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Abstract. With recent efforts to make vehicles intelligent, solutions
based on machine learning have been accepted to the ecosystem. These
systems in the automotive domain are growing fast, speeding up the
promising future of highly and fully automated driving, and respectively,
raising new challenges regarding safety assurance approaches. Uncer-
tainty in data and the machine learning methods is a key point to inves-
tigate one of the main origins of safety-related concerns. In this work, we
inspect this issue in the domain of autonomous driving with an emphasis
on four safety-related cases, then introduce our proposals to address the
challenges and mitigate them. The core of our approach is on introducing
monitoring limiters during development time of such intelligent systems.
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1 Introduction

The safety aspect of the artificial intelligence-based applications has captured the
attention of researchers recently, especially for the case of machine learning-based
approaches such as neural networks and deep learning methods [1,3,9,10,14] and
investigated from two different perspectives: (i) Run-time [7] and (ii) Design-time
[5]. However, there is still a serious lack of concrete approaches which address
the challenges in a practically efficient manner. In this work, we focus on the
uncertainty issue of machine learning algorithms. We intuitively categorise the
safety-critical situations originated from this issue, that a manoeuvre planning
system may face, into four different cases. Finally, we propose approaches in
order to address the challenges in each case. As mentioned, we are concentrating
on the following cases in a manoeuvre planning system:

Case 1. The system has been trained and tested on the data from roads in a
country with well-behaved traffic but is instead deployed for driving on roads in
another country with chaotic driving conditions. Another similar case is when
the vehicle has been trained and tested on roads with 4 wide lane driving but is
instead faced with a 2-way narrow lane drive. In such situations, the outputs of
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the intelligent vehicle cannot be relied upon, as there is no guarantee that the
system would behave as expected.

Case 2. The vehicle which employs this system wants to overtake another vehicle
in front of it. Based on the country, driving rules state that one must overtake
only from one side (left or right). Though this is imbibed in us, humans, while
learning to drive, when it comes to autonomous vehicles there is no guarantee
that the system has indeed learned this rule and will always follow it.

Case 3. The vehicle needs to execute a lane change operation to reach its goal
state, but there happens to be a vehicle on the left that is in such an alignment
with the ego vehicle that, though not very high probability, there is a possibil-
ity of an accident. Since standard deep learning techniques generate as output
only hard classifications, there is still the chance of a condition with such low
probability getting ignored and lead to costly collisions/accidents.

Case 4. Humans are designed to be innately optimistic, which might even be
reflected in the training data for neural networks. NNs in autonomous vehicles
are usually trained to exhibit the positive outputs that we expect to receive
from them, however that benefits could be reaped by getting trained to generate
positive as well as negative outputs.

2 Machine Learning and Safety Challenges

The uncertainty in machine learning algorithms can be categorised into two types
[8]: (a) aleatoric or data dependent, where the noise in the data is captured by
the model, resulting in the ambiguity of training input and (b) epistemic or
model dependent seen as a measure of familiarity, as it represents the ambiguity
the model exhibits when dealing with operational inputs. More precisely the
major causes of concern while dealing with ML-based solutions are as follows:

(i) Incompleteness of Training Data – Traditional software systems are
developed with a pre-defined set of functional requirements. However, in NNs,
and more generally in ML algorithms, the functional requirements of the sys-
tem are implicitly encoded in the data that it is trained on, expecting that the
training data represents the operational environment. The setback, however, is
that training data is by definition incomplete [11], as it represents a subset of
all possible inputs that the system could encounter during operation. Insuffi-
ciencies thus arise when the operational environment is not wholly represented
in the training set. In the case of autonomous vehicles, critical and ambiguous
conditions, where the vehicle is expected to act predictably, usually tend to be
problematic. This is because such situations, owing to their either extremely rare
or highly dangerous nature, tend to be underrepresented in the training set [1,3].

(ii) Distributional Shift – In the case of an autonomous vehicle, the oper-
ational environment is highly unpredictable [3] as it is constantly changing in
response to the actors within the system. Therefore, even with a good and near
perfect training set, the operational inputs may not be similar to the training
set. In other words, there could be a shift in the distribution of operational
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data as compared to the original training data, resulting in the system behaving
unpredictably.

(iii) Differences between Training and Operational Environments –
Subtle changes in the operational environment can lead to a state of unpre-
dictable behaviour [3] in NNs. An NN fine-tuned for a certain specific setting
provides no guarantee of working in the exact same way when the settings are
changed.

(iv) Uncertainty of Prediction – Every NN has an error rate associated with
it [11], and the aim of the training process is to reduce this error rate as much
as possible. In the operational environment, this error rate can be interpreted as
an uncertainty associated with the output produced by the model. Though this
uncertainty can tell us about how well the system models the environment, it is
not accounted for in the cyber-physical systems of today [8].

3 Proposed Approaches

Due to the fact that we are not able to handle all of the safety-critical situations,
in our proposed approaches, we assumed that the action to be taken in the fail-
safe mode is known beforehand and could include actions such as slowing down
the car, bringing the car to a halt, or even handing over control to the human
driver. Moreover, since we are focusing on safety for any AI-related software, the
risk assessment is not in the scope of this paper.

3.1 Variational Methods to Filter ‘Anomalous’ Operational Inputs

(Case 1.) This method targets the problems related to differences in training
and operational conditions and builds on the idea of online data monitoring.

Fig. 1. Control flow of anomaly detection approach

The main intuition (as
depicted in Fig. 1) is to
detect how ‘far away’ is
the input from the data
the system was trained
on. In other words, the
aim is to detect if the
input is an ‘anomaly’,
i. e., a data point that is
significantly different from the original data. If yes, then the system is expected
to enter a fail-safe mode, else normal operation continues. Given some data X,
Variational Inference (VI) [2] aims to find a distribution Q (Z) which is as simi-
lar to the true posterior Pr (Z | X) as possible, where the distance between the
distributions can be calculated using the Kullback-Liebler Divergence a.k.a. rela-
tive entropy. Use of variational inference [2] is proposed for this online detection
of anomalies [12]. The advantage of this approach is that the characteristics of
expected input are learned from the data, and so no special feature engineering
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efforts are required. This also means that this approach is highly generalisable
and is not bound by the use case. Simply exposing the system to data for mod-
elling the environment, can help the system draw required inferences.

3.2 Defining Environmental Constraints

(Case 2.) We propose the use of ontologies to enforce such conditions as
depicted in Fig. 2. Ontologies are a way to model the entities and relations in a
system [4]. During design-time, the automotive safety engineer needs to create
an automotive safety ontology (based on specific software/system function and
context). The main ontology topics (for functional safety) can be derived from
ISO 26262 (Part 1 - Vocabulary) [6]. The concepts stored in ontologies will be
internally translated into machine-readable first-order logic (e.g. Prolog code),
thereby making it simpler for describing constraints that the system must obey
in the environment. Ontologies can be seen akin to a ‘safety blanket’ around each
ML-based component. Inputs to the component and outputs generated thereby
will be tested against the set of environmental constraints to ensure that they
are fulfilled, if not, the system enters a fail-safe mode. This solution improves the
reliability of the system, and follows the principles of traditional verification and
validation methods, ensuring that the developed system abides by the intuition
of human actors. It can improve traceability of issues and can also help track
shortcomings with the system.

Fig. 2. Control flow of ontology-based constraint satisfaction approach

3.3 Pre-exploration Using Reinforcement Learning

(Case 3.) Since such situation can be modelled in terms of rewarding and
penalising behaviour, we suggest the use of a reinforcement learning (RL) agent
to mitigate such conditions. Reinforcement Learning [13] is based on behaviourist
psychology, wherein the agent learns to map situations to actions, by receiving
rewards from the environment for good behaviour and penalties otherwise. The
aim for this solution is to augment learning with two trainable components, as
shown in Fig. 3. Figure 3a shows the RL agent that is responsible for exploration
of the environment, and Fig. 3b describes the online NN that is implemented
in the standard manner for the component in question. The RL-agent learns
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Fig. 3. Control flow of RL-based pre-exploration approach

by exploring and interacting with its environment, and so would be trained
via simulations to explore even negative outcomes, as in testing these do not
pose a real threat to lives. In doing so the RL-agent would be able to learn and
thereby generate a map of situations, actions, and associated reward values. This
mapping can then be used to categorise situations that lead to high, medium,
or low risk based on the reward values of each state. This approach can be seen
as an extension to the monitoring techniques, wherein, rather than manually
labelling the state space as being safe or not, the output of RL agent is used to
generate such a mapping, with the reward function determining the severity of
the hazard for each state-action pair. Thus, every input being passed to the NN-
based component would first be checked against the safety invariance mapping to
enter a fail-safe mode when the input is in a catastrophic zone. When it comes to
generalising to other use cases, this approach could do quite well with the limiting
factor of additional hyperparameter tuning for the agent. The advantage of such
an approach is that rewards and objective functions can also be set up to be
more aligned with human intuition, thus making the system more compliant
with human expectations.

3.4 Ensuring Coverage of Positive and Negative Cases

(Case 4.) In the example of manoeuvre planning system, the component should
be able to predict not only lateral and longitudinal actions, but also outputs, that
could lead to negative outcomes such as driving off the road, a crash and so on.

Fig. 4. The control flow of predicting pos-
sible positive and negative outputs

In such a system, if the output of
a workflow falls in a negative class,
the system would enter a fail-safe
mode, else, would continue function-
ing normally, as visualised in Fig. 4.
This setup brings along the bene-
fit of higher assurance of the system
being trained on under-represented or
rare situations/inputs as well, leading
to a better response to safety-critical
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situations. Since the system learns expected good and bad outputs from the
data directly, without explicit specifications, the system would generalise well to
other use cases, too. It also has the advantage of being easy to implement and
understand.

4 Conclusions and Future Work

In this work, we have investigated several challenges in ensuring safety of machine
learning-based methods in the autonomous driving domain. Our main focus was
on uncertainty issue which is not originated only from machine learning meth-
ods but also training data. We have considered multiple highly safety-critical
situations in autonomous driving which could be the result of uncertainty issue
and proposed the most promising candidates for monitoring approaches in order
to preserve the safety of such system. It is worth mentioning that applying just
one individual technique is not enough to verify the functionality of an adaptive
software, as each has its own set of pros and cons. Instead, we need to focus
on building a toolbox of different verification and validation techniques that
can be applied based on the specific needs and specifications of the system. We
suggest the use of a layered approach where each layer of monitoring for data
and application, independent of the other, focuses on one aspect of the safety
requirement.
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