
Could We Issue Driving Licenses
to Autonomous Vehicles?

Jingyue Li(B), Jin Zhang, and Nektaria Kaloudi

Norwegian University of Science and Technology, 7491 Trondheim, Norway
{jingyue.li,jin.zhang,nektaria.kaloudi}@ntnu.no

Abstract. Many companies are studying autonomous vehicles. One
trend in the development of control algorithms for autonomous vehi-
cles is the use of deep-learning approaches. The general idea is to simu-
late a human driver’s decision-making and behavior in various scenarios
without necessarily knowing why the decision is made. In this position
paper, we first argue that traditional safety analysis methods need to be
extended to verify deep-learning-based autonomous vehicles. Then, we
propose borrowing ideas from the process of issuing driving licenses to
human drivers to verify autonomous vehicles. Verification of autonomous
vehicles could focus on sufficient training as well as mental and physical
health checks. Based on this position, we list several challenges that need
to be addressed.
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1 Introduction

Many companies, e.g., Google [1], are developing autonomous vehicles. One key
challenge of developing autonomous vehicles is ensuring safety. Several safety
incidents caused by vehicle autonomy have been presented in the media, such
as Uber’s fatal car accident [2]. In addition to the safety incidents caused by
failures of the autonomous system, security breaches of autonomous vehicles can
potentially lead to safety issues; for example, a demo showed that autonomous
vehicles can be hijacked and remotely controlled [3].

The Society of Automotive Engineers (SAE) has described six levels of
autonomous driving [4]. A Level 0 vehicle has no autonomous capabilities and
the human driver is responsible for all aspects of the driving task. For a Level
5 vehicle, the driving tasks are managed solely by the autonomous driving sys-
tem. When developing autonomous vehicles targeting a high level of autonomy,
one industrial trend is to use deep-learning algorithms to implement the vehi-
cle control algorithms. The idea is to first log the information, such as images
a human driver acquired during driving and the driver’s corresponding driving
behavior. Such logged information is used as a training dataset for deep-learning
algorithms to train the autonomous vehicles to simulate what human drivers do
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when driving. One key characteristic of deep-learning-based autonomy is that
the decision-making part of the vehicle is almost a black box. This means that
in most cases, we as human drivers must trust the decisions made by the deep-
learning algorithms without knowing exactly why and how the decisions are
made. As an analogy, driving an autonomous vehicle with a high level of auton-
omy (e.g., Level 5) is like hiring a robotic taxi driver who is driving the car for us.
Usually, when we sit in a taxi, we do not always try to understand and influence
how the taxi driver makes decisions and drives the car. We simply trust that the
taxi driver’s driving license indicates that he or she has sufficient training, good
mental health to make proper decisions, and good physical health to sense the
environment and execute the decisions. With this analogy in mind, we propose
adapting safety analysis approaches for a greater focus on:

– Training sufficiency of the autonomous vehicle, i.e., whether the
dataset used to train the deep-learning algorithms is sufficient;

– Mental health of the autonomous vehicle, i.e., whether there is malicious
code hidden in the decision-making algorithms; and

– Physical health of the autonomous vehicle, i.e., whether the sensors and
actuators of the autonomous vehicle work properly and whether the vehicle
is resilient when the devices fail.

2 Background

Computer vision and deep learning are two major approaches to designing
autonomous vehicle control algorithms. Traditional computer vision techniques
can play an important role in lane detection and object detection at moderate
distances, but they are unlikely to meet the robustness requirements for han-
dling very complex and intelligent tasks such as distinguishing between different
metal objects or unexpected obstacles.

2.1 Deep-Learning-Based Autonomous Vehicles

The deep-learning based approach enables vehicles to learn meaningful road
features from raw input data automatically and then output driving actions.
The so-called end-to-end learning approach can be applied to solve complex
real-world driving tasks. When using deep-learning based approaches, the first
step is to use a large number of training datasets (images and/or other sensor
data) to train a deep neural network (DNN). Then a simulator is used to evalu-
ate the performance of the trained network. After that, the deep-learning-based
autonomous vehicle will be able to “execute recognition, prediction and plan-
ning” driving tasks in diverse conditions [12]. Nowadays, Convolutional Neural
Networks (CNNs) are the most widely adopted deep-learning model for fully
autonomous vehicles [5–8]. In 2016, NVIDIA introduced an automotive super-
computing platform named DRIVE PX 2 [9]. DRIVE PX 2 is being used by
more than 50 companies in the automotive industry. The development flow by
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using NVIDIA DRIVE PX 2 includes (1) data acquisition to train the deep
neural network; (2) deployment of the output of a deep neural network in a
car; (3) autonomous application development; and (4) testing in-vehicle or with
simulation.

2.2 Some Approaches to Analyzing Safety of Autonomous Vehicles

The safety standard of the automotive industry, ISO 26262, is being updated to
address the growing complexity and autonomy of vehicles. Besides using classical
safety analysis methods such as FTA (Fault Tree Analysis) and FMEA (Failure
Mode and Effects Analysis), production of a safety case is explicitly mandated by
ISO 26262. A safety case comprises three parts: (1) the safety goal that must be
achieved; (2) the available evidence for achieving this goal; and (3) the structured
argument, which establishes the systematic relationship between the evidence
and the goals. One challenge of using the safety case approach is arguing that
the evidence is sufficient to ensure safety of the system. The forthcoming version
of ISO 26262:2018 and its extension, ISO/PAS 21448, which is also known as
SOTIF (Safety of the Intended Functionality) [10], will likely provide a way to
handle the development of autonomous vehicles. But SOTIF will only provide
guidelines for Level 0–2 autonomous vehicles [11], which are not designed for the
validation of deep-learning-based autonomous vehicles.

Along with updating the safety verification standards, some studies investi-
gate how to verify safety of fully autonomous vehicles by treating the autonomous
vehicle control algorithms as black boxes. The general idea is to use a combi-
nation of brute force road testing and testing using simulators to enumerate
all potential corner cases. The proposed safety metrics of autonomous vehicles
include Miles Per Disengagement (MPD) and Miles Per Intervention (MPI) [12].
Some other studies try to open the black boxes to interpret the deep neural
networks and verify their internal logics [13–15].

2.3 Security Attacks Targeted at Autonomous Systems

As the development of Artificial Intelligence (AI) technologies progresses, attack-
ers will also learn to create new smart attacks. We define a smart attack as an
AI-enabled attack in which malicious actors can use AI technologies to attack
“smart” components inside autonomous systems. The smart attack is usually
executed via a persistent, finely targeted, combined, and multilayered exploita-
tion of multiple security zones in a camouflaged way [16]. Examples of potential
smart attacks include:

– Training smart systems to have two behaviors, e.g., a robot can be
trained to behave normally in most cases, but behave maliciously and make
an attack when a certain face is recognized [17];

– Training systems to personalize the hack, e.g., an attacker can train sys-
tems to generate a finely personalized vulnerability profile and then perform
the hack by creating tailored exploits for such a vulnerability [18,19];
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– Training systems to evolve themselves, e.g., malicious code can con-
tinuously update itself with dozens of new exploits by using fuzzing tech-
niques [17]; or

– Distributing AI-generated content, e.g., an attacker can automate tasks
involved in surveillance, persuasion, deception, privacy violation, and social
manipulation by distributing AI-generated content and targeted disinforma-
tion campaigns through social media [20].

3 Key Issues of Verifying Deep-Learning-Based
Autonomous Vehicles

When driving Level 5 autonomous vehicles, the human driver will behave like
a passenger of a taxi. The taxi driver is now the deep-learning based-control
algorithms. As a passenger of a taxi, we usually trust that the taxi driver is
sufficiently trained because we trust the taxi driver training program and the
qualification a driving license implies. Normally, if a taxi driver is well-trained,
sensible, and in good health, and if the hardware and software of a vehicle is func-
tioning, safety is guaranteed. However, as mentioned in Sect. 2.2, most current
safety analyses, certification approaches, and standards focus only on whether
the vehicle’s hardware and software are working as intended. The qualification
of the taxi driver is defined in a separate standard by which driving licenses are
issued, which is often regulated by the police and followed by driving schools.
For fully autonomous vehicles, the control algorithm is an integrated part of the
vehicle. We therefore argue that the safety analysis and certification approach
should be extended to treat the control algorithms as a taxi driver and to test
it to answer some important questions.

3.1 Has the Autonomous Vehicle Been Sufficiently Trained?

When we study in driving school, a complete training program starts with driv-
ing theories and rules. We first learn different road signs and to understand
how to drive the vehicle according to those road signs and driving regulations.
Afterward, we need to practice driving in different scenarios, such as in the city
center, through a roundabout, on the highway, in slippery conditions, and so on.
In addition, when driving assessments are carried out by driving instructors to
evaluate drivers’ behavior, there is a formal process aims at fixing the drivers’
errors.

When we take the driving license test, we are supposed to show compe-
tence to drive the vehicle properly in different scenarios, including scenarios
we may know in theory but have not practiced, such as giving way to emer-
gency vehicles. When verifying the completeness of the training dataset of the
autonomous vehicles, how can we learn from the driving school and find ways to
train autonomous vehicles and quantify their learning completeness? To improve
training sufficiency, the “error analysis” process of examining the instances in
which the deep-learning algorithms erred can also help suggest good practices
and develop new features. Brute force road testing is not an efficient way to
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assure safety. The traffic signs and regulations of countries are different. For
example, a white dotted line is used in Sweden to separate lanes, but a yellow
dotted line is used in Norway. If the autonomous car is trained using Swedish
traffic regulations, it may become confused when it drives in Norway. Thus, tests
measured by MPD or MPI [12] in one country may not be valid in another coun-
try. In addition, what happens if the traffic regulations of a certain country are
updated? Should we undertake another billion miles of road testing?

3.2 Is There Any Malicious Code in the Brain of the Autonomous
Vehicle?

When a driving license is issued to a driver, the driver should not have severe
mental health problems. When a taxi driver is working, the driver is not supposed
to be drunk. As explained in Sect. 2.3, successful smart attacks can gain access
to the decision-making algorithms of autonomous vehicles. Malicious inputs into
training datasets can cause the model to behave normally in most cases, but
behave maliciously in a certain scenario. Because few smart attacks have been
exploited in practice, people have not reported them in vulnerability reposito-
ries, and therefore have not studied in depth how to identify such attacks and
defend against them. However, we expect such AI-based attacks will be perpe-
trated in the future [17]. If the attack is carried out, the consequence could be
that the autonomous vehicle suddenly behaves like a drunk or mentally compro-
mised taxi driver. When certifying deep-learning-based autonomous vehicles, we
should require the vehicles to have self-checking or remote-checking mechanisms
to ensure that no malicious code has ever been inserted in the control algorithms.

3.3 Are the Sensors and Actuators of the Autonomous Vehicle
Reliable and Resilient to Failures?

To get a driving license, a human driver should have physical health, e.g., good
eyesight and capability to operate the vehicle in normal and abnormal situations.
Current safety certification standards focus sharply on the reliability of vehicle
hardware and software. Analyzing failure modes and how the vehicles react to
failure is a crucial part of the safety analysis. The architecture of deep-learning
neural networks makes it hard to decipher how the algorithmic decisions were
made, which in turn makes it hard to explain how dynamic driving behaviors
are generated [21]. Thus, it can be difficult to interpret and predicate how a
failure, such as wrong sensor data, will influence driving behavior. When we ver-
ify the safety of deep-learning-based control algorithms, we need to rethink how
to perform failure mode and effect analysis, how to analyze interdependencies
between sub-systems of a vehicle, and how to assure the resilience of the system.
For resilience assurance, we need to determine where to put safety barriers and
how to place them in the deep neural network to ensure that even if some vehicle
hardware or software does not behave as expected, the vehicle can still sense the
risk, avoid the risk before the incident, and mitigate the risk effectively when
the incident happens.
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3.4 Human vs. Machine

Ideally, autonomous cars should behave equally or even better than human
beings. Besides the three principles mentioned above, a comparison between
human and machine capabilities is needed to identify some limitations that
should be considered as a further evaluation of autonomous vehicles. As shown in
Table 1, a function analysis between humans and machines during space missions
identifies the differences in their superiority [22].

Table 1. Human and machine superiority.

Human Machine

Originality and creativity Precise repetitive operations

Emotions and feelings Mechanical brain

Rapid retraining Quicker response times with minimum delay

Performing under overloaded conditions Storing and recalling large amounts of data

Acting in high-noise environments Sensitivity to a variety of stimuli

Risk evaluation for unexpected events Function in a wide range of stress conditions

Using equipment beyond specified limits Stronger and faster

Reasoning inductively Reasoning deductively

A human is shown to be better at “risk evaluation for unexpected events”
and “rapid retraining” than a machine. For example, when the car suddenly
experiences a longer breaking distance than normal, the human driver will real-
ize that the road is slippery and will drive slower and more carefully. The “rapid
retraining” competence of a human is usually not verified during driving license
tests because we view it as human nature. If we want to have autonomous cars
with performance superior to that of humans, and if we use the human driv-
ing license approach to verifying autonomous vehicles, we also need to consider
the importance of testing human superiority in the entire evaluation process of
autonomous vehicles.

4 Conclusions and Future Work

Our position is that certifying a deep-learning-based autonomous vehicle is like
issuing a driving license to an AI-based taxi driver. To verify safety, we need
to learn from the systematic method of training and testing human drivers. We
need to guarantee that the training dataset of the autonomous vehicle covers
all knowledge and skills taught in a driving school. We should have technologies
to ensure that no malicious code is hidden in the autonomous vehicle either in
design or in operation. The vehicle should also have highly reliable hardware and
software and should be resilient in the face of expected and unexpected failures.
When we make safety cases according to ISO 26262, we propose including all
these aspects as safety arguments and evidence. To acquire evidence for these
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arguments, we will also need to combine black box testing technologies to test
deep-learning algorithms with technologies to understand and interpret them.
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V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

16. Koch, R., et al.: A revised attack taxonomy for a new generation of smart attacks.
Comput. Inf. Sci. 7(3), 18 (2014)

https://www.google.com/selfdrivingcar/
https://www.theverge.com/2018/5/24/17388696/uber-self-driving-crash-ntsb-report
https://www.theverge.com/2018/5/24/17388696/uber-self-driving-crash-ntsb-report
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://autoalliance.org/wp-content/uploads/2017/07/Automated-Vehicles-Levels-of-Automation.pdf
https://autoalliance.org/wp-content/uploads/2017/07/Automated-Vehicles-Levels-of-Automation.pdf
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1504.01716
https://www.nvidia.com/en-us/deep-learning-ai/education/
https://doi.org/10.1007/978-3-319-64218-5_44
https://doi.org/10.1007/978-3-319-64218-5_44
http://www.hansenreport.com/
https://waymo.com/safety/
https://waymo.com/safety/
http://arxiv.org/abs/1708.08559
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5


480 J. Li et al.

17. Brundage, M., et al.: The malicious use of artificial intelligence: forecasting, pre-
vention, and mitigation. arXiv preprint arXiv:1802.07228 (2018)

18. Giaretta, A., Dragoni, N.: Community targeted spam: a middle ground between
general spam and spear phishing. arXiv preprint arXiv:1708.07342 (2017)

19. Seymour, J., Tully, P.: Weaponizing data science for social engineering: automated
E2E spear phishing on Twitter. Black Hat USA (2016)

20. Kim, Y.M.: The stealth media? Groups and targets behind divisive issue campaigns
on Facebook (2018)

21. Ribeiro, M.T., et al.: Model-agnostic interpretability of machine learning. arXiv
preprint arXiv:1606.05386 (2016)

22. Schenkelberg, F.: Comparing human and machine capability. https://accendoreli
ability.com/comparing-human-and-machine-capability/. Accessed 2018

http://arxiv.org/abs/1802.07228
http://arxiv.org/abs/1708.07342
http://arxiv.org/abs/1606.05386
https://accendoreliability.com/comparing-human-and-machine-capability/
https://accendoreliability.com/comparing-human-and-machine-capability/

	Could We Issue Driving Licenses to Autonomous Vehicles?
	1 Introduction
	2 Background
	2.1 Deep-Learning-Based Autonomous Vehicles
	2.2 Some Approaches to Analyzing Safety of Autonomous Vehicles
	2.3 Security Attacks Targeted at Autonomous Systems

	3 Key Issues of Verifying Deep-Learning-Based Autonomous Vehicles
	3.1 Has the Autonomous Vehicle Been Sufficiently Trained?
	3.2 Is There Any Malicious Code in the Brain of the Autonomous Vehicle?
	3.3 Are the Sensors and Actuators of the Autonomous Vehicle Reliable and Resilient to Failures?
	3.4 Human vs. Machine

	4 Conclusions and Future Work
	References




