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Abstract. An important issue in deploying an autonomous system is
how to enable human users and stakeholders to develop an appropriate
level of trust in the system. It has been argued that a crucial mecha-
nism to enable appropriate trust is the ability of a system to explain its
behaviour. Obviously, such explanations need to be comprehensible to
humans. We argue that it makes sense to build on the results of exten-
sive research in social sciences that explores how humans explain their
behaviour. Using similar concepts for explanation is argued to help with
comprehensibility, since the concepts are familiar. Following work in the
social sciences, we propose the use of a folk-psychological model that
utilises beliefs, desires, and “valuings”. We propose a formal framework
for constructing explanations of the behaviour of an autonomous system,
present an (implemented) algorithm for giving explanations, and present
evaluation results.

1 Introduction

This paper addresses the problem of how an autonomous system can explain
itself by developing a computational mechanism that provides explanations for
why a particular action was performed. It has been argued [6,8,19] that in a
range of domains, a key factor in humans being willing to trust autonomous
systems is that the systems need to be able to explain why they performed a
certain course of action. Note that this is not the same as explaining system
recommendations, since we are explaining a course of action (taken over time,
in an environment), not a (static) recommendation.

Explanation is relevant to AI safety for a number of reasons. Firstly, expla-
nation can reduce the opaqueness of a system, and support understanding its
behaviour, and its limitations. Secondly, in situations where things do go wrong,
a post-mortem analysis, using some sort of “black box” (as those used in air-
planes) can use explanation techniques to help investigators understand what
went wrong.
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In developing such an explanation mechanism, it is important to be mindful
that the explanations have to be comprehensible, and useful, to a human, and
therefore we should consider relevant social sciences literature [12]. According
to Miller [12] explanations should be contrastive i.e. answer questions of the
form “why did you do X . . . instead of Y ?”; selected, i.e. select relevant fac-
tors and present those; and, social, i.e. presented relative to what the explainer
believes the listener (i.e. explainee) knows. That is, explanations, being in fact
conversations, should follow Grice’s maxims of quality, quantity, manner and
relevance [7].

In our work we consider in particular the work of Malle [11], which argues
that humans use folk psychological constructs (e.g. beliefs, desires) to explain
behaviour. This leads us to adopt a model that includes desires and beliefs,
specifically the well-known BDI (Beliefs, Desires, Intentions) model [1,2,13].
We contend that providing explanations in terms of the same concepts used
in human-to-human explanations will help enable explanations to be compre-
hensible.

Malle identifies three types of reasons in explaining behaviour: desires, beliefs,
and what he terms valuings, defined as things that “directly indicate the positive
or negative affect toward the action or its outcome”. We therefore extend the
BDI model with valuings, following recent work by Cranefield et al. [5].

2 Formal Setting

In this paper, we assume a BDI model based on goal trees and we also assume
that the listener assumes such a goal tree as the deliberation mechanism of the
agent1.

A goal tree is a tuple (N ,G) of a name N , and either an action2 (A), or a
combination of sub-goals (Ni, Gi), which can be in sequence (Seq), unspecified
order (And), or a choice (Or) where each option Oi = (Ci, (Ni, Gi)) has a
sub-goal and a condition Ci indicating in which situations that sub-goal can be
selected to realise the parent goal. Each action A has an associated pre-condition
(denoted pre(A)) and post-condition (post(A)), both of which are viewed as sets
of propositions. We define B(N) to be the beliefs held just prior to executing the
goal N . We write (G1−n) (resp. (O1−n)) to abbreviate ((N1, G1), . . . , (Nn, Gn))
(resp. (O1, . . . , On)). We also sometimes abbreviate (N,G) to GN for readability,
and, where the name is not important, just write G for GN . Formally:

G ::= A| Seq(G1−n) | And(G1−n) | Or(O1−n)

Figure 1 shows a running example, along with a goal tree for this example, includ-
ing the pre- and post-conditions (the Vi are valuings, explained below).
1 Note that using a BDI model does not necessarily require the system to be designed

or implemented as BDI agents. It is in principle possible to use a BDI model to
provide explanations of a system’s behaviour even if the system does not use BDI
concepts.

2 For actions we assume that the name of the goal tree node and the name of the
action coincide, i.e. that A = N .
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Fig. 1. Running Example (goals are Or-decomposed unless indicated by Seq↓)

Intuitively, a goal tree is executed as follows. If the tree is simply an action,
then the action is performed (assuming its preconditions hold). If the tree is an
And or Seq decomposition, then all of the sub-goals are executed, either in the
specified sequential order (Seq), or in some, unspecified, order. Finally, if the tree
is an Or decomposition, then an applicable option (i.e. one whose condition Ci

is believed to hold in the current situation) is selected and executed. Many BDI
platforms provide a way to handle failure, which we discuss later. Formally, the
semantics of a goal tree is obtained by mapping it to a set of possible sequences
of actions.

The semantics of valuings is based on the theory of values as put forward
by Schwartz [14]. In Weide [18] it is shown how these abstract values can be
connected to concrete aspects of action decision. Following Cranefield et al. [5]
we incorporate them by annotating nodes in the goal tree with an abstract
evaluation of key aspects of their effects. By “key aspects” we mean those that
are relevant to the agent evaluating which options it prefers, that is, its valuings.
For instance, in the running example, each annotation Vi is of the form (coffee
quality, cost, distance), respectively drawn from {veryGood, good, bad}, {none,
low, high}, and {none, low, medium, high} where dist(A,B) denotes the distance
between A and B computed as follows: the office and kitchen are close to each
other (“low” distance), and the shop is far from both kitchen and office (“high”
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distance). We write {V1, . . . , Vn} ≺ V to denote that the value annotation V is
preferred to each of the Vi, and we define {} ≺ Vi to be equivalent to �.

The agent’s valuings, i.e. which options it appreciates more or less, are spe-
cific to a given situation. They are founded on the agent’s values, which are
the underlying drivers. For example, an agent might value good coffee, saving
money, and saving time. These aspects are the measurable criteria indicating
whether a certain value is promoted by a course of action. However, since we
have multiple aspects (thus creating a kind of multi-criteria optimization), they
do not completely determine the agent’s valuing. E.g. an agent might prefer
good coffee over bad coffee, but decide to get bad coffee for free at the end of
the month when his salary runs out and get good coffee once his salary is in.
So, the weighing of the different aspects and thus the resulting valuings is not
fixed, but depends on the context. Thus, in general a valuing (or preference) for
an option is based on the values, but also on the current situation and practical
considerations.

In Cranefield et al. [5] it is shown how these valuings can be kept consistent
and work for large goal-plan trees. Here, we therefore assume the valuings to be
present and indicating consistent preferences over alternatives.

3 Generating Explanations

As discussed in the introduction, an explanation is given in terms of reasons
which can be desires (goals), beliefs, or valuings. More precisely, an explanation
is either ⊥ (representing that the question does not make sense, e.g. “why did
you do X?” when X was not done), or a set of reasons. Reasons can be beliefs
that were held, desires that were pursued, and valuings. Valuings are explained
as “I preferred V to {V1, . . . , Vn}”. We also have forward-looking reasons of
the form “I did N1 in order to be able to later do N2” (N1 �→ N2). Finally,
as discussed towards the end of this section, one possible type of reason is an
indication that a particular option was attempted but failed. For example, “I
chose to get coffee from the kitchen because I tried to buy it from the shop but
failed” (e.g. shop was closed). Finally, we also define � to be an explanation that
carries no information. Clearly, � is not a useful explanation to a user, but it
is used in the formal definitions below where some parts of the process do not
provide any useful information.

The definition of the explanation function E is with respect to the goal-tree.
Specifically, ET

N (GN ′) is “explain N using the tree (N ′, G) and trace T”. We
define n(G) as denoting the set of all node names occurring in the tree rooted at
G. We define T≺N to be the part of the trace T that occurs before N . Note that
if N �∈ T then we simply define ET

N (G) = ⊥, otherwise the rest of the definitions
below apply.
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ET
N (GN ′) = ⊥, if N �∈ T

ET
N (AN ′) =

{{} if pre(A) = �
{pre(A)} otherwise

ET
N (And(G1−n)N ′) = Θ

ET
N (Seq(G1−n)N ′) = Θ

ET
N (Or(O1−n)N ′) =

{
pref (Oi, {O1, . . . , On}) ∪ Θ, if N ∈ n(Gi)
Θ, otherwise

where Θ =
⋃

Gi:n(Gi)∩T≺N �=∅
ET

N ((Ni, Gi))

The function E collects reasons by traversing the relevant parts of the goal
tree. A part of the goal tree is relevant if it occurs in the execution trace before
beginning the process of executing the node N that is being explained. Simply,
if something occurs before N , then it can affect N . This relevance condition is
checked in the definition of Θ: Gi : n(Gi) ∩ T≺N �= ∅ finds all sub-goals Gi of
the current node which contain beneath them at least some node that appears
in the prefix of the trace T before N (viewing the trace prefix as a set).

In the case of an action A the explanation collected is the action’s precon-
dition as this affects the execution of the action, and consequently, of whatever
comes after it. In the case for Seq and And the explanation collected is simply
the explanation associated with the sub-goals. In the case for Or there is an
additional explanation relating to why the particular option taken was chosen.
This is defined by the function pref which provides an explanation for why the
selected option, Gi, is preferred to the other options. The definition of pref is
complex. Intuitively, given a choice-point (N,Or(O1, . . . , On)), where Gi was
selected, the explanation consists of three parts:

1. the condition of the selected sub-goal being true (“Ci”);
2. for each condition Cj (j �= i) that is false at the decision point, the explanation

includes that the condition was false:
⋃

Cj :B(N) �|=Cj
¬Cj ; and

3. for each condition Cj (j �= i) that is true at the decision point, but that
was not selected, the annotations of those sub-goals, and an indication that
the selected sub-goal was preferred to these other available sub-goals in the
current situation: {Vj | j �= i ∧ B(N) |= Cj} ≺ Vi.

Formally pref (Oi, {O1, . . . , On}) is defined to be: {Ci} ∪
(⋃

Cj :B(N) �|=Cj
{¬Cj}

)
∪ {{Vj | j �= i ∧ B(N) |= Cj} ≺ Vi}.

Consider as an example the situation in which C2 is false, and the other
Ci are true. Then the preference explanation for why C3 was chosen is3:
{C3,¬C2, {V1} ≺ V3}. Rendered in English (which can be done by applying
a simple pattern4) this reads: “I chose to get coffee from the shop because I had
money, and Ann was not in her office, and I prefer V3 to V1 in this situation”.
3 All explanations given in this section were produced by the implementation.
4 This has subsequently been implemented.



526 M. Winikoff et al.

On the other hand, in a situation where all Ci are true and C3 is selected, the
explanation would take the form: {C3, {V1, V2} ≺ V3}. In English: “I chose to
get coffee from the shop because I had money, and I prefer V3 to both V1 and
V2 in this situation”.

Note that these explanations just present the set of annotations, indicating
an overall preference between them. However, we could provide more precise
explanations by taking into account the known priorities of factors, e.g. that
coffee quality is the overriding factor, followed by money, then distance. So, for
example, for the first example above, we could explain more precisely that the
reason why V3 was preferred to V1 is that it yields better quality coffee. Similarly,
for the second example, we could explain that V3 was preferred to both V1 and V2

because the coffee quality was better (despite V2 being good coffee and cheaper
than V3).

On the other hand, suppose that the office coffee was selected, even though
all three Ci were true. In order to explain why {V1, V3} ≺ V2 we would need to
explain that V2 was preferred to V1 because it had better coffee, and, perhaps,
that it was preferred to V3 because cost was a factor.

3.1 Adding Preparatory Actions

We now extend the definition to also include preparatory actions. For example,
an explanation for “why did you go to the kitchen?” could also be “because
I need to be in the kitchen in order to get coffee”. This is where an action’s
post condition is (part of) the precondition of a future action. Specifically, a
preparatory reason applies to explain an action A when (i) the post-condition
of A is required in order for the pre-condition of another action A′ to hold, and
(ii) A′ occurs after A. We assume that before(A,B) formalises that it is possible
for B to occur after A in a trace, but not for A to occur after B.

Turning to the first condition, an obvious formalisation is simply post(A) →
pre(A′). But A’s post condition may be only part of the pre-condition.
For example, the action getPod only achieves havePod, so post(getPod) �→
pre(getCoffee(office)). We therefore formalise “required” as “without it, things
don’t work”, i.e. if A’s post-condition fails to hold, then the pre-condition
of A′ also must fail to hold: (¬post(A)) → (¬pre(A′)). This assumes that
post(A) �= �. In our setting, where pre and post conditions are conjunc-
tions of positive atoms, this is equivalent (viewing the conjunctions as sets)
to post(A) �= ∅ ∧ post(A) ⊆ pre(A′).

We then extend the explanation with preparatory action explanations: when
explaining an action A given goal tree G and trace T , we add to ET

A(G) the set of
links A �→ A′ where A′ ∈ n(G)∧before(A,A′)∧post(A) �= ∅∧post(A) ⊆ pre(A′).
So, for example, an alternative explanation for why the agent performed the
action getPod is that it was required for the subsequent getCoffee(office) action.
Finally, in order to consider preparatory actions between goals, we follow previ-
ous work on summary information [15–17], and extend pre and post conditions
to intermediate goals, inferring them.
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3.2 Adding Motivations

Finally, in addition to the explanation function E, which yields beliefs and valu-
ings, and the link function, we also add explanations in terms of parent goals:
these are desires that explain why the current course of action is being pursued.

This reason is simple: we also include in the explanation all the ancestors
of the node being explained. However, we do not include ancestors that are OR
refined, since these are not helpful. In explaining why a particular option was
done, for instance why getOwnCard was done, it is not helpful to refer to the
parent, getStaffCard, because the parent is less specific.

Pulling all the pieces together, the overall explanation function is then:

ET
N (GN ′) = ET

N (GN ′) ∪
{N �→ N ′ | N ′ ∈ n(G) ∧ link(N,N ′)} ∪
{Desire(N ′) | ancestor(N ′, N) ∧ ¬isOR(N ′)}

For example, given the scenario described, in a situation where C1 and C3

hold, but not C2, the possible reasons that could be used to explain why the
agent did “goto(shop)” are: {haveMoney, ¬AnnInOffice, {〈bad, none, high〉} ≺
〈veryGood,high, none〉, goto(shop) �→ getCoffee(shop), Desire: getShopCoffee}.
In English, these are: I had money, Ann was not in her office, I preferred V3 to
V1 (perhaps because it yields better quality coffee), I needed to go to the shop
in order to do getCoffee(shop), and I desired to getShopCoffee.

3.3 Adding Failure Handling

We now extend the explanation mechanism to handle failure handling. Infor-
mally, actions can fail, and the failure of a node is handled by considering its
parent. If the parent is a Seq or a And then it too is considered to be failed,
and failure handling moves to consider that node’s parent. When an Or node is
reached, failure is handled by trying an alternative plan (if one exists, otherwise
the Or node is deemed to have failed). We assume that we know which actions
in the trace are failed (denoted failedA(A, T )). Then the condition under which
a non-leaf node is considered to be failed can be easily derived from the tree,
and is denoted failed(G).

Extending the explanation to account for the possibility of previous failures
is done by defining an extended pref function. Note that the definition of the
explanation function E is unchanged, except that in the definition of the recur-
sive call Θ we exclude failed nodes.

Recall that the definition of pref has three components: the condition of
the selected sub-goal being true, the conditions of those (other) sub-goals that
are false, and, for those other sub-goals that have true conditions, a preference
indication. We modify the second and third components by only considering
those sub-goals that have not yet been attempted. We then add a fourth compo-
nent that explains those things that have been previously attempted. Intuitively,
this is of the form “. . . and I already unsuccessfully tried doing X”. Formally:



528 M. Winikoff et al.

{Tried(Gj) | j �= i ∧ failed(Gj)} where i is the index of the sub-goal that was
selected.

To illustrate this definition, consider a situation where Jo has decided to
getOfficeCoffee, but by the time he reaches Ann’s office, Ann has had to leave
for a meeting. The plan therefore fails, and Jo then recovers by electing to
go to the shop. In response to the query “why did you getShopCoffee?” the
explanation given is “{haveMoney, {〈bad, none, low〉} ≺ 〈veryGood, high, high〉,
Tried:getOfficeCoffee}” which can be rendered in English as “because I have
money, I prefer good coffee to bad coffee, and because I tried (and failed) to get
pod coffee”.

4 Evaluation

There are two broad questions that concern evaluation of this work. The first is
whether the explanations provided are comprehensible and useful to a human
user. The second is whether the approach is sufficiently efficient.

In order to assess the comprehensibility and usability of the explanations
generated, as well as provide guidance to future work on selecting explanations,
we conducted a preliminary human participant evaluation. Note that we focussed
on evaluating ET

N , and did not include in the explanations either preparatory
actions (links) or parent goals (except for the fifth explanation - see below).

Participants were recruited on Mechanical Turk and paid US$0.50 for an
estimated 5 min survey. Each participant was provided with a brief description
of the coffee scenario and an indication of what behaviour was observed. Par-
ticipants were divided into three cohorts, each of which was given a different
observed behaviour. The allocation to cohorts was random. We obtained 109
responses, comprising 42 in Cohort 1, 37 in Cohort 2, and 30 in Cohort 3. Par-
ticipants were 28 females and 81 males. Their highest level of education was high
school (22), bachelors (63), and master/graduate degree (21). One person had
not completed high school and two respondents had PhDs. Finally, around 35%
had some experience with programming (38 out of 109).

Each cohort was given five possible explanations for the observed behaviour.
The explanations were created manually, following the corresponding explana-
tion method. The first explanation combined valuings and beliefs, and corre-
sponds to the ET

N function defined earlier (indicated with “V+B” below). The
second and third explanations are solely in terms of valuings: one is abstract
(AV), just saying “This is the best possible coffee available”, and the second is
concrete (V), with a specific explanation (see below). The fourth candidate expla-
nation provides only relevant beliefs (B). The fifth candidate explanation gives
the goal, and the beliefs that enabled the specific behaviour that was selected,
which is the explanation mechanism proposed by Harbers [9] (G+B).

For example, in the case where the colleague’s machine was selected
(Cohort 1), the five explanations given are:

(E1) “This is the best possible coffee available; I had no money.” (V+B)
(E2) “This is the best possible coffee available.” (AV)
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(E3) “This coffee is better than the kitchen and cheaper than in the shop.” (V)
(E4) “I’ve no money; Ann was in her room.” (B)
(E5) “I wanted coffee; Ann was in her room.” (G+B)

Fig. 2. Believability, acceptability, and comprehensibility scores (1= very bad,
5= excellent) for the three Cohorts and five explanations.

For each possible explanation, the participants were asked to score the expla-
nation in terms of three criteria: believability (“I can imagine someone giving this
answer”), acceptability (“This is a valid explanation of Jo’s choice”), and com-
prehension (“I understand the text of this explanation”). Each score was on a
five-point Likert scale from“very bad” (1) to “excellent” (5). Participants were
also asked to rank the five candidate explanations by order of preference, from
most preferred (rank 1) to least preferred (rank 5). Finally, participants were
also asked whether they felt that further explanation was required, and, if so,
what form it should take (e.g. providing source code, entering a dialogue with
the system).

Figure 2 shows for each cohort and each explanation the average score for each
of the three criteria. The figure also shows the implied ranking. For example,
for Cohort 1 and Believability, the third explanation (E3) had the best (highest)
average score, and therefore collectively E3 is ranked best for Believability by this
cohort. For each of the three criteria and three cohorts a statistical test5 confirms
there is a difference (p < 0.05) amongst the explanations for that cohort, and
post-hoc tests with Holm adjustment find that some of the pairwise differences
are significant.

We now turn to analysing the responses on the ranking question, in which
participants ranked the explanations from most preferred (1) to least preferred
(5). Figure 3 shows for each explanation (E1 to E5) and for each cohort the
average ranking, which is the average of each explanation’s ranking for that
cohort. So, for example, if half of the participants in a given cohort were to
rank E1 as their most preferred (1), and the other half were to rank it as their
second-most preferred (2), then it would have an average ranking of 1.5 for
that cohort. The table also shows for each explanation and cohort the preferred
order of explanations that is implied by the average ranking (i.e. the implied

5 Kruskal-Wallis, since data is not expected to be normally distributed.
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Fig. 3. Rankings for the three Cohorts and five explanations.

collective ranking). For example, for cohort 1, explanation 3 had the best (lowest)
average ranking, and is therefore the most preferred explanation. A statistical
test confirms that there are differences between the explanations’ scores for each
of the cohorts (as before, all p values are <0.05). Post-hoc tests (Mann-Whitney,
with Holm correction), find that the ranking differences are significant between
E1-E2, E2-E3 (Cohort 1), E4 and all other explanations (Cohort 2), and between
E1-E2, E1-E4, E1-E5, E2-E3, E3-E5 (Cohort 3).

Considering the question of whether the explanation given would be ade-
quate, or whether additional information would be desired, 69% of Cohort 1
indicated that no further explanation would be required (with the remaining
responses asking for a dialogue (19%) or source code (12%)). For Cohort 2 these
figures were respectively 54% (no further explanation), 22% (dialogue), 19%
(source code), and for Cohort 3 they were 63%, 20% and 17%.

Overall, explanations 1 and 3 were considered as being better than the other
explanations, and that, except for Cohort 2, explanation 2 was seen as being the
worst. Since explanations 1 and 3 both include valuings, this finding supports
the key thesis of this paper, that valuings are important to provide useful expla-
nations. Furthermore, for Cohorts 2 and 3, E1 was preferred to E3, indicating
that valuings alone were not sufficient.

We now turn to efficiency. We observe that the explanation has three com-
ponents: the reasons calculated by the function ET

N (G), the links between nodes,
and parent goals. The last is simple to compute, involving merely traversing the
tree upwards from the node being queried (i.e. O(log N) where N is the num-
ber of nodes in the goal tree). The second, the links, only depend on the static
structure of the tree (i.e. which nodes precede other nodes), and on the pre and
post conditions, and therefore can be computed ahead of time. This does assume
that pre and post conditions are specified ahead of runtime. If this is not the
case, then a runtime calculation is required, which involves checking pre and
post conditions for every pair of nodes that precede each other. Given a tree
with N nodes, there are obviously at most O(N2) such pairs, and the check is
O(1) (we assume that each node’s pre and post conditions do not become longer
as the tree grows).
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Turning now to the explanation function E, we observe that the function
basically traverses the tree from root to leaves. For each non-leaf node it checks
which of the child nodes contain at least one node that is in the trace prefix
(n(Gi)∩T≺N �= ∅). This check could be implemented by first traversing the tree
upwards, tagging each node Gi with its n(Gi), and then checking for intersection
between n(Gi) and T≺N . Since for each node the size of n(Gi) is a function of
the number of nodes beneath it, i.e. O(N), computing the intersection (assuming
indexing on T≺N ) for a single node is O(N), and for the whole tree it would
be6 O(N2). Finally, for each Or node, there is an additional calculation of pref
which is proportional to the number of children and the size of conditions, both
of which we assume is effectively a constant, i.e. does not grow with N . Therefore
calculating ET

N is O(N2).
In order to empirically assess the actual runtime required, and the algo-

rithm’s scalability, we have conducted an experimental evaluation on gen-
erated trees. The generated trees have the following structure: T 0 = A and
T d+1 = OrN (O1−j) where Oi = (c,SeqNi

(T d
1−k)). In other words, a generated

tree of depth 0, denoted T 0, is just an action A (with a new unique name), and
a generated tree of depth d + 1 is a disjunction of j options, where each option
Oi has the same fixed condition c, and a sequential composition of k trees of
depth d. All nodes have unique names. Note that the number of nodes in a tree
with branching factors j and k and depth d can be calculated as: n(j, k, 0) = 1
and n(j, k, (d + 1)) = 1 + j + (j × k × n(j, k, d)).

For the efficiency evaluation various values of j, k and d were systematically
generated, and the number of nodes in the tree and the time taken to compute
ET

N were recorded. The experiments were done using the GHC Haskell imple-
mentation (version 8.2.1) running on a 3.2 GHz Intel Core i5 iMac with 16 GB
RAM running OSX 10.10.3.

These experiments show that for relatively small trees (fewer than 1000
nodes) the explanation generation, even with an unoptimised Haskell proto-
type, is clearly fast enough to be practical (<0.1 s). It is worth noting that real
goal trees are not necessarily large. For instance, the (real-world) application
described by Burmeister et al. [3] has 57 nodes in its goal tree. Finally, we note
that the core of the Haskell implementation is a direct transliteration of the equa-
tions earlier in this paper. While this ensures that the implementation matches
the paper, there are clear, and substantial, opportunities to improve efficiency.

5 Related Work

In this section we briefly highlight closely related work. Harbers [9], like us,
assumes that a goal tree is given, and defines a number of templates that can
be used to explain observed behaviour. It is worth noting that our approach
strictly generalises Harbers’ approach, in that we include links, ancestor goals,

6 However, the prototype implementation does not tag nodes, so it recomputes n(Gi),
leading to higher computational complexity.
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and relevant beliefs. In other words, every reason that is included in explana-
tions generated using Harbers templates is included in E . Finally, we note that
whereas Harbers just outlines the rules as brief templates, we provide full formal
definitions that have been implemented.

Another approach is that of explanation as model reconciliation, where the
assumption is that in realistic scenarios humans have domain and task models
that differ significantly from that used by the agent [4]. This assumption is
supported by psychological studies [10]. However, this approach does not link to
the beliefs, desires and values/valuings of the user and is therefore less adequate
to connect to the reasons behind the decisions taken in the process. Moreover,
it assumes that the human’s mental model is known, a fairly strong assumption
that we do not make.

6 Conclusion

We have argued that explaining the behaviour of autonomous software could
be done using the same concepts as are used by humans when explaining their
behaviour. Specifically, we have followed the findings of Malle and based expla-
nations on beliefs, desires and valuings [11, Sect. 4.2.4]. This paper has proposed
a formal framework, using BDI-style goal-trees, augmented with value annota-
tions. This formal framework is then used to define an explanation function,
which has been implemented. A human subject evaluation has highlighted that,
as expected based on the literature, valuings are seen as being of value in explain-
ing behaviour. Further empirical evaluation is needed, using more scenarios and
including the other types of reasons, to assess not just the believability, accept-
ability and comprehensibility of explanations, but more broadly assessing their
effect on trust in the autonomous system.

Stepping back to consider the bigger picture, we have provided a mechanism
for generating reasons. However, this is only part of the solution to the problem of
explaining behaviour. We know that humans select parts of the explanation [12].
The next step in this research is to define means for selecting parts of the possible
explanation.

Finally, we contend that providing usable explanations of autonomous sys-
tems requires the use of human-oriented models, such as our extended BDI
model. One area for future work is to develop ways of using our work for
autonomous systems that are based on machine learning techniques. Such sys-
tems are known for their opacity. In our future work, we will research the pos-
sibilities of complementing such systems with the reasoning we propose in this
paper. For instance, can an extended BDI model be developed in parallel and
maintained to correspond to a behaviour that is learned? Can BDI models be
derived automatically from learned behaviours?
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