SAS must also be provided as input. The specification applies
the FR utility functions to measure how well SAS requirements are being satisfied
at run time. The executable specification also applies different combinations of
system and environmental parameters, including possible sources of uncertainty
and their impact on the system (e.g., broken links, failed servers, etc.), to enable
the SAS to experience a wide range of configuration states.

Output. The output of Providentia is (1) the NFR goal model, with (2) a set
of FRs that collectively contribute to the satisficement of each NFR, and (3) an
optimized weight value assigned to each FR. A weight value of 0.0 for an FR
indicates that the FR does not contribute to the satisfaction of the NFR. For
example, for NFR7 (Minimize [Power]), Providentia determined the following
weights to be optimal for each Goal: B: 0.237144, E: 0.241000, K: 0.007185, M:
0.373794, O: 0.049442, U: 0.067218, V:0.024216. Although Goal (A) was included
in the initial set of applicable FRs, its weight value was 0.0 to indicate that Goal
A did not contribute to satisfying the requirements to minimize power.

3.2 Providentia Technique

This section overviews the Providentia technique, comprising a genetic
algorithm [12] to search for optimal NFR weighting and requirements combi-
nations. Figure 3 presents a data flow diagram that illustrates the process used
by Providentia. Each step is next presented in detail.

(1)
Define

Solu on
Structure

Requirements
Engineer

FRs, NFRs, constraints

FR/NFR rela onship

(2)
Configure

Search
Process

Genome
structure

Configura on

(3)
Evaluate

Goal
Models

(4)
Select
Goal

Models

(5)
Generate

Goal
Models

Candidate
goal models

Goal models,
fitness values

Most fit
op mized

models

New
goal models

Op mal
goal

models

Goal ModelGoal Model U lity func onsU lity func ons Executable specifica onExecutable specifica on Sources of uncertaintySources of uncertainty

Op mal
 goal models

Op mal
 goal models

Legend
process

agent

data store

data flow

GA process GA data flow

Fig. 3. Data flow diagram of providentia technique.

Automated Optimization of Weighted Non-functional Objectives 189

...NFRnGenome:

NFR7

0.3 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.3 0.20.3 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.3 0.2

Goal: A B E I K M O P V WA B E I K M O P V W

Fig. 4. Providentia sample genome.

(1) Define Solution Structure. Each candidate solution in Providentia is
encoded in a fixed-length genome as shown in Fig. 4, where each gene corresponds
to a floating-point weight specified for a supporting FR. Each set of weights that
correspond to an NFR (i.e., sub-genome, denoted by bolded line) must sum to
a value of 1.0. The entire genome comprises all sub-genomes that can be used
to define each NFR, e.g., [[weightsnfr1],[weightsnfr2],...,[weightsnfrn]].

(2) Configure Search Process. The search process must be configured by
specifying a population size, number of generations, crossover rate, mutation
rate, and selection rate. Based on empirical evidence on convergence rates, this
paper specifies a population size of 20, 50 generations, a crossover rate of 25%,
and a mutation rate of 50%. For selection, we use the tournament selection
approach [12] and set the tournament size to 3. While larger values for population
size and generations were tested (e.g., populations of 25–50 and generations
of 50–100), an optimal convergence was discovered on average at the specified
values.

(3) Evaluate NFR Models. The simulation provided as input applies the goal
model to randomized combinations of uncertainty in order to obtain a set of FRs
with weights adjusted to be as robust as possible. To guide the search process,
we maximize average FR/NFR satisficement as shown in Eqs. 2–4 and minimize
the number of SAS adaptations to reduce overall network disruption as shown
in Eq. 5. We collect these metrics in a linear weighted sum as shown in Eq. 6.
We next describe each equation in turn.

The performance of each NFR as an aggregate utility function is defined as:

utility valuenfrn =
|frsnfrn |∑

i=1

utilityfri ∗ weightfri (2)

where |frsnfrn | refers to the number of supporting FRs for nfrn, utilityfri
refers to the calculated utility value for fri, and weightfri refers to the defined
weight (i.e., relative importance) of fri. Based on Eq. 2, each NFR has a utility
function that can be monitored to quantify performance at run time. If NFR7
(Minimize [Power]) becomes violated or satisficed to an unsatisfactory degree,2

then the RDM application will self-reconfigure to perform an appropriate miti-
gation strategy.

2 For this paper, we select a threshold of 0.4 to signify requirement non-satisfaction
based on empirical evidence.

190 K. M. Bowers et al.

The fitness sub-function shown in Eq. 3 maximizes FR satisficement through-
out execution, where utility valuefunctional represents the calculated utility val-
ues for FRs and timestepssim represents the number of simulation timesteps:

FFfr =
∑

utility valuefunctional
|utility valuefunctional| ∗ timestepssim

(3)

The fitness sub-function shown in Eq. 4 maximizes NFR satisficement
throughout execution, where utility valuenon−functional references the calcu-
lated utility values from Eq. 2:

FFnfr =
∑

utility valuenon−functional

|utilityvaluenon−functional| ∗ timestepssim
(4)

The fitness sub-function shown in Eq. 5 minimizes the number of adapta-
tions performed by the SAS, where |adaptations| reports the total number of
reconfigurations performed by the SAS, and |faults| reports the total number
of adverse conditions introduced within the simulation.

FFna = 1.0 − |adaptations|
|faults| (5)

We aggregate FFnfr, FFfr, and FFna into a linear weighted sum as shown
in Eq. 6:

FF =

{
αnfr ∗ FFnfr + αfr ∗ FFfr + αna ∗ FFna iff invariants true
0.0 otherwise

(6)

where αnfr, αfr, and αna are manually set by a requirements engineer based
on domain knowledge/empirical evidence, reflect the relative importance of each
sub-FR, and must cumulatively sum to a value of 1.0. While many different
approaches exist for combining fitness sub-functions, we find that a linear-
weighted sum balances competing concerns adequately for this domain.

(4) Select NFR Models. Providentia selects genomes, using tournament
selection, with the highest fitness values calculated from Eq. 6 to guide the search
process towards promising areas of the search space. The remainder of the pop-
ulation is removed from consideration.

(5) Generate NFR Models. Providentia uses two-point crossover and single-
point mutation to generate new solutions. Two-point crossover selects two indices
to be used as crossover points, selects two candidate solutions as parents, and
swaps genes between the crossover points to create two new child solutions.
Single-point mutation randomly selects a single gene for mutation, where the
floating-point weight value can be modified within ±20% of its original value.

Given that each genome comprises sets of weights for each NFR (i.e., sub-
genomes), crossover and mutation are applied to internal sub-genomes. Further-
more, a process of normalization follows creation of child solutions. Specifically,

Automated Optimization of Weighted Non-functional Objectives 191

each value selected to participate in either crossover or mutation is retained, and
the remaining genes for that particular NFR within a sub-genome are normalized
to sum to 1.0. Steps (3)–(5) are applied iteratively (i.e., the genetic algorithm
loop) until the number of generations is reached. Providentia then outputs a
set of optimal weighted FRs for each NFR.

4 Experimental Results

This section describes our experimental setup and presents our experimental
results from applying Providentia to the RDM application.

4.1 Experimental Setup

We modeled the RDM network application as a completely-connected graph,
where each node represents an RDM and each edge represents a network link.
System and environmental parameters were randomized for each trial and based
on an operational model previously presented by Keeton et al. [13,14]. For each
experimental trial, a given network comprised random number of RDMs (i.e.,
within [15, 30]), a random number of valid messages (i.e., [100, 200]) were inserted
into RDMs throughout the network at random timesteps and were required to be
replicated to all other RDMs. We examined seven NFRs specific to the system.
The simulation was performed over 300 timesteps.

We compared and evaluated different combinations of supporting FR weights
optimized by Providentia. The set of seven NFRs was applied to three types of
treatments: (1) FRs and weights generated by random search [1], (2) manually-
selected FRs and corresponding weights assigned by a requirements engineer,
and (3) Providentia-optimized FRs and weights. We limit our discussion to
NFR4 and NFR7 due to space constraints. The manually selected goals and
weights for NFR4 are Goals A, B, D, G, H with corresponding weights 0.4,
0.2, 0.2, 0.1, 0.1, and for NFR7 manually selected Goals A, E, I, V, W with
corresponding weights 0.3, 0.1, 0.1, 0.3, 0.2. Using the fitness functions defined
in Eqs. 3-6, we demonstrate the benefits of using Providentia to both mitigate
uncertainty (e.g., environmental and system) and reduce the impact of security
threats against the RDM network. For this experiment, we set αfr = 0.375, αnfr

= 0.375, and αna = 0.25 to emphasize minimization of network adaptations while
considering maximization of FR/NFR satisficement. To demonstrate statistical
significance, 50 trials were conducted for each experiment. Moreover, an equal
number of experimental evaluations was performed per experiment.

4.2 Experimental Results

For this experiment, we define two null hypotheses. The first, H10, states that
“there is no difference between Providentia-optimized NFRs and those that
are unoptimized.” The alternate hypothesis, H11, states that “there is a differ-
ence between Providentia-optimized NFRs and those that are unoptimized.”

192 K. M. Bowers et al.

The second null hypothesis, H20, states that “there is no difference between
Providentia-optimized NFRs and those that are optimized by a requirements
engineer,” with the corresponding alternate hypothesis, H21, stating that “there
is a difference between Providentia-optimized NFRs and those that are opti-
mized by a requirements engineer.”

To demonstrate these hypotheses, Fig. 5(a) shows three boxplots with aver-
aged fitness values calculated from Providentia-generated weights, from FR
weights optimized by an engineer, and FR weights randomly selected, for NFR4.
Similarly, Fig. 5(b) presents the averaged fitness values for NFR7.

0.00

0.25

0.50

0.75

1.00

Random Manual Providentia

Av
er

ag
e

U
til

ity
 V

al
ue

 o
f M

ax
im

iz
e[

S
ys

te
m

 S
ec

ur
ity

]

(a) NFR4 fitness value comparison.

0.00

0.25

0.50

0.75

1.00

Random Manual Providentia

Av
er

ag
e

U
til

ity
 V

al
ue

 o
f M

in
im

iz
e[

Po
w

er
] N

FR

(b) NFR7 fitness value comparison.

Fig. 5. NFR fitness experimental results.

As the boxplots in Fig. 5 demonstrate, Providentia-optimized NFRs impact
overall fitness significantly more than those set manually by a requirements engi-
neer or randomly selected (p < 0.053). The ideal utility value for a given NFR
is 1.0 to indicate complete satisfaction and therefore the boxplot closest to 1.0
indicates optimal behavior. Table 1 provides the average utility values (μ) and
standard deviation (σ) for each NFR. The genetic algorithm is able to effectively
search for optimal FRs and weights when the system is subjected to randomized
sources of uncertainty at design time to harden the system against uncertainty
at run time, enabling a more robust set of NFRs in comparison to randomly- or
manually-defined NFRs.

3 The Wilcoxon-Mann-Whitney U-test was performed for all presented statistics.

Automated Optimization of Weighted Non-functional Objectives 193

Table 1. NFR average utility values and standard deviations.

NFR Random Manual Providentia

NFR1: maximize μ: 0.654 μ: 0.615 μ: 0.905

[Reliability] σ: 0.325 σ: 0.191 σ: 0.149

NFR2: maximize μ: 0.655 μ: 0.666 μ: 0.882

[Throughput] σ: 0.325 σ: 0.262 σ: 0.153

NFR3: maximize μ: 0.875 μ: 0.743 μ: 0.975

[Speed] σ: 0.207 σ: 0.148 σ: 0.085

NFR4: maximize μ: 0.802 μ: 0.736 μ: 0.979

[System security] σ: 0.273 σ: 0.177 σ: 0.085

NFR5: maximize μ: 0.621 μ: 0.742 μ: 0.925

[Secure communication] σ: 0.273 σ: 0.191 σ: 0.146

NFR6: maximize μ: 0.921 μ: 0.919 μ: 0.980

[Message security] σ: 0.181 σ: 0.072 σ: 0.069

NFR7: minimize μ: 0.821 μ: 0.758 μ: 0.926

[Power] σ: 0.270 σ: 0.172 σ: 0.188

Providentia also significantly decreased the amount of encountered FR viola-
tions when compared to manual and random search (p < 0.05) of FR combina-
tions and their respective weights as seen in Fig. 6. These results further demon-
strate the effectiveness of Providentia. The ideal number of FR violations is 0,
and once again the difference between Providentia and random/manual results
is significant. Providentia is able to not only significantly improve NFR sat-
isficement, but is able to do so while significantly reducing the number of FR
violations rather than creating extra overhead with additional functionality at
run time.

The overall intent of Providentia is to ensure continuing requirements satis-
ficement when faced with both uncertainty and NFR concerns. Given the overall
success of Providentia when optimizing FR selection weights and minimizing
violations, the presented results enable us to reject both H10 and H20, accept
H11 and H21, and conclude that an optimized weighting scheme can signif-
icantly improve overall requirements satisficement when compared to random
search or manually-derived weighting schemes, given that FFfr and FFnfr (c.f.,
Eqs. 3 and 4) form a major aspect of the overall fitness function.

Threats to Validity. This research has been a proof of concept to demonstrate
how quantifying NFRs, elevating them to first-class entities, and automatically
optimizing them can significantly improve overall requirements satisficement and
minimize violations. One threat to validity includes the derivation of FRs that
negatively impact the satisficement of an NFR, as Providentia currently only
focuses on FRs that positively impact NFR satisficement. Additionally, the man-
ual selection of the FR subset for each NFR could be argued to use better

194 K. M. Bowers et al.

0.0

0.5

1.0

1.5

2.0

Random Manual Providentia

Av
er

ag
e

N
um

be
r o

f I
nv

ar
ia

nt
 V

io
la

tio
ns

(a) Invariant violation comparison.

0

2

4

6

Random Manual Providentia

Av
er

ag
e

N
um

be
r o

f N
on
−I

nv
ar

ia
nt

 V
io

la
tio

ns

(b) Noninvariant violation comparison.

Fig. 6. FR violation experimental results.

selections. The scalability of Providentia with respect to large numbers of
goals and NFRs is a possible threat to validity as well.

5 Related Work

This section overviews related work in the areas of goal modeling, NFRs, and
using functional and non-functional satisficement for guiding the adaptation of
SASs.

Goal Modeling. Approaches similar to Providentia in goal modeling address
dependencies between FRs [21], use probabilistic methods to improve NFR/FR
satisficement [4,22] or optimize SAS satisficement [3,18,33], and represent NFRs
as soft goals [11,35]. Our technique focuses solely on NFR/FR dependencies,
optimizing for run-time performance without prior knowledge of system perfor-
mance that most probabilistic methods require. We also do not discuss early-
phase requirements engineering or high-level abstraction [7,20], but rather focus
on a run-time model used by an SAS.

Non-functional Requirements. Other techniques have been introduced to
quantify NFRs, generally representing NFRs as soft goals [16,32,34]. Our tech-
nique is independent of any framework (e.g., NFR Framework, iStar, and KAOS)
and our weighted approach enables greater flexibility that an SAS can use to
find an optimal reconfiguration strategy at run time rather than modeling NFRs
at design time. Salehie et al. use a Goal-Action-Attribute Model (GAAM) and

Automated Optimization of Weighted Non-functional Objectives 195

an automated weighting scheme called Analytic Hierarchy Process to prioritize
NFRs. Providentia uses a genetic algorithm to optimize goal and weight selec-
tion rather than prioritization, as priorities may shift due to uncertainty and
requirement interactions. Contributing work has decomposed NFR behaviors
into monitored patterns [28] and used quantifiable metrics to separate NFRs
from the FR goal model [29]. Providentia monitors requirements at run time
and does not separate NFRs from the goal model of FRs, as a separation does
not necessarily allow the requirements engineer to identify cross-cutting concerns
in NFRs.

6 Conclusion

This paper presented Providentia, a search-based technique for automatically
quantifying NFRs at run time by optimizing FR and weight selections at design
time. To demonstrate the effectiveness of Providentia, we used an industry-
provided RDM application that must distribute messages amongst a network of
RDMs that experienced uncertainty. Experimental results suggest that our app-
roach significantly improves overall FR and NFR satisficement and decreases goal
violations when compared to NFRs configured manually by a requirements engi-
neer or configured by random search. Future directions for this research include
performing the search process at run time while the system is subjected to
uncertainty, exploring different search heuristics for Providentia, and applying
Providentia to a real-world system. Furthermore, the RELAX language [25,31]
and FLAGS [2] introduce flexibility into the satisfaction of selected requirements
via fuzzy logic that can directly be applied to Providentia to better measure
NFR satisfaction.

Acknowledgements. This work has been supported in part by grants from the NSF
(CNS-1657061, CNS-1305358, and DBI-0939454), the Michigan Space Grant Consor-
tium, the Comcast Innovation Fund, Oakland University, Ford Motor Company, Gen-
eral Motors Research, the Air Force Research Laboratory (AFRL) under agreement
number FA8750-16-2-0284, and Michigan State University through the Institute for
Cyber-Enabled Research. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those of the authors and do
not necessarily represent the opinions of the sponsors.

References

1. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess random-
ized algorithms in software engineering. In: Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, pp. 1–10. ACM (2011)

2. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy goals for requirements-driven adapta-
tion. In: 18th IEEE International Requirements Engineering Conference (RE), 27
September 2010-1 October 2010, pp. 125–134 (2010)

196 K. M. Bowers et al.

3. Bencomo, N., Belaggoun, A.: A world full of surprises: Bayesian theory of sur-
prise to quantify degrees of uncertainty. In: Companion Proceedings of the 36th
International Conference on Software Engineering, pp. 460–463. ACM (2014)

4. Cailliau, A., van Lamsweerde, A.: Runtime monitoring and resolution of probabilis-
tic obstacles to system goals. In: Proceedings of the 12th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, pp. 1–11. IEEE
Press (2017)

5. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-functional requirements. Softw.
Eng. (2000)

6. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional Requirements in
Software Engineering. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
1-4615-5269-7

7. Dalpiaz, F., Borgida, A., Horkoff, J., Mylopoulos, J.: Runtime goal models:
keynote. In: 2013 IEEE Seventh International Conference on Research Challenges
in Information Science (RCIS), pp. 1–11. IEEE (2013)

8. Dardenne, A., Van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Sci. Comput. Program. 20(1), 3–50 (1993)

9. deGrandis, P., Valetto, G.: Elicitation and utilization of application-level utility
functions. In: Proceedings of the 6th International Conference on Autonomic Com-
puting, ICAC 2009, pp. 107–116. ACM (2009)

10. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46–54 (2004)

11. Giorgini, P., Mylopoulos, J., Sebastiani, R.: Goal-oriented requirements analysis
and reasoning in the tropos methodology. Eng. Appl. Artif. Intell. 18(2), 159–171
(2005)

12. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cam-
bridge (1992)

13. Ji, M., Veitch, A., Wilkes, J.: Seneca: Remote mirroring done write. In: USENIX
2003 Annual Technical Conference, pp. 253–268. USENIX Association, Berkeley,
June 2003

14. Keeton, K., Santos, C., Beyer, D., Chase, J., Wilkes, J.: Designing for disasters.
In: Proceedings of the 3rd USENIX Conference on File and Storage Technologies,
pp. 59–62. USENIX Association, Berkeley (2004)

15. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–
50 (2003)

16. Kobayashi, N., Morisaki, S., Atsumi, N., Yamamoto, S.: Quantitative non func-
tional requirements evaluation using softgoal weight. J. Internet Serv. Inf. Secur.
6(1), 37–46 (2016)

17. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-
els to Software Specifications. Wiley, Hoboken (2009)

18. Letier, E., van Lamsweerde, A.: Reasoning about partial goal satisfaction for
requirements and design engineering. In: Proceedings of the 12th ACM SIGSOFT
Twelfth International Symposium on Foundations of Software Engineering, pp.
53–62 (2004)

19. McKinley, P., Sadjadi, S., Kasten, E., Cheng, B.H.C.: Composing adaptive soft-
ware. Computer 37(7), 56–64 (2004)

20. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional
requirements: a process-oriented approach. IEEE Trans. Softw. Eng. 18(6), 483–
497 (1992)

https://doi.org/10.1007/978-1-4615-5269-7
https://doi.org/10.1007/978-1-4615-5269-7

Automated Optimization of Weighted Non-functional Objectives 197

21. Nagel, B., Gerth, C., Post, J., Engels, G.: Kaos4SOA-extending KAOS models
with temporal and logical dependencies. In: CAiSE Forum, pp. 9–16 (2013)

22. Paucar, L.H.G., Bencomo, N.: The reassessment of preferences of non-functional
requirements for better informed decision-making in self-adaptation. In: IEEE
International Requirements Engineering Conference Workshops (REW), pp. 32–
38. IEEE (2016)

23. Qureshi, N.A., Perini, A.: Engineering adaptive requirements. In: 2009 ICSE Work-
shop on Software Engineering for Adaptive and Self-managing Systems, pp. 126–
131, May 2009

24. Ramirez, A.J., Cheng, B.H.C.: Automatically deriving utility functions for moni-
toring software requirements. In: Proceedings of the 2011 International Conference
on Model Driven Engineering Languages and Systems Conference, Wellington , pp.
501–516 (2011)

25. Ramirez, A.J., Fredericks, E.M., Jensen, A.C., Cheng, B.H.C.: Automatically
RELAXing a goal model to cope with uncertainty. In: Fraser, G., Teixeira de
Souza, J. (eds.) SSBSE 2012. LNCS, vol. 7515, pp. 198–212. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33119-0 15

26. Ramirez, A.J., Knoester, D.B., Cheng, B.H.C., McKinley, P.K.: Applying genetic
algorithms to decision making in autonomic computing systems. In: Proceedings
of the 6th International Conference on Autonomic Computing, pp. 97–106 (2009)

27. Salehie, M., Tahvildari, L.: Towards a goal-driven approach to action selection in
self-adaptive software. Softw.: Pract. Exp. 42(2), 211–233 (2012)

28. Supakkul, S., Hill, T., Chung, L., Tun, T.T., do Prado Leite, J.C.S.: An NFR pat-
tern approach to dealing with NFRS. In: 2010 18th IEEE International Require-
ments Engineering Conference (RE), pp. 179–188. IEEE (2010)

29. Sykes, D., Heaven, W., Magee, J., Kramer, J.: Exploiting non-functional prefer-
ences in architectural adaptation for self-managed systems. In: Proceedings of the
2010 ACM Symposium on Applied Computing, pp. 431–438. ACM (2010)

30. Walsh, W.E., Tesauro, G., Kephart, J.O., Das, R.: Utility functions in autonomic
systems. In: Proceedings of the First IEEE International Conference on Autonomic
Computing, pp. 70–77. IEEE Computer Society (2004)

31. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.: Relax: Incorpo-
rating uncertainty into the specification of self-adaptive systems. In: 17th IEEE
International Requirements Engineering Conference (RE 2009), pp. 79–88 (2009)

32. Yamamoto, S.: An approach for evaluating softgoals using weight. In: Khalil, I.,
Neuhold, E., Tjoa, A.M., Da Xu, L., You, I. (eds.) CONFENIS/ICT-EurAsia -
2015. LNCS, vol. 9357, pp. 203–212. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24315-3 20

33. Yang, Z., Jin, Z., Li, Z.: Achieving adaptation for adaptive systems via runtime
verification: a model-driven approach. arXiv preprint arXiv:1704.00869 (2017)

34. Yrjönen, A., Merilinna, J.: Extending the NFR framework with measurable non-
functional requirements. In: NFPinDSML@ MoDELS (2009)

35. Yu, E.S.K.: Towards modelling and reasoning support for early-phase require-
ments engineering. In: Proceedings of the Third IEEE International Symposium
on Requirements Engineering, pp. 226–235 (1997)

36. Yu, E.: Social Modeling for Requirements Engineering. MIT, Cambridge (2011)

https://doi.org/10.1007/978-3-642-33119-0_15
https://doi.org/10.1007/978-3-319-24315-3_20
https://doi.org/10.1007/978-3-319-24315-3_20
http://arxiv.org/abs/1704.00869

Comparison of Search-Based Algorithms
for Stress-Testing Integrated Circuits

Basil Eljuse(B) and Neil Walkinshaw

University of Leicester, Leicester, UK
be38@leicester.ac.uk

Abstract. This paper is concerned with the task of ‘stress testing’an
integrated circuit in its operational environment with the goal of identi-
fying any circumstances under which the circuit might suffer from perfor-
mance issues. Previous attempts to use simple hill-climbing algorithms to
automate the generation of tests have faltered because the behaviour of
the circuits can be subject to non-determinism, with a search space that
can give rise to local maxima. In this paper we seek to work around these
problems by experimenting with different search algorithms which ought
to be better at handling such search-space properties (random-restart
hill-climbing and simulated annealing). We evaluate these enhancements
by applying the approach to test the Arm Cache Coherent Interconnect
Unit (CCI) on a new 64-bit development platform, and show that both
simulated annealing and random-restart hill-climbing outperforms sim-
ple hill-climbing algorithm.

Keywords: Automated search-based testing
Cache coherent interconnect · Stress testing
Random-restart hill-climbing · Simulated annealing

1 Introduction

When developing Integrated Circuits (ICs), a huge emphasis is placed on opti-
mising performance. Accordingly, it is especially important that any test suites
include tests that can probe and stress performance. Such tests commonly take
the form of different processing ‘pay-loads’that are loaded on to the IC to be
executed, whilst the IC is monitored for key performance-indicators, such as
data stall cycles resulting from higher memory cache miss rates.

Previous work by Eljuse et al. [1] has demonstrated that search-based tech-
niques are appropriate for this non-functional testing of ICs. Obtaining data that
can feed directly into fitness functions (e.g. data stall cycles) is straightforward,
and can be achieved in a way that does not interfere with the execution of the
chip itself. Eljuse et al. used a straightforward hill-climbing algorithm to explore
the search space, picking inputs in such a way as to maximise the data stall
cycles.

c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 198–212, 2018.
https://doi.org/10.1007/978-3-319-99241-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_10&domain=pdf

Search-Based Stress Testing Comparison 199

Although the above approach produced good results (when compared against
random baseline tests), our own experience of using simple hill-climbing algo-
rithms on ICs has been mixed. Although it does tend to outperform random
testing, simple hill-climbing runs frequently terminate after a low number of
iterations because they reach a local maximum, plateau, or a ridge [2]. The
data stall cycles generated is affected by a number of factors including the non-
determinism due to the underlying hardware complexity and due to the com-
plex set of software stack, which cannot be externally controlled, that affects the
underlying functionality making the search space uneven.

The random-restart hill-climbing algorithm is a variant of the conventional
hill-climbing algorithm, which restarts the search from a new random seed with
the potential to escape from local maxima. Simulated annealing is an advanced
search-based algorithm mimicking the principle of ‘Annealing’from metallurgy.
This algorithm allows tests to select sub-optimal candidates earlier on with the
view to arrive at eventual global maxima, and thus avoid being stuck at local
maxima.

In this paper we apply these approaches to a similar IC testing scenario as
in [1]. The specific contributions are as follows:

– We apply random-restart hill-climbing and simulated annealing to address
the problems of local maxima.

– We present an empirical study to show that both random-restart hill-climbing
and simulated annealing outperform simple hill-climbing.

The rest of the paper is structured as follows. Section 2 provides essential
details about the IC hardware we are testing, the simple hill-climbing approach
by Eljuse et al. [1], and the alternative search-based algorithms that we will
be applying (random-restart hill-climbing and simulated annealing). Section 3
presents the implementation of our approach. Section 4 evaluates the perfor-
mance of these alternative search-based algorithms. Section 5 outlines the related
work that helped shape our approach and finally Sect. 6 outlines the future direc-
tion of this research.

2 Background

In this section we start by describing the specific testing scenario. This is followed
by a more detailed overview of the Cache Coherent Interconnect (CCI) subject
system that is the focus of our experimental work.

2.1 Motivating Scenario

The CCI is a hardware component that provides cache coherency management.
It provides multiple levels of configurability, specifically at (a) design time and
(b) reset time. There are multiple configuration options available [4], such as
transaction tracker size, snoop related configurations, etc. These can have a
significant effect on the final system behaviour.

200 B. Eljuse and N. Walkinshaw

This configurability comes at a cost. Although the CCI is highly configurable
for designers who incorporate the CCI into their own devices, it is hard to
test. Indeed, this is a common situation with embedded systems; they maximise
configurability to facilitate reuse, but this reduces their testability.

Currently, tests are largely developed by hand. In order to cater for specific
configurations, separate set of scenarios are developed. The downside of this is
that there is limited reuse of such tests; a slight change in configurations can lead
to very different behaviours, necessitating very different test sets. Automating
an approach to generate these tests would improve the re-usability and reduce
the time and effort required.

Fig. 1. Juno platform with CCI-400

2.2 The Cache Coherent Interconnect

CCI is an IC component to manage coherent accesses to memory caches from
multiple CPUs. It is an “infrastructure component” for Arm based systems,
which means that it is used across a variety of hardware platforms. In our work
we’ll be focussing on the new 64-bit Juno development platform. It has two
clusters of CPUs and a GPU, all of which have access to a single multi-level
cache, managed by CCI. CCI also has built-in hardware counters allowing to
monitor the internal operations of the IC component.

Test Platform: Juno [6] is an Arm development platform (ADP) which is
the first 64-bit development board implementing a big.LITTETMarchitecture.
Similar to the earlier TC2 platform used by Eljuse et al. [1], Juno also have a
heterogeneous cluster of CPUs with multi-level cache for data access. However
there are significant differences between TC2 and Juno platform.

Juno being a 64-bit platform allows 64-bit addressing capability and has a
dual cluster topology of 2× 4 (two-by-four). There are multiple variants of Juno
platform and in this study we chose the R0 variant of Juno platform. The Juno
R0 platform has a big cluster made of dual-core Cortex-A57 MPCoreTMCPU and

Search-Based Stress Testing Comparison 201

a little cluster made of quad-core Cortex-A53 MPCoreTMCPU. It has both level1
(L1) and level2 (L2) caches, with CCI-400 providing the interconnect and cache
coherency across the 2 CPU clusters. Additionally Juno1 also have a Quad-core
Arm MaliTMGPU with 128 KB L2 cache.

Figure 1 shows where the CCI cache interconnect sits in the Juno platform.
Juno has two processor clusters, where different processors may require access
to the same data (hence the need for a cache interconnect). On Juno the little
cluster has 1 MB L2 cache compared to that of 512 KB L2 cache in case of TC2
platform as in [7]. The big cluster on Juno platform has 2 MB L2 cache compared
to 1 MB in case of TC2 platform as in [7].

One pertinent point from a testing perspective is that the CCI component is
necessarily below a mixture of hardware and software layers. A software appli-
cation sends computational payloads to the CPUs on the clusters via Android.
These CPUs in turn carry out memory operations. Each memory operation is
modulated by an L1 and an L2 cache. The CCI sits between the L2 caches for
the various clusters and the physical memory. The CCI can in other words not
be tested directly; in-situ amounts to sending instructions and payloads via the
software layer, in the hope that these indirectly stress the CCI.

Performance Monitoring Unit: CCI includes a component called Perfor-
mance Monitoring Unit (PMU) [4], which has the logic to gather various statis-
tics about the operation of the interconnect at runtime and expose them through
counters monitoring certain events. Typically there are multiple counters and
different event types that could be monitored using this PMU logic. CCI-400
supports four 32-bit counters allowing one event per counter to be monitored in
parallel. This means one can monitor up-to 4 events in parallel without incurring
any penalty on accuracy.

As a general rule of thumb, the occurrence of stall cycles do indicate that
the CCI component is having to pause some of its operations to cope with the
demand for ensuring coherency. This stall cycles can be used as a measure of
stress in the system. Larger number of stall cycles observed can be an indication
of stress in the platform leading to sub-optimal system performance. This can
be used as a means to assess whether the configurations evaluated by the system
designer during the design phase is sub-optimal or not.

2.3 Search-Based Software Testing

Search-based software testing techniques re-frame the testing challenge as a
search-problem [3]. This can support test automation by leaving the selection
and execution of test cases to an algorithm, which selects test inputs with the
aim of optimising some objective. Search-based algorithms are ultimately guided
by an “objective function” (a function that is used to evaluate a test case); in
testing this tends to be a measure of code coverage (or model-coverage if the
tests are being derived from a specification). Two of the most basic search-based
algorithms are Hill-Climbing and Simulated Annealing:
1 All references of ‘Juno’ would imply R0 variant of the board in the rest of the paper.

202 B. Eljuse and N. Walkinshaw

Hill-Climbing. Given a starting-point in a search space (this can be a test-case or
a test-set, depending on the objective function), the hill-climbing algorithm will
start by evaluating it’s ‘neighbourhood’ - by running and evaluating adjacent test
cases. It then simply picks the test case that led to the best improvement in terms
of objective-function. This process is repeated until no further improvements can
be made (in which case it has hit a maximum/minimum point in the search-
space).

The random-restart variant of hill-climbing algorithm provides a means to
escape a local maxima by restarting the algorithm from a new random start
point in the hope of arriving at a better solution. It retains the simplicity of
hill-climbing algorithm but is more suitable for search spaces that have multiple
local maxima.

Simulated Annealing. Simulated annealing [8] is a search-based algorithm
inspired by the thermodynamic principles involved in the process of ’Anneal-
ing’ used in metallurgy. It allows the search space exploration to explore paths,
occasionally lead by sub-optimal neighbouring candidates, with the increasing
chance of escaping local maxima. The probability of the algorithm selecting
a sub-optimal neighbouring candidate for exploration is higher at the earlier
stages of the execution when the ’temperature’ is high and progressively reduces
at later stages of execution. Simulated annealing is seen effective in avoiding
local maxima in some problem domains as discussed in [9].

The algorithm has a set of parameters (which we will refer to later). These
are:

– tempstart the start temperature for simulated annealing.
– tempend the terminating temperature for simulated annealing.
– flooringscore a score to constrain the selection of suboptimal candidates for

further exploration.
– flooringratio the ratio of the maximum score to be applied as the flooring

value to constrain selection of suboptimal candidates.
– repeatcount denotes the number of repeats attempted in a given temperature

before lowering the temperature.
– tempstep the rate at which the temperature is reduced in every step after

exhausting the evaluation of a set amount of repeatcounts.

3 Improved Stress Testing of the CCI

As is the case with most embedded systems, the CCI is difficult to test (at least
in a systems context) because it is difficult to control. It sits at the bottom of
a relatively complex stack of hardware and software components (including the
Android operating system). It is virtually impossible to reset to a fixed state
at runtime. With the operating system continually manipulating the memory
and catering for other routine OS processes, the behaviour of the CCI becomes
effectively non-deterministic. Advanced features of CCI and the effects of systems
with a multi-stage pipeline only exacerbate this problem.

Search-Based Stress Testing Comparison 203

In their attempt to address this problem, Eljuse et al. [1] applied search-based
testing to the CCI. Specifically, they used the hill-climbing algorithm without
restarts, and used the number of data stall cycles to measure the effectiveness of
the test cases at ‘stressing’ the system. They found that the test cases that were
generated in this manner significantly outperformed purely random test cases.
In this paper we build upon their work by experimenting with the application of
two slightly more sophisticated search algorithms: Hill-Climbing with Restarts,
and Simulated Annealing.

In the rest of this section we describe how we represent the testing chal-
lenge as a search problem, and our selection of the various search algorithm
parameters.

3.1 Test Input Representation

We use a similar basic test case representation to that of Eljuse et al. [1], who
identified the key high level factors that influence the performance of CCI. Test
cases TS =< PS, SP,AC > are represented in three dimensions: payload size
(PS), sparsity (SP) and actor profile (AC). These are elaborated below:

Payload Size PS: The payload size PS = (x, y) where 0 ≤ x ≤ 16384 and
0 ≤ y ≤ 8192 represents the amount of test data that is read or written. x and
y represent the number of columns and rows in memory that will be required to
represent the data, where a basic unit of data is 4-bytes. For our experimental
setting the maximum payload size configured is 512 MB considering the overall
available system memory and taking into account the L2 cache configuration of
the system.

Sparsity SP : The sparsity SP = [1 : 4] is an integer representing four levels of
data ‘sparsity’ that is to be written-to and read-from memory. The behaviour
of the cache will differ if all of the data is to be written and read from a single,
contiguous zone of memory, as opposed to a range of non-contiguous, widely
dispersed regions. This is based on the principle of ’locality of reference’ based
on which memory systems work efficiently.

The four levels are interpreted as follows: (1) Unconstrained – the payload
can be written-to or read-from anywhere from the 1024 MB of available memory,
(2) relatively sparse – the operational memory is limited to half of the available
memory (512 MB). (3) dense – the operational memory is limited to a tenth of
the memory (102.4 MB), or (4) very dense – the operational memory is limited
to a hundredth of the total memory (10.24 MB).

Actor Profile AC: The number of actors (or processes) writing-to and reading-
from memory can affect cache performance. This factor not only take into
account the number of actors but also considers the manner in which they are
spread across the clusters. We ensure that a single actor is pinned to a given
CPU and same type of actors are assigned to a given cluster. Thus the affinity
of the actors of certain type (read or write) to the clusters were fixed for our

204 B. Eljuse and N. Walkinshaw

experiment - read actors pinned to big cluster and write actors pinned to little
cluster, to facilitate the stress test conditions on the CCI component providing
coherency across clusters. The Table 1 shows the current configurations which
are varied during tests and these are determined based on the cpu topology of
the selected platform.

Table 1. Actor profile

AC config Cluster1 (Little) Cluster2 (Big)

cpu0 cpu1 cpu2 cpu3 cpu4 cpu5

Config1 Write - - - Read -

Config2 Write Write - - Read Read

Config3 Write Write Write Write Read Read

3.2 Test Output Representation

Testing non-functional properties of ICs such as the CCI is greatly facilitated
by the fact that it can be straightforward to obtain performance data without
interfering with the routine behaviour of the IC itself. Since this data is so crucial
to performance-tuning, the CCI has several dedicated components to measure
performance (see Sect. 2.2).

For our test generation we focus on the outputs provided by the Performance
Monitoring Unit (the PMU). We use the PMU to gauge the stress on the memory
read-write functionality by recording the number of data stall cycles for a given
test. The data stall cycle counts provide us an indication of the stress in the
underlying IC.

3.3 The Test Execution Framework

As an overall system we do have an android system similar to the study by
Eljuse et al. [1]. However we use the newer Juno platform (see Sect. 2.2). We use
Android 7.1.2 (Android Nougat) and its corresponding firmware for the Juno
platform.

We perform on-target execution of the test suite from android user space. We
use the adb (android debug bridge) interface to interact with the target device
from a host computer. Juno provides an usb interface for updating the board
firmware. The test execution setup includes a host machine facilitating the target
image flashing and interactions with the target device under test through the
available interfaces. The test suite is executed on the target device with results
fetched from target to host for post processing.

As discussed previously, the contents of the memory and cache are routinely
affected by many processes within the system that are difficult to control in the
context of the test-application. To attenuate this we carry out the following steps
for each test to reduce this potential interference:

Search-Based Stress Testing Comparison 205

– We stop as many Android background tasks as is possible (some cannot be
stopped).

– We perform an identical memory walk-through sequence between iterations
to give better chances for an equivalent initial state.

– We use data barrier instructions - an Arm architecture specific instruction
[11] - to ensure all out-of-order data access is cleared before every test data
is evaluated.

4 Evaluation

In this section we present an experiment to compare the effectiveness of the
random-restart hill-climbing and simulated annealing algorithms. Specifically,
the experiment addresses the following research questions:

– RQ1 - Which approach manages to achieve the highest stress-measures?
– RQ2 - How efficient are the approaches - how many tests are required to

achieve their best results?

4.1 Methodology

Different search algorithms were compared in terms of the maximum number
of data stall cycles produced by their respective test sets. In order to provide
a common baseline for the search-based approach, we generated the data stall
cycles using simple hill-climbing algorithm which is prone to be stuck at local
maxima. We repeated the simple hill-climbing algorithm for 30 experiments and
on average it took 1 hour 40 min duration compared to the 2 hour fixed budget
given for random-restart hill-climbing and simulated annealing algorithms.

Search Algorithm Parameters. In this section we briefly outline the vari-
ous parameters selected for each of the algorithm variants outlined in previous
section.

Random-restart Hill-Climbing: The random-restart hill-climbing algorithm is
allotted a 2 h search budget. During the execution window the random-restart
hill-climbing algorithm restarts as many times possible from a new random seed
when a maxima is reached during search space exploration. The state space
representation defines the neighbouring test candidates by varying PS with a
random step size to the parent test candidate while keeping SP and AC same as
the parent test candidate. Similarly more neighbouring candidates are generated
by varying SP and AC individually while keeping other factors same as parent
test candidate.

206 B. Eljuse and N. Walkinshaw

Simulated Annealing: Similar to random-restart hill-climbing, simulate anneal-
ing algorithm is also allotted a 2 hour search budget. The various parameters
for simulated annealing algorithm are set as below:

– tempstart the algorithm starts with an initial temperature of 1.0.
– tempend the algorithm stops when the temperature reaches 0.1.
– flooringratio the algorithm uses a flooring ratio of 75% and applies this on

the maximum achieved score, to compute the flooring score, that will control
the sub-optimal node selection.

– repeatcount the algorithm repeats with new neighbouring candidates for 10
times before reducing the temperature.

– tempstep the algorithm degrades the temperature by 10% after it has
exhausted the number of repeats at a given temperature.

The temperature start, temperature stop and temperature degradation step
were selected based on initial experiments as most of the cooling schedules for
simulated annealing are problem specific. Some studies as in [10] provide a sys-
tematic approach for parameter selection, but most practical cases we did exper-
imentations to arrive at the current selection of these parameters.

We initially had no floor limit, and this frequently led to situations where
the algorithm would fail to sustain any improvements in fitness. The floor limit
of 75% of the maximum score was achieved by experimentation. This was also
in the case for repeatcount.

Criteria for the Evaluation of RQ1: In order to evaluate RQ1 (which app-
roach managed to achieve the highest stress-measures), we measured the mean
and maximum data-stall cycles achieved. To accommodate the fact that the
algorithm could start from different starting points, we also measured the over-
all gain achieved over the course of the search. We applied the Wilcoxon signed
rank test on the paired measurements for the means computed above, in order
to establish whether differences in results produced by search algorithms are
significant.

Criteria for the Evaluation of RQ2: The efficiency of a test case is a measure
of how rapidly it is able to reach high data stall cycles. To establish this we
compute an Area Under the Curve score by summing the highest data stall
cycle achieved at any given point (a monotonic value) for all iterations. If tests
achieve higher data stall cycles more rapidly, this will lead to a higher ‘area
under the curve’.

4.2 Results and Discussion

RQ1 - Which approach manages to achieve the highest stress-measures? The
results are summarised in Figs. 2 and 3. Looking at the median best scores gen-
erated by the approaches we can see that simulate annealing has a marginally

Search-Based Stress Testing Comparison 207

Fig. 2. Data stall cycle comparison Random-restart Hill-Climbing vs Simulated Anneal-
ing vs Simple Hill-Climbing

better average best score of 1271 (upper quartile 1375 and lower quartile 1197)
as opposed to 1258 of random-restart hill-climbing (upper quartile 1343 and
lower quartile 1173). Both are better than the common baseline of simple hill-
climbing which gave an average best score of 1189 (upper quartile 1233 and lower
quartile 1140). It is evident that both random-restart hill-climbing and simulated
annealing are better in terms of generating tests that would maximally stress the
platform, by virtue of higher average data stall cycles generated, when compared
against simple hill-climbing algorithm.

We performed the Wilcoxon signed rank test on the data stall cycle mea-
surements and computed the p-values to establish whether the comparison of
the computed means are statistically significant. The p-value of 0.9 for random-
restart hill-climbing versus simulated annealing indicates that neither can be
considered significantly better than the other. However the p-value of 0.03325
for random-restart hill-climbing versus simple hill-climbing and the p-value of
0.02607 for simulated annealing versus simple hill-climbing do confirm that both
these can be considered as better to simple hill-climbing considering the average
best scores.

For each algorithm variant we computed the score gain as below:

gain = (max score − min score)/min score (1)

Looking at the average score gain achieved in case of random-restart hill-
climbing, we get a 37% improvement compared to the initial seed (upper quartile
50% and lower quartile 26%). Analysing the results we can see that there have
been some iterations where the random seed yielded a relatively higher score and
hill-climbing failed to move any further in the state space (since all the neigh-
bours were evaluated as inferior to that initial seed). So we observe there had
been some restarts which failed much earlier in the state space exploration in

208 B. Eljuse and N. Walkinshaw

Fig. 3. Gain comparison Random-restart Hill-Climbing vs Simulated Annealing vs Sim-
ple Hill-Climbing

case of random-restart hill-climbing approach which emphasises the multi-modal
nature of the state space.

However looking at the simulated annealing based approach we can see mod-
erately better average score gain of 43% (upper quartile 59% and lower quar-
tile 30%). Analysing the results from the individual experiments of simulated
annealing, we observed that some intermediate sub-optimal candidates lead to
subsequent better scores.

The simple hill-climbing shows a gain of 41% (upper quartile 46% and lower
quartile 27%) during our tests which is better than random-restart hill-climbing
but worse than simulated annealing.

We performed the Wilcoxon signed rank test on the score gain measurements
and computed the p-values to test the statistical significance of the means for
comparison. The computed p-values for the pairs are: 0.2486 (random-restart
hill-climbing, simulate annealing), 0.5944 (random-restart hill-climbing, simple
hill-climbing), 0.5393 (simulated annealing, simple hill-climbing). These suggest
that none of the techniques produces a significantly higher gain than the other.

RQ2 - How efficient are the approaches - how many tests are required to achieve
their best results? In order to compare the efficiency of the 2 algorithm variants
we plotted the best scores achieved across the test payloads executed over time
within the fixed execution budget. We computed the area under the curve for
each of the 30 experiments for both random-restart hill-climbing and simulated
annealing. Figure 4 shows the area under curve for these 2 algorithm variants.

Simulated Annealing has a higher average computed area under the curve
of 25059 (upper quartile of 26272 and lower quartile of 23344) when compared
with random-restart hill-climbing with 24769 (upper quartile of 26703 and lower
quartile of 22702).

Search-Based Stress Testing Comparison 209

Fig. 4. Area under curve for best scores found across payloads evaluated

We performed the Wilcoxon signed rank test on the area under curve mea-
surements and computed the p-values to test the statistical significance of the
means for comparison. The p-value of 0.8073 indicate that we could not treat
one method better than the other based on higher computed mean value alone.

4.3 Threats to Validity

Internal Threats: A large variation in the measure of data stall cycles could
pose a threat to the validity of the results, unless controlled. We observed in our
experimentation a large extent of variation in the PMU counter values even when
same test data was executed repeatedly. The potential for additional variability
can be introduced by the fact that the test framework is also running on the
target. Also in case of Juno platform the GPU also has an L2 cache which
can affect the operations of the CCI-400 component. At the moment there is no
option to define and use a data agent resident on GPUs during the test execution.
This internal threat put the need for measures beyond what is currently applied
to ensure the validity of the experimental results.

External Threats: Hardware cache coherency components do provide addi-
tional hardware mechanisms like PMU that can be exploited by this methodol-
ogy as a fitness function. In the absence of such hardware support, other relevant
meta-heuristics need to be defined to ensure the applicability of the proposed
methodology.

5 Related Work

Application of search-based test techniques are not new at system level test-
ing and in particular targeting non-functional system properties including

210 B. Eljuse and N. Walkinshaw

performance analysis as explained in [12]. Further surveys in [13] confirms its
application being extended to other non functional system attributes like safety
[14], usability, quality of service [15] and security [16]. It has been successfully
used in stress testing of real-time systems too as explained in [17]. The current
study extends the use of search-based software testing at system level focusing
on automated generation of tests for stress testing which was detailed in [1].

Search-based software testing had been often used in the context of soft-
ware testing and much lesser in the hardware testing. Most of the search-based
software testing techniques on hardware is applied in the context of hardware-
in-the-loop systems as captured in [18,19]. With the current study we apply the
search-based software testing techniques in testing a hardware component in a
system context.

Typically most of the testing around cache memory and cache coherency are
functional tests in nature. All the prevalent research into cache testing are mostly
focused on hardware self testing as explained in [20,21]. Successful application of
search-based software testing methodology in the area of memory system valida-
tion can be seen in the work using genetic algorithms with memory consistency
model (MCM) verification as per [22]. Further we could see that in the area of
testing cache coherency management, again the focus had been mostly on func-
tional testing as explained in [23]. In this current study we do focus on the stress
testing of a hardware component providing cache coherency and successfully
evaluated the relative benefits of more complex search-based software testing
techniques, thus extending the work done by Eljuse et al. as outlined in [1].

6 Conclusions and Future Work

In this study we have investigated the use of random-restart hill-climbing and
simulated annealing algorithms in generating tests for stress testing systems
with hardware cache coherency support. It is evident that, with the current state
space representation, simulated annealing provides a marginally better approach
as opposed to random-restart hill-climbing.

In the current evaluation we focused on using a single objective fitness func-
tion targeting a single PMU event. Juno platform provides the support for on-
board energy meters which can provide another fitness function which could
be orthogonal to the PMU events in measuring the stress condition of CCI
component. This could be utilised in a multi-objective search-based approach.
Additionally suitability of further advanced search-based algorithms needs to
be evaluated. In current study we arrived at the various parameters for simu-
lated annealing algorithm mostly by experimentation. However studies by [10]
do provide a more systematic approach to do parameter selection for simulated
annealing algorithm. We could improve parameter tuning for simulated anneal-
ing algorithm using these methods as opposed to current selection, which is done
by experimentation.

Search-Based Stress Testing Comparison 211

References

1. Eljuse, B., Walkinshaw, N.: A search based approach for stress-testing integrated
circuits. In: Sarro, F., Deb, K. (eds.) SSBSE 2016. LNCS, vol. 9962, pp. 80–95.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47106-8 6

2. Yuret, D., de la Maza, M.: Dynamic hill climbing: overcoming the limitations of
optimization techniques. In: The Second Turkish Symposium on Artificial Intelli-
gence and Neural Networks (1993)

3. McMinn, P.: Search-based software test data generation: a survey. Softw. Test.
Verif. Reliab. 14(2), 105–156 (2004)

4. Arm CoreLink CCI-400 Cache Coherent Interconnect - Technical Reference Man-
ual. http://infocenter.arm.com/help/topic/com.arm.doc.ddi0470k/DDI0470K
cci400 r1p5 trm.pdf

5. Linaro - A non-profit organisation working on open source software for Arm based
platforms. http://www.linaro.org

6. Juno ADP - part of Arm Versatile Express product family. https://www.arm.com/
files/pdf/DDI0515D1a juno arm development platform soc trm.pdf

7. TestChip2 - part of Arm Versatile Express product family. http://www.arm.com/
products/tools/development-boards/versatile-express/index.php

8. Nikolaev, A.G., Jacobson, S.H.: Simulated annealing. In: Gendreau, M., Potvin,
J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations
Research & Management Science, vol. 146. Springer, Boston (2010). https://doi.
org/10.1007/978-1-4419-1665-5 1

9. Henderson, D., Jacobson, S.H., Johnson, A.W.: The theory and practice of sim-
ulated annealing. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Meta-
heuristics. International Series in Operations Research & Management Science, vol.
57, pp. 287–319. Springer, Boston (2003). https://doi.org/10.1007/0-306-48056-
5 10

10. Moon-Won, P., Yeong-Dae, K.: A systematic procedure for setting parameters in
simulated annealing algorithms. Comput. Oper. Res. 25(3), 207–217 (1998)

11. When to use Barrier instructions? http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.faqs/ka14041.html

12. Shen, D., Luo, Q., Poshyvanyk, D., Grechanik, M.: Automating performance bot-
tleneck detection using search-based application profiling. In: International Sym-
posium on Software Testing and Analysis (2015)

13. Afzal, W., Torkar, R., Feldt, R.: A systematic review of search-based testing for
non-functional system properties. Inf. Softw. Technol. 51, 957–976 (2009)

14. Baresel, A., Pohlheim, H., Sadeghipour, S.: Structural and functional sequence
test of dynamic and state-based software with evolutionary algorithms. In: Cantú-
Paz, E. (ed.) GECCO 2003. LNCS, vol. 2724, pp. 2428–2441. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-45110-2 147

15. Canfora, G., Penta, M. D., Esposito, R., Villani, M. L.: An approach for QoS-aware
service composition based on genetic algorithms. In: Conference on Genetic and
Evolutionary Computation (2005)

16. Grosso, C., Antoniol, G., Penta, M. D., Galinier, P., Merlo, E.: Improving network
applications security: a new heuristic to generate stress testing data. In: Annual
Conference on Genetic and Evolutionary Computation (2005)

17. Briand, L.C., Labiche, Y., Shousha, M.: Stress testing real-time systems with
genetic algorithms. In: 7th Annual Conference on Genetic and Evolutionary Com-
putation (2005)

https://doi.org/10.1007/978-3-319-47106-8_6
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0470k/DDI0470K_cci400_r1p5_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0470k/DDI0470K_cci400_r1p5_trm.pdf
http://www.linaro.org
https://www.arm.com/files/pdf/DDI0515D1a_juno_arm_development_platform_soc_trm.pdf
https://www.arm.com/files/pdf/DDI0515D1a_juno_arm_development_platform_soc_trm.pdf
http://www.arm.com/products/tools/development-boards/versatile-express/index.php
http://www.arm.com/products/tools/development-boards/versatile-express/index.php
https://doi.org/10.1007/978-1-4419-1665-5_1
https://doi.org/10.1007/978-1-4419-1665-5_1
https://doi.org/10.1007/0-306-48056-5_10
https://doi.org/10.1007/0-306-48056-5_10
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka14041.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka14041.html
https://doi.org/10.1007/3-540-45110-2_147

212 B. Eljuse and N. Walkinshaw

18. Wegener, J., Kruse, P.M.: Search-based testing with in-the-loop systems. In: First
International Symposium on Search Based Software Engineering (2009)

19. Lindlar, F., Windisch, A.: A search-based approach to functional hardware-in-
the-loop testing. In: Second International Symposium on Search Based Software
Engineering (2010)

20. Theodorou, G., Kranitis, N., Paschalis, A., Gizopoulos, D.: Software-based self test
methodology for on-line testing of L1 caches in multithreaded multicore architec-
tures. IEEE Trans. Very Large Scale Integr. Syst. (VLSI) 21, 786–790 (2013)

21. Theodorou, G., Kranitis, N., Paschalis, A., Gizopoulos, D.: Software-based self-
test for small caches in microprocessors. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 33, 1991–2004 (2014)

22. Elver, M., Nagarajan, V.: McVerSi: a test generation framework for fast memory
consistency verification in simulation. In: The 22nd Symposium on High Perfor-
mance Computer Architecture (2016)

23. Acle, J.P., Cantoro, R., Sanchez, E., Reorda, M.S.: On the functional test of the
cache coherency logic in multi-core systems. In: 6th Latin American Symposium
on Circuits and Systems (2015)

Damage Reduction via White-Box
Failure Shaping

Thomas B. Jones(B) and David H. Ackley

Department of Computer Science, University of New Mexico,
Albuquerque, NM 87131, USA

ThomasBJones2@gmail.com, ackley@cs.unm.edu

Abstract. Emerging hardware that trades reliability guarantees for
resource savings presents a challenge to software engineered for deter-
ministic execution. Research areas like approximate computing, however,
embrace non-determinism by abandoning strict correctness in favor of
maximizing the probability and degree of correctness. Existing work has
used stochastic failure sampling to perform white-box searches along soft-
ware execution paths, producing criticality assessments of which selected
operations are likely most damaging if they fail. Here, we apply these
assessments to a new domain and employ them using failure shaping, an
automated method for reducing a computation’s expected output dam-
age in a model where failures can be relocated but not eliminated. In
two case studies, we demonstrate error reductions of 38% to 63% on
Strassen’s matrix multiplication algorithm despite a virtually identical
failure count. We discuss how our framework helps provide a smooth
landscape for performing the search-based software engineering that will
be required to apply this technology to larger problems.

Keywords: Criticality assessments · Failure shaping
Failure interfaces

1 Postdeterministic Software Engineering

Architectures built on guaranteed deterministic hardware have powered the com-
puter revolution, but the cost of hardware determinism is rising. Growing sys-
tems of shrinking technology now present terrifying reliability issues such as the
‘silent data corruption’ (SDC) of high-performance computing—when there is
no crash or fault detected, but the output is nonetheless wrong [13]. Also, new
hardware options are emerging, like processors that can sacrifice determinism to
save energy [15,31,46]. Unfortunately, because traditional software engineering
simply assumes deterministic execution, we know little about how a program’s
output will be damaged when failures occur, and which operations in a program
are most critical to obtain high-quality results.

The field of approximate computing [3,48] recognizes that software and sys-
tems sometimes can, and increasingly must, provide useful results even when
c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 213–228, 2018.
https://doi.org/10.1007/978-3-319-99241-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_11&domain=pdf

214 T. B. Jones and D. H. Ackley

strict correctness cannot be guaranteed. Approximate computing differs from
fault tolerance, (e.g. [8,26,39]), which recognizes that failures may occur, but
strives to preserve deterministic results nonetheless by suppressing those fail-
ures. Instead, approximate computing begins by accepting that implementation
choices and operational failures will damage the final end-user output. This
makes it especially useful in applications such as approximate video processing
(e.g. [34,42]), where even large failures may produce only minor output errors.

Approximate computing, however, often requires that technology choices
and trade-offs be ultimately evaluated only in a whole-systems context, risk-
ing chicken-and-egg problems if actual end-use data is expected to inform the
system’s computational design. Past energy conservation approximation tech-
niques have relied on detailed hardware knowledge to limit their search space
when finding the best economization for a given system application (e.g. [42]).

In modern computer systems, built on large deterministic hardware, func-
tional modules are often designed, deployed, and composed with virtually no
knowledge of the overall system behavior. This paper’s first contribution is the
notion of method level failure interfaces that allow the study of approximate
computations separate from their underlying hardware stack, freeing us from
the need for specialized hardware knowledge.

This paper’s second contribution is a generalized framework, embodied in a
search tool called Criticality Explorer which can be found at https://github.com/
ThomasBJones2/CriticalityExplorer. This tool performs a Monte Carlo search
through a computation’s possible method level failures, producing a statistical
characterization of each failure’s performance impact. Although at present that
search process is fairly naive, terminating after hitting an observation count
limit, we suggest possible search procedure improvements in Sect. 4.2.

Unlike traditional approaches that use fault tolerance to reduce or eliminate
failures, we have a ‘hardware reliability budget’ that treats failure rates as an
independent variable: guaranteeing that failures cannot be avoided. Using this
independent variable combined with the results of our criticality search, the
tool generates a reliability resource configuration that conforms to the budget
and minimizes output error. Finally, the tool reports the degree of loss incurred
with the given configuration. Since the amount of approximation is an observable
result, rather than a parameter, this approach risks potentially unbounded loss—
but it provides one way to proceed in a relatively modular fashion, without
presuming a full system upon which to measure resource-accuracy tradeoffs.

1.1 Method-Level Failure Interfaces

Criticality Explorer experiments require an input generator, an error measure,
and a set of failure interfaces for each algorithm assessed. Inputs are drawn from
the input generator and outputs are assessed with the error measure. Our failure
interfaces operate at the level of Java methods chosen by the user. In addition
to the correct method code, the user provides an alternate failure method. This
method has the same signature as the original Java method excepting that it

https://github.com/ThomasBJones2/CriticalityExplorer
https://github.com/ThomasBJones2/CriticalityExplorer

Damage Reduction via White-Box Failure Shaping 215

Fig. 1. Criticality Assessment and Failure Shaping Overview. Criticality Explorer takes
a prepared algorithm with error measures, input generator, and annotated method level
failure interfaces shown on the left. After a calibration step to evaluate the maximum
failure point count, and samples per failure point, the tool then estimates failure point
criticalities through a Monte Carlo simulation. Each sample produces the output of a
single run with, and without, a failure injected on the a given failure point and scores
the error between the two runs. We present the errorful inputs, outputs, and absolute
difference score in the bottom center of the figure. Failures are then shaped using the
median criticality and error scores are produced for average i.i.d. as well as shaped
failures. See Sect. 1.3 for details.

accepts an added parameter, a random number generator, to be used to simulate
underlying failures in the stack beneath the method. See Fig. 1.

The failure interfaces identify a spatiotemporal set of failure points bucketed
at some space-time granularity. These buckets are locations uniquely defined by
their associated failure interface and an invocation count on that failure interface.
Criticality Explorer assess the criticality of a failure point by estimating the
expected degree of damage that failure point would cause, assuming all else
is equal. Given a set of failure interfaces, we call the criticality distribution
produced by the assessment process a failure shape.

Failure interfaces could be defined at higher, lower, or just other levels of
abstraction but we see five principal advantages to method-level failure inter-
faces:

1. In a direct hardware realization, the data paths of multiple instances of an
object method are likely to pass through similar or even the exact same
circuits. Method-level failures may thus provide increased abstraction while
still approximating important spatial failures of real hardware.

2. Method-level failure interfaces are flexible. Beyond the SDCs and energy econ-
omization failures that inspire this paper, they can also represent software

216 T. B. Jones and D. H. Ackley

bugs or failures in distributed computations. Criticality Explorer can be used
to analyze a wide range of hardware and software failures.

3. Many robustness engineering methods are designed only to compensate for
independent, identically distributed failures. We too consider i.i.d. failures,
but method-level interfaces can also model higher-order coordinated failures
arising from deep within the computational stack. Specifically, failure inter-
faces written on major, central methods, can simulate SDC errors that have
percolated through the stack to become visible to the user.

4. Since most modern languages treat methods as (nearly) first class objects, it
is relatively easy for software engineers to understand and implement failure
interfaces at the method level.

5. Method level interfaces conform to the intuition that SDCs occur when
objects uphold their interfaces but violate their contracts.

1.2 Failure Shaping

We define failure shaping as the deliberate redistribution of reliability resources
from trivial to critical operations in a computation. This process is designed to
deal with reliability budgets that are smaller than required for strictly correct
execution. We assume a fine-grained reliability management that may be difficult
to realize in current technologies, but recent advances offer hope that failure
shaping will be a viable error control method in the future.

Dynamic voltage and frequency scaling techniques trade computational accu-
racy for lower hardware energy use [15,22,30,36]. Conceivably, future chips will
present a reliability-efficiency interface for use by economizing software.

Administrators of large, centralized systems are seeking access to energy-
efficient methods [18]. Future economizaton middleware is likely to exploit
approximation algorithms and methods to save resources on unimportant oper-
ations while more critical services run resource-intensive exact algorithms.

Farther in the future, non-silicon-based hardware may emerge. Tradeoffs have
been observed between the use of energy intensive materials like mRNA and
robust biological latch operation [46]. Biological computation will require new
reliability paradigms that accept fallible components.

Together, these issues raise a fundamental question: How to maximize cor-
rectness with a reliability budget insufficient to produce strictly correct results?

We address this question by pairing failure interfaces with an economy of
failure for each fallible method in a computation. This economy makes use of
a failure rate ε ∈ [0, 1] such that roughly ε of the failure points generated at
runtime will fail. As a baseline Criticality Explorer uses an i.i.d. failure model
at each failure point. Then, Criticality Explorer shapes the failures: the least
critical failure points—those with a criticality below the median criticality—are
adjusted to 2ε. Alternatively, the most important coordinates are given a failure
rate of 0. This keeps the total failure rate over the whole computation at ε.

This stylized and simplified economy of failure is oblivious to whatever actual
underlying mechanisms are used to shape failures within the system. We explore
the effects of failure shaping without proposing a complete, concrete, failure

Damage Reduction via White-Box Failure Shaping 217

shaping technology. However, relationships between power and failure rate pre-
sented in [30], for example, give us hope that economizations like this may be
realizable in existing technology.

1.3 Criticality Explorer

Criticality Explorer performs criticality assessments and economic analysis on a
prepared algorithm. For each assessment an input object and experiment object
are required. Input objects must have a randomize method that acts as the input
generator, while experiment objects require an experiment method that accepts
input objects. Outputs are assessed via the experiment object’s score method
which accept both an errorful and a correct experiment object. Failure interfaces
are annotated with ‘@Randomize’ and require two implementations—the correct
implementation, and a failure method—to function.

Criticality Explorer automatically records the number of invocations on each
method-level failure interface to generate the failure point search space. A small
number of exploratory runs at tested input sizes and ε failure rate are per-
formed in order to find each failure interfaces maximum invocation count. Using
this information Criticality Explorer then evaluates each failure point criticality
through Monte Carlo simulation. A random input is drawn using randomize
and an experiment, failed only at the given failure point, is compared with a
failure-free (strictly correct) run of the algorithm on the same input. The error
in their outputs is evaluated using the score method.

Because failed operations can cause unexpected behavior, Criticality Explorer
automatically catches and records any exceptions produced by experiment code
at run time. It also automatically terminates experiments after a hard coded two
minute time limit and records the termination as a runtime error.

After criticality assessment, Criticality Explorer then performs three addi-
tional experiments. The first measures experiment code output error with an
i.i.d. failure model with ε in [0, 0.1]. The experiment code is then failure shaped
according to the criticality assessment results. Finally, a proxy economization
experiment that uses some failure point’s criticalities as stand-ins for others is
also available. As we will show, this proxy method has the benefit of shrinking
the criticality search space, providing improved performance at a lower cost.

Here, we demonstrate Criticality Explorer in two case studies. In Sect. 2.1
we failure shape both naive matrix multiplication and Strassen’s algorithm. In
Sect. 3 we show that failure shaping can be applied at multiple levels, with
scalar multiplication failure interface criticalities standing as proxies for failures
on methods internal to the scalar multiplication method.

Finally, in Sect. 4 we discuss how failure shaping can be successfully applied
to other computational systems, in Sect. 5 we present related work, and in Sect. 6
we present our final conclusions.

218 T. B. Jones and D. H. Ackley

2 Failure Shaping Matrix Multiplication

Here we failure shape two matrix multiplication algorithms. Although our case
studies are tiny, matrix operations are a valuable problem domain for approxi-
mate computing and robustness studies since many SDC-prone high performance
computing algorithms make heavy use of matrices. We consider the O(N3)
‘naive’ matrix multiplication algorithm, and Strassen’s algorithm as specified
at [1]. The latter algorithm runs in O(N2.8) and was the first divide-and-conquer
matrix multiplication algorithm found to run faster than O(N3). The input gen-
erators used for both algorithms were randomly generated matrices of size N ×N
with 10 bit integers for each element. We employed three error measures: the
Frobenius norm ‘FN’ (also known as the matrix euclidean distance or �2 norm),
the infinity norm ‘IN’, and the logarithmic Frobenius norm ‘LFN’.

We defined failure interfaces for check and add methods used by both algo-
rithms. The Boolean check method returns true (false) if the given bit of a
number is 1 (0), and its failure method returns the opposite result. The add
method returns the sum of two numbers and its failure method randomly flips
one bit on the output when called. Both algorithms used the naive scalar
multiplication sub-algorithm, which checks bits in the first multiplicand to
decide whether to invoke the add method on the second multiplicand and an
accumulator. A failure interface based on naive scalar multiplication was
used as a proxy for check and add in Sect. 3.

2.1 Criticality Assessment Results on Matrix Multiplication

Figure 2 presents example criticalities for both algorithms on selected operations
and scales, and we see immediately they have significantly different shapes. In
general, naive matrix multiplication has lower and flatter criticalities compared
to those found in the highly structured Strassen’s algorithm. Note also the seem-
ingly scale-free appearance of Strassen’s algorithm criticality. At every test scale
we see spikes in both add and check operations about 2/7, 3/7 and 5/7 through
the algorithm, run on both the infinity and Frobenius norm error measures. In
naive multiply, criticalities lie close to both the average and the median critical-
ity. By contrast, in Strassen’s algorithm important operations are outliers with
criticalities often an order of magnitude greater than the median.

2.2 Failure Shaping Results on Matrix Multiplication

Figure 3 shows the direct failure shaping results on naive and Strassen’s matrix
multiply algorithms using an i.i.d. failure model, with 1000 samples at each
percentile in [0, 0.1]. We can see that direct failure shaping produces roughly
40% error reductions compared to a baseline i.i.d. error model.

Failure shaping, as we have outlined it, can distort the underlying failure rate,
ε. We believe this is caused by innacuracies in measuring the median failure rate,
or by changes in the run time caused when ε increases from zero. Therefore, we
report results at the actual observed rate of failure, ε′, in our graphs. Nonetheless,
ε′ is generally within 5% of ε.

Damage Reduction via White-Box Failure Shaping 219

Fig. 2. Matrix Multiplication Criticality Assessment Results. Criticality results for
both Naive and Strassen’s matrix multiplication, using three different error measures:
(Left) log Frobenius norm, (Middle) Frobenius norm, (Right) infinity norm. The top
row is matrix input size 8; the bottom is size 16. Similar results for Naive matrix
multiply are omitted from the two right columns to emphasize the apparent scale-free
structures in the more efficient Strassen’s algorithm. Note that x and y axes do not
match, and each error measure uses its own units. See Sect. 2.1 for details.

Monte Carlo sampling is a powerful statistics-gathering method, but its sim-
ulation costs grow with the number of failure points in the system under test.
Criticality Explorer can be connected to the AWS Lambda [35] on-demand com-
pute service, allowing investigators to trade money for time by performing mas-
sively parallel assessments in the cloud. As an example, the data presented in
this paper was produced for under $320 in cloud costs—with the majority of
that consumed by the scale 16 criticality assessments.

Even assuming such a large-scale infrastructure, though, brute force Monte
Carlo costs will become prohibitive as the software stack under test grows
ever deeper, placing more and more computational levels between the hard-
ware and the end-user error measures. In the next section we introduce ‘proxy
criticalities’—an approach to assessing such multilevel software that not only
slashed assessment costs, but also, we found, even improved performance.

3 Proxy Failure Shaping Matrix Multiplication

We took advantage of method level failure interface flexibility to speed up the
failure shaping procedure by using proxy criticalities. Rather than measuring

220 T. B. Jones and D. H. Ackley

Fig. 3. Matrix Multiplication Proxy Failure Shaping Results. Average error rates for
both naive and Strassen’s algorithms. Errors are reduced between 38% and 63% from
the i.i.d. model to the direct and proxy failure models. Note the graphs have different
y axes, and each error measure uses its own units. See Sect. 3.1 for details.

Fig. 4. Matrix Multiplication Proxy Method Criticality Assessment Results. Criticality
results for naive and Strassen on the scalar multiplication failure interface, using the
FN error measure. Note that x and y axes do not match, and each error measure uses
its own units. See Sect. 3 for details.

each failure point’s criticality, we instead measured the criticality of a proxy
method—a method that stands in for those methods originally intended to fail.

In this section experiments continued to make use of fallible check and add
operations. However, each add and check failure interface was only called as part
of a scalar multiplication method. We wrote a failure interface that ran-
domly flipped one bit in a scalar multiplication invocation’s output. Thus,
the search space of possible errors was decreased from all check and add opera-
tions to just scalar multiplication operations. Using this method, criticality
assessment costs on matrices with element size e required only ≈1/e resources.
For example, the size 32 proxy algorithm assessment cost ≈$13 on AWS Lambda.

Using this failure interface we measured each multiplication failure point’s
criticality. Figure 4 shows criticality assessment results on scalar multiply oper-
ations employed by both matrix multiply algorithms.

Damage Reduction via White-Box Failure Shaping 221

These criticalities and their median value were then employed to make deci-
sions about the reliability budgeting of every check and add failure point that
occurred during each multiplication operation’s execution. Note that this means
that information collected by failing scalar multiplication could be used to
failure shape the underlying check and add operations.

3.1 Criticality and Failure Shaping Results on Proxy Method

Figure 5 shows proxy failure shaping results on size 32 matrices. As with criti-
cality measurements on the check and add operations, multiply operations are
flat for naive matrix multiply and structured for Strassen’s multiply.

Scalar multiply failure shapes in Strassen’s matrix multiplication algo-
rithm also appear to exhibit scale-free properties and similar distributions to
check and add operations. At all tested sizes we find criticality spikes roughly
2/7, 3/7 and 5/7 of the way through the algorithm, suggesting they are inherent
to Strassen’s multiplication algorithm.

Figure 3 shows proxy failure shaping results on check and add failure inter-
faces using the scalar multiply failure interface as a proxy. These results are
compared to the baseline i.i.d. model results, and the results from the simple fail-
ure shaping procedure applied in Sect. 2.2. As can be seen, proxy failure shaping
can work as well as direct failure shaping.

However, caution must be used: proxy failure shaping only works on scalar
multiplication applied to check and add operations because all three failure
interface’s failure methods produce similar failures.

4 Analysis and Discussion

Fig. 5. Proxy Criticality Assessment and Failure Shap-
ing Results on Input Size 32. (Left) Criticality assessment
for proxy failure interface scalar multiply on the infin-
ity norm error measure for N = 32, though smaller N
display similar structures. (Right) Proxy failure shaping
results for size 32 without direct failure shaping results.
See Sect. 3.1 for details.

We have shown that the
failure shaping frame-
work can successfully
improve the reliability
performance of algorithms
running on abstracted
non-deterministic hard-
ware. To do this, we
found criticality assess-
ment search spaces that
have low variance and
high compactness. Fail-
ure points with high vari-
ance occur when many
different kinds of execu-
tion paths overlap, some
important and some unim-
portant while compact

222 T. B. Jones and D. H. Ackley

descriptions grow no more quickly than the algorithm they are describing. There
is a necessary tension between these two concepts, but we were able to balance
them by using time-bucketed function level failure interfaces. We also showed
that it is possible to shrink the error search space by moving the locus of anal-
ysis from lower level to higher level methods through the proxy method failure
shaping experiment.

In both cases, whether with a proxy method or through direct failure shaping,
it was imperative that the algorithm’s failure shape have some structure that
our budgeting process could bite into. This can easily be seen in the differences
observed between failure shaped naive matrix multiply and Strassen’s algorithm.
Strassen’s algorithm simply had more leverage than naive matrix multiply.

4.1 The Importance of Leverage

An algorithm’s leverage is the ratio of the average criticalities of its impor-
tant and unimportant operations. In this paper we use the median failure point
criticality as the dividing line between important and unimportant operations,
however this will not be the best line for all algorithms and economizations.

In [28,29] the authors also found computational leverage in sorting algo-
rithms. Specifically, the greater the algorithmic efficiency, the greater the lever-
age. Further, unleveraged sorting algorithms outperformed leveraged algorithms
on baseline i.i.d. failure model experiments.

Fig. 6. Selected Leverage Results.
Frobenius norm leverage results on
the matrix multiply algorithms are
presented above. Strassen’s algorithm
leverage on all operations grows faster
than naive matrix multiply’s leverage
on any operation. See Sect. 4.1 for
details.

We see a similar pattern with matrix
multiplications. In Fig. 6 the leverage of
both naive and Strassen’s matrix multi-
ply using the Frobenius norm are pre-
sented. Strassen’s matrix multiply con-
sistently shows a higher leverage than
naive matrix multiplication, which also
outperforms Strassen’s matrix multiplica-
tion on baseline i.i.d. failure tests. How-
ever, because Strassen’s algorithm has
higher leverage, it also responds better to
the failure shaping procedure.

Overall, economic failure shaping is
best suited to computations that

1. perform multiple fallible steps,
2. each of which has a definable cost,
3. at definable failure rates, with
4. high leverage, and
5. limited overall resources.

Although satisfying most of these conditions is a matter of framing the ques-
tion properly, condition 4 largely depends on the underlying algorithms being
performed. Fortunately, we find that high efficiency algorithms often have high

Damage Reduction via White-Box Failure Shaping 223

leverage. In prior work, we found this to be true of sorting algorithms in [28],
and we have also found it true here, with matrix multiplication algorithms.
Intuitively, this makes sense, as efficiency often depends on making high-impact
decisions about the output based on examining as little data as possible at the
decision point.

To frame the other four conditions, we seek out the operations that are
most heavily impacted when increasing algorithmic efficiency. So, for example,
comparisons in sorting and scalar multiplications in matrix multiplication are
both heavily economized as algorithms become more efficient. Facing a graph
algorithm, the critical failures might involve choose which edge to follow.

4.2 Generalization Through Search

Failure shaping currently requires significant human labor. Making it more effi-
cient will require leveraging multiple strategies. One strategy includes a library
of standardized input types, error measures, and failure interfaces that can be
used to produce automatically annotated programs in the future.

Such a strategy, though, will tend to increase the computational resources
required by the method. The spaces we have presented are sufficiently limited
that they can be almost completely characterized relatively cheaply, but larger
spaces cannot be so completely explored. Our observation of apparently scale-
free failure shapes (see Fig. 2) suggests one strategy could be to scale the crit-
icality assessment directly by run time in some programs. For non-trivial soft-
ware in general, we will need more sophisticated search methods—ones capable
of performing significant generalization across failure points, rather gathering
fully-independent statistics as we have here.

Genetic algorithms, genetic programming, and other adaptive search proce-
dures are often employed to search highly combinatoric spaces, as in [9,12,32].
A common problem in this space is the flag variable problem [23]. In [4], the
authors note that GAs work best in search spaces that avoid these “needle-in-
the-haystack” spikes. Our use of continuous error measures compared to typical
all-or-none test failures may help produce such ‘softened’ search space gradients,
as medium criticality operations tend to cluster around spikes both here and in
other algorithms we have explored [28].

This is a new area and we are only at the beginning, but a relatively sparse
set of data-points plus a suitable heuristic search procedure may allow us to
build imperfect but high-quality criticality estimators for the failures of much
larger pieces of software than are reachable via Monte Carlo search alone.

5 Related Work

Criticality analysis is a common method for understanding failures in indus-
tries working with finite engineered machines. While this analysis is taken to be
generalizable, its application is often limited to industries where safety is impor-
tant, especially in medicine, industrial engineering, cyber-physical systems, and

224 T. B. Jones and D. H. Ackley

travel [19,47,49]. Other authors have used criticality analysis to track system
sensitivity to failure or environmental effects in online services [11,16]. Analysis
of code importance and tendency to fail has also been used to aid designers in
tracking vulnerabilities when introducing code edits [40,41,43]. Like us, other
authors have used aspects to build fault tolerant systems [10].

Some robustness researchers (e.g. [7,24]) consider concrete hardware compo-
nent failures such as in ALUs and memories, and study their impacts on the
probability of strict computational correctness. Others (e.g. [14]) assume deter-
ministic hardware execution and focus on the degree of damage caused by cor-
rupted inputs. Along with our own work, these join a growing number of research
efforts examining algorithmic and systemic sensitivity to faults and failures, such
as [7,37,44]. The authors of [42], for example, provide a method for discovering
a quality-efficiency economization curve for a camera applications that should
be fairly generalizable. A paradigm of correctness sensitivity also complements
works, such as [20] that seek to use oracles to search for failures in traditional
software engineering settings by further softening oracle requirements. As stated
in Sect. 4.2, it may further strengthen the field of SBSE by improving the prop-
erties of search spaces.

Criticality Explorer extends input/output based software engineering testing
suites such as that found in [33] by providing a hardware failure layer that acts
as a second level of input to the algorithm.

I.i.d. error models plausibly describe many classes of physical errors [6,15,21].
However, our interfacing framework also allows for coordinated errors below the
object function level in keeping with results that show that low level failure
coordination can produce greater error rates than uncoordinated failures [2]. Any
reasonable error model shows that large computational scales are also paired with
an increased SDC risk. Maintaining a computationally deterministic perspective
in exascale-class machines is increasingly impossible [13]

This new field is often complemented by research into fault injection and
error propagation techniques [5,24,27,38]. Exciting efforts in this direction have
also looked at language tools for leveraging programmer reasoning about error
propagation across the semantic divide between stack and application in large
scale system [17,25,34,45]. Criticality Explorer extends these research efforts by
providing services that discover critical code operations through space and time.

6 Conclusion

Traditional digital computing presumes deterministic hardware, which simpli-
fies reasoning about software, but leaves us with no guiding principle—except
patching failures after we notice them—when such perfection is cost-prohibitive
or errors escape from hardware despite all our efforts. We need methods that
allow us to reason about failures throughout the computational stack.

But, to reason about damage, we must be able to see it. Failure interfaces are
a bridge between idealized computations and the fallible hardware and software
upon which those computations must inevitably run. In principle, a failure inter-
face could be defined for an arbitrary failure in a computational stack. However,

Damage Reduction via White-Box Failure Shaping 225

to employ strategies like those found in Criticality Explorer , failure interfaces
must somehow be run-time economizable, and the damage created by failures at
the interface should have low variance.

Of course we cannot utterly abstract away the physical and expect to reason
effectively about error and damage—but limited and carefully-designed abstrac-
tions, such as method level failure interfaces, may offer significant opportunities.
We view the temporal and spatial abstractions presented here for matrix multi-
plication as a step in this direction.

References

1. Divide and Conquer — Set 5 (Strassen’s Matrix Multiplication). https://www.
geeksforgeeks.org/strassens-matrix-multiplication/. Accessed 21 May 2018

2. Ackley, D.H.: Beyond efficiency. Commun. ACM 56(10), 38–40 (2013)
3. Akram, R., Alam, M.M.U., Muzahid, A.: Approximate lock: trading off accu-

racy for performance by skipping critical sections. In: 2016 IEEE 27th Interna-
tional Symposium on Software Reliability Engineering (ISSRE), pp. 253–263. IEEE
(2016)

4. Arcuri, A., Iqbal, M.Z., Briand, L.: Black-box system testing of real-time embedded
systems using random and search-based testing. In: Petrenko, A., Simão, A., Mal-
donado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 95–110. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16573-3 8

5. Areias, C., Cunha, J.C., Vieira, M.: Studying the propagation of failures in SOAs.
In: 2015 IEEE International Conference on Dependable Systems and Networks
Workshops (DSN-W), pp. 81–86. IEEE (2015)

6. Assaf, S., Upfal, E.: Fault tolerant sorting networks. SIAM J. Discret. Math. 4(4),
472–480 (1991)

7. Atkinson, B., DeBardeleben, N., Guan, Q., Robey, R., Jones, W.M.: Fault injection
experiments with the CLAMR hydrodynamics mini-app. In: 2014 IEEE Interna-
tional Symposium on Software Reliability Engineering Workshops (ISSREW), pp.
6–9. IEEE (2014)

8. Avižienis, A.: Fault-tolerance and fault-intolerance: complementary approaches
to reliable computing. SIGPLAN Not. 10(6), 458–464 (1975). https://doi.org/10.
1145/390016.808469

9. Baudry, B., Fleurey, F., Jézéquel, J.M., Traon, Y.L.: From genetic to bacteriological
algorithms for mutation-based testing: research articles. Verif. Reliab. Softw. Test.
15(2), 73–96 (2005)

10. Borchert, C., Schirmeier, H., Spinczyk, O.: Protecting the dynamic dispatch in
C++ by dependability aspects. In: GI-Jahrestagung, pp. 521–536 (2012)

11. Cámara, J., de Lemos, R.: Evaluation of resilience in self-adaptive systems using
probabilistic model-checking. In: Proceedings of the 7th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, pp. 53–62. IEEE
Press (2012)

12. Campos, J., Ge, Y., Fraser, G., Eler, M., Arcuri, A.: An empirical evaluation of
evolutionary algorithms for test suite generation. In: Menzies, T., Petke, J. (eds.)
SSBSE 2017. LNCS, vol. 10452, pp. 33–48. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66299-2 3

https://www.geeksforgeeks.org/strassens-matrix-multiplication/
https://www.geeksforgeeks.org/strassens-matrix-multiplication/
https://doi.org/10.1007/978-3-642-16573-3_8
https://doi.org/10.1145/390016.808469
https://doi.org/10.1145/390016.808469
https://doi.org/10.1007/978-3-319-66299-2_3
https://doi.org/10.1007/978-3-319-66299-2_3

226 T. B. Jones and D. H. Ackley

13. Cappello, F., Geist, A., Gropp, B., Kalé, L.V., Kramer, B., Snir, M.: Toward
exascale resilience. IJHPCA 23(4), 374–388 (2009). http://dblp.uni-trier.de/db/
journals/ijhpca/ijhpca23.html#CappelloGGKKS09

14. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity and robustness of pro-
grams. Commun. ACM 55(8), 107–115 (2012)

15. Chippa, V.K., Chakradhar, S.T., Roy, K., Raghunathan, A.: Analysis and char-
acterization of inherent application resilience for approximate computing. In: Pro-
ceedings of the 50th Annual Design Automation Conference, p. 113. ACM (2013)

16. Dantas, J., Matos, R., Araujo, J., Oliveira, D., Oliveira, A., Maciel, P.: Hierarchical
model and sensitivity analysis for a cloud-based VoD streaming service. In: 2016
46th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, Workshop, pp. 10–16. IEEE (2016)

17. De Kruijf, M., Nomura, S., Sankaralingam, K.: Relax: an architectural framework
for software recovery of hardware faults. ACM SIGARCH Comput. Archit. News
38(3), 497–508 (2010)

18. Filiposka, S., Mishev, A., Juiz, C.: Current prospects towards energy-efficient top
HPC systems. Comput. Sci. Inf. Syst. 13(1), 151–171 (2016)

19. Gargama, H., Chaturvedi, S.K.: Criticality assessment models for failure mode
effects and criticality analysis using fuzzy logic. IEEE Trans. Reliab. 60(1), 102–
110 (2011)

20. Gay, G., Rayadurgam, S., Heimdahl, M.P.: Automated steering of model-based test
oracles to admit real program behaviors. IEEE Trans. Softw. Eng. 43(6), 531–555
(2017)

21. Guo, S., Huang, H.Z., Wang, Z., Xie, M.: Grid service reliability modeling and
optimal task scheduling considering fault recovery. IEEE Trans. Reliab. 60(1),
263–274 (2011)

22. Han, J., Orshansky, M.: Approximate computing: an emerging paradigm for
energy-efficient design. In: 2013 18th IEEE European Test Symposium (ETS),
pp. 1–6. IEEE (2013)

23. Harman, M., et al.: Testability transformation. IEEE Trans. Softw. Eng. 30(1),
3–16 (2004)

24. Holler, A., Macher, G., Rauter, T., Iber, J., Kreiner, C.: A virtual fault injection
framework for reliability-aware software development. In: 2015 IEEE International
Conference on Dependable Systems and Networks Workshops (DSN-W), pp. 69–74.
IEEE (2015)

25. Hukerikar, S., Lucas, R.F.: Rolex: resilience-oriented language extensions for
extreme-scale systems. J. Supercomput. 72(12), 4662–4695 (2016)

26. Ibtesham, D., DeBonis, D., Arnold, D., Ferreira, K.B.: Coarse-grained energy mod-
eling of rollback/recovery mechanisms. In: 2014 44th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN), pp. 708–713. IEEE
(2014)

27. Irrera, I., Vieira, M.: Towards assessing representativeness of fault injection-
generated failure data for online failure prediction. In: 2015 IEEE International
Conference on Dependable Systems and Networks Workshops (DSN-W), pp. 75–
80. IEEE (2015)

28. Jones, T.B., Ackley, D.H.: Comparison criticality in sorting algorithms. In: 2014
44th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pp. 726–731. IEEE (2014)

29. Jones, T.B., Ackley, D.H.: Scalable robustness. In: 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshop, pp.
31–38. IEEE (2016)

http://dblp.uni-trier.de/db/journals/ijhpca/ijhpca23.html#CappelloGGKKS09
http://dblp.uni-trier.de/db/journals/ijhpca/ijhpca23.html#CappelloGGKKS09

Damage Reduction via White-Box Failure Shaping 227

30. Kahng, A.B., Kang, S., Kumar, R., Sartori, J.: Slack redistribution for graceful
degradation under voltage overscaling. In: Proceedings of the 2010 Asia and South
Pacific Design Automation Conference, pp. 825–831. IEEE Press (2010)

31. Kim, E.P., Shanbhag, N.R.: Soft N-modular redundancy. IEEE Trans. Comput.
61(3), 323–336 (2012)

32. Kukunas, J., Cupper, R.D., Kapfhammer, G.M.: A genetic algorithm to improve
Linux kernel performance on resource-constrained devices. In: Proceedings of the
12th Annual Conference Companion on Genetic and Evolutionary Computation,
pp. 2095–2096. ACM (2010)

33. Larsen, K.G., Mikucionis, M., Nielsen, B.: Online testing of real-time systems using
Uppaal. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
79–94. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31848-4 6

34. Liu, S., Pattabiraman, K., Moscibroda, T., Zorn, B.G.: Flikker: saving dram
refresh-power through critical data partitioning. ACM SIGPLAN Not. 47(4), 213–
224 (2012)

35. Mathew, S., Varia, J.: Overview of Amazon Web Services. Amazon Whitepapers
(2014)

36. Mohapatra, D., Chippa, V.K., Raghunathan, A., Roy, K.: Design of voltage-
scalable meta-functions for approximate computing. In: Design, Automation and
Test in Europe Conference and Exhibition (DATE), pp. 1–6. IEEE (2011)

37. Monson, J.S., Wirthlin, M., Hutchings, B.: A fault injection analysis of Linux
operating on an FPGA-embedded platform. Int. J. Reconfig. Comput. 2012, 7
(2012)

38. Natella, R., Cotroneo, D., Duraes, J.A., Madeira, H.S.: On fault representativeness
of software fault injection. IEEE Trans. Softw. Eng. 39(1), 80–96 (2013)

39. Oliveira, D.A., Lunardi, C.B., Pilla, L.L., Rech, P., Navaux, P.O., Carro, L.: Radia-
tion sensitivity of high performance computing applications on Kepler-based GPG-
PUs. In: 2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 732–737. IEEE (2014)

40. Pai, G.J., Dugan, J.B.: Empirical analysis of software fault content and fault prone-
ness using Bayesian methods. IEEE Trans. Softw. Eng. 33(10) (2007)

41. Piancó, M., Fonseca, B., Antunes, N.: Code change history and software vulnera-
bilities. In: 2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, Workshop, pp. 6–9. IEEE (2016)

42. Raha, A., Raghunathan, V.: Towards full-system energy-accuracy tradeoffs: a case
study of an approximate smart camera system. In: Proceedings of the 54th Annual
Design Automation Conference 2017, p. 74. ACM (2017)

43. Rodrigues, I., Ribeiro, M., Medeiros, F., Borba, P., Fonseca, B., Gheyi, R.: Assess-
ing fine-grained feature dependencies. Inf. Softw. Technol. 78, 27–52 (2016)

44. Rudolph, L.: A robust sorting network. IEEE Trans. Comput. 100(4), 326–335
(1985)

45. Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., Grossman, D.:
EnerJ: approximate data types for safe and general low-power computation. ACM
SIGPLAN Not. 46, 164–174 (2011)

46. Siciliano, V., Garzilli, I., Fracassi, C., Criscuolo, S., Ventre, S., Di Bernardo, D.:
MiRNAs confer phenotypic robustness to gene networks by suppressing biological
noise. Nat. Commun. 4, 2364 (2013)

47. Ukkusuri, S.V., Yushimito, W.F.: A methodology to assess the criticality of high-
way transportation networks. J. Transp. Secur. 2(1–2), 29–46 (2009)

https://doi.org/10.1007/978-3-540-31848-4_6

228 T. B. Jones and D. H. Ackley

48. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001). https://
doi.org/10.1007/978-3-662-04565-7

49. Xiang, J., Ye, L., Vicario, E., Tadano, K., Machida, F.: Analysis of relevance and
importance of components in system reliability. In: 2015 2nd International Sym-
posium on Dependable Computing and Internet of Things (DCIT), pp. 146–147.
IEEE (2015)

https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7

Automated Co-evolution of Metamodels
and Transformation Rules:
A Search-Based Approach

Wael Kessentini1(B), Houari Sahraoui1, and Manuel Wimmer2

1 University of Montreal, Montreal, Canada
{kessentw,sahraouh}@iro.umontreal.ca
2 CDL-MINT, TU Wien, Vienna, Austria

wimmer@big.tuwien.ac.at

Abstract. Metamodels frequently change over time by adding new con-
cepts or changing existing ones to keep track with the evolving prob-
lem domain they aim to capture. This evolution process impacts sev-
eral depending artifacts such as model instances, constraints, as well
as transformation rules. As a consequence, these artifacts have to be co-
evolved to ensure their conformance with new metamodel versions. While
several studies addressed the problem of metamodel/model co-evolution
(Please note the potential name clash for the term co-evolution. In this
paper, we refer to the problem of having to co-evolve different depen-
dent artifacts in case one of them changes. We are not referring to the
application or adaptation of co-evolutionary search algorithms.), the co-
evolution of metamodels and transformation rules has been less studied.
Currently, programmers have to manually change model transformations
to make them consistent with the new metamodel versions which require
the detection of which transformations to modify and how to properly
change them. In this paper, we propose a novel search-based approach to
recommend transformation rule changes to make transformations coher-
ent with the new metamodel versions by finding a trade-off between max-
imizing the coverage of metamodel changes and minimizing the number
of static errors in the transformation and the number of applied changes
to the transformation. We implemented our approach for the ATLAS
Transformation Language (ATL) and validated the proposed approach
on four co-evolution case studies. We demonstrate the outperformance of
our approach by comparing the quality of the automatically generated
co-evolution solutions by NSGA-II with manually revised transforma-
tions, one mono-objective algorithm, and random search.

Keywords: Model transformation evolution
Search-based software engineering · ATL

1 Introduction

Model-driven engineering (MDE) [2] relies on metamodels as first-class enti-
ties [21] which evolve to accommodate new features, improve structural and
c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 229–245, 2018.
https://doi.org/10.1007/978-3-319-99241-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_12&domain=pdf

230 W. Kessentini et al.

semantical concerns and fix errors [27]. While this evolution process is vital, it
impacts several depending artifacts such as model transformations since trans-
formation rules need to be adapted to new metamodels versions as they use the
metamodel elements as part of their type system [15]. Thus, a systematic pro-
cess is needed to guide the co-evolution of the transformations when the involved
metamodels evolve [27]. However, currently, this co-evolution process is mostly
done manually which leads to significantly increased fault-proneness and cost of
maintenance [14,15].

Several studies have been proposed for automated co-evolution within the
MDE literature, cf. [14] for a survey. The co-evolution of metamodels and their
models have been addressed using various techniques to make model instances
consistent with new metamodel versions by translating metamodel changes into
model changes using a set of manually defined rules [8] or automatically adapt-
ing models towards reducing the number of conformance errors with the meta-
models [18]. In addition, the co-evolution of metamodels and constraints writ-
ten in the Object Constraint Language (OCL) has also been studied to reduce
OCL errors when evolving metamodels by localizing the set of constraints to
repair, and then, fixing them either manually [19] or automatically [1]. How-
ever, the co-evolution of metamodels and transformation rules—although it is
considered as a significant problem [15]—is still less studied with only a few
studies that identify metamodel changes, then manually define templates to
map the metamodel changes into co-changes applied to the transformations,
e.g., cf. [9,10,12,20,23,24,26]. None of the existing studies addressed the cen-
tral question of how to automate the metamodel/transformation co-evolution
without the need to manually define higher-order transformations to map meta-
model changes into transformation changes. These higher-order transformations
are language specific and require the correct identification of metamodel changes
which is a challenge on its own. As a result, the co-evolution of metamodels and
transformations is still far from being automated.

This paper remedies the gap by proposing, as one of the first studies in the
MDE literature, an automated approach to revise transformation rules when
metamodels evolve. In particular, we focus on the automated co-evolution of
transformations expressed in the ATLAS Transformation Language (ATL) [16].
We leverage the use of search-based software engineering algorithms [13] to deal
with the large search space of possible co-evolution solutions to repair the rules
based on three main criteria: maximizing the coverage of metamodel changes and
minimizing the number of static errors in the transformation and the number
of applied changes to the transformation. Since these objectives are intuitively
conflicting, we used a multi-objective algorithm, based on NSGA-II [7], to find
a trade-off between them when exploring the search space of possible transfor-
mation co-evolutions. We considered differently-sized transformations available
in the ATL Zoo1, a public repository of model transformations, to validate our
approach by comparing the newly generated ATL rules by our approach and the
expected rules that are manually co-evolved. Since it is the first formulation of

1 https://git.eclipse.org/c/gerrit/www.eclipse.org/atl.git/tree/atlTransformations.

https://git.eclipse.org/c/gerrit/www.eclipse.org/atl.git/tree/atlTransformations

Automated Co-evolution of Metamodels and Transformation Rules 231

the metamodels and transformation rules co-evolution as a search problem, we
also compared our results to a mono-objective algorithm, combining the differ-
ent objectives, and random search. Furthermore, we evaluated the performance
of our automated co-evolution approach comparing to the manual correction
of co-evolution issues by a total of 6 participants on one of the case studies.
On average, for all of our four studied ATL projects, 89% of the proposed edit
operations were correct while the random search, mono-objective and manual
techniques have a correctness of respectively 41%, 66% and 76%.

2 Background

2.1 Metamodels and Model Transformation

Model transformations are considered as the heart and soul of MDE [31]. Model
transformations are not only used for deriving implementations out of models,
but also to analyze, compare, merge, and improve models [25]. In this context,
metamodels contribute important information for model transformations. In par-
ticular, they introduce the type systems which can be used in model transforma-
tion programs [6]. The elements contained in a metamodel are accessible through
model transformation languages and represent essential information needed to
formulate transformations. Figure 1(a) shows the model transformation pattern
which illustrates that on the metamodel level the transformation is defined and
executed on the model level. Of course, when metamodels change, this has a
direct impact on the existing transformations as the referred types and features
have to exist in the metamodels. Figure 1(b and c) show the cases of source
metamodel evolution and target metamodel evolution and the required trans-
formation co-evolutions, respectively. Please note that both cases may occur
simultaneously. The quest is to find the corresponding delta (i.e., changes) to
patch the transformation for a given metamodel delta.

ATL [16] is a model transformation language which follows the mentioned
model transformation pattern. In particular, ATL transformations are rule-based
programs (cf. rule keyword in Listing 1.1) which are executed on fixed input
models to produce output models. For this process, matches in the input model
are computed based on the input patterns (cf. from keyword in Listing 1.1) of the
transformation rules which trigger the creation of output elements based on the
output patterns (cf. to keyword in Listing 1.1) of the transformation rules. Please
note that ATL transformations are typed by the source and target metamodels,
i.e., the input and output pattern elements have to refer to existing elements
in the involved metamodels. In addition, OCL expressions may be employed
for filter definitions to restrict the matches in the input model as well as for
computing values with so-called bindings for setting features of the produced
output elements.

232 W. Kessentini et al.

MMsrc MMtrg

MM’src

MMsrc MMtrg

MM’trg

T

T’ T’

T

MM MM

MMsrc MMtrg

T

Msrc Mtrg
TE

(a)

(b) (c)

Fig. 1. Metamodel evolution/transformation co-evolution context: (a) model trans-
formation pattern, (b) source metamodel evolution/transformation co-evolution, and
(c) target metamodel evolution/transformation co-evolution; (b) and (c) may occur in
combination.

2.2 Metamodel/Transformation Co-evolution: A Motivating
Example

To further introduce ATL as well as to motivate the need of automatically repair-
ing ATL transformations when metamodels evolve, an excerpt of an example
ATL transformation is shown in Listing 1.1. Furthermore, we show in Fig. 2 an
evolution scenario for the input metamodel of the given ATL transformation.

The transformation example we are using is a simple transformation for gen-
erating documentation from class diagrams. In particular, we focus on trans-
forming the features into list items. The content of the items is derived from the
feature names and types–cf. the binding at line 8 of Listing 1.1.

ModelElement
name : String

Class Feature
type : String

[0..*]
features

Doc

UL

LI
content : String

[0..*] lis

ModelElement
name : String

Class A ribute[0..*]
a ributes

Type
[1..1]

typedBy

Body

name : DTs

<<enum>>

DTs
 String
 Integer
 Boolean

TypedElement

DataType

[0..*] uls

[1..1]
type

Class Diagram Document Markup Language

v0

v1

[0..1]
primi ve

Fig. 2. Motivating example: metamodel evolution

Automated Co-evolution of Metamodels and Transformation Rules 233

Listing 1.1. Excerpt of the initial and migrated Class2Doc Transformation.

1 -- deletions are shown in red , additions in green
2 module Class2Doc;
3 create OUT : Doc from IN : Class;
4 ...
5 rule Attribute2ListItem {
6 from f : Class! AttributeFeature
7 to li : Doc!LI (
8 content <- f.name + ’�:�’ + f.typetypedBy.primitive.name
9)

10 }
11 ...

Let us assume that the class diagram language evolves by some rename refac-
torings as well as by explicating the types of features. This process results in a
new metamodel version which now speaks about attributes instead of features.
Attributes are typed elements whereas a typed element refers to an explicit type
object which may describe the used types in more detail. Given the discussed
changes in the source metamodel, the excerpt of the transformation example
shown in Listing 1.1 has to be adapted. In particular, the type of the input pat-
tern has to be changed as well as the binding for the content feature. The type
of an attribute has now to be retrieved by following a navigation path before the
required value can be accessed.

While there are already existing approaches for dealing with transforma-
tion co-evolution, most of them are based on certain change patterns such as the
renaming refactoring in metamodels which may have an associated co-refactoring
for the transformation rules. For more complex change patterns, as it is the case
for retrieving the type information in our example by following a longer naviga-
tion path with several hops is currently not supported by existing approaches.
Thus, we motivate our approach by the fact that for more complex evolution
scenarios, a sophisticated search process is needed to repair the transformations
to get rid of static typing errors in the transformation, but still have as much
as possible the same behaviour as for the initial transformation. Furthermore,
detecting metamodel changes precisely is still a challenge, especially when it
comes to the detection of refactorings as is the case in our example. Our app-
roach does not rely on computing such metamodel changes. Finally, while there
are approaches for detecting static type errors in ATL programs [6], there are no
approaches which consider this kind of information explicitly in the co-evolution
process. Thus, one may end up with co-evolved transformations which have static
type errors.

3 Multi-objective Metamodel/Transformation
Co-evolution

3.1 Approach Overview

A co-evolution solution to our problem consists of a sequence of rule-level change
operations to revise the existing transformation rules to make them conformed
to the evolved source or target metamodel. The search space is determined not

234 W. Kessentini et al.

only by the number of possible rule-level change operations combination but
also by the number of existing transformation rules, and the order in which
these changes are applied. A heuristic-based optimization method is used to
generate co-evolution solutions. The best solution should optimize 3 objectives:
(1) minimize the number of errors; (2) minimize the number of recommended
change operations to the transformation rules; and (3) maximize the coverage of
the evolved source or target metamodel. To handle these conflicting objectives,
we formulate this co-evolution problem as a multi-objective one using the Non-
Dominated Sorting Genetic Algorithm (NSGA-II) [7].

Our approach takes as inputs a model transformation program and the
evolved source and target metamodels. It generates as output a sequence of
recommended changes to the initial transformations program. To calculate the
fitness functions, we used AnATLyzer [6] to identify the number of static type
errors in the transformation rules and the ATL footprint tool [3] to estimate
the coverage of the evolved source or target metamodels by the newly revised
transformation rules.

3.2 NSGA-II Adaptation for Metamodel/Transformation
Co-evolution

Solution Representation. A candidate solution to the problem is a set of
revised transformation rules, i.e., a set of change operators applied to the initial
transformation rules. A valid solution assigns a set of different rule-level changes
to the transformation rules. We used a set of 27 types of operations that are
defined in a previous study [5]. A complete description of all change operators
for ATL can be found in [17].

We adopt the vector-based encoding where a candidate solution is repre-
sented as a vector of n positions, where n is the number of change opera-
tions to be applied to a transformation program. Each position corresponds
to specific change operation. For instance, Fig. 3 shows an example of a solution
composed of three change operations applied to the transformation rules dis-
cussed in the motivating example (Listing 1.1). The generated solution included
two types of change operations that were instantiated: NavigationModifica-
tion(variable, navigationExpression, replacement) and InPatternElementModi-
fication(objectToModify, oldFeatureValue, replacement). Thus, the generation
of solutions consists of selecting the type of operations and their parame-
ters (objects to modify, rules to revise, etc.). The initial population is com-
pletely random where a maximum number of rule-level change operations n is
fixed; then the generated changes are randomly assigned to several rules of the
transformation.

Fig. 3. Solution encoding.

Automated Co-evolution of Metamodels and Transformation Rules 235

Fitness Functions. We defined three objective functions in our adaptation.

Minimize the Number of Recommended Rule-Level Changes. The underlying
assumption to minimize the number of changes to the transformation is to reduce
the effort of understanding the new program after evolution. Thus, this fitness
function is defined as:

Minf1(S) = |S| (1)

Where S is the solution to evaluate. Thus, this fitness function calculates the
size of S (number of changes) which corresponds to the number of dimensions in
the vector.

Minimize the Number of Transformation Errors. We used AnATLyzer [6] to
identify the number of errors in the transformation after applying the solution
on the initial transformation. Thus, the second fitness function is defined as
follows:

Minf2(S) = r (2)

Where r is the number of errors identified in the revised transformation program.
The errors are mainly the non-conformance between the metamodels and rules
that can be statically detected by static semantic constraints for ATL transfor-
mations [6].

Maximize the Metamodel Coverage. The footprint tool of Burgueno et al. [3]
estimates the coverage of the evolved source or target metamodels by the newly
revised transformation after applying the recommended rule-level changes. The
third fitness function is as follows:

Maxf3(S) = |re ∩ mme| (3)

Where re is the set of covered metamodel elements by the revised transforma-
tion rules as identified by the footprint tool and mme is the set of the evolved
metamodel elements.

Evolutionary Operators. Population-based search algorithms deploy cross-
over and mutation operators to improve the fitness functions of the solutions
in the population in each iteration. Change operators such as crossover and
mutation aim to drive the search towards near-optimal co-evolution solutions.
The crossover operator is responsible for creating new solutions based on already
existing ones, e.g., re-combining solutions. In our adaptation, we use a single
random cut-point crossover to construct offspring co-evolution solutions. It starts
by selecting and splitting at random two-parent co-evolution solutions. Then
crossover creates two child solutions by putting, for the first child, the first part
of the first parent with the second part of the second parent, and vice versa for
the second child.

The mutation operator is used to introduce slight random changes into can-
didate co-evolution solutions. This operator guides the algorithm into areas of

236 W. Kessentini et al.

the search space that would not be reachable through recombination alone and
avoids the convergence of the population towards a few elite solutions. In our
adaptation, we used a mutation operator that picks at random one or more posi-
tions (change operation) from their vector and replaces them by either another
type of change operator or modifying the parameters of the operation type to
apply it for another rule.

When applying crossover and mutation operators, we ensure the validity
of the solution using a repair function. This function consists of removing edit
operations from the solution when conflicts are detected using a set of constraints
(redundancy, inapplicable edit operations after changes, etc.).

4 Validation

4.1 Research Questions and Evaluation Metrics

Our study addresses the following research questions:

– RQ1 Solution Correctness: To what extent do the co-evolution solutions
generated by our approach compare to manually developed solutions?

– RQ2 Benefits: To what extent can our approach reduce the number of
changes and manual effort to evolve the rules after a metamodel evolution?

– RQ3.1 Search Validation: Do we need a metaheuristic search for the meta-
model/transformation co-evolution problem?

– RQ3.2 Search Quality: How does the proposed multi-objective approach
based on NSGA-II perform compared to a mono-objective one (aggregating
the three objectives)?

Our research questions are evaluated using the following four ATL case stud-
ies. We selected to use ATL to validate our approach since it is one of the widely
used model transformation languages [4,30]. Each case study consists of one
model transformation and all the necessary artifacts to execute the transfor-
mation, i.e., the input and output metamodels and a sample input model. For
replication purposes, the different case studies used in our experiments along
with a description of the used ATL change operations, the implementation of
our approach, and the detailed 30 runs result of the different approaches can be
found in [17].

We have selected these case studies due to their difference in size, structure
and number of dependencies among their transformation artifacts, i.e., rules and
helpers. Furthermore, the metamodel evolution scenarios used in our experiments
were defined in a previous work based on the selected ATL case studies [11].
Table 1 summarizes, for each case study, the number of rules in the transfor-
mation (R), the number of rules to co-evolve/modify (CR) and the number of
expected operations to fix the rules based on the manually created solutions
in [11].

To see whether our approach produces sufficiently good results (RQ1), we
compare our generated set of solutions with a set of manually created solutions

Automated Co-evolution of Metamodels and Transformation Rules 237

Table 1. Selected ATL case studies.

ID Name Rules (R) Coevolved
rules (CR)

Edit operations
(EOp)

Case study 1 (CS1) Ecore2Maude 40 12 21

Case study 2 (CS2) R2ML2RDM 58 16 34

Case study 3 (CS3) XHTML2XML 31 8 17

Case study 4 (CS4) XML2Ant 29 7 13

based on a manual correctness measure (MC) defined as the intersection between
the recommended changes operations and expected ones then divided by the
number of expected operations. Since the number of correct recommendations
may not be sufficient to evaluate the correctness, we evaluate the number of
rules (FR) fixed by the recommended changes.

To evaluate the benefits of our approach (RQ2), we reported the execution
time (T) of the different search algorithms to obtain good co-evolution solu-
tions compared to manually fixing the transformation programs. Furthermore,
we evaluate the ability of our approach to recommend the best co-evolution
solutions with a minimum number of change operations (NOp).

To validate the problem formulation of our approach (RQ3.1), we compared
our multi-objective approach with Random Search (RS), using MC, FR, and
NOp, to justify the use of a metaheuristic search. If RS outperforms an intelligent
search method, we can conclude that there is no need to use a metaheuristic
search. To allow such a comparison, we used the knee-point [28] strategy to
select a unique solution from each of the final Pareto sets of RS and NSGA-II.
Thus, we identified the solution from the set of non-dominated ones providing
the maximum trade-off using the following strategy when comparing between
RS and NSGA-II. To find the maximal trade-off solution of the multi-objective
algorithm, we use the trade-off worthiness metric proposed by Rachmawati and
Srinivasan [28] to evaluate the worthiness of each non-dominated solution in
terms of compromise between the objectives. This metric is expressed as follows:

μ(xi, S) = Min
xj∈S,xi⊀xj ,xj⊀xi

T (xi, xj) where, T (xi, xj) =
∑M

m=1 max

[

0,
fm(xj)−fm(xi)

fmax
m −fmin

m

]

∑M
m=1 max

[

0,
fm(xi)−fm(xj)

fmax
m −fmin

m

]

We note that xj denotes members of the set of non-dominated solutions S that
are non-dominated with respect to xi. The quantity μ(xi, S) expresses the least
amount of improvement per unit deterioration by substituting any alternative xj

from S with xi. We note also that fm(xi) corresponds to the mth objective value
of solution xi and fmax

m /fmin
m corresponds to the maximal/minimal value of the

mth objective in the population individuals. In the above equations, normaliza-
tion is performed to prevent some objectives being predominant over others. In
the last equation, the numerator expresses the aggregated improvement gained
by substituting xj with xi. However, the denominator evaluates the deterioration
generated by the substitution.

238 W. Kessentini et al.

To evaluate the need for a multi-objective approach, we compared the results
of our NSGA-II approach with the results retrieved from a mono-objective
Genetic Algorithm (GA) aggregating the three fitness functions into one (with
equal weights to all the objectives after normalizing them in the range [0,1]).

We limited the investigation of the relevance of our automated approach
comparing to manually fixing the co-evolution issues to only CS1. CS1 repre-
sents the average case among the four case studies regarding the complexity
(rules, expected edit operations and co-evolved rules) since the most complex
case study is CS2 and the simplest one is CS4. Thus, the use of CS1 can be
a good representative among all the case studies. Our study involved 6 master
students in Software Engineering. All the participants are volunteers and famil-
iar with MDE and co-evolution/refactoring since they are part of a graduate
course on Software Quality Assurance (SQA). All the graduate students have
already taken at least one position as software developer/engineer in industry
for at least three years and most of them (5 out of 6 students) participated in
similar experiments in the past, either as part of a research project or during the
SQA graduate course. Furthermore, 3 out of the 6 students are currently work-
ing as full-time or part-time developers in the software industry. Participants
were first asked to fill out a pre-study questionnaire containing four questions.
The questionnaire helped to collect background information such as their mod-
eling experience, and their familiarity with MDE and co-evolution/refactoring.
Also, all the participants attended one lecture about model transformations and
ATL, and passed four tests to evaluate their performance in evaluate and suggest
co-evolution solutions.

4.2 Parameters Setting and Statistical Tests

The initial population/solution of NSGA-II, GA and RS are completely random.
The stopping criterion for all the studied search algorithms is 100,000 evalua-
tions. After several trial runs of the algorithms, the parameter values of the
three techniques are fixed to 100 as population size and 20,000 iterations. For
the change operators, we set crossover rate to 0.8 and mutation at 0.3 proba-
bility. We used a high mutation rate to ensure the diversity of the population
and avoid premature convergence to occur. Indeed, there are no general rules
to determine these parameters, and thus, we set the combination of parameter
values by the trial-and-error method.

Our experimental study is based on 30 independent simulation runs for each
problem instance, and the obtained results are statistically analyzed by using
the Wilcoxon rank sum test with a 95% confidence level (α = 5%). In fact,
for each problem instance, we compute the p-value obtained by comparing the
results of the different algorithms with our approach. In this way, we determine
whether the performance difference between our technique and one of the other
approaches is statistically significant or just a random result. The Wilcoxon rank
sum test verifies whether the results are statistically different or not; however,
it does not give any idea about the difference in magnitude. Thus, we used the
Vargha-Delaney A measure which is a non-parametric effect size measure.

Automated Co-evolution of Metamodels and Transformation Rules 239

Table 2. Mean manual correctness (MC) based on 30 runs for NSGA-II, RS, and GA.

Manual correctness Case study 1 Case study 2 Case study 3 Case study 4

NSGA-II 19/21 (90%) 29/34 (85%) 14/17 (82%) 13/13 (100%)

Genetic algorithm 13/21 (61%) 19/34 (55%) 13/17 (76%) 10/13 (74%)

Random search 9/21 (42%) 10/34 (29%) 8/17 (45%) 6/13 (48%)

Table 3. Mean number of fixed rules (FR) based on 30 runs for NSGA-II, RS, and
GA.

Fixed rules Case study 1 Case study 2 Case study 3 Case study 4

NSGA-II 11 14 7 7

Genetic algorithm 6 9 5 4

Random search 5 6 3 3

4.3 Results

Results for RQ1. As reported in Table 2, the majority of the ATL changes
recommended by our multi-objective approach were correct and similar to the
ones manually applied by developers in [11], for the different evolution scenar-
ios. On average, for all of our four studied projects, 89% of the proposed ATL
change operations are correct. We decided to compare our recommendations with
the ones manually proposed in another study (rather than manually checking
the proposed solutions) to avoid biasing our experiments with our judgments.
The highest MC score is 100% where all the changes applied to the ATL pro-
gram were correct for the XML2Ant program, and the lowest score is 82% for
the R2ML2RDM transformation program. Thus, it is clear that the results are
independent of the size of the ATL programs and the number of recommended
changes. The deviation between the expected and recommended rule-level change
operations is limited up-to four which means that the number of recommended
changes was similar to the expected ones.

Table 3 shows that the recommended co-evolution solutions fixed most of the
ATL transformation rules to make them consistent with the source or target
metamodel evolution. The maximum number of rules that were not fixed are
two (the case of R2ML2RDM) and for the remaining cases, up-to only one rule
remains to be fixed by the designer manually. Some of these rules are hard to
fix automatically due to a significant number of non-trivial metamodel changes
that renamed several elements.

Results for RQ2. Table 4 shows that our approach requires a reasonable exe-
cution time to converge towards good co-evolution solutions within less than
20 min. The highest execution time was reported on the largest case study of
Ecore2Maude (19.5 min) and the lowest one on XML2Ant (9 min). The execu-
tion time is significantly lower than the average of two hours spent by developers

240 W. Kessentini et al.

Table 4. Mean execution time (T) based on 30 runs for NSGA-II, GA, and RS.

Execution
time (minutes)

Case study 1 Case study 2 Case study 3 Case study 4

NSGA-II 19.5 17.4 12 9

Genetic
algorithm

15.4 14.2 8.2 7.1

Random
search

8.3 7.2 2.5 3

Table 5. Number of edit operations (NOp) mean values of NSGA-II, GA, and RS over
30 independent runs.

Recommendation Case study 1 Case study 2 Case study 3 Case study 4

NSGA-II 18 30 15 13

Genetic Algorithm 24 37 22 15

Random Search 29 42 26 20

to fix the ATL programs manually as reported in [11]. Furthermore, the number
of errors detected after applying the recommended changes to the ATL rules was
limited up-to two rules which may require low effort from the developers to fix
them rather than writing all the co-evolution changes manually.

Table 5 describes the number of changes to be applied on the ATL programs
to make them consistent with the new metamodels. It is clear that the number
of changes is correlated with the number of rules to evolve and the metamodel
changes. However, our multi-objective approach generated the minimum number
of changes compared to the two other approaches as detailed later. The highest
number of changes is 29 to evolve a total of 16 rules, which is reasonable since
our tool enables the automated execution and testing of these changes.

Table 6. Statistical tests summary. A “+” symbol at the ith position means that the
evaluation metric value of algorithm A is statistically different from algorithm B on
CSi. A “−” symbol at the ith position means the opposite.

Results for RQ3.1 and RQ3.2. The results summarized in Tables 2, 3, 4
and 5 confirm that NSGA-II is better than random search based on the different
evaluation metrics of MC, FR, and Nop on all four ATL case studies. The average

Automated Co-evolution of Metamodels and Transformation Rules 241

manual correctness values of random search on the different ATL programs are
lower than 41%. RS also proposed the highest number of errors and number
of recommendations among all the algorithms with the lowest number of fixed
rules. This can be explained by the huge search space to explore to generate
relevant rule-level changes.

Tables 2, 3, 4 and 5 confirm the average superior performance of our multi-
objective approach compared to a mono-objective GA. Table 2 shows that our
approach provides significantly higher manual correctness results (MC) than a
mono-objective formulation having MC scores between 55% and 76% on the
different ATL programs. The same observation is valid for FR and NOp as
described in Tables 3 and 5. Thus, it is clear that all the three different objectives
considered in our formulation are conflicting justifying the outperformance of
NSGA-II.

Since our proposal is based on multi-objective optimization, it is important to
evaluate the execution time (T). It is evident that NSGA-II requires a higher exe-
cution time than RS and GA since NSGA-II is considering more objectives and
evolutionary operators. All the search-based algorithms under comparison were
executed on machines with Intel i7 processors 4 GHz and 8 GB RAM. Overall,
RS and GA algorithms were faster than NSGA-II. In fact, the average execution
times for NSGA-II, GA and RS were respectively 14.5, 11 and 6 min. However,
the execution for NSGA-II is still reasonable because the algorithm is not exe-
cuted daily by the developers, and the co-evolution of ATL programs is not a
real-time problem.

An average of 16 edit operations (mean value among all participants) were
correctly identified manually by the subjects, which corresponds to 76% as aver-
age manual correctness. Our automated multi-objective approach successfully
recommended an average of 19 edit operations out of the expected 21 opera-
tions (91% of manual correctness). The minimum number of manually identified
correct edit operations is 14 (one participant), and the maximum is 17 (two par-
ticipants) while three participants correctly identified 16 operations. Our auto-
mated approach successfully fixed, on average, a total of 11 out of 12 rules which
outperforms the average number of rules fixed manually, which corresponds to 9
rules. A maximum of 10 rules was fixed manually by two participants while one
participant was able only to fix 8 rules. The controlled experiment was limited
to two hours thus all the results are obtained in two hours, which is significantly
higher than the execution time of our approach limited to an average of 19 min.
Thus, our automated approach can significantly improve the productivity of
developers during the evolution process.

The results of our experiments, on all the case studies, algorithms and the
evaluation metrics, were found to be statistically significant on 30 independent
runs using the Wilcoxon rank sum test with a 95% confidence level when com-
paring our multi-objective approach to the remaining techniques (RS, GA and
manual) as described in Table 6. In our experiments, we have found the following
results as well: (a) on small-scale programs (XHTML2XML and XML2Ant) our
approach is better than all the other algorithms based on all the performance
metrics with an A effect size higher than 0.92; and (b) on medium and large-scale

242 W. Kessentini et al.

programs (Ecore2Maude, and R2ML2RDM), our approach is better than all the
other algorithms with an A effect size higher than 0.88 using all the evaluation
metrics.

4.4 Threats to Validity

Conclusion validity is concerned with the statistical relationship between the
treatment and the outcome. The parameters tuning of the different optimiza-
tion algorithms used in our experiments creates an internal threat that we need
to evaluate in our future work. The parameters’ values used in our experiments
are found by trial-and-error. However, it would be an interesting perspective to
design an adaptive parameter tuning strategy for our approach so that parame-
ters are updated during the execution to provide the best possible performance.

Internal validity is concerned with the causal relationship between the treat-
ment and the outcome. We dealt with internal threats to validity by performing
30 independent simulation runs for each problem instance. This makes it highly
unlikely that the observed results were caused by anything other than the applied
multi-objective approach. However, the comparison between multi-objective and
mono-objective approaches is challenging since multiple solutions are generated
by NSGA-II while the GA algorithm can generate only one co-evolution solu-
tion. We selected, in our experiments, the solution that represents the maximum
trade-off between the three objectives (knee-point [7]) to compare with the GA’s
solution. However, we treated the different objectives with equal weights in our
GA adaptation, which can be considered as an internal threat.

External validity refers to the generalizability of our findings. In this study,
we performed our experiments on four different ATL programs belonging to
different domains and having different sizes. However, we cannot assert that our
results can be generalized to other programs. In addition, our study was limited
to the use of specific change types related to ATL rules. Furthermore, the manual
evaluation was limited to only one case study and a total of 6 participants. Thus,
the main threats are the difficulty in generalizing the obtained manual results
and the impact of participants expertise on them. To deal with these threats,
we selected CS1 that represents the average case among the four case studies
regarding the complexity (#rules, #expected edit operations, and #co-evolved
rules). Furthermore, the participants are selected based on their experience in
MDE, thus they can be representative of the average expertise of developers in
practice.

5 Related Work

Co-evolution in the area of MDE has been heavily studied in the last decade [14].
The starting point was the metamodel/model co-evolution challenge [8] which
attracted much research interest in dealing with large migration spaces [29]. In
this context, search-based approaches have been proposed [18]. However, other

Automated Co-evolution of Metamodels and Transformation Rules 243

co-evolution scenarios are understudied. We now outline work which has been
done for co-evolving OCL expressions and model transformations.

Concerning the co-evolution of OCL expressions, dedicated approaches have
been presented very recently. Approaches which are based on coupling changes
for metamodels with co-changes for OCL expressions are presented in [19,22].
The main goal of these approaches is to repair OCL expressions for a set of
provided metamodel change types. A search-based formulation of this problem
has been also proposed [1].

Concerning transformation co-evolution, several approaches followed the idea
of building on a set of metamodel changes for which co-changes for transforma-
tions can be derived [9,10,12,20,23,24,26]. For instance, Levandovsy et al. [23]
proposed a higher-order transformation to adapt existing transformations. They
classify metamodel changes, with respect to the effect on transformations into
three categories [23]: (i) fully automated, i.e., changes affecting existing trans-
formations that can be automatically migrated without user intervention, (ii)
partially automated, i.e., changes or modifications that affect existing transfor-
mations which can be adapted automatically, even though some manual fine-
tuning is required to complete the adaptation, and (iii) fully semantic, i.e.,
changes that effect transformations that cannot be automatically migrated, and
the user has to completely define the adaptation.

All the mentioned approaches require the full correctness of the detected
metamodel changes, which is still a challenge, especially when it comes to the
intention behind the changes. Furthermore, the co-evolution is only possible for
a set of predefined change types. In our work, we do not require the metamodel
changes and use a larger set of transformation co-evolution rules and a sophisti-
cated search algorithm which allows migrating a transformation in any promising
direction.

6 Conclusion

We propose, in this paper, an automated approach for metamodel/transforma-
tion co-evolution that finds a trade-off between different three objectives. Our
approach allows developers to benefit from search-based rule-level change rec-
ommendations without defining a generic template to map metamodel changes
into rule-level changes. To evaluate the effectiveness of our tool, we conducted
a study based on four evolution scenarios of the source or target metamodels
of ATL programs and compared it with random search, mono-objective formu-
lation and manual technique. Our evaluation results provide evidence that our
tool improves the applicability and automation of existing co-evolution tech-
niques between metamodels and transformation rules.

Future work involves validating our technique with additional types of rule-
level changes, more multi-objective algorithms and other transformation lan-
guages to conclude about the general applicability of our methodology. We
focused, in this paper, on checking the correctness of the co-evolution solutions.
We will use the quality indicators, such as the Hypervolume, when we compare
between intelligent search algorithms such as MOPSO vs. NSGA-II.

244 W. Kessentini et al.

Acknowledgements. This work has been partially funded by the Austrian Federal
Ministry of Science, Research and Economy, National Foundation for Research, Tech-
nology and Development, by the Austrian Science Fund (FWF) P 28519-N31, and by
the Canada NSERC grant RGPIN/06702-2014.

References

1. Batot, E., Kessentini, W., Sahraoui, H.A., Famelis, M.: Heuristic-based recommen-
dation for Metamodel - OCL coevolution. In: MODELS, pp. 210–220 (2017)

2. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice, 2nd edn. Morgan & Claypool Publishers, San Rafael (2017)

3. Burgueño, L., Troya, J., Wimmer, M., Vallecillo, A.: Static fault localization in
model transformations. IEEE Trans. Softw. Eng. 41(5), 490–506 (2015)

4. Cheng, Z., Monahan, R., Power, J.F.: A sound execution semantics for ATL via
translation validation. In: ICMT, pp. 133–148 (2015)

5. Cuadrado, J.S., Guerra, E., de Lara, J.: Quick fixing ATL transformations with
speculative analysis. Softw. Syst. Model 1–35 (2016)

6. Cuadrado, J.S., Guerra, E., de Lara, J.: Static analysis of model transformations.
IEEE Trans. Softw. Eng. 43(9), 868–897 (2017)

7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

8. Di Ruscio, D., Iovino, L., Pierantonio, A.: What is needed for managing co-
evolution in MDE? In: Workshop on Model Comparison in Practice, pp. 30–38
(2011)

9. Ehrig, H., Ehrig, K., Ermel, C.: Refactoring of model transformations. In: ECE-
ASST (2009)

10. Etzlstorfer, J., Kapsammer, E., Schwinger, W.: On the evolution of modeling
ecosystems: an evaluation of co-evolution approaches. In: MODELSWARD, pp.
90–99 (2017)

11. Fleck, M., Troya, J., Kessentini, M., Wimmer, M., Alkhazi, B.: Model transfor-
mation modularization as a many-objective optimization problem. IEEE Trans.
Software Eng. 43(11), 1009–1032 (2017)

12. Garćıa, J., Dı́az, O., Azanza, M.: Model transformation co-evolution: a semi-
automatic approach. In: SLE, pp. 144–163 (2012)

13. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: trends,
techniques and applications. ACM Comput. Surv. 45(1), 11:1–11:61 (2012)

14. Hebig, R., Khelladi, D.E., Bendraou, R.: Approaches to co-evolution of metamodels
and models: a survey. IEEE Trans. Softw. Eng. 43(5), 396–414 (2017)

15. Iovino, L., Pierantonio, A., Malavolta, I.: On the impact significance of metamodel
evolution in MDE. J. Object Technol. 11(3), 1–33 (2012)

16. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(1–2), 31–39 (2008)

17. Kessentini, W.: https://sites.google.com/site/coevolutionkessentini/data
18. Kessentini, W., Sahraoui, H.A., Wimmer, M.: Automated metamodel/model co-

evolution using a multi-objective optimization approach. In: ECMFA, pp. 138–155
(2016)

19. Khelladi, D.E., Bendraou, R., Hebig, R., Gervais, M.: A semi-automatic mainte-
nance and co-evolution of OCL constraints with (meta)model evolution. J. Syst.
Softw. 134, 242–260 (2017)

https://sites.google.com/site/coevolutionkessentini/data

Automated Co-evolution of Metamodels and Transformation Rules 245

20. Kruse, S.: On the use of operators for the co-evolution of metamodels and trans-
formations. In: Models and Evolution Workshop (2011)

21. Kühne, T.: Matters of (meta-)modeling. Syst. Softw. Model 5(4), 369–385 (2006)
22. Kusel, A., et al.: Systematic co-evolution of OCL expressions. In: APCCM, pp.

33–42 (2015)
23. Levendovszky, T., Balasubramanian, D., Narayanan, A., Karsai, G.: A novel app-

roach to semi-automated evolution of DSML model transformation. In: SLE, pp.
23–41 (2010)

24. Lohmann, W., Riedewald, G.: Towards automatical migration of transformation
rules after grammar extension. In: CSMR, pp. 30–39 (2003)

25. Lúcio, L., et al.: Model transformation intents and their properties. Softw. Syst.
Model. 15(3), 647–684 (2016)

26. Mendez, D., Etien, A., Muller, A., Casallas, R.: Towards transformation migration
after metamodel evolution. In: Models and Evolution Workshop (2010)

27. Meyers, B., Vangheluwe, H.: A framework for evolution of modelling languages.
Sci. Comput. Program. 76(12), 1223–1246 (2011)

28. Rachmawati, L., Srinivasan, D.: Multiobjective evolutionary algorithm with con-
trollable focus on the knees of the pareto front. IEEE Trans. Evol. Comput. 13(4),
810–824 (2009)

29. Ruscio, D.D., Etzlstorfer, J., Iovino, L., Pierantonio, A., Schwinger, W.: Supporting
variability exploration and resolution during model migration. In: ECMFA, pp.
231–246 (2016)

30. Selim, G.M.K., Cordy, J.R., Dingel, J.: How is ATL really used? Language feature
use in the ATL zoo. In: MODELS, pp. 34–44 (2017)

31. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-
driven software development. IEEE Softw. 20(5), 42–45 (2003)

Learning Without Peeking: Secure
Multi-party Computation Genetic

Programming

Jinhan Kim1(B), Michael G. Epitropakis2, and Shin Yoo1(B)

1 School of Computing, KAIST, Daejeon, Republic of Korea
{jinhankim,shin.yoo}@kaist.ac.kr

2 Department of Management Science, Lancaster University, Lancaster, UK

Abstract. Genetic Programming is widely used to build predictive
models for defect proneness or development efforts. The predictive mod-
elling often depends on the use of sensitive data, related to past faults
or internal resources, as training data. We envision a scenario in which
revealing the training data constitutes a violation of privacy. To ensure
organisational privacy in such a scenario, we propose SMCGP, a method
that performs Genetic Programming as Secure Multiparty Computation.
In SMCGP, one party uses GP to learn a model of training data provided
by another party, without actually knowing each datapoint in the train-
ing data. We present an SMCGP approach based on the garbled circuit
protocol, which is evaluated using two problem sets: a widely studied
symbolic regression benchmark, and a GP-based fault localisation tech-
nique with real world fault data from Defects4J benchmark. The results
suggest that SMCGP can be equally accurate as the normal GP, but the
cost of keeping the training data hidden can be about three orders of
magnitude slower execution.

1 Introduction

Genetic Programming is a variant of Genetic Algorithm that evolves programs
and expressions instead of solutions [22]. While its recent popularity for Auto-
mated Program Repair (APR) [7,32] is closely related to GP’s original ambition
of automated programming, it has also been widely used by SBSE community
to build predictive models for defect prediction [18], development effort pre-
diction [6], and software quality estimation [17]. Recently, GP has also been
successfully used to produce ranking models for fault localisation [12,27].

While GP has been successfully applied to various problem domains, its
application to each of the above domains requires access to potentially sensitive
past data, such as historial defect proneness data, information about internal
resources and project cost, quality metrics, and test coverage data. GP uses the
past data either to perform symbolic regression to find a model that fits the
past results the best or to build ranking model that places the faulty program
element as high in a ranking as possible.
c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 246–261, 2018.
https://doi.org/10.1007/978-3-319-99241-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_13&domain=pdf

Learning Without Peeking 247

The requirement on the use of sensitive past data raises a concern for both
researchers and practitioners. It is difficult for researchers to study real world
data, because data related to defects or internal resources can be regarded as
highly sensitive and may not be disclosed to external researchers. For practition-
ers, this rules out any form of Optimisation-as-a-Service type analysis. Hence we
ask the following question: is it possible to apply GP to learn predictive or ranking
models for software engineering, without revealing sensitive data for training?

This paper proposes a method that allows data to be hidden from GP, using
Secure Multiparty Computation (SMC) [4], as an answer to our research ques-
tion. SMC is a subdomain of cryptography whose goal is to enable multiple
parties to jointly compute a function over their inputs while keeping the inputs
hidden from each other. We instantiate Secure Multiparty Computation GP
(SMCGP) using an SMC protocol called garbled circuits [35], and show that
GP can be performed while not revealing the individual datapoints without
loss of accuracy. We empirically evaluate the performance of SMCGP using a
range of symbolic regression benchmark problems, as well as training of GP-
based fault localisation model [27] using a real world fault data from Defects4J
benchmark [11].

The technical contributions of this paper are as follows:

– We introduce the concept of SMCGP, the goal of which is to perform GP
while remaining oblivious to the training data.

– We present an empirical study of well known symbolic regression benchmark
problems, as well as a GP-based fault localisation technique in conjunction
with the Defects4J repository. The results show that SMCGP is feasible with-
out loss of accuracy, but requires significantly longer execution time.

Section 2 introduces Oblivious Transfer and Garbled Circuit, which is used
to formulate SMCGP described in Sect. 3. Section 4 presents the experimental
setup. Section 5 discusses the experimental results. Section 6 presents the threats
to validity, and Sect. 7 contains the related work. Section 8 concludes.

2 Background

Secure Multiparty Computation (SMC) aims to perform distributed computa-
tion that involves multiple parties in a secure manner. In particular, its aim is
to maintain each party’s input to the computation process oblivious to other
involved parties, while ensuring that the results are correct and uncorrupted.

Perhaps the most widely known example of SMC is the Yao’s millionaires’
problem, introduced by Yao [35]. Suppose there are two millionaires: both want
to know who is richer without revealing the exact amount of one’s wealth to the
other. More formally, assume that there exist n participants, p1, . . . , pn, each of
which is holding private data, d1, . . . , dn. SMC aims to compute the value of
a public function over the set of all private data, i.e., F (d1, . . . , dn), while all
participants keep their own data private.

248 J. Kim et al.

Yao suggested the garbled circuit protocol, also known as Yao’s protocol,
to achieve secure computation between two parties (2PC). For more than two
parties (MPC), secret sharing schemes such as Shamir Secret Sharing [26] are
used. We formulate our GP under the 2PC context using garbled circuits, which
is explained in the rest of this section.

2.1 Oblivious Transfer

In cryptography, oblivious transfer refers to a scenario in which the sender trans-
fers one out of many possible messages without knowing what message has actu-
ally been transferred. Our choice of SMC, garbled circuits, is based on a specific
type of oblivious transfer called 1–2 oblivious transfer [5]. Under the 1–2 obliv-
ious transfer protocol, the sender has two strings, S0 and S1, and the receiver
chooses i ∈ {0, 1}. After the transfer, the sender should not know which value of
i the receiver chose, and the receiver should not know S1−i (i.e., the string not
chosen by the receiver).

The 1–2 oblivious transfer protocol can be implemented over asymmetric
cryptography, such as the RSA [23]. The following is a brief description of Obliv-
ious Transfer. Suppose Alice has two messages, m0 and m1, and Bob has a bit b.
Bob wants to receive mb without the sender knowing b. Let N = pq, where both
p and q are large prime numbers; let e be relatively prime to (p − 1)(q − 1). The
encryption of message m is me mod N . The transfer takes place as follows:

1. Alice generates an RSA key pair and sends the public exponent e to Bob.
The private exponent, d, is secret.

2. Alice also generates and sends two random messages, x0 and x1, to Bob.
3. Bob chooses b ∈ {0, 1}, and generates a random k. Bob then sends v =

(xb + ke) mod N (i.e., encryption of k blind to xb) to Alice.
4. Alice computes k0 = (v − x0)d mod N and k1 = (v − x1)d mod N . Alice

knows k is one of these values, but does not know which.
5. Alice sends m′

0 = m0 + k0 and m′
1 = m1 + k1 to Bob.

6. Bob decrypts m′
b because Bob knows which xb was chosen earlier.

Alice cannot determine which of x0 and x1 Bob chose. Bob cannot know the
message he did not choose, as he can only unblind the message mb with his k.

2.2 Garbled Circuit

The oblivious transfer deals with the secure transfer of messages: let us now turn
to computation of functions for SMC. Garbled Circuit is a cryptographic protocol
for two party secure computation. Intuitively, it operates by representing the
function to be computed as a Boolean circuit and sending the circuit using the
1–2 oblivious transfer. We outline the process of garbled circuit transfer with a
simple working example below:

1. Convert the function to be computed into a Boolean circuit with 2-input
gates. As an working example, we are going to assume that our function itself
is a logical AND. Table 1(a) shows the raw truth table.

Learning Without Peeking 249

2. Alice, the garbler, replaces 0s and 1s in the truth table with randomly gener-
ated string labels. The result is shown in Table 1(b).

3. Alice encrypts the output column(s) of the truth table with corresponding
input labels. Alice also permutes the encrypted output rows so that the values
cannot be guessed from the order (hence the name garbled).

4. Alice sends the encrypted circuit to Bob, along with her inputs. For example,
if Alice’s input for a is 1, Alice sends Xa

0 . Since Alice generated the labels
randomly, Bob does not know what Alice’s actual input is.

5. In order to obtain the result, Bob needs the labels for his input. If Bob’s
input for b is 0, Bob asks for b = 0 between Xb

0 and Xb
1 through 1–2 oblivious

transfer, after which Alice does not know which Bob chose between Xb
0 and

Xb
1 and Bob does not know what the other label (in our case Xb

1) is.
6. Bob tries to decrypt each output row: he can only decrypt a single row, which

is the output for the input from both Alice and Bob.

Table 1. Garbled circuit operation on F (a, b) = AND(a, b): (a) the raw truth table,
(b) Alice assigns random string labels to values in the truth table, (c) the output
garbled table that is transferred.

a b c

0 0 0

0 1 0

1 0 0

1 1 1

(a)

a b c

Xa
0 Xb

0 Xc
0

Xa
0 Xb

1 Xc
0

Xa
1 Xb

0 Xc
0

Xa
1 Xb

1 Xc
1

(b)

Garbled Table

EncXa
0 ,Xb

0
(Xc

0)

EncXa
0 ,Xb

1
(Xc

0)

EncXa
1 ,Xb

0
(Xc

0)

EncXa
1 ,Xb

1
(Xc

1)

(c)

While our small working example only concerns a single logical operator as
the function of interest, one can convert an arbitrary function into an optimised
Boolean circuit [28] and apply the outlined process to the truth table of each
2-input gate within the circuit. By repeatedly applying the above process, Alice
and Bob can securely compute the garbled circuit. The cost of privacy is the
runtime overhead that stems from encryption and decryption as well as the
conversion and execution of arbitrary functions as Boolean circuits.

2.3 Obliv-C

Obliv-C [37] is both a domain specific extension of C and a gcc wrapper that
compiles the extension.1 It is designed for developers to easily implement 2PC
Secure Multiparty Computation: Obliv-C provides high-level interface to SMC
via language extension, performs the Boolean circuit conversion, and handles
the garbled circuit protocol. It has been applied to various privacy preserving
machine learning scenarios [9,29] as well as to email communications [10].
1 It is available from https://oblivc.org.

https://oblivc.org

250 J. Kim et al.

While we leave the low level implementation details of Obliv-C out in this
paper (please refer to the original paper [37] for all the details), let us focus on
two core language constructs, obliv qualifier and obliv if statement.

– obliv: this qualifier denotes variables whose values need to remain oblivious.
All oblivious variables are declared with the qualifier and assigned with actual
values transferred from the garbled circuit protocol.

– obliv if: to prevent information leak from control flow, Obliv-C converts
all control dependencies into data dependencies. This means that the body
of obliv if will be always executed, regardless of how the branch predicate
evaluates. When the predicate is false, the garbled circuit ensures that the
values computed inside the block are simply ignored.

Figure 1 shows an example code of Obliv-C for the Yao’s millionaires’ prob-
lem. Variable a and b represent the wealth of two millionaires respectively. Using
the function feedOblivInt, a and b are converted into an obliv qualified integers.
The following if statement at Line 13 is a obliv if statement, because it makes
a comparison between obliv qualified values. The result of comparison between
a and b is stored in result, which is also obliv qualified variable. Finally, the
call to revealOblivBool ensures that only the result is revealed to each party at
the end of computation.

Fig. 1. An Obliv-C program that implements Yao’s Millionaires’ problem taken from
Zahur et al. [37].

3 Secure Multiparty Computation GP Using Obliv-C

In GP, the majority of the computation takes place during the fitness evalua-
tion. In addition, this is the place where the training dataset is used by GP.
This section describes how we can formulate SMC using the fitness evaluation
as the function of interest. Our focus in this paper is the scenario in which mul-
tiple parties are holding different parts of the training dataset. We call this the
multiparty dataholder scenario.

Learning Without Peeking 251

Fig. 2. The multiparty dataholder scenario when there are two data parties and one
GP party: (1) GP party generates the SMC program, and (2) sends it to each party.
(3) each party enters their input, and (4) the SMC program computes and all parties
get the results.

3.1 Multiparty Dataholder Scenario (2PC)

The multiparty dataholder scenario is a natural extension of the original Yao’s
millionaires’ problem, as shown in Fig. 2. We simply replace the function that
returns the result of comparison between two numbers with the fitness func-
tion that evaluates the given GP candidate solution using the data held by the
two participating parties. Let us call the data holders the data parties, and the
mediator who is running the GP the GP party.

– GP Party: GP party executes the GP evolutionary loop, and generates
Obliv-C based SMC program that contains the garbled circuits of the can-
didate solution to evaluate.2 This SMC program is used by data parties to
securely commit their inputs.

– Data Party: data parties hold the split training dataset. There are two
ways a training dataset can be split. Suppose a training dataset contains
n datapoints, each with m properties. A horizontal split means each data
party holds mutually exclusive subset of the n datapoints (the union should
be the entire training dataset). A vertical split means each data party holds
mutually exclusive subset of the m properties of all n datapoints (the union
of two property subsets should be the set of all m properties).

Whenever the GP party needs to evaluate a candidate solution, it first gen-
erates an Obliv-C source code that corresponds to the solution, builds it, and
distributes the executable to data parties. Subsequently, data parties execute
the SMC program and provide their parts of the split training dataset. Once all
data parties enter their input, the fitness function computes and all data parties
get the resulting fitness value. GP party receives the result and continues with
the GP iteration until the predefined termination criterion is met. During the
process, none of the data parties get to know more than their own shares of
2 In practice, our implementation gathers all candidate solutions in a generation and

combines them all into a single Obliv-C program, to save the compilation overhead.
This is similar to the approach taken by existing GPGPU based parallelisation app-
roach for GP [14].

252 J. Kim et al.

training dataset. Note that data parties do get to know what is being computed
(i.e., which candidate solution the GP party is evaluating).

3.2 Singleparty Dataholder Scenario (1PC)

As shown in Fig. 3, we also present a singleparty dataholder scenario, in which
the entire training dataset is held by a single participating party. We think this
can also be a common use case for SMCGP, in which two stakeholders exist,
one with the data (data party) and the other with Genetic Programming (GP
party). The data party allows the GP party to learn from its data, but does not
want to reveal the data. This scenario can be easily implemented by making the
GP party to double as a data party with no training data subset to contribute.

Fig. 3. The singleparty dataholder scenario when there are one data party and one GP
party: (1) GP party generates the SMC program, and (2) sends it to the data party.
(3) The data party enters its input, whereas GP party enters nothing, and (4) the SMC
program computes and all parties get the results.

4 Experimental Setup

This section presents out research questions, and describe experimental subjects
and configurations.

4.1 Research Questions

This paper aims to compare our implementations of both single and multiparty
data holder SMCGP to the Normal-GP through the following research questions.

– RQ1. Effectiveness: how well does the SMCGP perform compared to the
Normal-GP?

– RQ2. Efficiency: what is the runtime overhead of SMCGP when compared
to Normal-GP?

RQ1 is essentially a sanity check for Obliv-C: we should achieve the same
level of effectiveness if Obliv-C performs oblivious and correct computation.
RQ1 is answered by comparing the Mean Squared Errors (MSEs) for the sym-
bolic regression problems, and by comparing wasted effort (wef) for the GP-
based fault localisation dataset: wef means the number of program elements
which should be investigated before finding faulty program elements.

Learning Without Peeking 253

We use two-tailed Mann-Whitney U test to compare values from two different
types of GP. The null hypothesis is that the mean values of different types of
GP are the same. Failing to reject the null hypothesis would show that results
from SMCGP cannot be distinguished from those of Normal-GP.

Our primary interest lies with RQ2, which investigates whether the runtime
overhead of Obliv-C is practical. We expect both the use of garbled circuit
protocol and the communication overhead itself will have a negative impact
on the execution time of SMCGP. Therefore, we answer RQ2 by statistically
comparing the execution time of Normal-GP and SMCGP.

4.2 Subjects

Table 2 shows the subjects of our experiment. We use four symbolic regression
benchmark problems that have been widely studied in the literature [33], and
one GP-based fault localisation technique and a real world fault dataset based
on Defects4J repository [27].

Table 2. Four symbolic regression benchmark problems and one real world fault local-
isation data from Defects4J repository studied in this paper.

Subject Equation Size of training data # of variables

Keijzer-6 [13]
∑x

i
1
i

50 1

Nguyen-7 [30] ln(x + 1) + ln(x2 + 1) 20 1

Dow Chemical Chemical process data 747 57

Vladislavleva-4 [31] 10
5+

∑5
i=1(xi−3)2

1,024 5

FLUCCS [27] Real-world fault data 7,280 40

Symbolic regression is a regression analysis that aims to find a mathematical
expression that best fits the given dataset [15]. Symbolic regression is usually per-
formed by evolving trees that represent expressions, using the difference between
the given data (i.e. the training data) and the data produced by candidate expres-
sions as the fitness. Among the studied symbolic regression benchmark problems,
Keijzer-6 [13], Nguyen-7 [30], and Vladislavleva-4 [31], are synthetic problems.
On the other hand, the Dow Chemical symbolic regression dataset was the sub-
ject of the EvoCompetitions event at the 2010 edition of EvoStar conference and
is based on real world industrial application at Dow Chemical.3

GP has been used for fault localisation to build ranking models: given var-
ious features (including data from both passing and failing test executions) for
program elements as input, the aim is to learn a ranking model that places
the faulty program element at the top. The expression evolved by GP returns
what is called suspisiousness score for program elements, which are then sorted

3 http://dces.essex.ac.uk/research/evostar/competitions.html.

http://dces.essex.ac.uk/research/evostar/competitions.html

254 J. Kim et al.

according to their scores.4 For the fault localisation problem, we use the pub-
licly available data from FLUCCS [27], which contains per-method Spectrum
Based Fault Localisation (SBFL) scores [34], as well as various code and change
metrics [27], for the faulty real world Java programs in the Defects4J bench-
mark [11].

In our experiment, we select a single target program, Mockito, of which
there exist 36 faulty versions in the FLUCCS dataset: each of the faulty version
contains 1,040 methods on average. Out of 36 faulty versions, we use 32 for
training, and use the remaining four for testing.

Since the 2PC scenario requires two data parties holding split dataset, we
divide the original dataset in half. Datasets for the symbolic regression bench-
mark are split horizontally, whereas GP-based fault localisation dataset is split
vertically (i.e., it results in generating two datasets that have 20 variables respec-
tively). We posit that SMCGP will not be significantly slowed down for the 2PC
scenario, as long as the network provides sufficient speed.

4.3 Configurations and Environments

We implement the GP party using DEAP [8], a Python library for evolutionary
algorithm that includes an implementation of tree-GP. For fitness evaluation of
each candidate GP tree, our GP party generates an Obliv-C source file using a
template. To reduce the overhead of invoking Obliv-C compiler, we convert and
compile the entire population in a single Obliv-C source file.

For symbolic regression benchmarks, we use a population size of 40 indi-
viduals, a single point crossover with a rate of 0.6, and a subtree replacement
mutation with a rate of 0.2. For the FLUCCS dataset, we use a population
of 40 individuals, a single point crossover with the rate of 1.0, and a subtree
replacement mutation with the rate of 0.1. Types of non-terminal GP nodes are
addition, subtraction, multiplication, and safe division (i.e., div(a, b) = a

b if b �= 0
and 1 if b = 0). While parameter values may affect the quality of outcome, our
main interest is the efficiency of SMCGP and not the solution quality.

We set the maximum tree depth to three and the stopping criterion to be
after ten generations. While these may not be ideal choices for the accuracy,
note that our primary aim in this empirical study is to investigate the impact of
SMC on GP’s efficiency and not to evolve the best possible solution. Note that,
for the FLUCCS data, we do not use all 32 faulty versions simultaneously during
training: rather, we randomly sample seven programs for every GP generation
to lessen the burden of computation and mitigate overfitting.

We repeat each configuration of both types of GP 20 times. The experiments
have been performed on machines equipped with Intel i7-6700 CPU and 32 GB
of RAM, running Ubuntu 14.04.5 LTS.
4 Note that, while FLUCCS [27] makes a link between defect prediction and fault

localisation via shared features, the GP formulations for two problems are different.
Defect prediction classifies each program element to be fault prone or not: fault
localisation assigns suspiciousness scores to program elements, aiming to place the
faulty element at the top when ranked by them.

Learning Without Peeking 255

Fig. 4. Boxplots of wef by each test program. The y-axis is shown on logarithmic
scale.

5 Results

Table 3 shows the results of Mann-Whitney U test on the MSE of SMCGP
and Normal-GP, and Table 4 shows the results of Mann-Whitney U test on the
wef value of SMCGP and Normal-GP. Based on these results, we conclude that
there is no statistically significant difference between the results from SMCGP
and Normal-GP, for both the symbolic regression benchmarks and the fault
localisation problem (α = 0.05). While this is as expected and should be, the
sanity check through RQ1 was not wasted, as it enabled us to report a serious
defect in Obliv-C, which has been reported and subsequently patched by the
developers of Obliv-C.

There is one exception, which is the p–values obtained from the case of
Mockito-1. The p–values from 1PC and 2PC, 0.01 and 0.04 respectively, sug-
gest statistically significant difference between SMCGP and Normal-GP. Figure 4
provides the possible reason for this: the 20 repeated runs of Normal-GP for
Mockito-1 resulted in much higher average wef including more outliers. Both
1PC and 2PC SMCGP performed better than Normal-GP, hence the statisti-
cally significant difference. We attribute the poor performance of Normal-GP
for Mockito-1 to two possible reasons: (1) stochastic nature of GP, regardless
of whether the fitness evaluation is secure or not, and (2) the possibility that
learning to localise the fault Mockito-1 is particularly challenging.5

5 It is known that faults exhibit modal behaviours against fault localisation ranking
models learnt by FLUCCS [27]: Mockito-1 may be one such a fault that can only be
localised well by a small minority of ranking models.

256 J. Kim et al.

Table 3. The result of two-tailed Mann-Whitney U test on the MSE of SMCGP and
Normal-GP. The significant level is 0.05 and the number of sample size is 20. The cases
for which the p–values are not significant are typeset in bold.

Scenario Subject U–value p–value

1PC, Normal-GP Keijzer-6 220.5 0.557

Nguyen-7 204.5 0.910

Dow Chemical 204.5 0.914

Vladislavleva-4 248.5 0.183

2PC, Normal-GP Keijzer-6 156.5 0.184

Nguyen-7 192.0 0.833

Dow Chemical 179.0 0.579

Vladislavleva-4 239.5 0.272

Table 4. The results of two-tailed Mann-Whitney U test on the wef metric values
from the FLUCCS dataset. The significance level is 0.05 and the number of sample size
is 20.

Scenario Test program U–value p–value

1PC, Normal-GP Mockito-1 105.5 0.010

Mockito-2 205.5 0.890

Mockito-3 210.0 0.767

Mockito-4 205.0 0.903

2PC, Normal-GP Mockito-1 124.5 0.040

Mockito-2 194.5 0.890

Mockito-3 182.0 0.612

Mockito-4 161.5 0.302

In general, we conclude that the two samples of performance metrics from
the studied problems are from the same distribution. We thereby answer RQ1
as follows: there is no loss of accuracy in SMCGP when compared to Normal-GP.

For RQ2, we measure the execution time for each GP run. The results are
shown in Fig. 5. The differences in the execution time between 1PC and Normal-
GP is significant: we observe that SMCGP is, on average, 1,739, 1,590, and 541
times slower than Normal-GP, for the Keijzer-6, Dow Chemical, and FLUCCS,
respectively. The trend is similar between 2PC and Normal-GP. The main rea-
son for this overhead is the use of garbled circuits protocol (i.e., generating
and building Obliv-C SMC programs), as well as the TCP communication (i.e.,
transferring the encrypted data), as the core GP configuration is the same for
SMCGP and Normal-GP. Based on these observations, we answer RQ2 as fol-
lows: the cost of data obliviousness in SMCGP can be up to three orders of
magnitude slower execution time.

Learning Without Peeking 257

Fig. 5. Boxplots of execution time by each subject.

6 Threats to Validity

Threats to internal validity concern the extent to which the observed results
from the empirical evaluation warrants our claims, such as implementation cor-
rectness. Both core components of our implementation of SMCGP, DEAP and
Obliv-C, have been scrutinised as open source projects and widely applied to
various work in the literature [9,10,14,27]. The remaining parts of the imple-
mentation written by us have been carefully analysed manually to minimise the
risk of implementation errors.

Threats to external validity concern the extent to which our empirical evalua-
tion results generalise. We chose widely studied symbolic regression benchmarks
as well as a real world SBSE application to promote generalisation.

Threats to construct validity concern how accurately the measurements we
take are actually correlated to what they claim to measure. We assess the level
of any threats to construct validity to be low, as our evaluation metric, MSE,
is a standard evaluation metric for symbolic regression and based on actually
observed errors.

7 Related Work

Genetic Programming evolves programs, often using trees as representation [22].
Its ability to evolve expressions rendered itself as a tool for predictive modelling
in domains such as software development effort estimation [6] and defect prone-
ness prediction [18]. It has been used to evolve risk evaluation formulas [36] as
well as to learn more complicated ranking models [27] for fault localisation. Many
application domain involve potentially sensitive data, which motivates our use
of Obliv-C for SMCGP.

Peters et al. maintained the data privacy for cross-company defect predic-
tion in which data from one company is used to train defect predictors for

258 J. Kim et al.

another [21]. The underlying technique is called MORPH: it obfuscates dat-
apoints while ensuring that the obfuscated points do not cross the boundaries
between the original and its neighbouring class. Li et al. later extended MORPH
to Sparse Representation based Double Obfuscation (SRDO) with the same
intention to preserve class labels [16]. Both techniques are designed for clas-
sification problems and need labels: SMCGP can be applied to any problems.
Also, both techniques are much faster than SMCGP, they only obfuscate and
not completely hide the data: SMCGP does not reveal any information.

There are other secure computation frameworks, both software and hardware
based. Homomorphic Encryption (HE) allows computation on the encrypted
data without the need to decrypt the data first [20], but is known to require
inhibitively long execution time and significant memory usage. Hardware assisted
secure computation methods, such as Intel’s Software Guard Extension (SGX) [1,
19], provide an enclaves in which user code can be securely executed. While SGX
is an ideal solution for secure executions of a given specific program [3,25], it
does not support multiple parties and requires proprietary hardware.

Data privacy has been extensively studied in relation to machine learning [2,
24] but remains a relatively new topic for SBSE. As far as we know, ours is the
first implementation of GP that attempts to completely hide training data while
achieving the same computation.

8 Conclusion

We present SMCGP, a Genetic Programming that allows training data to remain
private to data holders. We implement our version of SMCGP a Secure Multi-
party Computation (SMC) protocol called garbled circuit, through a framework
called Obliv-C. Our empirical evaluation of SMCGP using a set of widely studied
symbolic benchmark and a fault localisation dataset from Defects4J repository
shows that SMCGP is feasible without any loss of precision. However, the cost of
hiding the data is about three orders of magnitude longer execution time. Future
work will investigate the adversarial scenarios, in which the candidate solutions
of GP also need to remain oblivious, as well as the possibility of application of
secure multiparty computation model for other types of evolutionary algorithms.

Acknowledgement. This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government (MEST) (Grant No. NRF-

2016R1C1B1011042).

References

1. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU
based attestation and sealing. In: Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy, vol. 13 (2013)

2. Balcan, M., Blum, A., Fine, S., Mansour, Y.: Distributed learning, communication
complexity and privacy. In: COLT 2012 - The 25th Annual Conference on Learning
Theory, pp. 26.1–26.22 (2012)

Learning Without Peeking 259

3. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted
cloud with haven. In: Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation OSDI 2014, pp. 267–283. USENIX Associa-
tion, Berkeley, CA, USA (2014)

4. Du, W., Atallah, M.J.: Secure multi-party computation problems and their appli-
cations: a review and open problems. In: Proceedings of the 2001 Workshop on
New Security Paradigms, pp. 13–22. ACM (2001)

5. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

6. Ferrucci, F., Gravino, C., Oliveto, R., Sarro, F.: Genetic programming for effort
estimation: an analysis of the impact of different fitness functions. In: 2010 Second
International Symposium on Search Based Software Engineering (SSBSE), pp. 89–
98. IEEE (2010)

7. Forrest, S., Nguyen, T., Weimer, W., Le Goues, C.: A genetic programming app-
roach to automated software repair. In: Proceedings of the 11th Annual Confer-
ence on Genetic and Evolutionary Computation GECCO 2009, pp. 947–954. ACM
(2009)

8. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

9. Gascón, A., et al.: Privacy-preserving distributed linear regression on high-
dimensional data. In: Proceedings on Privacy Enhancing Technologies PPET 2017,
vol. 4, pp. 345–364 (2017)

10. Gupta, T., Fingler, H., Alvisi, L., Walfish, M.: Pretzel: email encryption and
provider-supplied functions are compatible. In: Proceedings of the Conference of
the ACM Special Interest Group on Data Communication, SIGCOMM 2017, Los
Angeles, CA, USA, 21–25 August 2017, pp. 169–182 (2017)

11. Just, R., Jalali, D., Ernst, M.D.: Defects4J: a database of existing faults to enable
controlled testing studies for Java programs. In: Proceedings of the 2014 Inter-
national Symposium on Software Testing and Analysis ISSTA 2014, pp. 437–440.
ACM, New York, NY, USA (2014). https://doi.org/10.1145/2610384.2628055

12. Kang, D., Sohn, J., Yoo, S.: Empirical evaluation of conditional operators in GP
based fault localization. In: Genetic and Evolutionary Computation GECCO 2017,
pp. 1295–1302 (2017)

13. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scal-
ing. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.)
EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36599-0 7

14. Kim, J., Kim, J., Yoo, S.: GPGPGPU: evaluation of parallelisation of genetic
programming using GPGPU. In: Menzies, T., Petke, J. (eds.) SSBSE 2017. LNCS,
vol. 10452, pp. 137–142. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66299-2 11

15. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

16. Li, Z., Jing, X.Y., Zhu, X., Zhang, H., Xu, B., Ying, S.: On the multiple sources
and privacy preservation issues for heterogeneous defect prediction. IEEE Trans.
Softw. Eng. 1 (2017)

17. Liu, Y., Khoshgoftaar, T.M.: Genetic programming model for software quality
classification. In: Proceedings 6th International Symposium on High Assurance
Systems Engineering, Special Topic: Impact of Networking, pp. 127–136 (2001)

https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1007/978-3-319-66299-2_11
https://doi.org/10.1007/978-3-319-66299-2_11

260 J. Kim et al.

18. Maua, G., Galinac Grbac, T.: Co-evolutionary multi-population genetic program-
ming for classification in software defect prediction. Appl. Soft Comput. 55(C),
331–351 (2017)

19. McKeen, F., et al.: Innovative instructions and software model for isolated execu-
tion. In: Proceedings of the 2nd International Workshop on Hardware and Archi-
tectural Support for Security and Privacy HASP 2013, p. 10:1. ACM, New York,
NY, USA (2013)

20. Moore, C., O’Neill, M., O’Sullivan, E., Doröz, Y., Sunar, B.: Practical homomor-
phic encryption: a survey. In: IEEE International Symposium on Circuits and Sys-
tems ISCAS 2014, pp. 2792–2795, June 2014

21. Peters, F., Menzies, T., Gong, L., Zhang, H.: Balancing privacy and utility in cross-
company defect prediction. IEEE Trans. Softw. Eng. 39(8), 1054–1068 (2013)

22. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming.
Published via http://lulu.com, http://www.gp-field-guide.org.uk (2008)

23. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

24. Sarwate, A.D., Chaudhuri, K.: Signal processing and machine learning with differ-
ential privacy: algorithms and challenges for continuous data. IEEE Signal Process.
30(5), 86–94 (2013)

25. Schuster, F., et al.: VC3: trustworthy data analytics in the cloud using SGX. In:
2015 IEEE Symposium on Security and Privacy, pp. 38–54, May 2015

26. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
27. Sohn, J., Yoo, S.: FLUCCS: using code and change metrics to improve fault local-

isation. In: Proceedings of the International Symposium on Software Testing and
Analysis ISSTA 2017, pp. 273–283. ACM, July 2017

28. Songhori, E.M., Hussain, S.U., Sadeghi, A.R., Schneider, T., Koushanfar, F.: Tiny-
garble: highly compressed and scalable sequential garbled circuits. In: IEEE Sym-
posium on Security and Privacy SSP 2015, pp. 411–428, May 2015

29. Tian, L., Jayaraman, B., Gu, Q., Evans, D.: Aggregating private sparse learning
models using multi-party computation. In: NIPS Workshop on Private Multi-Party
Machine Learning, PMPML 2016 (2016)

30. Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R.I., Galván-López, E.: Semantically-
based crossover in genetic programming: application to real-valued symbolic regres-
sion. Genet. Program. Evolvable Mach. 12(2), 91–119 (2011)

31. Vladislavleva, E.J., Smits, G.F., den Hertog, D.: Order of nonlinearity as a com-
plexity measure for models generated by symbolic regression via pareto genetic
programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2009)

32. Weimer, W., Nguyen, T., Goues, C.L., Forrest, S.: Automatically finding patches
using genetic programming. In: Proceedings of the 31st IEEE International Con-
ference on Software Engineering ICSE 2009, pp. 364–374. IEEE, May 2009

33. White, D.R., et al.: Better GP benchmarks: community survey results and propos-
als. Genet. Program. Evolvable Mach. 14(1), 3–29 (2013)

34. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Trans. Softw.Eng. 42(8), 707 (2016)

35. Yao, A.C.C.: How to generate and exchange secrets. In: Proceedings of the 27th
Annual Symposium on Foundations of Computer Science SFCS 1986, pp. 162–167.
IEEE Computer Society, Washington, DC, USA (1986)

http://lulu.com
http://www.gp-field-guide.org.uk

Learning Without Peeking 261

36. Yoo, S.: Evolving human competitive spectra-based fault localisation techniques.
In: Fraser, G., Teixeira de Souza, J. (eds.) SSBSE 2012. LNCS, vol. 7515, pp. 244–
258. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33119-0 18

37. Zahur, S., Evans, D.: Obliv-C: a language for extensible data-oblivious computa-
tion. IACR Cryptol. ePrint Arch. 2015, 1153 (2015)

https://doi.org/10.1007/978-3-642-33119-0_18

Towards Minimizing the Impact of Changes
Using Search-Based Approach

Bogdan Korel1, Nada Almasri2(&), and Luay Tahat2

1 Illinois Institute of Technology, Chicago, IL 60616, USA
korel@iit.edu

2 Gulf University for Science and Technology, Mishref, Kuwait
{almasri.n,tahat.l}@gust.edu.kw

Abstract. Software maintenance is becoming more challenging with the
increased complexity of the software and the frequently applied modifications.
To manage this complexity, systems development is headed towards Model-
driven engineering (MDE) and search-based software engineering (SBSE).
Additionally, prior to applying a change to these complex systems, change
impact analysis is usually performed in order to determine the scope of the
change, its feasibility, and the time and resources required to implement the
change. The bigger the scope, the riskier the change is on the system. In this
paper, we introduce a set of transformation rules for Extended Finite State
Machine (EFSM) models of state-based systems. These transformation rules can
be used as the basis for search-based model optimization in order to reduce the
average impact of a potential change applied to an EFSM model. Assuming that
Model-driven development is adopted for the implementation of a state-based
system, reducing the change impact at the model level will lead to reducing the
impact at the system level. An exploratory study is performed to measure the
impact reduction for a given EFSM model when the transformation rules are
applied by a search-based algorithm. The initial results show a promising usage
of the transformation rules which can lead to a reduction of more than 50% of
the initial average change impact of the model.

Keywords: Model transformation � Extended finite state machine
Impact analysis � Search-based software engineering

1 Introduction

The demand for large and complex software systems has been steadily increasing over
time. The development and maintenance of these systems are difficult and costly due to
their increased complexity [5, 6]. To manage this complexity, systems development is
headed towards Model-driven engineering (MDE) and search-based software engineer-
ing (SBSE) [2, 10]. Additionally, to manage the complexity of a change applied to these
complex systems, impact analysis is usually performed in order to determine the scope of
the change, its feasibility, and the time and resources required to implement the change [6,
8, 9]. In many cases a single modification applied to the software could propagate to a
large proportion of the system. Indeed, several studies indicated that software mainte-
nance consumes 50% to 70% of the total life cycle development cost [1, 3, 5, 6].

© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 262–277, 2018.
https://doi.org/10.1007/978-3-319-99241-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_14&domain=pdf

Consequently, estimating the impact of a requested change prior to its implementation
allows the development team to properly plan the implementation process. The higher the
estimated change impact, the riskier the implementation process is.

In this paper, we introduce a set of model transformation rules which can be applied
to Extended Finite State Machine (EFSM) models to improve their maintenance. We
present model transformation-based search algorithm which applies these transforma-
tion rules to an EFSM model in order to reduce the average impact of a potential change
to the model. Assuming that Model-driven development is adopted, where models are
always kept consistent with the underlying system, the reduction of the change impact at
the model level is expected to reduce the impact of the change at the system level.

An exploratory study is performed to demonstrate the feasibility and the effec-
tiveness of the proposed transformation-based search approach when applied to a
sample EFSM model. The results of this exploratory study demonstrate the potential of
the transformation-based search in significantly improving the maintainability of the
model (by more than 50%).

The major contributions of this paper are:

• Proposing a set of novel model transformation rules.
• Presenting model-transformation based search approach to improve the model’s

maintainability.
• Demonstrating the feasibility and effectiveness of transformation rules when applied

on EFSM models using search-based approach.

The rest of the paper is organized as follows: Sect. 2 outlines the related work.
Section 3 provides an overview of EFSM, model dependence, and model impact
analysis. Section 4 presents three model transformation rules. The search algorithm is
discussed in Sect. 5, followed by an exploratory study in Sect. 6. In Sect. 7, conclu-
sions and future research are discussed.

2 Literature Review

Model-Driven Engineering (MDE) refers to the systematic use of models as primary
engineering artifacts throughout the engineering lifecycle. In recent years, system
modeling has expanded beyond its initial scope. Indeed, system models are being
increasingly used as the basis to validate the system design, generate system level test
suites, estimate the impact of a change, and simulate the system behavior by executing
the model and to determine properties of the system [1, 3–6].

Model transformation is an important technique in the field of MDE. It is used to
transform one or more models to one or more target models based on set of trans-
formations rules [13, 14, 24]. Generally, model transformation can be categorized into
horizontal transformation or vertical transformation. Vertical transformation is a
transformation where the source and target models reside at different abstraction levels.
A typical example is refinement and abstraction [12, 13]. Furthermore, model-to-code
generation can be viewed as a vertical transformation. Horizontal transformation, on
the other hand, is a transformation where the source and target models reside at the
same abstraction level. Typical examples are refactoring or migration [7, 11].

Towards Minimizing the Impact of Changes Using Search-Based Approach 263

Refactoring is one of the widely used techniques for evolving software systems.
Fowler [15] defines refactoring as “a change made to the internal structure of software
to make it easier to understand and cheaper to modify without changing its observable
behavior”. In early stages, refactoring techniques have focused on the source-code as
the primary artifact of the refactoring process [16]. Recently, several model refactoring
approaches have been proposed in the literature [18], and many of which use search-
based model transformation [17], however, none of them target refactoring models in
order to enhance its maintainability. Adenis et al. [21] present two transformation
algorithms for state splitting and state merging for probabilistic finite state automata
(PFSA), however their work is focused on modeling the behavior of dynamical systems
for future predictions. They use these two algorithms to construct the model from the
output of the dynamical system. Our approach on the other hand is focused on
transforming deterministic EFSMs which are known to be accurately matching the
behavior of the system. Within this context, the approach presented in this paper can be
viewed as model refactoring approach which uses a set of novel transformation rules
that can be applied on an EFSM model using search-based technique in order to
enhance its maintainability.

3 Preliminaries

3.1 EFSM Models

An EFSM model M is expressed formally as a 7 tuple: M = (R, Q, Start, Exit, V, O, R)
where: R is the set of events, Q is the set of states, Start 2 Q is the start state, Exit 2 Q
is the exit state, V is a finite set of variables, O is the set of actions, R is the set of
transitions, where each transition T is represented by the tuple: T = (E, C, A, Sb, Se)
where: E 2 R is an event which may contain a list of arguments E(arg1, arg2, …, argk,)

Fig. 1. Fuel pump EFSM model

264 B. Korel et al.

where the scope of the arguments is the transition T associated with this event. C is an
enabling condition defined over V, A is a sequence of actions, A = <a1, a2,…., aj>,
where ai 2 O. The action may manipulate variables, read input or produce output.
Sb 2 Q is the transition’s originating state, Se 2 Q is the transition’s terminating state.
Figure 1 shows an example of an EFSM model for a Fuel Pump system.

3.2 Model Dependencies

Dependencies capture the notion of potential “interactions” between transitions in the
model. There are two types of model dependencies: data and control dependence.

Data Dependence: A data dependence captures the notion that one transition defines a
value to a variable and another transition may potentially use this value [1, 6]. There
exists data dependence between transitions Ti and Tk if transition Ti modifies value of
variable v, transition Tk uses v, and there exists a path (transition sequence) in the
model from Ti to Tk along which v is not modified. For example, there exists data
dependence between transitions T1 and T5 in the model of Fig. 1 because transition T1

assigns a value to variable Rprice, transition T5 uses Rprice, and there exists a path (T1,
T4, T5) from T1 to T5 along which Rprice is not modified.

Control Dependence: In [1], the concept of program control dependence was
extended to EFSM models. Control dependence in an EFSM exists between transitions
and it captures the notion that one transition may affect traversal of another transition.
For example, transition T5 is control dependent on T4 in the model of Fig. 1 because
(1) Sb(T4) does not post dominate Sb(T5) (condition 1 of control dependence definition
is true) and (2) state Sb(T5) post dominates transition T4 (condition 2 is TRUE). Note
that Sb(T4) is S1 and Sb(T5) is S2. The issue of control dependence in EFSMs is
discussed in more details in [1, 3–6].

3.3 Measuring Model Change Impact

Impact analysis is the process of identifying the expected impact of a change, and it
was formally defined by Bohner and Arnold [8] as ‘‘identifying the potential conse-
quences of a change, or estimating what needs to be modified to accomplish a change’’.

An approach to identifying the impact of a change for EFSM models is proposed in
[6], where for any given model modification (MF), two impact sets are identified; the
starting impact set (SIS) which comprises the set of transitions identified as directly
impacted by the change since they have experienced a change in their dependencies on
other transitions in the model, and the extended impact set (EIS) which consists of
indirectly impacted transitions which are iteratively dependent on one or more tran-
sitions in the SIS. To quantify the impact of the change, the number of transitions in the
EIS can be used as a measure.

For any given model, it is possible to estimate the average change impact of a
potential change applied to the model as a measure of the average propagation of the
change within the model. This measure gives a better understanding for the develop-
ment team about how easy or difficult the model and its underlying system are to
maintain. One approach to estimate the average change impact of a potential change

Towards Minimizing the Impact of Changes Using Search-Based Approach 265

applied to a model M with n transitions, is to calculate the size of the extended impact
set for each transition in the model assuming that this transition has been modified.
Then calculating the average size of the EIS for all transitions. In this paper, we call this
measure, the average change impact of the model. When applied to the model of Fig. 1,
the average change impact generated will be 5.07 transitions as shown in Table 1.

4 Transformation Rules

In this section we introduce three transformation rules which can be applied to EFSM
models. When applied to an EFSM model, these rules keep the semantics of the model
exactly the same, however they may change the structure of the model by changing the
number of states or the number of transitions.

To formally define a transformation rule, we will use the following notation:

M = (R, Q, Start, Exit, V, O, R) is an EFSM model
S 2 Q is a state in model M
T 2 R is a transition in model M, where T = (E, C, A, Sb, Se).
Tin(S) is the set of incoming transitions to state S, excluding self-looping transitions
Tout(S) is the set of outgoing transitions from state S, excluding self-looping
transitions
Tself(S) is the set of self-looping transitions in state S

Table 1. Measuring average change impact.

Transition Extended impact set Number of transitions in EIS

T1 {T5, T6, T9, T10, T11, T12, T13} 7
T2 {} 0
T3 {T5, T6, T7, T8, T9, T10, T11, T12, T13} 9
T4 {T5, T6, T7, T8, T9, T10, T11, T12, T13} 9
T5 {T9, T10, T11, T12, T13} 5
T6 {T9, T10, T11, T12, T13} 5
T7 {T9, T10, T11, T12, T13} 5
T8 {T8, T9, T10, T11, T12, T13} 6
T9 {T9, T10, T11, T12, T13} 5
T10 {T9, T10, T11, T12, T13} 5
T11 {T9, T10, T11, T12, T13} 5
T12 {T9, T10, T11, T12, T13} 5
T13 {T9, T10, T11, T12, T13} 5
T14 {} 0

Average change impact 5.07

266 B. Korel et al.

4.1 State Splitting

Splitting a state into two or more states could reduce the complexity of the model by
distributing the incoming/outgoing transitions into sub-states. One criterion on which a
state S can be split into other states is by looking at the flow of execution between the
incoming and the outgoing transitions of the state S, as demonstrated in Fig. 2.

In this paper, it is assumed that the original model has been tested using well known
model-based testing methods. In particular, All-Transition-Pairs Coverage [19] has
been used. According to this test coverage, for each state S, all transition pairs (in-
coming transition, outgoing transition) must be executed at least once. As a result,
during model testing, all executable transition pairs can be easily identified. Since some
transition pairs may not be executable, it is assumed that testers/developers used, for
example, some test generation methods [22, 23], and carefully verified that these
transition pairs are not executable. Therefore, one can assume with a high degree of
confidence that these pairs are non-executable. The state splitting transformation,
presented in this section, takes advantage of the knowledge of executable and non-
executable transition pairs in the model.

Fig. 2. State splitting using executable pairs of transitions

Towards Minimizing the Impact of Changes Using Search-Based Approach 267

If the execution of an incoming transition Ti never leads to the execution of an
outgoing transition To (e.g. T1 in Fig. 2a doesn’t lead to the execution of T6 or T7), then Ti

and To do not need to be linked to the same state.We call the pair of transitions (T1, T6) and
(T1, T7) non-executable pairs. Similarly, we call the pairs of (incoming, outgoing)
transitions that can be executed successively as the pairs of executable transitions. In this
case, state S can be split into two states S′ and S″ as demonstrated in Fig. 2b. More
generally, a state can be split into several sub-states where each sub-state has a unique set
of outgoing transitions which are all executable for all incoming transitions.

Formally, we use the following notation for the set of all executable pairs of
(incoming, outgoing) transitions for a state S:

E(S) = {(Ti, To)|Ti 2 Tin(S), To 2 Tout(S), and there is a sequence of events on
which a transition pair (Ti, To) is executed}.

Additionally, we use the following notation for the set of all outgoing transitions
that are executable for a given incoming transitions Ti 2 Tin(S) for a given state S:

O(Ti) = {To 2 Tout(S)|(Ti, To) 2 E(S)}.

Applied to Fig. 2a, the set of executable transitions of state S is: E(S) = {(T1, T4),
(T1, T5), (T2, T6), (T2, T7)}; the set of executable transitions for T1 is: O(T1) = {T4, T5};
the set of executable transitions for T2 is: O(T2) = {T6, T7}. Given that all incoming
transitions of the state S generate two unique sets of outgoing transitions (i.e. O(T1) and
O(T2)), then state S can be split accordingly to two sub-states (S0 and S00) where one sub-
state (S0) has Tout S0ð Þ ¼ O T1ð Þ and the second sub-state (S00) has Tout S00ð Þ ¼ O T2ð Þ.
Additionally, both sub-states should have the self-looping transition T3.

Assuming that the initial state S, has a third incoming transition Tnew which has a
set of executable outgoing transitions equivalent to either O(T1) or O(T2) then state S
will still be split into two sub-states, one sub-state having the two incoming transitions
that have equivalent sets of executable outgoing transitions, and the second sub-state
has the incoming transition that has a different set of executable outgoing transitions as
demonstrated in (Fig. 2c and d). On the other hand, if Tnew has a set of executable
outgoing transitions different from either O(T1) or O(T2), then a third sub-state would
be created as demonstrated in Fig. 2e and f.

More generally, a state S with n incoming transitions and m unique sets of outgoing
executable transitions, can be split into m sub-states; where each sub-state has its set of
outgoing transitions equivalent to one of the m sets of executable outgoing transitions,
and the corresponding executable incoming transitions form the incoming transitions of
the sub-state.

The notation we use to represent the set of the m unique O(Ti) sets of all incoming
transitions of the state S is: O(S). When applied to Fig. 2c, O(S) = {O1,new = {T4, T5},
O2 = {T6, T7}} where O1,new = O(T1) = O(Tnew), and O2 = O(T2).

Formally, the rule of splitting a state S according to the flow of execution between
the incoming and outgoing transitions of S can be defined as follows:

Let S be a state in model M, where:

Tin(S) = {T1, …, Tn}, is the set of all n incoming transitions of state S.
O(S) = {O1, …, Om}, is the set of all m unique sets of outgoing executable tran-
sitions for all transition Ti 2 Tin(S) where 1� m � n.

268 B. Korel et al.

Then, state S can be split into m sub-states, S1 to Sm, where each sub-state Sk
(1 � k � m) has:

Tout(Sk) = Ok

Tin(Sk) = {Ti|Ti 2 Tin(S), O(Ti) = Ok}
Tself(Sk) = Tself(S)

Applying the above rule to state S2 of the EFSM model in Fig. 1 we notice that:

Tin(S2) = {T3, T4}, Tout(S2) = {T7, T8}, Tself(S2) = {T5, T6}, E(S) = {(T4, T8), (T3,
T7)}
O(T3) = {T7}, O(T4) = {T8}, O(S2) = {{T7}, {T8}}

Since O(S) contains two elements representing the unique sets of executable out-
going transitions, then state S2 can be split into two sub-states S02 and S002 where:

Tout S02
� � ¼ T7f g; Tin S02

� � ¼ T3f g; and Tself S02
� � ¼ T5; T6f g

Tout S002
� � ¼ T8f g; Tin S002

� � ¼ T4f g; and Tself S002
� � ¼ T0

5; T
0
6

� �

The resulting model after splitting state S2 is shown in Fig. 3.

4.2 Moving Assignment Actions Forward

For a given state S in an EFSM model M, an assignment action defined in one or more
incoming transitions can be moved to one or more outgoing transitions if certain
conditions are met.

Fig. 3. EFSM fuel model after splitting state S2

Towards Minimizing the Impact of Changes Using Search-Based Approach 269

In its simplest form, this rule states that for a given state S, if all incoming tran-
sitions define the same action a (x = expr) as the last action in their sequence of
actions, then it is possible to move the action a to be the first action in the sequence of
actions associated with the outgoing transitions of the state S. This rule assumes that
none of the outgoing transitions use the variable x in their enabling condition, and it
also assumes that if self-looping transitions are present at state S, then they do not use
or change variable x or any other variable used in the expression expr.

In a more general context, an incoming transition, Ti, may have a sequence of
n actions A(Ti) = <a1, a2, …, aj, aj+1, …, an> as demonstrated in Fig. 4. In this case, an
action aj defining the variable x could be anywhere in the middle of this sequence.
Consequently, moving the action to the outgoing transitions can take place only if all
subsequent actions (aj+1 to an), do not use or change the value of x, and they do not
change the value of any other variable used in the expression expr.

Taking into account this general context, the rule of moving assignment actions
forward can be defined as follows:

Let S be a state in an EFSM model
Let a be an assignment action of variable x of the following format: x=expr, where

x and all variables in expr are not arguments of any event.
Let U(a) be the set of all variables used by action a
if

(1) all incoming transitions TI in Tin(S) contain the action a, i.e., A(TI)=<a1, a2, …, a,
ai, …, an>, and

(2) in every incoming transition TI in Tin(S), a subsequence of actions <ai, …, an> that
follows action a in TI does not use or change variable x and it does not change any
variable in U(a), and

(3) the enabling conditions of all outgoing transitions TO in Tout(S) do not use variable
x, and

(4) all self-looping transitions in Tself(S) do not use or change variable x, and they do
not change any variable in U(a),

then
Action a can be moved forward from all incoming transitions TI in Tin(S) to
all outgoing transitions TO in Tout(S) by placing action a as the first action in
A(TO).

Fig. 4. Moving assignment action forward

270 B. Korel et al.

For example, when applying this rule to action a: (total = G * price) and state S5
of the EFSM model in Fig. 1, where U(a) = {G, price}, Tin(S5) = {T11, T12},
Tout(S5} = {T13}, Tself(S5) = {}, we notice that all of the four conditions of the above
rule are met. The first condition is met since all incoming transitions; namely T11 and
T12, contain the action (total = G * price). The second condition is also satisfied, since
there are no actions following (total = G * price) in A(T11) or in A(T12). The third
condition is also met, since the only outgoing transition (T12) has no enabling condi-
tion. Similarly, the fourth condition is also met since state S5 has no self-looping
transitions. Consequently, the action (total = G * price) can be removed from T11 and
T12 and placed as the first action in T13.

4.3 Moving Assignment Actions Backward

This rule attempts to move an action defining a variable x backwards in the model. For
a given state S in an EFSM model M, an assignment action defined in one or more
outgoing transitions can be moved to one or more incoming transitions of the same
state if certain conditions are met.

In its simplest form, this rule states that for a given state S, if all outgoing tran-
sitions define the same action a (x = expr) as the first action in their sequence of
actions, then the action can be moved backward to be placed as the last action of all
incoming transitions of the same state.

Of course in a more general context, the state S may have self-looping transitions,
the outgoing transitions may have enabling conditions, and the action defining the
variable x could be anywhere in the middle of the sequence of actions (Fig. 5).

Taking into consideration this general context, the rule of moving assignment
actions backward can be generalized as follows:

Let S be a state in an EFSM model
Let a be an assignment action of variable x of the following format: x=expr, where

x and all variables in expr are not arguments of any event.
Let U(a) be the set of all variables used by action a
if

(1) every outgoing transition TO in Tout(S) contains the action a, i.e., A(TO)=<a1, a2,…,
ai, a, …, an>, and

(2) in every outgoing transition TO in Tout(S), a subsequence of actions <a1, …, ai> that
precedes action a in TO does not use or change variable x and it does not change
any variable in U(a), and

(3) the enabling conditions of all outgoing transitions TO in Tout(S) do not use variable
x, and

(4) all self-looping transitions in Tself(S) do not use or change variable x, and they do
not change any variable in U(a),

then
Action a can be moved backward from all outgoing transitions TO in Tout(S)
to all incoming transitions TI in Tin(S) by placing action a as the last action in
A(TI).

Towards Minimizing the Impact of Changes Using Search-Based Approach 271

Since this rule acts in the opposite direction of rule 4.2, then any action moved
forward using rule 4.2 can be moved backward using rule 4.3. For example, we notice
that all of the four conditions of this rule are met for action (total = G * price) at T13.
Consequently, applying rule 4.3 will allow moving the action backward to T11 and T12.

5 Search Algorithm

5.1 Fitness Function

Using a search algorithm, the transformation rules introduced in the previous section
can be applied on a given EFSM model in order to minimize the average change impact
of a potential change applied to the model. In this case the fitness function f of the
search algorithm can be expressed as the average change impact of the model as
calculated in Sect. 3.3.

This measure gives an estimation of the average number of transitions impacted by
a potential single change applied to the model. Given that when calculating this
measure, each transition Ti in the model is only assumed to be changed, but there is no
actual change applied to the variables defined or used in this transition, or in the source
or target state of the transition, then the generated EIS set will be equivalent to the set
of transitions that are directly or transitively dependent on Ti (i.e. no new or removed
dependency edge(Te, Te) as expressed in cases 9.a and 9.b in [6]). Consequently, the
fitness function f (M) can be expressed using the transitive closure of the dependency
graph of the model M.

More formally,

Let M = (R, Q, Start, Exit, V, O, R) be an EFSM model, and
Let G = (R, E) be the dependence graph of M where
R is the set of transitions in M (represented as nodes in the dependency graph), and
E is a binary relation on R, E � R � R, referred to a set of directed edges where:
edge (Ti, Tk) 2 E, if Tk has either control or data dependency on Ti.
Let E+ be a binary relation representing the transitive closure of E
Let |E+| be the number of edges in E+

then

Fig. 5. Moving assignment action backward

272 B. Korel et al.

f Mð Þ ¼ Eþj j = Rj j

Notice that the number of states in the model doesn’t need to be included as part of
the fitness function because data and control dependence are based on the relationships
between transitions which are the active components of the system, while states are
passive components of the model where a state represents a snapshot of the system at a
particular point in time.

It is worth noting here that the average change impact calculated for the fuel pump
EFSM model in Table 1 is equivalent to the fitness function of that model, i.e., f
(M) = 5.07. Indeed, the sum of the number of transitions in all of the EIS sets of the 14
transitions in the model is the same as |E+| = 71. Since the model has 14 transitions,
then |R| = 14, and consequently: |E+|/|R| = 5.07.

5.2 Algorithm

Given the original model MO, the goal of the search is to find the semantically
equivalent transformed model, MT, for which the impact of the potential change is
minimized. The change impact fitness function f(M) is used to guide the search. The
algorithm strives to find the transformed model for which the value of the fitness
function is minimal. The search algorithm is shown in Fig. 6.

The presented algorithm is a heuristic algorithm that is based on the “greedy”
search paradigm [20] that makes the locally optimal choices at each stage of the search
with the hope of finding the global minimum of the fitness function. However, the
algorithm does not guarantee identifying a transformed model with the global mini-
mum of the fitness function. In step 2, the fitness function is evaluated for the original
model. In step 3, a set of all possible transformations that can be applied to the model
are identified. In steps 5–13, every transformation is tried to determine if it leads to the
decrease of the fitness function. At the end of these steps, a transformed model Mm with
the minimal value of the fitness function is identified. Such a model is chosen as the
best candidate to continue with the search in steps 14–16 and a new set of potential
transformations is identified for this candidate model in step 17. This process continues
in steps 4–19, until a transformed model MT is identified for which no more decrease of
the fitness function can be achieved using model transformations.

It is worth mentioning here that the complexity of the algorithm depends on the
number of possible transformations that can be applied to the model. Assuming that
this number is K, the complexity in the best case scenario when no improvement can be
found is K, while it can reach O(|R|3) when f(M) has the maximum possible starting
value of |R| and it ends with the minimum possible value of 0. Note that this estimation
doesn’t account for the complexity of the calculation of the fitness function.

Towards Minimizing the Impact of Changes Using Search-Based Approach 273

6 Exploratory Study

This study is conducted as a proof of concept. Its main objective is to demonstrate the
feasibility and effectiveness of the presented model transformations by applying the
search algorithm presented in 5.2 on the model presented in Fig. 1.

When applied to the fuel pump model, the search algorithm finds and applies the
sequence of transformations presented in Table 2, where each of the transformations is
identified in one iteration of the algorithm as having the least value of the fitness
function compared to other candidate transformations. It is worth noting that when the
third transformation (splitting state S2) is applied, the transformed model generated
after has a different structure where the number of states has increased to by one, and
the number of transitions has increased by two, similar the model presented in Fig. 3.

Fig. 6. Search algorithm

Table 2. Sequence of transformations applied to the EFSM model in Fig. 1

Transformations applied to fuel pump model f(MT) Percentage of impact
reduction

0 Original fuel pump model MO 5.07 –

1 Tr1: (moving G = 0 forward from T13 and T1 to T3, T4, and T14) 3.36 34%
2 Tr2: (moving total = G * price forward from T11 and T12 to

T13)
3 41%

3 Tr3: (splitting S2 into two states) 2.63 48%

4 Tr4: (moving cash = cash * 1.1 backward from T8 to T4) 2.44 52%

274 B. Korel et al.

After this transformation, a new transformation was discovered, Tr4, which had not
been identified as a possible transformation in any of the previous iterations of the
algorithm. Indeed, before the split of state S2, Tout(S2) had two outgoing transitions T7

and T8, and only one of them had the action (cash = cash * 1.1), so the action was not
identified as a possible candidate as the first condition of the rule of moving an action
backward was not satisfied. After the split, however, Tout S002

� �
has only T8, conse-

quently, all of the four conditions of the rule of moving actions backward become true,
and moving (cash = cash * 1.1) becomes a possible transformation. The final trans-
formed model is shown in Fig. 7. The figure shows all actions that have been moved
backward or forward in bold.

The results of this exploratory experiment show that the search algorithm can find
an EFSM model that is semantically equivalent to the original model, while it has a
lower average change impact compared to the original model. For the particular EFSM
model investigated in this experiment, the original model had an estimated average of
5.07 transitions impacted by a potential change applied to the model, while the final
transformed model has an average change impact of only 2.44 transitions. This
reduction of 52% of the average change impact can be highly effective in the main-
tenance of larger systems with hundreds of transitions and states.

Finally, after applying the four transformations on the model, some actions and
conditions can be cleaned up as they become unnecessary. These actions and condi-
tions are shown in the Fig. 7 with strikethrough text. Clearly, after the split of state S2,
the condition [x == 0] at T8 can be safely removed since it always evaluates to true
given that the only incoming transition of S002 sets the value of w to zero. Similarly, the
condition [x == 1] can be safely removed since x is set to one by the only incoming
transition of the state S02. Having removed both enabling conditions [x == 0] and
[x == 1], the variable x is no longer used in the EFSM model, hence the assignment
actions (x = 0) at T4 and (x = 1) at T3 can be safely removed. Finally, action (G = 0)
can be safely removed from transition T14 as variable G will not be used after transition
T14 is executed.

Fig. 7. Transformed EFSM model after applying transformation sequence in Table 2

Towards Minimizing the Impact of Changes Using Search-Based Approach 275

7 Conclusion, Limitations, and Future Work

In this paper, we presented the first novel application of SBSE to the problem of
reducing the change impact of systems at the model level. We have presented a set of
model transformation rules for Extended Finite State Machine (EFSM) models. These
transformation rules are applied to an EFSM model using search-based algorithm in
order to find semantically equivalent transformed model, for which the impact of the
potential change is reduced. The presented search algorithm is guided by a fitness
function which estimates the average impact of a potential change applied to the EFSM
model. The study limitations include the simplicity of the algorithm and the small size
of the model used to validate the approach. For such small size, the algorithm worked
well and it generated a reduction of more than 50% of the average change impact of the
model, however, for larger size models, advanced algorithms may generate better
results. In future work, we will investigate more advanced algorithms.

In addition, in a future research, we plan to introduce further refined model
transformation rules that can be used to improve the system maintainability. In addi-
tion, we will develop enhanced model-transformation search algorithms that are based
on genetic algorithms and we will investigate their properties. Finally, we plan to
perform an expanded empirical study for several larger models of varying
characteristics.

Acknowledgments. This work is supported by Kuwait Foundation for Advancement of Science
(KFAS), Project number: P116-18QS-01.

References

1. Tahat, L., Korel, B., Koutsogiannakis, G., Almasri, N.: State-based models in regression test
suite prioritization. Soft. Qual. J. 25(3), 703–742 (2016)

2. Boussaïd, I., Siarry, P., Ahmed-Nacer, M.: A survey on search-based model-driven
engineering. Autom. Softw. Eng. 24(1), 233–294 (2017)

3. Korel, B., Tahat, L., Vaysburg, B.: Model based regression test reduction using dependence
analysis. In: Proceedings of the International IEEE Conference on Software Maintenance,
pp. 214–223 (2002)

4. Korel, B., Tahat, L.: Understanding modification in state-based system. In: Proceeding of the
12th IEEE International Conference on Program Comprehension London, UK, pp. 246–250
(2004)

5. Tahat, L., Korel, B., Hartman, M., Ural, H.: Regression test suite prioritization using system
models. Soft. Test. Ver. Rel. (STRV) 22(7), 481–506 (2011)

6. Almasri, N., Tahat, L.: Towards automatically quantifying the impact of a change in
systems. Softw. Qual. J. 25(3), 601–640 (2016)

7. Williams, J.R., Paige, R.F., Polack, F.A.C.: Searching for model migration strategies. In:
Proceedings of the 6th International Workshop Models and Evolution, pp. 39–44. ACM,
New York (2012)

8. Bohner, S.A., Arnold, R.S.: Software Change Impact Analysis. IEEE Computer Society
Press (1996)

276 B. Korel et al.

9. Lehnert, S.: A review of software change impact analysis. Ilmenau University of
Technology, Technical report (2011)

10. Harman, M., Jones, B.F.: Search-based soft. Eng. Inf. Soft. Tech. 43(14), 833–839 (2001)
11. O’Keeffe, M., Cinnéide, M.Ó.: Search-based refactoring: an empirical study. J. Softw.

Maint. Evol. 20(5), 345–364 (2008)
12. Favre, J.: Towards a basic theory to model driven engineering. In: Proceedings of the UML

2004 International Workshop on Software Model Engineering (2004)
13. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electron. Notes Theory

Comput. Sci. 152(1), 125–142 (2006)
14. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In: Proceed-

ings of the 2nd OOPSLA Workshop on Generative Techniques in the Context of MDA
(2003)

15. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston
(1999)

16. Mkaouer, M.W., Kessentini, M., Bechikh, S., Ó Cinnéide, M.: A robust multi-objective
approach for software refactoring under uncertainty. In: Le Goues, C., Yoo, S. (eds.) SSBSE
2014. LNCS, vol. 8636, pp. 168–183. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-09940-8_12

17. Räihä, O.: A survey on search-based software design. Comput. Sci. Rev. 4(4), 203–249
(2010)

18. Misbhauddin, M., Alshayeb, M.: UML model refactoring: a systematic literature reviews.
Empir. Softw. Eng. 20(1), 206–251 (2015)

19. Devroey, X., Perrouin, G., Legay, A., Cordy, M., Schobbens, P.-Y., Heymans, P.: Coverage
criteria for behavioural testing of software product lines. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2014. LNCS, vol. 8802, pp. 336–350. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45234-9_24

20. Bendall, G., Margot, F.: Greedy type resistance of combinatorial problems. Discret. Optim.
3, 288–298 (2006)

21. Adenis, P., Mukherjee, K., Ray, A.: State splitting and state merging in probabilistic finite
state automata. In: IEEE American Control Conference, pp. 5145–5150 (2011)

22. Lu, G., Miao, H.: An approach to generating test data for EFSM paths considering condition
coverage. Electron. Notes Theor. Comput. Sci. 309, 13–29 (2014)

23. Kalaji, A., Hierons, R., Swift, S.: An integrated search-based approach for automatic testing
from extended finite state machine models. Info. Soft. Tech. 53(12), 1297–1318 (2011)

24. Fleck, M., Troya, J., Kessentini, M., Wimmer, M., Alkhazi, B.: Model transformation
modularization as a many-objective optimization problem. IEEE Trans. Softw. Eng. 43(11),
1009–1032 (2017)

Towards Minimizing the Impact of Changes Using Search-Based Approach 277

http://dx.doi.org/10.1007/978-3-319-09940-8_12
http://dx.doi.org/10.1007/978-3-319-09940-8_12
http://dx.doi.org/10.1007/978-3-662-45234-9_24
http://dx.doi.org/10.1007/978-3-662-45234-9_24

Exploring Evolutionary Search
Strategies to Improve Applications’

Energy Efficiency

Irene Manotas1(B), James Clause2, and Lori Pollock2

1 IBM Research, Yorktown Heights, NY, USA
irene.manotas@ibm.com

2 University of Delaware, Newark, DE, USA
{clause,pollock}@udel.edu

Abstract. Energy consumption have become an important non-
functional requirement for applications running on battery powered
devices through data centers. Despite the increased interest on detect-
ing and understanding what causes an application to be energy ineffi-
cient, few works focus on helping developers to automatically make their
applications more energy efficient based on developers’ design and imple-
mentation decisions. This paper explores how search strategies based on
genetic algorithms can help developers automatically find an energy effi-
cient version of an application based on transformations corresponding
to developers’ high level decisions (e.g., selecting API implementations).
Our results show how different search strategies can help to improve the
energy efficiency for nine Java applications.

1 Introduction

Reducing the energy usage of applications can increase the usability of battery-
constrained devices, might decrease the costs of running applications on servers,
and in general make software applications both more sustainable and environ-
mentally friendly. Thus, both developers and researchers are motivated to exam-
ine the energy consumption of software applications, including the energy effects
of developers’ decisions, as well as ways to improve applications with regard to
energy usage.

Empirical studies that analyze the energy impacts of developers’ decisions
have focused on the selection of data structures [16], design patterns [25], algo-
rithms [6], refactorings [26], and application programming interfaces (APIs) [18].
More recently, researchers have been building tools that help developers to iden-
tify sources of energy inefficiencies in their code [1,12], and on developing strate-
gies to automatically improve the energy usage of applications [2,5,19,27]. For
example, Linares-Vásquez et al. proposed an optimization approach to automat-
ically select energy efficient combinations of colors for mobile apps’ GUI [19],
and Manotas et al. [21] proposed the Software Energy-Efficient Decision Sup-
port framework (SEEDS) to automatically transform applications and explore
c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 278–292, 2018.
https://doi.org/10.1007/978-3-319-99241-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_15&domain=pdf

Exploring Evolutionary Search Strategies 279

the search space looking for energy efficient versions of applications. Similarly,
some researchers proposed the use of metaheuristics, or Evolutionary Computa-
tion (EC) techniques [17,29], to transform and generate source code that makes
an application more energy efficient [2,4,5,22,27].

Although these strategies help developers to analyze applications’ energy
usage, pinpoint energy-related issues, or propose transformations to applications
to improve energy usage, they do not provide ways to automatically analyze
and apply combinations of transformations that represent high level decisions
made by developers (e.g., selecting an implementation library, refactoring, or
algorithm’s choice) that make an application more energy efficient. Moreover,
most of the existing approaches that apply changes to an application’s code to
improve its energy usage have been evaluated on a small set of applications’ arti-
facts (e.g., classes from two Collection libraries [4]), or the evaluation have been
done with applications that belong to a specific domain only (e.g., applications
for the MiniSAT Boolean satisfiability solver [5], concurrent applications [27], or
scientific applications using spectral element methods [2]).

To enable the exploration of the energy impacts for large search spaces com-
posed of possible code transformations, we propose to take advantage of meta-
heuristic evolutionary optimization techniques. Specifically using (GAs) as a
metaheuristic-based search strategy to automatically explore software develop-
ers’ high level decisions that improve an application’s energy usage. The proposed
search strategies enable a guided examination of a diverse set of code trans-
formations, including combinations of such transformations, to create different
application versions. By automatically examining diverse compositions of code
transformations, we can help developers to generate energy-efficient versions of
their applications, and to understand which decisions, and their interactions,
make an application less or more energy efficient without the developers having
to exhaustively explore all possible code transformations and their combinations
manually. To automatically apply code transformations associated with solu-
tions generated by the metaheuristic-based search approach, we leverage the
SEEDS framework [21]. Previous work shows that SEEDS API Implementation
Selector (SEEDSapi), an instantiation of SEEDS, is able to find energy-efficient
versions of Java applications, by using a limited exhaustive search strategy. arti-
ficial data synthesis. In contrast, this paper evaluates how metaheuristic-based
search strategies, based on a (GA), allows SEEDSapi to explore more thoroughly
and efficiently the search space by considering solutions composed of various
combinations of code transformations.

In this paper, we evaluate metaheuristic search strategies based on two differ-
ent GAs, and compare the results with the limited exhaustive search previously
used by SEEDSapi. We analyzed the performance of the search strategies with
nine Java applications. Our results show that metaheuristic search strategies
are able to find energy-friendly combinations of code transformations. However,
for some applications, the limited search strategy is able to find solutions that
are better than those found by search strategies based on GAs, both in energy
savings and time required to find a solution. We describe how a developer can
take advantage of different search strategies available in SEEDSapi and further
directions for research.

280 I. Manotas et al.

Fig. 1. Overview of the SEEDS framework

2 Background

2.1 SEEDS Framework

SEEDS [21] is a software framework that allows developers to both explore the
impact of software developers’ decisions on an application’s energy usage, and
automatically improve an application’s energy consumption by applying differ-
ent types of source-code transformations to an application. Figure 1 shows the
main components of the SEEDS framework. SEEDS’ inputs include: (1) the
application source code, (2) a set of potential changes or transformations, (3)
a list of optimization parameters (optional), and (4) the application’s context
information. The framework is composed of two major building blocks: (1) An
application-specific search space component that creates different application’s
versions (i.e., solutions) by applying code transformations to the original applica-
tion, and compose the search space to be navigated, and (2) a search component
that defines the search strategy used to navigate the search space of solutions to
find an improved version of the original application in terms of its energy usage.
The outputs are the improved version of the application along with a list of the
application change(s) that have been made to make it more energy efficient.

The SEEDSapi Instantiation of SEEDS. SEEDSapi is an instantiation of
SEEDS that supports software engineers as they make decisions about which
library implementations they should use to optimize the overall energy usage of
their applications. Choosing a collection implementation is a common decision
that is faced by software developers. However, developers commonly choose API
implementations based on familiarity or execution time concerns only, which
means that applications are unlikely to have optimized their choice of collec-
tion implementation to energy usage. The goal of SEEDSapi is to improve Java
applications by identifying implementations of Java Collections APIs that are
more energy efficient, if any, than the implementations currently used by an
application. In SEEDSapi [21], the application-specific search space is defined as
the solutions that result in the ordered combination of all allocation locations
of Collection API’s instances and the possible changes (i.e., implementations of
Collections libraries) that can be applied in each location. As more transforma-
tions or allocation locations are found for an application, the search space grows
exponentially making it difficult to explore every single solution. The search

Exploring Evolutionary Search Strategies 281

component in SEEDSapi was initially defined with a limited exhaustive search
strategy that considered a narrowed size of the search space. Two different con-
figurations of solutions were considered by the limited exhaustive search. The
first configuration considered the search space composed by versions of an appli-
cation that have one single concrete code transformation at one of the different
application’s change locations. The second solution configuration consisted of
the search space composed of versions of an application that have multiple code
transformations corresponding to the “energy efficient” transformation for every
application’s change locations. These configurations resulted in a reduced size
of the search space of solutions. However, with the limited exhaustive search
it was not possible to analyze how multiple permutations of transformations in
different application locations could impact the energy usage of an application,
nor whether or not there exist any other optimal configurations of solutions.

2.2 Metaheuristic Optimization

The problem of automatically exploring combinations of possible code trans-
formations have several characteristics: (1) an optimal solution is unknown
beforehand, (2) there is no clear way to find an optimal solution, and (3) an
exhaustive or brute-force search is very expensive to use because the size of the
search space is too large. These characteristics make it ideal for exploring the
use of metaheuristic-based optimizations. We chose to apply GAs for improving
applications’ energy usage because they are popular metaheuristic optimization
strategies that, due their intrinsic evolutionary structure, make them suitable for
the exploration and evaluation of different compositions of code transformations
for an application.

3 Improving Energy Usage of Applications via Genetic
Algorithms

This section presents our approach for searching and improving an application’s
energy usage via GAs. To analyze and identify which combinations of code trans-
formations help to reduce the energy usage of an application, we need to (1) be
able to navigate the search space of solutions by using an algorithm that allows
us to identify optimal solutions, (2) have a way to automatically apply the code
transformations represented by a solution drawn from the search space, and (3)
have a way to measure the energy consumption of a solution under analysis.
The following subsections describe how we address these challenges by using
GAs (Sect. 3.1), the SEEDSapi and an energy estimation technique (Sect. 3.2).

3.1 Genetic Algorithms to Navigate an Application’s Search Space

The Generational Genetic Algorithm (gGA). The generational Genetic
Algorithm (gGA) is an evolutionary algorithm for single objective optimization
problems. The gGA finds optimal solutions to a given problem by exploring the

282 I. Manotas et al.

Create
Initial

Population

Next-generation
Population

Compute
Individuals'

Objective and
Fitness values

Breeding

Select Individuals

Combine Individuals

Mutate Individuals

Add Individuals to
Offspring Population

Select
Best

Individual

Next-
generation
Population

Fig. 2. Generational genetic algorithm.

search space based on ideas similar to those in biological evolution theory [10].
A gGA uses a generational replacement mechanism to update the entire popu-
lation of solutions once per iteration [20]. Figure 2 shows an overview of a gGA
algorithm. First, the algorithm constructs an initial population and then iterates
over three major steps: (1) compute an objective and a fitness value for all the
individuals in the population, (2) use the objective and fitness information of the
individuals to breed a new offspring population by using mutation and crossover
operators, and (3) join the parents and offspring to form a new next-generation
population. The breeding process continues until the desired size of the offspring
population has been reached. To avoid the phenomenon where there are no indi-
viduals in the population that are getting fitter than previous individuals, we
carried forward the best two individuals (i.e., elite parents) from the previous
population. Thus, the elite parents are selected to survive for the next offspring
generation of individuals. Steps 1–3 continue until a given number of generations
has been completed. The total number of generations in which populations are
being created is restricted by the selected stopping criteria: when a given total
number of evaluations of the objective function have occurred, a total number
of generations is reached, or when a given objective value or execution time has
been reached.

The Non-dominated Sorting Genetic Algorithm II (NSGAII). In some
cases, not only the energy but also the execution time of an application wants
to be improved, or at least not degraded. To consider both the energy usage
and the execution time of solutions, we used a multiobjective evolutionary algo-
rithm, the Non-dominated Sorting Genetic Algorithm II (NSGA-II). Multiob-
jective optimization algorithms try to find one or multiple “optimal” solutions
that can achieve the best optimization with multiple, possibly conflicting, objec-
tives. The goal is to find one or more solutions that belong to the set of optimal
values of the problem, called the pareto optimal set. The optimal values of the
problem, which constitute the pareto front, are the collection of objective vectors
that cannot be dominated. In a minimization problem, an objective vector v, is
considered to be better, or to dominate another objective vector w in the pareto
sense, if all the components of v are lower or equal to the components of w, with
at least one strictly lower component. Thus, the pareto-optimal set is the collec-
tion of solutions from the search space in which the objective vectors belong to

Exploring Evolutionary Search Strategies 283

the pareto front. We selected NSGA-II because it is an evolutionary algorithm
for multiobjective optimization problems that has been shown to be able to find
better solutions than other multiobjective evolutionary approaches [9].

GA Parameters. GAs have various parameter settings. Here, we describe how
we selected the parameter settings for our problem.

Solution Representation: Each solution (i.e., application version) in the
search space is represented as an array of integers. This representation lets
us consider all possible configurations of changes in the application’s search
space. Each index of the array corresponds to a location in the application where
changes can be made. Each value assigned to a position in the array identifies
one of the possible changes to be made in the application. For instance, for the
Barbecue application,1 there exist 10 allocation locations where transformations
can be made by swapping Collections implementations. Thus, for the Barbecue
application the representation of a solution is an array x of size 10, where xi

is an integer representing a specific Collection implementation (i.e., ArrayList,
LinkedList, etc.) to be used at site i, and transforming the original application to
create a solution, x, representing a different version of the Barbecue application.

Creation of the Initial Population: For the creation of the initial population,
we randomly generated individuals by selecting different transformations for
every potential change location of an application. All the transformations to be
applied to an application are tested for validation in each of the pre-identified
potential change locations of the application. Only transformations that result
in an application version that passes all application’s test cases are considered
as valid changes.

Selection and Genetic Operators: For the selection, crossover, and mutation
operators, in both gGA and NSGA-II, we chose the binary tournament selection
strategy, the single point crossover, and the simple uniform mutation, respec-
tively. We selected a rate of 1/(number of change sites), and a crossover rate
of 0.9. We selected these operators because they are standard operators that
support the exploration of a diverse set of solutions from the search space while
trying to preserve fit solutions.

Objective Function and Fitness: Lower values of the objective and fitness
functions for an individual make an individual more appealing for reproduction
and evolution during the execution of the corresponding GA. We selected the
objective value for each individual in a population as the Mean Energy Usage
(MEU) of the application version represented by the individual (MEUsolution),
divided over the effect size of the individual’s energy samples effectSizesolution.
The MEU of an individual is computed in two steps. First, the individual is
instantiated, i.e., all transformations indicated by the individual’s array are
applied to the original application code, and a new version of the application is
created. Then, the energy usage of the individual is taken by running the appli-
cation’s test suite using an energy estimation tool as described in Sect. 3.2. The
1 http://barbecue.sourceforge.net/source-repository.html.

http://barbecue.sourceforge.net/source-repository.html.

284 I. Manotas et al.

energy usage of each individual is taken ten times to be able to compute the
statistical significance of the application’s energy usage. After all the individuals
have been created and their MEU value have been computed for the current
population, a statistical analysis test is performed to identify which solutions in
the current population are statistically different from the original application.
Then, for statistically significant different individuals, we compute their Cliff’s
d [24] effect size to account for the significance of the difference in the energy
usage. Lastly, for the assignment of an individual fitness value, we used the indi-
vidual’s MEU divided by the MEU of the original application version. A solution
with a fitness value less than one means the solution represents an application
version that is more energy efficient than the original application. In the next
subsection, we describe how the two GAs are implemented and configured.

3.2 Implementation of the Search Strategy in SEEDSapi

To implement the metaheuristic-based search strategy in SEEDSapi, we need to
implement the selected GA, find a way to evaluate online the energy usage of
the solutions generated by the search strategies, and select a measure of effect
size that allow us to quantify the magnitude of the difference between the energy
usage of an application’s solution compared to the original application’s version.
To implement the two selected GAs in SEEDSapi, we leveraged the features
provided by the JMetal2 framework. JMetal is a widely adopted metaheuris-
tic framework in Java [11] that provides different metaheuristic algorithms and
operators. In JMetal, each GA operator is bound with a variable type (i.e., float,
boolean, etc), according to the representation of a solution in the search space.

We used the Running Average Power Limit (RAPL) interface [8] to profile the
amount of energy consumed by a given application version (i.e., individual) gen-
erated by each GA. We selected RAPL for several reasons: (1) previous studies
have verified that RAPL power estimates are fairly accurate [14], (2) RAPL’s
interface enables us to seamlessly integrate energy estimates into the SEEDS
framework, and (3) RAPL’s estimation technique allows us to easily obtain the
application’s energy usage without incurring the extra costs and complexity
introduced by external hardware instrumentation techniques.

4 Evaluation

The evaluation of metaheuristic-based search via GAs to find energy efficient
versions of applications is driven by the following research questions:

RQ1—Effectiveness. Are GAs an effective approach to improve an applica-
tion’ energy usage by means of introducing code changes in SEEDSapi?

RQ2—Cost. Can GAs reduce the costs associated with the search of an
improved solution in SEEDSapi?

2 http://jmetal.sourceforge.net.

http://jmetal.sourceforge.net

Exploring Evolutionary Search Strategies 285

Table 1. Subject applications.

Application Version LoC # tests Coverage (%) # change sites

Barbecue — 13,610 247 55.9 10

Commons CLI 1.2 8,638 187 96.7 14

Joda-Time 2.1 69,225 197 36.6 16

Gson 2.2.4 29,119 913 86.6 13

Jfreechart 1.0.15 315,787 6,663 67.8 158

Commons Lang 3.1 100,566 2,046 94.9 47

Jdepend 2.9.1 5,865 53 53.2 14

Commons Beanutils 1.8.3 69,355 1,277 71.3 7

Apache-xml-security 1.0 50,412 175 41.9 15

4.1 Experimental Subjects

To evaluate the proposed metaheuristic-based search strategy with SEEDSapi, we
selected nine Java applications that use the Collections API. We selected these
programs because they have been used in other software engineering research
studies, they are publicly available, and because they are subjects representative
of applications that use the Java Collection Framework (JCF). In addition, these
applications provided a test suite, which both provide an approximation of real
use case scenarios for each application and it is required by SEEDSapi to validate
the correctness of the solutions generated by the search strategy.

Table 1 describes the selected subject applications. The first and second
columns, Application and Version, together identify the application version. The
third column, LoC, provides the number of lines of source code. The fourth and
fifth columns, # Tests and Coverage (%), report the number of tests in the asso-
ciated test suite provided with each subject and the percentage of the statements
in the application that are covered by the test suite, respectively. The last col-
umn reports the number of possible sites in the application code for the program
changes of interest i.e., potential change locations. We obtained the subjects from
four different public repositories: (1) Software-artifact Infrastructure Repository
(SIR),3 which provides a variety of open-source projects, (2) SourceForge4 and,
(3) Github5, two popular repositories for open-source projects, and (4) Apache
Commons,6 a collection of reusable components.

4.2 RQ1: Effectiveness

To answer the question “Are GAs an effective approach to improve applications’
energy usage by means of introducing code changes?”, we compared the limited
3 http://sir.unl.edu.
4 https://sourceforge.net.
5 http://github.com.
6 http://commons.apache.org.

http://sir.unl.edu
https://sourceforge.net
http://github.com
http://commons.apache.org

286 I. Manotas et al.

Table 2. Comparison between limited exhaustive search (LES) and metaheuristic-
based search strategies (gGa, NSGA-II)

Application % Energy savings

JCF ALL

LES gGA NSGA-II LES gGA NSGA-II

Barbecue 26 23 28 28 23 28

Commons-CLI 6 11 25 6 12 25

Jodatime 7 2 – 8 2 –

Gson 1 14 5 1 14 7

Jfreechart 7 13 – 7 1 3

Commons Lang 3 2 3 3 2 4

Jdepend 2 12 2 2 18 3

C. Beanutils 1 2 1 2 3 2

Apache-xml 3 1 – 4 1 –

exhaustive search against the gGA and NSGA-II algorithms described in Sect. 3
for driving the search for an energy efficient solution in SEEDSapi.

Table 2 shows the results, average of five runs, of using three search strate-
gies in SEEDSapi to find energy efficient solutions of the selected subject appli-
cations. The first column, Application, presents the name of the application;
the second, third and fourth columns show the percentage in energy savings
obtained with SEEDSapi when using implementations from the JCF library only
(‘JCF’) for the limited exhaustive strategy (LES), the search strategy driven
by the gGA, and the search strategy driven by the NSGA-II, respectively. For
the fifth, sixth, and seventh columns, the results are shown when the imple-
mentations used to create the alternative application versions are drawn from
all the Collections libraries (‘ALL’), for the LES, gGA, and NSGA-II search
strategies, respectively. A ‘−’ in the table indicates that no better solution than
the original application was found by the corresponding search strategy. For
the NSGA-II, the best solution in terms of energy usage and execution time
was selected. From the results shown in this table, we can see that evolutionary
algorithms are indeed able to find improved versions of applications in terms
of their energy usage. For instance, for the Commons-CLI application, both
metaheuristic-based search strategies (i.e., gGA and NSGA-II) found solutions
twice to four times more energy efficient than the solutions found for this appli-
cation when using the limited exhaustive search strategy. For six of the nine
applications (e.g., Commons-CLI, Gson, Jfreechart, Commons-lang, Jdepend,
and Commons Beanutils), the metaheuristic-based search strategies were able
to find better solutions than the solutions found using the limited exhaustive
search strategy in SEEDSapi. For example, the energy savings obtained by the
solution found by SEEDSapi when using the gGA search strategy is 13% for
Jfreechart, compared to a 7% energy savings obtained by the solution found for
this application when using the limited exhaustive strategy. Also, for the Gson

Exploring Evolutionary Search Strategies 287

application, the metaheuristic search using the gGA search strategy found a
solution 14 times more energy efficient than the solution found by the limited
exhaustive search strategy for this application.

Although the studied GAs were able to find improved solutions of an applica-
tion, the results also indicate that evolutionary algorithms can sometimes yield
other solutions with lower or equal energy savings than solutions found by the
limited exhaustive strategy used initially in SEEDSapi. For instance, for the
Barbecue application, the best solutions found by the gGA strategy were 3−5%
less energy efficient than the solutions found by the limited exhaustive strategy.
Similarly, when using the NSGA-II strategy, SEEDSapi found a solution with
28% energy savings, which was the same energy savings obtained by the solu-
tion found by SEEDSapi when using the limited exhaustive search strategy. A
similar case occurs for the Jodatime, for which only the gGA was able to find
an improved application version with 2% energy savings. This could be due to
the configuration (e.g., initial population, selected genetic operators, and stop
criteria) used for the metaheuristic-based search strategies, which in some cases
might not direct the search technique to explore portions of the search space
where other better solutions exist for these applications. However, finding a gen-
eral configuration of the metaheuristic-based search strategies that works best
for all subject applications is a complex task requiring the analysis of multiple
parameters for the GAs.

From these results, we can see that both limited exhaustive and
metaheuristic-based search strategies can be effective strategies to find energy
efficient versions of applications within SEEDSapi. Metaheuristic-based search
strategies sometimes find solutions with higher energy savings than those
obtained with the limited exhaustive search strategy in SEEDSapi, but this is
not a general rule. For some applications, using the limited exhaustive search
strategy can yield better results in terms of the energy savings obtained by the
improved application version.

4.3 RQ2: Cost

To answer the question “Can GAs reduce the costs associated with the search
of an improved solution in SEEDS?”, we analyzed how the cost of using
metaheuristic-based search strategies compare to the cost of using the limited
exhaustive strategy in SEEDSapi.

Table 3 shows, in a similar way to Table 2, the costs in terms of the time
required for each search strategy to find an improved version of an application.
The first column shows the name of the subject application; the second, third
and fourth columns show the time in hours required by SEEDSapi to obtain
an improved version of an application when using implementations from the
JCF library only (‘JCF’) for the limited exhaustive strategy (LES), the search
strategy driven by the gGA, and the search strategy driven by the search strategy
driven by the, respectively. Columns five to seven, show the costs of obtaining the
solutions in SEEDSapi when implementations from all the Collections libraries
(‘ALL’) are used to create the alternative application versions for the LES, gGA,

288 I. Manotas et al.

Table 3. Costs for limited exhaustive search (LES) and metaheuristic-based search
strategies (gGa, NSGA-II)

Application Cost

JCF ALL

LES gGA NSGA-II LES gGA NSGA-II

Barbecue 0.8 2.4 2.3 1.6 5.1 0.9

Commons-CLI 0.6 2 1.3 0.9 2.2 1.2

Jodatime 1.1 1.5 – 4.9 1.6 –

Gson 0.9 1 2.4 2.4 16.7 2.3

Jfreechart 16 7.5 – 20.2 41 5.9

Commons Lang 8 1.2 10.7 26.8 7 20.1

Jdepend 1.2 3.4 2.9 1.5 3.6 3.1

C. Beanutils 3.3 2.1 1.2 3.5 2.3 1.5

Apache-xml 2.2 1.6 – 2.7 1.8 –

and NSGA-II search strategies, respectively. A ‘−’ in the table indicates that
no better solution than the original application was found by the corresponding
search strategy. For instance, for Barbecue, the time required to find an improved
version when using the implementations from the JCF only is 0.8 h when using
the limited exhaustive search, and 2.4 h when using the gGA search.

From Table 3, we can see that for five out of the nine subjects (Barbecue,
Commons-CLI, Jodatime, Gson, and Jdepend) the limited exhaustive search
takes less time to find an improved application version when compared with the
time required by the search strategies using the gGA or the NSGA-II. This can
be because the limited search strategy has a set with few application versions to
explore, while the metaheuristic-based search strategies have to explore a larger
portion of the search space looking for the improved application versions, or also
because of the stopping criteria used for the GAs, which in our case was until
completing 100 generations. However, in some cases, the metaheuristic-based
search strategies are able to find an improved version of an application in about
the same or less time than with the limited exhaustive search. This is the case
for the Gson application, for which the gGA is able to find a solution with bet-
ter energy savings (i.e., 14% compared to 1% energy savings) than the limited
exhaustive search, expending almost the same amount of time (i.e., one hour)
when using the implementations from the JCF only. Another example is the
Commons-lang application, when using the NSGA-II search with the implemen-
tations from all the Collections libraries, the time required to find an improved
version is about 20.1 h, compared to 26.8 h required by the limited exhaustive
search for this application. Metaheuristic-based search strategies sometimes need
less time to find an improved version of an application due to the way they nav-
igate the search space, which allows them to find better solutions in less time by

Exploring Evolutionary Search Strategies 289

considering at every generation, the best solutions to find the improved version
of an application.

4.4 Threats to Validity

Threats to construct validity: We evaluated three search strategies in SEEDS by
implementing them in one the SEEDSapi instantiation. It is possible that other
instantiations will not lead to improved energy usage of an application. Although
we considered three search strategies, the results show that the evaluated search
strategies indeed can find alternative application’s versions that are more energy
efficient than its original version. Threats to internal validity: Confounding vari-
ables include the processes and background tasks. Also, the selected Operating
System (OS) and garbage collector (GC) selected, along with the temperature of
the room where the experiments took place could have an impact. We minimize
this threat by deactivating unnecessary processes and services, like the network
and OS update manager of the machine that we used for our experiments; we
also controlled the selection of the OS and GC, which were the same for all
experiments: XUbuntu 12.04, and the default GC for Java. Threats to external
validity: For our evaluation, we selected nine Java applications, used their asso-
ciated test suites, and chose six libraries as the source of our considered potential
choices. It is possible that conclusions drawn from this set may not generalize
to all applications or other languages, libraries, or test suites. To minimize the
threat, the applications we considered were selected because they have been used
by many researchers and they are representative of applications using the JCF.

5 Related Work

The closest related works to this paper are the works recently presented by
Brownlee et al. and Bokhari et al., where approaches based on genetic improve-
ment are used to search and optimize the energy usage of Collection classes and
the Rebound Java library, respectively [3,4]. In [4], Brownlee et al. presented an
Object-Oriented Genetic Algorithm (OO-GI) to find an energy-efficient imple-
mentation for 6 Collection classes in the Guava and Apache Commons Collec-
tions Libraries. Similarly, in [3] a deep parameter optimization algorithm based
on genetic algorithms is used to toggle an application’s parameters and find ver-
sions of an application that improve the original version in terms of its energy
usage. Although our approach also uses a GA to drive the search for an energy
efficient version of an application, our work is different from the existing work in
several aspects: (1) the transformations we carried out are based on implemen-
tation changes selected by developers instead of general/random lines of code
from a program, (2) the optimizations found by our approach are not necessarily
target-specific as those based on assembly code, (3) our study involves complete
Java programs while previous studies have been applied to isolated classes or to
a specific library, and (4) our evaluation includes 9 real applications with various
code sizes.

290 I. Manotas et al.

Genetic Improvement (GI), the process of automatically improving a systems
behaviour by automatically generating application code, a.k.a. genetic program-
ming (GP), is another area closely related to our work [29]. GI has been used to
improve systems’ performance [17], and more recently to improve energy usage of
systems [5,27]. In [27], the authors use a similar approach to GI where a Genetic
Optimization Algorithm (GOA) finds program versions that use less energy than
the original program by changing the assembly code of C/C++ programs. Our
work is different from those using GI in that we do not use GP (i.e., produce auto-
matically application code) as a way to improve an application’s energy usage.
Instead of GP, we use evolutionary computation as a mechanism to search for an
optimized version of the original application, where variations of an application
are created by making changes in the application’s bytecode or source code.

Three major approaches to measure the energy consumption of programs are
instrumentation of hardware with power meters, estimation models, and simula-
tion of the energy usage for different hardware components [13,28]. Estimation-
based approaches have gained more attention lately since they are easy to use
and provide good quality approximations close to real measurements [7,8,23].
For instance, Opacitor [7] uses a custom version of the OpenJDK to incorporate
the energy model of the Java opcodes created by Hao et al. [15]. Although these
tools provide good energy estimates, some of them are not publicly available,
their energy models are machine dependent, or they require running additional
software that introduce noise to the system. We selected the RAPL energy esti-
mation approach since it provides energy estimates close to the real measure-
ments, it has been widely tested and used in practice [14].

6 Conclusions and Future Work

We have studied two genetic algorithms, gGA and NSGA-II, to drive the search
for transformations that make a Java application more energy efficient. Based on
our experiments, for large applications, the limited exhaustive search strategy
seems to be more adequate for SEEDSapi in terms of the time required and
energy savings obtained. For small to medium size applications, metaheuristic-
based search strategies tend to provide a better energy savings to cost ratio,
and therefore might be preferred. These results motivate the instantiation of
multiple search strategies in SEEDSapi that allow developers to try various search
techniques to find an improved energy application version of their applications. In
general, users of SEEDSapi can decide which search strategy to use based on their
energy goals and budget. Future work will include the exploration of different
configurations for GAs, other metaheuristic strategies to drive the search, and
additional types of code transformations commonly used by developers in mobile
and Internet of Things applications.

Acknowledgments. This work is supported in part by National Science Foundation
Grant No. 1618161.

Exploring Evolutionary Search Strategies 291

References

1. Banerjee, A., Chong, L.K., Chattopadhyay, S., Roychoudhury, A.: Detecting energy
bugs and hotspots in mobile apps. In: International Symposium on Foundations
of, Software Engineering, pp. 588–598 (2014)

2. Banerjee, T., Ranka, S.: A genetic algorithm based autotuning approach for per-
formance and energy optimization. In: International Green and Sustainable Com-
puting Conference, pp. 1–8. IEEE Computer Society (2015)

3. Bokhari, M.A., Bruce, B.R., Alexander, B., Wagner, M.: Deep parameter opti-
misation on android smartphones for energy minimisation: a tale of woe and a
proof-of-concept. In: Genetic and Evolutionary Computation Conference Compan-
ion. ACM (2017)

4. Brownlee, A.E.I., Burles, N., Swan, J.: Search-based energy optimization of some
ubiquitous algorithms. IEEE Trans. Emerg. Top. Comput. Intell. 1(3), 188–201
(2017)

5. Bruce, B.R., Petke, J., Harman, M.: Reducing energy consumption using genetic
improvement. In: Conference on Genetic and Evolutionary Computation, pp. 1327–
1334. ACM (2015)

6. Bunse, C., Hopfner, H., Roychoudhury, S., Mansour, E.: Choosing the ‘Best’ sort-
ing algorithm for optimal energy consumption. In: International Conference on
Software and Data Technologies, pp. 199–206 (2009)

7. Burles, N., Bowles, E., Brownlee, A.E.I., Kocsis, Z.A., Swan, J., Veerapen, N.:
Object-oriented genetic improvement for improved energy consumption in Google
Guava. In: Barros, M., Labiche, Y. (eds.) SSBSE 2015. LNCS, vol. 9275, pp. 255–
261. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22183-0 20

8. Counts, T.: Running average power limit. Technical report. Intel Open
Source (2012). https://01.org/blogs/tlcounts/2014/running-average-power-limit-
E2%80%93-rapl

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. Trans. Evol. Comp 6(2), 182–197 (2002)

10. Dreo, J., Siarry, P., Petrowski, A., Taillard, E.: Metaheuristics for Hard Optimiza-
tion: Methods and Case Studies. Springer, Heidelberg (2006). https://doi.org/10.
1007/3-540-30966-7

11. Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimiza-
tion. Adv. Eng. Softw. 42, 760–771 (2011)

12. Guo, C., Zhang, J., Yan, J., Zhang, Z., Zhang, Y.: Characterizing and detecting
resource leaks in android applications. In: International Conference on Automated
Software Engineering. IEEE Press (2013)

13. Gurumurthi, S., et al.: Using complete machine simulation for software power esti-
mation: the softWatt approach. In: International Symposium on High-Performance
Computer, Architecture, pp. 141–151 (2002)

14. Hackenberg, D., Ilsche, T., Schöne, R., Molka, D., Schmidt, M., Nagel, W.E.: Power
measurement techniques on standard compute nodes: a quantitative comparison.
In: IEEE International Symposium on Performance Analysis of Systems and Soft-
ware, pp. 194–204 (2013)

15. Hao, S., Li, D., Halfond, W.G.J., Govindan, R.: Estimating mobile application
energy consumption using program analysis. In: International Conference on Soft-
ware Engineering, pp. 92–101 (2013)

16. Hunt, N., Sandhu, P., Ceze, L.: Characterizing the performance and energy effi-
ciency of lock-free data structures. In: Workshop on Interaction between Compilers
and Computer Architectures, pp. 63–70 (2011)

https://doi.org/10.1007/978-3-319-22183-0_20
https://01.org/blogs/tlcounts/2014/running-average-power-limit-E2%80%93-rapl
https://01.org/blogs/tlcounts/2014/running-average-power-limit-E2%80%93-rapl
https://doi.org/10.1007/3-540-30966-7
https://doi.org/10.1007/3-540-30966-7

292 I. Manotas et al.

17. Langdon, W.B., Harman, M.: Optimizing existing software with genetic program-
ming. IEEE Trans. Evol. Comput. 19(1), 118–135 (2015)

18. Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Oliveto, R., Di Penta, M.,
Poshyvanyk, D.: Mining energy-greedy API usage patterns in Android apps: an
empirical study. In: Working Conference on Mining Software Repositories. ACM
(2014)

19. Linares-Vásquez, M., Bavota, G., Cárdenas, C.E.B., Oliveto, R., Di Penta, M.,
Poshyvanyk, D.: Optimizing energy consumption of GUIs in Android apps: a multi-
objective approach. In: Joint Meeting on Foundations of Software Engineering.
ACM (2015)

20. Luke, S.: Essentials of Metaheuristics, vol. 2. Lulu, Raleigh (2013)
21. Manotas, I., Pollock, L., Clause, J.: Seeds: a software engineer’s energy-

optimization decision support framework. In: International Conference on Software
Engineering. ACM (2014)

22. Morales, R., Saborido, R., Khomh, F., Chicano, F., Antoniol, G.: Earmo: an energy-
aware refactoring approach for mobile apps. IEEE Trans. Softw. Eng. 1 (2017)

23. Noureddine, A., Islam, S., Bashroush, R.: Jolinar: analysing the energy footprint
of software applications (demo). In: International Symposium on Software Testing
and Analysis, pp. 445–448. ACM (2016)

24. Grissom, R.J., Kim, J.J.: Effect Sizes for Research: Univariate and Multivariate
Applications, 2nd edn. Taylor and Francis Group, LLC, Routledge (2012)

25. Sahin, C., et al.: Initial explorations on design pattern energy usage. In: Interna-
tional Workshop on Green and Sustainable Software, pp. 55–61 (2012)

26. Sahin, C., Pollock, L., Clause, J.: How do code refactorings affect energy usage?
In: International Symposium on Empirical Software Engineering and Measurement.
ACM (2014)

27. Schulte, E., Dorn, J., Harding, S., Forrest, S., Weimer, W.: Post-compiler software
optimization for reducing energy. In: International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM (2014)

28. Singh, D., Peterson, P.A.H., Reiher, P.L., Kaiser, W.J.: The Atom LEAP
platform for energy-efficient embedded computing: Architecture, operation,
and system implementation (2010). http://lasr.cs.ucla.edu/leap/FrontPage?
action=AttachFile&do=get&target=leapwhitepaper.pdf

29. Woodward, J.R., Johnson, C.G., Brownlee, A.E.: GP vs GI: if you can’t beat them,
join them. In: Genetic and Evolutionary Computation Conference Companion, pp.
1155–1156. ACM (2016)

http://lasr.cs.ucla.edu/leap/FrontPage?action=AttachFile&do=get&target=leapwhitepaper.pdf
http://lasr.cs.ucla.edu/leap/FrontPage?action=AttachFile&do=get&target=leapwhitepaper.pdf

Optimization Experiments in the Continuous
Space

The Limited Growth Optimistic Optimization Algorithm

David Issa Mattos1(&) , Erling Mårtensson2, Jan Bosch1 ,
and Helena Holmström Olsson3

1 Department of Computer Science and Engineering,
Chalmers University of Technology,

Hörselgången 11, 412 96 Göteborg, Sweden
{davidis,jan.bosch}@chalmers.se

2 Sony Mobile Communications, Nya Vattentornet, 221 88 Lund, Sweden
erling.martensson@sony.com

3 Department of Computer Science and Media Technology, Malmö University,
Nordenskiöldsgatan, 211 19 Malmö, Sweden
helena.holmstrom.olsson@mah.se

Abstract. Online controlled experiments are extensively used by web-facing
companies to validate and optimize their systems, providing a competitive advan-
tage in their business. As the number of experiments scale, companies aim to invest
their experimentation resources in larger feature changes and leave the automated
techniques to optimize smaller features. Optimization experiments in the continu-
ous space are encompassed in the many-armed bandits class of problems. Although
previous research provides algorithms for solving this class of problems, these
algorithms were not implemented in real-world online experimentation problems
and do not consider the application constraints, such as time to compute a solution,
selection of a best arm and the estimation of the mean-reward function. This work
discusses the online experiments in context of the many-armed bandits class of
problems and provides three main contributions: (1) an algorithm modification to
include online experiments constraints, (2) implementation of this algorithm in an
industrial setting in collaboration with SonyMobile, and (3) statistical evidence that
supports the modification of the algorithm for online experiments scenarios. These
contributions support the relevance of the LG-HOO algorithm in the context of
optimization experiments and show how the algorithm can be used to support
continuous optimization of online systems in stochastic scenarios.

Keywords: Online experiments � Multi-armed bandits
Infinitely many-armed bandits � Continuous-space optimization

1 Introduction

Traditional requirements engineering relies on domain experts and market research to
model the user behavior and define requirements for their systems. However, research
shows that, often as 70–90% of the time, companies can be wrong about their customer

© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 293–308, 2018.
https://doi.org/10.1007/978-3-319-99241-9_16

http://orcid.org/0000-0002-2501-9926
http://orcid.org/0000-0003-2854-722X
http://orcid.org/0000-0002-7700-1816
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_16&domain=pdf

preferences [1–3]. In this scenario, several companies are adding on top their
requirements engineering practices the usage of post-deployment data to evaluate the
user behavior and set prioritization and optimization objectives. One way use post-
deployment data in software development is through online controlled experiments
with user behavior. Aligned with a set of long-term business goals metrics [4], these
companies are running business-driven experiments, such as A/B tests, to validate their
business hypotheses [5].

This movement started with web-facing companies such as Microsoft, Google,
Facebook, Amazon, LinkedIn, among others [2, 6–9], and they continuously report the
competitive advantages that experimentation techniques such as A/B delivers in
business-driven experiments [10]. As these companies scale their experimentation
infrastructure and organization to keep their competitive edge, they developed
sophisticated techniques to run experiments in range of situations that simple A/B
experiments face limitations. Some of these techniques are overlapping experiments
[6], optimal ramp-up [9], networked A/B testing [11], multi-armed bandits [12],
counterfactual analysis [13] and optimization experiments [14, 15]. With the increasing
number of experiments being run every year [1, 9], companies are looking for new
techniques that can free some of their research and development resources from the
lower risk optimization experiments and allow these resources to be employed in
experiments that have higher risk and higher potential return on investment and that
cannot be managed automatically by a computer.

In this context, bandit algorithms started to be employed by software companies to
simplify the experimentation process in some experiments [12]. Bandit problems is a
class of problems that deals with the exploration/exploitation dilemma [16]. This work
focuses on a subset of bandit problems called the infinitely many-armed bandit prob-
lems. This subset investigates the optimization of parameters in a continuous space, in
the presence of an unknown mean reward function. This class of problems is partic-
ularly important in online controlled experiments, as several user-behavior assumptions
are captured in the systems in the form of constants that can be mapped in a continuous
space. The most prominent and least restrictive algorithm for the infinitely many-armed
bandit problem is the Hierarchical Optimistic Optimization (HOO) algorithm [17, 18].
However, there is no evidence or empirical evaluation of the usage of this algorithm in
online experiments. During the implementation of the HOO algorithm in collaboration
with Sony Mobile, this algorithm presented limitations some limitations, such as the
computation time, the correctness of the output based on different mean-reward dis-
tribution functions, the lack of a criterion to select the best arm at any point, and an
estimation of the mean-reward.

The contribution of this work is three-fold. First, we provide a modification of the
HOO algorithm to overcome the identified online experiments restrictions, improving
the correctness of the output, the time to compute, a criterion to select the best arm and
an estimation of the mean-reward function. We call this new algorithm as the Limited
Growth Hierarchical Optimistic Optimization algorithm (LG-HOO). Second, we pre-
sent an implementation of LG-HOO in an industrial setting, in collaboration with Sony
Mobile. Third, we provide statistical evidence that supports the modification of the
algorithm not only in real-world scenario, but also on simulation scenarios.

294 D. I. Mattos et al.

This paper is organized as follows. Section 2 presents background information in
controlled experiments, bandits problems and the infinitely many-armed bandit prob-
lem, the HOO algorithm and related work. Section 3 discusses the research process.
Section 4 presents the LG-HOO algorithm, results from simulations, and the results of
the implementation of the LG-HOO in an industrial context in collaboration with Sony
Mobile. Section 5 discuss the results of the LG-HOO and makes a statistical com-
parison of the LG-HOO algorithm with the HOO. Section 6 concludes and discusses
future research directions.

2 Background and Related Work

2.1 Online Controlled Experiments

Controlled experiments are a technique where the users are randomly assigned to two
variants of a product: the control (current system) and the treatment (the system with a
change X). The change X can be the implementation of a new feature or the
parametrization for optimization of existing features. After the change is implemented,
the system is instrumented and the user’s behavior and the system performance are
computed. After a predetermined period of data collection, the computed metrics for all
variations of the system (control and treatments) are analyzed. If the two following
conditions are true: (1) the assumption that the external factors are spread out evenly
between the two variants due to consistent randomization process holds true (quality
checks can help assess this assumption) and (2) the only consistent difference between
the treatment and the control is the change X; we can establish a causal relationship of
the change X and the observed difference in the metrics. Kohavi et al. [19] provide a
detailed guide on how to run online controlled experiments in the web. If the exper-
imentation process is used in incremental variations of the system, this becomes an
optimization procedure.

2.2 The Multi-armed Bandit, the v-Bandit Problem, and the HOO

The Multi-armed Bandit Problem
Multi-armed bandit problems are a class of problems that deals with the exploration
and exploitation trade-off. The problem statement and its name come from parallel the
of the gambler problem facing a row of N slot machines, also called one-armed bandits.
The gambler wants to maximize the end reward from the slot machines after a set of
plays. Each slot machine/arm has a fixed unknown probability distribution for the
reward. The gambler faces the problem of exploiting the arm that provides the largest
reward while exploring other arms to make sure he does not miss arms that can provide
a better reward. In its simpler formulation, the bandit has limited number of rows to
play, the number of arms is finite, the arms are independent of each other, and each arm
has a stationary stochastic distribution over time.

Optimization Experiments in the Continuous Space 295

The general problem can be formulated as [13]:

a ¼ p dð Þ; Arm a 2 fa1. . .aKg ð1Þ
y ¼ r a; d0ð Þ; Reward y 2 R ð2Þ

Where a is the arm selected, K is the number of arms, p is the user-defined policy (a
selection of actions) function to balance the exploration of arms and the exploitation of
the best arm so far, d and d0 are noise variable (that makes the problem stochastic), y is
the measured reward and r is the unknown mean-reward function for the selected arm.
Several policies can be formulated in this class of problem, the most used is to min-
imize the regret. Regret is comparison of the cumulative mean reward of the algorithm
and the expected reward of playing the optimal arm.

Regret tð Þ ¼ r a�ð Þ � t �
Xt

s¼1
l asð Þ ð3Þ

Where l að Þ is the mean reward of the arm a over the time and a� is the arm with the
largest mean-reward over time:

a� ¼ max
a2 a1...aKf g

l að Þ ð4Þ

The multi-armed bandit algorithms are the construction of the user-defined policy p
to select the arm.

The v-Bandit Problem and The Infinitely Many-Armed Bandit Problem
The v-bandit problem, also known as the continuum-armed bandit problem, is for-
mulated similarly to the multi-armed bandit problem. However, instead of a predefined
and finite number of arms (Arm a 2 fa1. . .aKg), the v-bandit problem has an infinite
number of arms that are drawn from a continuous set (Arm a 2 v, where v � R). The
v-bandit problem is part of the general problem of the infinitely many-armed bandits
(when the number of arms in much greater than the allowed number of plays). Some of
the advantages of selecting the arms from a continuous space compared to the discrete
many-arms counterpart are: (1) discretization of the space reduces limits the opti-
mization precision to the discretization interval. To obtain a more refined interval it is
necessary to add new arms that have lower confidence compared to the existing ones.
(2) It is not necessary to discretize and compute the arms prior to the experiment, as
well as keeping statistics for them all. (3) infinitely many-armed bandits require less
exploration time than finite armed bandits (discretized) in the same conditions [20].

The v-bandit problem can be represented as finding the arm a� that minimizes the
regret function:

a ¼ p dð Þ;Arm a 2 v;where v � R ð5Þ

y ¼ r a; d0ð Þ;Reward y 2 R ð6Þ

296 D. I. Mattos et al.

Regret tð Þ ¼ r a�ð Þ � t �
Xt

s¼1
l asð Þ ð7Þ

a� ¼ argmin
a

Regret tð Þ ð8Þ

The infinitely many-armed bandit problems have been studied in different frame-
works, Bayesian, frequentist parametric and frequentist non-parametric settings. The
Bayesian problem is to compute the optimal actions efficiently, while the frequentist is
to achieve a low rate of regret [21]. A class of algorithms for the frequentist non-
parametric setting is the hierarchical optimization. A recent report compares Bayesian
and the frequentist non-parametric frameworks concluding that major advantage of a
hierarchical optimization algorithms is that they are faster in term of time complexity
[18]. In the frequentist non-parametric framework two algorithms stand out, the Bandit
Algorithm for Smooth Trees (BAST) and the Hierarchical Optimistic Optimization
(HOO) [17]. In this work we use the HOO algorithm, as the BAST algorithm makes
strong assumptions on the unknown mean-reward distribution functions that might not
be valid in real-world applications [17]. An in-depth discussion and comparison with
other algorithms are presented in [18, 21].

The HOO algorithm
The Hierarchical Optimistic Optimization (HOO) algorithm [21] investigates the infi-
nite many-armed bandit problem. This algorithm is classified inside of the hierarchical
optimization algorithms in the frequentist non-parametric framework. In this section,
we briefly describe the HOO algorithm and its assumptions.

The algorithm makes the stochastic assumption of the mean-reward of any new
selected arm. This assumption means that the reward from the new arm is an inde-
pendent sample from a fixed distribution. The reward is assumed to be in the interval of
y 2 0; 1½ �. This assumption is realistic as the reward metric is defined and can be
normalized to this range. The other assumption is that the unknown reward function is
continuous around the maximum, which is a reasonable assumption in practical
problems [21].

The algorithm aims to estimate the underlying unknown reward function f around
its maxima while it estimates loosely f in other parts of the space v. This is imple-
mented using a binary tree in which each arm is associated to a region of the space. The
deeper the tree grows the smaller the subset of the space v that it estimates. The HOO
uses an optimistic estimate B, using the upper confidence bound, for each node. The
tree is traversed and at each iteration the node of largest bound B, is selected. Based on
the reward the tree is updated.

The algorithm starts from the root and selects the child with the largest bound B
(ties are broken randomly) until it reaches the leaf. From the traversed path from root to
leaf, it randomly selects one node to play. The node statistics are updated and the tree is
extended if it is a leaf. The statistics and bounds are computed recursively from the leaf
until the root using the formulas below. Below is the notation used in throughout this
work (and is the same as the one presented in [21]).

v H; Ið Þð Þ is the value of the node (H, I).
aplayed is the value of the played arm.

Optimization Experiments in the Continuous Space 297

Bh; i is the bound for the node i at the height h. The children for this node are
Bhþ 1; 2i�1 and Bhþ 1; 2i. The root is denoted by the index (0, 1).

n is the current discrete time instance and the mean reward for time is represented
by dlh; i nð Þ.

Th; i nð Þ is the number of times a node was played until time n.
The bounds are updated according to the formulas below:

Uh; i nð Þ ¼ dlh; i nð Þþ
ffiffiffiffiffiffiffiffiffiffi
2 ln n
Th; i nð Þ

q
þ m1qh; if Th; i nð Þ[0

þ1; if Th; i nð Þ ¼ 0

(
ð9Þ

Bh; i nð Þ ¼ min Uh; i nð Þ; max Bhþ 1; 2i�1 nð Þ; Bhþ 1; 2i nð Þ� �� �
if h; ið Þ 2 Treen

þ1; otherwise

�
ð10Þ

Apart from the mentioned advantages of v-armed bandits algorithms in comparison
with grid searching, one of the main advantages of this method is the updating of
confidence bound of the whole path as a child is selected. Even though a particular
node was not played, its confidence bound is updated if any of its descendants are
played. This leads to tighter confidence intervals of a whole path. In most grid search
and regular multi-armed bandits, the confidence intervals are created and updated only
for the discrete played arm.

2.3 Related Work

Optimization in online experiments can be done by using a range of different tech-
niques. The simplest one is conducting sequential A/B/n experiments. This technique
has the advantage of having comparable sample sizes for all variations in the statistical
analysis at the expense of increase in the regret and the higher sample size for the
optimization. Genetic algorithm has also been used in simulation of online experi-
ments. Tamburrelli and Margara [15] proposed an infrastructure and a genetic algo-
rithm to optimize HTML web pages in a large space. However, the proposed solution
requires using non-validated assumptions on the hyper-parameters and on the mating
strategies. Additionally, the solution requires a large space of unique users that makes it
application in real world restricted to very large scale software companies.

Multi-armed bandits algorithms provide a framework for optimization of experi-
ments and it is widely used in industry [14, 22, 23]. Google’s Vizier [14] is a tool for
black-box optimization that take advantage of multi-armed bandit algorithms. While
the paper does not focus on online controlled experiments, it mentions the use of the
tool for optimization of web properties such as thumbnail sizes and color scheme.
Shang [18] presents an overview of black-box optimization methods using bandits
algorithms and Gaussian processes. Mattos et al. [24, 25] presents an architecture
framework and architecture decisions to run optimization experiments with a domain
specific heuristic for the bandit problem.

298 D. I. Mattos et al.

3 Research Process

This research was conducted in collaboration with Sony Mobile Communications in
Lund, Sweden. Sony Mobile is a subsidiary of Sony Corporation and is a leading
global innovator in information technology products for both consumer and profes-
sional markets. One of the Sony Mobile’s products is transitioning to data-driven
development and aims to run experiments continuously throughout its development
process. The product consists of a business to business solution, where the user of the
software consists of employees of the company that requested the solution. The soft-
ware development of this product span development for web, mobile, backend systems
and distributed embedded hardware. Therefore, the requirements for an experimenta-
tion system include the ability of allowing experiments to be run in the variety of
supported systems and the capability of supporting both traditional A/B experiments as
well as search solutions in a larger or continuous space. An experimentation system
(called ACE) that fulfills the requirements was developed following the framework and
architecture decisions presented in [24, 25]. A full description of this system is beyond
the scope of this paper. During the development of the product several assumptions
were made, such as numerical, textual, and GUI constants that has a direct impact in the
how the user interact with the system. Some of the numerical assumptions are constants
in the real space or in a predetermined range (x 2 R or x 2 0; 1½ �). The develop-
ment team of this product wants to optimize these constants and to verify these
assumptions in based on actual user behavior metrics. The HOO algorithm was selected
as the starting point for the optimization search process. The HOO algorithm was
implemented in the ACE system and was repeatedly tested and iterated in both sim-
ulation and with real users. The results of these iterations were constantly discussed
with the product development team and the modifications of this algorithm resulted in
the LG-HOO algorithm. The limitations of the HOO algorithm, the changes motivation
for the LG-HOO algorithm, and an empirical comparison between both are presented in
the Sect. 4.

4 The LG-HOO Algorithm and the Empirical Data

This section presents the modification version of the HOO algorithm [21]. The HOO
algorithm was modified to allow its application in online controlled experiments. The
LG-HOO follows the same structure as the HOO with the main modifications high-
lighted below. The growth restrictions motivate the name Limited Growth HOO. The
implementation source code, the results for comparison, and the raw data used and the
analysis source is available at https://github.com/davidissamattos/LG-HOO.

• A node (arm) is only allowed to grow if it has been played a minimum number of
times. This ensures that each arm has a minimum confidence level to ensure the
growing in more confident direction. The HOO grows based only on the upper
bound of the arm, and this bound can be unrealistic if only one observation has been
made, as it grows with

ffið2 ln nÞ=Th; i nð Þp
. The tradeoff of selecting a minimum

growth limit is that it needs a higher number of plays to reach the same level of

Optimization Experiments in the Continuous Space 299

https://github.com/davidissamattos/LG-HOO

interval refinements (that is related to the height of the tree). However, as shown
later, the minimum growth does not imply that the estimated best arm is further to
the theoretical best arm when the underlying function is known.

• The original HOO does not point a method for selecting the best arm, as it is
intended to be a continuous process. The algorithm indicates that the highest node
on the tree represents the maximum of the underlying function. However, in online
experiments, after a period of time the company might want to stop the experiment
to save resources, improve performance or make a static decision regarding the
change. Given these constraints we defined the process to select the best arm as the
node (h, i) with the largest criterion Ch;i, where

Ch; i ¼
clh; i nð Þffiffiffiffiffiffiffiffi
2 ln n

Th; i nð Þ

q
þ m1qh

; if Th; i nð Þ[0

0; if Th; i nð Þ ¼ 0

8><>: ð11Þ

The idea behind this criterion is to select the node with the largest average while
having the lowest bound. This penalizes nodes that have been play few times
compared to nodes that have a higher confidence. A downside of this is that it
favors nodes that had several plays, and this is usually associated with nodes at
lower heights. However, this criterion performs better than the suggested highest
height node, when measuring the distance to the theoretical best arm using an
absolute Euclidian distance. Note that this criterion does not influence the growth of
the tree as it still uses the upper confidence bound to select the best child node.

• The LG-HOO introduces a restriction to the height of the tree. As the tree grows it
becomes computationally intensive to update all bounds in a single play iteration.
Delays and computational restriction if running in computers with limited resources
(such as embedding the algorithm in mobile apps) can significantly impact the user
experience. Restricting the tree height puts an upper bound in the computational
time, however it limits the precision that the algorithm can reach.

• To facilitates the understanding of the user behavior after running the algorithm for
a limited time period, we make an estimation of the underlying mean-reward
function using the Savitzky-Golay filter [26] with the decision criterion. Empiri-
cally, we determine that a window size of (number of nodes)/2 and a polynomial
order equal to the tree’s height, to produce good results. The tradeoff of using the
Savitzky-Golay smoothing filter is the underestimation of high derivative peaks,
leading to a conservative estimation.

• In practice, it often happens that an experiment is coded and then launched without
being active (showing for all users the same variation). When the experiment is
finally launched several users might be using arms that are not the defined root of
the HOO algorithm. Similar situation can also happen in approximation of values
by different users/clients. The LG-HOO tries to minimize the number of lost data
points by selecting the closest node. If the played arm is closer to the node then its
children, the reward is added to the node, otherwise it is discarded. This strategy
works under the assumption of continuity of the underlying function while it
minimizes the number of discarded data points.

300 D. I. Mattos et al.

Algorithm 1 represents the full LG-HOO strategy, using the same notation as the
HOO, as discussed in the background. This algorithm is implemented in Python 2.7
and is available at https://github.com/davidissamattos/LG-HOO.

The repository presents additional information on the connection of the algorithm
with the implemented code. The algorithm is composed of four procedures. The first
procedure is the procedure that selects the arm to be played in with the current tree. The
second is called after an arm is played and a reward is received, updating and extending
the tree. The third selects the best arm, when the optimization process is being final-
ized. The forth estimates the mean-reward function using the Savitzky-Golay filter.

4.1 The LG-HOO in Simulation

In this subsection, we provide some illustrative pictures of the LG-HOO algorithm in a
simulation environment using different mean reward functions. Figure 1 shows the

Optimization Experiments in the Continuous Space 301

https://github.com/davidissamattos/LG-HOO

usage of the LG-HOO algorithm in 6 different conditions. The orange line is the true
mean-reward function that determines the probability of a Bernoulli distribution
Y ¼ Ber f xð Þð Þ. Where Y is the measure value (0 or 1, click or no click) and f xð Þ is the
mean reward function with variation x. This line can represent a customer profile (that
is unknown but we still want to optimize a variation for this function). This profile can
be complex as the picture in the left-top corner or simpler such as the picture in left-
middle with only three ranges of value. The optimization process consists of finding the
variation x that maximizes the mean reward function based only on the stochastic
measured Y.

Fig. 1. Simulation results of the LG-HOO algorithm in wide range of different user mean-
reward functions. In orange, is the true mean-reward function (unknown to the LG-HOO). In
blue, is the estimated mean-reward function. The tree represents the LG-HOO search process at
the end of the iteration, and the blue vertical line represents the best arm selection using the
proposed selection criterion. The top-left subplot represents the same mean-reward function
discussed in the original HOO algorithm [21]. (Color figure online)

302 D. I. Mattos et al.

These simulations show how the LG-HOO algorithm work and estimate the mean
reward function (blue line). All the simulations were conducted considering a total of
10,000 unique interactions (horizon n ¼ 10; 000), using the minimum growth of 10,
maximum tree height limit of 10, m1 ¼ 1:0, and q ¼ 0:5, which is representative of
the amount of data collected in a period of one month of the conducted experiment with
Sony Mobile. We can see that with this number of unique interactions we can estimate
the parameter that maximizes mean reward function.

4.2 The LG-HOO at Sony Mobile

The LG-HOO was implemented in the context of the product described in Sect. 3. One
of the features of the product has an algorithm that estimates the time for launching a
notification to users. If the notification arrives too early the users can ignore it and the
feature has little value. If it arrives too late it can have a negative impact in the overall
user experience. Before the experiment, the feature was using the minimum time
scenario (reducing even more the time makes the notification arrives too late). The
impact of the notification is measured depending on the action the user takes after
receiving the notification. This metric is a stochastic variable that follows a Bernoulli
distribution, where 1 (positive value) represents when the user takes an action in time
and 0 when the user does not take an action in time (negative). The metric is stochastic
because different factors not related to the time of the notification might influence the
user action. The team wanted to investigate if a change in the algorithm that modifies
the notification time impacts the metric. The hypothesis of this experiment is that
adding a constant delay in the algorithm could indicate the extent the algorithm
influences the metric and if development effort was needed to improve it. The team also
wanted to minimize the regret of too early notifications. Sequential A/B/n experiments
would take too long to cover the whole extent of search space while increasing the
regret. This scenario sets an appropriate experiment for a continuum-armed bandit
algorithm such as the LG-HOO.

The experiment consisted of searching an appropriate delay offset for the notifi-
cation. The experiment limited the offset in the range of 0 and 600,000 ms (10 min).
The users were assigned to a new variation delay every time they launched their mobile
applications, and they logged their behavior right after the timeout to complete the
action.

The LG-HOO was implemented in the ACE system in Python 2.7. The ACE
system is hosted in the Google App Engine Flexible cloud environment1. The company
application logged data and requested variation arms from the ACE system using
POST requests. In case of lost packages or failure in requesting a new variation, the
system uses the current variation (offset of zero). The parameters of the LG-HOO in
this scenario are: minimum growth of 10, maximum tree height limit of 10, m1 ¼ 1:0,
and q ¼ 0:5. The limit in the tree height restricts the precision of the output of the
algorithm in approximately 500 ms, which is considered good level of precision for the
application. For this experiment, it was collected data from over 5000 user interactions

1 https://cloud.google.com/appengine/docs/flexible/.

Optimization Experiments in the Continuous Space 303

https://cloud.google.com/appengine/docs/flexible/

in the period of 4 weeks. The results and the outputs of the algorithm are shown in
Fig. 2. This Figure provides both the visualization of the search tree, as well as the
approximated mean-reward function and the selected best arm. The mean-reward
function indicates that the offset does not have a large influence in the selected metric
for the extent of the whole range of delays, but it still shows that a small delay can
improve the concerned metric.

For the team the approximation of the of the mean reward function was important
because it maps how the users behave in respect to this modification on the system, and
therefore can help decisions such as to modify the feature, try other experiments on the
feature or related features or move the development effort to another part of the system.

This section described the LG-HOO algorithm, the modifications, and trade-offs of
the LG-HOO. In the simulation subsection, we provide simulation results and evidence
of the LG-HOO being applied to different mean-reward functions. The simulation
results allowed us to implement the LG-HOO algorithm with confidence in an
industrial setting in collaboration with Sony Mobile. As there is no industrial evidence
of the use of the HOO algorithm, some of its limitations were unknown prior to this
work. The industrial case provides real-world evidence of the use of the LG-HOO in
online experiments.

5 Discussion

Prior to launching the algorithm to real users, a comparison between the HOO and the
LG-HOO was made and is discussed in this section. The algorithms were compared
using the absolute Euclidian distance to the theoretical maximum and the time to
compute an algorithm iteration. The first comparison looks at how far the algorithm got
from the true value and relates to the following LG-HOO modifications: (1) the
selection of the best arm policy modification and (2) the minimum number of times an

Fig. 2. The LG-HOO used in the Sony Mobile case. This picture provides both the visualization
of the search tree, as well as the approximated mean-reward function and the selected best arm.

304 D. I. Mattos et al.

arm must be played before growing. The second comparison relates to degradation of
user experience and performance of the system due to the introduction of delays in the
estimation of the next arm to be played.

The algorithms were compared using a Monte Carlo simulation comparing one
thousand runs with a horizon of n ¼ 1000. At each simulation of the algorithm, it was
used a generated random polynomial function as the true mean-reward function f xð Þ.
The polynomial functions were generated by: (1) generating a set of 30 random points
in the x; yð Þ plane, (2) fitting a polynomial with random order (ranging between 0 and
10) to these points, and (3) constraining both the space (x) and the mean reward
probability (y) between 0 and 1. The user follows a Bernoulli distribution Bern f xð Þð Þ,
where y ¼ f xð Þ, and 1 represents a success. With this method we generate random
polynomial functions that are used as the mean reward functions to simulate the user
profile for the algorithms. With this method we can simulated both algorithms against
the same set of true mean reward functions and compare the LG-HOO and the HOO
solutions with the true solution using the absolute Euclidean distance.

The time spent in the calculation for selecting the next arm and the Euclidian
distance were done in the same hardware and operational conditions. The data collected
from this Monte Carlo simulation, and the conducted analysis is also available at
repository. The collected data for the Euclidian distance and the time spent metrics for
both algorithms are non-normal, Shapiro-Wilk test with p < 2.2e−16 and by visual
inspection. Therefore, we compared the two algorithms metrics using the Mann-
Whitney U non-parametric test [27]. We considered as null hypothesis that the
respective LG-HOO metric does not differ from the HOO metric. Table 1 provides a
summary of the statistical analysis. This statistical analysis provide evidence that the
LG-HOO reduces the distance average Euclidian in 14.3% and reduces the spent time
in 26%, using a confidence level of 95%. Due to the increased performance of the LG-
HOO regarding to the correctness of the output and the computation time, only the LG-
HOO algorithm was selected for empirical evaluation in the company case. The data
and code to run this statistical analysis is available at the repository.

6 Conclusion

Optimization procedures associated with bandit algorithms are of great interest to
companies running online experiments. A particular case is the optimization of a
continuous space in the presence of an unknown mean-reward function. As companies

Table 1. Summary of the statistical analysis to compare the LG-HOO and the HOO algorithms
using the Mann-Whitney U test, using a confidence level of 95%

Metric Algorithm Mean value Absolute relative difference P-value

Euclidian distance LG-HOO 0.293 14.3% 0.04179
HOO 0.335

Time spent (in seconds) LG-HOO 1.00 26% <2.2e−16
HOO 1.26

Optimization Experiments in the Continuous Space 305

develop their products, several user assumptions are incorporated into constants in their
software development. Optimization in this scenario is a subclass of bandit problems
called infinitely many-armed bandits. Previous research provides algorithms to solve
this problem in the unidimensional space. However, these algorithms do not have
empirical evidence or usage in online experiments and have restrictions that prevent
their utilization as proposed. This work explores the unidimensional infinitely many-
armed bandits problem in collaboration with Sony Mobile Communications.

The contribution of this work is three-fold. First, we present a modification of the
Hierarchical Optimistic Optimization algorithm (HOO), called the Limited Growth
Hierarchical Optimistic Optimization algorithm (LG-HOO). This modification is
intended to overcome the problems associate with implementing the HOO algorithm in
real-world online experiments. The modifications and the trade-offs involved with these
modifications are presented. Second, the LG-HOO was implemented in collaboration
with Sony Mobile. In this scenario, we provide real-world evidence of the usage of this
algorithm for optimization of software constants. Third, we provide a statistical com-
parison between the LG-HOO and the HOO algorithm in simulation. The statistical
analysis supports the conclusion that the LG-HOO perform better than the HOO, in the
time spent to run and the accuracy of the results. These contributions support the
relevance of the LG-HOO algorithm in the context of optimization experiments and
show how the algorithm can be used to support continuous optimization of online
systems in stochastic scenarios.

This work is the first step in analyzing the usage of infinitely many-armed bandit
algorithms in optimization procedures in software development. In future work, we
plan to expand the LG-HOO to support multi-dimensional arm space, support a multi-
dimensional reward, as these are one of the key aspects that companies want to provide
optimization, and validate these extensions in relevant industrial problems.

Acknowledgments. This work was partially supported by the Wallenberg Artificial Intelli-
gence, Autonomous Systems and Software Program (WASP) funded by Knut and Alice
Wallenberg Foundation. The authors would also like to thank to all the support provided by the
development team at Sony Mobile.

References

1. Kevic, K., Murphy, B., Williams, L., Beckmann, J.: Characterizing experimentation in
continuous deployment: a case study on bing. In: Proceedings - 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineering in Practice Track,
ICSE-SEIP 2017, pp. 123–132 (2017)

2. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The evolution of continuous
experimentation in software product development. In: Proceedings of the 39th International
Conference on Software Engineering ICSE 2017 (2017)

3. Fabijan, A.: Developing the right features: the role and impact of customer and product data
in software product development (2016)

4. Dmitriev, P., Wu, X.: Measuring metrics. In: Proceedings of the 25th ACM International
Conference on Information and Knowledge. Management - CIKM 2016, pp. 429–437
(2016)

306 D. I. Mattos et al.

5. Schermann, G., Cito, J., Leitner, P.: Continuous experimentation - challenges, implemen-
tation techniques, and current research. IEEE Softw. 35, 1 (2018)

6. Tang, D., Agarwal, A., O’Brien, D., Meyer, M.: Overlapping experiment infrastructure. In:
Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery
and data mining - KDD 2010, p. 17 (2010)

7. Bakshy, E., Eckles, D., Bernstein, M.S.: Designing and deploying online field experiments.
In: Proceedings of the 23rd International Conference on World wide web - WWW 2014,
pp. 283–292, September 2014

8. Kohavi, R., Deng, A., Longbotham, R., Xu, Y.: Seven rules of thumb for web site
experimenters. In: Proceedings of the 20th ACM SIGKDD International Conference
Knowledge Discovery and data Mining, KDD 2014, pp. 1857–1866 (2014)

9. Xu, Y., Duan, W., Huang, S.: SQR: balancing speed, quality and risk in online experiments,
no. 1, pp. 1–9, January 2018

10. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The benefits of controlled experimen-
tation at scale. In: Proceedings of the 43rd Euromicro Conference on Software Engineering
and Advanced Applications, SEAA 2017, pp. 18–26 (2017)

11. Gui, H., Xu, Y., Bhasin, A., Han, J.: Network A/B testing. In: Proceedings of the 24th
International Conference on World Wide Web - WWW 2015, pp. 399–409 (2015)

12. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized
news article recommendation. In: WWW 2010, p. 10 (2010)

13. Bottou, L., Peters, J., Quiñonero-Candela, J., Charles, D.X., Chickering, D.M., Portugaly, E.,
Ray, D., Simard, P., Snelson, E.: Counterfactual reasoning and learning systems. J. Mach.
Learn. Res. 14, 3207–3260 (2013)

14. Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., Sculley, D.: Google vizier. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining - KDD 2017, pp. 1487–1495 (2017)

15. Tamburrelli, G., Margara, A.: Towards automated A/B testing. In: Le Goues, C., Yoo, S.
(eds.) SSBSE 2014. LNCS, vol. 8636, pp. 184–198. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-09940-8_13

16. Sutton, R.S., Barto, A.G.: Sutton & Barto Book: Reinforcement Learning: An Introduction.
The MIT Press, Cambridge (1998)

17. Burtini, G., Loeppky, J., Lawrence, R.: A survey of online experiment design with the
stochastic multi-armed bandit, pp. 1–49, October 2015

18. Shang, X., Kaufmann, E., Valko, M.: Hierarchical Bandits for “Black Box “ Optimization,
Lille, (2015)

19. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experiments on the
web: survey and practical guide. Data Min. Knowl. Discov. 18(1), 140–181 (2009)

20. Wang, Y., Audibert, J.-Y., Munos, R.: Algorithms for infinitely many-armed bandits. In:
Advances in Neural Information Processing Systems, pp. 1–8 (2008)

21. Bubeck, S., Munos, R., Stoltz, G., Szepesvári, C.: X - Armed Bandits. J. Mach. Learn. Res.
12, 1655–1695 (2011)

22. Urban, G.L., Liberali, G.G., MacDonald, E., Bordley, R., Hauser, J.R.: Morphing banner
advertising. Mark. Sci. 33(1), 27–46 (2014)

23. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized
news article recommendation. In: Proceedings of the 19th International Conference on
World Wide Web, 2010, pp. 661–670 (2010)

24. Mattos, D.I., Bosch, J., Olsson, H.H.: Your system gets better every day you use it: towards
automated continuous experimentation. In: Proceedings of the 43rd Euromicro Conference
on Software Engineering and Advanced Applications (SEAA) (2017)

Optimization Experiments in the Continuous Space 307

http://dx.doi.org/10.1007/978-3-319-09940-8_13
http://dx.doi.org/10.1007/978-3-319-09940-8_13

25. Mattos, D.I., Bosch, J., Olsson, H.H.: More for less: automated experimentation in software-
intensive systems. In: Felderer, M., Méndez Fernández, D., Turhan, B., Kalinowski, M.,
Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp. 146–161. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69926-4_12

26. Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least
squares procedures. Anal. Chem. 36(8), 1627–1639 (1964)

27. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation, vol. 5/6.
Springer, Hidelberg (2001). https://doi.org/10.1007/978-1-4757-3304-4

308 D. I. Mattos et al.

http://dx.doi.org/10.1007/978-3-319-69926-4_12
http://dx.doi.org/10.1007/978-1-4757-3304-4

Incremental Control Dependency Frontier
Exploration for Many-Criteria Test Case

Generation

Annibale Panichella1(B), Fitsum Meshesha Kifetew2, and Paolo Tonella3

1 Delft University of Technology, Delft, The Netherlands
a.panichella@tudelft.nl

2 Fondazione Bruno Kessler, Trento, Italy
kifetew@fbk.eu

3 Università della Svizzera Italiana(USI), Lugano, Switzerland
paolo.tonella@gmail.com

Abstract. Several criteria have been proposed over the years for mea-
suring test suite adequacy. Each criterion can be converted into a spe-
cific objective function to optimize with search-based techniques in an
attempt to generate test suites achieving the highest possible coverage
for that criterion. Recent work has tried to optimize for multiple-criteria
at once by constructing a single objective function obtained as a weighted
sum of the objective functions of the respective criteria. However, this
solution suffers the problem of sum scalarization, i.e., differences along
the various dimensions being optimized get lost when such dimensions
are projected into a single value. Recent advances in SBST formulated
coverage as a many-objective optimization problem rather than applying
sum scalarization. Starting from this formulation, in this work, we apply
many-objective test generation that handles multiple adequacy criteria
simultaneously. To scale the approach to the big number of objectives to
be optimized at the same time, we adopt an incremental strategy, where
only coverage targets in the control dependency frontier are considered
until the frontier is expanded by covering a previously uncovered target.

1 Introduction

Various coverage criteria, such as branch or mutation coverage, have been pro-
posed to measure how thoroughly a given test suite exercises the program under
test. Correspondingly, automated test case generation has focused on the achieve-
ment of these criteria as the objectives of the generation process. While these
criteria have been tackled mostly independently from each other, a recent work
by Rojas et al. [19] has proposed a test generation approach that optimizes
for multiple criteria simultaneously. With this strategy, the individual fitness
functions of each criterion are aggregated via weighted sum and optimized using
single-objective search algorithms [19]. The resulting test suites are able to detect
more faults compared to those generated with a single criterion [11].

c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 309–324, 2018.
https://doi.org/10.1007/978-3-319-99241-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_17&domain=pdf

310 A. Panichella et al.

While the aforementioned studies showed the benefits of focusing on multiple
criteria, the weighted sum suffers from well-known theoretical limitations [7]: (i)
it is not able to find optimal solutions for non-convex problems; (ii) small changes
in the weights may lead to completely different solutions; (iii) differences along
the various criteria being optimized get lost when they are projected into a single
value. Moreover, the weighted sum is based on the assumption that the criteria
being summed-up are independent of each other. However, this assumption is not
applicable in coverage testing, because of the subsumption relationships between
coverage targets, due to the control dependencies in the program under test. For
example, to cover the lines of code in a basic block, the conditional branch
leading to it must be covered first. In turn, the branch condition could be nested
inside another conditional statement that controls its execution.

In our recent work [16,17] we applied many-objective algorithms to handle
single coverage criterion in which each criterion is handled as a different objective
to optimize in a many-objective fashion. To cope with a possibly large number of
objectives, coverage targets are selected dynamically by the proposed algorithm,
DynaMOSA [17]. This incremental/dynamic search helps achieve higher coverage
than sum scalarization when focusing on a single criterion [4,17].

In this paper, we extend the idea of many-objective dynamic test gener-
ation to multiple heterogeneous criteria being optimized simultaneously. First,
we define an enhanced control dependency graph (ECDG), a variant of the classi-
cal control dependency graph (CDG)1 enriched with the structural dependencies
among coverage targets coming from different coverage criteria (e.g., lines of
code, mutants, etc.). Second, we introduce a search algorithm, which we named
MC-DynaMOSA, that performs incremental exploration of the control dependency
frontier to achieve multiple criteria coverage. In particular, coverage targets
are incrementally selected during the search according to their position in the
ECDG, where the covered frontier expands over time. The results of our empiri-
cal study show that the incremental exploration implemented in MC-DynaMOSA is
more effective than (i) using the weighted sum with archiving strategy (MC-WSA),
and (ii) handling all coverage criteria as fully independent objectives (MC-MOSA).
Effectiveness is measured as the ability of the generated test suites in both (i)
achieving higher coverage scores for seven testing criteria and (ii) detecting more
faults. Furthermore, our results confirm that combining multiple criteria leads
to test suites with superior fault revealing capability.

2 Background and Related Work

Several criteria have been proposed for structural coverage over the years. In
this work, we focus on branch, line, method, weak mutation, input, output, and
exception coverage [19]. In the context of Search-based Software Testing (SBST),
each of these coverage criteria is associated with a fitness function that is used to
1 A control dependency edge between two nodes holds iff the latter is not a post-

dominator of the former, while it is a post-dominator of all intermediate nodes
between the two.

Incremental Control Dependency Frontier Exploration 311

guide the test generation process towards test cases that achieve the maximum
possible coverage for that particular criterion.

Branch coverage (BC): is the most widely adopted coverage criterion. The
fitness function of a test case t with respect to a branch b is computed by con-
sidering the sum of the approach level (al) and the normalized branch distance
(bd) [15]: f(t, b) = al(t, b) + norm(bd(t, b)), where norm is a function that nor-
malizes values into the range [0, 1].

Line coverage (LC): is the simplest and most straightforward coverage cri-
terion, which measures coverage of non-comment lines of code in the System
Under Test (SUT). The associated fitness function is computed by minimizing
the distance to the closest branch on which the line is control dependent.

Weak mutation coverage (WMC): is a coverage criterion based on mutation
where a mutant is considered weakly killed if for a given test case t, the execution
of t on the mutant results in a different internal state than the original program.
Differently, from strong mutation coverage, the internal state difference (aka
infection [21]) may not necessarily propagate to any externally visible difference
(e.g., to a return value). Given a mutant μ and a test t, the fitness function for
calculating WMC is defined based on a heuristic infection distance (id) as follows:
f(t, μ) = al(t, μ) + norm(bd(t, μ)) + norm(id(t, μ)), where approach level and
branch distance refer to the branch which holds a control dependency on μ, while
id(t, μ) estimates the distance to infecting the mutant state. If the mutation is
executed, the minimal state infection distance depends on the mutation operator
that was applied and is estimated as the numerical distance from a value that
would make the states of mutant and original program differ. If the mutation is
not executed, the normalized infection distance is equal to 1 [20].

Input coverage (IC): captures the diversity in the inputs to the SUT used by
the test cases. It measures how spread the values are in the SUT input space.

Output coverage (OC): captures the diversity of the values output by methods
in the SUT. Ultimately, it measures the uniqueness of the output values produced
as a result of executing a test on the SUT.

Exception coverage (EC): measures the number of exceptions triggered by
the execution of a test. The more exceptions a test triggers, the higher EC.

Method coverage (MC): requires that every method of the SUT be called,
either directly or indirectly, by at least one test case.

When used as components of SBST, not all fitness functions of the various
criteria mentioned above provide the same degree of guidance to the search. In
fact, in our experience, IC, OC, EC, and MC contribute little or no guidance to
the search during test generation. On the other hand, criteria such as BC, LC,
and WMC provide strong guidance to the search. The reason for such stronger
guidance is that all the mentioned criteria are, directly or indirectly, associated
with some underlying branches that must be necessarily covered because they
hold a control dependency on the coverage targets.

Multiple Criteria Coverage. The first attempt to combine multiple coverage
criteria was proposed by Rojas et al. [19]. The authors aggregated the various
coverage criteria using a weighted sum with uniform weights (equal to 1), and

312 A. Panichella et al.

have left further investigation of different weight assignments to future work. The
approach was implemented in EvoSuite [10], and experimental results on sub-
jects sampled from the SF110 corpus [10] showed that adding a second criterion
besides line coverage resulted in 14% increase in test suite size and 20% increase
in coverage. On the other hand, using all coverage criteria increased test suite
size by 70%, while the coverage of the individual criteria was reduced on average
by just 0.4%. Overall, the work provides encouraging evidence that combining
multiple coverage criteria during test generation is feasible and beneficial.

After this initial work by Rojas et al., recent work explored, beyond feasibility,
fine-grained analysis of combinations of multiple criteria. In particular, Gay [11]
explored the ability of test suites, generated via multiple criteria, of exposing
known, real-world faults, considering the Defects4J benchmark [12]. Results show
that combining multiple criteria could improve fault detection up to 31%.

A recent trend in automated test case generation consists in recasting it as
a many-objective optimization problem [2,16,17]. However, none of the existing
work on multi-criteria coverage [11,19] takes advantage of the recent, advanced
many-objective test generation algorithms. In fact, they aggregate all fitness
functions associated with multiple criteria into a single fitness function by means
of sum scalarization [6]. This paper presents the first attempt to apply many-
objective test generation to multiple coverage criteria, rather than just to the
multiple targets that can be found for a single criterion.

Recently, we introduced MOSA (Many-Objective Sorting Algorithm), a many-
objective genetic algorithm that considers each coverage target as an indepen-
dent objective to be optimized [16]. It employs a specialized preference crite-
rion to favor promising individuals in the search. Such a preference criterion
helps MOSA focus the search on the most promising individuals, whereas tra-
ditional dominance-based ranking would have resulted in a larger number of
non-dominated individuals, which are not necessarily useful for covering new
targets. Empirical results show that MOSA is indeed superior to state-of-the-
art single objective approaches [16]. MOSA was later improved by its successor
DynaMOSA [17] with the objective of increasing the efficiency of the test gen-
eration process. Indeed, in the presence of a high number of coverage targets,
MOSA could suffer from the algorithmic overhead for computing the Pareto fronts.
DynaMOSA introduces a smarter approach for dealing with this issue, by dynam-
ically adding new targets to be covered each time a previously uncovered target
is reached. DynaMOSA starts with branches that represent method entries, and
every time a branch is covered, all targets dependent on the covered branch are
added to the set of targets to be covered.

A recent study by Campos et al. [4] empirically explored the performance
of various test generation algorithms. They compared variants of traditional
Evolutionary Algorithms (EAs), MOSA, DynaMOSA, and Random Search in
terms of various coverage metrics. Results showed that EAs, supported by test
archives, perform better than random search. Furthermore, many-objective algo-
rithms (MOSA, DynaMOSA) achieve superior performance on branch coverage.

Incremental Control Dependency Frontier Exploration 313

This paper shares with DynaMOSA [4,17] the idea of dynamically updating
the coverage targets to be addressed by many-objective optimization. However,
DynaMOSA cannot be applied directly to multiple, heterogeneous criteria. In this
paper, we extend the idea of dynamic target update to take into account targets
of heterogeneous nature (mutants, branches, diversity, etc.). Our intuition is that
the benefits brought by considering multiple coverage targets at the same time
could be even larger when not only multiple targets but also multiple criteria,
which in turn include multiple targets, are considered at the same time.

3 Approach

Our approach relies on control dependency analysis and branch/dependency cov-
erage as the guiding criterion, and exploits this guidance to effectively explore
the search space with respect to all the other criteria. Moreover, our approach
optimizes for multiple criteria via many-objective optimization, rather than sum-
ming up several different fitness functions into a single-objective function.

Problem Formulation. Given a SUT, the multiple criteria test generation
problem can be formulated as follows: Let B = α ∪ β ∪ . . . ∪ ω be the set of all
coverage targets representing different adequacy criteria α, β, . . . , ω and corre-
sponding fitness functions fα, fβ , . . . , fω. Find a set of test cases T = {t1, . . . , tn}
that minimize the fitness functions for all targets τi ∈ B. This formulation gives
rise to the many-objective optimization problem for minimizing the following
kα + kβ + . . . + kω objectives:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min Oα,1(t) = fα(τα,1, t), . . . , min Oα,kα
(t) = fα(τα,kα

, t)
min Oβ,1(t) = fβ(τβ,1, t), . . . , min Oβ,kβ

(t) = fβ(τβ,kβ
, t)

...
min Oω,1(t) = fω(τω,1, t), . . . , min Oω,kω

(t) = fω(τω,kω
, t)

(1)

where fα, fβ , . . . , fω represent the fitness functions of adequacy criteria
α, β, . . . , ω.

Example. To explain our approach, we present a simple example whose code is
shown in Fig. 1(a). In the example, three types of coverage targets are indicated:
(i) branches α = {b1, b2, b3, b4}, (ii) lines β = {l1, . . . , l8}, and (iii) mutants
γ = {μ1, μ2}. The final set of coverage targets would be: B = α ∪ β ∪ γ =
{l1, . . . , l8, b1, b2, b3, b4, μ1, μ2}, and the problem consists of finding a set of test
cases that achieve full coverage of all targets in B. The control dependency graph
(CDG) of the example program is shown in Fig. 1(b). We can see from the CDG
that the branches in the sample program are interdependent, with some branches
being control dependent on others. For example, branch b2 can only be executed
after branch b1 has been executed.

314 A. Panichella et al.

Fig. 1. Code (left), CDG (middle), and ECDG (right) of an example program

Algorithm 1: MC-DynaMOSA
Input:
B = {τ1, . . . , τm} the set of coverage targets of a program.
CDG = 〈N, E, s〉: control dependency graph of the program
Result: A test suite T

1 begin
2 φ ←− EXTEND-CDG(CDG, B)
3 B∗ ←− ENTRY-POINTS (CDG, φ, B) //targets without control dependencies
4 Pt ←− RANDOM-POPULATION(M) // followed by fitness evaluation
5 archive ←− UPDATE-ARCHIVE(Pt, ∅) // collect tests covering new targets
6 B∗ ←−UPDATE-TARGETS(B∗, CDG, φ)
7 while not (search budget consumed) AND (B∗ �= ∅) do
8 Pt+1 ←− EVOLVE(Pt) // crossover, mutation, evaluation, selection
9 archive ←− UPDATE-ARCHIVE(Pt+1, archive)

10 B∗ ←−UPDATE-TARGETS(B∗, CDG, φ)

11 T ←− archive

3.1 MC-DynaMOSA: Many-Criteria Dynamic Many-Objective
Optimization with Incremental Frontier Exploration

Our approach, MC-DynaMOSA (Many-Criteria Dynamic Many-objective Sorting
Algorithm) hereafter, optimizes for multiple criteria simultaneously by repre-
senting the various coverage criteria into an Enhanced CDG (ECDG), in such a
way that the control dependency based frontier exploration can be performed on
multiple criteria using the ECDG as guidance. The high-level algorithm used to
build the ECDG is outlined in Algorithm 2: the original CDG is enriched with
the coverage targets that are control dependent on each branch. For example,
the ECDG for the program in Fig. 1(a) is depicted in Fig. 1(c): the coverage
targets related to line, branch, and weak mutation are all represented in the
ECDG, as either node or edge labels, because the associated fitness functions
can be computed only when executing the frontier node whose outgoing control
dependency edge leads to the target. For method, input and output coverage,
the corresponding targets are associated with the root branch of the ECDG: if
the root branch is covered it implies that the method has been called/covered
and therefore it is possible to measure the diversity of both its input and output.

Incremental Control Dependency Frontier Exploration 315

Algorithm 2: EXTEND-CDG
Input:
G = 〈N, E, s〉: control dependency graph of the program
B: set of all coverage targets
Result:
φ : E → P(B): partial map between edges and targets

1 begin
2 ∀e ∈ E : φ(e) ←− ∅
3 for τ ∈ B do
4 e ←− getImmediateControlDependency(τ)
5 φ(e) ←− φ(e) ∪ {τ}

Algorithm 3: UPDATE-TARGETS
Input:
CDG = 〈N, E, s〉: control dependency graph
B∗ ⊆ B: current set of targets
φ : E → B: partial map between edges and targets
Result:
B∗: updated set of current targets

1 begin
2 for τ ∈ B∗ do
3 if τ is covered then
4 B∗ ←− B∗ − {τ}
5 eτ ←− φ−1(τ)
6 B∗ ←−ADD-NEXT-TARGETS(B∗, eτ)

Algorithm 4: ADD-NEXT-TARGETS
Input:
CDG = 〈N, E, s〉: control dependency graph
B∗ ⊆ B: current set of targets
Result:
B∗: updated set of current targets

1 begin
2 for each en ∈ E immediately following e in CDG do
3 for each τ ∈ φ(en) do
4 if τ is not covered then
5 B∗ ←− B∗ ∪ {τ}

6 return B∗

The high-level algorithm of MC-DynaMOSA is shown in Algorithm 1. As out-
lined in Algorithm 1, MC-DynaMOSA starts (line 2) by building the enhanced CDG
using Algorithm 2, which essentially extends the CDG by attaching coverage tar-
gets to the edges of the CDG which hold a control dependency over the targets.
Once the ECDG is built (i.e., function φ has been determined), MC-DynaMOSA
computes the initial set of coverage targets from the ECDG by collecting the
targets in the initial frontier, i.e., those targets which are not under any control
dependency (line 3). It then generates the initial population of individuals (test
cases) and evaluates them (line 4). Subsequently, it collects individuals that cover
one or more previously uncovered targets (line 5). It then enters an evolutionary
loop in which it evolves the individuals by applying genetic operators (crossover,
mutation, fitness evaluation, and selection), resulting in the next generation of
individuals (line 8). It then collects individuals covering new targets (line 9),
and finally updates the current set of targets by removing those covered and
adding the targets which have the covered targets as their control dependencies
(line 10). This process continues until either the search budget is finished or all
targets are covered. Finally, the archive of test cases collected throughout the
process is returned as the final solution, i.e., the test suite (line 11).

We now illustrate the MC-DynaMOSA algorithm on the example in Fig. 1(a)
whose ECDG is shown in Fig. 1(c). A possible execution trace of MC-DynaMOSA
is shown in Table 1. In the beginning, the set of current targets are those with no
control dependency (second row in Table 1). When target b1 is covered (which
also means l1, l2 are covered), the set of current targets is updated by remov-
ing b1, l1, l2 and adding other targets over which b1 holds a control dependency
according to the ECDG, i.e., b2, b3 (third row in Table 1). Similarly, as new

316 A. Panichella et al.

Table 1. A simulation of MC-DynaMOSA on the example

Current targets Covered targets

init {l1, l6, μ2, b1, b4} {}
b1 covered {b2, b3, μ2, b4} {l1, b1, l2, l6}
b4 covered {b2, b3, μ2} {l1, b1, l2, l6, b4, l7}
b2 covered {b3, μ2, μ1} {l1, b1, l2, l6, b4, l7, b2, l3}
b3 covered {μ2, μ1} {l1, b1, l2, l6, b4, l7, b2, l3, b3, l5}
μ2 covered {μ1} {l1, b1, l2, l6, b4, l7, b2, l3, b3, l5, μ2}

branches are covered, new targets are added to the set of current targets incre-
mentally following the ECDG. Finally, MC-DynaMOSA may be able to cover all
targets or may fail to cover some, as in this case where target μ1 remains uncov-
ered at the end of the process.

4 Empirical Evaluation

To evaluate the performance of MC-DynaMOSA, we conducted an empirical study
with a set of non-trivial Java classes selected from different open-source projects.

Research Questions. Our first RQ aims at assessing the benefits (if any) of
using incremental many-objective search compared to the weighted-sum:

RQ1: What is the effectiveness of unified many-objective/multi-criteria
coverage compared to the weighted-sum approach?

Furthermore, we want to investigate how MC-DynaMOSA performs compared with
a simple many-objective search that considers all coverage targets related to
different coverage criteria as independent search objectives:

RQ2: What are the benefits of incremental control dependency frontier
exploration?

A key observation in the previous section is that existing coverage criteria can
be directly related to branch-coverage (via ECDG) and that control dependency
branches can be used to guide multi-criteria coverage. Hence, the next question
is whether combining multiple criteria and performing an incremental many-
objective search provides any benefits over optimizing just branch coverage:

RQ3: Is it enough to target all branches in order to achieve high coverage
of all the other criteria?

Moreover, we question whether multi-criteria coverage is associated with higher
fault detection than branch coverage alone:

RQ4: What is the fault detection capability of the final test suites obtained
by many-criteria coverage vs branch coverage only?

Incremental Control Dependency Frontier Exploration 317

In the following, we refer to MC-WSA (Multi-criteria Weighted Sum with Archives)
and MC-MOSA (Multi-criteria Many-Objective) as the baselines for RQ1 and
RQ2, respectively. For RQ3, we refer to SC-DynaMOSA (Single-Criteria Many-
Objective) for the many-objective algorithm (DynaMOSA) that optimizes branch
coverage alone.

Benchmark. The benchmark of our study is a set of 180 non-trivial Java classes
randomly sampled from the SF110 dataset [10], which contains 110 open-source
projects from the SourceForge.net repository. This dataset has been used in
recent studies [9,10,17,20] to assess both the efficiency and the effectiveness of
test case generation tools.

To form our benchmark, we applied the same selection procedure used in
prior studies [17,18], which first measures the McCabe’s cyclomatic complex-
ity [14] (CC) to avoid sampling trivial classes. Specifically, we first removed
classes from SF110 containing exclusively methods with a CC lower than
five [17]. Then, we randomly sampled 180 classes from the resulting pruned
SF110 dataset: two classes from the largest projects in SF110 and one class
from the remaining projects. The number of coverage targets ranges between
61 (for class SapdbTableList from project db-everywhere) and 4,252 (for class
JVCParserTokenManager from project javaviewcontrol); the median number
of coverage targets per class is 405. These numbers include all coverage targets
from the seven coverage criteria described in Sect. 2, namely branch, line, weak
mutation, input, output, method and exception coverage. The complete list of
classes under test (CUTs) in our benchmark is publicly available in FigShare
at the following link: https://figshare.com/s/c74652d1fcb79fa853dd.

Implementation. The four test generation strategies—i.e., MC-DynaMOSA, MC-
MOSA, MC-WSA, SC-DynaMOSA— were implemented in EvoSuite [8,9]. MC-WSA cor-
responds to the default strategy in EvoSuite, which evolves test suites using
a monotonic genetic algorithm [4] guided by one single fitness function that
combines all coverage criteria using a weighted sum. MC-MOSA corresponds to
the MOSA algorithm [16], which evolves test cases rather than test suites, tar-
geting all coverage criteria simultaneously. Each coverage criterion corresponds
to a different set of search objectives, one objective for each coverage target.
Therefore, the set of objectives in MC-MOSA is the union of the sets of objec-
tives from all seven coverage criteria. SC-DynaMOSA considers only branch cover-
age as testing criterion, but it dynamically updates the set of objectives based
on the structural dependencies among branches, i.e., it corresponds to original
DynaMOSA [17]. Finally, we implemented MC-DynaMOSA in EvoSuite as described
in Sect. 3.1. The implementation is publicly available on GitHub: https://github.
com/apanichella/evosuite.

All testing strategies are implemented in the same version of EvoSuite, down-
loaded from GitHub on October 1st, 2017. Furthermore, all strategies use an
archive [17,20], to take accidental coverage into account: whenever a test case
(or test suite) T satisfies a previously uncovered target, T is stored in the archive
while the target is removed from the set of objectives [1] or from computation of

https://figshare.com/s/c74652d1fcb79fa853dd
https://github.com/apanichella/evosuite
https://github.com/apanichella/evosuite

318 A. Panichella et al.

the weighted sum [4,20]. Therefore, in all testing strategies, the search is focused
on the uncovered targets only.

Methodology. For each CUT in our benchmark, we ran each testing strategy 30
times and collected the number and the type of targets covered in each run. This
setting led to 30 EvoSuite runs × 4 strategies × 180 CUTs = 21,600 executions
in total. In each run, we measured the percentage of covered targets for each
coverage criterion as: Cov(C, T) = #Covered(C,T)

#Total(C) where #Total denotes the
total number of targets for a given criterion C, while #Covered(C, T) is the
number of targets covered by the generated test suite T . Coverage scores are
computed after EvoSuite’s post-processing, which minimizes the generated suite
T and adds candidate assertions using a mutation-based strategy [10].

Then, we compare each pair of testing strategies by considering the average
(arithmetic mean) of each coverage criterion over 30 independent repetitions.
Differences (if any) are shown and discussed in terms percentage points (pp), i.e.,
the absolute difference between the coverage scores of the test suites generated by
the two testing strategies being compared. To assess the statistical significance
of such differences, we applied the Wilcoxon rank sum test [5] for each CUTs
and for each pair of testing strategies, adopting a significance level α = 0.05.
The obtained p-values are then adjusted with the Holm-Bonferroni procedure [5]
as required when comparing more than two treatments.

We also wanted to assess the ability of the generated test suites to detect
faults. To this aim, we applied strong mutation coverage as a proxy for the actual
fault detection capability. This is a common practice when assessing software
testing tools and approaches since previous studies [13] showed that mutants
can be regarded as valid substitutes of real-world faults to assess fault detection
rates. In this study, we used the mutation testing engine available in EvoSuite.
Strong mutation coverage is computed as the percentage of mutants that are
strongly killed by a generated test suite, i.e., the test suite contains a test case
that fails when comparing the output of the mutant to the output of the original
program. Note that strong mutation is not used in this study as guidance to the
search (i.e., as part of a fitness function or of some objectives), so it was possible
to use it to assess the fault-detection capability of the suite generated by each
testing strategy. It is also worth to remark that strong mutation has never been
used in previous studies in combination with other coverage criteria due to its
large overhead [4,11,19].

Parameter Setting. Previous studies have shown that default parameters pro-
vide acceptable results compared to fine-tuning of the evolutionary parame-
ters [3]. Hence, we adopted default parameter values in EvoSuite [20], as done in
previous studies targeting the SF110 dataset [17,19,20]: for all testing strategies,
(single and many-objective), genetic algorithms are configured with a popula-
tion size of 50 test cases/suites; single-point crossover with probability pc = 0.75;
mutation with probability pm = 1/n, where n is the number of statements in
a test case (or number of test cases in the test suite for MC-WS); the selection
operator is tournament selection, the default in EvoSuite. For the search budget,

Incremental Control Dependency Frontier Exploration 319

we set the same maximum execution time of three minutes for all testing strate-
gies. The search stopped earlier only when 100% coverage was obtained for all
coverage criteria before reaching the search timeout.

5 Experimental Results

Due to the space limits, we report only the average results obtained by each
strategy across all CUTs and the number of classes with a statistically significant
difference. The detailed results for each class are available at the following link:
https://figshare.com/s/b06984aa36bfe2e9d934.

Table 2 summarizes the results of the pairwise comparison for the three multi-
criteria testing strategies, i.e., MC-DynaMOSA, MC-WSA, and MC-MOSA. For each
strategy, the table reports (i) the mean coverage score obtained for each coverage
criterion across all 180 CUTs and (ii) the number of classes in our benchmark
in which MC-DynaMOSA is statistically better, worse or equivalent to MC-WSA and
MC-MOSA according to the Wilcoxon test. Finally, the last row of the table shows
the results (average scores and number of significant data points) for strong
mutation.

Results of MC-DynaMOSA vs. MC-WSA (RQ1). For branch coverage, MC-Dyna-
MOSA achieved on average +3pp across all CUTs in our benchmark. The former
was statistically significantly better than the latter in 82 classes out of 180,
while the latter statistically outperformed the former in only 9 classes. Similar
results can be observed for line coverage and weak mutation: in 85 classes and
in 82 classes out of 180, MC-DynaMOSA achieved statistically significantly higher
line and weak mutation coverage than MC-WSA, respectively. For these cases, the
largest difference of 27.94pp in line coverage is observed for class TableMeta
(project schemaspy); the largest difference in weak mutation is equal to 33.21pp
and was observed for class Shift (project jiggler). Only in 10 classes (for line
coverage) and 12 classes (for weak mutation) out of 180, MC-WSA outperformed
MC-DynaMOSA with an average difference of 3.61pp and 5.11pp for line and weak
mutation, respectively. For the remaining criteria—i.e., method, input, output,
and exception—MC-DynaMOSA still achieves higher coverage scores than MC-WSA.

Table 2. Comparison between MC-DynaMOSA, MC-MOSA, and MC-WSA on all considered
coverage criteria and on strong mutation

Cov. criterion Average coverage MC-DynaMOSA vs. MC-MOSA MC-DynaMOSA vs. MC-WSA

MC-DynaMOSA MC-MOSA MC-WSA #Better #Worse #No Diff. #Better #Worse #No Diff.

Branch 0.62 0.60 0.59 71 5 104 82 9 72

Line 0.67 0.65 0.64 62 4 114 85 10 85

Weak mutation 0.64 0.63 0.62 57 6 117 81 12 87

Method 0.97 0.96 0.96 16 4 160 12 6 162

Input 0.95 0.94 0.94 30 4 146 29 14 137

Output 0.60 0.59 0.58 39 4 137 39 9 132

Exception 1.00 0.99 0.99 13 0 167 16 0 164

Strong mutation 0.29 0.27 0.23 55 25 100 97 4 79

https://figshare.com/s/b06984aa36bfe2e9d934

320 A. Panichella et al.

However, the number of CUTs with statistically significant difference decreases
compared to the previously discussed criteria. In the very large majority of the
classes, the two testing strategies turned out to be statistically equivalent. In
6%–21% of the classes, the winner of the comparison is MC-DynaMOSA, while in
3%–7% the winner is MC-WSA. Remarkably, in none of the 180 classes, the test
suites generated by MC-WSA could trigger/cover more exceptions than the suites
generated by MC-DynaMOSA. In summary, we observed a much larger number
of significantly improved cases for branch, line and weak mutation coverage, as
compared to the other criteria, when MC-DynaMOSA is used. A possible expla-
nation for this finding is that branch, line and weak-mutation coverage provide
stronger guidance, as their associated fitness functions are crafted based on care-
fully defined, fine-grained heuristics, i.e., approach level [15], branch distance [15]
and infection distance [19].

In terms of strong mutation (last row in Table 2), MC-DynaMOSA detects a
significantly larger number of faults (strongly killed mutants) than MC-WSA in 97
CUTs out of 180. The opposite is true in only 4 classes. MC-DynaMOSA improved
the strong mutation score by +6pp on average. The largest improvement (+53pp)
is observed for class TableMeta from schemaspy (as for branch coverage).

The test suites generated by MC-DynaMOSA achieve higher coverage scores and
are able to detect more faults than the suites produced by MC-WS.

Results of MC-DynaMOSA vs. MC-MOSA (RQ2). As indicated in Table 2,
MC-DynaMOSA yielded on average +2pp over MC-MOSA for branch and line cov-
erage, and +1pp for the remaining coverage criteria. In 71 CUTs out of 180,
MC-DynaMOSA achieved a significantly higher branch coverage; the opposite
is true in only 5 classes. The largest difference (+23.68pp) is achieved for
class JMCAAnalyzer from project jmca. Instead, in the very few cases where
MC-MOSA achieves significantly higher branch coverage, the difference ranges
between 0.50pp (class ServerGameModel from hft-bomberman) and 6.49pp (class
SimpleComboBox from caloriecount). The results for the other coverage criteria
are in line with those observed for branch coverage. In 62 classes for line cover-
age and in 57 classes for weak mutation out of 180, MC-DynaMOSA outperformed
MC-MOSA. The differences range between 0.10pp (class FBProcedureCall from
firebird) and 24.15pp (class JMCAAnalyzer from jmca) for line coverage and
between 0.10pp (class AntPathMatcher from jsecurity) and 32.36pp (the same
class of line and branch coverage) for weak mutation. MC-MOSA achieved higher
scores than MC-DynaMOSA in only 4 and 6 classes out of 180, for line coverage
(3.05pp on average) and weak mutation (1.37pp on average), respectively. The
number of CUTs with statistically significant difference decreases when analyz-
ing method, input, output and exception coverage compared to the other three
criteria. Nevertheless, there are many more CUTs where better coverage scores
are obtained when running MC-DynaMOSA (6%–21% of the benchmark) than cases
where the winner of the comparison is MC-MOSA (2%–3% of the benchmark). In
none of the 180 classes, the test suites generated by MC-MOSA covered more excep-
tions than the tests generated with MC-DynaMOSA.

Incremental Control Dependency Frontier Exploration 321

The values reported in the last row in Table 2 indicate that MC-DynaMOSA
detected a significantly larger number of faults (strongly killed mutants) than
MC-MOSA in 55 CUTs out of 180. On these cases, the average improvement in
strong mutation score is +8.79pp, with the maximum of +39.46pp for class
HostMonitoringService (project quickserver). On the other hand, MC-MOSA
achieved a better mutation score in 25 classes out of 180. However, in these cases
the magnitude of the difference is small, being 4.76pp on average.

The incremental exploration of the control dependency frontier implemented
in MC-DynaMOSA leads to larger coverage scores and to a better fault-detection
capability than simply targeting all coverage targets as done by MC-MOSA.

Results of MC-DynaMOSA vs. SC-DynaMOSA (RQ3, RQ4). Table 3 sum-
marizes the results of the comparison of many-objective search with an incre-
mental exploration of the control dependency frontier when handling multiple
criteria (MC-DynaMOSA) compared to branch coverage only (SC-DynaMOSA). In 53
classes out of 180, SC-DynaMOSA achieved significantly higher branch coverage
than MC-DynaMOSA; on the other hand, the latter outperformed the former in 36
classes. This finding clearly indicates that optimizing many coverage criteria at
the same time may lead to lower coverage scores compared to the optimization
of each criterion, taken separately from the others (as for branch coverage in
this case). For example, branch coverage decreases by 1.65pp on average, with a
minimum decrement of 1.00pp for class jgaapGUI (project jgaap) and a maxi-
mum one of 24.66pp for class JMCAAnalyzer (project jmca). On the CUTs where
MC-DynaMOSA won the comparison, the differences range between 1.40pp (class
Profile from project jiprof) and 24.71pp (class JSJshop from project shop),
being 5.63pp on average. While we observe that targeting only branches leads to
higher branch coverage in around 30% of CUTs, the results are quite different
when looking at the other coverage criteria. For example, MC-DynaMOSA statisti-
cally outperforms SC-DynaMOSA in 88 CUTs and 107 CUTs for line coverage and
weak mutation, respectively. This means that the additional branches covered
by SC-DynaMOSA and not by MC-DynaMOSA are associated to basic blocks in the
control flow graph with no statements (other than the branch itself) or with no
(or very few) weakly killed mutants. Although branches represent the main back-
bone to build the multi-criteria control dependency graph (and to incrementally
explore the frontier), branch coverage is not equivalent to the other criteria.

Even though MC-DynaMOSA may lead to lower branch coverage than
SC-DynaMOSA, it achieves higher coverage on all other criteria. Therefore,
it is not enough to target all branches in order to achieve high coverage of
all the other criteria.

Despite leading to lower branch coverage, MC-DynaMOSA achieved a higher
strong mutation score than SC-DynaMOSA in 89 CUTs out of 180. The increment
in strong mutation score ranges between 1.11pp (class ExportHook from project
freemind) and 35.80pp (class QuickServerConfig from project quickserver),

322 A. Panichella et al.

Table 3. Comparison between MC-DynaMOSA and SC-DynaMOSA in terms of coverage
and strong mutation scores

Coverage criterion Average coverage MC-DynaMOSA vs. SC-DynaMOSA

MC-DynaMOSA SC-DynaMOSA #Better #Worse #No Diff.

Branch 0.62 0.63 36 53 119

Line 0.67 0.65 88 28 64

Weak mutation 0.64 0.62 107 19 54

Method 0.97 0.90 89 2 89

Input 0.95 0.57 146 1 33

Output 0.60 0.46 115 5 60

Exception 1.00 0.45 137 0 43

Strong mutation 0.29 0.26 89 21 70

being 9.62pp on average. On the other hand, SC-DynaMOSA outperformed
MC-Dyna-MOSA in just 21 CUTs, with an average difference of only 2.93pp. This
finding is particularly remarkable as it shows that a statistically higher branch
coverage does not necessarily lead the generated test suites to reveal more faults.

Handling many criteria with MC-DynaMOSA increases the fault detection capa-
bility of the generated test suites compared to targeting branch coverage alone.

Threats to Validity. Construct validity. All algorithms are implemented in
the same tool, minimizing the risk of confounding factors. Internal validity. We
did 30 independent runs and drew conclusions following statistical significance.
We used default parameter values and those used in the respective algorithms.
The comparison was based on metrics with respect to the considered criteria,
and mutation scores. External validity. Enlarging the benchmark (beyond 180
CUTs) in future experiments could increase confidence of the results.

6 Conclusion

Coverage of multiple criteria has been the subject of recent research effort. While
targeting multiple criteria simultaneously offers various advantages, it also poses
difficulties to the search algorithm as the number of targets to be considered
increases. In this paper, we have presented an approach, MC-DynaMOSA, based
on incremental frontier exploration for multiple criteria test generation. In par-
ticular, we exploit inherent inter-dependencies among the various criteria to
establish an enhanced control dependency graph, based on which we explore the
coverage targets incrementally. Experimental results on 180 classes showed that
MC-DynaMOSA outperforms the state-of-the-art approach for multiple criteria cov-
erage, which is based on sum scalarization, in terms of coverage of the various
criteria as well as strong mutation scores. Furthermore, results also showed that

Incremental Control Dependency Frontier Exploration 323

covering all branches is not sufficient to achieve higher coverage of the other cri-
teria, even though control dependency branches provide the principal guidance
to the search.

Acknowledgement. This work is partially supported by the Italian Ministry of Edu-
cation, University, and Research (MIUR) with the PRIN project GAUSS (grant no.
2015KWREMX).

References

1. Abreu, R., Zoeteweij, P., Van Gemund, A.J.: An observation-based model for fault
localization (2008)

2. Arcuri, A.: Many independent objective (MIO) algorithm for test suite generation.
In: Menzies, T., Petke, J. (eds.) SSBSE 2017. LNCS, vol. 10452, pp. 3–17. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66299-2 1

3. Arcuri, A., Fraser, G.: Parameter tuning or default values? An empirical investi-
gation in search-based software engineering. Empirical Softw. Eng. 18(3), 594–623
(2013)

4. Campos, J., Ge, Y., Fraser, G., Eler, M., Arcuri, A.: An empirical evaluation of
evolutionary algorithms for test suite generation. In: Menzies, T., Petke, J. (eds.)
SSBSE 2017. LNCS, vol. 10452, pp. 33–48. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66299-2 3

5. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. Wiley, Hoboken (1998)
6. Deb, K., Deb, K.: Multi-objective optimization. In: Burke, E., Kendall, G. (eds.)

Search Methodologies. Springer, Boston (2014). https://doi.org/10.1007/978-1-
4614-6940-7 15

7. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiob-
jective optimization. Evol. Comput. 3(1), 1–16 (1995)

8. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ESEC/FSE 2011,
pp. 416–419 (2011)

9. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. 39(2),
276–291 (2013)

10. Fraser, G., Arcuri, A.: A large-scale evaluation of automated unit test generation
using evosuite. ACM Trans. Softw. Eng. Methodol. 24(2), 8:1–8:42 (2014). https://
doi.org/10.1145/2685612

11. Gay, G.: Generating effective test suites by combining coverage criteria. In: Men-
zies, T., Petke, J. (eds.) SSBSE 2017. LNCS, vol. 10452, pp. 65–82. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66299-2 5

12. Just, R., Jalali, D., Ernst, M.D.: Defects4j: a database of existing faults to enable
controlled testing studies for Java programs. In: International Symposium on Soft-
ware Testing and Analysis, ISSTA 2014, San Jose, CA, USA, 21–26 July 2014, pp.
437–440 (2014)

13. Just, R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser, G.: Are
mutants a valid substitute for real faults in software testing? In: Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pp. 654–665. ACM, New York (2014). https://doi.org/10.
1145/2635868.2635929

https://doi.org/10.1007/978-3-319-66299-2_1
https://doi.org/10.1007/978-3-319-66299-2_3
https://doi.org/10.1007/978-3-319-66299-2_3
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1145/2685612
https://doi.org/10.1145/2685612
https://doi.org/10.1007/978-3-319-66299-2_5
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929

324 A. Panichella et al.

14. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 4, 308–320 (1976)
15. McMinn, P.: Search-based software test data generation: a survey. Softw. Test.

Verif. Reliab. 14(2), 105–156 (2004)
16. Panichella, A., Kifetew, F.M., Tonella, P.: Reformulating branch coverage as a

many-objective optimization problem. In: 8th IEEE International Conference on
Software Testing, Verification and Validation, ICST, pp. 1–10 (2015)

17. Panichella, A., Kifetew, F.M., Tonella, P.: Automated test case generation as
a many-objective optimisation problem with dynamic selection of the targets.
IEEE Trans. Softw. Eng. 44(2), 122–158 (2018). https://doi.org/10.1109/TSE.
2017.2663435

18. Panichella, A., Molina, U.R.: Java unit testing tool competition: fifth round. In:
Proceedings of the 10th International Workshop on Search-Based Software Testing,
pp. 32–38. IEEE Press (2017)

19. Rojas, J.M., Campos, J., Vivanti, M., Fraser, G., Arcuri, A.: Combining multiple
coverage criteria in search-based unit test generation. In: Barros, M., Labiche, Y.
(eds.) SSBSE 2015. LNCS, vol. 9275, pp. 93–108. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-22183-0 7

20. Rojas, J.M., Vivanti, M., Arcuri, A., Fraser, G.: A detailed investigation of the
effectiveness of whole test suite generation. Empirical Softw. Eng. 22(2), 852–893
(2017). https://doi.org/10.1007/s10664-015-9424-2

21. Voas, J.M.: Pie: a dynamic failure-based technique. IEEE Trans. Softw. Eng. 18(8),
717–727 (1992). https://doi.org/10.1109/32.153381

https://doi.org/10.1109/TSE.2017.2663435
https://doi.org/10.1109/TSE.2017.2663435
https://doi.org/10.1007/978-3-319-22183-0_7
https://doi.org/10.1007/978-3-319-22183-0_7
https://doi.org/10.1007/s10664-015-9424-2
https://doi.org/10.1109/32.153381

Single-objective Versus Multi-objectivized
Optimization for Evolutionary Crash

Reproduction

Mozhan Soltani(B), Pouria Derakhshanfar, Annibale Panichella(B),
Xavier Devroey , Andy Zaidman , and Arie van Deursen

Delft University of Technology, Delft, The Netherlands
{m.soltani,p.derakhshanfar,a.panichella,x.d.m.devroey,a.e.zaidman,

arie.vandeursen}@tudelft.nl

Abstract. EvoCrash is a recent search-based approach to generate a
test case that reproduces reported crashes. The search is guided by a
fitness function that uses a weighted sum scalarization to combine three
different heuristics: (i) code coverage, (ii) crash coverage and (iii) stack
trace similarity. In this study, we propose and investigate two alternatives
to the weighted sum scalarization: (i) the simple sum scalarization and
(ii) the multi-objectivization, which decomposes the fitness function into
several optimization objectives as an attempt to increase test case diver-
sity. We implemented the three alternative optimizations as an extension
of EvoSuite, a popular search-based unit test generator, and applied them
on 33 real-world crashes. Our results indicate that for complex crashes
the weighted sum reduces the test case generation time, compared to the
simple sum, while for simpler crashes the effect is the opposite. Simi-
larly, for complex crashes, multi-objectivization reduces test generation
time compared to optimizing with the weighted sum; we also observe
one crash that can be replicated only by multi-objectivization. Through
our manual analysis, we found out that when optimizing the original
weighted function gets trapped in local optima, optimization for decom-
posed objectives improves the search for crash reproduction. Generally,
while multi-objectivization is under-explored, our results are promising
and encourage further investigations of the approach.

1 Introduction

Crash reproduction is an important step in debugging field crashes. Therefore,
various automated approaches to crash reproduction [3,4,19,20,22,24] have been
proposed in the literature. Among these, EvoCrash [22] is a search-based app-
roach, which applies a Guided Genetic Algorithm (GGA) to generate a crash-
reproducing test. To optimize test generation for crash reproduction, the GGA
uses a weighted-sum scalarized function, which is a sum of three heuristics,
namely: (i) line coverage, (ii) exception coverage, and (iii) stack trace similarity
rate. The function resulting from the sum scalarization is further subject to the

c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 325–340, 2018.
https://doi.org/10.1007/978-3-319-99241-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_18&domain=pdf
http://orcid.org/0000-0002-0831-7606
http://orcid.org/0000-0003-2413-3935
http://orcid.org/0000-0003-4850-3312

326 M. Soltani et al.

constraint that the target exception has to be thrown at the code line reported
in the crash stack trace. Depending on how close a generated test case may
come to trigger a reported crash, its fitness value may be between 0.0 (i.e., each
of the three heuristics evaluates to 0.0), and 6.0 (i.e., none of the heuristics is
satisfied by the generated test). Soltani et al. [22] evaluated EvoCrash on 50
real-world crashes and showed that the search-based approach improved over
other non-search-based approaches proposed in the related literature [4,19,24].

As any search-based technique, the success of EvoCrash depends on its capa-
bility of maintaining a good balance between exploitation and exploration [6].
The former refers to the ability to visit regions of the search space within the
neighborhood of the current solutions (i.e., refining previously generated tests);
the latter refers to the ability to generate completely different new test cases. In
crash reproduction, the exploitation is guaranteed by the guided genetic oper-
ators that focus the search on methods appearing in the crash stack trace [22].
However, such a depth and focused search may lead to a low exploration power.
Poor exploration results in low diversity between the generated test cases and,
consequently, the search process easily gets trapped in local optima [6].

In this paper, we investigate two strategies to increase the diversity of gener-
ated test cases for crash reproduction. While EvoCrash uses one single-objective
fitness function to guide the search, prior studies in evolutionary computa-
tion showed that relaxing the constraints [5] or multi-objectivizing the fitness
function [17] help promoting diversity. Multi-objectivization is the process of
(temporarily) decomposing a single-objective fitness function into multiple sub-
objectives to optimize simultaneously with multi-objective evolutionary algo-
rithms. At the end of the search, the global optimal solution of the single-
objective problem is one of the points of the Pareto front generated by the
multi-objective algorithms. The decomposed objectives should be as indepen-
dent of each other as possible to avoid getting trapped in local optima [17].

Therefore, we study whether transforming the original weighted scalarized
function in EvoCrash into (i) a simple scalarized function via constraint relax-
ation, and (ii) multiple decomposed objectives, impacts the crash reproduction
rate, and test generation time. EvoCrash [22] relies on EvoSuite [9] for test
generation, and as such, we implemented the original weighted function as an
extension of EvoSuite. Similarly, we implemented the alternative optimization
functions by extending EvoSuite. We evaluated the alternatives on 33 real-world
crashes from four open source projects. Our results show that indeed, when
crashes are complex and require several generations of test cases, using multi-
objectivization reduces the test generation time compared to the weighted scalar-
ized function, and in turn, the weighted scalarized function reduces test genera-
tion time compared to the simple scalarized function. Furthermore, we observe
that one crash can be fully replicated only by multi-objectivized search and not
by the two single-objective strategies. Generally, our results show that problems
that are single-objective by nature can benefit from multi-objectivization. We

Single-objective Versus Multi-objectivized Optimization 327

believe that our findings will foster the usage of multi-objectivization in search-
based software engineering.

The remainder of the paper is structured as follows: Sect. 2 provides back-
ground and related work. Section 3 describes single and multi-objectivization for
crash reproduction. Sections 4 and 5 present the evaluation and results, respec-
tively. Discussion follows in Sect. 6. Section 7 concludes.

2 Background and Related Work

Crash reproduction tools aim at generating a test case able to reproduce a given
crash based on the information gathered during the crash itself. This crash repro-
duction test case can help developers to identify the fault causing the crash [4].
For Java programs, the available information usually consists of a stack trace,
i.e., lists of classes, methods and code lines involved in the crash. For instance,
the following stack trace has been generated by the test cases of LANG v9b from
the Defects4J [15] dataset:

0 java.lang.ArrayIndexOutOfBoundsException:
1 at org.apache.commons.lang3.time.FastDateParser.toArray(FastDateParser

.java :413)
2 at org.apache.commons.lang3.time.FastDateParser.getDisplayNames(

FastDateParser.java :381)
3 ...

It has a thrown exception (ArrayIndexOutOfBoundsException) and different
frames (lines 1 to 3), each one pointing to a method call in the source code.

2.1 Related Work

Over the years, various Java crash replication approaches that use stack traces
as input have been developed. Recore [20] is a search-based approach that in
addition to crash stack traces, uses core dumps as input data for automated test
generation. MuCrash [24] applies mutation operators on existing test cases,
for classes that are present in a reported stack trace, to trigger the reported
crash. While BugRedux [14] is based on forward symbolic execution, Star [4]
is a more recent approach that applies optimized backward symbolic execution
on the method calls recorded in a stack trace in order to compute the input
parameters that trigger the target crash. JCharming [19] is also based on using
crash stack traces as the only source of information about a reported crash.
JCharming [19] applies directed model checking to identify the pre-conditions
and input parameters that cause the target crash. Finally, ConCrash [3] is a
recent approach that focuses on reproducing concurrency crashes, in particu-
lar. ConCrash applies pruning strategies to iteratively look for test code that
triggers the target crash in a thread interleaving.

More recently, Soltani et al. have proposed EvoCrash [22], an evolutionary
search-based tool for crash replication built on top of EvoSuite [10]. EvoCrash
uses a novel Guided Genetic Algorithm (GGA), which focuses the search on

328 M. Soltani et al.

the method calls that appear in the crash stack trace rather than maximiz-
ing coverage as in classical coverage-oriented GAs. Their empirical evaluation
demonstrated that EvoCrash outperforms other existing crash reproduction
approaches.

2.2 EvoCrash

To design EvoCrash, Soltani et al. [22] defined a fitness function (weighted sum
fitness function) and a search algorithm (guided genetic algorithm) dedicated to
crash reproduction. The fitness function is used to characterize the “quality” of
test case generated during each iteration of the guided GA.

Weighted Sum (WS) Fitness Function. The three components of the WS
fitness function are: (i) the coverage of the code line (target statement) where
the exception is thrown, (ii) the target exception has to be thrown, and (iii)
the similarity between the generated stack trace (if any) and the original one.
Formally, the fitness function for a given test t is defined as [22]:

f(t) =

⎧
⎨

⎩

3 × ds(t) + 2 × max(dexcept) + max(dtrace) if the line is not reached
3 × min(ds) + 2 × dexcept(t) + max(dtrace) if the line is reached
3 × min(ds) + 2 × min(dexcept) + dtrace(t) if the exception is thrown

(1)
where ds(t) ∈ [0, 1] denotes how far t is from executing the target statement using
two well-known heuristics, approach level and branch distance [21]. The approach
level measures the minimum number of control dependencies between the path of
the code executed by t and the target statement s. The branch distance scores
how close t is to satisfying the branch condition for the branch on which the
target statement is directly control dependent [18]. In Eq. 1, dexcept(t) ∈ {0, 1}
is a binary value indicating whether the target exception is thrown (0) or not (1);
dtrace(t) measures the similarity of the generated stack trace with the expected
one based on methods, classes, and line numbers appearing in the stack traces;
max(dexcept) and max(dtrace) denote the maximum possible value for dexcept
and dtrace, respectively. Therefore, the last two addends of the fitness function
(i.e., dexcept and dtrace) are computed upon the satisfaction of two constraints.
This is because the target exception has to be thrown in the target line s (first
constraint) and the stack trace similarity should be computed only if the target
exception is actually thrown (second constraint).

Guided Genetic Algorithm (GGA). EvoCrash (as EvoSuite) generates test
cases at the unit level, meaning that test cases are generated by instrumenting
and targeting one particular class (the target class). Contrary to classical unit
test generation, EvoCrash does not seek to maximize coverage by invoking all
the methods of the target class, but privileges those involved in the target failure.
This is why the GGA algorithm relies on the stack trace to guide the search and
reduces the search space at different steps. (i) A target frame is selected by the

Single-objective Versus Multi-objectivized Optimization 329

user amongst the different frames of the input stack trace. Usually, the target
frame is the last one in the crash trace as it corresponds to the root method
call where the exception was thrown. The class appearing in this target frame
corresponds to the target class for which a test case will be generated. (ii) The
initial population of test cases is generated in such a way that the method m of
the target frame (the target method) is called at least once in each test case [22]:
either directly if m is public or protected, or indirectly by calling another method
that invokes the target method if m is private. (iii) During the search, dedicated
guided crossover and guided mutation operators [22] ensure that newly generated
test cases contain at least one call to the target method. (iv) The search is guided
by the WS fitness function. (v) Finally, the algorithm stops if the time budget
is consumed or when a zero-fitness value is achieved. In this last case, the test
case is minimized by a post-processing that removes randomly inserted method
calls that do not contribute to reproducing the crash.

3 Single-objective and Multi-objectivization for Crash
Reproduction

A key limitation of evolutionary algorithms (and metaheuristics in general) is
that they may become trapped in local optima due to diversity loss [6], a phe-
nomenon in which no modification (with crossover and mutation) of the current
best solutions will lead to discovering a better one. This phenomenon is quite
common in white-box unit-level test case/suite generation, as shown by previ-
ous studies in search-based software testing [1,8,12,16]. Many strategies have
been investigated by the evolutionary computation community to alleviate the
problem of diversity loss, including (i) combining different types of evolutionary
algorithms [6,12], (ii) defining new genetic operators to better promote diver-
sity [6,7,12], (iii) altering the fitness function [6,11,17], and (iv) relaxing the
constraints of the problem [5].

In the context of crash replication, most attention has been devoted to
improving the genetic operators [21,22] to better focus the search on method
calls related to the target crash. However, to the best of our knowledge, no
previous study investigated alternative formulations to the fitness function in
Eq. 1 and how they are related to diversity and convergence to local optima.
The original equation by Soltani et al. [22] (i.e., Eq. 1) combines three different
factors into one single scalar value based on some constraints. Given this type of
equation, there are two possible alternatives to investigate: (i) relaxing the con-
straints and (ii) split the fitness function into three search objectives to optimize
simultaneously. The next subsections describe these two alternative formulations
of the crash replication problem and how they are related to test case diversity.

3.1 Constraints Relaxation

As explained in Sect. 2, the crash replication problem has been implicitly formu-
lated in previous studies as a constraint problem. The constraints are handled

330 M. Soltani et al.

using penalties [22], i.e., the fitness score of a test case is penalized by adding (or
subtracting in case of a maximization problem) a certain scalar value propor-
tional to the number of constraints being violated. For example, in Eq. 1 all test
cases that do not cover the target code line are penalized by the two addends
2 × max(dexcept) and max(dtrace) as there are two violated constraints (i.e., the
line to cover and the exception to throw in that line). Instead, tests that cover
the target line but that do not trigger the target exception are penalized by the
factor max(dtrace) (only one constraint is violated in this case).

While adding penalties is a well-known strategy to handle constraints in
evolutionary algorithms [5], it may lead to diversity loss because any test not
satisfying the constraints have very low probability to survive across the genera-
tions. For example, let us assume for example that we have two test cases t1 and
t2 for the example crash reported in Sect. 2. Now, let us assume that both test
cases have a distance ds = 1.0 (i.e., none of the two could cover the target line),
but the former test could generate an exception while the latter does not. Using
Eq. 1, the fitness value for both t1 and t2 is f(t1) = f(t2) = 3 × ds + 3.0 = 6.0.
However, t2 should be promoted if it can generate the same target exception of
the target crash (although on a different line) and the generated trace is somehow
similar to the original one (e.g., some methods are shared).

Therefore, a first alternative to the fitness function in Eq. 1 consists of relax-
ing the constraints, i.e., removing the penalties. This can be easily implemented
with a Simple Sum Scalarization (SSS):

f(t) = ds(t) + dexcept(t) + dtrace(t) (2)

where ds(t), dexcept(t) ∈ {0, 1}, and dtrace(t) are the same as in Eq. 1. This
relaxed variant—hereafter referred as simple sum scalarization— helps increase
test case diversity because test cases that lead to better dexcept(t) or dtrace(t)
may survive across the GGA generation independently from the value of ds(t),
which was not the case for the weighted sum, thanks to the constraints from
Eq. 1. On the other hand, this reformulation may increase the number of local
optima; therefore, an empirical evaluation of weighted and simple sum variants
to the fitness function is needed.

3.2 Multi-objectivization

Knowles et al. [17] suggested to replace the original single-objective fitness func-
tion of a problem with a set of new objectives in an attempt to promote diver-
sity. This process, called multi-objectivization (MO), can be performed in two
ways [13,17]: (i) by decomposing the single-objective function into multiple sub-
objectives, or (ii) by adding new objectives in addition to the original function.
The multi-objectivized problem can then be solved using a multi-objective evo-
lutionary algorithm, such as NSGA-II [7]. By definition, multi-objectivization
preserves the global optimal solution of the single-objective problem that, after
problem transformation, becomes a Pareto efficient solution, i.e., one point of
the Pareto front generated by multi-objective algorithms.

Single-objective Versus Multi-objectivized Optimization 331

In our context, applying multi-objectivization is straightforward as the fitness
function in Eq. 1 is defined as the weighted sum of three components. Therefore,
our multi-objectivized version of the crash replication problem consists of opti-
mizing the following three objectives:

⎧
⎨

⎩

f1(t) = ds(t)
f2(t) = dexcept(t)
f3(t) = dtrace(t)

(3)

Test cases in this three-objectivized formulation are therefore compared (and
selected) according to the concept of dominance and Pareto optimality. A test
case t1 is said to dominate another test t2 (t1 ≺p t2 in math notation), iff
fi(t1) ≤ fi(t2) for all i ∈ {1, 2, 3} and fj(t1) < fj(t2) for at least one objective
fj . A test case t is said Pareto optimal if there does not exist any another
test case t3 such that t3 ≺p t1. For instance, for the test cases (i.e., solutions)
generated by a multi-objectivized (Multi-obj.) search presented in Fig. 1, A, B,
and D dominate C, E, and F.

In our problem, there can be multiple non-dominated solutions within the
population generated by GGA at a given generation. These non-dominated solu-
tions represent the best trade-offs among the search objectives that have been
discovered/generated during the search so far. Diversity is therefore promoted by
considering all non-dominated test cases (trade-offs) as equally good according
to the dominance relation and that are assigned the same probability to survive
in the next generations.

It is worth noting that a test case t that replicates the target crash will
achieve the score f1(t) = f2(t) = f3(t) = 0, which is the optimal value for
all objectives. In terms of optimality, t is the global optimum for the original
single-objective problem but it is also the single Pareto optimal solution because
it dominates all other test cases in the search space. This is exactly the main
difference between classical multi-objective search and multi-objectivization: in
multi-objective search we are interested in generating a well-distributed set of
Pareto optimal solutions (or optimal trade-offs); in multi-objectivization, some
trade-offs are generated during the search (and preserved to help diversity), but
there is only one optimal test case, i.e., the one reproducing the target crash.1

Non-dominated Sorting Genetic Algorithm II. To solve our multi-obje-
ctivized problem, we use NSGA-II [7], which is a well-known multi-objective
genetic algorithm (GA) that provides well-distributed Pareto fronts and good
performance when dealing with up to three objectives [7]. As any genetic algo-
rithm, NSGA-II evolves an initial population of test cases using crossover and
mutation; however, differently from other GAs, the selection is performed using
tournament selection and based on the dominance relation and the crowding
distance. The former plays a role during the non-dominated sorting procedure,

1 Note that there might exist multiple tests that can replicate the target crash; how-
ever, these tests are coincident points as they will all have a zero-value for all
objectives.

332 M. Soltani et al.

A

C

D

E

F
B

ds

Multi-obj.

dt
ra
ce

A

C

E

F

ds

SSS

D

B

WSS

dt
ra
ce

A

C

E

F

dt
ra
ce

ds
D

B

(a) (b) (c)

Fig. 1. A graphical interpretation of different fitness functions (Color figure online)

where solutions are ranked in non-dominance fronts according to their domi-
nance relation; non-dominated solutions have the highest probability to survive
and to be selected for reproduction. The crowding distance is further used to
promote the more diverse test cases within the same non-dominance front.

In this paper, we implemented a guided variant of NSGA-II, where its genetic
operators are replaced with the guided crossover and guided mutation imple-
mented in GGA. We used these operators (i) to focus the search on the method
call appearing in the target trace and (ii) to guarantee a fair comparison with
GGA by adopting the same operators.

3.3 Graphical Interpretation

Figure 1 shows commonalities and differences among the tree alternative formu-
lations of the crash reproduction problem (see Sects. 3.1 and 3.2). For simplicity,
let us focus on only two objectives (ds and dtrace) and let us assume that we have
a set of generated tests which are shown as points in the bi-dimensional space
delimited by the two objectives. As shown in Fig. 1(c), points (test cases) in
multi-objectivization are compared in terms of non-dominance. In the example,
the tests A, B, and D are non-dominated tests and all of them are assigned to
the first non-dominance front in NSGA-II, i.e., they have the same probability of
being selected. On the other hand, sum scalarization (either simple or weighted)
projects all point to one single vector, i.e., the blue lines in Figs. 1(a) and (b).
With weighted sum scalarization (WSS), the vector of the aggregated fitness
function is inclined to the ds axis due to the higher weight of the line coverage
penalty. In contrast, the vector obtained with simple sum scalarization (SSS) is
the bisector of the first quadrant, i.e., both objectives share the same weights.
While in both Fig. 1(a) and (b), the best solution (point A) is the one closer to
the origin of the axes, the order of the solutions (and their selection probability)
can vary. For instance, we can see in the Figure that case C is a better choice
than case D in the weighted sum because it has a lower value for ds. But, case D
is better than C in the simple sum. These differences in the selection procedure
may lead the search toward exploring/exploiting different regions of the search
space (Table 1).

Single-objective Versus Multi-objectivized Optimization 333

Table 1. Crashes used in the study.

Exception type Defects4J XWiki

NullPointerException (NPE) 9 9

ArrayIndexOutOfBoundsExceptions (AIOOBE) 7 0

ClassCastException (CCE) 2 3

4 Empirical Evaluation

We conducted an empirical evaluation to assess the impact of the single objec-
tive or multi objectivization fitness functions, answering the following research
questions:

RQ1: How does crash reproduction with simple sum scalarization compare to
crash reproduction using weighted sum scalarization?

RQ2: How does crash reproduction with a multi-objectivized optimization func-
tion compare to crash reproduction using weighted sum scalarization?

Comparisons for RQ1 and RQ2 are done by considering the number of crashes
reproduced (crash coverage rate) and the time taken by EvoCrash to generate a
crash reproducing test case (test generation time).

4.1 Setup

To perform our evaluation, we randomly selected 33 crashes from five open source
projects: 18 crashes from four projects contained in Defects4J [15], which is
a well-known collection of bugs from popular libraries; and 12 crashes from
XWiki,2 a web application project developed by our industrial partner.

We execute the EvoSuite extensions, with the three approaches (weighted
sum, simple sum, and multi-objectivization), on 23 virtual machines. Each
machine has 8 CPU-cores, 32 GB of memory, and a 1TB shared hard drive.
All of them run CentOs Linux release 7.4.1708 as operating system, with Open-
JDK version 1.8.0-151.

For each crash c, we run each approach in order to generate a test case that
reproduces c and targeting each frame one by one, starting from the highest one
(the last one in the stack frame). As soon as one of the approaches is able to
generate a test case for the given frame (k), we stop the execution and do not try
to generate test cases for the lower frames (<k). To address the random nature
of the evaluated search approaches, we execute each approach 15 times on each
frame for a total number of 12,022 executions independent runs.

Parameter Settings. We use the default parameter configurations from Evo-
Suite with functional mocking to minimize the risk of environmental interactions
and increase the coverage [2]. We set the search budget to 10 minutes, which is
double of the maximal amount reported by Soltani et al. [22].
2 http://www.xwiki.org/.

http://www.xwiki.org/

334 M. Soltani et al.

4.2 Analysis

Since the crash coverage data is a binary distribution (i.e., a crash is reproduced
or not), we use the Odds Ratio (OR) to measure the impact of the single or multi-
objectivization on the crash coverage rate. A value of OR > 1 for comparing a
pair of factors (A,B) indicates that the coverage rate increases when factor A
is applied, while a value of OR < 1 indicates the opposite. A value of OR =
1 indicates that there is no difference between A and B. In addition, we use
Fisher’s exact test, with α = 0.05 for Type I errors to assess the significance of
the results. A p-value < 0.05 indicates the observed impact on the coverage rate
is statistically significant, while a value of p-value > 0.05 indicates the opposite.

Furthermore, we use the Vargha-Delaney Â12 statistic [23] to assess the effect
size of the differences between the two sum scalarization approaches or between
weighted sum and multi-objectivization for test generation time. A value of
Â12 < 0.5 for a pair of factors (A,B) indicates that A reduces the test gen-
eration time, while a value of Â12 > 0.5 indicates that B reduces the generation
time. If Â12 = 0.5, there is no difference between A and B on generation time. To
check whether the observed impacts are statistically significant, we used the non-
parametric Wilcoxon Rank Sum test, with α = 0.05 for Type I error. P -values
smaller than 0.05 indicate that the observed difference in the test generation
time is statistically significant.

5 Results

In this section, we present the results of the experiments. Thereby, we answer the
two research questions on comparing simple and weighted sum aggregation func-
tions as well as weighted sum and multi-objectivization for crash reproduction.

Results (RQ1). Table 2 presents the crash reproduction results for the 33
crashes used in the experiment. As the table shows, 21 cases were reproduced
using the original weighted sum scalarized function, while 20 cases were repro-
duced using simple sum scalarization. Thus, MATH-32b is only reproduced by the
weighted sum approach. Both optimization approaches reproduced the crashes
at the same frame level.

As Table 3 shows, we do not observe any statistically significant impact on
the crash reproduction rate, comparing weighted and simple sum scalarization.
However, for one case, XWIKI-13031, the odds ratio measure is 6.5, which indi-
cates that the rate of crash reproduction using the weighted scalarized function
is 6.5 times larger than the reproduction rate of using the simple scalarized
function. In this case, the p value is 0.1, therefore we cannot draw a statistically
significant conclusion.

For four cases, we see a significant impact on the test generation time. Based
on our manual analysis, we observe that when a crash (XWIKI-13031) is complex,
i.e., it takes several generations to produce a crash reproducing test case, weighted
sum reduces execution time. However, when a crash, e.g., XWIKI-13377, is easy to
reproduce, then weighted sum takes longer to find a crash reproducing test.

Single-objective Versus Multi-objectivized Optimization 335

Table 2. Experiment results for Multi-objectivized (Multi-obj.), Weighted (WSS) and
Simple Sum (SSS) Scalarization.“-” indicates that the optimization approach did not
reproduce the crash. Bold cases represent the crashes only reproduced by some of the
approaches, not all. Rep., T., and SD indicate reproduction rate, average execution
time, and standard deviation, respectively.

Crash ID Exception Frame Multi-obj. WSS SSS

Rep. T SD Rep. T SD Rep. T SD

CHART-4b NPE 6 15 16.5 1.4 15 16.6 1.4 15 14.8 1.3

LANG-12b AIOOBE 2 15 2.5 0.3 15 2.5 0.5 15 2.4 0.5

LANG-33b NPE 1 15 1.7 0.0 15 1.0 0.2 15 1.0 0.0

LANG-39b NPE 2 15 2.7 1.0 15 1.1 0.5 15 1.6 1.2

LANG-47b NPE 1 15 3.4 1.3 15 2.1 1.1 15 1.0 0.7

LANG-57b NPE 1 11 1.1 0.0 9 185.0 288.0 12 86.1 218.1

LANG-9b AIOOBE - - - -

MATH-100b AIOOBE 1 15 8.4 13.4 15 7.2 1.7 15 8.2 7.3

MATH-32b CCE 1 15 3.9 0.9 15 5.3 2.5 -

MATH-4b NPE 3 15 27.3 49.2 14 21.7 16.1 14 62.0 150.0

MATH-70b NPE 3 15 1.7 0.2 15 1.1 0.3 15 1.0 0.0

MATH-79b NPE 1 15 1.7 0.1 15 1.0 0.2 15 1.0 0.0

MATH-81b AIOOBE 6 9 82.0 63.0 11 180.7 230.5 15 115.0 114.0

MATH-98b AIOOBE 1 15 7.7 5.3 14 9.5 5.7 15 9.9 9.7

MOCKITO-12b CCE - - - -

MOCKITO-34b AIOOBE - - - -

MOCKITO-36b NPE 1 15 10.9 6.9 15 9.2 7.5 15 13.7 11.3

MOCKITO-38b NPE - - - -

MOCKITO-3b AIOOBE - - - -

XRENDERING-418 NPE - - - -

XWIKI-12482 NPE - - - -

XWIKI-12584 CCE - - - -

XWIKI-13031 CCE 3 15 25.8 17.4 15 47.2 67.0 10 249.0 175.0

XWIKI-13096 NPE - - - -

XWIKI-13303 NPE - - - -

XWIKI-13316 NPE 2 15 37.9 47.7 15 16.6 34.6 15 31.3 86.8

XWIKI-13377 CCE 1 15 10.7 8.6 15 11.8 7.7 15 4.8 3.9

XWIKI-13616 NPE 3 15 4.1 0.1 15 4.0 0.0 15 4.0 0.0

XWIKI-14227 NPE - - - -

XWIKI-14319 NPE 1 15 87.0 21.2 15 89.4 17.5 15 87.8 15.2

XWIKI-14475 NPE 1 15 117.1 53.6 - -

XWIKI-13916 CCE 1 15 59.7 19.8 14 65.0 13.6 15 57.6 13.8

XWIKI-14612 NPE 1 15 8.9 2.0 15 8.7 1.8 15 8.5 2.4

Results (RQ2). Table 2 shows that 22 cases were reproduced using decomposed
crash optimization objectives, while 21 cases were reproduced by the original
weighted sum function. XWIKI-14475 is reproduced by the multi-objectivized
approach only.

As Table 3 shows, in most cases, we do not observe any impact on the rate of
crash coverage. However, for MATH-81b and LANG-57b, the odds ratio measures
are 4.8 and 1.7 respectively, which indicates that the rate of crash reproduction
using multi-objectivized optimization is 4.8 times and 1.7 times higher than

336 M. Soltani et al.

Table 3. Comparing coverage rate and test generation time between the optimization
approaches, for cases where both optimization approaches in each pair reproduces the
crash. P-values for both Wilcoxon tests and odds ratios are reported. Effect sizes and
p-values of the comparisons are in bold when the p-values are lower than 0.05.

Crash ID Exception Fr. Multi-weighted Weighted-simple

Â12 p OR p Â12 p OR p

CHART-4b NPE 6 0.3 0.30 0.0 1.0 0.8 <0.01 0.0 1.00

LANG-12b AIOOBE 2 0.5 0.50 0.0 1.0 0.4 0.70 0.0 1.00

LANG-33b NPE 1 0.9 <0.01 0.0 1.0 0.5 0.30 0.0 1.00

LANG-39b NPE 2 0.9 <0.01 0.0 1.0 0.4 0.10 0.0 1.00

LANG-47b NPE 1 0.9 <0.01 0.0 1.0 0.4 0.70 0.0 1.00

LANG-57b NPE 1 0.6 0.20 1.7 0.6 0.5 0.60 0.3 0.40

MATH-100b AIOOBE 1 0.1 <0.01 0.0 1.0 0.5 0.40 0.0 1.00

MATH-32b CCE 2 0.3 <0.01 0.0 0.5 0.4 0.50 0.0 1.00

MATH-4b NPE 3 0.4 0.04 1.0 1.0 0.4 0.70 1.0 1.00

MATH-70b NPE 3 0.8 <0.01 0.0 1.0 0.5 0.10 0.0 1.00

MATH-81b AIOOBE 6 0.5 0.60 4.8 0.3 0.5 0.50 0.0 0.09

MATH-98b AIOOBE 1 0.3 <0.01 0.0 1.0 0.6 0.20 0.0 1.00

MOCKITO-36b NPE 1 0.2 0.60 0.0 1.0 0.3 0.30 Inf 1.00

XWIKI-13031 CCE 3 0.3 0.03 Inf 1.0 0.1 <0.01 6.5 0.10

XWIKI-13316 NPE 2 0.6 0.09 0.0 1.0 0.6 0.10 0.0 1.00

XWIKI-13377 CCE 1 0.6 0.50 0.0 1.0 0.7 0.01 0.0 1.00

XWIKI-13616 NPE 3 0.5 <0.01 0.0 1.0 0.5 <0.01 0.0 1.00

XWIKI-14319 NPE 1 0.4 <0.01 0.0 1.0 0.5 0.70 0.0 1.00

XWIKI-13916 CCE 1 0.3 0.60 0.0 1.0 0.6 0.08 0.0 1.00

XWIKI-14612 NPE 1 0.5 0.40 0.0 1.0 0.4 0.70 0.0 1.00

the rate of reproduction using the weighted sum function. For these cases, the
p-values are 0.3 and 0.6 respectively, therefore, we cannot draw a statistically
significant conclusion yet.

Moreover, as Table 3 shows, for six cases, namely: MATH-100b, MATH-32b,
MATH-4b, MATH-98b, XWIKI-13031, and XWIKI-14319, we observe that using
multi-objectivization reduces the time for test generation (as Â12 measures are
lower than 0.5). For all these cases, the p values are lower than 0.05, which
indicates the observed impacts are statistically significant. On the other hand,
for four other cases, namely: LANG-33b, LANG-39b, LANG-47b, and MATH-70b,
we observe an opposite trend, i.e., the weighted sum achieves a lower test gen-
eration time (as the Â12 measures are larger than 0.5). Based on our manual
analysis, as also indicated by the average execution time values reported in
Table 2, when a crash is complex and the search requires several generations
(e.g., XWIKI-13031), multi-objectivization reduces the execution time. On the

Single-objective Versus Multi-objectivized Optimization 337

other hand, when a crash is easy to be reproduced and a few generations of
test cases quickly converge to a global optimum, then using the weighted sum
approach is more efficient.

6 Discussion

As Table 3 shows, for only one case, XWIKI-13031, the weighted sum is more effi-
cient than the simple sum, while for two other cases, XWIKI-13377 and CHART-4b,
the simple sum is more efficient. From our manual analysis of these cases, we
see that when the target line is covered in a few seconds (when initializing the
first population), the simple sum is more efficient than the weighted sum. How-
ever, when more search iterations (generations) are needed to find a test that
reaches the target line, like for XWIKI-13031, the weighted sum is much faster.
As indicated in Sect. 3, while using weights in single-objective optimization may
reduce the likelihood of getting stuck in local optima, it may accept solutions
that trigger the target exception but not at the target code line. Therefore, a
possible explanation for these cases is that while maintaining diversity improves
efficiency to a small degree, relaxing the constraints may penalize the exploita-
tion. In practice, since it is not possible to know a priori when getting stuck in
local optima occurs, using weighted sum (that provides more guidance, thanks
to the constraints it takes into account) seems a more reliable approach, which
might be few seconds less efficient compared to simple sum (in some cases).

As Knowles et al. [17] discussed, when applying multi-objectivization, for
a successful search, it is important to derive independent objectives. In our
multi-objectivization approach, as presented in Sect. 3, we decompose the three
heuristics in the original scalarized function into three optimization objectives.
However, these objectives are not entirely independent of each other; line cov-
erage is interrelated to the stack trace similarity. Thus, if the target line is not
covered, the stack trace similarity will never converge to 0.0. This can be one
possible explanation for why when the target frame is one, single-objective opti-
mization performed better for most cases in our experiments. The fewer frames
to reproduce, the stronger the interrelation between the two objectives is.

Furthermore, we observe that when a crash is complex and requires several
generations to be reproduced, the multi-objectivized approach performs more
efficiently than single-objective optimization. On the other hand, when crashes
can be reproduced in few generations (i.e., the target line is covered by the ini-
tial population of GAs and evolution is mostly needed for triggering the same
crash), then the single-objective approach is more efficient. This is due to the
cost of the fast non-domination sorting algorithm in NSGA-II [7], whose com-
putational complexity is O(MN2), where M is the number of objectives and N
is the population size. Instead, the computational complexity of the selection
in a single-objective GA is O(M), where N is the population size. Thus, sort-
ing/selecting individuals is computationally more expensive in NSGA-II and it
is worthwhile only when converging to 0.0 requires effective exploration through
the enhanced diversity in NSGA-II.

338 M. Soltani et al.

Insights. From our results and discussion, we formulate the following insights:
(i) prefer multi-objectivization, as it substantially reduces the execution
time for complex crashes (up to three minutes) and the time loss for simple
crashes is small (few seconds on average); furthermore, it allows to reproduce
one additional crash that weighted sum could not reproduce; (ii) Alternatively,
use a hybrid search that switches from weighted sum to multi-objectivized
search when the execution time is above a certain threshold (20 seconds in our
case) or if the target code line is not covered within the first few generations;
and finally, (iii) Avoid simple sum scalarization as it may get stuck into local
optima (multi-objectivization).

Threats to Validity. We randomly selected 33 crashes from five different open
source projects for our evaluation. Those crashes come from Defects4J, a collec-
tion of defects from popular libraries, and from the issue tracker of our industrial
partner, ensuring diversity in the considered projects. In addition, the selected
crashes contain three types of commonly occurring exceptions. While we did
not analyze the exception types, they may be a factor that impacts the test
generation time and crash reproduction rate. Finally, our extension to EvoSuite
may contain unknown defects. To mitigate this risk, in addition to testing the
extensions, the first three authors reviewed the artifacts independently.

7 Conclusion

Crash reproduction is an important step in the process of debugging field crashes
that are reported by end users. Several automated approaches to crash reproduc-
tion have been proposed in the literature to help developers debug field crashes.
EvoCrash is a recent approach which applies a Guided Genetic Algorithm (GGA)
to generate a crash reproducing test case. GGA uses a weighted scalarized func-
tion to optimize test generation for crash reproduction. In this study, we apply
the GGA approach as an extension of EvoSuite and show that using a weighted
sum scalarization fitness function improves test generation compared to a simple
sum scalarization fitness function when reproducing complex crashes. Moreover,
we also investigate the impact of decomposing the scalarized function into multi-
ple optimization functions. Similarly, compared to using the weighted scalarized
function, we observe that applying multi-objectivization improves the test gen-
eration time when reproducing complex crashes requiring several generations of
test case evolution.

In general, we believe that multi-objectivization is under-explored to tackle
(by-nature-)single-objective problems in search-based software testing. Our
results on multi-objectivization by decomposition of the fitness function for crash
reproduction are promising. This calls for the application of this technique to
other (by-nature-) single-objective search-based problems.

Single-objective Versus Multi-objectivized Optimization 339

References

1. Albunian, N.M.: Diversity in search-based unit test suite generation. In: Menzies,
T., Petke, J. (eds.) SSBSE 2017. LNCS, vol. 10452, pp. 183–189. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66299-2 17

2. Arcuri, A., Fraser, G., Just, R.: Private API access and functional mocking in
automated unit test generation. In: Proceedings of International Conference on
Software Testing, Verification and Validation (ICST), pp. 126–137. IEEE (2017)

3. Bianchi, F.A., Pezzè, M., Terragni, V.: Reproducing concurrency failures from
crash stacks. In: Proceedings of the Joint Meeting on Foundations of Software
Engineering (FSE), pp. 705–716. ACM (2017)

4. Chen, N., Kim, S.: STAR: stack trace based automatic crash reproduction via
symbolic execution. IEEE Trans. Softw. Eng. 41(2), 198–220 (2015)

5. Coello Coello, C.A.: Constraint-handling techniques used with evolutionary algo-
rithms. In: Proceedings of the Genetic and Evolutionary Computation Conference
Companion (GECCO Companion), pp. 563–587. ACM (2016)

6. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary
algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 35 (2013)

7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. TEVC 6(2), 182–197 (2002)

8. Feldt, R., Torkar, R., Gorschek, T., Afzal, W.: Searching for cognitively diverse
tests: towards universal test diversity metrics. In: Proceedings of International
Conference on Software Testing Verification and Validation Workshops (ICSTW),
pp. 178–186. IEEE (2008)

9. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. 39(2),
276–291 (2013)

10. Fraser, G., Arcuri, A.: A large-scale evaluation of automated unit test generation
using evosuite. TOSEM 24(2), 8 (2014)

11. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal
function optimization. In: Proceedings of International Conference on Genetic
Algorithms and Their Application, pp. 41–49. Lawrence Erlbaum Associates Inc.
(1987)

12. Harman, M., McMinn, P.: A theoretical & empirical analysis of evolutionary test-
ing and hill climbing for structural test data generation. In: Proceedings of the
2007 International Symposium on Software Testing and Analysis, pp. 73–83. ACM
(2007)

13. Jähne, M., Li, X., Branke, J.: Evolutionary algorithms and multi-objectivization
for the travelling salesman problem. In: Proceedings of the 11th Annual Conference
on Genetic and Evolutionary Computation, pp. 595–602. ACM (2009)

14. Jin, W., Orso, A.: Bugredux: reproducing field failures for in-house debugging.
In: Proceedings of International Conference on Software Engineering (ICSE), pp.
474–484. IEEE Press (2012)

15. Just, R., Jalali, D., Ernst, M.D.: Defects4J: a database of existing faults to enable
controlled testing studies for Java programs. In: Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), pp. 437–440. ACM (2014)

16. Kifetew, F.M., Panichella, A., De Lucia, A., Oliveto, R., Tonella, P.: Orthogonal
exploration of the search space in evolutionary test case generation. In: Proceedings
of International Symposium on Software Testing and Analysis (ISSTA), pp. 257–
267. ACM (2013)

https://doi.org/10.1007/978-3-319-66299-2_17

340 M. Soltani et al.

17. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing local optima in single-
objective problems by multi-objectivization. In: Zitzler, E., Thiele, L., Deb, K.,
Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9 19

18. McMinn, P.: Search-based software test data generation: a survey. Softw. Test.
Verification Reliab. 14(2), 105–156 (2004)

19. Nayrolles, M., Hamou-Lhadj, A., Tahar, S., Larsson, A.: A bug reproduction app-
roach based on directed model checking and crash traces. J. Softw.: Evol. Process
29(3), e1789 (2017)

20. Rößler, J., Zeller, A., Fraser, G., Zamfir, C., Candea, G.: Reconstructing core
dumps. In: Proceedings of International Conference on Software Testing, Verifica-
tion and Validation (ICST), pp. 114–123. IEEE (2013)

21. Soltani, M., Panichella, A., van Deursen, A.: Evolutionary testing for crash repro-
duction. In: Proceedings of the 9th International Workshop on Search-Based Soft-
ware Testing - SBST 2016, pp. 1–4 (2016)

22. Soltani, M., Panichella, A., van Deursen, A.: A guided genetic algorithm for auto-
mated crash reproduction. In: International Conference on Software Engineering
(ICSE), pp. 209–220. IEEE, May 2017

23. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common lan-
guage effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2),
101–132 (2000)

24. Xuan, J., Xie, X., Monperrus, M.: Crash reproduction via test case mutation: let
existing test cases help. In: Proceedings of the Joint Meeting on Foundations of
Software Engineering (ESEC/FSE), pp. 910–913. ACM (2015)

https://doi.org/10.1007/3-540-44719-9_19

Hot off the Press Papers

A New Approach for Search Space
Reduction and Seeding by Analysis

of the Clauses

Atieh Monemi Bidgoli(B) and Hassan Haghighi(B)

Department of Computer Science and Engineering, Shahid Beheshti University, G.C.,
Tehran, Iran

monemiatieh@gmail.com, h haghighi@sbu.ac.ir

Abstract. The search space of potential inputs of a program is very
large, even for the very small one, while this size is a key determining
factor affecting the performance of any search-based test data generation
approach. However, despite the large volume of work on search-based
test data generation, the literature contains little work that concerns
this problem. In this paper, by analysis of the clauses of the program,
in addition to proposing a new search space reduction strategy, a new
seeding approach is introduced.

Keywords: Search-based software testing · Test data generation
Input domain reduction · Search space reduction · Seeding

1 Introduction

Search-based software testing is an important research topic in automatic test
data generation. Search-based test data generation reformulates testing targets
as fitness functions, so that, test data generation can be automated by some cho-
sen search-based optimization algorithm. The optimization algorithm searches
the space of potential inputs to reach the target. Structural-oriented test data
generators attempt to cover certain structural elements in the program and typ-
ically use an abstract representation of the program such as a Control Flow
Graph (CFG). The CFG of a program is a directed graph that represents the
control structure of the program.

In the structural testing, the potential inputs are very large, even for the very
small program, while this size is a key determining factor affecting the perfor-
mance of any search-based test data generation approach. Although search-based
software testing has received a great deal of attention, there has been little work
investigating this concern. The authors of [4,5] seek to address this problem by
an approach to remove the domain of irrelevant input variables. Irrelevant input
variables are input variables that do not influence whether a target structure
will be executed or not.

Removing the irrelevant input variables raises the question whether it is
necessary to search all the domain of relevant variables. In other words, could
c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 343–348, 2018.
https://doi.org/10.1007/978-3-319-99241-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_19&domain=pdf
http://orcid.org/0000-0001-9390-5471
http://orcid.org/0000-0002-6145-4095

344 A. M. Bidgoli and H. Haghighi

we have a strategy to select a subset of it with the condition that the structural
targets will be found within that? Consider a well-known triangle type program,
it has three input variables, instead of searching in all the domains of input
variables, from INT MIN to INT MAX, it could be done in a subset of it (e.g.,
[1000,2000]). In practice, the one that is familiar with the logic of the program
knows how to select a subset of search space such that all the targets will be
found within that. However, could we have an approach to do this search space
reduction automatically? In this paper, based on the clauses1 of the program,
an approach is proposed to indirectly approximate the reduced search space and
do input domain reduction automatically.

In addition, to more enhance the performance of test data generation tech-
niques, a new seeding (i.e., initialization of individuals) strategy is proposed
based on the calculated values during search space reduction procedure. Studies
show that providing domain knowledge improves the performance of test data
generation techniques [2,7].

The underlying idea behind the proposed approach is that there is no need
to investigate all the input domain of the program. Input variables of a program
have a relation with each other and a special combination of them causes reaching
a specific structure. By obtaining the relation between input parameters through
the clauses of the program, we could reduce the domain based on. The clauses
of the program are the place that the variables and the combination of them are
checked to choose an appropriate branch. Therefore, per each clause, we calculate
values for involved input variables such that changing one of the values makes the
different evaluation for the clause, i.e., from True to False or vice versa. It must be
noted that this is not Dynamic Domain Reduction (DDR) proposed by Offutt
and Pan [6]:“It takes an initial set of values for each input, and dynamically
pushes the values through the control-flow graph of the program, modifying the
sets of values as branches in the program are taken. The result is usually a set
of values for each input parameter that has the property that any choice from
the sets will cause the path to be traversed.”

Their approach works dynamically but the proposed approach does a static
preprocessing before starting the search. DDR tries to find an exact value such
that reach the target, our approach tries to approximately minimize the search
space. Our approach considers every clause separately, while in DDR all clauses2

are considered respectively.

2 The Proposed Approach

Since the search space in the numerical programs is made of the domains of input
variables, all the clauses of the program must only involve input variables. The
clauses are initially expressed in terms of program variables; since each of these
program variables can be ultimately expressed in terms of input variables using
assignment statements along the control path, it is possible to re-express the
1 A clause is a predicate that does not have any logical operator.
2 They used the word constraint instead.

A New Approach for Search Space Reduction and Seeding 345

For each clause C that only involves input variables of the program,

Gain clause C’ for clause C by the replacement of its relational

operator with the equality operator

Find a value per each input variable that will satisfy C’

End For

Fig. 1. Analysis of the clauses of the program

Table 1. Some examples of satisfaction values

Clause C Clause C’ Satisfaction values

a b c

1 a > 50 a = 50 50

2 a < b a = b 20 20

3 a + b > c a + b = c 50 50 100

4 b × b − 4 × a × c > 0 b × b − 4 × a × c = 0 4 4 1

5 b �= c b = c 150 150

clauses in terms of only the input variables. The approach applies a simplified
version of symbolic evaluation to rewrite the clauses to be in terms of input
variables. In this step, we might have more than one modified version of a clause
based on the number of paths exist in the program. In our approach, only basis
paths are considered for converting non-input variables to input variables.

Fig. 2. (a) Satisfaction values for the clause a < b (b) A sample partitioned search
space based on the clauses a > b and a > 50

In the next step (Fig. 1), each clause is modified by replacing its relational
operator (i.e., ≤,≥, �=,=, <,>) with the equality (=) operator. The values that
satisfy the resulting clause are calculated. For a simple clause like xRc or xRy,
where both x and y are variables, c a constant and R a relational operator, a
sample value for each input variable must be chosen to satisfy it. One variable
is considered as dependent variables and its value is calculated based on the
value of the other independent variables. For independent variables, a sample

346 A. M. Bidgoli and H. Haghighi

value must be selected from a preset domain. For a more complicated clause
(i.e., non-linear), by putting right side of the clause to the left side, the function
F = 0 is gained. Based on its type, analytically or numerically the root of the
function F is calculated. Although there might be too many values that satisfy
a clause, only one of them is used in the proposed approach. The root might be
an approximate one if the numerical approach is used.

Consider the clause a > 50 in Table 1, the calculated value for this clause is
a = 50. Therefore, the domain of variable a, based on value a = 50, is divided
into two parts; the values in one part make the clause evaluated to True and
the values in the other part make it evaluated to False. Hence, we can divide
the domain of variable a into two parts, one of which satisfies the true case and
the other one satisfies the false case. In the case of a < b, with a = 20 and
b = 20 as satisfaction values, the input domain of variables a and b is separately
divided into two parts, and therefore, we have 2 × 2 combination of parts (i.e.,
partition) in the whole search space. Values in one of these four partitions make
the clause evaluated to True and values in one partition make it evaluated to
False. Fig. 2 illustrate these examples. Table 1 shows satisfaction values for some
more examples.

Seeding: The satisfaction values calculated in the Fig. 1 are used in the ini-
tialization of individuals to improve the performance of search based test data
generation approach. Consider a program only has the five clauses presented in
Table 1, and (a, b, c) are the parameters of it, the inputs in the following set
should be used in the initialization of individuals: {(50, -, -), (20, 20, -), (50, 50,
100), (4, 4, 1), (-, 150, 150)}. The symbol “-” means that we could choose any
value for the corresponding variable.

Search Space Reduction: If X be the set of obtained values for variable x, we
could consider the range [(min/1000) ∗ 1000, ((max/1000) + 1) ∗ 1000] as the
domain of variable x, such that, min is the minimum value in the set X and
max is the maximum value in the set X. For example, the calculated values
for variable “income” in the program “compute tax” are {8350, 11950, 16700,
33950, 45500, 67900, 68525, 82250, 83500, 104425, 117450, 137050, 171550,
186475, 186500, 190200, 208850, 372950, 380000}, so the domain for the variable
“income” can be set as [8000, 381000]. For another example, the reduced input
domain for variables a, b and c in Table 1 is [0, 1000].

3 Preliminary Result

To see the effect of search space reduction and seeding on the performance of
Genetic Algorithm (GA), we ran three different algorithms, GA, GA-R, and
GA-R-S (R stands for Reduction and S stands for Seeding). GA ran on the
whole search space. In GA-R, GA ran in the reduced search space. In GA-R-S,
in addition to searching in a reduced search, the initialization was done based
on the proposed approach.

A New Approach for Search Space Reduction and Seeding 347

5 10 15 20

20
40

60
80

10
0

Mot

Iteration

Av
era

ge
 C

ov
era

ge

5 10 15 20

20
40

60
80

10
0

TT1

Iteration

Av
era

ge
 C

ov
era

ge

5 10 15 20

20
40

60
80

10
0

Compute Tax

Iteration

Av
era

ge
 C

ov
era

ge

5 10 15 20

0
20

40
60

80
10

0

GCD

Iteration

Av
era

ge
 C

ov
era

ge

5 10 15 20

20
40

60
80

10
0

LCM

Iteration

Av
era

ge
 C

ov
era

ge

5 10 15 20

10
20

30
40

50
60

TT2

Iteration

Av
era

ge
 C

ov
era

ge

GA-R-S GA-R GA

Fig. 3. The average coverage of three algorithms on six different benchmarks

To perform the experiments, the average coverage is used as the evaluation
metric. Average coverage denotes the average percentage of covered branches in
repeated runs. It is calculated in each iteration. We selected a set of benchmark
programs. Most of these programs are commonly used in the structural testing
literature. TT1 and TT2 are two different algorithms for calculating the type of
triangle. GCD and LCM find greatest common divisor and least common mul-
tiplier respectively. Compute Tax is an algorithm for computing tax amount.
Mot is the synthesis of while, for and if. Of course, these are relatively small
programs, but our approach right now is designed to work on the program units,
not integrated software systems. Before conducting the experiments, the param-
eters of the algorithm had to be initialized. The number of population was set
as 30. The number of iterations (i.e., generations) was 20. The crossover rate
and the mutation rate were set as 0.8 and 0.03. All input variables are encoded
as binary codes and “single point crossover” is the type of crossover. The fitness
function is branch coverage with whole test suite generation strategy [3]. The
range [0, 1000)] is considered as the preset domain for finding satisfaction values
(Fig. 3).

For each program, experiments were repeated 50 times with different random
seeds to take into account the stochastic nature of meta-heuristic algorithms. The
statistical analysis was done just for the iteration equal to 10 (as the midpoint),
but, for the sake of page limitation, we can not show that.

As expected the results, in most cases with high statistical confidence, man-
ifest the positive effect of reduction and seeding in the performance of test data
generation. Consider TT1, the search space is reduced for each input variable
such that each one has 1000 different values. Thus, only 1000 × 1000 × 1000

348 A. M. Bidgoli and H. Haghighi

different inputs exist in this reduced search space and only 1000 inputs exist
that make the triangle with the equilateral type, so the possibility of finding
test data for this target (i.e., the related path or branch) is 1000

1000×1000×1000 . In
contrast, this possibility in the whole search space is very high depending on
the programming language. In Compute Tax, the effect of seeding compare to
search space reduction is very significant, this is because of equality operators
that exist in the clauses of this program.

4 Conclusion

We can say that the proposed approach is the customized version of DDR for
search based test data generation to improve the search along the two directions:
reducing the search space and enhancing the initial population. The final goal of
the proposed approach is to improve the performance of search based test data
generation approaches in the case that Dynamic Symbolic Execution (DSE) tools
like Pex work better. Based on the results reported in [1] EvoSuite is the only tool
which is completely able to cover all the snippets for objects and generics and it
reaches high coverage on the majority of the code snippets. However, EvoSuite’s
limit is solving complex constraints and mathematical problems (in contrast, it is
the power of Pex). Based on the way that Pex works based on, it seems that the
proposed approach could be a solution to the mentioned limitation. We obtain
promising results in the simple benchmarks and we hope that the preliminary
results could serve as actionable feedback to tool developers.

References

1. Cseppento, L., Micskei, Z.: Evaluating symbolic execution-based test tools. In: 2015
IEEE 8th International Conference on Software Testing, Verification and Validation
(ICST), pp. 1–10. IEEE (2015)

2. Fraser, G., Arcuri, A.: The seed is strong: seeding strategies in search-based soft-
ware testing. In: 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation (ICST), pp. 121–130. IEEE (2012)

3. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. 39(2),
276–291 (2013)

4. Harman, M., Hassoun, Y., Lakhotia, K., McMinn, P., Wegener, J.: The impact of
input domain reduction on search-based test data generation. In: Proceedings of the
6th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pp. 155–164.
ACM (2007)

5. McMinn, P., Harman, M., Lakhotia, K., Hassoun, Y., Wegener, J.: Input domain
reduction through irrelevant variable removal and its effect on local, global, and
hybrid search-based structural test data generation. IEEE Trans. Softw. Eng. 38(2),
453–477 (2012)

6. Offutt, A.J., Jin, Z., Pan, J.: The dynamic domain reduction procedure for test data
generation. Softw. Pract. Exp. 29(2), 167–93 (1999)

7. Rojas, J.M., Fraser, G., Arcuri, A.: Seeding strategies in search-based unit test
generation. Softw Test. Verif. Reliab. 26(5), 366–401 (2016)

Learning Fault Localisation for both
Humans and Machines Using

Multi-objective GP

Kabdo Choi(B), Jeongju Sohn, and Shin Yoo

Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
{cyron1259,kasio555,shin.yoo}@kaist.ac.kr

Abstract. Genetic Programming has been successfully applied to fault
localisation to learn ranking models that place the faulty program ele-
ment as near the top as possible. However, it is also known that, when
localisation results are used by Automatic Program Repair (APR) tech-
niques, higher rankings of faulty program elements do not necessarily
result in better repair effectiveness. Since APR techniques tend to use
localisation scores as weights for program mutation, lower scores for
non-faulty program elements are as important as high scores for faulty
program elements. We formulate a multi-objective version of GP based
fault localisation to learn ranking models that not only aim to place the
faulty program element higher in the ranking, but also aim to assign
as low scores as possible to non-faulty program elements. The results
show minor improvements in the suspiciousness score distribution. How-
ever, surprisingly, the multi-objective formulation also results in more
accurate fault localisation ranking-wise, placing 155 out of 386 faulty
methods at the top, compared to 135 placed at the top by the single
objective formulation.

Keywords: Fault localisation · Multi-objective evolutionary algorithm

1 Introduction

Genetic Programming has been successfully applied to fault localisation [9], ini-
tially to learn individual Spectrum-Based Fault Localisation (SBFL) risk evalu-
ation formulæ [11] and subsequently to learn more complicated ranking models
that take multiple SBFL formulæ as well as code and change metrics as input
and produce rankings of program elements [7].

Increasingly, fault localisation techniques are being used by Automated Pro-
gram Repair techniques, such as GenProg [8]: suspiciousness scores, i.e., the
scores used for rankings, are often used as weights to determine parts of the
program under repair that need to be patched. Noting this, Qi et al. evaluated
fault localisation techniques using success rates of APR techniques as the effec-
tiveness measure [6] and reported an interesting finding: SBFL formulas proven

c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 349–355, 2018.
https://doi.org/10.1007/978-3-319-99241-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_20&domain=pdf

350 K. Choi et al.

to produce better ranking than others [10] turned out to be less effective than
formulæ they dominate when used with APR.

Inspired by Qi et al., we formulate a multi-objective learning to rank problem
for fault localisation, aiming to evolve a ranking model that assigns not only
higher scores (and, therefore, rankings) to faulty program elements, but also
lower scores to non-faulty program elements. Thus, we aim to maintain better
rankings for humans, while producing better distributions for APR techniques.

2 Locality Information Loss as Fitness Function

We extend FLUCCS [7], a GP based fault localisation technique, to have multiple
objectives. The primary fitness function of FLUCCS is average ranking of the
first faulty program elements computed against the faults in the training data
as the fitness function. This section explains how we convert the distribution of
suspiciousness scores into a secondary fitness function.

2.1 Locality Information Loss (LIL)

LIL is an evaluation metric for fault localization based on information theory [4].
Essentially, LIL treats the distribution of suspiciousness scores as a probability
distribution, and computes the cross-entropy between the ground truth and the
given score distribution using Kullback-Leibler divergence. The score distribu-
tion for the ground truth is give L(si) = 1 if the program element si belongs
to the set of faulty elements, Sf , and 0 < ε � 1 otherwise. LIL converts both
the ground truth distribution, L, and the given suspiciousness score distribu-
tion, τ , into probability distribution using linear normalisation, i.e., Pτ (si) =

τ(si)∑n
i=1 τ(si)

(1 ≤ i ≤ n). Finally, LIL itself is computed as the Kullbeck-Leibler

divergence between two distributions: DKL(PL||Pτ) =
∑

i PL(si) ln PL(si)
Pτ (si)

.

2.2 Weighted Locality Information Loss (wLIL)

After initial investigation, we learnt that LIL in its basic form is not suitable as
a fitness function. As the number of program elements grows, the faulty program
elements, of which there are only a few, have decreasing impact on the final LIL
score. Reducing the suspiciousness scores for all program elements becomes a
more effective strategy for GP to learn, damaging the ranking based fitness.

To counter this, we introduce wLIL, defined as |Sf | |S\Sf |
|S| PL(sfm

) ln PL(sfm)
Pτ (sfm) +

∑
si /∈Sf

|Sf |
|S| PL(si) ln PL(si)

Pτ (si)
(S is the set of all program elements, and sfm

is the
faulty element with maximum suspiciousness score). We use sfm

as a substitute
for si ∈ Sf to boost the impact of faulty elements over the total score.

Learning Fault Localisation for both Humans and Machines 351

3 Experimental Setup

This section presents our research questions and the experimental set-up.

3.1 Research Questions

We investigate the following research questions to evaluate the effectiveness of the
multi-objective version of FLUCCS, FMO, which uses NSGA-II [1] to implement
multi-objective GP.

RQ1. Ranking Effectiveness: how effective is FMO at ranking the faulty
program elements higher than non-faulty elements?
RQ2. Distribution Effectiveness: how effective is FMO at producing dis-
tributions of suspiciousness scores that resembles the ground truth?

Intuitively, RQ1 evaluates FMO from the human perspective by checking the
ranking of the faulty program elements, while RQ2 evaluates FMO from the
machine (i.e., APR) perspective. We use the original FLUCCS as the single
objective baseline, FSO. To answer RQ1, we adopt the widely used evaluation
metrics, acc@n and wef , to compare FMO and FSO: acc@n counts the number of
faults that have been ranked within the top n places by ranking models, whereas
wef is the number of non-faulty program elements ranked higher than the first
faulty program elements1. To answer RQ2, we measure the ratio between the
highest suspiciousness scores of faulty and non-faulty program elements: casually,
the higher the ratio is, the more obvious the faulty program elements appears
to APR techniques. We report these ratios because wLIL values are hard to
interpret intuitively.

3.2 Subject Programs

We use real world faults from Defects4J [3], the same benchmark that has been
used in our previous work [7]. From the 395 faults provided by Defects4J 1.1.0,
we use 386 faults, excluding 9 faults that we could not reproduce in the method
level localisation experiments. Table 1 contains the details of subjects and faults.

Table 1. Subject software systems and their faults

Project # faults Loc # Methods # Test cases

Commons lang 63 9059–11490 1953–2408 1540–2295

Commons math 105 4726–41344 1049–6668 817–4429

Joda-time 26 12732–13270 3628–3802 3749–4041

Closure compiler 131 30438–50523 4848–8880 2595–8443

Jfreechart 25 41075–51523 6578–8281 1586–2193

Mockito 36 2110–4385 747–1476 695–1399

1 Note that our primary fitness function is essentially the mean wef computed for
faults in the training data-set.

352 K. Choi et al.

3.3 Configuration

Both FMO and FSO are implemented using DEAP 1.2.2 [2], a Python evolution-
ary computation framework. We use tree-based GP, with single-point cross over
with rate 1.0 and subtree mutation with rate 0.1; each GP individual describes a
candidate ranking model. The population size is 40, and the maximum and min-
imum tree depth are eight and one respectively. The stopping criterion is after
100 generations. We use six GP operators: addition, subtraction, multiplication,
safe division, negation, and safe square root. Both FMO and FSO use the same
set of features and constant values as the previous work [7]. All experiments were
performed on Ubuntu 16.04.4 LTS.

To avoid overfitting, we adopt ten-fold cross validation: 386 faults have been
divided into 10 folds, each consisting of 35 to 39 faults. Each fold is used as the
test data set to validate the ranking models trained with the remaining folds.
We repeat GP ten times for each fold: for FMO, from each run in a fold, we first
choose the ranking model with the best ranking fitness on the final Pareto-front
to represent the run. Subsequently, we choose the ranking models with median
and minimum ranking fitness (Fmed

MO and F
min
MO) among the ten representatives.

For FSO, we simply choose the best individual from each run in a fold as the
representative, and subsequently choose ones with median and minimum ranking
fitness (Fmed

SO and F
min
SO) among the ten representatives. Finally, all faults are

localised by F
med
MO , Fmin

MO , Fmed
SO , and F

min
SO trained in their corresponding folds.

Ranking models generated by both FMO and FSO are essentially a large
expressions that produce suspiciousness scores. When raking program elements
using these scores, it is possible for ties to take place. We use the maximum
tie-breaking rule, which assigns the lowest rank to all of the tied elements.

Table 2. Ranking Effectiveness of Single and Multi-objective FLUCCS

Config.SubjectFlt. acc wef Config.SubjectFlt. acc wef

@1 @3 @5 @10mean σ @1 @3 @5 @10mean σ

F
med
SO Chart 25 15 18 20 22 6.6400 20.0497Fmed

MO Chart 25 17 20 23 24 1.3600 3.0447

Clos. 131 34 66 81 92 29.9008101.3193 Clos. 131 37 66 83 97 33.3282118.3868

Lang 63 27 44 49 54 2.8571 4.5595 Lang 63 36 48 54 61 2.5556 9.0374

Math 105 42 56 58 70 46.2857305.3330 Math 105 45 60 67 76 107.1143674.0247

Mock. 36 10 19 21 28 9.2500 22.5085 Mock. 36 9 17 21 28 15.5833 54.0896

Time 26 7 13 15 19 133.6538636.7294 Time 26 11 16 17 19 253.0385854.3380

Overall 386 135 216 244 285 33.5000239.1826Overall 386 155 227 265 305 59.4508426.7188

F
min
SO Chart 25 16 20 23 23 1.8400 4.3237Fmin

MO Chart 25 15 20 23 23 1.9600 4.7873

Clos. 131 25 61 74 92 33.5191113.6997 Clos. 131 38 66 79 95 31.6336103.2980

Lang 63 34 42 48 55 2.8571 4.4645 Lang 63 34 46 53 59 33.5555247.6137

Math 105 49 62 65 76 57.8571454.5908 Math 105 39 55 60 68 64.9714480.6590

Mock. 36 9 17 22 29 10.0555 21.7496 Mock. 36 8 18 21 27 49.8611212.5439

Time 26 10 16 18 19 89.5769379.9093 Time 26 8 17 18 20 142.1538636.0536

Overall 386 143 218 250 294 34.6710266.4820Overall 386 142 222 254 292 48.2383329.9654

Learning Fault Localisation for both Humans and Machines 353

4 Results

Table 2 shows the results of ranking models generated by FMO and FSO. Median
fitness models perform better, Fmed

SO and F
med
MO localising 35% and 40% of the total

faults at the top of ranking respectively. Both F
min
SO and F

min
MO places approxi-

mately 37% of the faults at the top in comparison. Within top 10, 73% and 76%
of the faults are localized by F

med
SO and F

min
SO , respectively; Fmed

MO and F
min
MO place

79% and 75.6% within top 10.
Most notably, Fmed

MO ranking models performs either better or almost equally
well according to acc@1, when compared to F

med
SO counterparts. We interpret this

as a similar phenomenon to that reported by Praditwong et al. [5] in software
remodularisation: formulating the same problem in a multi-objective fashion
contributes to better fitness than in the single objective formulation. While the
results call for a closer analysis, we cautiously posit that this improvement is due
to the increased diversity during the multi-objective evolution. Interestingly, in
terms of wef , FSO tends to outperform FMO, which is as expected because FSO

can focus on improving wef alone whereas FMO has to maintain Pareto-optimal
populations. To answer RQ1: FMO can rank as effectively as FSO.

To evaluate the distribution effectiveness, we report the ratio between the
maximum score among faulty elements, vf , and the maximum score among non-
faulty elements, vn. For both ratios vf

vn
and vn

vf
, we count the number of faults

for which the ratio exceeded n = 1, 2, 5, 10. The results are shown in Table 3
and Fig. 1. FMO localise more faults with higher ratios up to n = 2, but fail
to localise more faults with ratios higher than five. However, also note that the
number of faults whose vn

vf
is greater than 10, i.e., the number of faults that

are extremely difficult to localise, has been decreased by FMO ranking models:
from 110 to 103 by F

med
MO , and from 111 to 101 by F

min
MO , respectively. We suspect

that the secondary objective, wLIL, encouraged the faulty program elements
to be assigned with higher scores. To answer RQ2: FMO does produce better
distributions, but its effect is limited.

> 1 > 2 > 5 > 10

50

100

150
135

98

78

65

155

106

66

44

#
fa
ul
ts

SOmed MOmed

> 1 > 2 > 5 > 10

50

100

150 143

86

63
55

142

98

58

42

#
fa
ul
ts

SOmin MOmin

Fig. 1. Histograms of
vf

vn
ratios achieved by FMO and FSO

354 K. Choi et al.

Table 3. Effectiveness of Single and Multi-objective FLUCCS

Config.SubjectFlt. vf /vn vn/vf Config.SubjectFlt. vf /vn vn/vf

>1 >2>5>10≥1 ≥2 ≥5 ≥10 >1 >2 >5>10≥1 ≥2 ≥5 ≥10

F
med
SO Chart 25 15 12 12 6 10 7 3 3 F

med
MO Chart 25 17 13 11 4 8 7 6 4

Clos. 131 34 24 17 15 97 74 58 50 Clos. 131 37 26 12 8 94 81 61 50

Lang 63 27 24 21 20 36 23 19 15 Lang 63 36 29 20 18 27 19 11 7

Math 105 42 25 20 19 63 45 30 26 Math 105 45 28 17 10 60 48 34 23

Mock. 36 10 7 5 3 26 19 15 12 Mock. 36 9 5 2 2 27 22 12 10

Time 26 7 6 3 2 19 11 4 4 Time 26 11 5 4 2 15 13 9 9

Overall 386 135 98 78 65 251 179 129 110 Overall 386 155 106 66 44 231 190 133 103

F
min
SO Chart 25 16 13 11 8 9 6 6 6 F

min
MO Chart 25 15 9 5 2 10 8 7 2

Clos. 131 25 18 14 14 106 64 51 45 Clos. 131 38 28 13 10 93 75 60 49

Lang 63 34 16 15 13 29 20 19 16 Lang 63 34 26 22 17 29 19 10 8

Math 105 49 27 18 15 56 41 32 28 Math 105 39 23 13 8 66 49 37 25

Mock. 36 9 5 2 2 27 13 10 7 Mock. 36 8 6 1 1 28 22 14 9

Time 26 10 7 3 3 16 10 10 9 Time 26 8 6 4 4 18 15 10 8

Overall 386 143 86 63 55 243 154 128 111 Overall 386 142 98 58 42 244 188 138 101

5 Conclusion

We report the first attempt to evolve ranking models for fault localisation that
is useful for both humans and machines using multi-objective GP. The results
suggest that the added diversity produces better rankings.

Acknowledgements. This research was supported by the Korean MSIT(Ministry of
Science and ICT), under the National Program for Excellence in SW (2016-0-00018),
supervised by the IITP(Institute for Information & communications Technology Pro-
motion).

References

1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

2. Fortin, F.A., De Rainville, F.M., Gardner, M.A.G., Parizeau, M., Gagné, C.:
DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175
(2012)

3. Just, R., Jalali, D., Ernst, M.D.: Defects4J: a database of existing faults to enable
controlled testing studies for java programs. In: Proceedings of the 2014 Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2014, pp. 437–440.
ACM, New York (2014)

4. Moon, S., Kim, Y., Kim, M., Yoo, S.: Ask the mutants: mutating faulty programs
for fault localization. In: Proceedings of the 2014 IEEE International Conference
on Software Testing, Verification, and Validation, ICST 2014, pp. 153–162. IEEE
Computer Society, Washington, D.C. (2014)

5. Praditwong, K., Harman, M., Yao, X.: Software module clustering as a multi-
objective search problem. IEEE Trans. Softw. Eng. 37(2), 264–282 (2010)

Learning Fault Localisation for both Humans and Machines 355

6. Qi, Y., Mao, X., Lei, Y., Wang, C.: Using automated program repair for evaluating
the effectiveness of fault localization techniques. In: Proceedings of the 2013 Inter-
national Symposium on Software Testing and Analysis, ISSTA 2013, pp. 191–201.
ACM, New York (2013)

7. Sohn, J., Yoo, S.: FLUCCS: using code and change metrics to improve fault local-
ization. In: Proceedings of the 26th International Symposium on Software Testing
and Analysis, ISSTA 2017, pp. 273–283. ACM (2017)

8. Weimer, W., Nguyen, T., Goues, C.L., Forrest, S.: Automatically finding patches
using genetic programming. In: Proceedings of the 31st IEEE International Con-
ference on Software Engineering (ICSE 2009), pp. 364–374, 16–24 May 2009

9. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Trans. Softw. Eng. 42(8), 707 (2016)

10. Xie, X., Chen, T.Y., Kuo, F.C., Xu, B.: A theoretical analysis of the risk evaluation
formulas for spectrum-based fault localization. ACM Trans. Softw. Eng. Methodol.
22(4), 31:1–31:40 (2013)

11. Yoo, S.: Evolving human competitive spectra-based fault localisation techniques.
In: Fraser, G., Teixeira de Souza, J. (eds.) SSBSE 2012. LNCS, vol. 7515, pp. 244–
258. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33119-0 18

https://doi.org/10.1007/978-3-642-33119-0_18

Mapping Class Dependencies
for Fun and Profit

Allen Kanapala1 and Gregory Gay2(B)

1 University of South Carolina Salkehatchie, Allendale, SC, USA
kanapalaa@acm.org

2 University of South Carolina, Columbia, SC, USA
greg@greggay.com

Abstract. Classes depend on other classes to perform certain tasks. By
mapping these dependencies, we may be able to improve software qual-
ity. We have developed a prototype framework for generating optimized
groupings of classes coupled to targets of interest. From a pilot study
investigating the value of coupling information in test generation, we have
seen that coupled classes generally have minimal impact on results. How-
ever, we found 23 cases where the inclusion of coupled classes improves
test suite efficacy, with an average improvement of 120.26% in the like-
lihood of fault detection. Seven faults were detected only through the
inclusion of coupled classes. These results offer lessons on how coupling
information could improve automated test generation.

Keywords: Coupling · Search-based software engineering
Software testing

1 Introduction

In complex systems, coupled classes depend on other classes to perform certain
tasks [6]. By mapping and grouping these dependencies, we may be able to offer
valuable information that can improve software quality.

Automated test generation can be performed to control testing costs. How-
ever, a question remains—which classes should be targeted for generation? Often,
only the classes that are known to be faulty are targeted. However, a class that
is coupled to a faulty class may still exhibit unexpected behavior. By generating
tests for coupled classes, we may be able to detect faults that would otherwise
be missed.

We have developed a prototype framework to investigate the effect of coupling
in test generation. The framework maps the dependencies between Java classes
into a directed graph. This graph can then be used to generate small, dense
groupings of classes centered around selected targets. To understand whether test
generation is more effective when including coupled classes, we have performed

c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 356–362, 2018.
https://doi.org/10.1007/978-3-319-99241-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_21&domain=pdf

Mapping Class Dependencies for Fun and Profit 357

a pilot case study. Using 588 real faults from 14 Java projects, we have identified
groupings of classes, generated test suites for these groupings and the faulty
classes alone, and assessed whether the inclusion of coupled classes improves the
likelihood of fault detection.

Overall, there is only an average improvement of 3.79% in the likelihood of
fault detection when incorporating coupled classes. However, when these addi-
tional classes have any impact, there is an average improvement of 120.26% and
seven additional faults were detected only through coupling. The inclusion of
coupled classes could yield significant efficacy improvements if we can identify
in advance where they would be useful, and improve coverage of dependencies.
In addition, our optimization process often yields unnecessarily large groupings.

We hypothesize that the ability to map and optimize groups of coupled classes
could benefit many areas of software engineering research—particularly when
automating tasks. Our framework has offered promising preliminary results. We
will further explore how coupling information could improve automated software
engineering.

2 Coupling Mapping Framework

We have developed a framework that maps class dependencies into a directed
graph1. We then use this graph to optimize small, highly-interconnected group-
ings of classes coupled to designated targets using a simple genetic algorithm.
The following basic process is used to generate groupings:

1. This framework first maps dependencies between classes. In this case, we con-
sider dependencies to be either method calls or variable references to another
class.

2. A directed graph is created, where each class is a node, and each edge indicates
a dependency. Any classes that have no dependencies and are not the target
of a dependency will be filtered out from consideration at this stage. If no
classes are coupled to a changed class, the changed class will still be added
to the target list.

3. We generate a population of 1,000 groupings, formed by randomly selecting
classes.

4. Each grouping is scored using the fitness function described below, and a new
population is formed through retention of best solutions (by default, 10%),
mutation (20%), crossover (20%), and further random generation (50%).

5. Evolution continues until the time budget is exhausted—by default, five min-
utes2.

6. The best grouping is returned. The changed classes are added to that
grouping.

1
Available from https://github.com/Greg4cr/Coupling-Mapping.

2
Experimentation suggested that convergence was often reached before that time.

https://github.com/Greg4cr/Coupling-Mapping

358 A. Kanapala and G. Gay

The fitness function used to score groupings is:

FG =
√

size
2

+ (coverage − 1)2 + avg(distance)
2

(1)

That is, we prioritize groupings that are closer to a sweet spot of fewer
classes (size), where the chosen classes are coupled to a large number of other
classes (coverage), and where more classes are either coupled directly to the
changed classes or through a small number of indirect dependency links (aver-
age distance). This should result in a relatively small grouping of classes that
are densely coupled to each other and other classes. x is a normalized value
0 ≤ x−min(x)

max(x)−min(x) ≤ 1. Scores range from 0 ≤ FG ≤ √
3 and lower scores are

better.

3 Case Study

Traditionally, in unit test generation research, tests are generated solely for the
classes we know to contain faults. However, other classes may depend on the
faulty classes, and by targeting these coupled classes, we may be more likely
to detect faults. We wish to examine whether we could use knowledge of class
dependencies to enhance test generation. Specifically, we wish to address: (1)
Can the inclusion of coupled classes improve the efficacy and reliability of test
suite generation? (2) Are the groupings produced by our framework small enough
to be of practical use?

We have performed the following experiment: (1) We have gathered 588 real
faults, from 14 Java projects. (2) For each fault we generate 10 groupings of
coupled classes. (3) For each fault, we generate 10 suites per grouping (and for
the set of faulty classes) using the non-faulty version of each class. We allow a
two-minute generation budget per targeted class. (4) For each fault, we measure
the proportion of test suites that detect the fault to the total number generated.

Defects4J is an extensible database of real faults extracted from Java
projects [4]3. Currently, it consists of 597 faults from 15 projects. For each fault,
Defects4J provides access to the faulty and fixed versions of the code, developer-
written test cases that expose the faults, and a list of classes and lines of code
modified by the patch that fixes the fault. The Guava project was omitted from
this study, as its code uses features not supported by our framework. We have
used the remaining 588 faults for this study.

EvoSuite applies a genetic algorithm in order to evolve test suites over several
generations, forming a new population by retaining, mutating, and combining
the strongest solutions [7]. It is actively maintained and has been successfully
applied to the Defects4J dataset [2]. In this study, we used EvoSuite version
1.0.5.

Tests are generated from the fixed version of each class and applied to the
faulty version in order to eliminate the oracle problem. Tests are generated tar-
geting Branch Coverage, and EvoSuite is allowed two minutes per class—a time
3

Available from http://defects4j.org.

http://defects4j.org

Mapping Class Dependencies for Fun and Profit 359

chosen to fit within the strict time constraints of the continuous integration
(CI) process that testing is commonly performed as part of. In the CI process,
changed code is built, verified, and deployed. As this process may be performed
multiple times per day, test generation and execution must take place on a lim-
ited time scale. As results may vary, we generate 10 groupings of classes per
fault, and we perform 10 test generation trials for each fault, grouping, and bud-
get. Generation tools may generate flaky (unstable) tests [2]. We automatically
remove non-compiling test cases. Then, each test is executed on the fixed CUT
five times. If results are inconsistent, the test case is removed. On average, less
than 1% of tests are removed from each suite.

4 Results and Discussion

In Table 1, we compare the average likelihood of detection between the normal
case—where only the faulty classes are targeted—and when we generate for a
set of targets including coupled classes. From this table, we can see that there
is often some improvement, but the overall effect is minimal. The inclusion of
coupled classes fails to improve results for six systems. For the others, we see
average improvements of up to 13.36%. Overall, the average improvement from
including coupled classes is only 3.79%.

To understand when coupled classes can benefit generation, we can filter
out situations where their inclusion does not improve results. Table 2 lists the
average likelihood of detection for the 23 faults where the inclusion of coupled
classes had an impact. These filtered results show that when additional classes
have any impact, it is a major one. In such cases, the likelihood of detection
improves by an average of 120.26%. In fact, seven new faults were only detected
by including coupled classes.

Table 1. Average likelihood of detection
when only changed classes are targeted and
when coupled classes are included, omitting
systems with no observed differences.

Project Detection

likelihood

Detection

likelihood

(changed-only) (with coupled)

Chart 40.00% 42.58%

Closure 4.10% 5.10%

CommonsCodec 31.36% 35.55%

CommonsCSV 55.00% 58.50%

Jsoup 19.80% 21.70%

Lang 35.20% 35.50%

Math 28.68% 29.29%

Time 34.40% 35.90%

Overall 22.69% 23.55%

Table 2. Average likelihood of
detection–omitting cases where cou-
pled classes have no effect.

Project Detection

likelihood

Detection

likelihood

(changed-only) (with coupled)

Chart 15.00% 27.50%

Closure 30.00% 62.50%

CommonsCodec 13.33% 44.00%

CommonsCSV 30.00% 51.00%

Jsoup 15.00% 27.80%

Lang 10.00% 30.00%

Math 6.67% 28.33%

Time 25.00% 44.00%

Overall 18.26% 40.22%

360 A. Kanapala and G. Gay

Base64

Base64OutputStream
Base64InputStream

4

BCodec

EncoderException
DecoderException

CharEncoding

Fig. 1. Partial visualization of cou-
pling. Relevant classes are colored red.
(Color figure online)

While the addition of classes can be
very powerful, it is also very expensive
given that—by default—the same amount
of time is devoted to generating test cases
for each class. Our results illustrate that
we should not generate tests for such
classes if there is a low likelihood they
will help detect faults. To decide when
to add additional targets, we must
understand when their inclusion will
be helpful.

Figure 1 depicts a selection of classes
in the CommonsCodec project. Three
faults—centering around the Base64 class (faults 12, 15, and 204)—see
improved efficacy from the inclusion of coupled classes Base64Input Stream
and Base64OutputStream. Tests generated solely to target Base64 are able to
detect all three faults, but not reliably. The incorporation of these two cou-
pled classes greatly increases the likelihood of detection. Class—BCodec—is also
coupled to Base64, but does not contribute to efficacy.

These three examples are interesting because the two additional classes are
not just coupled through in-code dependencies, but all three are linked by a
common conceptual purpose—encoding binary data by treating it numerically
and translating it into a base 64 representation. One option for incorporating
coupled classes would be to periodically present human developers with coupling
information and ask them to filter groupings. Each time that any class in that
grouping is altered, those coupled classes could be included in generation.

Of course, not all situations where coupling assists are as straightforward
as the CommonsCodec example. For instance, consider fault 31 for the Math
system5. Generated tests never detect the issue when targeting faulty class
ContinuedFraction. Instead, the fault is only detected when tests are gen-
erated for Gamma (coupled to Continued Fraction) and GammaDistribution
(coupled to Gamma). The reason the coupled classes are useful is likely
because they provide guidance to the generator in how to make use of
ContinuedFraction. Exposing the fault requires setting up a series of values
and calling ContinuedFraction.evaluate(...) on those values. By attaining
coverage of Gamma, EvoSuite is able to set up and execute the functionality of
ContinuedFraction. Without that guidance, it struggles.

While only a small number of classes are coupled to Continued Fraction,
there is not a common conceptual connection like with the CommonsCodec
example above. In retrospect, we can explain these situations. However, more
research is needed to recognize patterns in when the inclusion of coupled classes
is beneficial. Further, asking developers to name useful couplings creates addi-

4
https://github.com/Greg4cr/defects4j/blob/master/framework/projects/CommonsCodec/
patches/[12/15/20].src.patch.

5
https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/31.src.
patch.

https://github.com/Greg4cr/defects4j/blob/master/framework/projects/CommonsCodec/patches/[12/15/20].src.patch
https://github.com/Greg4cr/defects4j/blob/master/framework/projects/CommonsCodec/patches/[12/15/20].src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/31.src.patch
https://github.com/rjust/defects4j/blob/master/framework/projects/Math/patches/31.src.patch

Mapping Class Dependencies for Fun and Profit 361

tional maintenance effort, and may not offer sufficient benefit for the time and
knowledge required. Therefore, we also need further research into automated
means to suggest and prune couplings.

We should also endeavor to make the inclusion of coupled classes more use-
ful by focusing on increased coverage of those dependencies. The efficacy of
generation—when coupled classes are included as targets—may be
improved if coverage is ensured of references to changed classes.

Test generation for each class is an entirely independent process. While the
attained Branch Coverage may be relatively high for each targeted class, we
have no guarantee that dependencies between classes are covered. Steps could
be taken to improve coverage of such dependencies by considering coverage of
dependencies between classes. Jin and Offutt have proposed coverage criteria
for integration testing that could be used to ensure class dependencies are cov-
ered [3]. These forms of “Coupling Coverage” could be used to prioritize suites
that attain a higher coverage of the specific code segments that require data or
functionality from a changed class.

Table 3. Average number of classes in
the groupings.

Number of classes

Chart 18.63

Closure 73.92

CommonsCLI 1.91

CommonsCodec 3.51

CommonsCSV 3.40

CommonsJXPath 20.80

JacksonCore 5.03

JacksonDatabind 34.96

JacksonXML 2.80

Jsoup 26.34

Lang 7.12

Math 12.64

Mockito 34.43

Time 52.87

Recent work has found that combi-
nations of coverage criteria can be more
effective than individual criteria [2]. For
example, combining Branch and Excep-
tion Coverage yields test suites that
both cover the code and force the pro-
gram into unusual configurations. “Cou-
pling Coverage” metrics could be thought
of as another situationally-appropriate
orthogonal criterion. Rather than gener-
ating tests using Branch Coverage alone,
the generator could combine Branch and
“Coupling Coverage” when targeting cou-
pled classes—potentially creating suites
that are especially effective at exploiting
dependencies between classes, and in turn,
at detecting faults.

Regardless of the use, our framework is intended to produce small, effective
groups of coupled classes. The size of that group must be small enough to be of
practical use. In Table 3, we list the average grouping size for each system. In
many cases, we can see that these groupings are larger than would be practical.
We used them for this case study, as they are useful for understanding the
benefits of such information. However, we must refine the optimization
process to further limit grouping size.

We found that, in situations where coupling affects the results, only a small
number of classes are useful, and they are closely linked to the target classes.
Therefore, these groupings could be easily pruned down to a more appropriate
size. We will reformulate our fitness function to further constrain grouping size.

362 A. Kanapala and G. Gay

5 Related Work

Coupling between classes is a well-established area of research [6]. Similar search-
based techniques have been used to suggest refactorings. The CCDA algorithm
uses a graph structure and a genetic algorithm to restructure packages based on
class dependencies [5]. However, we are aware of no other use of such techniques
to optimize groupings for test generation. Past work on integration testing has
suggested ways to better ensure that class dependencies are tested [1,3], but has
largely not addressed the question of which classes to test. In addition, we are
not focused purely on integration testing, but a broader set of scenarios.

6 Conclusions

We have developed a framework to optimize groupings of classes. The results
of a pilot study on the applicability of coupling to test generation show poten-
tial benefits from generating tests for coupled classes and offer new research
challenges.

References

1. Alexander, R.T., Offutt, A.J.: Criteria for testing polymorphic relationships. In:
Proceedings of 11th International Symposium on Software Reliability Engineering,
pp. 15–23 (2000)

2. Gay, G.: Generating effective test suites by combining coverage criteria. In: Menzies,
T., Petke, J. (eds.) SSBSE 2017. LNCS, vol. 10452, pp. 65–82. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66299-2 5

3. Jin, Z., Offutt, A.J.: Coupling-based criteria for integration testing. Softw. Test.
Verif. Reliab. 8(3), 133–154 (1998). https://onlinelibrary.wiley.com

4. Just, R., Jalali, D., Ernst, M.D.: Defects4J: a database of existing faults to enable
controlled testing studies for Java programs. In: Proceedings of the 2014 Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2014, pp. 437–440.
ACM, New York (2014). https://doi.org/10.1145/2610384.2628055

5. Pan, W., Jiang, B., Xu, Y.: Refactoring packages of objectoriented software using
genetic algorithm based community detection technique. Int. J. Comput. Appl.
Technol. 48(3), 185–194 (2013). https://doi.org/10.1504/IJCAT.2013.056914

6. Poshyvanyk, D., Marcus, A.: The conceptual coupling metrics for object-oriented
systems. In: 22nd IEEE International Conference on Software Maintenance, pp.
469–478, September 2006

7. Rojas, J.M., Campos, J., Vivanti, M., Fraser, G., Arcuri, A.: Combining multiple
coverage criteria in search-based unit test generation. In: Barros, M., Labiche, Y.
(eds.) SSBSE 2015. LNCS, vol. 9275, pp. 93–108. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-22183-0 7

https://doi.org/10.1007/978-3-319-66299-2_5
https://onlinelibrary.wiley.com
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1504/IJCAT.2013.056914
https://doi.org/10.1007/978-3-319-22183-0_7
https://doi.org/10.1007/978-3-319-22183-0_7

Evolving Better Software Parameters

William B. Langdon(B) and Justyna Petke

CREST, Computer Science, UCL, London WC1E 6BT, UK
w.langdon@cs.ucl.ac.uk

http://www.cs.ucl.ac.uk/staff/W.Langdon,

http://www.cs.ucl.ac.uk/staff/J.Petke,

http://crest.cs.ucl.ac.uk

Abstract. Genetic improvement might be widely used to adapt existing
numerical values within programs. Applying GI to embedded parameters
in computer code can create new functionality. For example, CMA-ES
can evolve 1024 real numbers in a GNU C library square root to imple-
ment a cube root routine for C.

Keywords: Genetic improvement · SBSE · GGGP
Software maintenance of empirical constants · Data transplantation
glibc · sqrt · cbrt

1 Literature on Maintaining Numbers Within Code

Many programs contain embedded parameters. Typically these are numeric val-
ues (often float or double, but also integers, e.g. the GNU C library contains
more than a million integer constants, see Fig. 1, also [1]). In many cases these
parameters relate to the software itself or to simple facts which are unlikely to
change during the program’s lifetime or period of active use. However, many oth-
ers aught to be updated. This maintenance problem has been known for a long
time (Martin and Osborne [2, Sect. 6.8, p. 24, Hard Coded Parameters Which
Are Subject To Change]).

Parameters may relate to heuristics within the code, which the developer
chose before contact with real users. Their values perhaps should have been
updated shortly after first release, or values (e.g. those relating to memory or
array sizes) may need updating due to operating on new hardware, as well as to
changes in patterns of use. Other parameters can relate to the problem itself. For
example, chemical reaction rate constants in ozone layer simulations [3]. In some
cases the exact numerical values are critical [3]. Some physical values are known
with very high precision, but for others the state of scientific knowledge can
improve over the operational life of the program. For example, the ViennaRNA
package [4] contains more than 50 000 binding energy values. These are derived
from scientific measurements of RNA molecules. Even so, during the relatively
short life of this suite of C programs, knowledge has moved on and various
newer versions of these parameters are available. Recently [5], we showed genetic
c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 363–369, 2018.
https://doi.org/10.1007/978-3-319-99241-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_22&domain=pdf

364 W. B. Langdon and J. Petke

Fig. 1. The GNU C library version 2.27 (excluding test suite) contains 1 202 711 integer
constants. Zero is the most common, occurring a total of 141,874 times, followed by
1 (19 203) and −1 (6 479). Every integer between −28 and 40 956 occurs at least once.

improvement could be used to adapt these 50 000 int values. (The GI values have
been distributed with ViennaRNA since version 2.4.5).

As computing is now mature, maintaining software has become the dominant
cost. Marounek [6, p. 51] quotes figures of more than 90% of total cost. More-
over, software maintenance routinely requires highly skilled experts [7, p. 65].
Yet a forthcoming survey [8] starts by saying “a relatively small amount [of
SBSE research] is related to software maintenance”, whilst [9] does not give a
break down of the SBSE literature on software maintenance. Indeed it appears
that maintaining embedded constants within existing packages has received little
attention so far. For example, [10] considers the maintenance impact of names
given to constants in Java source code, but not how to maintain their values.
Similarly, [11] consider how to hide constant values, but not how to update them.

There is some research on parameter tuning. For example, ParamILS1 or
irace2 tools. However, there is scarcely any on updating parameters in the code
that are not specifically exposed to the user for tuning. The deep parameter
tuning work by Wu et al. [12] being the first known example, where they opti-
mised for runtime and memory consumption. Unlike Wu et al. [12], we focus on
adapting numerical values only. Previous work on evolving new features using
GI dealt with transplantation of portions of one program to another [13], or
evolving functionality separately and then adding them to existing code using

1 http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/.
2 http://iridia.ulb.ac.be/irace/.

https://www.tbi.univie.ac.at/RNA/changelog.html
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
http://iridia.ulb.ac.be/irace/

Evolving Better Software Parameters 365

automated software transplantation [14] (so-called ‘grow-and-graft’). Our app-
roach does not require additional code, just changes within the existing code
base.

In the next section we continue exploring automated parameter tuning by
taking existing code which relies on ≈1 thousand embedded constants from the
GNU C library to create a function, cbrt, which is not implemented by the
library. Section 2.3 shows its accuracy is typically better than 2 10−16 and not
worse than 10−15. (I.e. typically within one bit in the IEEE 754 double precision
representation.) Finally, in Sect. 3, we suggest there is a great need for research
into both automated data update and data transplantation.

2 Example of Automated Parameter Tuning for Evolving
New Functionality

We use an existing implementation of the square root function and use genetic
improvement to evolve a cube root function. This is achieved by mutating the
constant values in the chosen code for square root.

The current release of the GNU C library (glibc-2.27, 1 Feb 2018, 851 080 lines
of non-test code) was downloaded from https://www.gnu.org/s/libc/. It con-
tains multiple implementations of the square root function (sqrt). One (../pow-
erpc/fpu) which uses table lookup [15] was selected for use as a model for a
table-based version of the cube root function (cbrt).

2.1 Manual Changes

We are primarily concerned with adjusting data values. However, a few changes
to the existing powerPC sqrt code were made by hand so that it could support
cbrt. Whilst in [5] no code changes were needed, we envision that such changes
may be required. For cbrt: (1) Various powerPC optimisations were disabled.
(2) Replaced the trap for negative numbers by returning − 3

√−x if x is nega-
tive. (3) Division of the exponent part of double precision numbers by three is
rather more tricky than division by two. Keeping track of the remainder required
the multiplication or division by 3

√
2 or

2
3
√

2 (Sect. 2.3). The existing constants
CBRT2 and SQR CBRT2 were used. (4) sysdeps/powerpc/fpu/e sqrt.c uses a
right shift to do two operations. Firstly to divide the exponent by two. And
secondly to combine the least significant bit of the exponent with the top eight
bits of the fractional part, forming a nine bit index into the table. Effectively
mapping numbers in the range 0.5 to 2 onto the table. The more tricky division
by three led to the decision to exclude the exponent and to just use the top
nine bits of the fractional part as the table index. So numbers in the range 1
to 2 are mapped onto the table, see also Fig. 2. (5) The constant almost half was
replaced by new constant almost third = 0.3333333333333334.

https://www.gnu.org/s/libc/

366 W. B. Langdon and J. Petke

2.2 Automatic Changes to Data Table Using CMA-ES

The t sqrt table contains 512 pairs of floats. The top 256 correspond to numbers
in the range 1 to 2. These were used as start points when evolving the 512 pairs
of floats in the new table t cbrt.

The Covariance Matrix Adaptation Evolution Strategy algorithm
(CMA-ES [16]) was downloaded from https://github.com/cma-es/c-cmaes/
archive/master.zip. It was set up to fill the table of floats one pair at a time. Each
pair being initially set to either the corresponding pair of values in t sqrt or
the mean of two adjacent pairs. The initial mutation step sizes used by CMA-ES
were set (pairwise) to 3.0 times the standard deviation calculated from the 512
pairs of numbers in t sqrt.

CMA-ES Parameters. The CMA-ES defaults (cmaes initials.par) were used,
except: the problem size (N 2), the initial values and mutation sizes are loaded
from t sqrt (see previous section) and various small values concerned with run
termination were set to zero (stopFitness, stopTolFun, stopTolFunHist, stop-
TolX). The initial seed used for pseudo random numbers was also set externally.

Fitness Function. Each time CMA-ES proposes a pair (N = 2) of double val-
ues, they are converted into floats and loaded into t cbrt at the location that
CMA-ES is currently trying to optimise. The fitness function uses three fixed
test double values in the range 1.0 to 2.0. These are: the lowest value for the
t cbrt entry, the mid point and the top most value. The cbrt function is called

(using the updated t cbrt) for each and a sub-fitness value calculated with each
of the three returned doubles. The sub-fitnesses are combined by adding them.

Each sub-fitness takes the output of cbrt, cubes it and takes the absolute
difference between this and the corresponding test value. If they are the same,
the sub-fitness is 0, otherwise it is positive. Since when cbrt is working well,
the differences are very small, they are re-scaled for CMA-ES. If the absolute
difference is less than one, its log is taken, otherwise the absolute value is used.
However, in both cases, to prevent the sub-fitness being negative, log of the
smallest feasible non-zero difference DBL EPSILON is subtracted.

CMA-ES will stop when the difference on all three test points is zero.

Restart Strategy. When CMA-ES failed to find a pair of values for which all
three test cases pass, it was run again with the same initial starting position and
mutation size, but a new pseudo random number seed. Mostly CMA-ES found
a suitable pair in one run, but in 107 of 512 cases it was run more than once.
(In no case was CMS-ES run more than 4 times on a particular pair.)

2.3 Testing the Evolved cbrt Function

The pairs of float values found by CMA-ES, called sg,sy in the system, are shown
in Fig. 2. The glibc-2.27 powerPC IEEE754 table-based double sqrt function

http://cma.gforge.inria.fr/cmaes_sourcecode_page.html#C
https://github.com/cma-es/c-cmaes/archive/master.zip
https://github.com/cma-es/c-cmaes/archive/master.zip

Evolving Better Software Parameters 367

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

E
vo

lv
ed

 p
ai

rs
 o

f _
_t

_c
br

t t
ab

le
 v

al
ue

s

Normalised input to cbrt(x)

sg
sy

Theory

Fig. 2. 512 (sg, sy) pairs of numbers found by CMA-ES for t cbrt. Horizontal axis is
the normalised argument of cbrt which corresponds to each pair in t cbrt.

claims to produce answers within one bit of the correct solution. On 1 536 tests
of large integers (≈1016) designed to test each of the 512 bins 3 times (min, max
and a randomly chosen point) the largest discrepancy between (cbrt(x)**3) and x
was three (i.e. 6.66 10−16). In all tests, including those described in the rest of
this section, this only arose when the exponent part of the double was not a
multiple of 3. This requires the cbrt code to do an extra multiply or divide by
3
√

2 or
2
3
√

2 (i.e. CBRT2 or SQR CBRT2, see Sect. 2.1), apparently resulting in
additional loss of precision.

As well as ad-hoc testing, and the large positive integer tests mentioned in
the previous paragraph, cbrt was tested with 5 120 random numbers uniformly
distributed between 1 and 2 (the largest deviation was two3 5 120 random sci-
entific notation numbers and 5 120 random 64 bit patterns. Half the random
scientific notation numbers were negative and half positive. Half were smaller
than one and half larger. The exponent was chosen uniformly at random from
the range 0 to |308|. In one case a random 64 bit pattern corresponded to NAN
(Not-A-Number) and cbrt correctly returned NAN. In most cases cbrt returned
a double, which when cubed was its input or within one bit of it. In some cases
the cubed answer was two from the input. The maximum deviation was 3.

3 2 at the least significant part of IEEE754 double precision corresponds to 4.44 10−16.

368 W. B. Langdon and J. Petke

3 The Importance of Automated Parameter Tuning

Section 1 has briefly covered the existing literature. It makes clear that, apart
from our own recent work [5], the problem of automatic update of values embed-
ded in existing software has been little studied. By page 2 it showed that the cost
of software maintenance is staggering, yet there is little research on automatically
adjusting software parameters, not exposed to the user for modification.

Currently the task of keeping constants embedded in existing software up-
to-date is labour-intensive and so there is great scope for automation.

Even parameters given by scientific measurement can be subject to change
in just a few years [5]. Andronescu et al. [17] had tried to update parameters
in RNAfold using constraint optimization. Nevertheless, our GI did better [5].
Section 2 expands this to the related task of creating new system software from
existing functions via automated parameter tuning. In Sect. 2 we use CMA-ES
to automatically adapt 1024 float constants, giving rise to cbrt, which does not
currently exist in the C run time library. In addition to 3

√
x, this framework could

be readily adapted to provide new maths double functions [18] where there is
an objective function, e.g. the inverse operation. It could also be used to port
existing functions to different hardware.

Previously [5] we have demonstrated using SBSE to adapt 50 000 parameters
to new scientific knowledge may be possible. Section 2 showed in less than five
minutes it can adapt more than a thousand continuous values. We have used
extensive testing to show the correctness of the automatically transplanted data.
Additionally, e.g. following [15], it may be feasible to verify our GI cbrt.

These very early experiments hint, in a world addicted to software, both
automated data maintenance and data transplantation could be vital new areas
for search based software engineering.

Code. See http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gi cbrt.tar.
gz.

Acknowledgements. My thanks to our EuroGP [5] anonymous reviewers.

References

1. Langdon, W.B., Petke, J.: Software is not fragile. In: Parrend, P., Bourgine, P.,
Collet, P. (eds.) First Complex Systems Digital Campus World E-Conference 2015.
SPC, pp. 203–211. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
45901-1 24. http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/langdon 2015 csdc.
html

2. Martin, R.J., Osborne, W.M.: Guidance on software maintenance. NBS Special
Publication 500–106, National Bureau of Standards, USA (1983). http://nvlpubs.
nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-106.pdf

3. Cao, L., Sihler, H., Platt, U., Gutheil, E.: Numerical analysis of the chemical
kinetic mechanisms of ozone depletion and halogen release in the polar troposphere.
Atmos. Chem. Phys. 14(7), 3771–3787 (2014). https://doi.org/10.5194/acp-14-
3771-2014

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gi_cbrt.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gi_cbrt.tar.gz
https://doi.org/10.1007/978-3-319-45901-1_24
https://doi.org/10.1007/978-3-319-45901-1_24
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_csdc.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_csdc.html
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-106.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-106.pdf
https://doi.org/10.5194/acp-14-3771-2014
https://doi.org/10.5194/acp-14-3771-2014

Evolving Better Software Parameters 369

4. Lorenz, R., et al.: ViennaRNA package 2.0. AMB 6(1) (2011). https://doi.org/10.
1186/1748-7188-6-26

5. Langdon, W.B., Petke, J., Lorenz, R.: Evolving better RNAfold structure pre-
diction. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., Garćıa-Sánchez,
P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 220–236. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-77553-1 14. http://www.cs.bham.ac.uk/∼wbl/
biblio/gp-html/langdon 2018 EuroGP.html

6. Marounek, P.: Simplified approach to effort estimation in software maintenance. J.
Syst. Integr. 3(3) (2012). https://doi.org/10.20470/jsi.v3i3.123

7. Dehaghani, S.M.H., Hajrahimi, N.: Which factors affect software projects mainte-
nance cost more? Acta Informatica Medica 21(1), 63–66 (2013). https://doi.org/
10.5455/AIM.2012.21.63-66

8. Mohan, M., Greer, D.: A survey of search-based refactoring for software mainte-
nance. J. Softw. Eng. Res. Dev. 6(1) (2018). https://doi.org/10.1186/s40411-018-
0046-4

9. de Freitas, F.G., de Souza, J.T.: Ten years of search based software engineering: a
bibliometric analysis. In: Cohen, M.B., Ó Cinnéide, M. (eds.) SSBSE 2011. LNCS,
vol. 6956, pp. 18–32. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23716-4 5

10. Butler, S.: Analysing Java Identifier Names. Ph.D. thesis, Open University, UK.
http://oro.open.ac.uk/46653/

11. Tiella, R., Ceccato, M.: Automatic generation of opaque constants based on the K-
clique problem for resilient data obfuscation. In: SANER 2017, pp. 182–192 (2017).
https://doi.org/10.1109/SANER.2017.7884620

12. Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisation.
In: Silva, S., et al. (eds.) GECCO, pp. 1375–1382. ACM, Madrid (2015). http://
www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Wu 2015 GECCO.html

13. Marginean, A., Barr, E.T., Harman, M., Jia, Y.: Automated transplantation of
call graph and layout features into kate. In: Barros, M., Labiche, Y. (eds.) SSBSE
2015. LNCS, vol. 9275, pp. 262–268. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-22183-0 21. http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/
Marginean 2015 SSBSE.html

14. Langdon, W.B., Harman, M.: Grow and graft a better CUDA pknotsRG for
RNA pseudoknot free energy calculation. In: Langdon, W.B., et al. (eds.) Genetic
Improvement 2015 Workshop, pp. 805–810. ACM, Madrid (2015). http://www.cs.
bham.ac.uk/∼wbl/biblio/gp-html/langdon 2015 gi pknots.html

15. Markstein, P.W.: Computation of elementary functions on the IBM RISC Sys-
tem/6000 processor. IBM J. Res. Dev. 34(1), 111–119 (1990). https://doi.org/10.
1147/rd.341.0111

16. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evo-
lution strategies. Evol. Comput. 9(2), 159–195 (2001). https://doi.org/10.1162/
106365601750190398

17. Andronescu, M., Condon, A., Hoos, H.H., Mathews, D.H., Murphy, K.P.: Effi-
cient parameter estimation for RNA secondary structure prediction. Bioinformatics
23(13), i19–i28 (2007). https://doi.org/10.1093/bioinformatics/btm223

18. Langdon, W.B.: Evolving square root into binary logarithm. Technical report
RN/18/05, University College, London, London, UK (2018). http://www.cs.bham.
ac.uk/∼wbl/biblio/gp-html/langdon RN1805.html

https://doi.org/10.1186/1748-7188-6-26
https://doi.org/10.1186/1748-7188-6-26
https://doi.org/10.1007/978-3-319-77553-1_14
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2018_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2018_EuroGP.html
https://doi.org/10.20470/jsi.v3i3.123
https://doi.org/10.5455/AIM.2012.21.63-66
https://doi.org/10.5455/AIM.2012.21.63-66
https://doi.org/10.1186/s40411-018-0046-4
https://doi.org/10.1186/s40411-018-0046-4
https://doi.org/10.1007/978-3-642-23716-4_5
https://doi.org/10.1007/978-3-642-23716-4_5
http://oro.open.ac.uk/46653/
https://doi.org/10.1109/SANER.2017.7884620
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Wu_2015_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Wu_2015_GECCO.html
https://doi.org/10.1007/978-3-319-22183-0_21
https://doi.org/10.1007/978-3-319-22183-0_21
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Marginean_2015_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Marginean_2015_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_gi_pknots.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_gi_pknots.html
https://doi.org/10.1147/rd.341.0111
https://doi.org/10.1147/rd.341.0111
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1093/bioinformatics/btm223
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_RN1805.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_RN1805.html

On the Placebo Effect in Interactive
SBSE: A Preliminary Study

Jerffeson Souza1(B), Allysson Allex Araújo2, Italo Yeltsin1,
Raphael Saraiva1, and Pamella Soares1

1 Optimization in Software Engineering Group,
State University of Ceará, Fortaleza, Brazil

jerffeson.souza@uece.br
2 Optimization in Software Engineering Group,

Federal University of Ceará, Crateús, Brazil
http://goes.uece.br

Abstract. Search Based Software Engineering approaches have proven
to be feasible and promising in tackling a number of software engineer-
ing problems. More recently, researchers have been considering the chal-
lenges and opportunities related to involving users’ expertise in the res-
olution process, among other reasons, to deal with the mistrust or mis-
understanding of fully automated optimisation approaches. This paper
presents a preliminary study concerned at assessing the users’ subjec-
tive perception when his/her preferences are considered in an Interac-
tive SBSE approach. Regarding the evaluation, we conducted a placebo-
controlled study with 12 software engineering practitioners by simulating
a Next Release Problem scenario. The results indicate that most (68%)
of the gain achieved by the interactive approach could be attributed to
being the placebo effect, that is, refers strictly to the fact that the user
felt part of the optimisation process. In addition, there was an important
increased confidence in the results, even in the placebo group.

Keywords: Interactive optimisation · Human aspects
Placebo effect · Search Based Software Engineering

1 Introduction

Search Based Software Engineering (SBSE) has proven to be feasible and promis-
ing in tackling a number of software engineering problems [1]. More recently,
several studies have been investigating the idea of involving the Decision Maker
(DM) in SBSE applications to engender his/her engagement, confidence and
acceptance [2]. The subfield of SBSE specifically concerned to the usage of inter-
active optimisation is called Interactive SBSE [3]. In favor of this subjective
model enrichment, Meignan et al. [4] expose that the mistrust or misunderstand-
ing of automated optimisation systems by users constitutes one major obstacle
to the effective use of advanced optimisation methods. This argument seems
c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 370–376, 2018.
https://doi.org/10.1007/978-3-319-99241-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_23&domain=pdf

On the Placebo Effect in Interactive SBSE: A Preliminary Study 371

to be reasonable since the DM tends to have more confidence and present less
resistance to the final results when he/she feels involved throughout the solution
construction [5]. In fact, trust in automation has been the focus of substantial
research over the past several decades addressing different fields of research [6].

In this sense, it has been argued over the years that cooperative and human
aspects of software development have become crucial in order to comprehend how
methods and tools are used [7]. In his seminal paper about the future of SBSE,
Harman [8] highlights that automated search techniques have to effectively work
with the human and thereby better encapsulate his/her assumptions and intu-
ition. Even though SBSE results have been shown to be generally promising, we
assume that they tend to be more acceptable by the DM when he/she collabo-
rates and feels part of the process.

This preliminary study explores the research gap concerned to the compre-
hension of the DM’s subjective perception when his/her preferences are consid-
ered in a SBSE approach. Regarding the evaluation, we conducted a “placebo-
controlled” study with software engineering practitioners by simulating a Next
Release Problem (NRP) scenario based on the interactive approach proposed by
Araújo et al. [9]. This study mainly attempts to measure the placebo effect of
having the DM participate in the SBSE process, that is, how much of the posi-
tive effect obtained by considering the DM’s preference may be assigned simply
to having the human added to the search process.

2 Experimental Study

As discussed above, we have simulated a scenario in which the NRP is solved by
using the interactive approach proposed by Araújo et al. [9]. In summary, the
NRP consists of selecting which requirements will be implemented in the next
software release [10]. In this context, Araújo et al. [9]’s architecture is based
on the usage of an interactive genetic algorithm alongside a machine learning
model. The preferences are gathered through a subjective evaluation provided
by the DM to each solution (a possible release) during a number of generations,
while a machine learning model learns his/her evaluation profile. This Subjective

Fig. 1. Research experiment design

372 J. Souza et al.

Evaluation (SE) follows a scale ranging from very unsatisfactory (1) to very
satisfactory (100). After a number of subjective evaluations, the learning model
replaces the DM and evaluates the remainder of the solutions.

As we can see in the Fig. 1, our experiment follows the design of a placebo-
controlled study and consists of four major phases as explained below.

In the 1st phase, named Briefing Phase, each participant was separately
briefed to perform the DM role in a scenario in which his/her company have
to develop a word processor software. We have also provided details about the
approach and the tool usability, including how their preferences are captured
through a SE to each solution as much as he/she be comfortable to evaluate.
Based on real-world data [11], we presented the requirements specification which
contains the requirement descriptions, budget, importance values given by the
clients to each requirement as well as the relevance of each client.

After concluding the Briefing Phase, the 2nd phase was initiated, where each
participant provided a SE to the solution generated by the canonical genetic
algorithm, that we named non-interactive solution. After collected this SE, it
was conducted the 3rd phase concerned to the evaluation of the interactive and
placebo solutions. The participants were unknowingly divided into two groups:
(i) the ones (5) which preferences were properly considered throughout the opti-
misation process (non-placebo group) and (ii) the ones (7) which preferences
were gathered but, in fact, not considered in the optimisation process, i.e., the
placebo group. Subsequently, it was required to the members of each group
a SE about the final solution generated by the tool. Finally, in the Feedbacks
Phase, we asked each participant about how they classify their experience of
selecting requirements using the non-interactive (2nd phase) and interactive (3rd
phase) approaches. Their answers followed a five-level Likert scale ranging from
very unsatisfactory to very satisfactory. We also asked about their confidence at
using the non-interactive and interactive approaches at their work. Their answers
followed a five-level Likert scale from “definitely no” to“definitely yes”.

We have visited a Software Engineering specialisation course inviting for vol-
unteers, from which 12 of the students shown to be available to the experiment.
They have worked on software development industry for 7.2 years in average,
having the least experienced participant worked for 2 years and the most expe-
rienced one for 20. Regarding their experience with release planning process, on
a five-level scale, 2 of them responded to have low experience, 5 medium experi-
ence and 5 alleged to have high experience. In addition, we have developed two
novel metrics to clarify our analyses. They are formalised in the Table 1:

Table 1. Proposed metrics

Subjective Factor (SF) Placebo Factor (PF)

SF (NIS , IS) =
SE(IS) − SE(NIS)

SE(NIS)
PF (P,NP) =

SFP

SFNP

On the Placebo Effect in Interactive SBSE: A Preliminary Study 373

The Subjective Factor (SF) indicates the relative gain in SE when com-
pared an interactive solution (IS) to the non-interactive (NIS). For instance, if
a solution with human intervention has a SE(IS) = 80, while the non-interactive
solution has a SE(NIS) = 40, the gain in SF achieved by IS over NIS is 100%.
Additionally, the Placebo Factor (PF) indicates how much the SE given by
the DM is explained by the placebo effect, in our case, the feeling of being part of
the optimisation process. To measure this, we calculated the SF average of the
placebo group (SFP) over the SF average of the non-placebo group (SFNP).
For example, considering that placebo group has a SFP = 60% and the non-
placebo reached a SFNP = 80%, we may conclude that 75% (PF) of the SF
gain is explained by the placebo effect.

To this empirical study, we defined the following three research questions:
RQ1: there is a relative gain of SE between the interactive solution over the non-
interactive one?; RQ2: how much of this gain may be explained by the placebo
effect?; RQ3: how the participants classified their experience and confidence
using both non-interactive and interactive approaches?

3 Preliminary Results and Analyses

Figure 3 depicts the SE values assigned by each participant from placebo and
non-placebo groups to the interactive and non-interactive solutions. In the non-
placebo group (Fig. 2b), we have accounted that the majority of the participants
(60%) has preferred the interactive solution over the non-interactive one. The
remainder have been divided between those that did not perceive difference
between the solutions (20%) and the ones who preferred the non-interactive
(20%). This behaviour is quite similar for the placebo group (Fig. 2a) since
57.14% have preferred the interactive solution, 28.57% did not perceive the dif-
ference and 14.28% have opted to the non-interactive solution. We also assume
that this option by the non-interactive solution, although using an interactive
approach, may be explained by the inefficiency of the proposal to reach the DM

(a) Placebo group. (b) Non-placebo group.

Fig. 2. SE values assigned by each participant from each group.

374 J. Souza et al.

preferences in certain circumstances. To measure the relative gain between both
solutions (non-interactive and interactive), we used the SF metric. In average,
the SF gain achieved by the non-placebo group was 69.09%, while in the placebo
one was 47.04%. Therefore, answering RQ1, there was, in fact, a relative gain
of SE by the interactive solution over the non-interactive in both groups.

Since we have confirmed the SE gain between both solutions, we may analyse
how much of this gain is explained by the placebo effect by measuring the PF
metric. Of the SF achieved, on average, by the placebo group (47.04%) over
the non-placebo group (69.09%), there was a PF of 68%. Therefore, answering
RQ2, given all the subjective gain related to the DM interaction, 68% refers
strictly to the fact that he/she felt part of the resolution process.

Finally, we analysed the answers provided by the participants during the
Feedbacks Phase to answer RQ3. Figure 3 shows the percentage of answers made
by both groups about the experience of selecting requirements (Fig. 3a) and
their confidence (Fig. 3b), respectively for the interactive (outer circle) and non-
interactive (inner circle) approaches.

(a) Answers to Q1 and Q3. (b) Answers to Q2 and Q4.

Fig. 3. Answers provided by the participants during the Feedbacks Phase.

Concerning to the experience of selecting requirements (Fig. 3a), it was iden-
tified an increase in satisfaction when compared the non-interactive to the inter-
active approach, since no unsatisfactory answers were provided to the second one.
50% of the participants have considered the non-interactive approach as satis-
factory, while 66.6% participants have classified the interactive as satisfactory
or very satisfactory, even considering that 50% were part of the placebo group.
The results suggest that the interactive approach seems to be more acceptable
by the participants, despite non-interactive one also shown to be valuable.

Regarding the confidence of the participants at using the approaches in their
work environment (Fig. 3b), we have noticed that 16.6% of them stated to “prob-
ably not” or“definitely not” to use both approaches. On the other hand, 25% and
41.7% of the participants have declared to “probably” use the non-interactive
and interactive approaches, respectively. Even more interesting, 80% of these
participants who declared to “probably” use the interactive approach are mem-
bers of the placebo group. Ultimately, these results contribute to enlight the

On the Placebo Effect in Interactive SBSE: A Preliminary Study 375

studies in favour of preference-based approaches since they reinforce the argu-
ment that the DM tends to have more confidence in the final results when he/she
feels involved throughout the solution construction [5].

4 Final Considerations and Future Research Works

Preference-based approaches have been recurrently investigated under the SBSE
context. These strategies are based on the valuable synergy which can be
exploited between human-cooperation and artificial intelligence techniques.

In this sense, this work intends to be a preliminary study about the research
gap concerned to the comprehension of the DM’s subjective perception when
he/she feels part and collaborates to the resolution process in an SBSE approach.
To that, we have conducted a placebo-controlled study with 12 SE practitioners
which used an interactive architecture to solve an NRP scenario. Overall, our
initial findings are shown to be promising. Firstly, we demonstrated to definitely
have an increase in the subjective evaluation when compared an interactive to
the non-interactive solution. Then, we verified that almost 68% of this gain
refers only to the fact of the DM felt part of the process (placebo effect). Lastly,
according to the feedback of the participants, the interactive approach seems to
be more acceptable, despite of non-interactive one also shown to be valuable.

As a preliminary work, there are several limitations and threats to the validity
of the results, in special the small number of subjects. However, we consider
that conducting these experiments was essential to motivate our and others
future works, which will/should at least consider more human subjects and other
SBSE problems. In addition, we aim to expand and evaluate other human and
cooperative aspects involved in Interactive SBSE.

References

1. Harman, M., McMinn, P., de Souza, J.T., Yoo, S.: Search based software engi-
neering: techniques, taxonomy, tutorial. In: Meyer, B., Nordio, M. (eds.) LASER
2008-2010. LNCS, vol. 7007, pp. 1–59. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-25231-0 1

2. Ferreira, T.N., Vergilio, S.R., de Souza, J.T.: Incorporating user preferences in
search-based software engineering: a systematic mapping study. Inf. Softw. Technol.
90, 55–69 (2017)

3. Ramirez, A., Romero, J.R., Simons, C.: A systematic review of interaction in
search-based software engineering. IEEE Trans. Softw. Eng. (TSE) (2018)

4. Meignan, D., Knust, S., Frayret, J.-M., Pesant, G., Gaud, N.: A review and tax-
onomy of interactive optimization methods in operations research. ACM Trans.
Interact. Intell. Syst. 5(3), 17:1–17:43 (2015)

5. Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in
Operations Research and Management Science. Springer, Heidelberg (1999).
https://doi.org/10.1007/978-1-4615-5563-6

6. Hoff, K., Bashir, M.: Trust in automation: integrating empirical evidence on factors
that influence trust. Hum. Factors 57(3), 407–434 (2015)

https://doi.org/10.1007/978-3-642-25231-0_1
https://doi.org/10.1007/978-3-642-25231-0_1
https://doi.org/10.1007/978-1-4615-5563-6

376 J. Souza et al.

7. Prikladnicki, R., Dittrich, Y., Sharp, H., De Souza, C., Cataldo, M., Hoda, R.:
Cooperative and human aspects of software engineering. ACM SIGSOFT Softw.
Eng. Notes 38(5), 34–37 (2013)

8. Harman, M.: The current state and future of search based software engineering.
In: 2007 Future of Software Engineering. IEEE Computer Society (2007)

9. Araújo, A.A., Paixao, M., Yeltsin, I., Dantas, A., Souza, J.: An architecture based
on interactive optimization and machine learning applied to the next release prob-
lem. Autom. Softw. Eng. 24, 623–671 (2017)

10. Baker, P., Harman, M., Steinhofel, K., Skaliotis, A.: Search based approaches to
component selection and prioritization for the next release problem. In: 22nd IEEE
International Conference on Software Maintenance 2006. ICSM 2006. pp. 176–185.
IEEE (2006)

11. Karim, M.R., Ruhe, G.: Bi-objective genetic search for release planning in support
of themes. In: Le Goues, C., Yoo, S. (eds.) SSBSE 2014. LNCS, vol. 8636, pp.
123–137. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09940-8 9

https://doi.org/10.1007/978-3-319-09940-8_9

EvoIsolator: Evolving Program Slices
for Hardware Isolation Based Security

Mengmei Ye(B), Myra B. Cohen, Witawas Srisa-an, and Sheng Wei

Department of Computer Science and Engineering,
University of Nebraska-Lincoln, Lincoln, NE 68588-0115, USA

{mye,myra,witty,swei}@cse.unl.edu

Abstract. To provide strong security support for today’s applications,
microprocessor manufacturers have introduced hardware isolation, an
on-chip mechanism that provides secure accesses to sensitive data. Cur-
rently, hardware isolation is still difficult to use by software developers
because the process to identify access points to sensitive data is error-
prone and can lead to under and over protection of sensitive data. Under
protection can lead to security vulnerabilities. Over protection can lead
to an increased attack surface and excessive communication overhead. In
this paper we describe EvoIsolator, a search-based framework to (i)
automatically generate executable minimal slices that include all access
points to a set of specified sensitive data; and (ii) automatically opti-
mize (for small code block size and low communication overhead) the
code modules for hardware isolation. We demonstrate, through a small
feasibility study, the potential impact of our proposed code optimizer.

Keywords: Software transplantation · Genetic algorithms
Hardware security

1 Introduction

Hardware isolation is growing as a way for software developers to secure sensitive
program calculations and data. For instance, customized secure chips are being
used to store fingerprints and payment data on mobile phones. Isolation must
include not only the data, but the code that accesses that data to avoid leakage
of sensitive information. One popular isolation technique that we will work with
in this paper is the ARM TrustZone [1]. Sensitive data and associated program
code are stored in the secure world while the rest of the code is placed in the
normal world. Code in the secure world can access data in both environments,
while the normal world cannot directly query the secure world.

While this type of isolation provides stronger security than traditional soft-
ware only approaches, there are some potential pitfalls. A bug in the secure world
can cause significant harm by leaking or corrupting sensitive information. This
argues for placing only a limited amount of (well tested) code into the secure
world. There is also communication overhead between the secure and normal
c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 377–382, 2018.
https://doi.org/10.1007/978-3-319-99241-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_24&domain=pdf

378 M. Ye et al.

worlds. This suggests that different slices of code, and different code interleav-
ings can impact the performance of such an architecture.

Recently we developed TZSlicer [2], a technique that uses slicing and a taint
analysis to carve a program for use in hardware isolation. TZSlicer, while a
good first step, over approximates the amount of the code that needs to be
isolated in the secure world. We also found the need to add optimizations. For
example, statements that do not access sensitive data might be interwoven with
statements that do. This will lead to the inclusion of statements that do not
access sensitive data into the secure world. On the other hand, if we separate the
sensitive and non-sensitive statements into their respective spaces, it will result
in fewer statements in the secure world but may also incur a significantly higher
communication overhead. It is desirable to develop an optimization approach,
which can reorder the statements to achieve security-aware program slicing with
low communication overhead.

In this paper we present our vision of a more flexible framework for hard-
ware isolation, using a search-based approach [3,4] that can balance different
objectives. Our framework applies evolutionary algorithms in two phases. First,
we propose to create a secure slice and synthesize it into the secure world. We
view this as a type of software transplantation (where we remove code from the
normal world and place it into the secure world) [4,5]. Our goal is to include
the smallest slice that passes a security test suite. Second, we use another evolu-
tionary algorithm (a genetic algorithm) to re-order and optimize the synthesized
code within the secure world, with the goal of reducing communication overhead.
We call our framework EvoIsolator. To the best of our knowledge, this is the
first search-based approach to hardware isolation for program security.

While our vision is not yet fully implemented, we present our idea and moti-
vating examples in this paper, along with a feasibility study to demonstrate how
the second part of the framework, the optimization to reduce communication
overhead, can improve performance.

2 Background and Motivation

ARM TrustZone. The ARM TrustZone mechanism is a widely used security
platform to prevent against threat models such as information leakage attacks
[1,6]. The secure world and the normal world in the TrustZone framework
are separated by a bus-level hardware isolation interface. The communication
between the secure and normal worlds is conducted by a secure monitor in the
secure world. In addition, there are secure apps used to execute the sensitive
programs and a secure memory space to store the sensitive information. The
normal world contains a normal app to execute non-sensitive programs and a
shared memory space to store information that both the secure and normal apps
can access.

In our hardware isolation framework based on TrustZone [1], the normal app
first sends a request to the secure world and provides input data for the shared
memory. Then, the secure monitor issues a secure monitor call (SMC) to switch

EvoIsolator: Evolving Program Slices for Hardware Isolation Based Security 379

the CPU mode from the normal to the secure world. The secure app conducts
computations for each request after reading the input data stored in the shared
memory and writes the end results to the shared memory for the normal app
to access prior to switching the CPU mode back to the normal world. Note
that resources stored in the secure world are treated as a part of the trusted
computing base (TCB), and any faults or security vulnerabilities in the secure
world can compromise the entire system [7].

TZSlicer. TZSlicer [2] uses a dynamic taint analysis to slice a small part of the
program into the TrustZone framework that meets the security requirements
and maintains the original program functionality. The developer provides an
original program, the input data, and the tainted (secure) variables to TZSlicer.
Then, TZSlicer generates a system dependency graph (SDG) [8] and extracts
the propagation flow for the sensitive computations. It then slices the program,
synthesizes the secure and normal slices, and deploys them into the TrustZone
system. TZSlicer then attempts to optimize the slices using loop unrolling and
variable renaming. However, the applicability and the room for optimization by
adopting these simple strategies are limited [2]. We believe search-based tech-
niques can help develop more applicable and effective optimization strategies
including code reordering, demonstrated in this work.

3 EvoIsolator

Figure 1 shows our vision of EvoIsolator. It has two primary optimization
steps. First, it determines and synthesizes the slice (TZSurgeon). Then, it opti-
mizes that slice for performance (TZOptimizer). EvoIsolator starts with the
original program and a set of sensitive variables. It generates random initial
secure and normal slices that pass a security test suite. It then transplants the
sensitive computations into the secure world and the remaining non-sensitive
computations into the normal world using genetic programming to find the best
code configuration. In TZOptimizer it reorders the code to reduce communica-
tion overhead.

The EvoIsolator chromosome includes both secure and normal code
blocks. The code blocks are split by the TrustZone SMC. A test suite used for
fitness contains input-output pairs designed to detect information leakage and
other traditional bugs. A second fitness function is added in TZOptimizer for
reordering which counts the number of switches between the secure and normal
worlds.

Fitness Function. We present a prototype fitness function for TZOptimizer:

f =

{
−1000 if the program does not compile
w1 ∗ PIO − w2 ∗ S if the program successfully compiles

PIO indicates the number of the input-output pairs that pass the test suite,
and S indicates the number of world switches. w1 and w2 indicate the weights
for PIO and S, respectively. We leave normalization and tuning as future work.

380 M. Ye et al.

Fig. 1. System architecture and workflow of EvoIsolator

4 Feasibility Study

To evaluate the feasibility of EvoIsolator, we implemented a version of the
second phase, TZOptimizer, using TZSlicer as input. We leave TZSurgeon as
future work. We demonstrate our approach with an example (Fig. 2(a)).

(a) Original Example (b) Secure and Normal Slices

Fig. 2. Preparation for EvoIsolator (Color figure online)

4.1 Setup

Fig. 3. Sliced example

This example contains the add and sign functions.
The variable a in the add function is the secure
(tainted variable). TZSlicer treats the lines 5, 8, 11,
and 13 as sensitive computations (shown with the
red text boxes). TZSlicer partitions the program as
is seen in Fig. 2(b), placing the lines 5, 11, and 13
from the original program into the secure world and
removing the redundant/non-executed code (e.g.,
line 8). The arrows indicate the world switching
flow.

EvoIsolator: Evolving Program Slices for Hardware Isolation Based Security 381

Using the secure and normal slices generated by TZSlicer, EvoIsolator
moves the slices to the secure and normal code blocks. To generate the fitness
test suite, the code blocks are merged into a sliced program that is executable in
a regular C environment (shown in Fig. 3). The SMC lines in the sliced program
count the number of world switches in each loop iteration. In all, there are 31
switches in the initial sliced example.

TZOptimizer then tries to optimize solutions that pass all the test cases
and achieves the minimum number of world switches. Figure 4 shows one of
the crossover operations and one of the mutation operations for this phase.
In Fig. 4(a), assume that TZOptimizer randomly picks two secure slices from
the two chromosomes. By randomly selecting a crossover point, it swaps the
code blocks in the chromosome parents and generates the offspring. In Fig. 4(b),
assume that the mutation point is a line of the sensitive computation. TZOpti-
mizer splits the target code block to two code blocks.

Fig. 4. Crossover and mutation examples

4.2 Evaluation

We built a version of TZOptimizer as a genetic algorithm in Python. We first
generate 50 test cases (input-output pairs) based on the original program. Then,
we input the secure and normal slices generated by TZSlicer to the TZOptimizer
part of EvoIsolator. We use a population size of 12 based on some initial exper-
iments. We set w1 = 10 and w2 = 1/50 for the weights in the fitness function.
After executing multiple runs, EvoIsolator outputs two solutions, which reduce
the original 31 switches (from TZSlicer) to 21 switches as is shown in Fig. 5.
Solution 1 moves the line e = a + 2 backward and still keeps this line within
the loop computation. In addition, EvoIsolator detects that it is unnecessary
to place this line inside of the loop. Therefore, the second solution moves this
line forward to the outside of the loop, which further reduces the resource usage
during the computation and improves the efficiency of the program execution.

We ran the program 100 times to understand if it converges on a solution
each time. We found that the number of generations to find this solution was
usually less than 3, and in all cases we found a better solution. While this is a
simple example we believe this can scale to larger programs.

382 M. Ye et al.

Fig. 5. Optimized example generated by EvoIsolator

5 Conclusions and Future Work

In this paper we proposed a search-based framework for hardware isolation,
EvoIsolator. It optimizes slices for TrustZone applications to achieve the secu-
rity of data and code with low communication overhead. We performed a feasi-
bility study on phase II of EvoIsolator (TZOptimizer), which optimizes programs
generated by Phase I (TZSurgeon). In future work we will implement the full-
fledged EvoIsolator, tune the fitness function, and perform a comprehensive
evaluation. We will also explore the use of multi-objective optimization.

Acknowledgments. This work was supported in part by National Science Foundation
Grants CNS-1750867 and CCF-1745775.

References

1. ARM security technology: building a secure system using TrustZone technol-
ogy. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-
009492c/index.html

2. Ye, M., Sherman, J., Srisa-an, W., Wei, S.: TZSlicer: security-aware dynamic pro-
gram slicing for hardware isolation. In: HOST (2018)

3. Mark Harman, S., Mansouri, A., Zhang, Y.: Search-based software engineering:
trends, techniques and applications. ACM Comput. Surv. 45(1), 11:1–11:61 (2012)

4. Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White, D.R., Woodward,
J.R.: Genetic improvement of software: a comprehensive survey. IEEE Trans. Evol.
Comput. 22(3), 415–432 (2018)

5. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Specialising software for differ-
ent downstream applications using genetic improvement and code transplantation.
IEEE Trans. Softw. Eng. 44, 574–594 (2017)

6. Hu, N., Ye, M., Wei, S.: Surviving information leakage hardware Trojan attacks
using hardware isolation. IEEE TETC (2017)

7. Schuster, F., et al.: VC3: trustworthy data analytics in the cloud using SGX. In:
S&P, pp. 38–54 (2015)

8. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
In: PLDI, pp. 35–46 (1988)

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html

Challenge Paper

Detecting Real Faults in the Gson
Library Through Search-Based Unit

Test Generation

Gregory Gay(B)

University of South Carolina, Columbia, SC, USA
greg@greggay.com

Abstract. An important benchmark for test generation tools is their
ability to detect real faults. We have identified 16 real faults in Gson—
a Java library for manipulating JSON data—and added them to the
Defects4J fault database. Tests generated using the EvoSuite framework
are able to detect seven faults. Analysis of the remaining faults offers
lessons in how to improve generation. We offer these faults to the com-
munity to assist future research.

Keywords: Search-based test generation
Automated test generation · Software faults

1 Introduction

Automation of unit test creation can assist in controlling the cost of testing.
One promising form of automated generation is search-based generation. Given a
measurable testing goal, powerful optimization algorithms can select test inputs
meeting that goal [6].

To impact practice, automated generation techniques must be effective at
detecting the complex faults that manifest in real-world software projects [2].
“Detecting faults” is not a goal that can be measured. Instead, search-based
generation relies on fitness functions—based on coverage of code structures,
synthetic faults, and other targeted aspects—that are believed to increase the
probability of fault detection. It is important to identify which functions produce
tests that detect real faults.

By offering case examples, fault databases—such as Defects4J [5]—allow us
to explore questions like those above. The Google Gson library1 offers an excel-
lent opportunity for expanding Defects4J. Gson is an open-source library for
serializing and deserializing JSON input that is an essential tool of Java and
Android development and is one of the most popular Java libraries [4].

This work is supported by National Science Foundation grant CCF-1657299.
1

https://github.com/google/gson.

c© Springer Nature Switzerland AG 2018
T. E. Colanzi and P. McMinn (Eds.): SSBSE 2018, LNCS 11036, pp. 385–391, 2018.
https://doi.org/10.1007/978-3-319-99241-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99241-9_25&domain=pdf
https://github.com/google/gson

386 G. Gay

Gson serves as an interesting benchmark because much of its functionality is
related to the parsing of JSON input and creation and manipulation of complex
objects. Manipulation of complex input and non-primitive objects is challenging
for automated generation. Gson is also a mature project. Its faults will generally
be more complex than the simple syntactic mistakes modeled by mutation test-
ing [2]. Rather, detecting faults will require specific, contextual, combinations
of input and method calls. By studying these faults, we may be able to learn
lessons that will improve test generation tools.

We have identified 16 real faults in the Gson project, and added them to
Defects4J. We generated test suites using the EvoSuite framework [6]—focusing
on eight fitness functions and three combinations of functions—and assessed the
ability of these suites to detect the faults. Ultimately, EvoSuite is able to detect
seven faults. Some of the issues preventing detection include a need for stronger
coverage criteria, the need for specific data types or values as input, and faults
that only emerge through class interactions—requiring system testing to detect.
We offer these faults and this analysis to the community to assist future research
and improve test generation efforts.

2 Study

In this study, we have extracted faults from the Gson project, gathering faulty
and fixed versions of the code and developer-written test cases that expose each
fault. For each fault, we have generated tests for each affected class-under-test
(CUT) with the EvoSuite framework [6]—using eight fitness functions and three
combinations of functions—and assessed the efficacy of generated suites. We
wish to answer the following research questions: (1) can suites optimizing any
function detect the extracted faults?, (2) which fitness function or combination
of functions generates suites with the highest overall likelihood of fault detection?
and (3), what factors prevented fault detection?

In order to answer these questions, we have performed the following
experiment:

1. Extracted Faults: We have identified 16 real faults in the Gson project,
and added them to the Defects4J fault database (See Sect. 2.1).

2. Generated Test Cases: For each fault, we generated 10 suites per fitness
function and combination of functions, using the fixed version of each CUT.
We repeat this step with a two-minute and a ten-minute search budget per
CUT (See Sect. 2.2).

3. Removed Non-Compiling Tests: Any tests that do not compile, or that
return inconsistent results, are automatically removed (See Sect. 2.2).

4. Assessed Fault-finding Efficacy: For each budget, function, and fault,
we measure the likelihood of fault detection. For each undetected fault, we
examined gathered data and the source code to identify possible detection-
preventing factors.

Detecting Real Faults in the Gson Library 387

2.1 Fault Extraction

Defects4J is an extensible database of real faults extracted from Java projects [5].
Currently, the core dataset consists of 395 faults from six projects, with an
experimental release containing 597 faults from fifteen projects2. For each fault,
Defects4J provides access to the faulty and fixed versions of the code, developer-
written test cases that expose each fault, and a list of classes and lines of code
modified to fix the fault.

We have added Gson to Defects4J. This process consisted of developing build
scripts that would compile and execute all tested project versions, extracting can-
didate faults using Gson’s version control and issue tracking systems, ensuring
that each candidate could be reliable reproduced, and minimizing the “patch”
used to distinguish fixed and faulty classes until it only contains fault-related
code. Following this process, we extracted 16 faults from a pool of 132 candidate
faults that met all requirements.

Each fault is required to meet three properties. First, the fault must be
related to the source code. The “fixed” version must be explicitly labeled as a
fix to an issue3, and changes imposed by the fix must be to source code, not
to other project artifacts such as the build system. Second, the fault must be
reproducible—at least one test must pass on the fixed version and fail on the
faulty version. Third, the fix to the fault must be isolated from unrelated code
changes such as refactoring.

The faults used in this study can be accessed through the experimental ver-
sion of Defects4J4. Additional data about each fault can be found at http://
greggay.com/data/gson/GsonFaults.csv, including commit IDs, fault descrip-
tions, and a list of triggering tests. We plan to add additional faults and improve-
ments in the future.

2.2 Test Generation and Removal

EvoSuite applies a genetic algorithm in order to evolve test suites over several
generations, forming a new population by retaining, mutating, and combining
the strongest solutions [6]. In this study, we used EvoSuite version 1.0.5 with
eight fitness functions: Branch Coverage, Direct Branch Coverage, Line Cover-
age, Exception Coverage, Method Coverage, Method (Top-Level, No Exception)
Coverage, Output Coverage, and Weak Mutation Coverage. Rojas et al. provide a
primer on each [6]. We have also used three combinations of fitness functions: all
eight of the above, Branch/Exception Coverage, and Branch/Exception/Method
Coverage. The first is EvoSuite’s default configuration, and the other two were
found to be generally effective at detecting faults [3]. When a combination is
used to generate tests, the individual fitness functions are calculated and added
to obtain a single fitness score.

2
Core: http://defects4j.org; Experimental: http://github.com/Greg4cr/defects4j.

3
The commit message for the “fixed” version must reference either a reported issue or a pull request
that describes and fixes a fault (that is, it must not add new functionality).

4
These faults will be migrated into the core dataset following additional testing and study.

http://greggay.com/data/gson/GsonFaults.csv
http://greggay.com/data/gson/GsonFaults.csv
http://defects4j.org
http://github.com/Greg4cr/defects4j

388 G. Gay

Tests are generated from the fixed version of the system and applied to
the faulty version in order to eliminate the oracle problem. Given the potential
difficulty in achieving coverage over Gson classes, two search budgets were used—
two and ten minutes, a typical and an extended budget [2]. As results may vary,
we performed 10 trials for each fault, fitness function, and budget. Generation
tools may generate flaky (unstable) tests [2]. We automatically remove non-
compiling test cases. Then, each test is executed on the fixed CUT five times.
If results are inconsistent, the test case is removed. On average, less than 1% of
tests are removed from each suite.

3 Results and Discussion

In Table 1, we list—for each search budget and fitness function—the likelihood
of fault detection (the proportion of suites that detected the fault). Seven of
the sixteen faults were detected. EvoSuite failed to generate test suites for Fault
12. At the two minute budget, the most effective fitness function is a combina-
tion of Branch/Exception/Method Coverage, with an average likelihood of fault
detection of 40.67%—closely followed by the Branch/Exception combination and
Branch Coverage alone. At the ten minute budget, these three configurations
perform equally, with an average detection likelihood of 46.00%. Unlike in other
Defects4J systems [3], Exception Coverage does not add significant value. Spe-
cialized metrics, like Output Coverage, also do not seem to have much situational
applicability.

Table 1. Likelihood of fault detection for each fitness function (two-minute/ten-minute
budget). (D)BC = (Direct) Branch Coverage, EC = Exception Coverage, LC = Line
Coverage, M(TLNE)C = Method (Top-Level, No Exception) Coverage, OC = Output
Coverage, WMC = Weak Mutation Coverage, C-All = combination of all criteria, C-BE
= combination of BC/EC, C-BEM = combination of BC/EC/MC. Undetected faults
(1, 4, 5, 7, 9, 11, 14, and 15) are omitted.

Fault Budget BC DBC EC LC MC M(TLNE) OC WMC C-All C-BE C-BEM

2 2m 100.00% 100.00% 70.00% 70.00% - - - 100.00% 100.00% 100.00% 100.00%

10m 100.00% 100.00% 40.00% 90.00% - - - 100.00% 100.00% 100.00% 100.00%

3 2m 70.00% 60.00% - 80.00% - - - 60.00% 30.00% 90.00% 70.00%

10m 100.00% 80.00% - 100.00% - - - 100.00% 70.00% 90.00% 100.00%

6 2m 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

10m 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

8 2m 20.00 30.00% - 50.00% - - - 10.00% 10.00% 10.00% 40.00%

10m 90.00% 60.00% - 100.00% - - - 80.00% 80.00% 100.00% 90.00%

10 2m 100.00% 100.00% 30.00% 100.00% 20.00% 10.00% 40.00% 50.00% 100.00% 100.00% 100.00%

10m 100.00% 100.00% 10.00% 100.00% 30.00% 10.00% 40.00% 70.00% 100.00% 100.00% 100.00%

13 2m 100.00% 100.00% 20.00% 30.00% 100.00% 100.00% - 90.00% 100.00% 100.00% 100.00%

10m 100.00% 100.00% 10.00% - 100.00% 100.00% - 100.00% 100.00% 100.00% 100.00%

16 2m 100.00% 100.00% 60.00% 100.00% 40.00% 10.00% - 40.00% 100.00% 100.00% 100.00%

10m 100.00% 100.00% 30.00% 100.00% - 30.00% 30.00% 10.00% 100.00% 100.00% 100.00%

Average 2 m 39.33% 39.33% 18.67% 35.33% 17.33% 14.67% 9.33% 30.00% 36.00% 40.00% 40.67%

10 m 46.00% 42.67% 12.67% 39.33% 15.33% 16.00% 11.33% 37.33% 43.33% 46.00% 46.00%

Detecting Real Faults in the Gson Library 389

Fault 6 was detected the most reliably, regardless of search budget or fitness
function. This fault updates Gson to be compliant with the 2014 JSON RFC
7159 standard, and adds a leniency check to enable backwards compatibility5.
Compliance checks are spread throughout the code, resulting in fault detection if
even a small amount of coverage is attained. Fault 136, dealing with an index out
of bounds error, is a classic example of what automated generation excels at. The
fix adds boundary checks, which are efficiently covered by Branch Coverage—
ensuring differing output between versions.

Fault 87 was detected the least reliably. This fault causes issues with deseri-
alizing map structures when a key is an unquoted long or integer. The generated
tests arguably expose the fault—they produce differing behavior and result in
the same exception as the human-written test cases. Yet, these failing tests also
point out an issue with test suite generation. The test cases fail in the same
manner as the human-written cases, but not for the same reason. The failing
tests pass strings to methods meant to handle long or integer values and expect
a NumberFormatException—which is not thrown by the faulty version. The
exception thrown instead—a complaint about a string—makes sense, given the
input used. Rather than helping a human tester identify actual issues, these test
cases only show that the two versions of the code behave differently.

EvoSuite failed to detect the other eight faults. Therefore, our next step was
to examine these faults to identify factors preventing detection. These factors
include:

Stronger Adequacy Criteria are Required: Fault 148 causes all instances
of −0 (“negative 0”) to be converted to 0. Catching this fault would require the
generation framework to produce −0 as input—an unlikely choice. However, the
test generator could be guided towards this input. The fixed version of the class
has a complex if-condition that includes this corner case. Branch Coverage
simply requires the full predicate to evaluate to true and false, so coverage can
be achieved without −0 input. However, a stronger criterion such as Modified
Condition/Decision Coverage [1] would require −0 to attain full coverage.

Specific Data Types are Required as Input: Fault 99 causes an error when
Gson attempts to initialize an interface or abstract class. This fault can only be
detected if a test case attempts to instantiate either type of object. Most gen-
eration frameworks will not attempt this, and the feedback provided by criteria
like Branch Coverage is not sufficient to suggest such an action.

5
https://github.com/google/gson/commit/af68d70cd55826fa7149effd7397d64667ca264c.

6
https://github.com/google/gson/commit/9e6f2bab20257b6823a5b753739f047d79e9dcbd.

7
https://github.com/google/gson/commit/2b08c88c09d14e0b1a68a982bab0bb18206df76b.

8
https://github.com/google/gson/commit/9a2421997e83ec803c88ea370a2d102052699d3b.

9
https://github.com/google/gson/commit/0f66f4fac441f7d7d7bc4afc907454f3fe4c0faa.

https://github.com/google/gson/commit/af68d70cd55826fa7149effd7397d64667ca264c
https://github.com/google/gson/commit/9e6f2bab20257b6823a5b753739f047d79e9dcbd
https://github.com/google/gson/commit/2b08c88c09d14e0b1a68a982bab0bb18206df76b
https://github.com/google/gson/commit/9a2421997e83ec803c88ea370a2d102052699d3b
https://github.com/google/gson/commit/0f66f4fac441f7d7d7bc4afc907454f3fe4c0faa

390 G. Gay

Fault Emerges Through Class Interactions and System Testing: Fault
110 causes Gson to fail to serialize or deserialize a class when its super class
has a type parameter. Like Fault 9, this is a case where tests would need to
attempt to generate a highly specific object. In addition, the developer-written
test exposing this fault is a system-level test, not a unit test—working through
Gson’s top-level serialization and deserialization functions. It is possible that
unit testing could expose the fault, but this is code that—like Fault 9 above—
that would be hard to cover. System testing is more likely to expose the fault,
but external context would still be needed to guide data type selection.

By default, Gson converts application classes to JSON using its built-in type
adapters. If Gson’s default JSON conversion isn’t appropriate for a type, users
can specify their own adapter using an annotation. Fault 511 deals with ensuring
that custom type adapters safely handle null objects. However, performing unit
testing of the modified class will not expose the fault. Rather, one needs to define
a type adapter for a null class, then use Gson’s top-level API. Fault 712 modifies
the same class, fixing a null pointer exception when a null object is returned
instead of a proper TypeAdapter. A similar scenario exists for Fault 1113, where
custom adapters are ignored for primitive fields. In all three cases—as long as
the right input is chosen—system testing will expose this fault while unit testing
may not be able to replicate the same example. However, system testing alone
will still not be sufficient. Each of these scenarios requires external context to
create the specific conditions called for to detect the fault.

Gson is a complex system designed to be accessed through a simple API.
Human-written tests tend to use that API, even when testing specific classes.
Unit test generation may not be suited to detecting some of the faults that
emerge from this type of system, and even if it can, the generated test suites
may not be easily understood by human developers. Many of the most mature
test generation approaches are based on unit testing, and more work clearly
needs to be conducted in the system testing realm.

Regardless of the form of testing, better means are needed of extracting con-
text from the system and its associated artifacts. Automation requires informa-
tion to guide test creation. Often, this is some form of code coverage. However,
code coverage doesn’t provide the same type of information developers use dur-
ing test creation, and many of the studied faults were detected by almost any
coverage criterion or no criterion. Rather, information from the project is needed
to guide input generation. Methods of gleaning that information, either through
seeding from existing test cases or data mining of project elements, may assist in
improving the efficacy of test generation. Approaches to mining of requirements
information or bug reports, for instance, might suggest using particular data
types or values as input.

10
https://github.com/google/gson/commit/c6a4f55d1a9b191dbbd958c366091e567191ccab.

11
https://github.com/google/gson/commit/57b08bbc31421653481762507cc88ee3eb373563.

12
https://github.com/google/gson/commit/dea305503ad8827121e8212248c271f1f2f90048.

13
https://github.com/google/gson/commit/bb451eac43313ae08b30ac0916718ca00c39656d.

https://github.com/google/gson/commit/c6a4f55d1a9b191dbbd958c366091e567191ccab
https://github.com/google/gson/commit/57b08bbc31421653481762507cc88ee3eb373563
https://github.com/google/gson/commit/dea305503ad8827121e8212248c271f1f2f90048
https://github.com/google/gson/commit/bb451eac43313ae08b30ac0916718ca00c39656d

Detecting Real Faults in the Gson Library 391

4 Conclusion

Testing costs can be reduced through automated unit test generation. An impor-
tant benchmark for such tools is their ability to detect real faults. We have iden-
tified 16 real faults in Gson, and added them to Defects4J. We generated test
suites and found that EvoSuite is able to detect seven faults. Some of the issues
preventing fault detection include a lack of fitness functions for stronger cover-
age criteria, the need for specific data types or values as input, and faults that
only emerge through class interactions—requiring system testing rather than
unit testing to detect. We offer these faults to the community to assist future
research.

References

1. Chilenski, J.: An investigation of three forms of the modified condition decision cov-
erage (MCDC) criterion. Technical report DOT/FAA/AR-01/18, Office of Aviation
Research, Washington, D.C., April 2001

2. Gay, G.: The fitness function for the job: search-based generation of test suites
that detect real faults. In: Proceedings of the International Conference on Software
Testing ICST 2017. IEEE (2017)

3. Gay, G.: Generating effective test suites by combining coverage criteria. In: Menzies,
T., Petke, J. (eds.) SSBSE 2017. LNCS, vol. 10452, pp. 65–82. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66299-2 5

4. Idan, H.: The top 100 java libraries in 2017 - based on 259,885 source
files (2017). https://blog.takipi.com/the-top-100-Java-libraries-in-2017-based-on-
259885-source-files/

5. Just, R., Jalali, D., Ernst, M.D.: Defects4J: a database of existing faults to enable
controlled testing studies for Java programs. In: Proceedings of the 2014 Inter-
national Symposium on Software Testing and Analysis ISSTA 2014, pp. 437–440.
ACM, New York (2014). https://doi.org/10.1145/2610384.2628055

6. Rojas, J.M., Campos, J., Vivanti, M., Fraser, G., Arcuri, A.: Combining multiple
coverage criteria in search-based unit test generation. In: Barros, M., Labiche, Y.
(eds.) SSBSE 2015. LNCS, vol. 9275, pp. 93–108. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-22183-0 7

https://doi.org/10.1007/978-3-319-66299-2_5
https://blog.takipi.com/the-top-100-Java-libraries-in-2017-based-on-259885-source-files/
https://blog.takipi.com/the-top-100-Java-libraries-in-2017-based-on-259885-source-files/
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1007/978-3-319-22183-0_7
https://doi.org/10.1007/978-3-319-22183-0_7

Author Index

Ackley, David H. 213
Alba, Enrique 89
Almasri, Nada 262
Alourani, Abdullah 149
Alshahwan, Nadia 3
Araújo, Allysson Allex 131, 370

Batot, Edouard 166
Beslon, Guillaume 46
Bidgoli, Atieh Monemi 343
Bikas, Md. Abu Naser 149
Bosch, Jan 293
Bowers, Kate M. 182

Cheng, Betty H. C. 182
Choi, Kabdo 349
Clause, James 278
Cohen, Myra B. 377

Derakhshanfar, Pouria 325
Devroey, Xavier 325

Elena, Santiago F. 46
Eljuse, Basil 198
Epitropakis, Michael G. 246

Fraser, Gordon 106
Fredericks, Erik M. 182

Gao, Xinbo 3
Gay, Gregory 356, 385
Grechanik, Mark 149

Haghighi, Hassan 343
Harman, Mark 3
Hogeweg, Paulien 46

Jia, Yue 3
Jones, Thomas B. 213

Kanapala, Allen 356
Kessentini, Wael 229
Kifetew, Fitsum Meshesha 309
Kim, Jinhan 246
Korel, Bogdan 262

Langdon, William B. 363

Maia, Camila 131
Manotas, Irene 278
Mao, Ke 3
Mårtensson, Erling 293
Martinez, Matias 65
Mattos, David Issa 293
Mols, Alexander 3
Monperrus, Martin 65

Olsson, Helena Holmström 293

Panichella, Annibale 309, 325
Petke, Justyna 363
Pollock, Lori 278

Sahraoui, Houari 166, 229
Saraiva, Raphael 131, 370
Schneider, Dominique 46
Soares, Pamella 131, 370
Sohn, Jeongju 349
Soltani, Mozhan 325
Souza, Jerffeson 131, 370
Srisa-an, Witawas 377
Stepney, Susan 46

Tahat, Luay 262
Tei, Taijin 3
Tonella, Paolo 309

van Deursen, Arie 325

Walkinshaw, Neil 198
Wei, Sheng 377
Wimmer, Manuel 229

Ye, Mengmei 377
Yeltsin, Italo 370
Yoo, Shin 246, 349

Zaidman, Andy 325
Zorin, Ilya 3

	Foreword
	Message from the General Chair

	Message from the Program Chairs
	Organization
	Contents
	Keynotes
	Deploying Search Based Software Engineering with Sapienz at Facebook
	1 Introduction and Background
	2 Sapienz at Facebook: Overview
	2.1 Top Level Deployment Mode
	2.2 Phabricator
	2.3 Diff Time and Land Time Testing
	2.4 FBLearner

	3 The Sapienz FBLearner Workflows
	3.1 Crash Reproduction Workflow
	3.2 Fix Detection Workflow
	3.3 The Evolve FBLearner Flow Operator

	4 Integration with Other Facebook Tools and Systems
	4.1 Collaboration Between Static and Dynamic Analysis: Infer and Sapienz
	4.2 Combining with Feedback from Field Trials
	4.3 Bug Severity Prediction

	5 Automated Scientific Experimental Reporting (ASER) Workflow
	5.1 ASER Example: Fail Fast Speed up Experiment
	5.2 ASER Example: Longer Test Sequences
	5.3 ASER Example: ATG Test Selection

	6 DevOps Results Monitoring
	6.1 Health
	6.2 Key Performance Indicators

	7 Open Problems and Challenges
	7.1 Flaky Tests
	7.2 Fix Detection
	7.3 Automated Oracle
	7.4 Fitness Evaluation Resource Requirements
	7.5 Wider Search Spaces
	7.6 Smarter, Unobtrusive and Controllable White Box Coverage
	7.7 Combining Static and Dynamic Analysis and Hybrids of SBSE
	7.8 False Positives and Pseudo False Positives
	7.9 Unit Tests from System Tests
	7.10 Combining Human- and Machine- Designed Tests
	7.11 Enhancing the Debug Payload
	7.12 Search in the Presence of Inherent Flakiness
	7.13 New Search Algorithms that Fully Realize Efficiently Deployable Parallelism at Scale
	7.14 Automated Fixing
	7.15 Automated Performance Improvement

	8 The History of Sapienz Deployment to Date
	9 Conclusions
	References

	Evolving Living Technologies—Insights from the EvoEvo Project
	1 Introduction
	2 Overview of the EvoEvo Project
	2.1 Introduction
	2.2 How Can Evolution Evolve?
	2.3 A Route from Biological Evolution to Artificial Evolution
	2.4 EvoEvo…What For?

	3 Results: EvoEvo Insights from Biological and in Silico Evolutionary Experiments
	3.1 What Is Evolution?
	3.2 Long-Term Information Integration
	3.3 Evolution of Genetic Architecture and the Role of Non-coding Sequences
	3.4 On the Importance of Long Jumps

	4 Results: EvoEvo Algorithms and Applications for Living Technologies
	4.1 EvoEvo Algorithms and Computational Concepts
	4.2 Proof of Concept: Evolving a Living Personal Companion

	5 Conclusion
	References

	Tutorials
	Ultra-Large Repair Search Space with Automatically Mined Templates: The Cardumen Mode of Astor
	1 Introduction
	2 Program Repair with Automatically Mined Templates
	2.1 Cardumen in a Nutshell
	2.2 Cardumen Repair Algorithm
	2.3 Identifying Potential Modification Points
	2.4 Definition of Cardumen's Template-Based Search Space
	2.5 Probabilistic-Based Navigation of the Code Template Search Space
	2.6 Example: Synthesizing Candidate Patches for Math-70
	2.7 Implementation

	3 Evaluation
	3.1 Methodology
	3.2 RQ 1: To What Extent Does Cardumen Generate Test-Suite Adequate Patches?
	3.3 Is Cardumen Able to Identify Multiple Test-Suite Adequate Patches per Bug?
	3.4 RQ 3 (a): To What Extent Is Cardumen Able to Generate Patches Located in Different Locations for a Bug?
	3.5 RQ 3 (b): To What Extent Is Cardumen Able to Generate Different Kind of Patches for a Bug?

	4 Related Work
	4.1 Repair Approaches
	4.2 Patches Analysis
	4.3 Analysis of Repair Search Spaces
	4.4 Repair Approaches Extension for Avoiding Overfitted Patches

	5 Discussion
	5.1 Threats to Validity
	5.2 Limitations

	6 Conclusion
	References

	Special Tenth SSBSE papers – “Best of Previous SSBSEs”
	How Can Metaheuristics Help Software Engineers?
	1 Converging Trajectories
	2 A High Level Glimpse on Metaheuristics
	3 Search for Software and Software for Search: SBSE and SAAL
	3.1 SOL-Based Software Engineering
	3.2 Software Aware Algorithms (SAAL)

	4 Open Challenges and Ideas for the Future
	5 One Conclusion, Many Future Works
	References

	A Tutorial on Using and Extending the EvoSuite Search-Based Test Generator
	1 Introduction
	2 Using EvoSuite
	2.1 Invoking EvoSuite
	2.2 Generating Tests
	2.3 Running Tests
	2.4 Configuring EvoSuite
	2.5 Working with Existing Tests
	2.6 Running EvoSuite on Multiple Classes

	3 Extending EvoSuite
	3.1 Obtaining the EvoSuite Source Code
	3.2 Building EvoSuite
	3.3 Testing EvoSuite
	3.4 Extending the Search Algorithm

	4 Running Experiments with EvoSuite
	4.1 Preparing the Experiment
	4.2 Collecting Data with EvoSuite
	4.3 Setting Output Variables
	4.4 Running an Experiment
	4.5 Analyzing Results
	4.6 Other Useful Variables

	5 Conclusions
	References

	A Preliminary Systematic Mapping Study of Human Competitiveness of SBSE
	1 Introduction
	2 Systematic Mapping Study
	2.1 Definition of Research Questions
	2.2 Conduct Search for Primary Sources and Screening of Papers
	2.3 Classification Scheme and Data Extraction

	3 Results and Analyses
	3.1 RQ1: Number and Frequency of Publications
	3.2 RQ2: Context of Discussion

	4 Threats to Validity
	5 Conclusions
	References

	Main Track Papers
	Search-Based Stress Testing the Elastic Resource Provisioning for Cloud-Based Applications
	1 Introduction
	2 Problem Statement
	2.1 Rules and Workloads
	2.2 Sources of Cost-Utility Violations of Elasticity
	2.3 The Problem Statement

	3 Our Approach
	3.1 Key Ideas
	3.2 TICLE Algorithm

	4 Empirical Evaluation
	4.1 Subject Applications
	4.2 Methodology
	4.3 Threats to Validity

	5 Empirical Results
	5.1 Finding Workloads that Lead to Higher Costs
	5.2 Finding Workloads Faster
	5.3 The Impact of the SLA Threshold
	5.4 Impact of Different Elasticity Rules

	6 Related Work
	7 Conclusion
	References

	.24em plus .1em minus .1emInjecting Social Diversity in Multi-objective Genetic Programming: The Case of Model Well-Formedness Rule Learning
	1 Introduction
	2 Background, Related Work, and Problem Statement
	2.1 Bloating
	2.2 Single Fitness Peak

	3 Social Semantic Diversity Measure
	4 Learning Well-Formedness Rule
	4.1 Well-Formedness Rules
	4.2 GP Adaptation
	4.3 Social Semantic Diversity Implementation

	5 Evaluation
	5.1 Setting
	5.2 Results and Analysis
	5.3 Thread to Validity

	6 Conclusion
	References

	Automated Optimization of Weighted Non-functional Objectives in Self-adaptive Systems
	1 Introduction
	2 Background
	2.1 Remote Data Mirroring
	2.2 Goal-Oriented Requirements Engineering
	2.3 Non-functional Requirements
	2.4 Utility Functions

	3 Approach
	3.1 Providentia: Inputs and Outputs
	3.2 Providentia Technique

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related Work
	6 Conclusion
	References

	Comparison of Search-Based Algorithms for Stress-Testing Integrated Circuits
	1 Introduction
	2 Background
	2.1 Motivating Scenario
	2.2 The Cache Coherent Interconnect
	2.3 Search-Based Software Testing

	3 Improved Stress Testing of the CCI
	3.1 Test Input Representation
	3.2 Test Output Representation
	3.3 The Test Execution Framework

	4 Evaluation
	4.1 Methodology
	4.2 Results and Discussion
	4.3 Threats to Validity

	5 Related Work
	6 Conclusions and Future Work
	References

	Damage Reduction via White-Box Failure Shaping
	1 Postdeterministic Software Engineering
	1.1 Method-Level Failure Interfaces
	1.2 Failure Shaping
	1.3 Criticality Explorer

	2 Failure Shaping Matrix Multiplication
	2.1 Criticality Assessment Results on Matrix Multiplication
	2.2 Failure Shaping Results on Matrix Multiplication

	3 Proxy Failure Shaping Matrix Multiplication
	3.1 Criticality and Failure Shaping Results on Proxy Method

	4 Analysis and Discussion
	4.1 The Importance of Leverage
	4.2 Generalization Through Search

	5 Related Work
	6 Conclusion
	References

	Automated Co-evolution of Metamodels and Transformation Rules: A Search-Based Approach
	1 Introduction
	2 Background
	2.1 Metamodels and Model Transformation
	2.2 Metamodel/Transformation Co-evolution: A Motivating Example

	3 Multi-objective Metamodel/Transformation Co-evolution
	3.1 Approach Overview
	3.2 NSGA-II Adaptation for Metamodel/Transformation Co-evolution

	4 Validation
	4.1 Research Questions and Evaluation Metrics
	4.2 Parameters Setting and Statistical Tests
	4.3 Results
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	Learning Without Peeking: Secure Multi-party Computation Genetic Programming
	1 Introduction
	2 Background
	2.1 Oblivious Transfer
	2.2 Garbled Circuit
	2.3 Obliv-C

	3 Secure Multiparty Computation GP Using Obliv-C
	3.1 Multiparty Dataholder Scenario (2PC)
	3.2 Singleparty Dataholder Scenario (1PC)

	4 Experimental Setup
	4.1 Research Questions
	4.2 Subjects
	4.3 Configurations and Environments

	5 Results
	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

	Towards Minimizing the Impact of Changes Using Search-Based Approach
	Abstract
	1 Introduction
	2 Literature Review
	3 Preliminaries
	3.1 EFSM Models
	3.2 Model Dependencies
	3.3 Measuring Model Change Impact

	4 Transformation Rules
	4.1 State Splitting
	4.2 Moving Assignment Actions Forward
	4.3 Moving Assignment Actions Backward

	5 Search Algorithm
	5.1 Fitness Function
	5.2 Algorithm

	6 Exploratory Study
	7 Conclusion, Limitations, and Future Work
	Acknowledgments
	References

	Exploring Evolutionary Search Strategies to Improve Applications' Energy Efficiency
	1 Introduction
	2 Background
	2.1 SEEDS Framework
	2.2 Metaheuristic Optimization

	3 99993em.5Improving Energy Usage of Applications via Genetic Algorithms
	3.1 99993em.5Genetic Algorithms to Navigate an Application's Search Space
	3.2 99993em.5Implementation of the Search Strategy in SEEDSapi

	4 Evaluation
	4.1 Experimental Subjects
	4.2 RQ1: Effectiveness
	4.3 RQ2: Cost
	4.4 Threats to Validity

	5 Related Work
	6 Conclusions and Future Work
	References

	Optimization Experiments in the Continuous Space
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Online Controlled Experiments
	2.2 The Multi-armed Bandit, the {\varvec \chi} -Bandit Problem, and the HOO
	2.3 Related Work

	3 Research Process
	4 The LG-HOO Algorithm and the Empirical Data
	4.1 The LG-HOO in Simulation
	4.2 The LG-HOO at Sony Mobile

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

	Incremental Control Dependency Frontier Exploration for Many-Criteria Test Case Generation
	1 Introduction
	2 Background and Related Work
	3 Approach
	3.1 MC-DynaMOSA: Many-Criteria Dynamic Many-Objective Optimization with Incremental Frontier Exploration

	4 Empirical Evaluation
	5 Experimental Results
	6 Conclusion
	References

	Single-objective Versus Multi-objectivized Optimization for Evolutionary Crash Reproduction
	1 Introduction
	2 Background and Related Work
	2.1 Related Work
	2.2 EvoCrash

	3 Single-objective and Multi-objectivization for Crash Reproduction
	3.1 Constraints Relaxation
	3.2 Multi-objectivization
	3.3 Graphical Interpretation

	4 Empirical Evaluation
	4.1 Setup
	4.2 Analysis

	5 Results
	6 Discussion
	7 Conclusion
	References

	Hot off the Press Papers
	A New Approach for Search Space Reduction and Seeding by Analysis of the Clauses
	1 Introduction
	2 The Proposed Approach
	3 Preliminary Result
	4 Conclusion
	References

	Learning Fault Localisation for both Humans and Machines Using Multi-objective GP
	1 Introduction
	2 Locality Information Loss as Fitness Function
	2.1 Locality Information Loss (LIL)
	2.2 Weighted Locality Information Loss (wLIL)

	3 Experimental Setup
	3.1 Research Questions
	3.2 Subject Programs
	3.3 Configuration

	4 Results
	5 Conclusion
	References

	Mapping Class Dependencies for Fun and Profit
	1 Introduction
	2 Coupling Mapping Framework
	3 Case Study
	4 Results and Discussion
	5 Related Work
	6 Conclusions
	References

	Evolving Better Software Parameters
	1 Literature on Maintaining Numbers Within Code
	2 Example of Automated Parameter Tuning for Evolving New Functionality
	2.1 Manual Changes
	2.2 Automatic Changes to Data Table Using CMA-ES
	2.3 Testing the Evolved cbrt Function

	3 The Importance of Automated Parameter Tuning
	References

	On the Placebo Effect in Interactive SBSE: A Preliminary Study
	1 Introduction
	2 Experimental Study
	3 Preliminary Results and Analyses
	4 Final Considerations and Future Research Works
	References

	EvoIsolator: Evolving Program Slices for Hardware Isolation Based Security
	1 Introduction
	2 Background and Motivation
	3 EvoIsolator
	4 Feasibility Study
	4.1 Setup
	4.2 Evaluation

	5 Conclusions and Future Work
	References

	Challenge Paper
	Detecting Real Faults in the Gson Library Through Search-Based Unit Test Generation
	1 Introduction
	2 Study
	2.1 Fault Extraction
	2.2 Test Generation and Removal

	3 Results and Discussion
	4 Conclusion
	References

	Author Index

