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Abstract. Software-intensive systems that rely on machine learning (ML) and
artificial intelligence (AI) are increasingly becoming part of our daily life, e.g.,
in recommendation systems or semi-autonomous vehicles. However, the use of
ML and AI is accompanied by uncertainties regarding their outcomes. Dealing
with such uncertainties is particularly important when the actions of these systems
can harm humans or the environment, such as in the case of a medical product or
self-driving car. To enable a system to make informed decisions when confronted
with the uncertainty of embedded AI/ML models and possible safety-related
consequences, these models do not only have to provide a defined functionality
but must also describe as precisely as possible the likelihood of their outcome
being wrong or outside a given range of accuracy. Thus, this paper proposes a
classification of major uncertainty sources that is usable and useful in practice:
scope compliance, data quality, and model fit. In particular, we highlight the
implications of these classes in the development and testing of ML and AI models
by establishing links to specific activities during development and testing and
means for quantifying and dealing with these different sources of uncertainty.
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1 Motivation

Systems that make use of models provided by techniques belonging to the domains of
machine learning (ML) and artificial intelligence (AI) are becoming increasingly impor‐
tant in our daily life. The terms AI and ML are frequently used interchangeable in this
context although differences exist depending on specific definitions. This paper uses the
term AI/ML models to refer to computation models trained on empirical data to mimic
‘intelligence’ by transforming inputs to outcomes based on mathematical relationships
that are hard to derive by deductive reasoning or simple statistical analysis.

Nowadays, systems that make use of these models do not only recommend movies
that we are most likely enjoy [1], but also support the detection of cancer based on images
[2] or initiate emergency braking to avoid car crashes [3]. In turn, this means that these
models are slowly also becoming a part of safety-relevant systems, where a high risk
exists that humans or the environment may be harmed in the case of a failure.
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When the relevant existing standards and guidelines for safety-relevant systems (e.g.,
[4, 5]) were written, however, the usage of AI/ML was not an issue yet and was thus not
considered. As a consequence, many techniques proposed in these standards and guide‐
lines appear difficult to apply for systems relying on AI/ML in safety-relevant functions.
For example, formal verification techniques cannot be reasonably applied in these kinds
of complex models trained on empirical data. Another open question is how to effectively
perform mandatory safety reviews for models such as deep convolutional neural
networks (CNNs), which have been considered as the state of the art in image recognition
since 2012 [6].

Because of the complexity and empirical nature of these models, no guarantee can
be provided for their correctness. Thus, a possible consequence could be refusal of the
use of these models for safety-critical functions. Traffic sign recognition systems could
still provide information to assist human drivers. However, a car would not be allowed
to autonomously cross an intersection based on recognized traffic signs and its knowl‐
edge of priority rules because it cannot be guaranteed that each stop sign will be recog‐
nized correctly in every case.

Alternatives to this strict refusal are being discussed [7, 8]; one alternative could be
to encapsulate functionality provided by such models and appropriately deal with the
inherent uncertainty of their outcomes in the containing system by making use of deter‐
ministic and verifiable rules. In this setting, the containing system would be responsible
for adequate risk management, taking into account the likelihood that the outcome of
the encapsulated model might be wrong, as well as the safety-related consequences of
every decision made. In order to allow for informed decisions, encapsulated models
would not only have to provide a given service but also describe as precisely as possible
the uncertainty remaining in their outcomes. This means that the models would become
dependable in a figurative sense, according to Avizienis et al.’s definition of systems [9],
by delivering their service together with information about outcome-related uncertainty
that can justifiably be trusted. Based on this information, the containing system could,
for example, decide to consider further information sources (as applied in sensor fusion)
or adapt its behavior in order to handle the remaining uncertainty adequately. In our
scenario of autonomous intersection crossing, the containing system could, for example,
use GPS localization as an additional information source or slow down the vehicle,
thereby buying time to analyze further images taken of the traffic situation.

At present, model validation and testing commonly focus on determining and opti‐
mizing the overall accuracy of the created model (cf. KAGGLE competitions, e.g., the
ImageNet Challenges1). However, the models’ accuracy, which is commonly measured
as error rate, is only a very generic and therefore weak estimator for the uncertainty
remaining in a specific outcome, which is commonly referred to as prediction uncer‐
tainty. For instance, an error rate of 0.54% on a test dataset of traffic sign images [10]
indicates that the respective model is 99.46% confident of providing a correct outcome
or, conversely, that it is 0.54% uncertain on average. However, for use in safety-relevant
functions, this general statement is likely too coarse-grained. Although a reported accu‐
racy of 99.46% is excellent, autonomous vehicles simply ignoring one of two hundred

1 https://www.kaggle.com/competitions.

432 M. Kläs and A. M. Vollmer

https://www.kaggle.com/competitions


stop signs might not be considered sufficiently safe. To be useful, more precise prediction
uncertainty estimates are required that consider the situation at hand. For instance, fog
or backlight conditions may affect the confidence in the provided outcomes, as may dirt
on the camera lens. Moreover, the question needs to be answered of whether the test
dataset on which the accuracy of the model was determined matches the situation in
which the model is currently being applied.

In order to consider such sources of uncertainty during model development and
testing more systematically, an applicable framework and associated terminology would
be needed in practice. We especially see the need for a practice-driven classification of
the different sources of uncertainty that have to be addressed and quantified. Thus, this
position paper proposes a sound and usable schema for classifying uncertainty sources
that are relevant in AI/ML models. The main practical benefit is seen in establishing
clear links between specific sources of uncertainty and activities performed during
model development and testing, and thus the possibility to define concrete means for
quantifying and dealing better with the various sources of uncertainty.

The paper is structured as follows: Sect. 2 provides a short overview of existing
classifications of uncertainty. Section 3 introduces the proposed classification, illustrates
its application on an example, and discusses its implications. Section 4 closes the paper
with an outlook on next steps.

2 Related Work: Existing Classifications of Uncertainty

In general, uncertainty is interpreted as “what is not known precisely”, but it can be
characterized differently, e.g., by also considering its impact or causes. Thus, various
taxonomies and classifications of uncertainty exist that provide different points of view
on uncertainty, such as aleatoric vs. epistemic, irreducible vs. reducible, or the different
kinds of inference that introduce them (e.g., predictive, statistical, or proxy) [11].

Mahdavi-Hezavehi et al. present a literature review and overview of different uncer‐
tainty studies in the context of system architecture including uncertainty classifications
comprising the dimensions location, nature, sources, and level/spectrum [12]. Further‐
more, they propose a classification based on the source’s model (uncertainty caused by
system models due to their abstraction, model drift, incompleteness, complexity, etc.),
goals (uncertainty caused by a system’s goal-related complications such as outdated
goals, goal dependencies, future goal changes, etc.), and environment (uncertainty
caused by environmental circumstances including execution context, multiple owner‐
ship, human involvement). Other uncertainty dimensions reported in the literature
consider resources (changing or new ones) or adaptation functions (automatic learning,
sensing, decentralization, etc.). Further uncertainty types are reported by another study
considering different publications: content, environment, geographical location, occur‐
rence, and time [13].

A detailed classification is provided in the context of simulation models by Kennedy
and O’Hagan, who distinguish between parameter, parametric, structural, algo‐
rithmic, experimental, and interpolation uncertainty [14].

Uncertainty in Machine Learning Applications 433



For safety-critical ML applications, Faria distinguishes between sources of output
variation on the levels experience, task, algorithm, implementation, and hardware [15].

All these classifications can help to get a better understanding of the various aspects
of uncertainty and may support practitioners in identifying important sources of uncer‐
tainty in their context. However, they are hard to apply effectively in practice for rigorous
prediction uncertainty quantification because their boundaries are not sharp (e.g., alea‐
toric vs. epistemic), because they cannot be reasonably quantified and distinguished in
a practical AI/ML setting (c.f. the detailed classes of Kennedy and O’Hagan [13]), or
because they have no direct links and implications for model building and testing.

3 Sources of Uncertainty in AI/ML-Model Applications

In order to introduce our classification, this section first illustrates common activities in
the model building and testing process based on an example. Then the proposed classi‐
fication is derived by highlighting and grouping major sources of uncertainty that occur
in this process. Finally, implications of the proposed classification are discussed.

3.1 Typical Process of Model Learning and Application

Most development and testing of AI/ML models more or less explicitly follows an
adaptation of the CRISP-DM [16] approach, which was initially introduced by IBM and
comprises the steps business/domain understanding, data understanding, data prepara‐
tion, modeling, evaluation, and deployment. Next, we summarize the key activities in
the process that are relevant for uncertainty in the model application outcomes and
illustrate them with an ongoing example.

Based on a specific goal or problem statement, the planned scope of the model
application is defined. In our example, the scope could be traffic sign recognition in all
possible driving conditions of a passenger car on public roads in the target market
Germany. Based on the scope definition, raw data is gathered in the relevant context to
build and test the AI/ML model. In our example, such data could be images taken by
cameras in pilot cars driving through Germany for several months, or an existing dataset
such as the GTSRB dataset2 with more than 50,000 traffic sign images. In the next step,
the raw data is typically filtered and preprocessed before being used as cleaned data to
build and test the model because depending on the data source, raw data may suffer from
various quality issues that would affect the final accuracy of the model. Moreover,
preprocessing of the data makes them more accessible in modeling. In our example,
images with specific problems could be filtered, such as very dark images, images with
strong backlight conditions or massive lance flares, or blurred images. Preprocessing
techniques include, among others, image normalization, Contrast Limiting Adaptive
Histogram Equalization (CLAHE) [17], and Single-Image Super-Resolution (SISR)
[18]. The clean data is separated into modelling and test data, with the modelling data
being used to build and cross-validate the AI/ML model and the test data to evaluate

2 http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset.
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the final model and determine how well the model fits previously unseen data. If the
model is considered to be sufficiently accurate, it is deployed to productive use (e.g., as
part of a driver assistance system) annotated with its error rate (e.g., 0.54%).

3.2 A Practice-Driven Classification of Uncertainty

If we agree on the definition of prediction uncertainty as the likelihood that the provided
outcome of a model may be wrong or outside a given range of accuracy, based on the
model building and testing process, three major sources of uncertainty can be identified:
scope compliance, data quality, and model fit. As we will discuss, the three uncertainty
categories are stacked on top of each other; Fig. 1 presents an onion layer model.

Fig. 1. Onion layer model of uncertainty in AI/ML application outcomes.

Model Fit. Uncertainty related to model fit is caused by the fact that AI/ML techniques
provide empirical models that are only an approximation of the real (functional) rela‐
tionship between the model input and its outcome. The accuracy of this approximation,
which is limited, e.g., due to the limited number of model parameters, input variables
considered, and data points available to train the model, represents the model fit. Uncer‐
tainty caused by fitting deficits is commonly measured by the error rate, which is calcu‐
lated when spitting the cleaned data into a training dataset and a test dataset.

There are two important underlying assumptions regarding uncertainty caused by
model fit. (1) The model is applied in a setting that is appropriately represented by the
test dataset, which is true for the cleaned dataset from which the test data is typically
randomly selected. (2) The model is built and applied on data on a homogeneously high
quality level (i.e., the data does not suffer from quality issues), which is also more likely
in a well-cleaned dataset.

Implication: The average uncertainty caused by model fit can be measured using
standard model evaluation approaches applied on high quality data and can be seen as
a lower boundary approximation of the remaining uncertainty.

Data Quality. In a real setting, all kinds of data collected (e.g., based on sensors but
also human input) is limited in its accuracy and potentially affected by various kinds of
quality issues. The actual level of uncertainty in the outcome of an AI/ML model is thus
affected by the quality (especially the accuracy) of the data on which it is currently
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applied. Therefore, additional uncertainty that is the result of a delta between the quality
of the cleaned data and the data on which the model is currently being applied can be
defined as data quality (caused) uncertainty. In our example, confidence in the model
outcome may be affected by a camera with lower resolution or a damaged lens as well
as by difficult lighting and bad weather conditions such as rain or fog.

Implication: Dealing with data quality uncertainty requires extending the standard
model evaluation procedures with specialized setups to investigate the effect of different
quality issues on the accuracy of the outcomes in order to provide uncertainty adjust‐
ments for cases where the model is applied on data of below-nominal quality. As a
consequence, data quality has be quantified and measured not only to annotate raw data
with quality information during data preparation, but also to measure the current quality
of the data after the model is deployed.

Scope Compliance. As we have seen, AI/ML models are built for and tested in a
specific context. If these models are applied outside this context, their outcomes can
become unreliable (e.g., because the model has to extrapolate). Therefore, the likelihood
that a model is currently being applied outside the scope for which it was tested can be
defined as scope compliance (caused) uncertainty. In our example, the confidence in the
outcome of the model would be heavily affected if the model, which was trained and
tested on German traffic signs, were applied in a country that does not follow the Vienna
Convention on Road Signs and Signals. Moreover, if the raw data used for model devel‐
opment and testing were collected between May and October, the test dataset would
most likely miss images of traffic signs (partially) covered by snow.

Implication: Scope compliance uncertainty can stem from two sources, as illustrated in
the example: The model may be applied outside the intended scope or the raw dataset
might not be representative of the intended scope. The former can be detected by moni‐
toring relevant context characteristics (in our example, e.g., GPS location, velocity,
temperature, date, time of day) and comparing the results with the boundaries of the
intended scope. In order to reason about the latter, raw data needs to be annotated with
context characteristics (e.g., GPS location, velocity, temperature, date, time of day) in
order to compare its actual and assumed distribution in the intended scope.

4 Conclusion

Distinguishing between the three types of uncertainties presented (model fit, data quality,
scope compliance) is motivated from a practical point of view because each of these types
requires specific means for detecting the related uncertainty and coping with it.

Furthermore, the classification builds on existing ones and enables further focused
uncertainty analysis by providing three clearly separated and measurable constructs. In
a first approximation, prediction uncertainty can be determined by adjusting model-fit-
caused uncertainty with a data quality factor determined on the basis of the quality of
the current input data and the probability of scope compliance.
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Building upon this classification, we plan to provide a practical framework for
capturing uncertainty when building and testing AI/ML models. Additionally, we are
planning its evaluation in case studies to demonstrate its applicability and usefulness.
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