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Foreword

A

Dr. Raj Singal Prof. Uday Kumar

The International Symposium on Mine Planning and Equipment Selection (MPES)
was started some 25 years ago. Since then, it has been held regularly becoming an
internationally recognized event committed to technology transfer. It has been held
in Turkey, Greece, Canada, Kazakhstan, Australia, South Africa, Czech Republic,
Brazil, India, Australia, China, Ukraine, Poland, Germany, Sweden, and Italy. In
2018, MPES is being held in Chile for the first time.

The basic aim of MPES 2018 is to contribute to the development of highly
productive methods and technologies for the various segments of the mining and
mineral processing industries. Important themes of the 2018 symposium are:
Economic and Technical Feasibility Studies, Reserve Estimation; Design, Planning
and Optimization of Surface and Underground Mines; Planning under Uncertainty;
Mine Development; Transition from Surface to Underground Mining; Mine
Automation and Information Technology; Internet of Things in Mining; Drilling,
Blasting, Tunneling and Excavation Engineering; Innovative Materials Handling
Systems and Equipment; Mining Equipment Selection; Maintenance and
Production Management for Mines and Mining Systems; Rock Mechanics and

xi



Xii Foreword

Geotechnical Applications; and Research and Development to Improve Health,
Safety and Productivity in Mines.

MPES 2018 derives its strength from the coalition of various worldwide insti-
tutions. It is organized by the Advanced Mining Technology Center, University of
Chile and University of Concepcion, Chile in collaboration with the Department of
Mining, Metallurgical and Materials Engineering, Universite Laval; China
University of Mining and Technology, Beijing; The National Technical University
of Athens, Greece (NTUA); Dipartimento di Geoingegneria e Tecnologie
Ambientali, Universita degli Studi di Cagliari, Italy; Western Australian School of
Mines, Curtin University of Technology, Australia; International Journal of Mining,
Reclamation and Environment; American Society for Mining and Reclamation;
School of Mining and Petroleum Engineering, University of Alberta, Canada;
Mining Engineering Department, Lulea University of Technology, Sweden; Faculty
of Mining and Geology, VSB—Technical University, Ostrava, Czech Republic;
Hokkaido University, Mineral Resources Engineering Department, Japan; Faculty
Geoengineering, Mining and Geology, Wroclaw University of Technology, Poland;
Department of Mining, Metals and Materials, McGill University; DIGET-
Politechnico di Torino, Italy; School of Chemical, Environmental and Mining
Engineering University of Nottingham, UK; Middle East Technical University
Mining Engineering Department, Turkey; SASE, and Monash University Australia
and Kyushu University, Fukuoka, Japan, and a few others.

The organization and success of such a symposium is due mainly to the tireless
efforts of many individuals, the authors included. All members of the organizing
committees and conference chairpersons have contributed greatly. The support of
our plenary session speakers, invited speakers, and co-chairs is gratefully
acknowledged. In addition, recognition is accorded to my co-editors and Chair
Persons of this symposium, Dr. Eleonora Widzyk-Capehart and Dr. Asieh Hekmat,
who together with their local organizing committee made MPES 2018 a success.
I also wish to acknowledge the contribution of Mohini Singhal (my wife) who has
been involved with MPES since its inception. She as a committee member of MPES
organization and is an associate editor of the International Journal of Mining,
Reclamation and Environment. She shares my workload and maintains the conti-
nuity of our work in my absence. We both are committed to make each symposium
a successful one.

I, as the International Chair and Founder of this series of symposia would like to
recognize the special contribution of Dr. Eleonora Widzyk-Capehart and Nelson
Morales. Thanks are due to Springer whose editors have worked closely with us.
They published the proceedings of our MPES 2013 held in Germany. We hopefully
will work with them for our other symposia.

We are grateful to Dr. Patricio Aceituno, Dean, Facultad de Ciencias Fisicas y
Matematicas, Universidad de Chile and Dr. Luis Moran T. Dean, Facultad de
Ingenieria, Universidad de Concepcidn for accepting to hold this symposium under
their tutelage.




Foreword xiii

This symposium provides a forum for the presentation, discussion, and debate of
state-of-the-art and emerging technologies in the field of mining. The authors from
over 20 countries with backgrounds in computer sciences, mining engineering,
research, technology, and management representing government, industry, and
academia concerned with mining and mineral production have contributed to these
proceedings. The contents of this volume of proceedings will be of interest to
engineers, scientists, consultants, and government personnel, who are responsible
for dealing with the development and application of innovative technologies to the
minerals industries.

Calgary, Canada Dr. Raj Singhal
Lulea, Sweden Prof. Uday Kumar
Chairs, International Organizing Committee



Preface

Dr. Eleonora Widzyk-Capehart Dr. Asieh Hekmat

During most of Chile’s history, from 1500 to the present, mining has been an
important economic activity: sixteenth-century mining was oriented toward the
exploitation of gold placer deposits using encomienda labour; after a period of
decline in the seventeenth century, mining resurged in the eighteenth and early
nineteenth century this time revolving chiefly around silver and, in the first half
of the twentieth century, copper mining has come to the forefront.

The mining sector plays an important role in the Chilean economy: Chile is
world’s #1 copper, #2 lithium, and #3 molybdenum producer, making mining an
economic engine of Chile, accounting for approximately 10% of GDP and 50% of
Chilean exports. In 2017, Chile produced 5.3 million tons of copper, which rep-
resented 32% of world production. Chile’s copper production comes primarily from
porphyry copper deposits, which are rich in molybdenum, gold, and silver
by-products. The massive Escondida mine, known as the world’s largest copper
mine, accounts for 5% of total global copper mine production.

XV



XVi Preface

In the midst of rising copper prices and predictions of an upcoming deficit in the
market, Chile is still considered a primary target for exploration and the country
expects $65 million in mining-related investment over the course of the next
decade, with 90% of that dedicated to copper projects. Several new projects are
expected to be exploration initiatives conducted by junior companies. With
favorable jurisdiction, Chile has a long history of strong mining laws and being
mining friendly, especially to foreign companies.

In this context, the 27th International Symposium on Mine Planning and
Equipment Selection, MPES 2018, will provide opportunities for the scientists and the
industry to share experiences and the latest advances in research and developments.

Contributions from MPES 2018 include economic and financial risk evaluations,
methods, and technologies for design, planning, and optimization of surface and
underground mines, mine development, equipment selection, drilling, blasting,
tunneling and excavation engineering, maintenance and production management for
mines and mining systems, rock mechanics and geotechnical applications, research,
and development to improve health and safety in mines.

We present you with the Proceedings of the 27th International Symposium on
Mine Planning and Equipment Selection—MPES 2018, from Santiago, Chile,
which we hope would enable the holistic reflection and the practical application of
“Mine planning and equipment selection” toward a sustainable future.

With Best Regards and Buena Suerte,

Chairs, MPES 2018 Organizing Committee

Santiago, Chile Dr. Eleonora Widzyk-Capehart
Concepcidn, Chile Dr. Asieh Hekmat
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Lessons from Some Recent and Current )
Mine Planning Related Postgraduate i
Research Work at the University

of the Witwatersrand

C. Musingwini

1 Introduction

The mine value chain is a series of interdependent stages starting from the exploration
stage up to the closure and rehabilitation of a mining operation. Figure 1 is an
illustration of the five commonly recognized stages comprising a mine value chain.

Mine planning, equipment and infrastructure maintenance, human resources,
finance, engineering, and safety, health, environment and community are examples
of service activities that are required to support the five broad stages [1]. Once
exploration work has identified and delineated a mineral deposit to a point where
Mineral Resources can be estimated and declared, mine design and planning are then
undertaken to convert Mineral Resources to Mineral Reserves and set the basis for
establishing a mining operation.

The South African Code for the Reporting of Exploration Results, Mineral
Resources and Mineral Reserves (The SAMREC Code 2016) [2] defines a mine
design as “a framework of mining components and processes taking into account
such aspects as mining methods used, access to the orebody, personnel and material
handling, ventilation, water, power, and other technical requirements, such that mine
planning can be undertaken”. The SAMREC Code 2016 [2] also defines mine plan-
ning as “production planning and scheduling, within the mine design, taking into
account such aspects as geological structures and mineralisation and associated
infrastructure and other constraints”. Mine planning is intricately linked to valua-
tion and optimization because a mine plan that is accepted for implementation must
have been evaluated as being both technically and economically viable and robust
through optimization. An optimized mine plan can be assumed to be a robust mine
plan.

C. Musingwini (<)
School of Mining Engineering, University of the Witwatersrand, Johannesburg, South Africa
e-mail: Cuthbert.Musingwini @wits.ac.za

© Springer Nature Switzerland AG 2019 1
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Fig. 1 The five broad stages comprising a generic mine value chain

Mine design and planning are critical to the mine value chain as they form the basis
upon which performance targets are set. Therefore, mine plans should be adequately
robust to ensure that actual performance can be as close as possible to planned
outcomes both in the short and long term. However, this is often not the case as
actual outcomes do not always align with planned targets, requiring reconciliation
to be undertaken and plans to be adjusted accordingly. The non-achievement of
performance targets has in recent years prompted financiers of mining projects to
litigate against project proponents in some cases, claiming that they were misled into
investing in projects that failed to deliver on promised outcomes. Newby et al. [3]
mentioned such a case, where a shareholder class action lawsuit was filed against
NovaGold over the Galore Creek copper-gold project in which costs had been revised
to 127% of the initial estimates and the project was running 2%2 years behind schedule.
The failure to deliver actual outcomes that are close to or the same as planned targets
is considered one of the top risks faced by the mining industry and requires mining
companies to develop robust mine plans [4, 5]. This challenge emanates from the
commonly used deterministic mine planning approached that fail to recognize that
mining systems are stochastic in reality.

Itis, therefore, necessary to have a paradigm shift from deterministic to stochastic
mine planning. This requires more research to be undertaken on how to generate
robust mine plans to improve confidence in achieving planned outcomes. Research
findings from some of the mine planning related postgraduate research work that
has recently been undertaken or is currently under way in the School of Mining
Engineering at the University of the Witwatersrand are presented to share lessons
that can be drawn towards closing the gap between planned and actual performance
outcomes.

2 Examples of Recently Completed Research Work

Some of the recently completed postgraduate research work in the past 5 years
in the School of Mining Engineering at the University of the Witwatersrand can be
broadly classified into valuation aspects of mine planning and stochastic optimization
approaches to mine planning. Examples of these completed research studies are
summarized in the next sections.
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2.1 Interfacing Valuation and Regular Financial Reporting

There exists some misalignment between the regular financial reporting done by min-
ing companies and the valuation done at mine planning stages such as pre-feasibility
study (PFS) and feasibility study stages. Valuation which is done during mine plan-
ning has a generally forward-looking performance perspective, while regular finan-
cial reporting which is done during the operational stage has a generally historical-
looking performance perspective [6]. Regular reporting of financial performance
is done in compliance with International Financial Reporting Standards (IFRS) or
Generally Accepted Accounting Principles (GAAP) depending on the jurisdiction,
while valuation is done following guidance from internationally recognized valuation
codes such as the [6]:

— Code for the Technical Assessment and Valuation of Mineral and Petroleum Assets
and Securities for Independent Expert Reports (“The VALMIN Code, 2015”)
which is used in the Australasia region.

— Standards and Guidelines for Valuation of Mineral Properties (“The CIMVAL
Code, 2003”) which is used in Canada.

— South African Code for the Reporting of Mineral Asset Valuation (“The SAMVAL
Code, 2016”) which is used in South Africa.

— Polish Code for the Valuation of Mineral Assets (“The POLVAL Code, 2008”)
which is used in Poland.

— Securities and Exchange Commission (SEC) Industry Guide 7 published in 1990
and used in the United States of America (US).

The misalignment between financial reporting and valuation contributes to the dis-
crepancies that exist between planned and actual financial performance. Njowa and
Musingwini [6] presented a framework to interface valuation and financial reporting
in mine planning. The basic framework for interfacing valuation and regular financial
reporting is illustrated in Fig. 2. The lesson that can be drawn from the research work
is that by applying this framework it is possible to holistically model the valuation
process by utilizing linkages from exploration results, through mineral project eval-
uation to financial reporting. In this way, it is possible to reduce the gap between
regular financial reporting during the operational stage and valuation done during
mine planning.

2.2 Stochastic Framework for Open-Pit to Underground
Transition

The transition from open-pit mining to underground mining is often modeled as a
deterministic process. However, deterministic approaches are inadequate for analyz-
ing the open-pit to underground transition due to the dynamic nature of the transition
indicators [7]. Opoku and Musingwini [7] presented a stochastic open-pit to under-
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Fig. 2 A framework for linking financial reporting and valuation for developmental and producing
mineral projects [6]

ground transition framework (Fig. 3) which was derived from an analysis of selected
gold mines. The study’s findings indicated that at a 95% confidence level, gold mines
can prepare to transition from open-pit mining to underground mining. At this con-
fidence level the gold price to cost per ounce ratio is just greater than 2.0; gold grade
is between 4 and 9 g/t, stripping ratio is between 3 and 15 m3/t, and net present value
(NPV) is positive for the underground mining option. The lesson that can be drawn
from this study is that it is possible through stochastic mine planning to improve
confidence in the timing and placement of excavations.

2.3 Stochastic Cut-off Grade Optimization

Cut-off grade (CoG) is a parameter generally used to determine the quantities of
material (ore and waste) mined, ore processed, and product produced and sold. Thus
CoG inherently affects the cash flows produced from a mining operation, conse-
quently affecting the NPV of a mining project at the mine planning or feasibility
study stage. The CoG framework developed by Lane [8, 9] has been applied widely
in mine planning. However, due to its deterministic construction it fails to capture
the stochastic nature of the input variables. Therefore, it cannot guarantee the deter-
mination of an optimal CoG, hence there have been extensions to the original model
to overcome some of the model’s shortcomings. Githiria [10] therefore, extended
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Lane’s framework by simultaneously incorporating stochastic commodity prices and
grade-tonnage realizations into the calculation procedure. The study concluded that
the stochastic model generated improvements in NPV ranging between 7 and 186%
over other models, thus demonstrating the value of using stochastic approaches to
CoG optimization. The lesson that can be drawn from this study is that stochastic
mine planning approaches enable the generation of more robust or superior mine

plans than those produced from deterministic mine planning.
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3 Examples of Current Research Work

Some of the current postgraduate research work being undertaken in mine planning
related work is premised on a stochastic approach to underground stope design and
development of a framework to improve both the temporal and spatial mine-to-plan
compliance.

3.1 Probability Stope Design

The research work on probability stope design is planned to extend the work done by
Whittle et al. [11] on probability (or stochastic) pit designs to underground mining
environments. Whittle et al. [11] noted that the inherent assumption in the Lerchs-
Grossmann (LG) algorithm used for open-pit optimization that block economic val-
ues (BEVs) are known with certainty, results in the LG algorithm failing to capture
the variability in input parameters for open-pit optimization. In an actual mining
operation the geological, technical and economic parameters are never known with
certainty as they also change over time due to improved understanding of an operation
or technical and economic conditions change. Whittle et al. [11] therefore extended
the deterministic pit optimization approach to generate probability pits (Fig. 4). The
different color shades in Fig. 4 indicate different probabilities attached to each pit
limit with increasing probability towards the inner pit limits. The outer pit limits
have lower probabilities but, are an indication of the extremities of the possible pit
limits when pit limit determination input parameters change since they are dynamic.
This approach ensures that mine planning is able to consider locating infrastructure
outside of the probable pit limits, which is otherwise not possible under deterministic
mine planning often resulting in the costly demolition or relocation of infrastructure.
Again, this demonstrates the superiority of stochastic approaches over deterministic
approaches to mine planning. A similar approach is being undertaken to optimize
stope envelopes in underground mine planning through utilizing stochastic BEVs, as
part of current postgraduate research work in mine planning in the School of Mining
engineering at the University of the Witwatersrand. The envisaged lesson from this
study is that stochastic mine planning helps to improve confidence in the placement
and sizing of excavations.

3.2 Temporal and Spatial Mine-to-Plan Compliance

Mine-to-plan reconciliation tends to be undertaken and reported on an inter-temporal
key performance indicators (KPIs) thus, failing address the spatial nature of mining
operations. As such, temporal KPIs provide a false sense of achievement to mine
management because performance against these KPIs could be positive, while actual
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mining activities are not occurring in the correct spatial areas which is detrimental
long-term KPIs that include technical operating mining flexibility advocated in the
study by Musingwini et al. [12]. When temporal compliance is simultaneously eval-
uated together with spatial mine-to-plan compliance it is possible to align short-term
KPIs that mining companies track on a weekly, monthly, quarterly, or annual basis
to long-term value expected by (and often promised to) investors. It is against this
background that research is currently being undertaken on the development and
implementation of a combined temporal and spatial mine-to-plan compliance rec-
onciliation framework. It is hoped that such a framework will ensure that short-term
KPIs are achieved without compromising long-term KPIs. The envisaged lesson
from this study is that a combined temporal and spatial mine-to-plan compliance
framework aligns short-term mining activities to long-term KPIs.

4 Lessons Learnt

Mine planning is integral to the mine value chain and is intricately linked to val-
uation and optimization. Deterministic mine planning approaches fail to capture
the stochastic nature of mine planning input variables resulting in actual outcomes
deviating from planned outcomes. This challenge can be addressed when stochastic
approaches are utilized in mine planning. This paper has demonstrated the value that
can be created by a paradigm shift from deterministic to stochastic mine planning.
Some of the lessons that can be drawn from the approaches discussed in this paper
are:

— Stochastic mine planning approaches enable the generation of more robust mine
plans;

— Stochastic mine planning assist in improving confidence in the timing, placement
and sizing of excavations;
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— Itis possible to interface pre-feasibility and feasibility studies of mining projects

with regular reporting of performance of the actual mining operations once the
projects have progressed to the production phase;

— A combined temporal and spatial mine-to-plan compliance reconciliation frame-

work can reduce detrimental impacts of short-term mining activities on long-term
KPIs, hence ensure long-term value expected by (and often promised to) investors.
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research work from which lessons shared in this paper are drawn.
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Economic Value Added Analysis )
for Mining Companies i

T. Tholana and P. N. Neingo

1 Introduction

Every business including mining, exists to create optimum value for its various stake-
holders. Even though the needs of all stakeholders are equally considered by mining
companies, the creation of long-term sustainable shareholder value has increasingly
been the major measure of success. However, mining companies operate in a chal-
lenging and constrained business environment characterized by turbulent global eco-
nomic conditions. Access to capital is one of the constraints mining companies face.
The scarcity of capital requires that when it is available, it must be allocated and
managed effectively. The high cost of production, volatile and declining commodity
prices force mining companies to focus on short-term strategies for survival, which
may be in conflict to long-term value creation. Such short-term planning strategies
many times ensure that shareholder value is not maximized [1]. The following are
some of the short-term survival strategies by mining companies that destroy long-
term value [1]:

— Chasing and mining high-grade areas without considering the long-term impacts.

— Avoiding necessary production delays to install critical infrastructure that will
enable long-term sustainable production. Such short-term production disruptions
will be necessary to support future production rate but are avoided for short-term
benefits.

— Suspending or deferring exploration and capital projects which saves capital in the
short-term but results in an operation without sufficiently developed mining areas
to sustain optimum production rates.
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These actions though beneficial in the short-term, may destroy value in the long-
term. These actions are caused by wrong performance measures such as profit [1]. It
was, therefore, suggested that EVA is an appropriate tool to measure value creation
from the extraction of Mineral Resources [2]. It is the aim of this paper to compare
profit and EVA for selected mining companies. This is to ascertain whether mining
companies have been creating true economic value for shareholders (as measured
using EVA) over and above the normal profit reported in income statements. To do
the analysis, four major international mining companies were selected which are;
BHP Billiton (BHP), Rio Tinto, CVRD-Vale (Vale) and Anglo American (Anglo).
Major mining companies as opposed to junior companies were selected because
they are well capitalized, have steady cash flows and their financial data is easily
available on the public domain to enable a meaningful analysis. In 2006, the top four
mining companies globally by market capitalization were BHP, Rio Tinto, Anglo and
Vale [3]. However, over the years until 2017, the rankings of these companies have
changed. As of year ending 2016, BHP and Rio Tinto have continued to be in the top
four but, Vale and Anglo both slipped their positions to fifth and ninth, respectively
[4]. Nevertheless, Vale and Anglo were selected for analysis to understand why their
ranking declined from 2007 to 2017. Currently, in addition to BHP and Rio Tinto
in the top four are Glencore Xstrata and China Shenhua Energy Company Limited.
Xstrata and Glencore merged to form Glencore Xstrata in 2013 and therefore the
new company’s data is only available for the latter part of the analysis period. China
Shenhua Energy is not geographically and commodity diversified; it focusses on
coal mining only and its operations are only in China. Because of these reasons the
two companies were excluded for analysis. The period 2007-2017 was selected as
a suitable period that captures the performance of mining companies under varied
economic and operational conditions.

2 Value Addition in Mining

Mining projects are capital intensive, thus, economically viable projects require cap-
ital injection from financiers who expect a return on their invested capital. In order
to meet financiers’ expectations effective management of upstream activities in the
mining value chain results in value addition [5]. The concept of mining value chain
recognizes that competitive advantage in mining can be derived from a sequential
arrangement of value-adding activities in order to ensure that maximum value is
generated from every dollar of capital invested [6, 7]. However, efforts to maxi-
mize this value are undermined by challenges that mining companies face such as
volatile commodity prices, capital scarcity, low productivity, high production costs,
and socioeconomic challenges. Also, mining involves the extraction of a wasting
mineral resource whose value declines with each unit of extraction. This means that
there is only a single opportunity available to maximize value from extracting the
mineral resource. These challenges and the wasting nature of mineral assets neces-
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sitate the need not only for value addition but also the need to measure, track and
report this value.

There are several metrics used to measure the economic performance of a company
such as profit, unit cost and several financial ratios. These metrics are considered
traditional and have several pitfalls. The following are some of the pitfalls of using
traditional metrics to evaluate or measure the performance of companies [8]:

— They ignore capital and its cost which may lead to overinvestment on projects
with positive margins, profit, and productivity measure even though they may
have inadequate returns.

— Traditional measures such as unit cost, utilization, and income that tend to promote
overproduction to beyond demand. This appears to reduce unit cost but may also
increase the cost of invested capital.

— They promote a chance of pursuing a project that destroys value while overlooking
and rejecting a project that may create value.

Therefore, traditional measures are inappropriate for decision making. In addition
to the pitfalls above, mining companies need to demonstrate profit growth because
of the capital-intensive nature of the business and long lead times involved [9].
Given these pitfalls, a better value assessment tool is required such that the impact
of operational decisions and/or delaying capital expenditure can be related to value
added/destroyed. Analysis of financial performance of mining companies requires
taking account of material reserves and production in addition to earnings [5]. Based
on this argument, [5] defined two variables, namely, Total Shareholder Return (TSR)
and Total Reserves Increment (TRI) to measure variations in company share price
plus dividends and company Mineral Reserves plus production, respectively. These
two measures combined take account of the entire mining value chain, attributing
value addition to effective management of the underlying asset in mining, the mineral
reserve. Garcia and Camus [5] then tested the performance of 14 companies based
on TSR and TSI indices as shown in Fig. 1.

The results in Fig. 1 confirmed the hypothesis that leading companies surpass the
average (the horizontal and vertical lines) for the sample [5]. However, Fig. 1 does
not show the performance of companies year on year; it only shows an aggregated
performance over that given 9 years. Therefore, TSR and TRI variables undermine
the short-term operational and market challenges that may affect long-term value
created. Literature is increasingly emphasizing the need to shift from traditional
measurements such as profit to new metrics of measuring value created [10].

Market expectations are shifting towards profitable, integrated short-term and
long-term growth under dynamic economic conditions and operational challenges
[9]. To ensure both short-term survival and long-term value creation, MRM practice
was developed. MRM is defined as “an integrated activity which identifies, evaluates
and provides an optimal extraction plan of the mineral resource, to produce a quality
product which satisfies the business objectives of the company, and the requirements
of the customer, in a dynamic environment...” [2]. It is an important concept in mining
that has been adopted by the global mining industry. Nevertheless, in aresearch by [2]
on the application of MRM, it was concluded that its implementation has been met
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Fig. 1 TSR versus TRI for selected mining companies, 2000-2008 [5]

with marginal success. One of the reasons is inappropriate measures of the success
of MRM which are short-term focused including profit and cost [2].

While traditional financial performance measures are commonly reported in finan-
cial statements, they have a common limitation. They do not incorporate the cost of
invested capital which renders them inappropriate to give a reliable performance of
a company. This resulted in the development of a better measure of the true value
created or destroyed by a company called economic value add.

3 Economic Value Add

EVA is a concept that dates back to 1989 developed by Stern Stewart & Co as a
financial performance measure that enables managers to see whether they are creating
shareholder wealth. EVA is a copyright of Stern Stewart Inc. It is the net operating
profit after taxes have been paid (NOPAT) minus a capital charge for the opportunity
cost of all capital invested in a company or project [11]. NOPAT is the Earnings
Before Interest and Taxes (EBIT) less Tax and can be expressed as [11]:

EVA = NOPAT — Cost of Capital * Invested Capital (1)

EVA, therefore, measures the surplus value created by a company on capital
invested into a company or project. It is an estimate of true economic profit, or the
amount by which earnings exceed or fail to meet the required minimum rate of return
investors could get by investing in other securities of comparable risk [11]. If EVA
is negative, shareholders wealth is being eroded and vice versa. EVA is, therefore,
an indicator of a company’s value growth in the future.
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Since its development, it has been widely used by many companies to measure
their performance. It was used to compare the performance of government-linked
and non-government-linked companies in Malaysia [12]. In this research, it was
found that government-linked companies tend to have lower EVA values than non-
government linked companies. Several studies have also been done to prove that EVA
is a better tool to assess company performance compared to traditional performance
measures [10, 13-18].

4 Methodology

Data used in this paper was collected from the four companies’ annual reports avail-
able on the public domain. The data was then used to calculate EVA using Formula 1.
A cost of capital of 10% was assumed for all companies because the cost of capi-
tal is not reported in annual reports of the four companies. There are variations in
calculation of invested capital. In this paper invested capital was calculated as in [7]:

Invested capital = Current assets
— non-interest-bearing current liabilities
+ Net property, plant and equipment
+ Intangible assets
+ Goodwill

+ Other operating assets

5 EVA and Profit Analysis

Figure 2 shows a comparison of profit and EVA for the selected companies from
2007 to 2017. Data for Rio Tinto for the year 2007 was not available on the public
domain. The analyses for each company are done after Fig. 2.

5.1 BHP Billiton

Figure 2a shows the profit and economic value added for BHP from 2007 to 2017. The
years 2007 and 2008 were good years for the company in terms of both profitand EVA
mainly because of the continued growth and demand for mineral commodities by
emerging countries. Following the high demand and subsequently high commodity
prices, the company announced an offer to acquire Rio Tinto in 2008 which later
failed [20]. The onset of the global economic crisis (GEC) in the late 2008 until
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mid-2010 resulted in a fall in profit and a significant decline in EVA, which means
the company did not create as much shareholder value for the company compared to
pre-GEC period. As commodity prices improved from mid-2010 both BHP’s profit
and EVA also improved.

From 2015 to 2017, even though the company made profits in the 3 years it did
not create shareholder value. In 2014 BHP announced a demerger of a number of
operations that formed the now South32 and in 2015 the demerger was completed
[20]. The aim of the demerger strategy was for BHP to focus on “high-quality alu-
minium, coal, manganese, nickel and silver assets” [20]. From 2015 the company’s
strategy was to be more focused on large and long-life mineral assets with “potential
to unlock shareholder value by significantly simplifying the BHP Billiton Group and
creating a new company specifically designed to enhance the performance of its
assets” [20]. The demerger has not proved to have added shareholder value as seen
in Fig. 2a. The negative EVA for the three years can be attributed to the demerger.
Since the demerger, it can be noted in Fig. 2a that even though EVA was negative it
has been increasing year on year (2015-2017). Therefore, it is anticipated that the
demerger strategy will create positive EVA in the long term.

5.2 Rio Tinto

Figure 2b shows the profit and economic value added for Rio Tinto from 2008 to 2017.
In 2008 and 2009 the company’s profits were relatively low and EVA was negative.
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Like BHP this can be attributed to the 2008 GEC. As most commodities’ prices
improved from 2010 to 2011, profitability also improved. Generally, the profitability
of Rio Tinto was low for most of the analysis except in 2010, 2011, 2014, and 2017
with low EVA in 2008 and 2014. In 2009, 2011, 2012, 2013, 2015, and 2016 the
company did not create shareholder value even though it had made profits in some
of these years (2009, 2011, 2013, and 2016). This performance can be attributed to
the factors discussed below.

Since the early 2000s, the company has been implementing a significant growth
strategy through acquisitions. In 2000, at the start of the minerals boom, Rio Tinto
undertook US$4 billion worth of acquisitions—primarily Australian aluminum, iron
ore, diamond, and coal assets. This strategy intensified and in 2007 the company
acquired Alcan Inc. for US$38 billion to be the world’s largest aluminum producer.
In 2011, the company acquired the Riversdale coal asset in Mozambique for US$3.7
billion. The year 2012 also recorded a high capital expenditure of US$17.5 billion to
support the company’s iron ore operations in Australia and to develop the greenfield
copper-gold project in Mongolia [21]. These acquisitions were done anticipating sig-
nificant growth in the company. However, these efforts were offset by the significant
weakening global economic and market conditions that resulted in significant impair-
ment charges which ultimately destroyed shareholder value. It was stated that the
Mozambican coal asset was sold for US$50m in 2014 following post-tax impairment
charges of US$2.86 billion in 2013 and $470m in 2015 [22]. Over the period under
analysis, 2012 is the worst year for Rio Tinto. This is attributed to total impairment
charges of US$14.4 billion, primarily relating to the Alcan aluminum (US$11 billion)
and its coal assets in Mozambique [21]. The company’s chief executive officer lost
his job in 2013 mainly due to these value destruction capital investment decisions
[23].

5.3 CVRD-Vale

Figure 2c shows the profit and economic value added for Vale from 2007 to 2017.
EVA rose to US$7.498 billion in 2008, a 93% increase over 2007, while profit rose by
only 6.7%. These increments can be attributed to higher selling prices of the different
products such as iron ore, iron ore pellets, manganese ore, ferroalloys, and potash
offsetting lower selling prices for nickel and copper as well as lower sales volumes
for aluminum and bauxite [24]. Weaker demand for various products including iron
ore, ferroalloys, nickel as well as the lower prices resulted in lower volumes sold and
consequently lower gross revenues [24]. The company further reported that Sudbury
and Voisey Bay operations were shut down in the second half of 2009 due to labor
strikes. These factors caused about 60% decrease in profit between 2008 and 2009
while EVA decreased from US$7.498 billion to negative US$4.563 billion. Due to
the GEC, net operating profit after tax (NOPAT) reduced by about 72% and to sustain
the business, capital invested increased by 27%.
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In the last quarter of 2010 and the first quarter of 2011, floods and an earthquake
negatively affected coal operations in Australia and sales of mining products in Japan,
respectively [24]. Total operating costs and expenses increased by 36.8% from 2009
to 2010 [24]. The cost of goods sold was about 80% of the total operating costs and
expenses. Despite the natural disasters and increased costs, profit rose to US$17.453
billion in 2010, a twofold increase over 2009 and EVA was also created to a value
of US$7.922 billion in 2010. The profit rose because the company reported currency
gains of US$102 million, net operating revenues increased by 94.3% due to higher
prices of the major products. Moreover, there was a worldwide economic recovery
and the demand for most products especially iron ore and iron ore pellets increased
[24]. The recovery in demand and prices of iron ore and iron ore pellets accounted
for 69% of the total increase in gross revenue. EVA increased mainly because the
355% increase in NOPAT offset the 18% increase in capital charge.

It was reported that the net operating revenues increased by 30.2% mainly due to:
“higher prices for the company’s major products, especially for iron ore and other
bulk materials, the increase in nickel volumes following the end of labor strikes and
resumption of nickel production in Ontario and the inclusion of a full year of results
for fertilizers compared to seven months in 2010” [24]. The company continued to
be highly reliant on iron ore and iron ore pellets. The sustained high demand and
consequently higher prices for these two products accounted for about 70% of the
increase in gross revenues. Although Fig. 2c shows increments in both profit and EVA
from 2010 to 2011, during the same period the total operating costs and expenses
also increased by 22.4% [24]. The largest contributors to increased costs as noted
“were the resumption of normal nickel operations in Ontario, the inclusion of a full
year of the phosphate business acquired in 2010 and the start-up of Ong¢a Puma”
[24].

In 2012, Vale’s profit was 77% lower than that reported in 2011 while EVA was
94% lower than that created in 201 1. Invested capital and consequently capital charge
(on the basis of constant discount rate) decreased in 2012. The company recorded a
75.9% decrease in net income and attributed this decrease to various non-recurring
items, lower prices of major products and slightly higher costs [24]. In 2013, net
operating revenues increased marginally because higher volumes of base metals,
iron ore, coal and higher prices of iron ore were partially offset by lower prices of
base metals, fertilizers, metallurgical coal and lower volumes of iron ore pellets and
fertilizers [24]. Although the company reported a profit of US$406 million as shown
in Fig. 2c, under the conditions that prevailed, value was destroyed as EVA was
negative US$1.288 billion. Invested capital in 2013 was only about 3% lower than
that invested in 2012. Therefore, the negative EVA can be attributed to lower NOPAT
which was affected by the factors that affected revenue.

In 2014, there was a decrease in the average price for iron ore and pel-
lets which was partially offset by higher volumes of iron ore, iron ore pel-
lets, and higher price for nickel [24]. Therefore, a decrease in both profit
and EVA was observed, which can be attributed to the decrease in net oper-
ating revenues. Furthermore, the company also reported several non-recurring
items including charges for impairment of some iron ore, coal, fertilizers and
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nickel assets, foreign exchange and monetary losses [24]. Revenue continued
on a downward trend and in 2015, a loss of US$12.62 billion was reported and
for the period considered in this paper, 2015 also saw the lowest EVA of negative
US$7.246 billion, i.e., most value was destroyed. The loss can be attributed to lower
prices for major products as well as acquisitions and dispositions [24].

In 2016 and 2017, higher prices for iron ore fines and pellets and other products
had the most impact on the 17.6 and 23.6% increases in net operating revenues
from continuing operations, respectively [24]. Due to these increases, the company
reported a positive profit but EVA remained negative. Profit generally increased
between 2007 and 2011 with an exception in 2009 that can be attributed to the GEC.
In years 2009, 2013, 2014, and 2014, profit was reported but value was destroyed.
Vale has shown fluctuations between positive and negative EVA, thus, over the period
of study, Vale created and also destroyed value. This necessitates the need to identify
improvement opportunities within the company and also make better investment
decisions.

5.4 Anglo American

Figure 2d shows the profit and economic value added for Anglo American from
2007 to 2017. In 2007 Anglo American reported a profit of US$8.172 billion as
shown in Fig. 2d with a lower but positive EVA (US$3.435 billion). High earnings
in 2007 were attributed to an increase in prices of platinum group metals (PGMs),
lead, nickel, niobium and iron ore as well as higher volumes for copper, zin, and
iron ore [25]. These together with higher earnings from De Beers offset a significant
reduction in Australian coal contribution. In 2008, both profit and EVA decreased
by 25% and 5%, respectively, because commodity prices decreased sharply in the
second half of 2008. South African operations, mainly PGMs were faced with a
36% increase in costs, safety-related stoppages, electricity supply constraints, and
commissioning delays at Mogalakwena North concentrator [25]. Despite the 2008
GEC, ferrous metals saw profit increasing to record levels due to increased volumes
and operational efficiencies [25]. Overall, value was created in 2008 despite the
factors that negatively affected several operations.

The impact of the GEC continued into 2009 as Anglo American reported a profit
of US$2.912 billion, a 52% decrease over 2008 but positive due to rigorous cost
reduction measures. Furthermore, value was destroyed as the company’s EVA was
negative US$736 million. The decline in profit was attributed to a sharp decrease in
all commodity prices. Anglo American [25] confirmed this and stated that there was
“a 38% reduction in the platinum basket, an average 40% reduction in benchmark
export iron ore, a 30% decline in average nickel and a more than 20% decline in
export metallurgical coal” [25]. In addition to lower commodity prices, a decline
in global steel demand and coal export prices caused lower profits from Samancor,
Metallurgical and Thermal coal [25]. While the company’s profit declined due to
various factors, value was destroyed as the capital invested rose to US$40.554 billion,
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a 24% increase over 2008 due to increments in net working capital and tangible
assets. Additional tangible assets to the value of US$5.563 billion inclusive of capital
investment were added to the company’s core commodity assets.

In 2010, Anglo American reported a profit and also created value for its sharehold-
ers. The company attributed its success to increased commodity prices and tightly
controlled costs in addition to its ability to unlock value through asset optimiza-
tion. Assets optimization and procurement initiatives unlocked a combined value of
US$2.213 billion [25]. An additional value of US$1.304 billion was generated as the
company completed disposals of Moly-Cop, AltaSteel, Skorpion zinc mine and an
undeveloped coal asset in Australia. Asset optimization initiatives continued in 2011
and as such the company delivered both, profit and positive EVA though at slightly
lower levels than in 2010.

Anglo American made a loss and also destroyed value in 2012 mainly because
of lower commodity prices and higher costs. Invested capital increased mainly due
to an increase in tangible assets. The platinum sector recorded an operating loss
of US$120 million in 2012 from US$890 million profit in 2011 [25]. The sector
which is mainly operating in South Africa faced lower volumes due to a 2-month
illegal industrial action; a 21% increase in cash operating costs; and a 4% decline in
productivity. All key commodities including PGMs made profits due to higher prices
realized and/or increased sales volumes in 2013. For the year, the company made a
profit and EVA improved slightly but remained negative. Between 2013 and 2016,
Anglo American destroyed value as they undertook portfolio restructuring that saw
them move from 65 to 45 to 16 core assets. In 2017, the company started creating
value, with a calculated EVA of US$283 million and possibly marking the end of a
tough restructuring period for the company.

6 Conclusion

Creation of long-term shareholder value is the aim of every business, mining included.
The reporting of such value creation by companies is important to enable vari-
ous stakeholders to analyze the performance of companies and be able to make
informed decisions. Traditional performance measures are reported by mining com-
panies including profit. However, the major limitation of such measures is that they
ignore the cost of invested capital which means that these measures do not capture
the true economic profit made by companies. EVA has proved to be the true measure
of value that mining companies should measure and report on. This study found
that even though profit was generated by mining companies in most of the analysis
period, in contrast, EVA was not created. It was also found that cost-cutting measures
improved profit without creating EVA. In addition to the traditional measures that are
always reported by mining companies, EVA should also be reported to see whether
the value is being created.
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Financial Risk Analysis of Optimized )
Ventilation System in the Gold Mine oo

S. Sabanov

1 Introduction

Costs for mine ventilation are typically increasing when mines expand to deep levels.
Some underground mines in Kazakhstan still use continuously operating fans at its
maximum capacity. This is not helping to save energy and costs that are in many
cases very significant. However, mine safety is related to risks associated with a
deficit of fresh air for mine gases dilution and their removal from the mine workings.
The ventilation system in Kazakhstan’s gold mine was in need of improvement for
the reason of increased production from deep horizons. The main aim of this study
was to analyze the financial risks associated with high-cost airflows in deep horizons
of the gold mine.

The investigated mine uses sublevel caving method that produces ore utilizing
conventional drill and blast method. The mine is serviced by one vertical Shaft#1
utilized as an intake airway and a ramp connected to an incline used as an exhaust.
The mine uses blowing ventilation system with the fan ‘“VO-24K’ arranged on the
surface in Shaft#1. Auxiliary ventilation required to force air into blind headings
use axial flow fans and flexible ventilation ducting. Fans located in the main access
deliver air from the fresh side of the primary ventilation circuit without recirculating
the blast fumes. The existing underground developments enable exhaust air to exit the
mine through the ramp and further thought the incline. Shaft#1 is used for personnel
transport. The incline commencing at the surface extends down to the ramp and joins
major levels and generally services mining operations.

The mine operates in 2 x 10 h shifts per day, 7 days per week. There is a mid-shift
lunch break to allow blasting to occur in the ore headings to maintain production
efficiency.
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Table 1 Kazakhstan mine ventilation requirements

Maximum air velocities Requirements (m/s)
Cleaning and preparation drives (footwall drive) 4

Cross cuts, vent, main haulage ways, and main decline 8

Other places 6

Crossings and main vent shafts 10

Shafts for lifting persons 8

Shafts for lifting cargo 12

Shafts for lifting persons in emergency 15

Vent shafts and vertical development without ladders No restriction

The mine ventilation network modelling has been undertaken to be compliant
with Kazakhstan’s mining regulations requirements for underground mine ventilation
[1]. Table 1 shows the main mine ventilation regulations used to model the mine
ventilation.

The airflow requirements for the mine have been calculated based on the under-
ground equipment and the blast ventilation requirements.

Modelling of the ventilation network was limited to only the main ventilation net-
work and did not consider abandoned closed mining areas. The ventilation network
has been modelled at one stage to represent maximum mine air resistance towards
later stage of mine life (7 years).

In this study, risk analysis used stochastic modelling applied to the optimized ven-
tilation network to estimate risks of investment into Ventilation on Demand (VOD)
system. VOD can influence power savings of fans by reducing wasted air in areas
without mining activity, redistributing existing ventilation capacity and better con-
trol over the ventilation system. An accurate ventilation network model is needed to
undertake the analysis, implement automatic ventilation controls and fans with sen-
sors for air quantities and quality. VOD will need additional capital for remote airflow
control using variable flow fans, in-flight adjustable blades, regulators with motor-
ized louvers or sliding doors. The additional operating cost would be incurred for
ongoing maintenance, moving, updating, adding and removing sensors and controls.
The computer system will determine how much air is required to dilute contaminants
below statutory levels. Target ventilation conditions need to be reached as people or
equipment enter a drift, face area or other location. It has to be noted that the cost
of ongoing maintenance must be significantly lower than savings in power cost to
justify capital investment [2—4].

Stochastic modelling provided ranges of Internal Rate of Return (IRR) outcomes
with confidence limits as well as mean values in each case. Risk is quantified by
replacing single values with a probabilistic distribution and applying Monte Carlo
simulation for each calculation. Decision-makers can view not only the mean out-
come value but also the range of possible outcome range values. Monte Carlo simula-
tion utilized the randomly select values from the probabilistic distribution. Software
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‘Palisade @Risk’ was used to construct and analyze stochastic models in Microsoft
Excel spreadsheets [5].

2 General Theory and Measurement Techniques

The determination of frictional pressure drop in mine airways may be obtained from
the following relationship [6]:

P = f+LxPer/Ax%p*v?/2 (Pa) (1)

where

f  Chezy Darcy coefficient of friction
o Air density (kg/m?®)

Per Airway perimeter (m)

v Air velocity (m/s)

A Area(m?)

L  Length (m)

This is a form of the Chezy-Darcy (Darcy-Weisbach) equation applicable to cir-
cular and non-circular airways and ducts. The Chezy-Darcy coefficient of friction
(dimensionless) varies with respect to Reynolds Number, the trend of which is plot-
ted on the Moody diagram. The Chezy-Darcy equation was adapted by J. J. Atkinson
to give the following, commonly used, Atkinson Equation [6]:

P =kx L xPer/Axv> (Pa) (2)

The k factor is a function of air density and is computed as the product of the
Chezy-Darcy coefficient of friction and the air density, divided by a factor of two.
Since the Chezy-Darcy coefficient of friction is dimensionless, the k factor has the
units of density (kg/m*). The Atkinson equation may be expressed in terms of the
Atkinson resistance (R) for the airway, where [6]:

R=P/Q* =k« LxPer/A> (Ns*/m®) (3)

The first section of this equation, relating frictional pressure drop and quantity
to resistance, is known as the Square Law. This important relationship is used to
establish resistance from measured pressure and quantity data. The second section
of the equation is used to determine resistance from typical k factors and known or
proposed airway geometry. It should be noted that the frictional pressure drop term
in the Square Law is directly proportional to air density, as is the k factor, which is
the combination of the friction factor, air density and constants in the Chezy-Darcy
equation. Hence, the k factor that is applied must be adjusted for actual mine air
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density. The k factor is not constant for a given airway, but varies with Reynold’s
Number. However, in mine ventilation, it is normal to assume that the k factor is
constant, regardless of the flow regime. This is because, for fully turbulent flow
(which is typically the case in mine ventilation), the friction factor is a function only
of the relative roughness of the airway. The relative roughness of the airway is defined
as the height of the airway asperities (e) divided by the hydraulic mean diameter [6]:

d = 4A/Per “)

The selection of appropriate friction factors is a critical component of mine ven-
tilation planning. Resistance values for future mine openings are determined by
applying a suitable friction factor against proposed airway geometry. It is important
to understand the source and specific conditions associated with the friction factors
[6].

Regular measurements of airflow and pressure were undertaken. Resistances were
evaluated from measured pressure and airflow data using the Square Law relation-
ship (Eq. 3). The airflow surveys consisted of the measurement of mean air veloci-
ties and airway cross-sectional areas at the predetermined locations. A rotating vane
anemometer attached to an extendible rod was used to traverse the airways for mea-
surement of the mean air velocity [6].

The airway cross-sectional areas were measured using laser distance measurement
with typically three width and three height measurements per cross section. Airway
obstructions were measured, recorded and subtracted from the gross cross-sectional
area. The air quantities at each station were computed as the product of the air veloc-
ity and the airway cross-sectional area. Frictional pressure drops were determined
using the gauge-and-tube technique for all lateral airways and ramps. The gauge-
and-tube (or trailing hose) method allows direct measurement of frictional pressure
differentials using a digital manometer connected into a length of tubing, the ends
of which are connected to the total pressure tappings of pitot-static tubes [6].

Measured airflow data used in computerized ventilation model for optimization
of the mine ventilation networks [7].

3 Results and Discussions

3.1 Ventilation Financial Optimisation

Based on the latest mine ventilation system surveys, a computerized model was
developed for simulation processes aimed to provide with sufficient amount of fresh
air deep horizons. The principal objectives of the ventilation design were to remove
the diesel fumes from mechanized mobile equipment and remove blasting fumes from
the workings and provide for a reasonable re-entry period. Ventilation simulation has
been carried out using ‘Ventsim’ software.
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Energy Losses 221.1kW

m Drive Wall Friction mExit Losses = Shaft Wall Friction

Fig. 1 Air pressure loss diagram

Calculated airflow requirements take into account the mining fleet. Accepted by
Kazakhstan’s mining regulations [1], the method of determining ventilation require-
ments considers that the removal of diesel fumes is based on a diesel dilution rate of
5 m3/min/hp of diesel engine horsepower. Calculations used the entire fleet with their
modelled availability and utilization. To support the proposed fleet in deep horizons,
a primary circuit airflow was calculated to be 118 m3/s.

Simulated intake from Shaft#1 delivered around 118 m3/s of fresh air from the
surface to the bottom of deep horizons. There were three regulators installed at the
workshop level to control air movements to provide fresh air for the loading process
and to place the refueling bay and welding bays under direct exhaust ventilation. A
total of 18 m3/s was exhausted directly to the return from the workshop level. The
remaining fresh air from the Shaft#1 fed the production levels below. The ventilation
system for the production areas did not reuse air, but instead exhausted the air from
each footwall drive extremity after it was used in the ore drives.

Simulated network summary produced 272 airways with the total lengths of
12,744 m. The existing ventilation network was simplified by excluding closed air-
flows in abandoned mining areas. Results of the existing ventilation network simu-
lation are listed and in Figs. 1 and 2.

Air pressure losses diagram is shown in Fig. 1. Air pressure losses were calculated
to be approximately 221.1 kW from which 9.3 kW were losses incurred in Shaft#1
wall friction, 201.5 kW losses were in drives’ wall friction, 10.2 kW in exit losses
and 0.1 kW in shock losses (Fig. 1).

Input power electrical is 317 kW from which electric energy losses on pressure
makes 19.6 kW and the fans efficiency losses—95.6 kW. Total pressure loss was
about 1840 Pa as demonstrated in Fig. 2.
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3.2 Ventilation Financial Optimisation

Financial optimization was analyzed using ‘Ventsim’ software and showed that four-
teen airways could be optimized. The optimization showed potential savings of
approximately US$ 355k for the following seven years. Optimized airways pro-
vided US$ 595k in power savings (140 kW) discounted 10% and fans capital cost
savings of about US$ 124k. To achieve these savings, a capital investment will be
required of about US$ 366k for mining developments (increasing cross-sections for
the existing incline, some areas of the ramp and other drifts). The most significant
savings can be produced on the incline within a length of 450 m and on a part of
the ramp within a length of 124 m. Financial simulation results propose to increase
the incline cross-section by 3.7 m? to give potential annual power savings of about
US$ 70k and to increase cross-section by 5.2 m? for part of the ramp, which would
generate annual power saving of about US$ 38k.

The circuit illustrated in Fig. 3 is a screenshot from ‘Ventsim’ software after the
financial simulation and with optimized airways cross-sections.

As a result of the financial ventilation optimization, the air pressure losses were
made about 129.4 kW from which 9.3 kW losses were generated due to Shaft#1 wall
friction, 115.4 kW losses due to drives’ wall friction, 4.6 kW due to exit losses and
0.1 kW due to shock losses.

Input power electrical generated 207.8 kW from which the electric energy losses
on pressure were 15.0 kW and the fan efficiency losses of 78.4 kW. Total pressure
loss was about 1080 Pa.

In comparison with results for the existing ventilation network before the financial
simulation, the energy losses for the optimized ventilation network were significantly
decreased.
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Thus, the financial simulation estimated the optimum ventilation infrastructure
size, where high-cost airflows were optimized by taking into consideration mining
cost and ventilation operating costs.

3.3 Financial Risk Analysis

Preliminary estimations showed that VOD could save for the mine were about 23%
of annual power cost. Savings resulted from improving ventilation system efficiency
by reducing airflow in areas without mining activity and redistributing existing ven-
tilation capacity. At the same time, there should be some capital investments based
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on variable speed fans, automated regulators, construction material, control system,
communications, and tracking infrastructure. Financial model was produced taking
into account capital and operational cost for options of the existing ventilation net-
work and the optimized ventilation network with the implementation of VOD. The
VOD capital cost was estimated at a conceptual level.

The optimized ventilation network with the implementation of VOD option
demonstrated 3.1% higher IRR in comparison to the current ventilation network.

Stochastic modelling of investment analysis was examined. A major variability
was in the electricity pricing. A triangle distribution was used for each price each
year of the mine life. No escalation was applied to the price. After simulation of 1000
iterations, the existing ventilation network probability distribution of IRR value was
between 10.8 and 16.2% at 90% confidence level and the mean was 13.6% (Fig. 4).

Optimzed ventilation network with VOD showed IRR value between 15.2 and
18.1% at 90% of confidence level and the mean was 16.7% (Fig. 5).

The optimized ventilation network with VOD gives probability distribution with a
stronger confidence level of getting higher IRR than the existing ventilation network.

4 Conclusions

Mine ventilation system surveys were undertaken to develop a computerized model
for simulation processes to provide with sufficient amount of fresh air deep hori-
zons in the gold mine. Based on the completed computerized ventilation model, the
financial simulation estimated optimum ventilation infrastructure size, where high-
cost airflows were optimized by taking into consideration mining cost and ventilation
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costs. Results of ventilation financial simulation were used to analyze financial risks.
Financial model was produced taking into account capital and operational cost for
options of the existing ventilation network and the optimized ventilation network
with use of VOD. The optimized ventilation network with VOD option demonstrates
3.1% higher IRR than the existing ventilation network option.

Stochastic modelling of investment analysis was undertaken and a major variabil-
ity used was electricity pricing. A triangle distribution was used for each price each
year of the mine life. As a result, the optimized ventilation network with VOD gener-
ated probability distribution with a stronger confidence level of getting higher IRR in
comparison to the existing ventilation network. Financial risk analysis recommends
implementing automated ventilation control for saving energy costs.

Acknowledgements This study was supported by Nazarbayev University Grant Program for
Research Grant (090118FD5337) “Risk Analysis Methodology for Automated Mine Ventilation
Systems”.

References

1. Kazakhstan mining regulations requirements for underground mine ventilation http://egov.kz/
cms/en/law/1ist/P090001939_

2. Kocsis, C.: New ventilation design criteria for underground metal mines based upon the “life-
cycle” airflow demand schedule (2009)

3. Paajanen, S., Trang, T.: NRG1-ECOTM—Impact on energy savings and air quality (2010)

4. Lyle, G., Bullock, K., Dasys, A., Hardcastle, S.: Ventilation on demand project. In: MDEC
Conference (2010)

5. Palisade @Risk software, version 7.5 (2018)


http://egov.kz/cms/en/law/list/P090001939_

32 S. Sabanov

6. Duckworth, 1.J., Loomis, 1., Prosser, B.: Fifteen years of resistance data collected at Freeport
Indonesia. In: 14th United States/North American Mine Ventilation Symposium, 2012—Cal-
izaya & Nelson© 2012, Department of Mining Engineering, University of Utah

7. Sabanov, S.: Determining ventilation system model inputs from field test work in the oil shale
mine. In: The Australian Mine Ventilation Conference (2017)



Part 11
Mine Development



Fundamental Study of Stope and Barrier

Pillar Stabilities by Using Cut and Fill L
Method for Redevelopment of Rest Gold

Mine, Myanmar

N. Naung, H. Shimada, T. Sasaoka, A. Hamanaka, S. Wahyudi and M. Pisith

1 Introduction

Mineral consumption is gradually increasing as the global standard of living increases
and mineral demand will be largely concentrated in developing countries experi-
encing economic development progressively. This implies mineral extraction from
greater depths both surface mining and underground mining. However, underground
mining will become more important in coming decades as environmental issues
make surface mining less attractive. After a period of mining, easily accessible shal-
low mineral resources are being mined out and the deposits of rest mine are left in
deeper regions. Therefore, underground mining continues to progress into deeper
levels in order to fulfill the mineral supply. Accordingly, stress condition in deeper
mine will be greatly changed and the mining process would be more complicated
when it is operated for the redevelopment of rest mine projects. Without doubt, the
stability of underground openings is a major concern for the safety and productivity
of mining operations. Mine development instability can result in production delays,
loss of reserves, as well as damage to equipment, and injuries. Therefore, this paper
outlines the fundamental study of stope and barrier pillar stabilities for the rede-
velopment of rest gold mine, National Prosperity Gold Production Group Limited
(NPGPGL) underground gold mine in Myanmar, as a case study.

The instability of underground excavation depends on the behaviors of the sur-
rounding rock mass. Different rock types have different characteristics parameters
that influence their mechanical behaviors. Therefore, knowledge and understanding
of rock mass condition are essential for the stability of underground excavations.
The first step for describing rock mass is to examine rock mass properties deter-
mined by lithology, laboratory tests, and field observation data. The second step is to
determine the geotechnical information of rock mass for the purpose of rock engi-
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neering design such as numerical modeling, analytical calculation, etc. Considering
the importance of rock stability in stope opening, field observation for lithology,
geology and mining system at NPGPGL underground gold mine was conducted, and
laboratory experiments were carried out to get the physical properties of rock mass,
and the fundamental study was carried out by using numerical simulations.

2 Case Study

2.1 Location

NPGPGL at Modi Taung is situated approximately 150 km southeast of Mandalay
and 385 km north of Yangon, in the eastern part of the Yamethin Township, central
Myanmar as shown in Fig. 1. The company is operating in the southern part of
Block 10 area where the exploration works were previously conducted by Ivanhoe
Myanmar Holding Ltd. IMHL), a Canadian mining company, who acquired the
exploration/mining lease from the government from August 1996 to August 2005.
NPGPGL started this gold mine on September 2011 with total mine lease area of
24.71 km?. The mine is located approximately 1300 m above sea level and it takes
around three hours from Nay Pyi Taw, the capital city of Myanmar by car and the
road conditions vary from sealed roads to off roads.

2.2 Regional Geology

Block 10 concession in central Myanmar has identified a 100 km? gold district, the
Modi Taung—Nankwe district, with feature characteristic of slate-hosted mesother-
mal quartz—gold vein deposits as shown in Fig. 2. The deposit is hosted in the sedi-
mentary units of the Mergui Group, which is composed of two dominant sedimentary
formations. The lower part consists of massive to laminated mudstone, sandstone,
rare limestones, and channel-fill pebbly wackes while the upper part includes several
polymict conglomerates [1].

2.3 Host Rock Lithology of NPGPGL

Veins at Modi Taung gold mine are hosted by four main lithologies: mudstone,
sandstone-siltstone, limey sandstone or limestone, and igneous intrusions. Mud-
stones are the predominant rock type in all vein system but sandstone occupies short
segments, and veins tend to occur along the inclined interface between sandstone
and mudstone. Their competence and hardness increase with depth from soft clay
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Fig. 1 Research mine site’s location map

immediately beneath soil cover to a hard rock that is tough and competent with the
exception of moderate hardness near and below the base of the oxide zone. Sandstone
and siltstone are mostly silicified and cut by quartz stockworks, forming quartzite.
They are mostly intensely fracture, and hence brittle. Ground conditions are poor in
Shwesin vein system and within 60 m from the surface where partial oxidation has
occurred [2].

At NPGPGL gold mine, Htongyi Taung and Sakangyi vein systems are hosted
by mudstone, while in the Shwesin, Sakangyi and Momi Taung systems host rocks
are predominantly mudstone or siltstone and the rest sandstone [1]. Veins in the east
of the least area are dipping steeply to the west, while veins in the west are dipping
steeply to the east. Vein width varies with elevation and ranges between centimeter
and meter scale [3]. The detail geological structure of NPGPGL is shown in Fig. 3.
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3 Field Observation

3.1 Rock Mass Condition

Currently, most of the shallow parts of NPGPGL are already mined-out and mining
activities are going to continue to progress to deeper levels in order to fulfill the target
ore production. Therefore, rock mass condition at deeper area should be investigated
for the stability of underground excavations. From the borehole data, the RQD and
depth from NPGPGL gold mine are shown in Fig. 4 and the correlation between RQD
percentage and rock mass quality is shown in Table 1. Besides the RQD condition
of the rock mass, some activities such as discontinuities, persistence, aperture, rock
roughness, and weathering of rock are conducted to complete full estimation of rock
mass condition. Furthermore, rock mass parameters that obtained from laboratory
experiments are shown in Table 2 and the uniaxial compressive strength of intact
host rock and vein from NPGPGL gold mine are 148 and 140 MPa, respectively.
According to these intact rock parameters, it can be seen that the rock mass
strength from NPGPGL gold mine is strong. However, without the consideration of
geological structure, rock mass properties are not properly applied for any form of
analysis for the design of slopes and underground excavations. Regarding this case,

100

75

50

RQD %

0 30 60 90 120 150
Depth (m)

Fig. 4 Relation between RQD and depth of NPGPGL gold mine

Table 1 RQD classification RQD (%) Rock mass quality
index

<25 Very poor

25-50 Poor

50-75 Fair

75-90 Good

90-100 Excellent

Table 2 Intact rock properties obtained from laboratory experiments

p (kg/m?) | E (MPa) v(-) o; (MPa) | ¢ (deg) C (MPa)
Hostrock | 2717 19,000 0.25 10.4 58 18.5
Vein 2667 12,000 0.22 3.8 71 11.1
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Fig. 5 Rock mass condition in underground tunnel showing joints and cracks

Table 3 Rock mass properties evaluated with geological conditions

o (kgim3) |E(MPa) |v(-) o, (MPa) | ¢ (deg) C (MPa)
Hanging wall | 2670 3786 0.23 0.035 42 0.904
Footwall 2717 3786 0.25 0.065 38 0.806
Vein 2667 3374 0.22 0.028 42 0.871

the Geological Strength Index (GSI) introduced by Hoek et al. [4] is very essential
to estimate the rock mass strength for different geological conditions. From the field
observation at NPGPGL gold mine, many cracks and joints within rock mass are
found in underground tunnels and stopes as shown in Fig. 5. Additionally, heavy
rainfall is one of the causes of weathering of the rock mass. The rate of water charge
increases after periods of heavy rain which is common for this area. This meteoric
water interacts with the surrounding rocks which result in weathering of host rocks,
leading to strength reduction of host rocks. All of these conditions will give effect to
the instability of underground excavations and should be paid attention in order to
prevent the ground collapse.

Consideration of rock mass condition including several factors such as RQD, joint
spacing, condition of joints, and weathering, the evaluation of NPGPGL rock mass
properties from intact rock properties are shown in Table 3.
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Fig. 6 Mine plan at Shwesin vein system. Source NPGPGL

3.2 Mining System

As described above, the accessible shallow area is already mined out at NPGPGL
and the deposits of rest mine are left in deeper regions. Therefore, the company is
planning to mine out the deeper area at Shwesin vein which is separated into 6 blocks,
namely from block 1 to 6. The overall mine plan is illustrated in Fig. 6.

The company adopts open stope mining and overhand cut and fill method to
extract the minerals at Shwesin vein system. The waste rocks from the excavation
are only using to both fill the stope and provide permanent wall support for the lower
mine out cavity. Vein width varies with elevation and ranges between centimeter
and meter scale. Vein dipping is more than 50 degree, and Vein orientation within
Shwesin vein system and vein widths with elevation at NPGPGL gold mine area are
shown in Figs. 7 and 8 [3].

4 Numerical Modeling for NPGPGL Gold Mine

The stability of stope and barrier pillar for the redevelopment of rest gold mine in
deeper regions at NPGPGL was carried out in different numerical models by using
the FLAC3D code. FLAC3D is explicit finite difference code that is developed for
analyzing stress and deformation of mining and tunneling problems conducted in
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Fig. 8 Vein widths plotted against elevations at NPGPGL gold mine [3]

both soil and rock. In this paper, the numerical simulations were modeled in order to
understand the failure conditions of new stope opening due to the effects of previous
mined-out area, the stability analysis considering different barrier pillars size (2, 2.5,
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Fig. 9 Numerical model

3, 3.5 m) and various vein dips (60°, 70° and 80°). All the numerical models’ size is
250 m x 250 m x 250 m as shown in Fig. 9. As described in host rock lithology of
NPGPGL, the slaty mudstone is a dominant rock type in the NPGPGL gold mine,
and therefore, the hanging wall and footwall are assigned as a homogenous model for
simplification. The mechanical properties of host rock and vein are given in Table 3.
Moreover, to obtain the more precise result of the rock failure distribution, the smaller
mesh size was selected around the excavation area.

4.1 Case Study

In this research, the case study from Shwesin vein system at NPGPGL gold mine
is presented for the overhand cut and fill mining from the lower slice of the vein
of block 2 as shown in Fig. 10. Block 2 is the planned mine area with 24 m height
that is assigned between adit 5 and adit 8 of the Shwesin vein. The previous mined-
out area with 100 m height is overlaying above block 2 and the total overburden
above block 2 is 150 m. This case study is investigated for the stability of the current
stope opening in block 2 not only due to its own induced stress but also the effect
of overlaying mined-out area. The stope dimension is 2.5 m in height and 2 m in
width and the stoping sequence takes place from the lower slice to upwards direction.
During the stope mining, the waste rocks from the excavation are used to fill the stope
and it provides a working platform for the miners when the next slice is mined. For



Fundamental Study of Stope and Barrier Pillar Stabilities ... 45

Numerical model

Cross-section view of mine out

50m

24m 100m

| 2= IR o Ao

Fig. 10 Overhand cut and fill mine plan at Block 2 at Shwesin vein

preparing stope arrangements, steep compartment wooded raises are developed from
the main roadway to provide ore/waste passes and manways.

4.2 Failure Evaluation Criterion

Mining objective is to recover as much ore as possible from the vein. However, men
and machines work in the advancing stopes and their safety must be ensured. Potential
hazards in the stopes are rock falls from the stope’s roof and buckling failures in the
hanging wall and footwall. In order to stabilize the stope, a failure criterion must
be selected. A common problem in mine excavation engineering is estimating the
stability of designed stope to achieve a minimum required value of Factor of Safety
under which roof and wall are considered as unstable. A factor of safety of 1.3 would
generally be considered for a temporary mine opening while a value of 1.5 to 2.0 may
be required for a permanent excavation [5]. The selection of an appropriate factor of
safety is based on engineering experience and field observation. In this research, the
Mohr—Coulomb failure criterion is adopted as shown in Fig. 11 and elasto-plastic
behavior of the rock mass is used.

The strength factor (factor of safety) is calculated by dividing the strength of
rock mass by the induced stress of stoping activities to provide a basis of stability
assessment as follows:

Strenght factor = Rock mass strength/induced stress
={ccosp+[(o1+03)/2 xsinp]}/[(o1 +03) /2] (1)
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Strength factor (safety factor) of 1.3 is adapted for temporary stope mining. The
stope was considered to be in a stable condition when Mohr—Coulomb strength factor
is greater than 1.3. On the other hand, the failure of stope is assumed to occur when
the strength factor is less than 1, and the unstable condition was assigned between
the strength factor value 1 and 1.3.

4.3 Result and Discussions

Redevelopment process of new open stoping under previous mining regions can
affect in high levels of unplanned dilution around the stope room not only due to
blast-induced over-break but also the stress redistribution of the overlaying mined-out
regions. In general, no one can estimate the rock mass is stable or not without numer-
ical simulations. Determining the tunnels and stopes are stable or unstable should
be based on yield zones from numerical simulations. Thus, numerical simulations
using FLAC3D have been observed to understand the effect of previous mined-out
regions, the stability of barrier pillars with different heights and the failure condition
of stope opening due to various vein dips. The explanations of failure terms given in
the legend in FLAC3D are as follows:

— “none” indicates no-failure zone,

— “shear-n” indicates the region failed under shear loading and failure process is still
in progress,

— “shear-p” indicates the region failed under shear loading and failure process is
stopped due to lowered amount of shear forces,

— “tension-n” indicates the region failed under tensile loading, and failure process
is still in progress,

— “tension-p” indicates the region failed under tensile loading, and failure process
is stopped due to the lowered amount of tensile forces.



Fundamental Study of Stope and Barrier Pillar Stabilities ... 47

FLAC3D 5.00

©2012 Itasca Consulting Group, Inc.
9/3/2018 8:32:15 PM

Zone

Plane: on
Colorby: State -Average
None
shear-n shear-p
shear-n shear-p tension-p
shear-p
shear-p tension-p
B tension-n shear-p tension-p
tension-n tension-p
B tension-p

Fig. 12 Failure zone developed without previous mining effects

4.3.1 Effects of Previous Mined-Out Regions at Shwesin Vein System

First of all, numerical simulations are carried out with the aim to understand the
failure zone and stability of stope due to the effects of previous mined-out regions.
Stope mining activities from numerical simulations are modeled from the lower slice
of the vein to upwards direction and the mined-out stope is backfilled by using waste
rock from the excavation. Figure 12 shows the failure zone which occurred around the
stope without previous mining effects and Fig. 13 shows the failure zone developed
with previous mining effects. Based on the simulation results of Fig. 12, the failure
zone around the stope is increasing steadily as the stope progressing move towards
upper slices. These trends tell that failure zone of current stope is accumulated to the
next stope. Compared with the failure condition with the previous upper mined-out
effects as shown in Fig. 13, the failure characteristics of surrounding rock masses
in Fig. 13 results are larger than those in Fig. 12. The statement can be drawn from
these two results that the redistributed stresses from upper mined-out regions are
surely propagated to the current stope mining activities. As a result, the development
of failure zone of current stope room is increased not only due to its own induced
stress but also the redistributed stresses of previous mined-out regions.

It can be clearly seen in Figs. 14 and 15 that show the increasingly unstable regions
of current stope with the contour color code as mining activities continued into the
upper slices. These results tell that decreasing strength factor makes increasing the
unstable regions around the stope opening. Figure 16 proved this description that
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Fig. 13 Failure zone developed with previous mining effects

strength factor indicator is gradually decreasing as the mining steps increase. The
monitoring point for these indicators is placed 0.5 m above the center of stope’s roof.
Additionally, it can also be seen that the instability of the barrier pillar at uppermost
stope with the effects of previous mined-out regions became more severe when the
stope mining reaches to the uppermost level (i.e. nearest stope to the upper mined-out
regions). In this simulation, this barrier pillar is set to be 2 m between the final stope
and upper mined-out regions. Therefore, the numerical simulations for the stability
of barrier pillar are conducted to understand the possibility of unstable regions with
different barrier pillars and determine the appropriate barrier pillar to avoid rock falls
from the stope’s roof.

4.3.2 Stability of Barrier Pillars with the Effects of Overlaying
Mined-Out Regions

At Shwesin vein system from NPGPGL underground gold mine, the barrier pillar
is broadly maintained 2 m between the top stope and overlaying mined-out regions.
As explained in the previous section, the failure zone at the uppermost barrier pillar
propagated to overlaying mined-out regions. Therefore, numerical simulations with
different barrier pillar heights (2, 2.5, 3 and 3.5 m) were carried out in order to
learn the stability of the barrier pillar of the top stope. Figure 17 shows that the
failure condition of barrier pillar with different pillar heights and Fig. 18 indicates
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the unstable regions around the stope room shown by contour color code of strength
factor. It can be seen that the failure zones and instability of top stope continue to the
overlaying mined-out regions when the barrier pillar is set 2 m height, and decrease
gradually when the barrier pillar increase to 2.5, 3 and 3.5 m height, respectively.
According to these results, it can be seen that the unstable regions are still propagated
to the upper mined-out failure zone when the barrier pillar height is setto 2.5 m height.
However, this condition did not apply when the barrier pillars are 3 and 3.5 m height.
Therefore, these results suggested that the barrier pillar between the top stope and
overlaying mined-out regions should be maintained at least 3 m height in order to
make sure to stabilize the stope and to prevent rock falls from the stope’s roof and
walls.
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Fig. 17 Failure condition of barrier pillar with different pillar heights

4.3.3 Instability Due to the Effect of Various Vein Dips

Many mineral deposits can occur as steeply dipping narrow veins. As described
above, vein dipping is more than 50° in this mine site. Numerical simulations with
vein dip of 60°, 70° and 80° are carried out to understand stope and barrier pillar
stability in various vein dips. The results of these simulations are given in Figs. 19
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Fig. 19 Failure zones around the stope due to various vein dips

and 20. The result from Fig. 19 suggests that the failure conditions are more likely
to occur with low vein dip, especially in hanging wall and footwall. On the other
hand, the failure zones above the stope opening increase as the vein dip increase.
Figure 20 shows the contour color code of unstable regions around the stope due to
various vein dips. It can be seen clearly that the unstable regions are more severe in
hanging wall and footwall with lower vein dip while the instability becomes more
developed above the stope opening with steeper vein dip.
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5 Conclusion

As NPGPGL underground gold mine will continue to deeper regions for the rede-
velopment of rest gold deposit, the potential impacts from the overlaying mined-out
regions to the new stope opening should be examined in order to stabilize the stope
and barrier pillar in various mine conditions. Risk-index such as rock fracture, the
effect of underground water, weathering and stress redistribution of the previous
mined-out area, etc. will be subjected to the current stope mining activities. In this
study, the stability of stope and barrier pillar of new opening under the effects of pre-
vious mined-out regions are investigated numerically with three-dimensional finite
difference code software, FLAC3D. The analysis results indicated that the failure
zone and instability of the surrounding rock mass of stope are increasing steadily
as the stope progressing move towards upper slices and it will be propagated to
the previous mine out regions. These conditions should be paid attention for under-
ground mining under previous mining activities for the safety working environment.
Additionally, the instability of the barrier pillar between the top stope and overlaying
mined-out regions became more severe when the model is simulated with the effect
of previous mined-out regions. This result suggested that the barrier pillar should
be maintained at least 3 m height in order to make sure to stabilize the stope and
to prevent rock falls from the stope’s roof and walls. Furthermore, based on the
simulations with various vein dips, the results highlight that the failure conditions
especially in hanging wall and footwall are more likely to occur with low vein dip
and it also increases above the stope opening as the vein dip increases. According to
the above simulation results, suitable countermeasure arrangements is paramount to
be prepared by considering the stability of stope mining activities under the effects
of overlaying mined-out regions.
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1 Introduction

Mining has an essential role in the sustainable development of the society as the
demand for mineral reserves is continuously increasing. The equipment intensive
nature of the mining industry is originated from the production cycle that depends
on machines and manpower. Tracking the performance or the productivity of this
equipment is of key importance for optimum production. Technology is a powerful
potential for performance measurement and analysis as part of continuous improve-
ment strategies [1]. Surface mining is responsible for the majority of the production
of mineral reserves and relies on the efficient operation of mobile equipment. Data
that represents the productivity and reliability of mobile equipment in surface mining
has to be integrated into mine management.

Currently, the state-of-art techniques in data handling and visualization can be
considered as being non-standard among the mining industry. Literature in this field
is limited and a potential area that will be a popular research area for mining engineers
and other disciplines in the near future. Although the amount and variety of data are
considerably high due to the utilized equipment, the amount of data used in decision
making is stated to be less than 1% [2]. This highlights the lack of data utilization in
the industry and the lost opportunity related to production, maintenance, and safety.
The IT infrastructure depends commonly on the type of equipment used on site
and is improved when a new equipment, hardware, or system is integrated into the
operation. The level of using technology varies between taking manual records and
entering them to the existing IT infrastructure to more sophisticated and integrated
data environments.

As the production in surface mining is conventionally starting from drilling and
blasting, available technology, such as, high-precision GPS systems for operator
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guidance, and tracking drill hole accuracy can be used together with other operation-
related data to achieve desired fragmentation on site [3]. A data source that has
to be integrated into the drilling-related data in surface mining is blasting where
explosive consumption could be tracked either manually or automatically in case
bulk explosives are charged by trucks. Other technologies that are available on mobile
equipment, such as the fleet management system, are also potential data sources of
integration for a final objective of optimum drilling and blasting. The performance
of drilling and blasting practices is commonly evaluated by fragmentation and this
becomes crucial at surface metal mines due to the operation of a mineral processing
plant. Various researchers investigated the impact of better fragmentation on the
performance of downstream processes, in this case, mineral processing [4—7].

Therefore, the desired fragmentation can be considered as a demand from the
mineral processing stage to the drilling and blasting stage of the production. The
integration, analysis, and evaluation of different data sources are challenging as
the systems installed on equipment will have different levels of granularity and
even different nomenclature. In case the data sources can provide real-time data, the
performance of the data integration layer will become a major bottleneck for the
IT infrastructure. Data warehousing is a well-known solution to integrate different
systems and extract information from it where execution times of the queries are
critical. Geospatial queries are comparably faster when they are compared to the
queries that are executed on relational data. The main advantage of using geospatial
queries for drilling and blasting related data is that the drill holes can be represented as
points that have a geospatial meaning. This enables to use built-in functions and grids
that are available for geospatial queries and result in shorter execution times and some
additional visual representations for reporting. This study introduces a systematic
approach to integrate drilling and blasting related operational data collected either
manually or automatically at a surface copper mine by using geospatial queries as
part of integration in a data warehouse.

2 Methodology

The methodology followed in this study is based on data warehousing and the utiliza-
tion of geospatial queries. The different types of data related to drilling and blasting
were integrated into MS SQL Server and different Business Intelligence tools were
developed for mine management purposes. As data sources related to different tech-
nologies had unique properties, the initial stage was to characterize all related sources
of data. This stage has a major importance for integration as it guides the potential
measures that will be used in developing management tools and reports. Once the
data is characterized, possible integration points are identified and test queries are
run. During this stage, the performance of queries is evaluated based on correctness
and execution time. As the data used in this study was real-time, execution times
of the queries and stored procedures were of major importance. For this purpose,
drilling and blasting related data was converted into point data in MS SQL Server to
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benefit from geospatial queries. Measures from different data sources were aggre-
gated to set the level of granularity to a single blast hole that was represented by its
coordinates. The available data in the mining industry has different characteristics
and has to be handled accordingly especially for cases represented in real time.

2.1 Data Types in Mining Industry

The utilization of more operational data for decision-making has become an essential
part of modern mine management. Increasing role of data led the mining industry to
invest in technology to collect, integrate, and analyze data for generating information.
The mining industry is dominated by relational and process type of data representing
both mining and mineral processing operations.

Relational data is the basis of relational models in data warehousing where data
is grouped into relations [8]. Fleet management systems (FMS) that provide oper-
ational information from all mobile equipment such as drilling rigs, haul trucks,
shovels, and others can be considered as the main component of relational data in
the mining industry. The operational cycles in mining can be represented by the time
and location of the mobile equipment that is tracked by FMS. Other operational data
such as, number of blast holes, tons hauled to a crusher or other measures can also be
tracked by these systems and utilized for mine management. Enterprise systems that
are used in corporate mining companies also have the capability to integrate asset
management information and their mine planning software which can be monitored
as a performance measure [9].

Equipment and machinery used in the mineral processing part of a mine opera-
tion generate a different type of data that is commonly represented by time series.
SCADA systems and other process control environments display operational data of
equipment in crushing and grinding, conveyors, other machines. This data is defined
as process type of data and provides a timestamp and a value that is recorded very fre-
quently. Examples of process type of data can be temperature, pressure, and humidity
readings, the amount of power consumed, or whether the machine is working or not.
In order to generate knowledge from this high-frequency data, it has to be character-
ized and measures have to be created. Integration of all types of data observed in the
mining industry is of major importance for decision making and mine management.

3 Integration of Drilling and Blasting Data

Drilling and blasting related data is generated by different equipment and has to
be integrated with other data sources for creating valuable metrics. In this study, a
relational data warehouse was used as the semantic data layer and different business
intelligence tools were developed.
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3.1 Data Integration

In this study, the data used in geospatial queries was based on different data sources
which are the equipment systems related to drilling and blasting. Data generated and
provided by the drill monitoring system, reports of explosive loading, the drill and
blast assessment system, and the fleet management systems were integrated. During
this integration, the level of granularity was different for each of these systems. The
drill monitoring system kept records for each blast hole, whereas the drill and blast
assessment system data was based on every picture taken by the system during load-
ing. These systems can be installed at different locations to track the fragmentation
by using digital image analysis [10]. The different systems that provided data related
to drilling and blasting are represented in Fig. 1.

As the aim was to improve the drilling and blasting process as a whole, all avail-
able and related data was integrated on each blast hole. These different systems had
unique nomenclature to represent blast holes that were identified during data char-
acterization. In order to create information from this data, geospatial queries were
used.

3.2 Geospatial Queries

Geospatial data has been used in different systems especially in remote sensing and
GIS applications as an interoperable source of information [11]. Similar to other
types of data, geospatial data should also be integrated with other data sources and
enabled to be used in a user-friendly way. Although database management systems
have different functionalities focused on geospatial data, it is still crucial to meet
the requirements while using industry-specific data. Data integration for modern
mine management should utilize spatial data especially for drilling and blasting,
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and therefore basic spatial data concepts are important to be understood before data
integration [12].

Operational data in surface mining covers mostly relational data that can be con-
sidered to have geospatial meaning. Drilling operation is a geospatial data source that
provides drill hole locations and other operational measures such as drilled depth,
average penetration rate, and others. The locations provided by drill monitoring sys-
tems can be represented as points for exact locations. These points can be used to
calculate measures such as spacing and burden in case they are integrated with the
mine planning software from where the actual bench geometry can be exported as
points. Each point representing the drill hole collar is recorded together with oper-
ational measures as bit on load, penetration rate, and revolutions per minute (rpm).
This data was integrated and analyzed by using the geospatial functionality of MS
SQL Server. The first step was the preparation of data for geospatial queries as func-
tions such as shortest distance and others could only be executed on geospatial data
specifically defined by a data type in MS SQL Server. All drill hole locations were
represented by unique identifiers, known as spatial reference identifier (SRID) that
combined the coordinates. Once the conversion was completed, it was possible to
plot the drill hole locations by using the newly generated geospatial column in the
fact table as shown in Fig. 2.

Y coordinate

X coordinate

Fig. 2 Geospatial visualization of drill hole data in RDBMS
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Geospatial indexing was used to define a grid for coordinates in which the geospa-
tial query was executed. As real-time data was used in this study, a stored procedure
to convert the coordinates of each drill hole was developed. In order to enhance the
available information sourced from different systems, a nearest neighborhood algo-
rithm was developed to identify the drill holes that are within a predefined perimeter
for each individual drill hole. The table that stored the operational data related to
drilling and blasting was updated to include the information of nearby drill holes.
This also covered the data sourced from the blasting operation where explosive type,
amount of explosive charged, and explosive density were combined for the nearest
drill holes. As a result, each individual drill hole was represented by an aggregated
information for all drill holes located within the nearest neighborhood algorithm.
The distances between a drill hole and the nearest neighboring drill holes generated
anew value that was used to calculate new measures. A representative data structure
as seen in Fig. 3, illustrates the use of geospatial queries.

As a result, empirical approaches related to fragmentation commonly utilize a
single value for blast geometry and are based on the assumption that all blast holes

Drilling Blasting (Manual) Blasting (Automated) Drill & Blast Assess.
Collar X coordinate Stemming Explosive Type F80
Collar Y coordinate Water Depth Explosive Density F50
Collar Z coordinate Diameter Explosive Amount F20
Drilled Depth Burden Depth = of pictures taken
Average Penetration Rate

A 4

Fact Table

Collar X coordinate

Stemming

Explosive Type
F&0

Mearest
Neigborhood

v
Geospatial Data
Closest Dniilholes

Minimum Distance
Average Diameter

Average Depth

Fig. 3 Data structure of geospatial queries



Use of Geospatial Queries for Optimum Drilling and Blasting ... 63
in a round are drilled successfully as they are designed. However, it might be the
case that there is a difference between the drill hole locations as they are designed
and drilled. The information that was generated by geospatial queries was used to
analyze the performance of drilling and blasting operations.

4 Data Analysis for Optimum Drilling and Blasting

The data that was used in geospatial queries in this study was utilized as the basis of
evaluating the performance of drilling and blasting operations. Although most of the
systems that were used as data sources were automated, the explosive consumption
was recorded also by a manual entry document. Explosive consumption and blast
hole design geometry data, manually prepared by field staff, are rather static when
compared to real-time data sources such as drill navigation systems. The granularity
of the manually collected data is also less than that of other data sources in the data
warehouse. However, this data is valuable in validating and enhancing the data, as
its content was not captured by any other system on site. Table 1 summarizes the
available variables related to drilling and blasting in the data warehouse.

Table 1 Available variables related to drilling and blasting in the data warehouse

Drilling Blasting (manual) Blasting (automated) | Drill and blast
assessment

Drilled hole count Avg. subdrill per shot | Hole depth Avg. of top size

Avg. pen. rate Avg. plugged holes Stemming height Avg. pictures taken

per shot

per truck load

Number of re-drilled
holes

Avg. diameter per hole

Hole diameter

Avg. of F80, F60, F20,
etc.

Horizontal offset

Avg. spacing per hole

Explosives load height

Avg. of conveyed
material on belt
conveyors

Toe offset in X, Y, and
Z

Avg. depth per hole

Water level

Avg. duration to drill a
hole

Avg. burden per hole

Explosives amount

Collar offset in X, Y,
and Z

Avg. stemming per
hole

# of holes with no
design file

Avg. powder factor
per hole

Hole depth

Avg. depth per hole

Actual avg. drilling
rate

Rock density

Collar coordinates in
X, Y,Z
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The GPS coordinates recorded by the drill navigation systems provided exact
locations of drilled blast holes on site. However, these drill hole locations are subject
to controversy, as there are different sources for this data. Drill hole locations are first
designed in mine planning software and then marked on site by surveying. Drill plans
are uploaded to drilling machines and operators also consider survey marks. As a
result, the drill navigation system collects GPS data while operating. The difference
in these data sets indicates drilling accuracy, which can be visualized as shown in
Fig. 4.

As seen in Fig. 4 the difference between the locations of drill holes as designed
and as drilled is a major performance indicator for drilling operations. Visualizing
data and providing an easy-to-use environment to drill down in the data layers is key
to business improvement. Such accuracy metrics can also be considered as the basis
for Quality Assurance/Quality Control (QA/QC) practices in drilling. Utilization of
this data enabled a corrective action that benefited supervisors and operators. The
discrepancy in drilling accuracy decreased and maintained its target value through
daily data analysis. Another QA/QC benefit that data warehousing provided was
related to explosive loading.

The amount of explosive loaded in blast holes has to be closely controlled for
target fragmentation, environmental impacts, and stability concerns. Data related to
explosive volume charged was extracted from available data sources and enhanced
by using geospatial queries. The variation in explosive volume loaded in neighbor-
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Fig. 5 Explosive volumes loaded in a single shot

ing blast holes indicates potential inefficiencies. Figure 5 shows that a single shot
consisting of blast holes with the same design parameters produces inconsistencies
in the amount of explosive.
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This unbalanced distribution of explosives could have adverse effects such as
fly rock, air shock, vibration, and over-size rocks. Nonuniform energy distribution
can be considered as one of the major reasons of missing target fragmentation. The
performance of downstream processes as digging, loading, haulage, and crushing is
prone to be affected by uncontrolled explosive amounts.

5 Conclusion

Modern mines are equipped with different levels of technology that generate valuable
operation-related data. The equipment intensive nature of the mining industry makes
it a suitable environment to utilize data in decision making and management. This
study focused on the drilling and blasting operations in an open-pit copper mine and
introduced a management perspective that uses integrated and real-time data for the
evaluation of drilling and blasting performance. Geospatial queries were developed to
handle data generated by drill monitoring and explosive loading systems. This way,
new measures and tools were created to track the success of drilling and blasting
operations. Drilling accuracy was improved once the geospatial representation of
drill holes were used as a performance measure. Similarly, engineers were provided
with a valuable tool that can be used to drill down into the detail of the integrated
data warehouse. The most considerable improvement was the 14% increase in mill
throughput. This tool also enhanced the utilization of data in daily mine management.
The systematic approach to integrate drilling and blasting related data collected either
manually or automatically by using geospatial queries has the potential to improve
efficiency. Although analyzing data by conventional ways might still provide similar
results to a certain extent, the implementation of geospatial queries generates the
same valuable information, by handling the amount and frequency of data in modern
mines.
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Prediction of Rock Fragmentation Based )
on a Modified Kuz-Ram Model i

A. Hekmat, S. Munoz and R. Gomez

1 Introduction

In any mining project, drilling and blasting are the first basic operations that form part
of an integrated system. They can influence the results of the subsequent operations in
productivity as well as in costs, energy efficiency, and environmental emissions. An
efficient blasting can be achieved by defining the relationship between blast design
parameters and fragmentation. Many studies have been carried out to determine the
impact of blast design parameters and fragmentation. These types of investigations
are mostly accomplished by systematic study of blasting data at mines [1]. The
size distribution of a blasted muck pile can be used to evaluate the stability of a
waste dump, and optimize loading cycle times and crushing costs, among others.
Furthermore, it is highly important to make a connection between rock blasting
results and their impact on the downstream. Previous studies have been shown how
rock fragmentation influence the loading efficiency [2], haulage productivity, fuel
consumption [3], and crusher efficiency [4].

Several alternative procedures can be used to measure fragmentation. Methods
of determining the size distribution of fragmented rock after blasting are grouped as
direct and indirect methods. Sieving analysis of fragments is the only direct method.
Although it is the most accurate technique compared to others, it is not practical
because the implementation of this method is expensive and time consuming [5]. For
this reason, indirect methods, which are observational, as well as empirical and digital
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methods have been developed. The most popular method to quantify fragmentation
is the determination of size distribution using digital image processing techniques.
This method is cheap, less time consuming and does not interrupt production at
site. Due to these reasons, it is preferred widely by explosives engineers and the
second most reliable method after sieve analysis [6]. Several software suites such
as SPLIT, WipFrag, GoldSize, FRAGSCAN, TUCIPS, CIAS, PowerSieve, IPACS,
KTH, WIEP, etc. are commercially available to quantify size distribution [7, 8].

The other way to determine rock fragmentation is employing empirical models. A
variety of modeling approaches ranging from purely empirical to rigorous numerical
have been used to predict fragmentation from blasting. The most widely used model
was developed by Cunningham [9], based on the size distribution curve of Rosin-
Rammler and the average blast fragment size given by Kuznetsov [10], who estimates
the average fragment size, X5, based on explosive energy, powder factor and rock
factor [9]. Larsson [11] proposed an equation to determine Xs( with regards to drilling
pattern, specific charge, and rock properties [11].

Even though digital imaging processing techniques are cheap and accurate, empir-
ical models are quite successful due to the fact that they are simple, quick to calibrate
and very easy to use [12]. Hitherto developed models to predict the blast fragmen-
tation are mostly based on statistical analyses of field data. Hudaverdi et al. [13]
gathered many blasts performed in different parts of the world to create a blast
database [13]. Based on this database, a hierarchical cluster analysis was used to
separate the blast data on the intact rock stiffness. The resulted database was applied
to predict mean particle size of fragmented material based on neural network model
[14]. Although the accuracy of artificial neural network method is more than regres-
sion analysis, multiple regression method is one of the easiest approaches to develop
an empirical model of fragmentation prediction [15]. The cause of inaccuracy of the
regression analysis might be due to the correlation linear assumption. Some studies
also used Mont Carlo simulator to improve the former prediction methods such as
Kuz-Ram or Larsson methods [16]. In this paper, the Kuz-Ram model is modified
based on the results of image analysis in an iron mine of Iran.

2 Size Determination

The most popular method to quantify fragmentation is the determination of size
distribution using digital image processing techniques which is the second most
reliable method after sieve analysis. In this method, images acquired from muck
pile, haul truck, leach pile, draw point, waste dump, stockpile, conveyor belt, etc.
are delineated by using digital image processing techniques and size distribution of
fragmented rocks is finally determined.

To estimate size distribution, images were taken from muck piles during loading.
Having digitized images, the distribution of blasted rock was obtained by GoldSize
software [2]. The basic steps are sampling the photos, processing the images and
obtaining the size distribution curve of the blasted material (Fig. 1).
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Fig. 1 Determination of rock size distribution using GoldSize software, a sampling the photos; b
input images; ¢ object contours; d image processing result [2]

Random sampling is done from the whole set of images assigned to a blast. Photos
with bad quality or poor lighting are rejected manually. At least 20 photos per blast
are selected for the analysis. Each photo contains a known object as scale. In this
case, two balls of 25 cm diameter are used.

Fragmentation results of image analysis of different rock types existent at site
are presented in Table 1. According to this study, the first blast pattern produced the
largest Xgo, with the least uniformity coefficient, whereby the uniformity coefficient
of the last pattern is maximum as result of its minimum Xg.

3 Kuz-Ram Model

The Kuz-Ram model is probably the most popular model to predict fragmentation of
blasted rock mass. It was developed by Cunningham [9] who modified Kuznetsov’s
equation for ANFO-based explosive to estimate average fragmented size (Xso) and
combine it with the Rosin-Rammler equation to predict the entire size distribution.
The Equations are written as [9]

—-0.8 115 0.633
ran(2) (%)
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Table 1 Results of rock size distribution in several blasted patterns in the mine

Blastno. | Rock type Xs50 (cm) Xgo (cm) | Coefficient of uniformity
1 Oxide 48 114 0.80
2 Magnetite 44 74 1.02
3 Oxide 31 77 1.05
4 Oxide 27 78 1.07
5 Overburden 20 60 1.09
6 Magnetite 33 45 1.18
7 Oxide 26 98 1.23
8 Oxide 48 89 1.35
9 Oxide 26 52 1.54
10 Waste 27 54 1.83
11 Magnetite 21 34 2.10
_0.693(%)"
R=100—¢ 2)

where Fr is rock factor (7 for medium rock; 10 for hard, highly fissured rock and 13
for very hard rock); Q(kg) is the quantity of explosive in a blast hole; V,, (m?) is rock
volume broken by a blast hole (burden x spacing x bench height); E is relative weight
strength of explosive (ANFO = 100; TNT = 115 and Slurry = 117); R represents the
percentage passing smaller than x, x is rock size, and » is the uniformity coefficient.

The rock factor is calculated from an equation originally developed by Lilly in
1986 for blastability index [17]:

Fr = 0.06(RMD + JF + RDI + HF) 3)

where Fr is the rock factor as mentioned above, RMD is the rock mass description,
JF is the joint factor, RDI is the rock density index, and HF is the rock hardness
factor.

Cunningham [18] further developed an equation to estimate the uniformity coef-
ficient “n” of the Rosin-Rammler distribution curve from blast design parameters

[18]:
B\[1+357% W\ /L
n= (2.2 — 14—)|: B:| (1 — —> <_> 4)
D 2 B H

where B is the blasting burden (m), S the blast hole spacing (m), D the blast hole
diameter (mm), W the standard deviation of drilling accuracy (m), L the total charge
length (m), and H the bench height (m).

Widely accepted, this equation is the starting point of any mining operation
linked to blasting. Because of this, high correlation and good prediction capacity
are required. Available fragmentation data obtained from digital image analysis are
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Fig. 2 Comparison of Kuz-Ram predicted size versus actual (GoldSize) data for mine site, a pre-
dicted X50; b predicted Xgo

used to examine whether the Kuz-Ram equation is satisfied. Figure 2a shows the
50% passing predicted by Kuznetsov’s equation against the actual size at mine site.
The comparison of actual Xgy with the predicted value based on the Kuz-Ram model
is also presented in Fig. 2b.

However, even though the Kuz-Ram model has been used widely for estimating
blast fragmentation, it has some drawbacks. One of them is that the rock quality
factor rating is based on subjective descriptions, such as massive, blocky or friable.
With the same blasting pattern, various fragmentations will be obtained in a mine
because of the variety of rock type and discontinuities. As represented by Fig. 2,
the Kuz-Ram model overestimates the particle size in the top and bottom magnetite
while for the oxide zone, the results of the Kuz-Ram model are less than the real
size.

4 Data Analysis

To modify the Kuz-Ram prediction model based upon mine site conditions, two
parameters of the Kuz-Ram equation, namely rock factor and uniformity coefficient,
were investigated.

4.1 Rock Factor

In a research done by the authors, it was proved that Monte Carlo simulation is able
to estimate the rock factor with acceptable accuracy. To estimate the rock factor
by the Monte Carlo simulation technique, the size distributions of muck piles in
several blasting patterns with different rock types were determined by applying the
GoldSize software. Rock factor was then calculated by substituting the real average
size in Eq. 1. Figure 3 shows the frequency histogram of rock types at mine site. The
cumulative frequency (from O to 1) is also calculated in Fig. 3. The results obtained
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from Fig. 3 show that the rock factor varies between 6 and 13 and the histogram
represents a lognormal distribution function in the case of this iron mine. The results
of Monte Carlo simulation show that the rock factor in three different materials of

the mine varies as:

55<Fr<70 In top magnetite
70<Fr<10 In oxide
10<Fr<14 In bottom magnetite

Figure 4a shows the 50% passing predicted by Kuznetsov’s equation using Fr
obtained from Monte Carlo simulation. Despite Xsq, 80% passing predicted have
not a good correlation with the actual data as shown in Fig. 4b. The difference can
be justified by the variety of the uniformity coefficient.
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4.2 Uniformity Coelfficient

The uniformity of fragmentation is expected to be fundamentally a function of pattern
geometry, charging conditions and rock mass characteristics. Literature indicates that
the uniformity index for blasted rock masses generally lies between values of 0.6
and 2.2 [19]. The larger the n value, the steeper the curve, i.e., the narrower the range
of particle sizes in the given material. Values below 0.6 tend to indicate nonuniform
breakage and fragmentation caused by the combination of blasting performance and
other secondary effects such as structurally controlled failures, over break, back
break, and/or poor stemming performance [20].

Figure 5 shows the uniformity factor obtained from Eq. 4 versus the real uniformity
in the mine site. As shown in Fig. 5, Eq. 4 overestimates the uniformity factor. It
is indicated from Fig. 5 that the Rosin-Rammler equation tends to represent more
uniform distribution but the size distribution in the studied site is not uniform due to
less performance of drilling and blasting.

The scatter plot between predicted and actual uniformity factor, “n” in Fig. 6,
shows that there is a good correlation between them (r> > 80%). Therefore, it is
possible to “calibrate” a uniformity factor obtained from Eq. 4 using a factor to
decrease the value calculated by the Kuz-Ram model. This factor is represented by
Eq. 5:

n=53n-738 5)

where n’ is the modified uniformity factor and n is the normal uniformity factor
obtained from Eq. 4. The coefficient of determination in Eq. 5 (r?) is 0.89.
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5 Discussion

Using the modified uniformity factor, it is possible to have an accurate estimation of
Xgo in this mine. Figure 7 compares the recorded Xgo with the predicted value based
on the modified Kuz-Ram model. Figure 8 represents the cumulative distribution of
two different blasting patterns before and after the implementation of the modified
Kuz-Ram model. The cumulative size distribution in oxide rock shows that there is
a significant difference in real and predicted data in fine materials especially for the
particle size less than 30 cm. This is because of using a unique scale (two balls with
25 cm diameter) when taking the photographs from the blasted muck pile. Therefore,
when digitizing the images by GoldSize software, the particles less than 25 cm were
not completely designated. To overcome this obstacle, more photos were taken with
different scales to cover all particles.
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To determine the size distribution of top magnetite rock in Fig. 8, several scales
were implemented to cover all sizes. It can be concluded from Fig. 8 that the differ-
ence in estimation of fine particles by the Kuz-Ram model and data obtained from
GoldSize software is mainly because of the error produced by using unique scale in
photos taken from blasted material for image analysis.

6 Conclusions

The Kuz-Ram fragmentation prediction model is the most widely studied and recog-
nized in mining industries. It has been quite successful due to the fact that it is simple
and quick to calibrate and also easy to use. In this paper, fragmentation results of
image analysis and the Kuz-Ram prediction model were presented for three different
materials in an iron mine of Iran.

Comparison of the cumulative size distribution of image analysis and the Kuz-
Ram model shows that this model can predict the size distribution of blasted rock in
the mine, but it required some modification to calibrate the model. The investigation
of fragmentation in different rock types indicates that with the same blasting pattern,
various fragmentations will be obtained in a mine because of the variety of rock
types and discontinuities. The only parameter in the Kuz-ram model that considers
the physical and geotechnical properties of rock is the rock factor (Fr). To have
a good estimation of the rock factor, Monte Carlo simulation was used, and Fr
was determined for three different materials present at site. Because of the good
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correlation between the uniformity coefficients obtained from the Kuz-Ram model
and the actual mine data, it is possible to “calibrate” a uniformity factor obtained
from Eq. 4 using a factor to decrease the value calculated by the Kuz-Ram model

(Eq. 5).

The results of model verification show that the modified Kuz-Ram model is able

to predict rock fragmentation of blasted rock with an accuracy of 80% in the studied
iron mine.
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Neural Network Applied to Blasting m
Vibration Control Near Communities L
in a Large-Scale Iron Ore Mine

N. Torres, J. A. Reis, P. L. Luiz, J. H. R. Costa and L. S. Chaves

1 Introduction

The growing demand for minerals results in increased use of explosives for blasting
in open pit mining [1]. Blasting is usually the main method used in hard rock mining
to achieve rock breakage and fragmentation [2]. Blasting and fragmentation directly
affects operational activities such as loading, hauling and mineral processing. Nev-
ertheless, only 20-30% of the explosive energy is efficiently used in fragmentation
and the remaining energy generates collateral effects that has potential environmen-
tal impacts such as ground vibration, air overpressure, dust generation, back break
and fly rock [3].

Shi and Chen [4] considered the maximum charge per delay and the waveform
interference by the delay blasting as important factors influencing the ground vibra-
tion and the final pit walls stability. Armaghani et al. [2] and Khandelwal and Singh
[3] have obtained the maximum charge per delay as one of the main influencing
factors on the resultant vibration velocity.

Several studies have been conducted using Artificial Neural Network (ANN) to
predict blast-induced ground vibrations. Chakraborty et al. [5] studied multilayer
perceptron networks to predict ground vibrations and compared it with different
empirical models. Singh [6] applied feed-forward back propagation neural network
to predict and control ground vibrations in mines. Khandelwal and Singh [7] pre-
dicted blast-induced ground vibration and frequency in open pit mines using ANN
models and later [8] compared and evaluated ground vibration predictors using ANN
models. Monjezi and Dehghani [9] applied ANN to evaluate the effects of blasting
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pattern parameters on backbreak occurrence. Monjezi et al. [10] predicted backbreak
formation using ANN.

The parameters that determine blast-induced ground vibrations can be divided
into three groups: (1) Blast design parameters; (2) explosive parameters and (3) rock
mass parameters [11]. Burden, spacing, hole depth, stemming, sub-drilling, maxi-
mum charge per delay and hole diameter are all blast design parameters. Explosive
type, velocity of detonation (VOD), density, strength and specific charge are explo-
sive parameters, and these are controllable. The third group consists of the rock
mass parameters, such as Young’s modulus, Poisson’s ratio, P-wave velocity and
Blastability Index, which are uncontrollable [11].

The Blastability Index, BI suggested by Lilly [12] can be calculated according to

Eq. (1):
BI = 0.5 x (RMD + JPS + JPO + RDI + S) (1)

where: RMD is the rock mass description (powdery or friable = 10, blocky = 20
and massive = 50); JPS is the joint plane spacing (<0.1 m = 10, 0.1-1.0 m = 20,
>1.0 m = 50); JPO is the joint plane orientation (horizontal = 10, dip out of face =
20, strike normal to face = 30, dip into face = 40); RDI is the rock density influence
which is equal to 25d — 50, where d is density; and S is the rock strength, equals to
0.05 times UCS, where UCS is the uniaxial compressive strength [12].

In the mining industry, the ground vibrations caused by blasting operations com-
monly have negative effect on adjacent populations, relative to possible infrastructure
damage and human discomfort. Several countries have established limits for ground
vibration to minimize infrastructure damage and human discomfort, including Brazil
[13], Germany [14], Portugal [15], and the United States [16]. Therefore, it is essen-
tial to evaluate and control vibrations to avoid these undesirable effects.

This paper shows the development and application of an ANN to predict and
control blast-induced vibrations at a community close to a large-scale open pit iron
mine. The ANN was trained to predict the peak vector sum (PVS) using measured
data obtained from mine blasting operations. The communities are frequently facing
blast-induced ground vibration issues, therefore, ANN may be highly suitable to
relate the blasting parameters and the vibration level.

2 Vibration Control Methodology

The method proposed by Navarro Torres et al. [17] involves the prediction of blast-
induced ground vibrations through mathematical models and the vibration control
through the adjustment of the maximum charge per delay by using delay blasting.
The adapted method for the present work (Fig. 1) uses ANN to predict vibration
velocity and the adequacy of the maximum charge per delay in a blast by the use
of delay blasting to control the maximum resultant vibration, and is summarized in
four steps:
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(1) In situ blasting vibration monitoring to measure the PVS and the frequency
(f) caused by blasting, considering the maximum charge per delay (Q), the
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distance between the blasting source and the position of the geophone (D), the
blast design parameters (burden, spacing, hole depth, stemming, sub-drilling
and powder factor), an explosive parameter (VOD) and rock mass parameters
(blastability index, P-wave velocity, Young’s modulus and Poisson’s);

(2) Obtain the blasting vibration predictor by training an ANN with the monitoring
data;

(3) Validate and test the ANN performance using new blasting data, and check the
predictor’s performance using all data set;

(4) Feed the ANN predictor with the data for a planned blasting in order to predict
the expected vibration in a point and evaluate the adequacy of the planned
maximum charge per delay to the desired vibration limits.

3 Artificial Neural Network

ANNSs are computational techniques, which present a mathematical model inspired
by the neural structure of intelligent organisms to acquire knowledge through expe-
rience. An artificial neural network consists of several processing units. These pro-
cessing units are usually connected through communication channels associated with
the given weight. These units are only operating on its local data, which are received
by connections. The intelligent behavior of an ANN comes from the interactions
between the network processing units [18].

The ability to “learn” associated with a neural network is one of the most impor-
tant qualities of these structures. It is considered “learning” process that adapts the
behavior and results in a performance improvement. In the context of ANNs, learn-
ing or training corresponds to the adjustment process of the free parameters of the
network through a mechanism of presentation of environmental stimuli, known as
standards (or data) input or training.

Figure 2 shows the network used in the Matlab® software to represent the
ANN. The network has three layers, in which the hidden one has 15 neurons,
the output layer has one neuron (Y;;k = 1) and the input layer has 11 neurons
(X;;i=1,2,3...,13). The ANN architecture is showed in Fig. 3 and the connec-
tions are explained by Egs. (4) to (10) [19]. The neuron j from the hidden layer is
connected with all neurons from the input layer expressed by Eq. (2).

X=X, Xo,..., X)) )

The input values to the Net network’s input layer are as defined in Eq. (3).

n

Net_,- = Z(X, Wij + 9]) 3)

i=1
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where: X; is the input value, W;; is the weight of the connection between the neuron i
from the input layer and the neuron j, from the hidden layer, 6; is the fixed activation
threshold of the neuron (bias) which may be used or not. As output from the hidden
layer, each neuron from this network has a logistic activation function as Eq. (4).

1

Outj = f(NCtj) = —1 N e—(Netj+9j)

“)

The sum of the inputs of the k unit of the output layer is given by the following
function expressed by Eq. (5).
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Net, = Z S; Wi + 6 (5)
j=1

where: §; is the input value, W, is the weight of the connection between the neuron
Jj from the input layer and the neuron k from the output layer, 6; is the fixed activation
threshold of the neuron (bias) which may be used or not. Therefore, the output of
the k neuron is provided by the function (6).

Outy = f(Ny) = (6)

1 + eNetb1)

In the learning process, the ANN is presented to a data set corresponding to
the input and the respective output. Using the weight of each connections and the
fixed threshold from each neuron, the ANN calculates its’ own solution comparing
the obtained solution to the desired one. Thus, an error could be established as the

Eq. (7).
e =t — Outy (7N

where: #; is the target value. The function that determines the total error is the Mean
Squared Error expressed by Eq. (8).

p
E=—3 (- Out? (®)
P k=1

where: p is the number of neurons in the output layer. Figure 3 shows how the Input
layer, Hidden Layer and Output Layer are connected. The ANN training consists in
the process of optimizing the weight vector of the parameters. In other words, the
training should identify a local or global minimum value. The steepest descent error
surface is calculated using the following rule:

VWji = —y@E/Swji) €))

where: y = learning rate parameter, and E = error function. The update of weights
for the (n + 1) pattern is given as Eq. (10):

Wik(n+1) = Wig(n) + VWi (n) (10)

The process is iterative for each pair of training values (set of input data and the
target output values) and it is the same for the connections between the hidden and
output layers. Each step of this iterative training process is called epoch. As long as
the error not achieve the user specified goal, the number of epochs will increase until
the network be trained [20].
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Table 1 Input and output parameters for development of ANN

Input parameters Range Mean Unit
Maximum charge per delay (MCPD) 800-2100 1463.5 kg
Distance 100-2000 954.3 m
Burden 4-4.4 4.17 m
Spacing 4.5-5.2 4.79 m
Hole depth 10.2-12.4 11.49 m
Stemming 5-5.8 5.28 m
Sub-drilling 0.4-1.1 0.70 m
Powder factor 0.96-1.76 1.34 kg/m3
Velocity of detonation of explosive (VOD) 4000-6500 5315 m/s
Blastability index 58-63 60.6 -
P-wave 1600-3600 2552 m/s
Young’s modulus 40-80 63.5 GPa
Poisson ratio 0.25-0.40 0.28 -
Peak vector sum (PVS) 0.19-15.8 1.34 mm/s

4 Case Study in Large Iron Ore Mine from Brazil

The case study was a large open pit iron mine located at the eastern portion of
the Quadrildtero Ferrifero, at Minas Gerais state, Brazil, where the community was
located about 500 m from the mining operation.

Monitoring systems were installed in different locations which includes: the vicin-
ity of the open pit, the area between mining and the community, and in the community
itself. The sum of 133 blast vibration events were used to feed the Neural Network.
Vibration sources were from 10 production blasts using emulsion-type of explosive.
The monitoring was performed using 20 geophones with natural frequency of 10 Hz
and response on the range of 2-250 Hz, distributed in the monitoring area with dis-
tances from 100 to 2000 m from the vibration source. The determination of rock
physic and mechanical properties follow the ISRM standards [21]. The vibration
value used was the PVS that is the peak instant velocity of the vector sum of all the
components.

Parameters, such as maximum charge per delay, burden, spacing, hole depth,
stemming, sub-drilling, powder factor and velocity of detonation (VOD) were col-
lected from the blast design. The distance was measured according to geophone’s
locations. A list of the parameters used as input and output to the network training
is presented at Table 1.

A three-layer feedforward back-propagation neural network was design to esti-
mate the PVS. The input layer has 13 neurons, the hidden layer has 15 neurons and
the output layer has one neuron illustrated in Fig. 4. It was used logistic function as
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transfer function of the neurons and the Levenberg-Marquardt algorithm to train the
network [22].
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5 Results and Discussion

The ANN was trained using 70% of the registered and measured data set, validated
with 15% and tested with the remaining 15%. Figure 5 shows the comparison between
the measured and the predicted PVS, in mm/s, for the data used at the three stages
and for the entire data set. At the training stage, Fig. 5a, the resulting R squared (R?)
was 0.8512, at the validation stage, Fig. 5b, the R? obtained was 0.9639, at the test
stage, Fig. 5c, the resulting R? was 0.9242 and considering the entire data set, Fig. 5d,
the resulting R?> was 0.9198.

R? is the main performance indicator to evaluate the ANN. R? is a statistical
measure of how close the data are to the fitted regression line. It is also known as
the coefficient of determination. The R? gives the relationship between the explained
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variation and the total variation, and it ranges from O to 100%, providing a number
to evaluate how well the model fits the data [23].

As illustrated by Fig. 5d, the vibration velocity (PVS) predicted by ANN is very
close to the measured vibration when considering all data set, the R? 0f 0.9198 means
a correlation of 91.98%, which indicates the reliability of the model. The developed
ANN model has therefore a satisfying reliability on the prediction of blast-induced
ground vibration. It may be used as an auxiliary tool for planning and controlling
blasts for the mine located nearby the community in order to avoid infrastructure
damage and neighborhood discomfort, assessing the environmental impacts caused
by blasting by controlling the resultant ground vibrations. By predicting the vibration
velocity in the community limits, the model provides more information for the blaster
to take decisions related to the maximum charge to be detonated per delay.

6 Conclusions

A specific ANN was proposed to predict blast-induced ground vibration at a com-
munity near a large iron ore mine in the Quadrilatero Ferrifero region in Brazil.
The specialty of the neural network consists of the use of blast design elements and
rock properties in contrast with conventional predictors that are only based on max-
imum charge per delay and the distance between blasting and monitoring point. The
conventional empirical predictors do not consider other influencing parameters.

Despite the complex correlation between input and output, the ANN obtained
a good performance, showed by the high value of R?>. The ANN model can learn
other hidden patterns that are not clear at the original data set. As long as the data
set increases, the ANN can be updated and trained again to obtain better correlation
results.

The ANN model may be used to predict the blast-induced ground vibration (PVS)
before blasting, representing a valuable tool for evaluating the possible environmental
effects of a blast in the surroundings of the mine. The model allows the blaster to
stablish the maximum charge per delay and the amount of explosive to be used in
order to control the ground vibrations, hence avoiding human discomfort and damage
to nearby infrastructures from neighboring communities.
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Under Geological Uncertainty

G. Nelis, N. Morales and E. Widzyk-Capehart

1 Introduction

Strategic mine planning must gather and incorporate several sources of information:
geology, geomechanical stability, financial, mineral processing, environmental, and
others. These factors are often not well defined since they generally involve future
behaviors, or their complete characterization is excessively expensive, such as, finan-
cial or equipment factors or geological factors, respectively. Therefore, the planner
has to rely on estimation of these parameters to obtain the best production schedule
possible for the mine operation. There is, however, no guarantee that these estima-
tions will be correct, or even acceptable, when the mine operation is in progress. Bad
estimation of some parameters could potentially lead to significant economic losses,
which is highly detrimental for the mining project. Moreover, it could lead to wrong
investment decision, which are very difficult to modify [1].

The incorporation of uncertainty during the strategic mine planning process has
been a major topic of discussion in the last decade towards ensuring that the strategic
decisions, such as mining sequencing, equipment fleet investment, and metal produc-
tion per period consider the uncertainty during the process [2]. Since the deterministic
approach in strategic mine planning is based on operational research techniques [3],
the incorporation of uncertainty has followed the same approach, using stochastic
optimization models to control the uncertainty.

Depending on the type of uncertainty selected to be addressed and how it is mod-
eled, there has been a wide range of approaches to-date. Specifically, for geological
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uncertainty, the traditional practice has been the use of a single estimate, based on
a kriging technique, with the kriging variance as a measure of the precision of such
estimation. However, it has been shown that, in some cases, the use of a single krig-
ing estimate generates a production plan that is not achievable in the mine operation
both in production targets and economical value [1]. More sophisticated techniques,
such as geological simulation, rely on a different paradigm: they produce various
possible scenarios, where a single block has a range of possible outcomes showing
the local variability seen in real deposits. The use of stochastic techniques allows the
mine planner to consider these different geological scenarios during the optimization
process to obtain a reliable plan with a good performance for each simulation.

As there is no a unique approach to incorporate the uncertainty in the evaluation,
various optimization models have been proposed based on different concepts of the
strategic mine planning problem and the impact of the uncertainty. For example,
the robust and risk averse approaches focus on obtaining a plan with an acceptable
performance in the worst-case scenario to assure a minimum revenue with certain
probability or minimizing a risk measure of the schedule [4-6]. In the neutral risk
approaches, typically, an expected value over the different scenarios is optimized
and no special weight is given to the bad outcomes.

The advantages and disadvantages of these models are not clear and there are
no guidelines about which model ought to be used under certain conditions and
which produces a higher value, a more reliable plan or other advantage to the mining
operation.

This work focuses on comparing the performance of two risk neutral stochastic
mine planning models. The first model is based on the minimization of the deviations
from the production targets across every scenario and it was proposed in [7, 8]. They
obtained a single mining sequence that incorporated the uncertainty as a penalty
for not meeting the production targets in each geological scenario. This penalty was
introduced as a cost in the objective function and the schedule aimed to maximize the
expected value of the extraction while minimizing the deviations from the targets.
This original formulation was extended to different cases: pushbacks selection under
geological uncertainty incorporating penalties [9], mine design optimization based
on simulated annealing [10], and joint multielement uncertainty for an iron deposit
[11]. More recently, this approach was applied in mining complexes with multiple
processing streams and transportation alternatives with blending constraints using
metaheuristics such as simulated annealing and particle swarm optimization to obtain
a solution [12, 13]. The results showed that this kind of formulation generates sched-
ules with a lower deviation chance from the actual targets, with larger optimal pit
limits and with NPVs up to 25% higher compared to the deterministic optimization
techniques.

The second model is a multistage stochastic programming model proposed in
[14]. This model defined different decision stages based on the information available
about the uncertain parameters. In each stage, the decision made depended on the
previous decisions, the information already gathered, and the probability distribution
for the future outcomes. The multistage approach proposed in [14] considered dif-
ferent geological scenarios and incorporated extraction and processing decision that
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could be modified in each period of the scheduling. The complexity of this model,
however, forced the aggregation of blocks and scenarios to obtain a solvable prob-
lem. A similar approach was taken in [15] with a two-stage approach, where the first
stage was the extraction decision for each period and the second-stage decision was
the destination of each block which was different for each geological scenario, con-
sidering that in the short term, the blasthole information allowed the modification
of the processing destination. This model was solved using a modified version of
Bienstock-Zuckerberg algorithm [16] and a Toposort heuristic [17]. Another two-
stage model was also proposed in [18], but the first and second stage were defined
based on the availability of the blasthole information in the short term to evaluate
the effect of gathering this information in advance. These models achieved higher
NPVs in comparison to the deterministic optimization, which ranged from 1% up to
10% depending on the case.

2 Methodology

2.1 Minimization of Deviations

As different models can be used to minimize deviations from the production targets,
in this paper, the variant found in [19] with a single mine, a single element, and
without blending constraints was used in the analysis.

2.1.1 Definitions and Assumptions

Let B be the set of blocks, R the set of Resources, T the set of periods, and § the set
of geological scenarios. Let us define vy, as the expected value obtained if block b
€ B is extracted at period t € T, ry, the resource r € R of block b € B considering
simulation s € S, and C}/' as the upper and lower targets for resource r. The deviation
cost from the upper or lower targets for resource r € R in scenario s € S is defined
as cffs/ ! while f! as the orebody risk discount rate.

2.1.2 Function Formulation

The decision variables for this model are

(D

1 if block b € B, is extracted at period t € T
' 0 otherwise

dfs/,] = deviation from target C;‘/ "'in scenarios at period 2)
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max Z Z Ups Xpr + Z Z Z ftd;ls/zlc%l 3)

beB teT seS teT reR
st Y rpxp+dy, >CL VieT seS.reR (4)
beB
> rpexy —di, <CY VieT seS.reR (5)
beB
> (B — Ch)apsxp +djy, =0 VieT,seS.a.peRr (6)
beB
> (ﬂbs - Cg)absxb, —dj, <0 VieT,seS,a,BeR (7)
beB
t
Xt Y xjp VT, jeP) (8)
p=1
be,§1 Vb € B )
teT

Equation (3) is the objective function. The first term addresses the maximization
of the expected NPV of the extraction, while the second term discounts the deviation
costs for every resource considered. The factor f discounts the value from deviations
at different periods to introduce a geological risk profile on the schedule. Equa-
tions (4) and (5) represent the capacity deviation constraints for upper and lower
targets, such as mining and processing limits. Equations (6) and (7) are blending
deviations constraints, such as target metal grade or limits for contaminants. Equa-
tion (8) represents the precedence constraint to maintain the order in the extraction,
where P(i) is the set of predecessors for each block i. Finally, Eq. (9) is the unicity
constraint, where each block can be extracted only once.

This formulation is not exactly the same as the one proposed in [19] since the for-
mulation in [19] incorporated dummy constraints to balance the deviation constraints.
However, the results are indeed equivalent without those variables and imposed
inequalities in the deviation constraints.

2.2 Two-Stage Stochastic Mine Planning Scheduling

The proposed two-stage stochastic model is based on [15]. The first stage decision
considers only the extraction of each block, imposing the same schedule for every
geological scenario. The second-stage decision selects the best destination for each
scenario, aiming to maximize the NPV and fulfill the processing constraints. This
two-stage decision framework is similar to the actual mining operation, where the
destination decision can be changed in the short term. This model considers that
the flexibility to make the long-term scheduling decision to obtain a higher NPV
compared to the deterministic scheduling framework.
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2.2.1 Definitions and Assumptions

Let B be the set of blocks, R the set of Resources, T the set of periods, and S the set
of geological scenarios. Let us define ¢;, as the extraction cost of b € B at period
t, rpqs the resource r € R of block b € B considering simulation s € S if the block
is sent to destination d € D associated with the second-stage decision, and 7, as the
resources scenario-independent, associated with the first stage decision. Upper target
for resource r is defined as C}' and the py,q; is the profit obtained if block b € B is
sent to destination d € D in scenario s € S at period t € T.

2.2.2 Model Formulation

The decision variables of this model are

1 if block b € B, is extracted at period t € T
Xbt . (10)
0 otherwise

Yiras = fraction of block b sent to destination d at period ¢ in scenarios  (11)

max Z Z ChrXpr + % Z Z Z Dbtds Ybrds (12)

beB teT seS teT deD
st. Y Rxy <CY VieT seSreR (13)
beB
erbds)’btds <C) VieT,seS,reRr (14)
beB deD
xbt:ZybdtS V[ET,SES,bEB (15)
deD
t
X <Y _xj, VteT,jePh) (16)
p=1
> xw<1 VbeB 17)
teT

Equation (12) is the objective function. The first term represents the cost of extrac-
tion while the second term is the expected profit obtained for processing decisions
considering every geological scenario. Equation (13) represents the capacity con-
straints for the extraction, such as mining capacity. Equation (14) represents the
capacity constraints for the processing of each block, associated with the second-
stage variable. Equation (15) states the relation between x and y variables; a block
can be processed only if it was extracted and every fraction of the block was pro-
cessed. Equation (16) represents the precedence constraints while Eq. (17) the unicity
constraints.
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2.3 Comparison

Both models were implemented for the evaluation of the same deposit to obtain
mining schedules under uncertainty. From these schedules, performance indicators
were calculated, such as total ore and waste tonnage. In addition, a comparison
between the different extraction decisions was performed to evaluate if different
approaches would lead to different final pits.

The production plan was compared considering the deviations from the production
targets for each scenario and the average ore and waste for each model to evaluate
the mining and processing profile in each period.

An economic analysis was performed aiming to respond how these different
methodologies achieved a higher NPV as compared to the traditional case.

3 Results

The study case was a copper porphyry deposit with 14,800 blocks. The scenarios
were obtained using sequential Gaussian simulation on point support and later a
reblock was performed to obtain the final block size. The scheduling and economic
parameters for both cases are shown in Tables 1 and 2.

3.1 Scheduling Results

Table 3 shows a comparison of the value and the final pit for each model, with a
deterministic schedule with the same parameters as reference. As expected, both

Table 1 Economic

parameters Mining cost 1.0 US$/ton
Processing cost 10 US$/ton
Deviation cost 0.1 US$/ton
Selling cost 0.5 US$/1b
Cu price 1.5 US$/1b
Cu recovery 90 %
Discount rate 10 %o

Table 2 Scheduling Periods 5

parameers Scenarios 10
Mining capacity 55 Mton/period
Processing target 4 Mton/period
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Table 3 Reserves for each model
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Total tonnage [Mton] | Reported NPV [US$] | NPV increase (%)
Deviations 27.48 52,912,742 0.81
Two-stage 26.48 52,859,761 0.71
Deterministic 23.85 52,487,241 -

Fig.1 Plan view of the schedules for different models. From left to right: deviations, two stage,
deterministic

Fig. 2 Comparison of
sequences between the
stochastic models

stochastic models achieved a higher NPV compared to the deterministic schedule.
The difference between both models was small, both in terms of expected NPV
and total tonnage, with the deviations model obtaining a larger and slightly more
profitable final pit. Figure 1 shows a plan view of the schedules. The stochastic
models generated a larger pit compared to the deterministic case, but the mining
sequence was similar among them.

For a better visualization of the differences between both stochastic models, Fig. 2
shows the final pit limits with a color scale aimed to highlight the sequencing dif-
ferences: the blue color represents the blocks that are extracted in the same period
for both schedules; green color represents the blocks that are extracted in an earlier
period in the minimization of deviations model, while the light blue represents blocks
that are extracted earlier in the two-stage model. Orange blocks are extracted only
in the minimization of deviations schedule, while dark red blocks are extracted only
in the two-stage schedule.
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Table 4 Sequence Category Number of blocks
differences between both -
stochastic models Same period 6618

Earlier in deviations 949

Earlier in two stage 634

Only in deviations 441

Only in two stage 125

The total magnitude of these differences is shown in Table 4, which shows the
number of blocks for each category displayed in Fig. 2. The deviations model tended
to extract more blocks earlier in the schedule. Also, it can be noticed that both
schedules made different final pit decisions, with sets of blocks that are only extracted
in one of the two models, which is an indication that both objective functions aimed
for a different goal: minimizing the deviations in the first model and taking advantage
of the change of destination policy in the second model, as it was detailed in Sect. 2.

The average production schedules for both models are shown in Fig. 3. The pro-
duction profile was similar for both models except in period four, where the deviations
model shows a higher average ore production. The dispersion of the ore production
for both models is similar, with the maximum and minimum ore produced close to
the average value, even for the two-stage model, which does not attempt to minimize
these deviations explicitly. The average difference between the processing target
and the ore scheduled across every period is 884 kton for the deviations model and
913 kton for the two-stage model. Most of this deviation comes from the last two
periods since there is not enough ore to satisfy the production target.

MTon
=

.

1 2 3 4 5 I 2 3 4

Av. Ore Av. Waste Max Ore ——\lin Ore = = Processing Capacity

Fig. 3 Production schedules for two-stage model (left) and deviations model (right)
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4 Discussion

The first relevant result is that both models achieve a higher NPV value compared to
the deterministic schedule, with larger final pits limits as well, which was an expected
result considering the related work. The magnitude of the NPV increase, however,
was negligible for both models. The small increase could be related to the fact that
this study case is a homogeneous copper porphyry with a single metal of interest.
For a similar study case with low uncertainty, a similar result was found in [15]
using a two-stage model with a negligible NPV increase. For the deviations model,
however, a larger NPV increase was expected considering the previous works, where
the increases in value ranged between 5 and 25%.

The final pit limits are similar for both models with a 95% of the reserves being
common for both models while 80% of the blocks of the final pit are extracted in
the same period for both models. Therefore, both models generate a similar pit and
sequencing even when the formulations shown in Sect. 2 are different.

It is relevant, however, noting that the differences between the schedules reflect
the different nature of both models. For example, Figs. 2, 3 and Table 3 show how
the deviation model tends to extract the blocks in earlier periods compared to the
two-stage models and how to process more mineral. This behavior is explained by
the flexibility introduced by the deviations constraints since they allow to extract
blocks faster if the deviation cost is compensated with a higher revenue. When
considering the discount rate of the profit function, processing a block in an early
period is more profitable than processing the same block later. With this trade-off, the
deviations model produces a more aggressive extraction profile in the first periods
to take advantage of the lower discount rate.

While the difference in NPV is negligible between both models, the difference in
tonnage is not: the deviation model extracts 5% more ore and 3.8 % more tonnage than
the two-stage model. This difference is explained by the different formulations. The
deviations model aims to extract a higher amount of ore to minimize the deviation
cost, while the two-stage model extract less ore but with similar value since the
objective function only considers the maximization of the expected NPV. The higher
amount of ore could be beneficial depending on the strategic business model of the
operation.

The analysis of the production schedules reveals that the deviation models surpass
the processing targets in some scenarios at periods 1 through 4. While a minor excess
of ore is manageable, in the short term, a surplus of mineral in every period generates
additional handling cost with an impact on the final NPV. On the other hand, every
scenario fulfills the maximum processing capacity in the two-stage model, where the
ore target is a hard constraint in the model.

Finally, it is important to mention the selection process of the deviation cost. While
the two-stage model does not introduce additional parameters for the schedule, the
deviation model requires an additional discount rate and deviation costs for every
resource considered. While the literature considers these as control parameters, as a
way to introduce the risk profile of the mining engineering on the schedule, the deci-
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sion of the best deviation cost, and the discount rate is not trivial. For tonnage devia-
tions, the costs used on previous works range from 2 US$/unit [7] to 10,000 US$/unit
[19]. For this work, a trial-and-error approach was used, trying to achieve a higher
NPV with acceptable deviations, but this selection depends strongly on the study
case. A deeper study of the impact of this cost and a recommended methodology to
select it is necessary for future works.

5 Conclusion

The stochastic models compared in this work achieved similar NPV values for
this study case but emphasizing different extraction strategies. Recommendations
of which model is suitable depend on the strategic business plan since the deviations
focused on processing more while the two-stage model focused on higher value.
Both models achieved a higher value compared to the deterministic case, showing
the advantages of stochastic frameworks in strategic mine planning. However, the
increase was small in this study case. A comparison of these models in different,
more complex orebodies is recommended to address their differences in a more
challenging scenario.
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Use of Genetic Algorithms )
for Optimization of Open-Pit Mining L
Operations with Geological and Market
Uncertainty

G. Franco-Sepulveda, G. P. Jaramillo and J. C. Del Rio

1 Introduction

Traditionally in the literature, there are several optimization models in which the
inputs are assumed to be deterministic. The inputs include geological model (min-
eral available to extract), infrastructure, minerals market (sale prices), and operating
scenarios (cutting laws, extraction capacity, among others). The results of this opti-
mization models is a net present value (NPV) in which the value of the risk is zero.

The previous assumptions are far from reality once the operation of the mining
project begins. For example, in [1], the copper price estimate for the technical report
NI43-101 of the Florence copper project was made at 3 USD/pound on February 28,
2017. However, while analyzing the price of the metal from that date until now, it
was found that approximately 50% of the time the sale value was below the estimate
made. It is in these situations when the mining companies begin to question and seek
solutions to a problem that is sometimes unsolvable.

For this reason, this paper will address the management of inherent uncertainty
with which to work in a mining project, specifically when estimating the amount of
mineral resources available and with the prediction of prices of sale of the materials
produced in the operation.

The papers discussed some previous works, where the geological and market
uncertainty in the mining planning of some operations has been included; describes
the stochastic optimization model implemented in the article and presents a case
study.
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2 Background

When including uncertainty in mining operations, several authors have developed
research to address this issue. Boland et al. [2] proposes the open-pit mining produc-
tion scheduling problem (OPMPSP) as an optimization problem that can be solved by
making use of the mixed integer programming and the aggregation of the blocks that
are inside the geological model of the deposit, this with the objective to reduce the
number of decision variables within the problem as well as the number of restrictions
of the same. Although the results obtained by implementing the proposed methodol-
ogy managed to show improvements in the maximization of the NPV of the mining
project, it does not manage to obtain a quantification of the risk which is subject to
the same when considering all input data in a deterministic manner.

Dimitrakopoulos [3] proposes a new paradigm in mining planning that integrates
stochastic simulation and optimization, where it takes these two elements to unite the
uncertainty present in the design of the mine, the planning of the extraction and the
valuation of projects and operations mining, using the simulated annealing algorithm
in conjunction with the mixed integer programming and sequential simulation.

Dehghani et al. [4] through various methodologies to identify the possible scenar-
ios in which the sale prices of minerals and operational costs will be found, achieve
a financial evaluation in mining projects. The methodologies implemented by the
authors were two: considering certainty in the sale price and operating costs, and
adding uncertainty in both by Monte Carlo simulation, binomial tree method, and
pyramid method, finding that in cases where uncertainty was considered, values of
the NPV were lower than that found when it was not considered.

Montiel and Dimitrakopoulos [5] seek maximization of the NPV and minimize
deviations from the objectives of the extraction, keeping in mind the uncertainty of the
ore available in the deposit using the entire stochastic programming. This was done in
a copper mine with concentrations of at least 10% in sulfides. The application of the
method first analyzes the discount rates and for the stochastic integer programming
the probability limits are calculated, observing that it does not matter if a high rate is
used because the important changes were obtained with different mining strategies
and different amount of mineral and waste.

In Costa and Suslick [6], the uncertainties of the sale prices of the minerals and
the operating costs are considered in order to estimate the volatility to which the
mining projects are exposed. Through this approach, the authors manage to provide
a tool to the investors in charge of making strategic decisions within the companies,
and to evaluate the financial viability of the projects.

Chatterjee et al. [7] through the implementation of the minimum cut network flow
algorithm they manage to optimize the extraction phases and design the limit of the
final pit taking into account the uncertainty of the sale prices of the ore. To create
the different possible scenarios for this price, it used a spline smoothing algorithm in
conjunction with Gaussian simulation, thus achieving an assessment of the economic
benefits of each block within the geological model.
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Although the previous works have a common integration of uncertainty when
carrying out the optimization of the production scheduling, none integrated so much
the geological and market uncertainty at the time to perform this task, leaving aside
the full assessment of the risk to which a mining project is exposed. It is here where the
methodology presented in this research contributes to the field of mining planning,
since it manages these uncertainties simultaneously.

3 Stochastic Optimization Model

The following is a general explanation of the proposed model for the stochastic
optimization of a polymetallic deposit of an open-pit operation based on the doctoral
thesis [8], which consists of three stages: (1) estimation of the cutoff grade in each
year of the mining operation, (2) definition of the production scheduling for the each
of the blocks defined within the geological model, and (3) elaboration of the cash
flow of the project in which the geological and economic uncertainty is included. It
should be noted that those stages are usually optimized independently, while in this
work, they are considered jointly.

The proposed optimization model begins with the extraction of the blocks in the
mine, which once extracted are sent to a pre-classification process, where they are
assigned to a specific stream: (1) the material with a concentration higher than the
cutoff grade is sent directly to the mineral processing stage; (2) the material that has
a marginal grade is taken to a stockpile in order to be processed later when market
conditions are appropriate; and (3) the material that has a low grade is classified as
waste and sent to the dumps. Once the material is classified and sent to the process,
it goes through a process of size reduction for its subsequent selective flotation for
each mineral of interest to the interior of the deposit to finally be refined and sold in
the international market.

3.1 Characteristics of the Proposed Optimization Model

The main assumptions of the proposed model are:

— inclusion of geological uncertainty using distribution functions for each of the
reservoir blocks and economic uncertainty when forecasting the future prices of
the minerals of interest through the application of time series.

— inclusion of the complete production chain for a mining operation: Mine, mineral
processing, dumps, stockpiles, tailings, refining and market.

— consideration of variation of the cutoff grade as a function of time.

— additional cutoff grade is included to support the decision of the quality of the
material that should be sent to the stockpile for further processing.
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— possible increases or decreases in the extraction capacity of the mine, in the dif-
ferent processes and refining.

For the application of the proposed model, the nomenclature proposed in [6] was
followed, with which one of the following objective functions can be applied:

— Objective function 1: Maximize the expected value of the NPV of the operation.

— Objective function 2: Minimize the risk associated with the standard deviation of
the NPV of the operation.

— Another objective function can be used by combining the above two objective
funtions as follows.

— Objective 3 function: Maximize (objective function 1/objective function 2).

3.2 Mathematical Model

For the application of the proposed model, the following nomenclature was followed:

i: index of the block inside the depositi =1, 2, ..., N
p:processindexp=1,2,3,4

t: index of the period in which a block is extracted r = 1,2, ..., T

k: index of the mineral of interestk =1,2, ..., m

E(i, t): set of blocks above i that have not been extracted in period 7.

y (i, k): grade of ore k in block i. Specific distribution functions were used for each
mineral type using Monte Carlo simulation

S(k, t): mineral sale price k in period 7. Time series will be implemented for their
forecast.

e T: time horizon in which the project will be evaluated.

e m(i): cost of mining the block i.

e Cp(p): processing cost of the process p.

e CFLOT: cost of selective flotation.

e r(k): cost of selective flotation of mineral k.

e f: fixed costs per period.

e FL: flotation capacity.

e CINCM/CDECM: cost of increasing or dismantling the capacity of the mine.

e CINCR/CDECR: cost of increasing or dismantling the refining capacity
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

CINCC(p)/CDECC(p): cost to increase or dismantle the capacity of the process p.
Cw: cost of sending waste to the dump.

Cs: cost of sending material to stockpile.

Csp: cost of sending material from stockpile to process.

d: discount rate.

Mo: initial capacity of mining.

Co(p): initial capacity of the process p.

Ro(k): initial refining capacity of mineral k.

Qw: total capacity of the dump.
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Qs: total capacity of stockpile.

y(p): recovery factor of process p.

yf: collective flotation recovery factor.

yfs(k): selective flotation recovery factor of mineral k.
v(i): amount of material in block i.

On the other hand, the following decision variables are available within the model:

D(t): Deeper block that is extracted in ¢. This value defines which blocks are
exploited in .

Sp(#): Amount of material in the stockpile that is sent to process in t.

Y cog(k, 1): cutoff grade of the mineral k in period . As it is a polymetallic deposit,
it is not a number but a decision rule type AND or OR.

ys(k, t): cutoff grade of the mineral k in period ¢ of the material sent to stockpile.
As it is a polymetallic deposit, it is not a number but a decision rule type AND or
OR.

AM™(¢): increase in the capacity of the mine in year ¢.

AM™(¢): decrease in the capacity of the mine in year ¢.

AC*(p, 1t): increase in the capacity of the process p in year f.

AC™(p,1): decrease in the capacity of the process p in year t.

AR*(1): increase in refining capacity in year ¢.

AR~ (1): decrease in refining capacity in year ¢.

Other decision variables dependent on the above are presented below:

s(i, 1): 1 if block i is sent to stockpile in period ¢, 0 otherwise.

w(i, 1): 1 if block i is sent to dump in period 7, O otherwise.

pr(i, t): 1 if block i is sent directly to processing in period ¢, O otherwise.
x(i, t): 1 if block i is extracted in period ¢, O otherwise.

g_s (k, t): grade of mineral k stored in the pile in period ¢. This varies as new
material is stored.

Q(t): amount of material mined during period .

Qc(p, t): amount of material processed in process p during period t.
Qr(7): amount of refined material during period 7.

M(¢): capacity of the mine in period .

C(p, 1): capacity of process p in period z.

R(?): refining capacity in period ¢.

The NPV of the operation can be expressed as follows:

NPV =) (1+d)” [Z(S(k, Dyr(k)Qr(k, 1) — r(k)Qr(k, 1)) — Qe(r)C(1)
t k

—Qe() Y y(p = DC(p) = Y m(i)Qm(i. 1) — CEST(r)

p>1 i
—CPALM(¢) — f(t) — CINCRE(r) — CDECRE(r) — others]
(D
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Fig. 1 Explanation of D(t)

Equations 2, 3, 4, and 5 expressed the total costs of increase or decrease the
extraction capacity in the mine, in processes, in refining, of handling of sterile, and
the stockpile, respectively.

CINCRE(r) = CINCM  AM* (1) + ¥ CINCC(p) AP*(p, 1) + ¥ CINCR(K)AR* (k. 1), V1
P k

2

CDECRE(r) = CDECM + AM™(t) + »_ CDECC(p)AP™ (p.1)+ »  CDECR(k)AR™ (k. 1), Vt
P k

3)

CEST(1) = Cy (Z w(i, Hv(i, 1) +rw),Vz 4)

CPALM(t) = C, (Zs(i, H(, z)) +CspSp, Vt (5)

To define the extraction constraints, the variable D() is taken into account, which
defines the blocks that are extracted in ¢, such that x(i, ) E(D(?), t) being E(D(¢), t)
the upper cone blocks to the block D(¢) that have not yet been extracted in . From
this, in conjunction with the cutoff grade of the material that will be processed and
the marginal cutoff grade for the material sent to the stockpile, the blocks that are
sent to the process, stockpile or dump are defined by a decision rule. This is done
in order to reduce the complexity of the problem by having only ¢ block variables
compared to the models generally found in the literature, where binary variables are
defined for each block i and for each period ¢, requiring a lower computational cost
which can increase the possibility of finding solutions closer to the optimum, as well
as address larger problems or divide into a smaller size looking for an approach to the
reality of mining planning. In Fig. 1, the decision variable D(¢) and the set E(D(?),t)
are exemplified illustratively.

For example, we have the following: D(1) = 8, D(2) = 20, and D(3) = 23, likewise
E(D(),1)={1,2,3,8},E(D(2),2)=1{4,5,7,9, 10, 13, 14, 15,20}, and E(D(3),3) =
{6,11,12,16, 17, 18,23}. Thus, in Eq. (6), the exploitation restriction of the blocks
is defined as a function of D(t).

x(@i,t) =1lifi € E(D(t),t) (6)
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Then, if x(i, t) = 1, the decision rule described in [6] is applied according to the
cutoff grade-defining if the block is sent to dump, stockpile, or process. For the next
period t and for each block i, E(i, ¢ + 1) is updated, thus eliminating the blocks that
have been mined in the previous periods. In the Eq. (7), the capacity of extraction of
blocks in accordance with the capacity of maximum mining by period is restricted.

Qm(t) = Y x(i, Hv(i) < M(1), Vt (7)

The distribution of each block is described in Eq. (8), where each block must be
sent to dump, stockpile, or processing.

x(,t) =w(,t)+s(,t)+pr@, 1), Vt,i (®)

The volume of the stockpile is updated with the material of the same plus the
one that enters in period t and the material sent to processing in the same period. In
Eq. (9), this update is shown.

IP(t) = IP(t — 1)+ ) _s(i.)v(i, 1) — Sp(r) < Qs, Vt )

Once the amount of material entering the stockpile has been defined, the grade
of the pile must be updated, assuming that the mixture of the material will have
a weighted content due to the material previously stored and the new material. In
Eq. (10), this process is detailed for each mineralk.

-1
gs(k,t) = <g5(k, t—DIP@—1)+ Z y (i, k)s(, t)v(i)) (IP(I -+ Zs(i, t)v(i)) Vi, k
i i (10)

The amount of material that enters process 1 is the material extracted in ¢ and
complies with the decision rule for the cutoff grade, added to the material that comes
from the stockpile. This sum of materials cannot exceed the capacity C(1, t).

Qc(r) = Zpr(i, Hv(i)+Sp) < C(1,1),Vt an

For the other processes, the recovery percentage of the previous process is taken
into account.

p—1

[Ty@ (Z pr(i, Hv(i) + Sp<r)> < C(p, 0, Vi (12)
q i

For the collective flotation process, the amount of material entering this is the sum
of the mineral that is recovered in the last process.
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Qr() =[] v(p (Z pr(i, () Yy (i, k) +Sp(1) Y gk, r)) < FL(1), forall 1
4 i k k

(13)
Then, the material left over from this process becomes tailings.
p—1
w(t) = [ [ y@Qelg) — Qr(r), vt (14)
q

In each period, the amount of waste that is disposed of in the dump is updated.

W)y =W -1+ Zw(i, Hu(@) +rw(t) < Qw, vVt (15)

The amount of mineral material k that passes to selective flotation corresponds to
the quantity that comes from the last process affected by the recovery factor of the
same.

QF(r) = yis(t) [ | y(p)(Z pr(i. Nu(i)y (k. 1) + Sp()ys(k, r)) < RFS(k, 1), V1. k
)4

l

(16)

M(@t) = M(t — 1)+ AM*(t) — AM~ (), Vt (17)
C(p.t)=C(p,t — 1)+ AC*(p,1t) — AC™(p, 1), V1, p (18)
R(t) = R(t — 1)+ AR*(t) — AR (1), Vt (19)

In the previous model, precedence and mining restrictions were not included, as
it is traditionally done in the literature. This is because in the definition of D(t) and
the relation, it has with the matrix of E(i, t) are implicit.

4 Study Case

Once the stochastic optimization model has been defined, we proceed to apply it to
a hypothetical mine for a polymetallic deposit in which there are copper, gold and
molybdenum minerals. In Table 1, the inputs on which the comparison of the solution
obtained with the algorithm proposed in this research will be presented.

This study case has a model of 280 blocks (7 blocks on thex-axis, 8 blocks on
they-axis, and 5 blocks on thez-axis), with dimensions of 650, 390, and 224 m each.

The deterministic and stochastic inputs of the optimization model with their
respective data and assumptions are described in [8]. The financial units of this
model are given in American dollars.
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Table 1 Parameters of model

Study case
Total inversion MUSS$ 4200
Processing capacity 110k TPD
Mine capacity 567 k TPD
Life of mine (LoM) 15 years
Refined copper (Cu) 225 k M pounds
Refined molybdenum (Mo) 49 k M pounds
Refined gold (Au) 40k oz
Table 2 Correlation between Copper Gold Molybdenum
the prices of metals
Copper 1 0.436 0.298
Gold 0.436 1 0.451
Molybdenum | 0.298 0.451 1
Table 3 Forecast equations
Mineral Forecast equation
Copper Y, =3.346 + 0.228¢,_1 + €, €, = 0.203N,
N; ~ Normal (0, 1)
Gold Y; =26.573+0;N; N, ~ Normal(0, 1)
o} =2418.2+0.998(Y,_1 — 26.573)
Molybdenum Y, = [8.808 + ¢~0-204(y,_; —8.808)] +
5.901 N,/ 1562 N, ~ Normal (0, 1)

To define the future sales prices of copper, molybdenum, and gold, the historical
annual data of these were used from 1975 to 2016, this in order to make a time series
adjusted by lots in which the correlation of the variation of metal prices with each
other. In Table 2, this correlation is shown.

These correlations were made with the help of the software @RISK, which in
turn made the forecast of the prices of metals through time series obtaining the
following models, which can be consulted in [9]: RISK MA1 for the price of copper,
RISK ARCHLI for the price of gold, and RISK BMMR for the price of molybdenum.
Figure 2 shows the graphs that present the historical prices of minerals as well as
their possible future scenarios.

In Table 3, the forecast equations for minerals are shown. In Table 3, Y, is the
forecast of the mineral sale price.

The optimization model was applied to the mine in a time horizon of 15 years.
Figure 3 shows the results of this optimization for which the Palisade RISKOptimizer
tool was implemented. For the execution of the genetic algorithm the following
parameters were taken into account: population size of 50 individuals, each of which
represents a different production scheduling and where those that present a better
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fitness function (better VPN in this case) they will have a higher probability of
reproducing, a crossover rate of 0.5, and a mutation rate of 0.1. It can be seen that
the solution found by the algorithm has low chances of obtaining losses, which are
1.5%, providing financial security at the time of starting the operation of this mine.

However, we wanted to analyze what would happen if the life of mine were shorter;
this will be done in order to establish what is the optimum amount of time in which
the available mineral resource should be extracted, since we do not have the security
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of knowing if with the operative capacities that it is present in the mine can obtain a
return of the capital invested in a shorter time. For this, additional optimizations were
made with 10, 11, 12, 13, and 14 years, where the solution found was based on the
model where a 15-year operation is considered. This was done with the objective of
identifying if the uncertainty associated with the operation of the mine was reduced
and in what proportion according to the expected value of the NPV.

Figure 4 shows that both the average NPV and its standard deviation increase as
years are added to the LoM, however, the greater relationship between the expected
value and its deviation is obtained in year 11, indicating that in the year where there
will be a higher return associated with a level of risk is this. Therefore, the results
shown below correspond to an operation with a LoM of 11 years.

It is observed that, in all the analyzed cases, a better result is obtained than in the
base case [7], since when the uncertainties are not considered, a risk-free 1.7 billion
NPV is obtained, while in the cases analyzed under the proposed model yields a
much higher NPV, but with a high economic risk Figs. 5 and 6.

5 Conclusions

When analyzing the results obtained, it was observed that under the considerations
with which the model was raised and the uncertainties taken into account, the produc-
tion scheduling presents a low level of risk since its probability of obtaining losses is
less than 2%. However, the uncertainty is high since compared to the average value
of the NPV obtained is almost equal. On the other hand, if the inclusion of the uncer-
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tainty to which the mining project is exposed is not new given that in the literature,
there are models that do it, the way in which they do it does not cover all of it since
it is it works only with the average value, either for the price or the ore grades, or a
finite and restricted series is made of the possible scenarios that may occur for these
variables.
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Optimisation of Mining Block Size )
for Narrow Tabular Gold Deposits L

C. Birch

1 Introduction

Key elements of the mine planning process are the geological block and mining block
models [1]. These form the basis of the grade-tonnage curve, as well as the financial
model [2]. The dimensions of the blocks for the geological block model are guided
by the data spacing. The dimensions of the blocks in the mining block model are
guided by the mining method and how selective the ore can be mined to minimise
dilution [3]. It has been found that on some narrow tabular gold mines, the geological
block model is used as the basis for the grade-tonnage curves and subsequent financial
models [4]. Typically, narrow tabular gold mines have raise lengths of approximately
200 m with strike spacing between the raises of 150 m. The narrow tabular ore
bodies are mined using conventional mining methods with individual panels typically
30-35 m in length. The sample spacing during the mining operation is typically on
a 5-6 m grid. Boreholes ahead of the mining face are, however, very sparse, usually
drilled from the development below the ore body. These would be closer to a 50 by
50 m grid. Observations by the author have noted that on some narrow tabular gold
mines, the geology blocks (typically 15 by 30 m in size) are significantly smaller
than the smallest mining block that is currently being mined (often the full 200 by
75 m block accessed by a raise line). The effect of this on the financial model is not
clear.

This paper explores how differences in the mining block sizes affect the financial
model. Monte Carlo simulation has been used to create a series of hypothetical,
narrow tabular gold deposit databases with a range of average grades at either side
of the assumed cut-off grade. EXCEL, as well as Leapfrog Geo, software is utilised
to create geological block models with a range of sizes. Grade-tonnage curves are
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created for each model and the assumed cut-off grade is applied to determine the
resultant tonnes and average mining grade above cut-off grade. Financial models
created by these are compared to determine how critical it is to have the mining
block model dimensions similar to the smallest selective mining unit.

2 Selection of Block Size

Most of the available literature related to the selection of block sizes is focused on
the geological block model rather than the mining block model except stating that
the mining method should be taken into consideration. The dimensions of the blocks
should be governed by both the mining method as well as the geology. The grade
for the individual blocks can be assigned by a variety of methods including inverse
distance squared or kriging. The layout of the blocks can be 2D or 3D depending
on the nature of the deposit [5]. With the advent of computer technology, the model
of the ore body usually consists of numerous small blocks to which the grades are
assigned. The blocks size is usually uniform and the block boundaries are orientated
to correspond with uniform coordinates and elevations regardless of the ore contacts
[6]. If the block crosses the ore/waste boundary, then the block value would be a
composite of the ore and waste samples. Although this approach is convenient, it
does not take into account the way the ore body will be mined, especially where the
mining operations follow the ore/waste contacts. The grade/tonnage curves produced
by this approach may also be dangerously misleading [6]. Matomane researched the
effect of changing block sizes on the resultant grade-tonnage curves. He identified
that the average grade of the ore body [which is based on an Isobel Clark database
(http://www.kriging.com/datasets/)] has an impact on whether small or large blocks
are preferable as the cut-off grade was altered [7].

The SME Mining Engineering Handbook covers the creation and interpretation
of geological models in extensive detail. It states that the purpose of geological mod-
elling is to provide a clear picture of the three-dimensional geological relationships
that impact on the geological resource. The improvements in computing technology
have allowed for increasingly sophisticated models; however, these require superior
data collection and interpretative work to provide these superior resource calcula-
tions. The SME Mining Engineering Handbook furthermore goes into detail regard-
ing the block size selection and factors to be taken into account are the following:

— Block sizes need to take into account the computing time and disk storage restric-
tions;

— The block size should be one-half to one-fourth the average drillhole spacing.
Smaller blocks sizes provide a minimal improvement in the estimation unless
there are strong geological controls present;

— The block size must be at least one-half the size of the smallest geological feature
to be modelled or these will be destroyed in the model,;
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— The block size may be related to the proposed mining method, for example in
open-pit methods, the block height should correspond to the bench height;

— Most software allows for the selection of the block size and some allow for the
rotation of the entire block model; and

— The rules are often contradictory and the best solution may be a compromise based
on a case-by-case basis [3].

The ideal number of samples to base estimation on is usually in the order of
between 10 and 20. More than 20 samples seldom improve the estimation whilst less
than 10 samples may cause discontinuities in the estimated grade [3]. For this study,
200 samples are used in the Leapfrog Geo Model for the 1000 by 1000 m block of
ground being evaluated. Each sample is 1 m thick and the grades have been assigned
using Monte Carlo simulation following a lognormal distribution (mirroring a typical
Witwatersrand gold deposit grade distribution). The positions of the samples have
been distributed randomly through the hypothetical block.

3 Break-Even Grade, Cut-off Grade and Financial
Optimisation

According to the SAMREC Code, mineral reserves or ore reserves are that portions
of the mineral resource which is valuable, legally, economically and technically
feasible to extract [8]. The commonly accepted method for determining if material
forms part of the mineral reserve is to calculate a cut-off grade at the current economic
conditions. The only material above this grade is then considered to have economic
value and included in the mine plan. The material with a grade lower than the cut-off
grade remains in the resource; although with rising commodity prices and/or lower
mining costs, it may later be included in the mineral reserve.

3.1 Break-Even Grade

The break-even grade calculation is essentially very simple. It determines the grade
required for a unit of ore to return a profit. It is essentially a volume break-even
calculation where the volume is known (usually limited due to shaft capacity, mill
capacity or some other physical constraint), and the unknown is the in situ grade of the
commodity. The other parameters required are total fixed cost and unit variable cost.
From these, the total unit cost can be obtained (typically expressed in US$/tonne). The
other factors required for the break-even grade calculation is the mine recovery factor
(MRF), which is the mine call factor (MCF), multiplied by the plant recovery factor
(PRF). The commodity price is quoted in US$ (in troy ounce for gold and platinum).
These are all estimates and subject to variation through the period in which the break-
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even grade is used—and thus add to the financial risk to the investors if they change
significantly. This can be expressed according to Eq. 1:

TFC
UTC = <7> +UVC (1)

where UTC = Unit Total Cost [US$/tonne], TFC = Total Fixed Cost [US/tonne], X =
Volume [tonne] and UVC = Unit Variable Cost [US$/tonne].

UR = G % MRF % P 2)

where UR = Unit Revenue [US$/g], G=Grade [g/tonne], MRF =Mine Recovery
Factor [%] and P =Price [US$/gram].
Thus, since unit revenue = unit total cost

TEC
G+MRF*P = <7>+UVC 3)

_ (((%%) +uve)
G= (P « MRF) @)

For this case study, a gold price of US$1260/0z is assumed. The annual fixed
costs for the mine are assumed to be US$50 million with the variable costs being
US$80/tonne. The split between fixed and variable cost is 75:25. A feature of South
African gold mines is that labour costs are typically 50% [9] of the total costs that
results in a higher fixed cost to variable cost ration compared with more typical
mining projects where a 50/50 split would be appropriate [10]. The mining cost is
based on a hoisting/milling constraint of 200,000 tonnes/annum. The MRF used is
80.75% (85% MCF and 95% PRF). This cost excludes mineral resource royalty tax
and income tax. The gold price, costs and production rate have been selected to give
a break-even grade of 10 g/t. This is applied as the cut-off grade.

3.2 Cut-off Grade

The cut-off grade is an expansion of the break-even concept. Only blocks above
break-even grade are mined—thus this becomes the cut-off grade. The cut-off grade
is subject to variations over the life of the mine, however. The basics of the cut-off
grade theory are described in Hall’s ‘Cut-off Grades and Optimising the Strategic
Mine Plan’ [14]. This book is a comprehensive study of the various techniques
currently used in the mining industry. It includes various measures of value including
optimising the discounted cash flow (DCF) and net present value (NPV) [11]. The
DCEF valuation method requires a mine design with good estimations of the expected
tonnages and grades as well as costs (fixed and variable) and recoveries to be realised
each year of production [12]. The mine’s cost of capital is used as the discounting
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rate of the cash inflows and outflows. The sum of these discounted cash flows is the
(NPV). This discount rate is essentially the cost of capital and it is usually calculated
by the weighted average cost of capital (WACC) which considers all the sources
of capital required for a project (equity and debt). Real discount rates of 9-12%
for mining projects are appropriate for South African mining projects [13]. This is
equivalent to 14.5-17.6% at a 5% annual inflation rate for WACC in nominal terms.
For this study, 10% has been assumed.

Lane describes in his book ‘The Economic Definition of Ore’ the economic prin-
ciples of how cut-off grades are derived and how cut-off grades can be optimised
at various stages of a mine’s life [14]. Minnitt looked at how Lane’s cut-off grade
calculations were being adapted to Wits-type gold mines in 2004 [15] and found
that the application of the NPV criterion for determining and optimising value in
mining operations was limited. He considered NPVs at various points in the value
chain (mining, processing and marketing) to determine a balanced cut-off grade.
Both Lane and Minnitt consider the NPV calculated over the life of mine rather than
short-term profitability as the primary measure of value. Krige and Assibey-Bonsu
[16] considered how uncertainty affects the overall tonnage above cut-off grades for
valuation purposes [16].

One of the commonly applied grade optimisation methods used by South African
mining companies is to establish the break-even grade and apply this as the mining
cut-off grade [17]. The estimation of the grades for each mining block is determined
by sampling the mineral deposit and projecting the values into the area to be eval-
uated. Various techniques are used to do this including nearest neighbour, inverse
distance squared and kriging. To determine if a mining block is classified as ore or
waste, the estimated value is used for this classification. There is, however, a degree
of uncertainty regarding the estimated value due to sampling spacing, deposit hetero-
geneity and method of estimation used. The author has established that the optimal
cut-off grade should be lower than the break-even grade when the uncertainties of the
grade estimation are considered [18]. For this study, the break-even grade is applied
as the cut-off grade.

3.3 Financial Optimisation

Companies can use some sort of ‘optimiser’ program that utilises the block listing,
as well as the basic inputs to calculate the cut-off grade. Every orebody is unique
and thus should be considered individually for the determination of cut-off grades.
The grade-tonnage curve is then automatically generated—indicating how much
material is available above the cut-off grade. The average mining grade (AMG) is
also then obtained. This is the average grade of the material above the cut-off grade
and becomes the planning grade. For this study, the same approach is applied. The
grade-tonnage curve is determined for each hypothetical orebody and block size
combination. The tonnes above the cut-off grade (in all cases 10 g/t), as well as
the AMG, are determined, and this becomes the basis for a cash flow model. The
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Fig. 1 Typical grade-tonnage curve with a cut-off grade of 5 g/t. The resultant tonnes above 5 g/t
are 10.2 million tonnes and the average mining grade is 8.1 g/t

mining rate of 200,000 tonnes/annum is used to deplete the available tonnes, and the
resultant profit, as well as the NPV at 10%, can be determined.

Using this block listing, companies declare their mineral resource and reserve
into the public domain. This is usually as part of the annual report, but shareholders
and potential investors require also at times when a competent person’s report is
prepared. Figure 1 shows a typical tabular gold deposit grade-tonnage curve.

4 Modelling Exercise

To investigate the impact that altering the mining block size has on the profit as well as
the NPV, two approaches for this study were used. Both approaches use hypothetical
ore bodies with a 1000 by 1000 m size along with a 1-m thickness. The density is
2.7 glem?, which is typical for Witwatersrand gold deposits. The ore body model
can be considered a 2D model. The mining is assumed to extract only the ore with
no consideration for minimum mining widths and dilution. The first exercise utilises
EXCEL and can be considered the ‘theoretical’ approach. The second exercise uses
Leapfrog Geo and interpolates the grades into the blocks using the block modelling
function. This approach is considered the more realistic approach and follows the
methodology commonly found applied in South African gold mines.
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Fig. 2 A portion of the 10 by 10 m grid for the 8 g/t EXCEL model. 27% tonnes above cut-off
grade with an average mining grade of 14.88 g/t

4.1 Grade Models

For both exercises, the grade model is based on the Isobel Clark CMGT dataset that
represents a typical Witwatersrand gold deposit (http://www.kriging.com/datasets).
The distribution profile is lognormal and Monte Carlo simulation (@Risk) has been
used to create the hypothetical orebodies. For the study, these hypothetical ore bodies
have average grades of 6, 8, 10, 12 and 14 g/t. The lognormal distributions were
capped at the 95 percentile as well as not having negative grades. For the EXCEL
Model, the grades were interpolated into a 10 by 10 m grid (effectively 10,000
samples). For the Leapfrog Geo model, 200 Collar, Survey and Assay files were
created.

4.2 Block Models

Block sizes of 10 by 10, 20 by 20, 40 by 40, 100 by 100 and 200 by 200 m were
selected which represent a total area of 1000 by 1000 m. The channel width assumed
tobe 100 cm. No dilution was included in the mining model. The density was assumed
2.7 g/lcm?. The total tonnage in the area is thus 2,700,000 tonnes.
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Fig. 3 A portion of the 20 by 20 m grid created by compositing and four 10 by 10 m blocks

4.3 The EXCEL Model

EXCEL was used to generate a 10 by 10 m grid. This then averaged for the 20 by
20, 40 by 40, 100 by 100 and 200 by 200 m grids. This was repeated for the 6, 8, 10,
12 and 14 g/t grade distributions. This approach is shown in Figs. 2, 3 and 4.

Ascanbe observedin Figs. 2, 3 and 4, the creation of the larger block models for the
EXCEL modelis by simply averaging the individual grades from the smaller blocks. It
is known that the variance of the grades decreases as the number of samples increases,
the so-called volume-variance relationship [19]. This effect is clearly observed in the
exercise as the values of the smaller blocks are averaged together as the larger blocks
are created.

4.4 EXCEL Grade-Tonnage Curves

In total, 25 grade-tonnage curves created. The cut-off grade of 10 g/t is applied
to each of these grade-tonnage curves. The resultant tonnes above cut-off grade as
well as average mining grade were obtained for each of these. Examples of these
grade-tonnage curves are shown in Figs. 5 and 6.
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Fig. 4 A portion of the 20 by 20 m EXCEL model for the 8 g/t model. 21% tonnes above cut-off
grade with an average mining grade of 11.78

As can be observed in Figs. 5 and 6, as the block size is increased, there is a
significant change in the tonnes above the cut-off, as well as the average mining
grade. For this example, the tonnes above cut-off reduce from 735,000 to 571,000
tonnes whilst the average mining grade drops from 14.88 to 11.78 g/t. Figures 7 and
8 show the results from all 25 grade-tonnage curves.

It can be observed in Fig. 7 that as the blocks get larger, the average grade above
cut-off grade reduces. In Fig. 8, the percentage tonnes above cut-off grade reduce for
the models where the average grade of the ore body is below the cut-off grade. Were
the average grade of the ore body is above the cut-off grade, the percentage tonnes
above cut-off grade increase as the block size increases.

4.5 EXCEL Cash Flow Model

The cash flow model utilises the following parameters to determine the gross revenue:

— Tonnes available above the cut-off grade
— Average mining grade above cut-off (g/t)
— Annual Production

— Mine call factor (MCF)
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Fig. 5 The 10 by 10 m grade-tonnage curve for the 8 g/t EXCEL model

— Plant recovery factor (PCF)
— Gold Produced (Oz)
— Price (US$/02).

The costs are based on a 75:25 split between fixed and variable costs. The annual
production, mine recovery factor (MRF), price and costs have been selected to give
the selected cut-off grade of 10 g/t. For each grade-tonnage curve, the tonnage above
cut-off grade and average mining grade are inserted into the model and the resultant
profits as well as NPVs (at a discount rate of 10%) are determined. No separate
CAPEX is included in the cash flow model and it is assumed the development costs
are included in the fixed and variable costs used. For this exercise, the production rate
is kept constant at 200,000 tonnes per annum irrespective of the block size. Thus,
no distinction made for costs related to the selectivity. The results are tabulated in
Table 1.

It can be clearly seen that in each case, the smaller block size results in higher
profits as well as NPV. However, in reality, selectivity comes at a cost. It reduces
mining rates (stopping and re-equipping stopes on a regular basis) and causes extra
costs to be incurred by extra development. Added flexibility must also be factored
into the mine design with spare faces being available to account for unexpected grade
drops. These are more likely with small blocks than in the case of larger blocks that
are subject to the volume-variance effect [19]. Sampling errors are also considered
more critical [20]. To investigate the effect of this, the fixed and variable mining costs
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Table 1 Cash flow results for the EXCEL model

131

Average =6 g/t

Block size 10 x 10 20 x 20 40 x 40 100 x 100 200 x 200
Average grade | 14.85 11.61 10.49

above cut-off

Tonnes above | 487,000 181,000 4000

cut-off

Profit ($ mil) | $86.71 $12.64 $5.33

NPV ($ mil) | $73.02 $11.49 $4.84

Average =8 g/t

Block size 10x 10 20 x 20 40 x 40 100 x 100 200 x 200
Average grade | 14.88 11.78 10.68

above cut-off

Tonnes above | 735,000 571,000 160,000

cut-off

Profit ($ mil) | $113.05 $29.50 $13.75

NPV ($ mil) | $92.10 $25.36 $12.50

Average =10 g/t

Block size 10x 10 20 x 20 40 x 40 100 x 100 200 x 200
Average grade | 15.55 12.48 11.13 10.48 10.18
above cut-off

Tonnes above | 1,090,000 1,236,000 1,296,000 1,296,000 1,512,000
cut-off

Profit ($ mil) | $212.99 $124.97 $61.98 $34.30 $24.56
NPV ($ mil) | $157.39 $87.51 $43.94 $24.31 $16.75
Average=12 g/t

Block size 10x 10 20 x 20 40 x 40 100 x 100 200 x 200
Average grade | 16.26 13.30 12.18 11.90 11.90
above cut-off

Tonnes above | 1,451,000 1,927,000 2,424,000 2,700,000 2,700,000
cut-off

Profit ($ mil) | $337.44 $221.76 $210.77 $196.22 $196.22
NPV ($ mil) | $226.37 $139.70 $115.67 $105.16 $105.16
Average =14 g/t

Block size 10x 10 20 x 20 40 x 40 100 x 100 200 x 200
Average grade | 17.13 14.58 14.01 13.98 13.98
above cut-off

Tonnes above | 1,829,000 2,418,000 2,683,000 2,700,000 2,700,000
cut-off

Profit ($ mil) | $479.90 $413.64 $384.69 $379.64 $379.64
NPV ($ mil) | $296.50 $226.76 $205.51 $203.46 $203.46
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Fig. 6 The 20 by 20 m grade-tonnage curve for the 8 g/t EXCEL model

have kept constant but the mining rate adjusted to simulate the effects of selectivity.
The cut-off grade kept at 10 g/t which are based on the planned 200,000 tonnes per
annum. However as the block sizes become smaller, this mining rate is adjusted:

— For 10 by 10 m blocks, the mining rate reduced to 120,000 tonnes per annum.

— For 20 by 20 m blocks, the mining rate reduced to 140,000 tonnes per annum.

— For 40 by 40 m blocks, the mining rate reduced to 160,000 tonnes per annum.

— For 100 by 100 m blocks, the mining rate reduced to 180,000 tonnes per annum.

— For 200 by 2000 m blocks, the mining rate kept at the planned 200,000 tonnes per
annum.

The profit results for the cash flow exercise are shown in Fig. 9 and the profit
results of the adjusted cash flows are shown in Fig. 10.

There is a clear reversal in the cash flow results when the cost of selectivity is
considered in the modelling exercise. For the low-grade ore bodies (6, 8 and 10 g/t
where the average ore body grade is the same or below the cut-off grade), selectivity
and small block sizes were shown increase the average mining grade, as well as the
tonnes above cut-off grade in these cases. However, when the cost of selectivity is
taken into account (by reducing the mining rate in this case), the model shows they
cannot be mined economically. For the higher grade models (where the average ore



Optimisation of Mining Block Size for Narrow Tabular Gold ... 133

Average Grade Above Cut-off Grade

------- Average = 6/t

gt Average = g/t
1800 — = Average = 10g/t
- =Average = 12g/t

17.00 - Average = 14gft

16.00
15.00

14.00

13.00

12.00

11.00

10,00
1010 20m20 4040 100%100 200200

Block Size

Fig. 7 The average grade above the cut-off for the 6, 8, 10, 12 and 14 g/t EXCEL models as the
block sizes are altered

body is above the cut-off grade), the larger mining blocks and the mining efficiencies
associated with them show increased profit and NPV.

4.5.1 Leapfrog Geo Grade Model

The EXCEL model can be considered the theoretical model. In an attempt to deter-
mine how altering the block sizes will affect the financial model in a more realistic
scenario, Leapfrog Geo has been utilised. 200 simulated boreholes with random posi-
tioning through the 1000 by 1000 m area have been created. The Collar and Survey
files are kept the same for all the models, with just the Assay file been altered to
simulate the various average grades for the five ore bodies. This was achieved by
using the same lognormal distribution profile and Monte Carlo Simulation (@Risk)
approach used to create the EXCEL 6, 8, 10, 12 and 14 g/t hypothetical ore bodies.

Leapfrog Geo uses its own interpolation tool called FastRBF™. This can perform
linear or spherical interpolants [21]. These are similar to the linear and spherical
variogram models, which are used by other packages to perform kriging [21]. For this
exercise, the interpolation was done using the linear interpolation tool (no significant
differences were noted in the outputs for the purpose of this study when using the
spherical tool). This meant that nuggets, sills and ranges were not required for the
creation of the basic model. Due to the base model accuracy not being critical in the
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Fig. 8 Percentage tonnes above the cut-off for the 6, 8, 10, 12 and 14 g/t EXCEL Models as the
block sizes are altered

study, this was considered acceptable. Figure 11 shows the base model created using
the average 8 g/t database. In all the Leapfrog Geo models, the light grey areas/blocks
are below the 10 g/t cut-off grade.

Figures 12, 13 and 14 show the 10 by 10, 40 by 40 and 100 by 100 block models
for the 8 g/t model.

There is a clear correlation between the grades in the various models as the block
sizes are altered. The same pattern is observed in the 10 by 10, 40 by 40 and 100 by
100 m models (Figs. 16, 17 and 18) created for the 14 g/t ore body model (Fig. 15).

The effect of altering the block size using Leapfrog Geo on the resultant grade-
tonnage curves is completely different from results observed in the Excel model, as
shown in Figs. 19 and 20.

The average grades and percentage tonnes above cut-off grades remain constant
for the 10 by 10, 20 by 20, 40 by 40 and 100 by 100 m Leapfrog Geo models. It is only
the 200 by 200 m model that shows any variation to this. This is markedly different
from the theoretical EXCEL model. In reality, the Leapfrog Geo model is based on
200 sample points, whilst the EXCEL model has effectively 10,000 sample points
(but representing the resolution that would require 100,000-200,000 sample points
to generate). It is clear that the Leapfrog Geo model lacks the resolution to accurately
put values into blocks smaller than approximately 100 by 100 m (based on the 10-20
samples in a block suggested by the SME Mining Engineering Handbook). Due to the
lack of variation between the different block size models regarding average grades
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Fig. 10 Profit for each ore body related to block size when the cost of selectivity is considered
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Fig. 11 The base 8 g/t model

Fig. 12 10 by 10 m blocks for the 8 g/t model

Fig. 13 40 by 40 m blocks for the 8 g/t model
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Fig. 14 100 by 100 m blocks for the 8 g/t model

Fig. 15 14 g/t base model

and tonnages above cut-off grade, further financial modelling was not undertaken.
The exercise could have been run with more samples, but this would have been
considered unrealistic considering the nature of the orebodies being replicated (deep
narrow tabular gold deposits) which tend to have sparse drilling intersections. Further
samples would also have caused far slower modelling due to the limitations of the
computer being utilised for the study.
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Fig. 16 10 by 10 m blocks for the 14 g/t model

Fig. 17 40 by 40 m blocks for the 14 g/t model

Fig. 18 100 by 100 m blocks for the 14 g/t model
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Fig. 19 Average grades above cut-off for the Leapfrog Geo model
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5 Conclusions

This study shows that the findings from a theoretical study can be very different when
attempted using a more realistic approach. When considering the findings from the
EXCEL model the following conclusions can be made:

— Smaller blocks allow more selectivity and the average grade above cut-off grade
is higher;

— Where the average grade of the ore body is less than the cut-off grade, then fewer
tonnes above cut-off grade are found when smaller blocks are used. This is reversed
when the average grade of the ore body is above the cut-off grade where larger
blocks result in higher tonnages;

— If the cost of selectivity not considered, then mining smaller blocks is financially
optimum irrespective of the average grade of the ore body; and

— When the cost/efficiency effect of selectivity is considered, then larger blocks
are optimum when the average grade of the ore body is above the cut-off grade.
However, with the low-grade ore bodies, selectivity is critical and the cost of
selectivity can result in these not being economical to mine.

When the more realistic Leapfrog Geo modelling approach is considered, the
sample spacing will dictate the size of the smallest blocks. Realistic data spacing
in the narrow tabular ore bodies considered in this study is unlikely to give block
sizes smaller than 100 by 100 m. Although the model may appear to have a high
resolution when viewed visually, in reality, the small blocks cannot be considered
a true reflection of their individual grades. They are effectively just splitting the
underlying composited model into smaller units without showing their true grade
variability. Trying to identify potential smaller high-grade blocks to mine selectively
without sufficient data is not possible. The SME Mining Engineering Handbook
guide of between 10 and 20 samples in a block to give a reliable estimation is a good
measure in determining the smallest realistic block [3].
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Methodology to Optimize and Sequence m
the Semiautomated Ramp Design L
in Underground Mining

S. Montané, P. Nancel-Penard and N. Morales

1 Introduction

The mining industry market competitiveness forces the companies to continuously
seek cost reduction strategies to improve the profit. On the other hand, there are
few investigations about optimization of the design of access routes in underground
mining.

De Smith [6] focused on the analysis of the gradient and on the curvature restric-
tions for road forms and lengths to find optimal routes. The study contemplated three
steps for the selection of the optimal route:

— initial alignment of the route subject to a preset range of gradient restrictions,

— horizontal smoothing of the route to find objectives of curvature and smoothness
of horizontal route, and

— vertical smoothing of the route to achieve similar objectives, with a minimum of
cut/fill in the vertical plane.

Ghaffariyan [7] developed a study to determine optimal path spacing, where the
best solution found was based on a modification of the shortest path algorithm. The
objective of the study was to apply a mixture of integral programming and network
analysis to optimize the route.
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References [1-4] proposed the creation of an optimization tool that allowed
obtaining the best alternative for the construction of ramps, shafts, and tunnels to min-
imize the associated costs. Their work was based on Steiner’s networks, where nodes
are established that represent the places through which one must necessarily pass,
given the design of the mine. These nodes must be joined by sections (ramp/gallery)
that have associated costs corresponding to the development of the section and the
cost for the transit of ore through it. Brazil et al. [5] developed some software to
obtain the design of ramp using his algorithms.

In this paper, we present a methodology to assist the ramp design in underground
mining, minimizing both development and operational costs. The methodology con-
siders an optimization model that obtains an initial ramp design, which is subse-
quently, refined to arrive at the final configuration. A sequencing of ramps’ con-
struction is generated using the UDESS software. The general sequencer model
Universal Delphos Sequencer and Scheduler (UDESS) seeks to maximize the NPV
of the scheduling, subject to resource constraints and precedencies, to generate a
Gantt chart of development of activities.

2 Optimization Model

The proposed methodology contemplates the creation of a mathematical model to
solve a problem of minimization of costs of the ramp route, granting access to
production levels via tunnels in a straight line called crosscut to extract the mineral.
The mathematical model considers predefined starting point and the height for the
connection between the crosscuts and the ramp.

The optimization model uses the following input parameters; the values of the
parameters depend on the case to which the methodology is applied:

— a guiding form from which the ramp is generated, which defines the available
space and the final form. A tolerance border is established for the location of the
solution

— the quantity and location of the access points to production levels, with the asso-
ciated tonnage to be extracted from each level

— the maximum tolerable slope in the construction of the ramp that the equipment
can operate

— development costs of ramps and crosscuts

— operational costs of ramps and crosscuts

— direction of the ramp (clockwise or counterclockwise)

— starting point of the ramp

— cost of ventilation.

In addition, a penalty is established in the optimization model whereas the curved
sections generated during the modeling are “punished”, because they are more com-
plicated to construct operationally. These considerations were established after meet-
ings with experienced consultants.
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Similarly to the design of ramps in open-pit mines [8], the methodology consists
of precomputing shortpaths at block level for each level of the mine within a prede-
fined boundary and using the mathematical model to determine, which are the best
shortpaths to assemble to generate the full ramp.

The nomenclature for the proposed mathematical modeling is as follows:

B The block model

K The maximum level at which the ramps can begin

By The set of blocks of level k, k € {0, 1, ..., K}, level O is lower level, K is ramp
top level

Dgtartk The starting block of the ramp

F The defined boundary of blocks where ramps can pass

E The set of the access points

Ex The set of the access points for the production level k

ke The level of the connection of the crosscut starting from e with the ramp

E The minimum level for the connection of the crosscut, that start from the lower
access point with the ramp

I The set of indexes i of all precomputed paths of level k

s,i The ith precomputed path of level k

o}; The first block of s,i

fi The last block of s!

bé, P The block of sl’; nearest to the access point e

l,‘; The approximation of length of s,i

lé,k The approximation of length of (f,i, bé,k)

c}lc The value equal to 1 if s,’; is a curve, else equal to 0

Chik The haulage cost of all the mine production for 1 meter of ramp that must pass on
level k

Cyoe The haulage cost of the production of the access point e for one meter of ramp

Cr, The haulage cost of the production of the access point e for 1 meter of crosscut

CrD The cost of development of 1 m of ramp

Ccp The cost of development of 1 m of crosscut

Cvp The cost of ventilation of development of 1 m of tunnel

Vr The cost of ventilation that corresponds to the haulage

Prp The penalization of 1 m of curve tunnel development

The variables of the problem are defined as follows:
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1 if block b belongs to ramp,
Yb = .
0 otherwise.

1 if all blocks of level k of s,i are part of the ramp of level k

X = and f; is the first block of the ramp of level k — 1

0 otherwise.

Domain definition of variable y is ', domain definition of index k of variable x is
{1, 2,..., K}, domain definition of index i of variable x is Ik.

Therefore, the Single Ramp Underground Design Problem (SRUDP), can be for-
mulated as follows:

K
(SRUDP) min ) " ((Crp + Cyp) - (1 + Pro - ;) + Cru - (1+ V) - I - x;
k=1 i€l
=Y Chae- 1+ Vp) Ly xi
ecE iely,
K
+ Y D (Ccp+Cvp+Cre- (1+Vp) - [lebl ] - xi (1)
k=1E|€EE1< i€l
s.1.
Yo xizxl, (Vk>1,Vjely 2
i€l fi=o]_,
doxi<1l (k=1 )
iEIk
xx<w (Yk=1, Vbes;) 4)
Y xizw (VheF) 5)
ieli|bes]
P (6)
ielg |'7’[( =bstart
Z x;( > 1 (7N
iE[kr‘
=0 (Y<K, Viell|slifl=d}=9) ®)

The objective function (1) minimizes the overall development and operational
costs of ramp sections in a level, crosscuts, and ramp connection between levels.

Constraint (2) ensures the connectivity between ramp paths. Constraint (3) states
that there is at most one ramp per level. Constraint (4) ensures that for each chosen
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path, all blocks in the path are part of the ramp. Constraint (5) states that ramp block
belongs to an elected precomputed path. Constraint (6) states that the ramp will start
from the defined start block. Constraint (7) forces the existence of a ramp to connect
the lower crosscut. Constraint (8) prevents a no connected path from being an eligible
path.

SRUDP model is equivalent to a shortest path problem to minimize the function
cost (1) instead of the length of paths. The graph of connection of all precomputed
paths is constructed. Each arc is associated with the cost that corresponds to the
development of this tunnel part and the corresponding operational cost. The opera-
tional cost includes the haulage cost of material that goes through the arc, considering
the crosscut development and operational costs, if the level of path corresponds to a
fixed connection height k.. The shortest path problem can be solved very fast; how-
ever, the proposed methodology is addressing a more general problem because the
optimal height of the crosscut connections with the ramp is not known in advance.
To solve this more general problem, a heuristic approach that tries different heights
of connection starting from horizontal crosscuts was made to approximate the opti-
mal ones. The heuristic keeps the ones that improve the cost function starting from
the higher crosscut, considering only a feasible connection boundary and preventing
the intersection of crosscuts. The heuristic iterates while the value of the objective
decreases.

3 Methodology and Performance

The procedure to use the heuristic optimization model requires a block model of the
workspace, where the access points to production levels are identified and the shape
and working space for the design of the ramp are defined. This block model must be
in a text file format separated by tabs. The input values are defined as costs, slope,
and tonnage to be extracted from production levels, direction, start point, and penalty
of arcs.

To execute the modeling code, a server with a Xeon processor E5-2660v32
@2.6 GHz. 128 GB RAM with a CPU that has 20 threads was used. The execution
time is approximately 2 min, although this depends on the amount of data within
the block model. The outputs are the approximate total cost of the design and the
points where the ramp passes. When these points are viewed, they are blocks, whose
size varies depending on the resolution used. This design contemplates the original
dimensions of the final design, its costs, and the tonnage associated with the devel-
opment. This solution must be refined by the engineer in charge of the design, to
transform the points into a triangulation that represents the real section of the gallery,
using mining CAD software. The data flow of the methodology is summarized in
Fig. 1.
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Table 1 Developed meters and total cost for each zone

Zone Y east Y west lower Y west higher
Long developed ramp (m) 1099 1136 1455

Long developed crosscuts (m) 979 522 443

Total cost (MUSD) 10.8 10.5 5.5

4 Case Study

A case study of a gold and silver mine operated by Bench & Fill was undertaken. The
data used in this section was provided by a confidential prefeasibility study made in
2014, which includes from geostatistical study until final economic analysis.

The mine had two main sectors and three exploitation zones: Y east mine, Y west
mine, and V mine. Production levels were separated by 12 m vertically. Some levels
had a principal drift to connect crosscuts to access the extraction galleries, while in
other levels, it was possible to access directly without using the drifts.

The methodology to design ramps was used in three zones: Y east, Y west lower,
and Y west higher. The objective of the case study was to replicate as much as
possible the original designs of the prefeasibility study and, therefore, each zone
was considered independently of the others, it was expected to use the same space
available and respect a gradient 13% proposed in the report of the project.

Y east zone had 26 production levels, but the design had to reach an access to
13 main drifts because in these levels, the drift system was implemented. In Y west
lower zone, there were 11 drifts to access; therefore, there were 22 production levels.
Finally, Y west higher zone did not have the drift system; there were 15 production
levels to access directly.

4.1 Ramp Design Result

The results obtained with the application of the new methodology are shown in
Table 1. Because there were three zones, the methodology was used three times and
the time for execution required was about three minutes for each zone.

Figure 2 shows a comparison between designs obtained using the proposed
methodology and designs obtained by prefeasibility study. In general, the designs are
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Fig. 2 Comparison of ® Case study

designs Y west higher ® Replication case study

Y west lower

d Y east

%

very similar in the three zones. The main difference is in ¥ west lower zone, where
the upper half is different because the prefeasibility study design had two values of
gradient: 13 and 15%, while the design obtained by methodology used a gradient of
13% only.

4.2 Sequencing Result

The UDESS tool was used to accomplish the sequencing of ramp and crosscuts
construction and extraction of ore from production levels, through a maximization
of NPV. Three types of activities were defined ramp sections, crosscut sections, and
production levels, which had associated revenues and costs. In addition, three types
of restrictions were set maximum tonnage extracted per period, effective hours of
work, and availability of equipment for construction.

The sequencing of the three zones was considered as a single problem in UDESS
and each sector was considered independent to each other. The exploitation of pro-
duction levels was from the bottom-up. The problem considered by UDESS consisted
of 467 activities and 728 precedencies and the execution time was 4.6 h. The result
yielded an NPV of 1,041.8 MUSD, 13 years of ramp and crusher construction, and
18 years of ore extraction, as shown in Figs. 3 and 4.

In general, the results are consistent with the maximum extraction rates. The
ramp-up lasted 3 years and the ramp-down 4 years, which are reasonable times for
the scale of the project. The progress of development of ramps and crosscuts was
related to the opening of production levels, which had precedence among them to
extract the ore from the lower levels as a priority.
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The designs made in the case study allowed to verify that the proposed model is
capable of replicating the designs of the engineering study, which proves that this
tool can provide feasible solutions for the industry.

The times required for the execution of the heuristic are prudent, between 1 and 3
minutes, depending on the case study. The complexity lies in a good establishment
of the ramp guide form according to the conditions of each case.



Methodology to Optimize and Sequence the Semiautomated Ramp ... 151

On the other hand, the heuristic with optimization model is capable of delivering
solutions that can assist in the design of ramps, facilitate the work of the engineer
and deliver options with more objectivity.

For the construction sequencing, it is observed that the times needed are linked
with the dimensions of the deposit and the amount of infrastructure needed. This
scheduling is a good complement of ramp design because it allows to verify the
times of the project from initial stages.

As future work, the construction of a heuristic which can obtain the ramp and
crosscut design and, in addition, the sequencing of construction thereof, maximizing
the NPV of the associated project, is proposed. The idea is to generate designs that
involve some aspects of the production to include, from the beginning of the project,
the costs of the infrastructure necessary for the operational stage.
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Production Scheduling in Sublevel m
Caving Method with the Objective ek
of NPV Maximization

M. Shenavar, M. Ataee-pour and M. Rahmanpour

1 Introduction

Optimization of mineable reserve in open pit and underground mines is a critical
issue. Optimization of mineable reserve in underground mines has received less
attention than in open-pit mines. This is mostly due to the diversity of underground
mining methods and complexity of underground mining parameters. Open-pit min-
ing method has a great importance among surface mining methods, and there are
many studies to optimize this method. Concurrently, optimization of ultimate mine
limit and production planning in other surface mining methods has not improved so
much, and studies on optimization and planning in these methods are very limited
and primitive. Among underground mining methods, block caving, sublevel caving,
sublevel stopping, cut and fill, and stope and pillar methods are usable for the mining
of metallic reserves.

The true optimum solution is guaranteed for the pit limit optimization and several
computer packages are available to the industry. However, only few algorithms have
been developed for optimization of ultimate stope boundaries in underground mines
[1].

Stope design affects the profit and safety of the operation. Stope design requires:
(1) ore reserve model as input data, usually created by estimation or simulation using
geostatistical tools and (2) the geotechnical constraints, including the hanging wall
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and footwall angles, stope dimensions, in situ stress tensor, rock strength, and local
geological structures. The general procedure of stope optimization is to decide which
parts of an ore reserve are included in the stope and which are not, such that, under
some geotechnical constraints, the resulting stope produces the maximum possible
profit [2]. Several approaches have been developed for stope optimization [1, 3].
Dynamic programming and branch and bound technique were used to optimize a
stope in two-dimensional (2D). However, these methods fail to produce realistic
stopes for complex three-dimensional (3D) deposits that cannot be simplified in 2D.
Some 3D techniques were also reported, including mathematical morphology tools,
floating stope [3], maximum value neighborhood method [1], and octree division.
Bai et al. [2] has developed a stope optimizer based on graph theory [2]. Recently,
some models are developed for underground mine reserve optimization under grade
uncertainty [4].

Production scheduling defines the tonnages and grades to be mined throughout
the mine life. The scheduling problems are usually complex due to the nature and
variety of the constraints. A production schedule must provide a mining sequence
that takes into account the physical limitations of the mine and, to the extent possible,
meets the demanded quantities of each material at each time period throughout the
mine life [5].

In underground mining, various models have been developed to optimize the
production planning. In general, none of these models have been commercialized.
Most of them are short-term planning models with the aim of minimizing produc-
tion deviations from the existing manual non-optimized long-term program [6—16].
Some of these models are formulated for a specific mining operation and they must
be modified before applying on other cases [17, 18]. Some models do not have real
optimal solutions, which are some expert-oriented search-based methods [19-22]. In
the process of developing these models for underground mining production schedul-
ing, various objective functions are presented such as profit maximization [23], and
project time minimization [24]. Recently, some models have been developed with
objective function of NPV maximization for long-term production scheduling.

The economics of today’s mining industry is such that the major mining companies
are increasing the use of massive mining methods. Among the available underground
mining methods, caving methods are favored because of their low-cost and high
production rates. Caving methods are underground bulk mining method and are
expected to continue in the foreseeable future. One of these methods is block caving,
which has gained its popularity due to its low operating cost and high productivity
[5].

In this paper, a two-dimensional mathematical model is presented to sublevel
caving production scheduling, and it is applied on a hypothetical block model and a
real thin-layer deposit.



Production Scheduling in Sublevel Caving Method ... 155

2 Materials and Methods

In this research, production scheduling model is developed for sublevel caving
method and it is applied on Golbini bauxite mine of Iran. In this regard, floating
stope optimizer is used for reducing the number of blocks.

2.1 Floating Stope Optimizer

Floating stope is a technique implemented in the DATAMINE package (Mineral
Industries Computing Limited) to determine the optimal limits (boundaries) of an
ore reserve, which may be economic to be extracted by underground mining methods.
The general concept of floating stope approach was outlined in 1995 as a search-based
and heuristic approach, analogous to Moving Cone method for pit limit optimization.

The term floating stope is derived from the technique of floating a minimum stope
shape through the ore body and evaluates the grade of material inside the stope at
any position. In that regard, two envelopes will be created. The maximum envelope
is the union of all possible economic stope positions, while the minimum envelope
is found by taking the union of all best grade stope positions for every ore block in
the ore body. The envelopes provide a limit for the engineer to design final stope
positions, with the recommendation that the minimum envelope should be used as
the guide in the first instance. In this research, the maximum envelope is used as
the ultimate stope boundary as a guide for the production scheduling optimization
model.

By using this optimizer, the numbers of blocks in the block model are reduced. It
selects the blocks that have the potential to be mined by defining a mining envelope.
In that regard, the blocks that are not selected by the envelope, are removed from the
block model. This will considerably reduce the number of blocks that improves the
running time.

2.2 Sublevel Caving Mining Method

Sublevel caving is one of the most advanced mining methods. This method is usually
undertaken when mining the ore body through an open pit is no longer economically
viable. In sublevel caving, mining starts at the top of the ore body and develops
downwards. Ore is mined from sublevels spaced at regular intervals throughout the
deposit (Fig. 1). A series of ring patterns is drilled and blasted from each sublevel,
and the broken ore is mucked out after each blast. Sublevel caving can be used in
ore bodies with very different properties and it is an easy method to mechanize. This
method is normally used in massive, steeply dipping ore bodies with considerable
strike length. In this method, dilution and ore-loss are usually high.
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Fig. 1 Sublevel caving method

2.3 Golbini Bauxite Mine of Iran

Bauxite includes the oxides and hydroxides of iron and aluminum and silica. Golbini
bauxite mine is located in the North of Iran. Considering the main faults, Golbini
is divided into eight mining zones. Here, one of the Golbini zones with more than
3 million tons of bauxite is selected to study and apply the production scheduling
optimization model.
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Fig. 2 Sublevel caving sequencing

Table 1 A hypothetical block model
$1.00 |$2.00 $2.00 $1.00 $3.00 $2.00 $1.00 $2.00 $1.00 |$1.00
$1.00 |$2.00 $2.00 $4.00 $3.00 $2.00 $1.00 $2.00 $1.00 |$2.00
$2.00 |$3.00 $4.00 $5.00 $3.00 $2.00 $2.00 $1.00 $1.00 | $1.00
$2.00 |$4.00 $6.00 $4.00 $3.00 $2.00 $3.00 $2.00 $2.00 | $1.00

3 Problem Definition

In sublevel caving method, mining starts at the top of the ore body and progresses
downwards in a safe sequence as shown in Fig. 2. For production scheduling differ-
ent objectives are available, but in this study, NPV maximizing is the objective of
production scheduling. For better understanding, a two dimensional-block model is
considered as an example and the procedure is explained (Table 1).

The presented block model (Table 1) can be mined from left to right or vice versa.
Considering an annual capacity of eight blocks, the NPV of mining the blocks from
left-to-right and right-to-left direction is shown in Fig. 3.

As shown in Fig. 3, different NPV are achievable for various mining sequences,
so it shows that the production scheduling with objective of maximization NPV
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$2.00($3.00| $4.00] $5.00| $3.00 | $2.00 | $2.00 | $1.00 | $1.00 | $1.00 $2.00( $3.00 $4.00| $5.00 | $3.00 | $2.00 | $2.00| $1.00 | $1.00 [ $1.00
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Y2 $1.82 [$0.91 |$1.82 |$0.91 [$0.91 | P= [$33.00 [$0.91 [$1.82 [$1.82 |$0.91 [$2.73 P= $26.00

$3.64 [$2.73 |$1.82 [$0.91 [$1.82 |$0.91 [$1.82 [NPV= $31.27 [$0.91 |$1.82 |$1.82 [$3.64 [$2.73 |$1.82 [S0.91 NPV= $24.73

$1.82 |$2.73 [$3.64 |$4.55 |$2.73 [$1.82 [$1.82 [$0.91 [$0.91 [$0.91 $1.82 [$2.73 [$3.64 |$4.55 |$2.73 |$1.82 |$1.82 [$0.91 |$0.91 [$0.91

$1.82 1$3.64 |$5.45 [$3.64 [$2.73 |$1.82 [$2.73 [$1.82 [$1.82 |$0.91 $1.82 |$3.64 |$5.45 [$3.64 [$2.73 |$1.82 |$2.73 [$1.82 [$1.82 [$0.91

Y3 P= $52.00 P= $41.00

NPV= $46.98 NPV= $37.12

50.83

$0.83 [$0.83 [$0.83 $2.48

$1.65 |$2.48 [$1.65 [$1.65 [$0.83 $1.65 [$3.31 [$4.96 |$3.31 [$2.48

Ya P= $74.00 P= $63.00

NPV=' $63.50 NPV= $53.65

Y5 P=  $89.00 P= $89.00

NPV= $73.75 NPV= $71.41

50.68

$1.37 [$2.05 [$1.37 [$1.37 [$0.68

Fig. 3 Five-year scheduling of the hypothetical block model (Y year, P: profit)

is applicable for sublevel caving method. This example shows the importance of
production scheduling in reaching the objectives (NPV maximization) and satisfying
the mining constraints. In order to optimize the mining sequence, a 2D mathematical
model is presented that is suited for sublevel caving operations.

4 Mathematical Model

Long-term production scheduling plan of sublevel mining method is formulated
within an IP framework. The objective is to maximize the NPV of the mining process.
The objective function of the model is given in Eq. 1.

BEV,
SN (1)
+
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where [ is the number of blocks in horizontal direction, J is the number of blocks
in vertical direction, T is the number of scheduling periods, BEV;; is the economic
value of B;; (the block located in horizontal location i and vertical location j), d is
discount rate, and x;j, is the decision variable, representing that B;; to be extracted
in period .

Two sets of constraints are taken into consideration. The first set is related to
reserve and production capacity and the second set deals with the sequence of blocks
extraction in horizontal and vertical directions. The constraints are given in Egs. 2
through 5.

T
Doxp st Vi=(,....D, j=,....]) )
t=1
1 J
szijtpij =ppy VteT 3
i=1 j=I

Xigtjr <xijp Yi=,.... 0 j=0,..., ), €Tt <t 4)
Xicojerr <Xije Yi=(,....D; j=,...., ) t,t' eT; ' <t )

where production per year ppy is the annual production capacity. In this model,
constraint (2) is the reserve constraint and ensures that each block to be mined ones.
Constraint (3) controls production capacity and it ensures that the number of blocks
that must be mined each year does not exceed the predetermined capacity. Constraints
(4) and (5) are the most important technical and operational constraints in sublevel
caving method and are related to the sequence of blocks extraction. Horizontal block
extraction sequencing is considered in Constraint (4) and vertical block extraction
sequence is considered in Constraint (5). It should be noted that the actual level
distances depend on geomechanical constraints.

Overall, the procedure that leads to an optimal production schedule has five steps
which are as follows.

Step 1 Generate a geological block model

Step 2 Generate an economic block model

Step 3 Optimize stope boundaries using floating stope optimizer

Step 4 Determine the maximum envelope and remove the unnecessary blocks from
the block model

Step 5 Determine the maximum NPV and the optimal mining sequence by using
Egs. 1-5

5 Results and Discussion

In this section, the presented IP model (Egs. 1-5) is generated using MATLAB
programming platform. The model is applied on the presented hypothetical block
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Fig. 4 Production sequencing for achieving maximum NPV

Fig. 5 Optimized stope layout economic block model

model (Table 1) and the maximum NPV is determined. Maximum achievable NPV
for the hypothetical block model is 74.58% and the optimum mining sequencing is
shown in Fig. 4. As shown in the Fig. 4, the optimum mining sequencing is in left-to-
right direction and varies with previous manual scheduling. Thus, maximum NPV
is achievable for sublevel caving method with this model.

For better presentation, the presented approach is applied on Golbini bauxite mine
of Iran. It is a layer deposit and its hanging wall is suitable for caving. As stated,
considering the main faults, Golbini is divided into eight mining zones. Here, one of
the Golbini zones with more than 3 million tons of bauxite is selected to study and
apply the production scheduling optimization model. The reserve model is projected
into a 2D vertical block model.

Using floating stope optimizer, stope boundaries are optimized. The block model
of maximum envelope of the optimized stope layout with 2.1 million tons of bauxite
(25,000 blocks with dimension of 5 m x 5 m X thickness of the layer) is shown in
Fig. 5.

Once the optimized stope layout is determined, the unnecessary blocks are
removed from the block model. The resulting block model is shown in Fig. 6. In
this case, the production schedule is optimized for an operating period of 8 years. It
is assumed that all the reserve will be mined within this time period. The presented IP
model is applied on this block model and the optimum production schedule and min-
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Fig. 6 The applicable economic block model
Year 1
Year 2

Year3

Year 4

Fig. 7 Eight-year production scheduling

ing sequence is determined. The resulting mining sequence that leads to the highest
NPV is shown in Fig. 7.

6 Conclusion

In this paper, a mathematical IP model is formulated with respect to technical con-
straints that are present in sublevel mining methods. Consideration of these con-
straints will lead to a practical mining sequence that maximizes the NPV of the mining
operation. The model is applied on a hypothetical example to show the improvement
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in NPV that the model causes with respect to conventional hand methods. Due to
the large number of blocks (or decision variables), application of the model in real
cases is somehow limited. In order to pass this issue, a minable stope envelope is
determined by using floating stope algorithm, prior to the application of the model.
In that regard, the blocks that are not selected by the envelope, are removed from the
block model. This will considerably reduce the number of blocks that improves the
running time. The presented procedure is applied on a 2D representation of a real
bauxite deposit. The results show that an optimal and practical mining sequence is
achievable.
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Generation of a Monthly Mining )
Development Plan for Underground L
Mines Using Mathematical Programming

V. Rojas, T. Gonzalez and N. Morales

1 Introduction

Mine planning optimization is well developed and widely used in open-pit mining
as the mining operation progresses outwards with the deepening of the pit. Under-
ground mining is much more complex as, throughout the life cycle of the mine, the
directions of growth depend, among other factors, on the extraction method [1] and
specific characteristics of the mineral deposit often requiring a unique design; there-
fore, creating generic optimization algorithms is more difficult [2]. This complexity
does not allow for the developed algorithms to be applied across all underground and,
thus, a heuristic approach must be considered. The main differences between algo-
rithms and heuristics, both considered step-by-step procedures, is that optimization
algorithms iterate until finding an optimal solution while heuristics iteration make a
trade-off between the quality of the solution and the calculation time.

According to Musingwini [3], there are different algorithms and heuristics that
are applicable to the mine planning problem, for example, the simplex algorithm for
linear programming problems formulated by Dantzig or the dynamic programming
algorithm used by [4] applicable in open-pit mining in the determination of the final
pit.

In underground panel caving operation, the development plans are created by
expert mine planners, who use common criteria and historical data to build these
plans. There are no defined methodologies that would allow to optimize the avail-
able resources and, most importantly, to analyze possible scenarios for the execution
of these plans. This approach often leads to noncompliance of the development plan
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with the established period for the execution of the mine development. Therefore,
the development of methodologies that would allow to plan more efficiently, ensur-
ing an optimal result (or close) given the specific mine conditions would minimize
the noncompliance and lead to more optimal use of the resources during the mine
development stage.

In this paper, a methodology is proposed to address the time optimization problem
for underground mine development, minimizing the execution time and considering
operational, geotechnical, and deadline constraints.

2 Methodology

2.1 UDESS—A Mathematical Programming Model

UDESS is a mathematical programming model developed at the Delphos Mine Plan-
ning Laboratory, University of Chile [5], where a mixed-integer programming model
of activity sequencing is used. The application of this model to the mine develop-
ment optimization sought to minimize the execution time of the mining development
plan, subject to precedence constraints between activities, operational constraints,
and deadline milestones of certain development activities. The outcome of this model
is a Gantt chart of the activities of the development plan.

The main characteristics of the model are as follows. Let us consider a set of
periods t ={1,..., T}, a set of activities i ={1,..., A} that must be scheduled,
r ={1, ..., R} a set of resources that can be consumed by starting, ending and
development of each activity i, and that have certain availability in each period t.
Each activity 7 has a cost/benefit v; associated with its development, and v;, and v;_
associated to its start and end, with a minimum and maximum rate (v’min’ vlmax)
that limits the progress of each activity during each period ¢. Finally, each activity i
has associated a set of predecessor activities given by P(i).

The decision variables of this model are:

— pir: Percentage of progress of activity i in period ¢ (continuous variable whose
value is p;; =[O0, 1])

— sir, e;: Start and end variables, respectively, for activity i (binary variable, whose
value is 1 if activity 7 starts/ends in period ¢ or before, 0 otherwise)

— k;p;: Variable that establishes relations of precedence between the successor activ-
ity i and a group of preceding activities P € P(i) (binary variable, whose value is
1 if all the activities of the group P C P(i) are completed in period ¢, 0 otherwise)

— tit: Time consumed by activity i in period ¢ and its predecessors.

The set of main constraints is given by:

— Operational resource constraint: Each activity can consume Ai, » amount of a
resource r during its development. This constraint limits the resources consumed
in each period (given by R min s, Rrmax s, respectively) for all activities
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— Progress limit constraint: It is possible to require for each activity i a minimum or
maximum rate of progress in period ¢ (limits given by b — i, ¢, b +1, t, respectively)

— Range resource constraint: Activities are required to have a minimum (R,,) and
maximum (R,y;) consumption of a resource r during a certain time interval ([#,m;n,
trmax])

— Starting resource capacity constraint: Itis possible to model that activities consume
a resource r when initiating or finishing their progress (given by A +ir and A —
ir, respectively), which must be in a certain range given by [S,min s> Srmax.] for the
beginning, and [E¥min s, Ermax,] for the end of the activity

— Activity incompatibility constraint: It is possible to model that a certain set of
activities cannot start during a certain time interval

— Starting period constraint: It is possible to force the start of a set of activities C
between certain interval given by [£Cin, #Crax]

— Precedencies: Each activity i has a set of precedencies P(i) that can be divided
into groups P C P(i). Precedencies can be generated as type “and”, in which all
groups of the set P(i) must be completed before starting activity i, or as type “or”,
where it is required that at least one of the groups P C P(i) must be completed to
start activity i.

2.2 Mine Development Optimization Methodology

The proposed methodology takes the mine development plan (prepared by the experts
of the mine operation) as a base plan or input to the UDESS model. The base plan
consists of various activities such as horizontal and vertical developments, infras-
tructure construction, and installation subject to various constraints, precedencies,
and milestones.

The activities are discretized to avoid unique advance face if the activities are
extensive in development. The activities are related to each other by precedencies
constraints (see Sect. 2.1), which determine the order in which each activity is exe-
cuted and have different attributes and consume different types of resources. The
constraints of the case study, including operational, deadline, and resource con-
sumption constraints, are identified before the optimization heuristics is applied to
solve the optimization problem to find an optimal scheduling of activities and the
associated Gantt chart.

3 Case Study

The methodology was applied in an underground operation located in Chile. The
operation had nine underground panel caving mines and one open-pit mine, which
together represented an average annual production of 142,000 tpd.
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Fig. 1 Construction sequence of a conventional panel caving mine

The mine had four productive sectors, of which only one was considered, and
four levels: sinking, production, ventilation, and hauling, where trains were used as
a transport system for ore to the surface.

3.1 Construction Sequence of the Mine

Construction sequence of the extraction method was considered in modeling of the
mine development plan. Figure 1 shows the construction sequence of the mine con-
sidering four levels: undercut, production, ventilation, and haulage as well as the ore
pass systems.

3.2 Mine Development Plan

To fulfill the production goals, both in projects currently in execution and in future
projects, a proper planning of mining development must be carried out for different
time horizons.

The long-term plan had a time horizon ranging from 6 to 50 years and, in relation to
mine development, it provided global figures required to comply with the production
plans.

The medium-term plan had a time horizon of 1-5 years. This delivered the annual
volumes of works required to comply with the production plans.
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Table 1 Main results of the mine modeling with mathematical programming

Level Activities Precedencies Constraints
Undercut level 210 417 409
Production level 775 1489 812
Ore pass systems 153 258 39
Haulage level 140 232 64
Ventilation level 162 286 68
Total 1440 2682 1392

The short-term plan had a time horizon of 1 year and its main function was to
deliver the volumes of works considered during the annual period in the budgets
allocated for the mining development.

The monthly short-term plan had a time horizon of 1 year and provided the growth
guidelines for each sector and the monthly requirements for the incorporation of the
area as well as incorporation of all the milestones of mining development to assure
sustainability and continuity of production. It indicated when some of the main
milestones had to be developed; the details of the activities to be developed monthly
were added afterward.

4 Results

4.1 Mine Modeling

Table 1 shows the main outcomes of the implementation of the mine development
plan within the optimization model.

The development of the activities and their precedence relationships can be mod-
eled as precedencies of the “and” type and the “or” type. Of a total of 2682 prece-
dencies, 1834 correspond to precedencies of the “and” type, while 848 correspond
to precedencies of the “or” type.

4.2 Main Activities

Most of the activities focused on sinking and production levels, thus, the most relevant
results for these levels are shown providing a good representation of the outcome for
the rest of the mine. The activity with most volume of work in both levels corresponds
to horizontal developments and, as shown in Fig. 2, the mathematical model is able
to schedule all the plan activities leaving a small volume of activities to be carried
out toward the final periods. The results for the rest of the activities in all levels are
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Fig. 2 Horizontal developments for undercut and production levels for the base development plan
and the UDESS development plan

analogous, that is, all the activities of the development plan are scheduled within the
12-month horizon, respecting all constraints and leaving more time available toward
the final periods.

5 Analysis

5.1 Modeling

The original activities presented in the development plan were taken and a discretiza-
tion of these was carried out. For example, considering an activity of horizontal devel-
opment of 100 m, this activity was discretized or divided into five smaller activities of
20 m each. The discretization for the modeling was made based on the discretization
used by the expert planners of the operation for the construction of the plan, which
complied with the operational requirements of the mine.

The advantage of the methodology applied to this case study was that most of the
commercial scheduling software only use “and” type precedencies, thus the generated
plans are more rigid in terms of possible outcomes. The mathematical model provides
greater flexibility to the activity scheduling by incorporating type “or” precedencies,
allowing the generation of plans that are closer to the operational reality.

5.2 Base Development Plan Versus UDESS Development
Plan

The model scheduled all the activities associated with the program for the 12-month
period (January—December 2017), which corresponds to the time horizon of the
program.

The results obtained in scheduling the activities vary with respect to the original
program, in many cases leading to important differences in sequencing and schedul-
ing. This is mainly explained by analyzing the objective function that UDESS is
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Sensitivity Analysis for Milestone Activities — Development Plan 2017
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Fig. 3 Sensitivity analysis results for milestones and activities

using, which minimizes the total execution time of the plan, therefore, whenever
possible, the software tries to advance the development works.

5.3 Milestones

In addition to being operationally feasible, the development plan must comply with a
series of milestones in each level of the mine. The schedule given by UDESS fulfills
all the milestones required, as shown in Table 2. When comparing both plans, it can
be observed that the original plan does not meet the required deadlines established
for three of the milestones required which results in 84% compliance.

5.4 Sensitivity Analysis

A sensitivity analysis was carried out, considering the scheduling of the mining
development plan activities considering advancing the activities by 1 month. Those
activities in which the rescheduling was possible, a new reschedule to advance the
activities by 2 months was tested.

The results indicate that 57% of the activities of the plan accept the 1-month
rescheduling. Of this 57%, only 3% of activities can be scheduled 2 months before-
hand, as shown in Fig. 3. This result indicates that the plan has a good degree of
flexibility to carry out the scheduling of activities, considering the multiple con-
straints of the problem.



172 V. Rojas et al.
Table 2 Comparison between base plan fulfillment and UDESS plan fulfillment
Milestone Deadline Fulfillment base | Fulfillment UDESS plan
plan

Finishing special gallery February v v
south of crosscut access 4 at

UCL

Connection February v v
ditch-53/crosscut-45at PL

Finishing special February v v
hydrocracking at PL

Finishing wall construction February v v
between ditches 49 and 50 at

PL

Crosscuts 25 and 27 March v v
connections at UCL

Crosscut access 6-ramp March X v
connection al UCL

Total connection April v v
ditch-54/crosscut-27 to 59 at

PL

Finishing special fortification | April X v
atlzZ

Enabling electrical station in | April v v
crosscut-46 at VL

Finishing special fortification | May v v
at Hw PL

Finishing constructions in June v 4
crosscut-51 to 53 at north of

ditch-49 PL

Total enabling injection June X v
crosscut-41 at VL

Enabling crosscut-38 at Block | June v v
1

Total fortification of July v v
crosscut-54 at PL

Connection ditch- August v v
54/crosscut-63/crosscut-1 at

PL

Total enabling of extraction | December | v/ v
crosscut-46 at VL

Total enabling of crosscut-38 | December | v/ v
Finishing bin assembly in December |V v
crosscut-43 at HL

Finishing labors inside shaft | Various v v

in crosscut-43 at PL
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6 Conclusions

The comparison of development plans created by experts and using new methodology
identified multiple improvement opportunities. It was possible to reassign or add
more activities in certain periods, where a large number of activities was not being
developed, redistributing the available resources for greater efficiency or reducing
the number of resources used.

Both plans scheduled all the activities within the established maximum period of
one year (12 months), however, the due dates for milestones were not the same. While
the expert schedule complied with 84% of the established due dates, the development
plan built in UDESS complied with 100% of them.

The ability to model precedencies, such as type “and” and type “or”, allowed the
optimization model greater flexibility and, therefore, brought the results closer to the
reality of the mine operation.

The results obtained from the sensitivity analysis established that there were
improvement opportunities in scheduling since the original plan had certain gaps
that had not been considered. In addition, UDESS provided the capacity and flexi-
bility to test various development scenarios, a capacity that is nonexistent at present
time due to the way in which the programs are built by the experts.

It was shown that an effective modeling methodology was created and validated
in a real-case scenario adding value to the process of mine planning.
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Optimization of Coal Production Rate m
as a Function of Cut-Out Distance oosk ko

A. Anani, W. Nyaaba and A. Hekmat

1 Introduction

Room and pillar mining is the dominant underground mining method which is used
to mine coal deposits. Even with the increasing demand for more alternative energy
sources, coal still contributes to about 29% of the energy used worldwide [1]. How-
ever, productivity in underground mines is far less than its surface counterpart. In
order to maximize coal production rate, many innovations in technology have been
developed over the past decades for increased safety, which increases advance rate,
geotechnical design innovations for maximum recovery, and continuous equipment
for maximum production rate. The continuous mining system revolutionized under-
ground coal production; however, their utilization is typically below 50% of its
available time [2, 3]. This can be attributed to several factors including traveling
time in and out of cut faces (the section where coal is produced), shift changing,
moving cables, changing picks, waiting for roof bolter, breakdowns, belt delays,
availability of power supply, and waiting for a shuttle car [2, 4]. Over the years,
many researchers have focused on optimizing room and pillar design parameters for
stability and maximum recovery [5, 6]. However, the rate at which coal is produced
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is heavily influenced by mine support systems such as fleet size, layout design, coal
haulage, production sequence, ventilation, and labor [2, 7].

The continuous miner (CM) production cycle includes cutting and loading the
haulage equipment typically shuttle cars, waiting on the shuttle cars, and moving
from cut to cut. The amount of time the CM spends waiting for the haulage equipment
can be minimized by matching the CM to an optimal fleet size given the operational
constraints. The time the CM spends traveling from one cut to the other can take
up to 10% of its available time [8]. However, minimizing CM travel time can be
difficult due to the restrictive spaces in room and pillars mines. The time the CM
spends traveling in a shift can be minimized by optimizing the width of the production
panel and increasing the amount of time it spends cutting and loading the coal. The
latter can be achieved by mining the maximum length at each cut face subject to
geotechnical, ventilation, and safety constraints thus maximizing CM utilization.
This can be considered as a constrained optimization problem with the form:

Min f(x)
Subjectto g;(x) =c¢; fori =1,...,n
hjx)>diforj=1,...,m (D)

where f(x) is the objective function, g(x) is the equality constraint and /(x) is the
inequality constraint, x is the decision variable.

The objective function f(x) is to maximize the CM utilization (for cutting and
loading coal) or coal production rate subject to mining constraints such as:

the CM follows a specific mining sequence

— the CM can only load one shuttle car at a time

the maximum cut length (cut-out distance) cannot exceed 12.2 m (40 ft)

a maximum of two shuttle cars can dump in the conveyor feeder breaker, etc.

The decision variables could be fleet size, panel width, and cut distances. The
nature of the optimization problem makes it nonlinear and implicit and is therefore
malleable to be solved using simulation-based optimization methods. The concept
of optimizing support systems in room and pillar mines is not novel. Research can be
found that optimizes the CM production sequence [2], selecting the best scheme for
mining a coal panel [9], determining the optimal panel width for maximum produc-
tion rate [7], matching CM to an optimal fleet size [10], and equipment dispatch as a
function of CM duty cycles [11]. Although researchers point out the potential impact
of CM travel times and the potential effect of cut-out distance on coal production
rate [2, 12], there is no work, to the best of the authors’ knowledge that optimizes
the CM utilization as a function of the cut-out distance. This research uses computer
simulation to solve the CM utilization optimization problem previously defined.
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2 Simulation

Computer simulation has been widely used to solve mine planning problems. These
applications are more prominent in mine surface operations [13, 14] compared to
underground mining [7, 15]. The most common use is found in the optimization
of material extraction and haulage systems with objectives such as to maximize
production, equipment utilization, minimize fuel usage, equipment selection, and
dispatch, and determination optimal design parameters [7, 13, 16]. The prominent
use of simulation is as aresult of its ability to solve implicit and complex optimization
problems. Simulation can easily characterize the stochastic nature of mining systems,
an aspect difficult to achieve with traditional mathematical optimization methods.

For the CM utilization and production rate problem, the authors solve the opti-
mization problem as a discrete event simulation using Arena® optimization software.
The approach used follows the general simulation methodology proposed in the lit-
erature [17].

3 Problem Definition and System Specifications

The objective of the simulation is to develop a discrete event model of a room and
pillar material extraction and haulage system capable of evaluating the effect of cut-
out distance on CM utilization and coal production rate, the optimal fleet size, and
panel width. Consequently, the model should be able to determine the optimal fleet
size, panel width, and cut-out distance for maximum CM utilization. The case study
used in this research is based on a coal mining system in the midwestern region of
the United States. The mine extracts the coal using a supersection approach, which
involves two continuous miners mining a single coal panel. The conveyor belt feeder
on which the coal is dumped and later taken to the surface is located at the center
of the panel and fed by shuttle cars from both CMs. In the current mining system,
each continuous miner has been assigned two 10.9 tonnes shuttle cars. The average
payload is 8.6 tonnes per load. The dimensions of the rooms and pillars are 12 and
6 m, respectively.

4 Data Collection

The input and output data for the model were collected by observing shifts at the
mine. For the optimization model, the input data collected to characterize the system
included haulage travel (to and from the cut face to the change-out (CO) point and
the change-out to the belt feeder) and dumping times for the shuttle cars, payload
data, the CM traveling and loading times, and the dimensions of the cut. The width of
the panel was also implemented as an input based on the cut sequence. The variables
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Fig. 1 Histogram plot of input data

are modeled as a distribution that characterizes their uncertainties (Fig. 1). Arena®
input analyzer tool was used to statistically fit the collected data. The production data
from the studied shifts are collected to validate the model.

S Model Logic and Construction

The model logic follows the activities in a coal room and pillar production system.
The continuous miner follows a production sequence, which entails creating entries
and crosscut in a systematic pattern. An example of such sequence is shown in Fig. 2
for an 8-entry panel width. At each cut face, the CM cuts and loads the coal on to a
shuttle car. The shuttle cars are loaded on a first-in, first-out basis. The coal is then
transported by the shuttle cars to the feeder breaker located at the center of the panel.
The shuttle cars also dump the coal on a first-in, first-out basis. The shuttle cars then
return to the change-out (CO) location and join the queue to be loaded by the CM.
This cycle is repeated until the CM mines out the maximum possible depth of coal
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Fig. 2 CM cut sequence for an 8-entry panel width [2]

(cut-out distance) at each face given ventilation and geotechnical constraints. The
CM then moves to the next cut in the sequence.

The Arena® process-orientated paradigm was used to construct this logic. Entities
drive the simulation with time, activating each process such as loading, hauling, and
dumping. The coal loads are model as entities. A process as defined in Arena® was
used to model activities in the system and use resources to perform these activities.
Thus, for activities such as loading, hauling, and dumping, the CM, shuttle cars,
and feeder breaker are modeled as resources, respectively. The haulage units are
modeled as a guided transporter, which ensures they cannot pass each other as is in
the real system. The haulage routes were modeled as network links with which the
transporters move from one location to the other.
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Table 1 Validation results

Simulation Shift 1 % difference | Shift 2 % difference
Total 1943.35 1852 4.93 1939 0.22
production
Number of 214 194 10.31 202 5.94
loads

6 Model Validation and Verification

The constructed model was verified to ensure it behaves as intended. The verification
process included the use of simple animation to determine if the entities followed
the cut sequence as well as ensure the correct number of transporter units perform
the task to which they are assigned. The output and internal values produced by the
model such as queuing information, coal remaining in cut, and production data are
evaluated to ensure they are within realistic values. The verified model was then
validated using a trace-driven simulation approach by comparing the data collected
from the studied shift to the simulation output. The data collect was from two 8-hour
shifts in a 10-entry panel width. The results of the validation are summarized in
Table 1.

The validation results show that the number of loads obtained by the simulation
was 10.31 and 5.94% more than that recorded from the actual system for Shift 1 and
Shift 2, respectively. The total amount of coal produced at the end of the shift was
also higher than the actual system as shown in Table 1.

A consequence of this difference is that the model did not take into account specific
delays such as scrubber inspection and bit changing. However, given the margin of
error, the model was deemed valid and further used to analyze the system.

7 Experimental Analysis

7.1 Preliminary Analysis

Prior to solving the optimization problem using the valid model, a sensitivity analysis
was conducted to determine, for the specific case study, the effect of CM travel times
on coal production rate. Given the travel time data collected, the production data for an
11-entry panel with a fleet size of two was evaluated. The analysis was repeated with
the travel time decreased in intervals of 10% (up to 50%). The results in Fig. 3 shows
that the CM utilization and production rate increases with decreasing CM travel time.
Currently, the CM travel time takes up 10.83% of an 8-hour shift. It is shown that
a simple 10% decrease in travel time results in a 7.32% increase in production rate
and 7.31% average increase in CM utilization when compared to current practices.
A decrease in the overall CM cycle time can be achieved by maximizing the time
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Table 2 Experimental factors and their corresponding levels

Cut-out distance (m) Fleet size (number of shuttle | Panel width (number of
cars) entries)

9.14 2 8

10.06 3 9

10.67 4 10

11.28 5 11

12.19 12

the CM spends cutting and loading coal instead of traveling from cut to cut. Further
experimental analysis was conducted to determine the optimal cut-out distance, panel
width, and fleet size that maximizes CM utilization.

7.1.1 Optimization of CM Utilization and Production Rate

Three decision variables are considered in the experimental analysis (Table 2). These
include the panel width, fleet size, and cut-out distance. Based on current practices at
the mine, five levels of the panel width were evaluated. These included an 8-, 9-, 10-,
11-, and 12-entry panel widths. The volume of coal mined in each cut was a function
of the cut-out distance calculated as the height (1.80 m), width (5.79 m), and depth
(cut-out distance) of cut. The depth or cut-out distance is the distance from the last
row of roof bolts to the mining face. The levels of cut-out distances selected were
based on the historical data collected and geotechnical requirements.

Typically, the maximum recommended cut-out distance is approximately 12 m
for safety and ventilation purposes. Lastly, four levels were selected for the fleet size
based on practical feasibility. The number of shuttle cars was varied from two to
five. The experimental analysis was run to determine values of the decision variables
that maximize the objective function, in this case, CM utilization (and/or production
rate). The analysis also answers the following questions:

— Does the cut-out distance affect the choice of optimal panel width?
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— What is the effect of cut-out distance on CM utilization and production rate?
— Is there correlation between fleet size and cut-out distance?
— Is the current fleet size used by the mine truly optimal?

The design given the number of levels for each factor had 100 (5% x 4) differ-
ent experimental conditions. The simulation was run until the completion of the cut
sequence. In order to compare all results within the same time frame, the simulation
was run for 60 hours. The number of hours was selected to ensure that the produc-
tion sequence was completed. The half-width was used to determine the number of
replication to ensure reliability and statistical significance. As per Arena® statisti-
cal analysis, the number of replications of 150 was deemed adequate such that in
95% of repeated trials, the sample mean is reported as within the interval sample
mean = half-width.

8 Results and Discussion

This section discusses the relationship between the three factors evaluated and their
effect on the production rate. The utilization of the CM is reflected by its rate of
production.

8.1 Fleet Size Versus Panel Width

Figure 4 shows the relationship between fleet size and the panel width for each cut-out
distance. For all panel widths, it can be seen that using a fleet size of three yields the
highest production rate. The maximum production rate was obtained at the maximum
cut-out distance specifically for the 11-entry panel. The lowest production rate was
obtained when a fleet size of two was used for all panel width followed by a fleet size
of five as a result of longer wait times by the CM and congestion due to excessive
fleet in the system, respectively. Although production rate generally increases as the
cut-out distance increases, it has no profound impact on the relationship between
the fleet size and the panel width. Thus, a similar trend is observed for all cut-out
distances.

8.2 Cut-Out Distance Versus Panel Width

Figure 5 shows the relationship between cut-out distance and panel width for various
shuttle car fleet sizes. As expected, the production rate increases as the cut-out dis-
tance in each panel were increased for all fleet sizes. This is because the CM spends
more time cutting and loading coal at maximized cut-out distances. Production rate
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Fig. 4 The relationship between fleet size and panel width for each cut-out distance

using a fleet size of three for varying cut-out distance and panel width was generally
higher than all other fleet sizes. The highest production rate for each fleet size is the
11-entry panel using the maximum cut-out distance of 12.19 m. The relationship
between the cut-out distance and panel width varies for each fleet size. Take for
example the production rate for the fleet size two (FS-2), travel time was higher in
larger panels for the CM and shuttle cars. Inadequate fleet size in the system resulted
in longer wait times by the CM in larger panels. As a result, the difference in pro-
duction rate between larger and smaller panels is minimal at lower cut-out distances
(9.14 and 10.06). However, as the time spent traveling is minimized by increasing
cut-out distances, the benefits are much more evident in larger panels.

This is evident in the increase of the marginal differences in production rate
between smaller and larger panels. On the other hand, as the fleet size increases
factors such as congestion especially in smaller panels come into play resulting
longer wait times for the shuttle cars. The optimum production rate was obtained by
balancing factors such as traveling and waiting times. In this case, a combination of
11-entry panel, a fleet size of three, and cut-out distance of 12.19 yields the optimum
solution as observed earlier.

8.3 Fleet Size Versus Cut-Out Distance

The results in Fig. 6 illustrates the effect of varying fleet size and cut-out distances
on production rate. The production rate increases with cut-out distance for every
fleet size. The overall production rate is higher for a fleet size of three in every panel
width. Similar to previous observations, the optimal production rate of 457 tonnes/hr
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is obtained in the 11-entry panel when the fleet size is three and the maximum cut-out
distance is used. The production rate is heavily influenced by the width of the panel,
which influences CM and the shuttle cars travel times. There is very little correlation
between the cut-out distance and fleet size. The optimal fleet size for each panel
width remains the same regardless of the cut-out distance. The overall increase in
production rate is caused by minimizing the CM travel time and maximizing the time
spent at each face not the increased amount of coal at each cut face. The distance
traveled by the shuttle cars, therefore, remain the same regardless of the cut distance
used.

9 Conclusion

A discrete event simulation of a room and pillar coal mining system was evaluated
to determine the optimal decision for support systems needed to maximum CM
utilization and production rate. Three factors were considered including the panel
width, cut-out distance, and fleet size. It was determined that the optimal solution
required the use of an 11-entry panel, cut-out distance of 12.19 m, and a fleet size
of three. The results also show that regardless of the panel width and fleet size
used maximum production is obtained at the longest cut-out distance. It is also
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determined that if the mine uses the maximum cut-out distance in all entry cuts,
the production rate and CM utilization will increase by roughly 6%. This work has
successfully proven, using a simulation that the utilization of continuous miners in
an underground coal mine can be increased significantly by increasing the cut-out
distance given production constraints.
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Analysis of the Impact of the Dilution )
on the Planning of Open-Pit Mines L
for Highly Structural Veined-Shaped

Bodies

R. Amira, N. Morales and A. Caceres

1 Introduction

For the vein-shaped bodies, the dilution of the mineral resource causes greater eco-
nomic impact than for the porphyry copper due to the higher amount of surface ore
contact with waste that can be diluted during the operation.

According to Bertinshaw and Lipton [1], there exist four types of dilution:

1. By geometry: related to the size of shovel, bank. and shape of the mineral.

2. Due to uncertainty in the in situ contact: given by the lack of geological infor-
mation.

By blasting: result of overbreak where it is also reduced waste.

4. Due to mining errors: due to errors in the operation, marking, and perforation.

w

Ebrahimi [2] defined two main types of dilution: internal dilution, which is difficult
if notimpossible to avoid, where lithology and the distribution of grades are important
factors and external dilution, also called contact dilution, which refers to the waste
outside of the mineralized body. The fundamental factors in the external dilution are
the shape of the body, the techniques of drilling and blasting, and the scale of the
operation and the size of the equipment.

The contact surface impacts mine planning as the material previously considered
ore may become waste depending on the definition of the cut-off grade. Therefore, the
quantification of this contact surface is essential to determine the possible dilution and
to incorporate it in the mine planning. The study of the contact surface is intrinsically
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Fig. 1 Scheme of the internal dilution given by the two kinds of internal disposition of grades, ore
blocks in blue and waste blocks in red: a regular distribution of ore, where the contact with waste
is minimal and b irregular distribution of ore where the contact with waste is maximum

related to the size of the support used; the smaller it is, the larger the contact surface.
Therefore, the size of the blocks must be considered in the analysis.

Vargas [3] defined planning as the ordering and scheduling of activities and
resources of the mining operation to obtain the best possible result of the objec-
tive sought such as NPV, reserve, and life of the mine and operational continuity. In
the planning, the geometric dilution is reflected in the change to a larger support unit,
which results in the loss of selectivity of the extraction together with the incorporation
of unwanted geological sections. In addition, the re-blocking decreases the recovery
of the metal content as the size of blocks increase. Figure 1 shows an example of the
change of support, where case (b) has a higher contact dilution income than case (a),
with the same number of blocks in both cases.

Rossi and Deutsch [4] stated that a block size change brings with it several con-
sequences; it is possible to reduce the block size to have the option to choose the
blocks to be exploited better, increase the selectivity, or change to a larger support to
reduce the number of blocks exploited. With the increase in block size, the softening
of the grades implies a reduction of the variance, while the average does not vary.

This paper presents the outcome of the investigation to characterize and incor-
porate dilution in open-pit mining planning in structurally controlled high-grade
deposits. A long-term strategic evaluation was carried out, using fixed economic
parameters and considering the internal and contact dilution but not the operational
dilution. The evaluation was made based on a block model of the copper deposit,
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Fig. 2 Isometric view of the block model grades with a cut-off grade of 0.3 (%)

which consisted of a highly stratified vein-like body with 25,026,301 blocks, mea-
suring 7.5 m x 5 m x 2.5 m each block.

2 Methodology

2.1 Characterization of Geological Dilution by Contact

A study of the neighborhood of each block was carried out identifying the blocks
according to a cut-off grade threshold of 0.3 (%).
The categories shown in Fig. 2 defined in this study were as follows:

— ore in contact with ore (O-O): an ore block whose neighborhood consists only of
blocks of ore (blue)

— ore in contact with waste (O-W): an ore block whose neighborhood consists of at
least one block of waste (celestial)

— waste in contact with ore (W-0O): a waste block whose neighborhood consists of
at least one block of ore (yellow)

— waste in contact with waste (W-W): a waste block whose neighborhood consists
only of waste blocks (red).
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2.2 Characterization of Internal Geological Dilution

To study the internal dilution, four changes of support size were made with respect to
the original model (C5), which had block dimensions of 7.5 x 5 x 2.5 m, generating
cases C10, C15, C20, and C30, where the dimensions of each block was multiplied
by 2, 3, 4, and 6, respectively.

2.3 Strategic Planning

Valuation of the blocks using the grades was carried out according to fixed economic
parameters, however, different sizes of the block have different costs. With this, a
determined envelope was obtained with nested pits used to define the phases of the
mine and a production plan with a corresponding NPV. For the mine planning, plans
with different capacities of mine and plant were generated and fixed for the reminder
of the study.

2.4 Incorporation of CV in Mine Planning Due to Mixing
Restrictions

To study the impact of the internal distributions of the small blocks which make up
the large blocks in a larger support, a calculation of the coefficient of variation (CV)
was performed for each large block. This coefficient represents the variability of
grades present within each large block; the higher it is, the greater the risk of dilution
exists. Therefore, mixing restrictions were applied for the plans of each case studied
consisting of each period sending blocks with CV average not exceed the maximum
established to the plant.

3 Case Study

A cut-off grade of 0.3 (%) was established as a threshold between ore and waste.
Figure 2 shows the grades present in the reserve of mineral.

The final pit had 4,688,153 blocks. The total ore tonnage was 180 (Mton), a 40
(%) of the reserve, with an average grade of 0.194 (%). Figure 3 shows the final pit
for two different block sizes of 5 and 10 (m).

When considering the larger block sizes, the contact boundary between ore and
waste was undoubtedly affected by the loss of information. To minimize this loss
of information, the coefficient of variation (CV) of the grades for large blocks was
calculated as follows:
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Fig. 3 View of the X—Z plane of the deposit categorized for the block size of 5 and 10 (m)

CV=0/G 1)
\2
o2 — Z(g:lgz) @)

where G is the grade of the big block and o is the variance applied to a large ore
block, g; is the grade of the small blocks i and N the number of small blocks.

4 Results

4.1 Categorization of Block Size

Table 1 shows the amount of ore and waste for each block size with their respective
average grades. The considerable increase of the total ore by 44 (MTon) from C5
to C30 is explained by the incorporation of a large quantity of small waste blocks
within the large ore block as observed directly from the reduction of total waste as
the block size increases.

Table 1 indicates a 0.2 (%) reduction in the mean grade of the total ore verify
by the addition of small waste blocks to the large ore blocks. Figure 4 shows the
selectivity curve for the different block models, which compares the amount of fines
obtained between the block sizes for different amounts of ore according to its cut-off
grade. It can be noted that the amount of metal content is considerably reduced by
the increase in block sizes, reaching 100 MTon, where the amount of metal content
of C30 represents two-thirds of the amount of metal of C5. The magnitude of this
difference between the curves is greater for the smaller blocks as seen in cases C5 and
C10. This effect decreases with the increase in block size. The comparison between
cases C15 and C20 can be observed, where the effect is smaller.
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Table 1 Summary table of the amount of ore and waste with its average grade for each block size

Tonnage (MTon) Average grade (%) Metal content (KTon)
C5
Ore 180.33 1.01 1828.54
Waste 962.41 0.04 375.34
Strip ratio 5.34
Ci10
Ore 193.98 0.94 1827.26
Waste 948.760 0.04 370.02
Strip ratio 4.89
Cl5
Ore 211.77 0.86 1827.55
Waste 930.97 0.04 353.77
Strip ratio 4.40
C20
Ore 212.52 0.86 1817.01
Waste 930.22 0.04 353.48
Strip ratio 4.38
C30
Ore 224.42 0.80 1804.30
Waste 918.32 0.04 348.96
Strip ratio 4.09
2500
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Fig. 4 Selectivity curve for each SMU

Figure 5a shows the percentages of the extreme categories O-O and W-W decrease
while for the intermediate categories, O-W and W-O increase in a similar proportion.
Figure 5b shows the increase of waste and the decrease of ore of small blocks. For
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Fig. 6 NPV from the project according to the SMU

the small blocks, the amount of ore and waste material decreased and increased,
respectively, up to 30 (%).

4.2 Strategic Planning

Figure 6 expresses the NPV obtained for the production plans for each case. There
is an inverse relationship between the value of the project and the block size.
During the re-blocking, there is a difference of 20 (MTon) between C10 and 65
(MTon) for C30 between the amount of mineral of bigger blocks and the mineral
of smaller blocks that composes it. This represents the conversion of 19 (%) from



194 R. Amiré et al.

140

=
N
o

100
80
60
40
20

Restricted Tonnage (Mton)

0 1 2 3 4 5

Maximun CV accepted in the blending

——C30 C20 C15 C10

Fig. 7 Ore tonnage restricted by maximum CV

small waste blocks to ore and, thus, the loss of information when using SMU of
larger size translates directly into a difference of the amount of ore sent to the plant
and the mineral of small blocks that it really contains. This occurs because when
working with a larger block size, waste support in contact with ore, it is considered
to be ore and is processed as ore, resulting in poor utilization of the loading and
processing equipment. In addition, the mixture produces a decrease in the grade
punishing directly the fine obtained, with it the cash flows of each period and the
final NPV of the project.

The direct translation of the loss of metal content is observed in a decrease of
NPV reaching a difference of 291 (MUSS$) between the cases C5 and C30. Thus,
the loss of information and the softening of grades decrease the value of the project
itself by more than 25 (%).

Loss of information and quantity of waste within the block are often ignored in
many current operations in the industry, a fundamental result being their considera-
tion for the sale and purchase of new deposits, where, if the buyer does not ensure
that the estimated SMU is adequate, the final result can have large variations or losses
in the expected economic gains For the different block sizes, a blending restriction
is applied for the coefficient of variability: if the CV required is 1, the average of the
coefficients sent to be processed in a period must be less than or equal to 1.

For the different block sizes in the same CV and for smaller sizes, there was a
smaller amount of restricted resources (Fig. 7). Thus, the variability increases with
the block size. The average CV for each size C10, C15, C20, and C30 are 0.209,
0.621,0.984, and 2.119, respectively, and thus, in addition to the loss of information,
there is a significant increase in the variability within the block when changing to a
larger support size.

Figure 8 shows the results obtained when applying the mixture restriction and
achieving a direct comparison between the different SMU cases, which shows the
NPV obtained for each size with an average CV allowed per period.
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Fig. 8 NVP of the annual plans for different sizes within a restriction range

For all sizes, increasing the CV permitted per period increases the value of the
project, unless the latter remains constant, because the NVP reaches the maximum
achievable by applying a blending constrain.

The variability of blocks increases with block size. For example, for a block size
of 10 m versus a block size of 30 m, the first achieves a value of 220 (MUS$) while
the second obtains a value O for an average coefficient of variation of 2.5 for the
entrance to the plant. The difference in the values obtained is the maximum allowed
CV increases with the increase in the block size.

5 Conclusions

It is known that in the operation, block sizes are required that adapt to the operational
requirements. Rarely, blocks sized of 2.5 m are used since the current equipment
is larger and all the selectivity would be lost at the time of use. Therefore, the
use of larger blocks has benefits by allowing an adequate operational geometry
and minimum widths. In addition, the number of blocks is reduced and with it the
number of components that make up the scheduling problem, so the resolution times
decrease considerably. On the other hand, the metal content loss occurs, as shown
by the selectivity curve and the quantification of the amount of ore and waste by size
presented in this paper.

Another fact to highlight from the NPV obtained is the direct rela-
tionship between the range of feasible results and the SMU size. The
smaller block sizes being those accept lower restrictions, while larger sizes
give different results when the restriction is increased. As the block size
is increased, the variation of NPV produced between different CV restrictions
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becomes smaller. The effect of the variability has greater importance and economic
impact in smaller blocks than in the cases with larger SMU size.
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Modeling Optimum Mining Limits m
with Imperialist Competitive Algorithm L

S. Javadzadeh, M. Ataee-pour and V. Hosseinpour

1 Introduction

After the feasibility studies determined the mineral profitability, the design must be
done before production planning and exploitation. It is essential to determine ultimate
pit limit (UPL) for design an open-pit mine. The UPL determination depends on min-
eral grade, income, and costs. Many algorithms have been proposed to determine the
mine UPL. First UPL determination algorithm was proposed by Pana [1], based on
the concept of a floating cone, and Lerch and Grossman using graph theory, dynamic
programming [2] and corrected from of Korobov algorithm [3]. Over years, many
algorithms have been developed for solving UPL determination problem. Major dis-
advantages of some of these algorithms were the speed of their resolution. The speed
of computers has also greatly improved over time. However, smart and fast algo-
rithms help to solve the engineering problems, and also mining industry uses these
algorithms to solve mining problems. By matching mining problems with nature-
inspired algorithms, researchers solved the problem and found an optimal solution.
Smart algorithms such as genetic algorithms [4], ant colony [5], and bee colony [6]
were implemented in solving UPL problem. Imperialist competitive algorithm (ICA)
was developed by Atashpaz-Gargari and Lucas [7] to solving optimization problems
that were inspired by human social evolution. The proposed algorithm is inspired by
a social-political process and it is fast compared to the mentioned methods. ICA is
simple for understanding and has high convergence speed to reach the optimal solu-
tion. ICA use a social-political evolutionary process in the creation of a powerful
empire, in this case, the ultimate pit. In fact, this algorithm assumes optimal solution
of the problem as a series of countries, tries to improve these solutions during the
repetitive process, and eventually gives optimum solution of problem.
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2 Materials and Methods

Each algorithm begins with a series of initial solutions for optimization, and in each
algorithm, the same initial solutions are used in form of the country. Initial countries
improve the solution for optimization problems. The ICA is designed in such a way
that each country develops alone and finds the optimal solution to the problems. But
it is possible to cooperate with colonial states of an empire with the colonial country
of that empire so that the possibility of an acceptable solution can be increased.

3 Generating Initial Countries

Initial countries are the initial solutions that are introduced in the UPL problem as
pit. Possible solution region must be specified before generating the initial solutions.
As shown in Fig. 1, we have a 16 x 7 economic block model for the 1:1 slope and
its possible solution zone shown in Fig. 2 with white blocks.

After we define the possible solution region, we determine the initial pits identified
in the ICA as country. All pits determined stochastically and each pit known by its
cone vertex. Pit vertexes should be in positive block values.

4 Initial Empires Establishment

In order to generate empires, countries must have already been generated at this
stage. As mentioned, previously these countries are randomly selected from possible

rM3jof(2|4(3/0/0|0[0|0[0|O0]|O0]|3[=2]0

26| -2|6|-2|3|-1/0,0|0]0]0]2 1 214 |3

4|78 |84 |56 |-1 3|23 |2|4|-6|-7|-6/]-10

Fig. 1 Grade block model
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Fig. 2 Possible solution region

Table 1 Early pits (countries) with their cones vertex and profits

Pits Pit1 |Pit2 |Pit3 |Pit4 |Pit5 |Pit6 |Pit7 |Pit8 |Pit9
Profit —13 |6 -1 -5 —-10 | -2 —-10 |—-17 |-2
Cone vertex | (4,4) |[(4,10)|(2,15)[(5,8) | (4,5 [(2,13)|(4,5) |(3,3) |(2,13)
()

solution region blocks. Selected countries are inverted cones which are based on are
(positive) blocks. To determine candidate countries to become imperialist, we act as
follows.

At first, all countries (Pits) are arranged, according to the amount of profit, from
the maximum to the minimum. The number of imperialist countries that have already
designated is chosen as imperialist. The number of initial countries for this model is
nine, and the number of imperialists is three, as specified in Table 1 with their profits.

As mentioned, positive pits selected as the first countries are ranked on basis of
the profit, and the first three will be as imperialist.

Pits number 1, 2, and 3 are selected as imperialists. However, in order to allocate
countries to these imperialists, there are several ways to apply:

— Have the same chance for selecting countries.
— An imperialist country with more profits will take a higher share.

The designation of countries in the first method is that the probability of choosing
is 1/3 and pits from number 9 to number 8 (Table 2) are chosen one by one and
competing with three imperialists to take possession of it. Imperialist winner of this
competition is determined by roulette wheel. In this method, all imperialists portion
determined simultaneously. In addition, the winner imperialist identified by roulette
wheel. For the allocation of other countries to these imperialists, the normalization
cost of each imperialist is calculated using Eq. 1.
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Table 2 Countries sorted by profit

Pits Pit2 |Pit3 |Pit6 |Pit9 |Pit4 |Pit5S |Pit7 |Pitl |Pit8
Profit 6 -1 -2 -2 -5 —-10 |—-10 |—-13 |-—-17
Cone vertex | (4,10) [(2,15)|(2,13)[(2,13)|(5,8) |45 |4, 5 |44 (3,3
()

Table 3 Converting maximizing problem to minimization

Pits Pit2 |Pit3 |Pit6 |Pit9 |Pit4 |Pit5 |Pit7 |Pitl |Pit8
Cost —6 +1 +2 +2 +5 +10 +10 +13 +17
Cone vertex |(4,10) [(2,15)[(2,13)|(2,13)[(5,8) |4, 5 |45 |44 |(3,3)
)

C, = max{c;} — ¢, (D

where C,, is the normalized cost of the imperialist n. max C; is also the highest cost
among imperialist countries, and C,, is the cost of the imperialist 7.

It needs to explain that in the minimization problems, the normalized cost and in
the maximizing problems normalized profit can be calculated, or we can convert a
maximization problem like a pit into minimization problem (multiplied by —1) and
the normalized cost. We used the same second method in this paper (Table 3).

With the normalized cost, the normalized normal power of each imperialist is
calculated using Eq. 2. Then colonial countries are divided among imperialists.

Cy
Pn =\ TN 2
Zi:l i

Thus, using Eq. 1, the normalized cost of each imperialist is calculated as follows:

Cl :max{ci}—c] :2—(—6)28
C,=max{c;}—cr=2—-1=1

C; =max{c;}—c3=2—-2=0
Normalized power is calculated using Eq. 2 as follows:

‘ C]
P =

Nim
Zi:lp i

= '§‘ =0.89
9
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From another standpoint, the normalized power of an imperialist is the colonial
portion governed by imperialist. Thus, an imperialist that has a greater amount of
probability is assigned more colonies. So, the number of primary colonies of an
empire is calculated using Eq. 3:

N¢, = round{P, - Nco} 3)

where N¢, is the number of colonies of an empire and N is the total number of
colonial countries in the population of the original countries. Round is the function
that assigns the closest integer to a decimal number.

The colonies of each imperialist are calculated using Eq. 3 as follows:

N¢, =round{P; - Neoi} =0.89%6 =5
N¢, =round{P, - Neoi} = 0.11 %6 =1

N¢, =round{P; - Neoi} =06 =0

As shown in Eq. 3, the first five colonies devote to the first imperialist and the
last colony (8th pit) is assigned to the second imperialist. The Third Empire does not
receive any colony. After the colonists took their colonies, the policy of assimilating
the colonies is applied.

5 The Assimilation Policy in the Imperialist Competitive
Algorithm

The assimilation policy is implemented using Eqgs. 4 and 5:
x~U@O-B xd) 4
0 ~U(=y-v) (&)
where

x Colony toward imperialist movement unit
B A number greater than 1
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Fig. 3 The attraction policy in the Imperialist competitive algorithm [7]

d is the distance between colony and imperialist
6 In this figure, 6 is a random number with uniform (ore any proper) distribution
y A parameter adjusting the deviation from the original direction.

6 Implementation of the Assimilation Policy in the 2-D
Ultimate Pit Model

In the ultimate pit limit, we cannot determine spatial destination for movement of
colony toward imperialist. So we select a block of colony and a block of imperialist
randomly. In next step we select a block from two random blocks (selected block
must be positive) and all positive blocks between selected instants. For clarify this
concept continue solving mention example (Fig. 3).

As mentioned in the establishment of the empires, the policy of assimilation is
applied to the colonies. For better understanding, we solve the policy of assimilation
to the colonies of the first imperialist. However, before solving, we need to point out
that the positive blocks have the right to selection, which means that the probability
of selecting nonpositive blocks is zero. Number 9 pit (with vertex 13, 2), which is
the first colony of the empire 1 (with vertex 10, 4), has four blocks (Fig. 4).

The relevant probabilities are shown in Fig. 5.

Since the colony has a single member, the same member is selected, but to choose
a member from the imperialists, we must use sampling methods. For this purpose,
we used roulette wheel sampling method.

7 Combination Policy

Instead of individual developing and trying to reach the imperialist position to occupy
the place of the imperialists, countries are working with each other to improve their
empire. Imperialists will prevent the collapse of the empire. However, a country that
fails to appear in a better empire will continue to be used by other empires. In this
approach, stronger empires will try to improve the colony of the weakest empire. This
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Fig. 5 On the right, the likelihood of the first colony on the left is also likely to be monopolistic

Table 4 The position of the colonies after the application of the assimilating policy by roulette
wheel method

Pits Pit2 |Pit3 |Pit6 |Pit9 |Pit4 |Pit5 |Pit7 |Pitl |Pit8
Cost -6 +1 +2 -5 +5 —17 -5 +8 +3

Cone vertex | (4,10) | (2,15)|(2,13) | (3,11)|(5,8) |(6,7) |(3,11)|(6,10) (2, 14)
()]

policy also refers to the empire’s recruiting, which will be discussed further. Since
there is no combination policy operator in the original ICA algorithm, it is introduced
in this paper. This operator causes to speed up the algorithm to reach the final solution.
The process in which this policy works is that the imperialist, looks at its colonies,
chooses, and combines each of the colonies, if the imperialist improves; the new
imperialist is established by combination of imperialist and colony that improve it.
Colonies search the possible solution region and improve their imperialists. We select
Table 4 to continue the work.

Pits have turned into cost and the goal is to minimize them, so the first imperialist,
known with vertex (4, 10), must be combined with pits that reduce its cost, and it
gradually improves the problem and minimize it. In first composition, first imperialist
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Fig. 6 A demonstration of the combined mode of the pit 4 with his imperialist
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Fig. 7 The combination of the first imperialist with his fifth colonial

examined with pit 9 (3, 11), because the pit 9 is within this imperialist the solution
as initial imperialist. The next pit that combines is the pit 4 (5, 8), and as shown in
Fig. 6, the pit 4 increases the cost and does not improve their imperialist, so it does
not combine.

The next step is pit No. 5 (6, 7), which should be examined if its combination
with the imperialist is better than the imperialist or not. As shown in Fig. 6, this
combination reduces costs to —25, so this combination is accepted.

After updating the first imperialist, it should be checked for combining it with
the number 7 (3, 11) and 1 (6, 10) pits. The combination of the first and seventh pits
with the new imperialist, which combines number 2 (4, 10) and 5 (6, 7) pits, does
not improve the solution to the problem. Therefore, the first empire solution is —25.
After the first empire, second empire and combination of it with its colonies must
be checked. As previously calculated, the only colony of the second empire is pit 8,
although second imperialist and its colonies are not optimal pits, their combination
gives a better solution (Figs. 7, 8 and 9).

Finally, the third empire without colonies will end the process of combination.
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Table 5 First empire
Pits Imperialist 1 | Pit9 Pit 4 Pit5 Pit 7 Pit 1
Cost -25 +4 +7 +8 +17 —65
Cone 4,10),(6,7) |(2,5) (3,95) (6, 10) (3,13) 7,7
vertex (i, j)

8 Revolution Operator

Assimilation policy will not always lead to an optimal solution. Moving the colony
towards imperialism may ultimately lead to a local optimal solution. Therefore,
another operator called the revolution operator to bring that colony to the optimal
position is needed.

In the imperialist competitive algorithm, revolution operator applies to the impe-
rialists. This operator affects a small percentage of the colonies. However, in the case
of the ultimate limit, the opposite is true of the implementation of the revolutionary
operator for the colonial countries, so that the colony cone is randomly placed in one
of the positive blocks. The rest of the above example continues with the application
of the revolution operator on the colonies (Table 5).

The revolution operator occurs in such a way that for the entire positive blocks
in the possible region, the equal probability is allocated. For placing the vertex of
the cone, we use the Roulette wheel method for each pit because the problem is a
discrete problem. In addition, there is a probability to select a block more than twice
so the block that is already selected should be given a zero probability.
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Fig. 11 Probability of selecting positive blocks in the region

Table 6 Cumulative probability of positive blocks

1 2 3 4 5 6 7 8 9 10 |11 12 |13 14
0.04 0.07 |0.11 |0.14 |0.18 | 0.21 |0.25 |0.29 |0.32 |0.36 | 0.39 | 0.43 | 0.46 | 0.50
15 16 |17 |18 |19 |20 |21 |22 |23 |24 |25 |26 |27 |28
0.54 0.57 |0.61 |0.64 |0.68 |0.71 |0.75 |0.79 |0.82 |0.86 [0.89 |0.93 |0.96 |1

As shown in Fig. 10, we have 28 positive blocks that are ready to welcome
the revolution. Each block will compete with the probability of 1/28. To begin the
revolution, we begin with the first empire of pit 9 and determine the victorious block
using the roulette wheel (Figs. 11, 12 and 13).

The block cumulative probability is as per Table 6.

As mentioned in the assimilation policy, a random number is chosen that deter-
mines the winning block number; here its value is 0.0806. As stated above, in the
assimilation policy, since this cumulative probability is greater than first two blocks
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Fig. 12 Possibility of positive blocks to be selected for pit number four

Table 7 Cumulative probability for determining second block

1 2 3 4 5 6 7 8 9 10 |11 12 |13 14
0.04 0.07 {0.07 {0.15 |0.19 | 0.22 |0.26 |0.30 |0.33 |0.37 |0.41 |0.44 |0.48 |0.52
15 16 |17 |18 |19 |20 |21 |22 |23 |24 |25 |26 |27 |28
0.54 0.57 10.61 |0.64 |0.68 [0.71 |0.75 |0.79 10.82 |0.86 |0.89 |0.93 096 |1

Table 8 The first empire after the revolution

Pits Imperialist 1 | Pit9 Pit4 Pit5 Pit 7 Pit 1
Cost -25 +4 +7 +8 +17 —65
Cone 4,10), (6,7) |(2,5) (3,95) (6, 10) (3,13) 7,7
vertex (i, j)
Table 9 The second empire Pits Imperialist 2 Pit 8
after the revolution
Cost -1 +2
Cone vertex (i,j) | (4, 10), (6,7) (2,13)

and it is lower than first three blocks, so the third block selected to place the pit
number nine in that block (2, 5) Fig. 12. Therefore, the probability of this block is
zero to prevent it, selection for the second time and the probability of other blocks
is 1/27

Cumulative probability is calculated again for determining second block (Table 7).

Random number generated to determine the winner block, that block 4 vertex
placed in that winner block. The probability is 0.0806, which indicates that the 4"
block must be selected, and in the next selection, the probability is zero for the other
pits. The results are shown in Table 8.

For the second empire, revolution is like the first empire (Table 9).



208 S. Javadzadeh et al.

Table 10 The third empire Pits Imperialist 3

Cost +2
Cone vertex (i, j) (2,13)

And the Third Empire does not have any colony to use revolution operator for it
(Table 10).

An operator after the revolutionary policy is the operator of recruitment. Because
in the recruitment operator, the weak empire must give the weakest member, or the
weakest colony, to one of the stronger empires, so we need to know weak empires.
This can be calculated using the total cost of the empire, which is calculated using
Eq. 6.

T, = Cost(imperialist, ) + & mean{Cost(colonies of empire,, ) } (6)

This means that the imperialist cost directly affects the cost of the whole empires,
but the colonies costs are a percentage of their average costs. This coefficient with
a value of & = 0.05 has a better solution to most calculations [1]. For this example,
we have

4+7+8+17 —65
T, =—-25+0.05 x 5 =-25—-145=-26.4

To=-140.05%x2=-09

T3=2

9 Recruitment

Once the cost of the empires was calculated, it is time to empires recruitment. The
process of work is such that the weakest empire is determined using the expediency
that calculated above and selected from among the colonies of the weakest colony
that moves to a strong empire. Here, the weakest empire is the third empire. Which
emperor wins to capture this member? Equation 7, the probabilities are calculated
and determined by the victorious empire.

(7

< Total Cost )
P, o exp| —a x

max (Total Cost)

Pn
sum(p)
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Table 11 First imperialist update after revolution and recruitment

Pits Imperialist 1 | Pit 9 Pit4 Pit5 Pit7 Pit 1 Pit 6
Cost —65 +4 +7 +8 +17 —65 +2
Cone vertex | (7,7) 2,95) (3,5) (6, 10) (3,3) (7,7 (2,13)
()
Table 12 Second imperialist update after revolution and recruitment

Pits Imperialist 2 Pit 8

Cost -2 +4

Cone vertex (i, j) (2, 14), (2, 15), (2, 13) (2,13)

In this case, « is equal to one.

—-26.4 5
P ocexp| —1 x =54x10
-0.9
P, ocexp| —1 x > =245
p 5.4 x 10° 1 wi . ire 1
=—"= nner empire = empire
Tsaxie ™ P P
2.45 0 akest . ire 2
= —— = (0 weakest empire = empire
2T 54 % 105 P P

Here, we already know that the third empire is without colonies. So, the third
imperialist will be transferred to winner imperialist. After the revolution and the
transfer of the third imperialist, it is necessary to redefine the imperialist composi-
tion with its colonies. In Tables 11 and 12, the combination of the first and second
imperialists is shown with their colonies.
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The algorithm’s operation ends for the first cycle. This process continues for a
number of iterations that are set before the start of the algorithm to obtain optimal or
near optimal solution. The algorithm provides the following solution for 15 iterations.

As shown in the convergence Fig. 13, the optimum solution is obtained at the
seventh iteration.

10 Verification

In order to validate the ICA, the block model of Fig. 1 was optimized using dynamic
programming algorithm (2D Lerchs and Grossman). The steps for implementing the
dynamic programming algorithm and the result are shown in Fig. 15. Comparing the
results obtained from the ICA and dynamic programming in Figs. 14 and 15 indicates
similarity of the solutions given by two algorithms.

In order to study the efficiency of the algorithm, the combination of the same model
with the ten replications is obtained. Of course, the number of primary countries
increased to 45, of which 15 were colonial.
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Fig. 15 Ultimate pit limit with dynamic programming algorithm

11 Conclusions

In this paper, the imperialist competitive algorithm was used to solve the ultimate
limit optimization problem, and also a new operator was introduced that called com-
bination operator of countries in each empire. The attitude of combination policy is
that countries use peer-reviewed information to improve their empire and prevent it
from falling. This attitude led to the rapid convergence of the problem. The result
was compared with the result of dynamic programming method. Research in this
field continues to be used to solve 3-D and real ultimate pit limits problems.
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Application of Particle Swarm )
Optimization Algorithm to Optimize ek
Stope Layout for Underground Mines

T. M. Mmola, A. S. Nhleko and J. M. Atherfold

1 Introduction

Mining projects have long turnaround times and require large start-up capital to build
and operate. The objective of mine production is to maximize return on investment,
which is derived from the extraction and sale of the mineral. The return on investment
will depend on the physical location of the ore, the mining layout and extraction
sequence, technical factors associated with the orebody, grade of the orebody, and
the available mining methods [8]. It is in the early planning stages where a mine has
the greatest level of flexibility to make decisions on these economic and technical
criteria for operating a mine.

Thorough planning done in advance of constructing the mine lowers the risk of
failure. Once the construction of the mine begins, the ability to alter the mine design
diminishes exponentially as the mine matures [6]. Therefore, the mine engineer is
required early on in a mining project to make long-term decisions that must optimize
the cost efficiency and profitability of the mine operation.

The limited number of tested operations research (OR) techniques and the lack
of tools and appropriate computer programs to address underground mine planning
problems is an issue of concern to mining professionals [9]. This lack of software
limits a company’s capacity to develop underground mine plans that maximizes
the net present value (NPV) of the project [1, 8]. There is a recognized need by
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the mining industry for improved software tools to support the planning, design
and operation of underground mines [2]. The strategic planning tools could help
to minimize the potential for suboptimal decisions being made at the outset of an
operation by reviewing many different alternatives.

2 Background

In the mine design process of underground mines, the mining engineer must first
select a mining method that is amenable to extracting the orebody and then decide
on a cut-off grade for extracting the orebody. The next step is to create a stope design
that maximizes the value of the mine. A stope is an underground production area
from which ore is extracted from the surrounding rock mass [11]. The mine engineer
will then design the access to the identified stopes. In addition, the mining engineer
must sequence the extraction order of the stopes with the purpose to maximize
economic ore recovery. Throughout this process, the mining engineer must consider
the technical factors associated with the orebody and economic factors associated
with the selected mining method [6]. Therefore, the design of the mine stopes, mainly
their dimensions and location, is a critical aspect of the mine design process.

Historically, the mining engineer would design the stopes manually, which is a
time-consuming process. Furthermore, the use of rules-of-thumb in determining the
dimensions and locations of the stopes would be common practice. However, rules-
of-thumb calculations do not always produce optimized designs. Since the subse-
quent introduction and proliferation of computers, the use of software applications
with built-in algorithms that can automatically design and optimize the stope layout
has increased. While this has reduced the time required for the stope design process,
the literature indicates that none of the current algorithms are able to guarantee the
optimum stope design [10]. Evolutionary algorithms and more specifically the par-
ticle swarm optimization (PSO) algorithm have been used successfully in a variety
of industrial optimization problems. This begs the question: can the PSO algorithm
generate an optimum 3D underground stope layout?

3 The Particle Swarm Optimization Algorithm

The PSO algorithm optimizes a problem by generating a population of particles,
representing candidate solutions, and having each particle iteratively try to improve
on its solution with regard to a given measure of quality. Each particle will evaluate
its current solution quality against the personal best solution it has achieved so far and
also the global best solution found by any particle in the population. Each particle
moves in search of better solutions throughout the search space according to simple
mathematical formulae that define the particle’s position and velocity over time [7].
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Table 1 Selected PSO Parameter | Description Value
parameters based on literature - — -
review wmax Maximum inertia coefficient 0.9

®min Minimum inertia coefficient 04

K Total number of iterations 100

cl, ¢ Velocity coefficients cr=cy =2

To search for the optimal solution, the velocity and positions of each particle are
updated by the following equations:

vk +1) = wvl (k) + c1r1 (P (k) — PA(K)) + cara (gl (k) — PP (K)) 0
Plk+1) = PA(k) + v (k+ 1) ’

where c¢; and ¢, are acceleration constants regulating the relative velocities with
respect to the personal best and global best positions, respectively; r; and r, are
N x 1 vectors of random numbers drawn from a uniform distribution in the interval
(0,1); and w is an inertia parameter given by

wmax — @min k

z 2

W = Wmax —
where wmax and wp, iy, are the initial and final weights, respectively, k is the iteration
number and K is the total number of iterations.

The advantages of the PSO are that it is simple to code and it only requires the
problem and a few parameters to solve [7]. We will look at the problem definition
then encoding strategy and the parameters and then apply the PSO to an orebody.

3.1 Parameter Selection

One of the advantages of the PSO compared to other algorithms is the relatively
few number of parameters that have to be tuned in the algorithm [7]. The parameter
values used for this research were based on a literature survey of the existing research
on parameter selection for the PSO algorithm [3, 5]. These parameters are indicated
in Table 1.

The PSO is known to be very sensitive to the choice of parameters and parameter
selection is one of the most important aspects in the PSO algorithm. Itis accepted that
generally the choice of the parameters will be problem dependent and that parameter
hyper-tuning will be often required.
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4 Model Details

As there was no readily available application to run the PSO on the stope boundary
optimization problem (SBOP), it was necessary to code the SBOP and PSO algorithm
from the ground up. The Python programming language was used for this purpose
and the modeling strategy is discussed.

4.1 Problem Formulation and Modelling

The encoding of the problem is specified in two dimensions with the intention of clar-
ifying the strategy for modelling the problem. It was assumed that the sublevel open
stoping method would be used to mine the deposit and three constraints associated
with this mining method, namely overlap constraint, level constraint, and uniqueness
constraint, had to be considered in encoding the PSO algorithm. Figure 1 illustrates
an example of a section of an orebody, and how the selected mine configuration is
encoded such that it can be passed to the PSO algorithm.

In this trivial example, there are R rows and C columns in the orebody, representing
the orebody extent. Each block represents a block in the orebody. The stope size is
fixed at 3 x 2 blocks, and there are N possible stopes. The stopes selected in this
particular configuration are marked in bold. The starting corner of each selected
stope is marked with the number one, and the rest of the ore body is padded with
zeros. The coordinates of all the ones in the ore body are then found, and stored in a set,
as illustrated in Fig. 1. This set of coordinates forms one member of the population.
Each member of the population is therefore an entire mine configuration. Figure 1
is an illustration of the encoding of the 2D SBOP. In 3D, the dimensionality of the
problem is N x 3.

Fig. 1 Encoding of a mine 1
configuration
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4.2 Fitness Evaluation

The PSO is initialized by generating random solutions, i.e. particles, which represent
a specific mine layout. The number of stopes that may be used in the mine layout are
predefined. Therefore, each particle will consist of the predefined number of stopes
randomly selected from the set of all possible stopes.

The fitness of a particle is a direct function of the final value of the mine, i.e., the
sum of the values of the selected stopes in the mine layout. The net smelter return
(NSR) was used as the measure of value. Incorporated into the fitness evaluation are
three important constraints; the level constraint, uniqueness constraint, and overlap
constraint. The nature of these constraints is illustrated in Fig. 2.

The level violation indicates multiple stopes which have blocks on different min-
ing levels. This is not allowed according to the design of the mine as each stope must
lie within the defined level spacing. Uniqueness violation occurs when two stopes
occur at the same location. Since a stope cannot be mined twice, the number or stopes
needs to be explicitly specified in the model. Overlap violation occurs when stopes
are overlapping. These stopes may or may not be on the same level. This incurs a
penalty because stopes may not overlap, again because once a stope or a portion of
it has been mined, it cannot physically be mined again. The fitness of the configura-
tion is therefore taken to be the linear combination of the mine value, and the three
penalties, i.e.,

Fitness = VMine - kl X PLevel - k2 X PUnique - k3 X POverlap9 (3)

where Wine is the calculated value of the mine configuration, P’s are the penal-
ties incurred by each respective constraint violation, and k’s are constants, chosen
large enough such that even if one penalty occurs, the fitness will indicate that the
mine configuration will not be economically viable. This ensures that all economi-
cally viable configurations follow all the constraints. The goal of the algorithm is to
maximize the fitness.

(a) (b) (©)
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Fig. 2 Visual representation of a level constraint violation; b uniqueness constraint violation; and
¢ overlap constraint violation
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The experimental method utilizing PSO for the purpose of mine configuration
optimization can be described as follows:

1. Initialize swarm size, maximum number of generations, and initial velocities and
positions of each of the particles, where each particle represents a particular mine
configuration.

2. Calculate the fitness of each member according to Eq. 3.

3. Update model parameters if necessary; the personal best position of each particle
and the global best position at the current time step.

4. Update the velocity and positions of each particle according to Eq. 1.

5. The algorithm terminates when the maximum number of generations occurs. The
output is an optimal mine configuration.

This method was conducted for a varying number of stopes of a fixed size. 20
experiments were conducted for each stope number. Figure 3 shows the flowchart
for the mine configuration optimization.

Fig. 3 Flowchart of PSO
algorithm @
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Fitness Evaluation .

!

Update personal best Update position
position of all particles of particles

! 1

Update global best position Update velocity
J‘ of particles
A

Termination criterion met?
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5 Experimental Results

The optimization of a mine configuration was attempted, using PSO as an optimiza-
tion tool. Training data from a conceptual orebody was used to test the optimization
algorithm, and the results are discussed.

The algorithm requires a regularized economic block model. The orebody model
used in this study represents a theoretical gold deposit. The block model consists of
15,572 blocks of a uniform block size. The geological attributes assigned to each
block are the gold grade and the rock density. The metal content per block was
determined from these two attributes, taking into consideration the block size. An
economical value, the Net Smelter Return (NSR), was calculated for each block
based on assumptions of the mining costs, processing costs, logistical costs, and
metal price. The economic block model data is summarized in Table 2.

The block model data was then imported into the Python script that was developed
for this research. Then, the PSO algorithm optimization was run using a fixed stope
size of 10 m x 10 m x 20 m along the x, y, and z axis, respectively.

Figure 4 shows the final results of all experiments. The maximum mine values
are plotted as a function of the number of stopes. The maximum mine value found
by the PSO algorithm is about 22,000 with 12 stopes.

Figure 5 shows how the mean and maximum fitness in the population change
with iteration number from one of the experimental runs using 13 stopes. Figure 5a
illustrates the convergence process of the algorithm. Convergence does not mean that
the population has reached an optimum (local or global). Rather it means that the
population has reached an equilibrium state, i.e., the particles converged to a point,
which may not be an optimum point [4].

From Fig. 5a, the algorithm clearly converges to a maximum value within the
100 iterations. In this particular case, the maximum value is relatively small, at
approximately 4400 and therefore this value is a local maximum, not the global
maximum. The algorithm getting trapped in local maxima is the reason multiple
experiments are run.

From Fig. 5b, the effect of the heavy penalties on the constraints violations can be
observed. The mean mine value starts off at approximately —3,800,000, indicating
a large number of constraints violations. The mean mine value then increases with
the number of iterations to about 4000 as the violations are resolved.

Table 2 Summary of Attribute Value

economic block model data
Number of blocks 15,572
Block sizes (x, y, z) Smx5mx5m
Rock density variation 2.8 — 3.6 t/m>

Net smelter return variation 0.6 — 301 $/t
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This paper proposes an approach to the SBOP in which the mine layout is optimized
using the PSO algorithm. Such an approach has not previously been demonstrated
as feasible for the SBOP. The reported experimental results show the convergence
progress of the algorithm as well as the maximum mine value obtained by the opti-
mization. Furthermore, the results indicate that the algorithm is able to handle the
specified mining constraints associated with the SBOP. Moreover, the results indicate
that a PSO approach is feasible, and warrants further investigation.

Further work is required to refine the algorithm, in particular, with respect to
parameter selection. Since the PSO is not problem dependent, any other mining
constraints, such as minimum pillar sizes, or mining parameters, such as variable
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stope sizes, can be simply defined in the problem’s objective function. The PSO
algorithm will then run an optimization on the defined objective function.
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Open-Pit Mine Production Scheduling: )
Improvements to MineLib Library i
Problems

E. Jélvez, N. Morales and P. Nancel-Penard

1 Introduction

In open-pit mines, mineral is reached by digging material from the ground and then
either processing or depositing it on stockpiles for later processing while waste
material is deposited on dumps. To define which part of the mine should be extracted
ateach period of the lifetime of the mine, the terrain is modeled as a three-dimensional
array of regular blocks and the planning horizon is discretized into time periods. For
each block, estimations on the ore content, density, and other relevant attributes are
constructed by using geostatistical methods [1].

The set of all blocks and their attributes form the so-called block model. Hence
for each block, it is possible to specify: an extraction period, and a destination for
processing, defining a block scheduling. The final value of a mine is, therefore,
determined by the set of attributes and the block scheduling. The feasibility of a
block scheduling for the open-pit method depends on accessibility and extraction
constraints.

The extraction process must ensure the stability of the walls, which is expressed
in terms of slope angles that must be satisfied at each moment (slope precedence
constraints) as it follows the sequential extraction of blocks. In addition, there are
certain limitations that are inherent to the process, for example, the amount of material
to be transported and processed during each period is subject to lower and upper
bounds given by transportation and plant capacity, respectively, which are usually
expressed either in maximum tonnage or time available for transporting or processing.
There exist other optional constraints (named general side constraints) that should
be applied, including: (i) blending constraints, because the efficiency, feasibility (or
even for regulatory reasons) of the plant process depends on the attributes of the
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combination of blocks that are processed at a given period and (ii) maximum vertical
advance, among others.

Depending on the number of considerations included in the production scheduling
model, Espinoza et al. summarized three specific problems [2]. First, the simplest
problem in open-pit mine production planning is called Ultimate Pit (UPIT) Limit
Problem and includes the selection of a subset of blocks that contains the maximum
undiscounted value under slope precedence constraints. The time is not considered
in this problem. Second, a generalized extension of the ultimate pit limit problem is
the Constrained Pit Limit Problem (CPIT). This model incorporates temporal dimen-
sion, scheduling blocks for extraction over a fixed number of periods, maximizing
discounted value under both slope precedence and capacity constraints, in which
block destinations are fixed in advance. The Precedence Constrained Production
Scheduling Problem (PCPSP) extends the last one mainly by considering multiple
possible destinations for the blocks (therefore the model decides which one is the
optimal choice) and respecting general side constraints, such as blending (where the
quality of processed material is controlled).

Currently, a number of mine planning software developers are implementing the
pseudoflow algorithm for UPIT (see [3, 4]) to compute both ultimate pit limit and
nested pits, which were demonstrated to be more efficient than Lerchs and Grossmann
algorithm [5].

While several open-pit block scheduling instances were published in MineLib
[2], which presented good feasible solutions for CPIT and PCPSP by using the
TopoSort algorithm presented in [6], other authors have proposed new methods and
reported best-known solution when applied to CPIT instances of MineLib. Lamghari
et al. [7] proposed a method to improve an initial feasible solution based on a local
search algorithm called Variable Neighborhood Descent. Jélvez et al. presented an
aggregation/disaggregation heuristic to generate good feasible solutions [8]. Liu and
Kozan developed two new graph-based algorithms based on network flow graph and
conjunctive graph theory, classified as topological ordering-based methods as well
[9]. Samavati et al. outperform the TopoSort heuristic strengthening the LP relaxation
of CPIT and generating better expected extraction times [10]. A similar approach
was developed by [11]. Table 1 shows the best-known solutions for CPIT instances
on MineLib expressed in terms of optimality gap.

PCPSP was first studied by Bienstock and Zuckerberg [12], who proposed a
method based on Lagrangian relaxation to solve the linear relaxation of the PCPSP
and reported a substantial computation time improvement with regards to the standard
LP solvers. Espinoza et al. [2] also applied the TopoSort heuristic to PCPSP instances,
but they did not generate a feasible solution on W23 (the only instance including
blending constraints). Kenny et al. [ 13] reported improved solutions for some PCPSP
instances by using a Greedy Randomized Adaptive Search Procedure, however the
improvements do not include a feasible solution for W23 instance.

Most of the real instances of the CPIT and PCPSP in the mining industry are
difficult to solve with block models containing large number of blocks for a time
horizon that can be as long as several decades. This paper focuses on PCPSP, a new
full-binary formulation and an improvement to the current best-known results for
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Table 1 Current best-known  CpyT jnstance Source GAP (%)

solution on 11 CPIT instances

available in MineLib library Newman [10] 1.26
Zuck_small [11] 0.71
KD [11] 0.14
Zuck_medium [11] 5.24
P4HD [9] 0.08
Marvin [11] 0.64
W23 [91 0.19
Zuck_large [8] 0.24
SM2 [7] 0.04
McLaughlin_lim [10, 11] 0.06
McLaughlin [8, 10, 11] 0.06

PCPSP instances on MineLib, which was made by means of a heuristic based on
both a sliding time window and a linear relaxation to preselect a small subset of
blocks to be scheduled within each time window. The approach includes blending
constraints in its solution.

2 Mathematical Modeling

In this section, the main notation and the mathematical formulation of the optimiza-
tion model used in this work are introduced. The formulation is referred to as the
open-pit block scheduling problem (OPBSP). The only difference from the PCPSP
is that the blocks cannot be split and sent to different destinations, hence this problem
is fully binary and not mixed. However, the solutions are feasible for PCPSP as well.

2.1 Notation

Let us consider a set of blocks B. The elements of B (the blocks) are denoted by
letters b, b’ unless otherwise stated. The set of periods is denoted by T, hence the
production is scheduled in periods ¢ = 1, ..., |T|. There exists a set of destinations
D (each destination is coded by a number, so the possible destinations for a block
ared =1,..., D).

The net benefit perceived if ablock b € Bis sentto destination d € D at time period ¢
is given by vpgi. The block values will be denoted by V (B, D, T) = (Vpat)pep.dep.reT
or simply V if there is no ambiguity. We consider two sets of attributes, namely A
and A: A refers to the block attributes that participate in capacity constraints, like
tonnage while A relates to the attributes that are averaged (blending constraints),
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such as grades or pollutant contents. The value of attribute a € A (or @ € A) in
block b is denoted by gp, (or hpz), where gp, >0 (and similarly 4;; > 0) when
the attributes denote tonnage and concentrations. Some constraints are applied on
a subset of destinations § €D, for example, for processing. For each a € A and
8 €D, a minimum capacity (thus a demand) L,s; € R and a maximum capacity
Uus: € R U {+00} are imposed. Similarly, for each a € A, minimum Zaa, € R and
maximum 1755, € R U {+o00} average values are allowed.

An attribute ron; representing the tonnage of block b is used as a weight for
computing averages. Due to stability requirements, slope constraints are given by
one or several slope angles that define the maximum slopes that are possible in pit
walls. The standard way to model these slope constraints is using precedencies as
follows: for any given block b, there exists a set of other blocks (called predecessors)
that must be mined before in order to gain access to block b. A very general way
to encode this is by defining a set of arcs P C B x B, where (b, b’) € P means
that block &’ (predecessor of block b) has to be extracted in the previous or the same
period that block b (successor of block b).

2.2 An Alternative Formulation for PCPSP Model: OPBSP

This subsection introduces a new formulation for PCPSP. The decision variables are
related to the decision of whether to mine or not a given block, when to do so, and
what destination is chosen for that block. The objective function is to maximize net
present value. The constraints considered are: structural (related to the nature of the
variables), precedence, capacity and general side (blending). For each block b € B,
destination d € D and period ¢ € T, the variable is defined in (1):

1 if block b is to a destination d’ < d at period ¢,
Xpdt = or sent to any detination at some period 1’ < 1. (1)

0 otherwise

To keep the notation simple, auxiliary variables A xpg; representing the exact notion
of a block b sent to destination d at period ¢ are defined:

Xbdt d=t=1
Axpg = 4 Xbdt — Xop-1n d =1, > 1 )

Xbdt — Xp@—1y d > 1

For a block model B, precedence arcs P, set of destinations D, set of time peri-
ods T, blqck values V. = V(B,D,T), sets of capacity C =C(B, A, D, T) and
blending C = C(B, A, D, T) constraints, an open-pit block scheduling problem

OPBSP(B, P.D.V.T.C. é) is defined as
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Max Z Z Z Vbdt A Xbdt 3)

beB deD teT
subject to

XbDt =< Xp'Dt V(b, b’) eP,teT 4)

Axpgt >0 Vbe B,de D,teT ®))
Znganbdthaét YVae A, 5CD,teT (6)
beB deé
DD 8wlxea = Loy YacASCDteT ()
beB des

Y b Doges hvatony Axpa  ~

<Uzy Vae€eASCD,teT (8)
D bep Ddes 10N AXpa “
hpatony A - -
Lpen Daes MalOM A p e s p e 9)
2 ben 2odes 10N AXbay
xpat €{0,1} Vbe B,de D,teT (10)

Equation (3) presents the objective function, which is the discounted benefit from
the extracted blocks over time horizon IT'|. Equation (4) corresponds to the precedence
constraints given by the slope angle and Eq. (5) means that the definition of the
variables is satisfied. Moreover, Egs. (6) and (7) limit the maximum and minimum
resource consumption in each period, respectively. Equations (8) and (9) represent
the blending constraints, and Eq. (10) establishes that all variables assume binary
values.

The main difference between PCPSP (as presented in [2, 12]) and OPBSP relates
to the fact that in OPBSP blocks cannot be split and thus a given extracted block is
sent to only one destination. However, OPBSP solutions are feasible for PCPSP as
well.

3 An Incremental Heuristic Based on Expected Time

Expected Time Incremental Heuristic (ETInc) is the proposed algorithm to approxi-
mate the solution of OPBSP and consists in a combination of an incremental heuristic
that works on a subset of blocks and periods by using a sliding time window (as in
[8]) plus expected extraction times computed from the linear relaxation of the prob-
lem as introduced in [6]. A more detailed version of this heuristic may be found in
[14].
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3.1 Incremental Heuristic Based on Sliding Time Window

The heuristic iteratively constructs a schedule for each period by solving the OPBSP
for a time window T = {f,..., min(z +w — 1, |T|)} limited to w <IT!I periods,
starting from period ¢t =1 of the planning horizon, where w is an integer parameter
used to determine the maximum length of the time window. Each time the OPBSP
subproblem is solved, the variables xyq, are fixed for the first w’ periods of the incum-
bent time window, where w’ is a parameter to be determined, the time window is
moved forward by w’ periods, and the OPBSP subproblem is solved for the new time
window. The procedure stops when the last OPBSP subproblem corresponding to
the period ¢t =IT'| has been solved.

3.2 Block Preselection Using Expected Extraction Times

To solve each OPBSP subproblem, the heuristic preselects a subset B of blocks based
on a modified definition of the expected extraction time introduced by [6] according
to the following procedure.

Let X;p,, be the solution of the LP relaxation of the original OPBSP. The expected
extraction time E}, of block b is defined as

Epy =)t A&+ (T +1)(1 - Fp,) (11)

teT

A subset of blocks B not yet extracted at period ¢ is defined for which expected
time E}, is smaller than min(t +w — 1, |T'|) +s, where s >0 is a continuous parameter
to be determined representing a tolerance or additional margin in the selection. In
this procedure, the expected times are used as a block preselection tool to reduce the
size of the subproblems, they are not used to generate a sequence of blocks as in the
TopoSort heuristic proposed by [6].

3.3 Expected Time Incremental Heuristic—ETInc

ETInc algorithm depends on three parameters:

1. w, which is the length of the sliding time window,

2. w’, which is the number of periods to be fixed in the current solution of OPBSP
subproblem, where w <w, and

3. s, representing the tolerance parameter to select a subblock model B based on
expected extraction times.

The main steps of the ETInc algorithm can be described as follows:
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Table 2 List of PCPSP instances from MineLib. ETInc parameters used in the experiments

PCPSP instance ETInc parameters
w w s

Newman 1 1 1.5
Zuck_small 6 1 0.5
KD 2 1 0.5
Zuck_medium 2 1 55
Marvin 5 1 0.5
W23 1 1 0.5
Zuck_large 4 1 0.5
SM2 1 1 0.5
McLaughlin_lim 2 1 0.5
McLaughlin 2 1 0.5
1. Select a new time window T according to Sect. 3.1.

2. Select a subblock model B according to Sect. 3.2.

3. Construct an auxiliary instance of OPBSP (or OPBSP sub-problem) by using B
and T and solve it.

4. Select blocks for extraction.

5. If not finished, go to step 1.

4 Numerical Experiments

The datasets for all instances can be found at [2]. The list of 10 PCPSP instances on
which the algorithm was applied and the parameters used are presented in Table 2.
The computational resources consisted of a core i5-3570, 3.4 GHZ PC with 16 GB
of RAM, and GUROBI 6.5.2 was used as optimization software.

4.1 Results and Discussion

The results obtained from the numerical experiments and a comparison with the
corresponding best-known results for PCPSP instances from MineLib are presented
in this section.

Table 3 shows the value of the solutions for the linear relaxation obtained for
each instance of PCPSP, as reported in [2], and OPBSP, which were obtained by
implementing the Bienstock-Zuckerberg (BZ for short) algorithm. From the theo-
retical point of view, these values should be equal, however, there are very small
differences, being the largest relative difference for W23 smaller than 4 x 107, This
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Table 3 List of LP upper bounds obtained for PCPSP and OPBSP

E. Jélvez et al.

PCPSP instance LP solution value
PCPSP OPBSP Abs. difference

Newman 24,486,549 24,486,549 0
Zuck_small 905,878,172 905,878,194 22
KD 410,891,003 410,891,003 0
Zuck_medium 750,519,109 750,519,188 79
Marvin 911,704,665 911,704,801 136
w23 387,693,394 387,691,933 1461
Zuck_large 57,938,790 57,938,804 14
SM2 1,652,394,327 1,652,394,357 30
McLaughlin_lim 1,324,829,727 1,324,829,835 108
McLaughlin 1,512,971,680 1,512,971,772 92

Table 4 Current best-known solution on 10 PCPSP instances available in MineLib library

Instance name Source Gap (%) Best-known Gap (%)
OPBSP objective
Newman [13] 1.58 24,176,861 1.26
Zuck_small [13] 1.64 897,453,456 0.93
KD [2] 0.98 409,715,160 0.29
Zuck_medium [13] 3.00 701,157,160 6.58
Marvin [13] 1.61 905,829,721 0.64
w23 - 100.00 368,005,675 5.08
Zuck_large [2] 1.04 57,534,355 0.70
SM2 [2] 0.12 1,651,599,491 0.05
McLaughlin_lim | [2] 0.24 1,322,283,576 0.19
McLaughlin [2] 0.19 1,510,373,891 0.17

is explained because different stopping criteria of the implementations of the BZ
algorithm were used. Therefore, the differences between LP upper bounds are small
enough not affect the optimality gap defined as

Gap = (LP upper bound — best-known solution objective) /LP upper bound (12)

Table 4 shows the current best-known feasible solutions for each instance as
reported in [2, 13] in terms of optimality gap, the objective values of the feasible
solutions obtained using ETInc and their respective optimality gaps. All feasible
solutions (except Zuck_medium instance) implemented to improve on the already
existing values and particularly that for the instance W23, ETInc was able to produce
a solution with 5.1% optimality gap for OPBSP, therefore, improving on the current
trivial null solution.
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5 Conclusions

A new full-binary formulation for the Precedence Constrained Production Scheduling
Problem (PCPSP) was presented. In this formulation (OPBSP), the blocks cannot
be partitioned, therefore, only one processing destination must be chosen for each
block.

An algorithm (ETInc) that aims to produce good feasible solutions for OPBSP,
and therefore for the PCPSP, was used. ETInc is similar to other algorithms proposed
in the literature as it uses the solution of the linear relaxation as a guide to generate
integer feasible solutions by constructing a ranking of blocks for extraction and
by resorting to solutions for auxiliary instances. ETInc was applied to a publicly
available library of instances included in MineLib, which consists of 10 different
cases of variable size, obtaining better results for the 9 out of 10 cases.

Further research is required for the library of problems. For example, even though
both formulations OPBSP and PCPSP accept lower bounds for capacity constraints,
the library does not have this type of constraint. In this sense, it is a challenge to
expand the number of case studies or instances available in MineLib to evaluate new
models and compare new algorithms.

Additional research areas should consider the inclusion of the uncertainty in mar-
ket and geology as well as the improvements in the computational time and memory
footprint.
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Development of a Computer-Aided m
Dragline Selection Program L

S. Akhundov and N. Demirel

1 Introduction

Removal of overburden in open cast coal mines to uncover coal seams is widely done
by draglines. Draglines are highly advantageous over shovel truck system because of
high productivity and low costs of process in open cast mines. They can handle over-
burden excavation, haulage, and dumping operations with single equipment which
results in increase in mining productivity and decrease in mining costs.

Since, it is the most capital-intensive unit for a mining project, the selection of
this equipment is one of the most important tasks and it should be made with utmost
care. The way of selecting dragline requires consideration of geological properties of
deposit, mining method to be applied, and the availability of resources and aspects of
available technology offered on market. On selecting appropriate dragline equipment,
all these factors have to be taken into account.

There are several stages should be completed before making a decision about the
dragline to be invested on. Initially, based on the required production and stripping
amounts required bucket capacity should be estimated. Then depending on the strip
geometry and material properties, reach factor and operating radius figures should be
calculated. Although there are some studies towards enhancing the selection process
using computer simulations, interactive computer modeling to select draglines and
to forecast their long-range productivities is still an emerging issue.

However, a tool or a model, which is specifically utilized for dragline selection,
is not currently available. Manual process may involve human error and may yield
wrong selection of equipment. However, using computerized tools gives an ability
to see compatibility of other models and make this selection process quickly.

The main objective of this study is to develop a dragline selection and produc-
tivity prediction program by varying mine layout and dragline parameters to mini-
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mize human error affecting the selection procedure. The elements of this objective
are (i) conducting a comprehensive literature survey about conventional methods;
(ii) reviewing and evaluating the dragline selection process with modern approach,
(iii) develop a model to minimize human error in calculations and selection, and
(iv) validate the developed program with a manual selection procedure. The main
stages of methodology followed in the development of a Draglayout program are as
follows:

— considering “Maximum suspended load” calculations based on required bucket
capacity to reach expected production amount

— developing a computer program, this makes calculations and shows the list of
dragline models with required parameters from the catalogues

— developing a new formula for calculating new approximate production amount
based on selected dragline equipment’s maximum suspended load

— developed new software also must calculate and draw the range diagram to see the
whole picture better and let preview for acceptable changes on mine layout design

— discussion on finding best dragline equipment and mine layout design pair to reach
best production rates.

The developed program introduces a new automated tool for dragline equipment
selection and provides further insight into equipment selection and mine design.
Computerized systems are more accurate and fast which results in time saving. The
study is expected to contribute to mining industry by providing a more flexible, user-
friendly, and robust model for dragline selection. The scope of this study includes
draglines therefore; the program cannot be used for selection of any other mining
equipment.

2 Review of Previous Dragline Selection Models

The very first remarkable research on best suitable dragline equipment selection was
held [1]. The author has developed a computer program to analyze the relationship
between maximum usefulness factor and the pit geometry to select the parameters of
suitable dragline equipment. The maximum usefulness factor was defined according
to required bucket capacity and required reach of an equipment for stripping.

Another research on simulating a dragline operation was reported in 1966 [2]. The
authors have developed an analogue computer simulation model for investigation of
the performance of different movements of the dragline. During the 1970s, the US
Federal Government financed simulation models researches and computer programs
in pit optimization and equipment selection. Many researchers and companies are
involved in the program [3-6]. Developed computer programs were all based on
single seam operations and software’s could be run only on mainframe computers as
expressed in [7]. Because of their hardware restrictions and poor graphical interfaces,
these programs were not widely used [7].
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Later in 1979, [8] reported a computer simulation method. They have modified
conventional methods for reach and bucket capacity determination to a 3D approach
to calculate optimum required dragline parameters. The authors claimed that the
reach factor requirements for a dragline operation was underestimated with using
conventional 2D approaches.

During the 1980s, many researchers worked on developing dragline operation and
computer-aided dragline operation simulations. [9] reported a research on select-
ing a suitable size of the dragline. The authors used nonlinear analytical approach
techniques to minimize the cycle time for overburden stripping and cost per ton of
removed coal.

In 1990, it was reported that a new computer program that can calculate reach
factor and bucket capacity considering factors such as the blasting effects on the
swell factor and response angles [10].

Erdem and Celebi [11] worked on developing computer-aided expert simulation
system for dragline and method selection in surface coal mines. In this research author
also worked on several problems that can occur in dragline selection. Research uses
seven main surface stripping methods for modeling and simulating dragline selec-
tion and stripping process. Moreover, during research [11], several algorithms were
developed on modeling and simulating production both single and tandem dragline
systems. The dragline selection strategy of developed expert system based on forward
changing algorithm. One of the recent researches on computer-simulated selection
model of the walking dragline equipment for open cast stripping mine is held in 2003
[12]. They have developed a computer simulation model for simulating dragline
stripping operation for the purpose of selecting the optimum dragline equipment,
according to working face parameters results obtained again by the same simulation.
Simulation process iterates till the convenient results are obtained.

3 Data and Methodology

In strip mine design using dragline as the major overburden removal unit, the pro-
duction target has to be met first and then it will be possible to select a dragline
which meets predefined production requirements. However, there might be situation
in which existing dragline equipment may be required to be deployed. In such cases,
the stripping methods and stripping geometry will be dependent on the dragline unit
[2].

In order to identify the most compatible dragline to invest on, there are two
important input variables to be determined [3]: (i) reach factor (RF) or operating
radius of dragline, (ii) maximum suspended load (MSL). Operating radius, the total
horizontal distance between crest of the highwall to the peak point of the spoil
pile, determines how far the spoil pile can be located. It is the summation of reach
factor and positioning as well (Fig. 1). If the reach of the dragline is not sufficient
with respect to the depth of the overburden, then rehandling may be necessary to
compensate the inadequate spoil pile. Since rehandling is an undesirable process
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with increased operating cost, operating radius of dragline has a significant impact
on the economic feasibility of a mine. The second important variable is maximum
suspended load (MSL) and it can be defined as the maximum load that can be
suspended from the boom sheave of the dragline and it includes dead weight of the
bucket and payload. Besides these two variables, there are some other important
characteristics to be determined before making the selection. These are maximum
digging depth capability, maximum dumping height, stacking height. If there are
several draglines operating in tandem, there will be some other factors that can affect
selection.

The volume of spoil pile for a unit thickness and volume of overburden, spoil
pile height (H), stacking height (SH), reach factor (RF), operating radius (OR), and
positioning of dragline can be seen in a typical range diagram in Fig. 1. These
variables are estimated based on the required coal production and stripping amounts
using range diagrams.

Once the reach factor and maximum suspended load are determined then man-
ufacture catalogues or selection charts are utilized to select the most compatible
unit. The productivities of other options should be separately estimated again using
range diagrams. This process is not efficient when several units are required to be
compared with varying bench geometry and production conditions. Therefore, a sys-
tematic computerized tool is essential to increase the efficiency of dragline selection
process.

Developing the Draglayout dragline selection program includes five stages:
(i) creating a dragline database of commercially available models, (ii) developing
algorithms for initial mine design geometry and interaction between dragline geom-
etry and mine layout, (iii) generating a graphical user interface (GUI); and finally
(iv) verifying the program.

Initial estimations and calculations of such parameters as dragline availability,
dragline utilization, dragline operating hours, average duration of single cycle time,

OR

PD RF

Coal seam

Fig.1 Range diagram and geometry
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estimated ore production, and recovery are taking. According to these parameters
maximum, suspended load is calculated and an initial mine design geometry param-
eters are defined. In the third step according to previously calculated maximum
suspended load and reach factor requirement available draglines from catalogues are
choosing and last decisions on the mine geometry are holding. For the final step, best
dragline is selecting from catalogues.

4 Draglayout Program

Draglayout program allows users to create a new project after entering input data and
also to load an existing project. In order to create a new project, user data should be
input to the program. These input data are grouped in three parts as bench geometry
data, material characteristics data, and required stripping and/or production data.
Main pane working tab is presented in Fig. 2.

Bench geometry is basically determined by the coal thickness, overburden thick-
ness pit width, spoil angle, and pit angle. Program allows users to select different unit
systems but SI unit system is set as default. Material characteristics data includes
coal density, overburden density, swell factor, bucket fill factor, and specific weight of
overburden. Required production data are scheduled operating time, dragline avail-
ability, dragline utilization cycle time of the dragline, required ore production and coal
recovery. With Edit menu Draglayout offer, three additional options where entered
data can be changed.

Draglayout software offers Multi Tabbed Pane interface in three working tab
panes. These panes are main pane, plan view pane, and models pane. Main pane is
available on start. After project created or loaded all usable information about the
project is reachable from related sections. This screen tab is informational tab and
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o
Waight L
"Required Production
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Coal Uncovered < 6.88 Mpa
Recovery Fastor ja8%
Dragline Cycls Time 60 pac
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raghine Availability 190%
Dragline Utilizatien 0%

Fig. 2 Main pane working tab
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includes only information, no changes on project can be done with this working tab
pane. Plan view pane is not available on start. Only after project created or loaded will
be available. From this, tab pane all geometrical parameters are available spinners
and input areas are represented to enter a new data or change the previous entered
data. Refresh button refers to affect and fix the new entered data to project. This
button also works for reloading all working tab panes with one click. In case of
changing input data, previous selected model removes itself. Models pane displays
all suitable models from catalogue after implementing the program.

Selection takes place based on the computed maximum suspended load and reach
factor values. Draglayout provides the most compatible model according to the
required stripping amount. However, it also lists the models whose reach factors
and maximum suspended loads are less/greater than the optimum ones. The user
could find out the productivities associated with these models and answer certain
what if questions in case of selection of these models. By clicking on the name of
model from list, the Model Selection dialog will appear (Fig. 3). This dialog displays
some important parameters of selected dragline model and also shows the results of
production value which will prepare this model according to project details.

Visualizing is the last phase of main process cycle where graphing of range dia-
grams and geometry of bench is illustrated after the selection is done. Draglayout
provides a link to the user interaction phase where it is possible to make changes on
the selection criteria and other settings such as catalogue selection. In this phase, it is
possible to go back and change all input data and parameters and run the calculations
repeatedly (Fig. 4).
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Fig. 3 Plan view working tab
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Fig. 4 Model selection dialog window

Table 1 Sample data for
verification

Modal is not Selected

Input parameter Value
Operation time 8030 h/yr
Dragline availability 88%
Dragline utilization 90%
Density (bank) 1300 kg/m?
Recovery 85%

Ore thickness 7m

Swell factor 1.25
Bucket fill factor 88%
Annual production SMt
Cycle time 60 s
Overburden depth 30 m
Overburden density (bank) 2100 kg/m?
Pit width 40 m

Pit slope angle 68°

Spoil pile angle 38°

Bucket empty unit weight 1100 kg/m?
Dragline swing angle 120°

5 Verification of the Model

The developed program was verified using the sample data tabulated in Table 1.
Dragline selection for the given production was done both using range diagrams and
manual calculations and also the developed program Draglayout. Both ways yielded

the same dragline model.
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Fig. 5 Dragline selection chart provided by Model selection dialog window

Essential maximum suspended load and the reach factor were found to be
192,426 kg (423,337 Ibs) and 70.12 m (230 ft), respectively. According to the
obtained results, the most suitable dragline model was determined to be Model 51
as can be seen in Fig. 5.

When Draglayout program was run for the sample data, the outputs obtained were
the same as the results obtained using conventional methods. Draglayout selected
the same model, Model 51 as can be seen in the output window (Fig. 6).

According to the selected dragline models parameters, the approximate bucket
capacity and the approximate production per year can be achieved with dragline
model is calculated.

The calculations show that with this model of dragline the production of mine can
be increased up to 0.18 Mt/yr. Validation shows that all calculated output results are
approximately same with manually calculated results. Small differences on results
observed because of rounding in manually calculating. Draglayout uses 8 bytes mem-
ory (13 digits) for storing each number which is a pretty big range, which makes
results be more accurate. Moreover, Draglayout provides an easy graphical interface,
fast calculation, menus to switch catalogues, and ability to make changes in design
and run calculations repeatedly.
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Mine Layout & Range Diagram OUTPUT
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Fig. 6 Draglayout output window

6 Conclusions and Recommendations

The result of this study introduces a new approach to the dragline selection pro-
cess and mine design. This thesis research is about automated dragline selection and
developing computerized tool for this purpose, during the research process new con-
venient formulas and parameter were developed. Developed formulas for production,
helps to calculate the approximate production according to load ability of dragline
and it is providing an idea in selecting a dragline and other equipment. The rehandle
amount causing of toeing is not taken an in consideration.

Developed Draglayout software is easy and useable tool for selecting dragline
equipment. In order to make calculations easier, Draglayout provides to mining engi-
neers working with different catalogues and gives ability in changing predesigned
mine design. Also prove a friendly graphical interface to see full picture of designed
mine layout. No doubt this ability will be improved in future and new useable func-
tionalities will be added. Also, it is possible interactively go back to mine design and
redesign mine layout for proper selection and design.
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For this study, only catalogue installed to the developed software is a catalogue
presented by Bucyrus Erie Co. For future developments and versions of Draglayout,
it is possible to add new catalogues. For future improvements in software, it is also
essentially important to add advanced stripping methods to the program.
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Optimal Selection and Assignment )
of Loading Equipment L
for the Compliance of an Open-Pit

Production Plan

H. Gonzalez and N. Morales

1 Introduction

1.1 Motivation

Mine planning is a process in which, among other things, the volumes of material to be
extracted at a given time and with a specific destination are defined. The decision on
the material movements is a complex process with several stages which are present
from the beginning of a project through selecting the blocks to be extracted in a
block model to the last stage of the bench. However, the moment in which material
extraction is conceptualized occurs in intermediate stages to those mentioned.

Material transport is a highly important process in the mining business, mainly
due to the high costs associated with it [1]. This is a consequence of a large number
of equipment involved in the operation, both for loading and transport; a high degree
of mechanization and above all, the presence of this process throughout the life of
the mine.

Removing the rock from the mine is not the same as extracting blocks in a model.
Consideration should be given to aspects related to the mechanical equipment that
will be used to extract the material and equipment that will move it from the mine
to its destination. The decision about which equipment to use, how many and what
type to buy, and where it should be operating has a strong impact on the value of the
mining business. For these reasons, a model was created to determinate and evaluates
various scenarios of material handling with different type and number of shovels.

The optimization of the equipment is strongly related to the optimization of
the pit: improving the selection of equipment decreases mine costs and increases
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productivity, which influences the planning and design of pit limits [2]. It is possible
to separate the planning process into levels, according to the characteristics of the
decisions made [3]:

— strategic: refers to the selection of exploitation methods, mine capacity, processing,
and in general to the estimations of mining reserves. The main objective of strategic
planning is to synchronize the market with the available resources and the mission
of the company

— tactics: corresponds to the specification of the processes to be carried out through-
out the life of the mine such as long-term production programs and programming
models for the use of equipment and processing plants. Tactical or conceptual
planning determines the way to achieve the objective previously established by
strategic planning. Its result is the mine plan which defines how the resources will
be extracted

— operational: involves the delivery of the material to its destination (for example,
using trucks) or the change of location of a shovel. The operational processes and
indexes resulting from the mining plan are included in the operational planning.

The objective of this work is the creation of a methodology to support the devel-
opment of an allocation plan for loading equipment in an optimal way that allows
compliance with a production plan. In this way, a bridge between the levels of tacti-
cal planning with the operational can be created. A base production plan from a real
mine was used to compare the results obtained.

1.2 Related Work

Over the years, many techniques associated with operations research have been devel-
oped to assist in decision-making in mining. Temeng et al. [4] proposed an equipment
dispatch system. His work describes a model whose main limitation is the exclusion
of short-term production and the location of the shovels. Gurgur et al. [5] proposed
a linear optimization problem that provides the location of trucks and shovels to
minimize deviations from the progress of the mine provided by strategic planning.
However, it only considers the long-term information, leaving aside costs of produc-
tion and movement of the equipment.

Upadhyay and Askari-Nasab [6] proposed a model that includes both long-term
and short-term objectives, as well as movement costs and allocation of loading equip-
ment and trucks. However, it performs this assignment based on the sequencing
obtained in a previous stage using a clustering and scheduling algorithm.

Linear optimization applied to the optimization of the mining operation reveals
the following:

— the allocation of the shovels has not received enough attention in the literature,
— the models do not present communication between strategic planning and produc-
tion in the operation,
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— the models depend on multiple stages to find a solution,
— the sequencing of the extraction in many cases is an input for the assignment of
shovels and trucks.

The model proposed in this paper seeks to incorporate the aforementioned points
(single-stage optimization, communication between strategic planning and produc-
tion, and the sequencing of the extraction as result of the shovel assignment) into the
optimization problem to obtain a one-stage solution that is interpreted as planning at
the operational scale and which leads to meeting long-term goals.

1.3 Problem Statement

Data from a real mine operation were used to validate the model. The name remains
confidential at the request of the suppliers. The optimization problem was addressed
using the Python programming language.

The data used included:

— the material movements per period determined by the long-term plan, as well as
the destinations associated with each block, without modification

— the pushbacks (without modification) and the sequence of extraction of the blocks
conditioned at the level of years as it is considered in the block model with the
solution delivered by the optimization problem on a monthly scale

— the extracted mineral was quantified in proportion to the extracted tonnage and
the mineral/total tonnage ratio of each bench

— equipment operational and investment costs as well as equipment characteristics
(obtained from catalogs).

2 Methodology

A review of the data obtained from the mine site was performed to determine the
mineral depletion throughout the mine life. Since the assignment of loading equip-
ment to the particular workplace is sought, a catalog of equipment was used to obtain
data regarding equipment characteristics, costs and capabilities, among others. The
construction of the optimization model that determines the allocation of the loading
equipment to the production pushbacks over time to minimize production costs was
made.

The equipment assignment was made manually as well as using the model to
measure the differences. The results obtained using modeling were compared with
the manual assignment and the base production plan.
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3 Optimization Model

Within the dynamics in which the loading equipment operates in a mining operation,

numerous factors that affect productivity were considered:

mechanical availability

— operational factors

available operating space

precedencies between bench of the same and different pushbacks
— feed requirements to the processing plant

— production goals

— cost of production and acquisition of equipment

— productivity of the equipment.

3.1 Variables

The decision variables for the model made according to Eqgs. 1 through 6:

Xpbit = percentage of period ¢ that shovel p is in bench b of phase f
_ 1, if the shovel p is in bench b of phase f of period 7,
X =
P 0 if not

1, bench b of phase f is active in the period ¢,
Z =
"7 o ifnot

_ 1, bench b of phase f was extracted in period ¢ or later,
Z =
71 0 if not

1, if the shovel p is bought in period ¢ or earlier,
w =
"7 10 ifnot

B — 1, if the shovel p is assigned to phase f in period ¢,
"0 if not

(D

2

3)

“4)

®)

(6)

Equation (1) is the decision variable that quantifies the production associated
with each equipment in operation while the variables (2)—(6) are used to regulate the

precedencies and assignments of the equipment to the operation.
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3.2 Objective Function

The final objective function is given by Eq. (7)

min: ZK,,~th~FDt+ Z Cp - Xppit - Qp - Dp - Fll, - FOue - T, - FD,  (7)
t p.t, f.b

The objective function of the model (Eq. 7) seeks to minimize the costs associated
with the acquisition of loading equipment (K ,) and the operational cost based on the
extracted tonnage (C,). The tonnage extracted in each period is expressed by the
multiplication of the capacity per hour of the equipment (Q,) by the corresponding
operational factors (D,,: mechanical availability, Fll,: filling factor, and FOy,: utiliza-
tion), the fraction of the period the equipment is operating (xpyf), and the duration
of the period (7';). The values are discounted in time using the discount factor (FD,)
that corresponds to the duration of the period. In this way, you can use the model
with periods of days, weeks or months.

The variables are subject to different restrictions to ensure that the solution
obtained represents the operation in the best possible way. In particular, the restric-
tions indicate that:

— variable (1) cannot exceed the duration of the assigned period;

— the movement of material associated with the variable (1) must meet the productive
goal for the end of the total periods;

— the equipment can only be assigned if the variable (5) indicates that the equipment
is available;

— to begin work on a new bench all the material of the predecessor benches must be
extracted, which is indicated by the variable (4);

— the precedencies are given by the sequence of benches of the same phase and
different pushbacks according to operational criteria;

— to assign working time to a bench, the bench must be marked as active according
to the variable (3) and with an equipment assigned according to the variable (2);

— in order to assign an equipment to a bench, space must be available for its entry,
which is entered as an input for each bench and is updated period by period
according to the material extracted in that sector;

— the total extracted mineral must comply with the requirements of the plant;

— there is a limit of assignment of the same equipment to different pushbacks of
work in each period.

4 Model Inputs

The model seeks to generate an equipment allocation plan for each month of a year
of production. The optimization is applied to a long-term plan (Fig. 1) obtained with
the software Whittle, which considers a constant production rate for each period. By
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incorporating the model developed at the production bench scale, the tactical plan
and the operational plan can be linked. Data associated with the equipment, benches
to be extracted within the period of 4 years and operating parameters, specified in
Sects. 4.2 and 4.3 were considered.

4.1 Material to Be Extracted

The material to be extracted associated with each bench is entered into the model.
The data entered also includes the phase to which it corresponds, the number of the
bench (growing with depth), the total tonnage to be extracted, the tonnage of ore
present in the bench, and the revenue per ton that presents its extraction.

4.2 Loading Equipment

The model sought to complete the production plan with the total extraction of the
material entered in each bench; it made decisions regarding shovel selections to
minimize costs. The information required for each equipment was an associated
name (POX), the cost of acquisition, the capacity in tons, the utilization and fill
factor in percentage and the operational cost in dollars per hour.

Given the way in which the model was built, it is necessary to express the opera-
tional cost of the equipment in USD/hour. To achieve this, the following assumptions
will be considered:

Tonrage [MTan]

YEAR

Fig. 1 Graph of depletion of material for the whole life of the mine. In the upper part of the
horizontal axis are the mineral tonnages and in the lower the sterile. Year 4 was the basis for the
study
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— the fleet of trucks allows the blades to be saturated
— each truck will be filled with three buckets of the shovel that loads it.

The first assumption was made to express the productivity of the shovel in relation
to itself without depending on the cycle of the transport equipment while the second
was done to express productivity directly from the bucket capacity of each shovel.
This last assumption is quite strong and works well when the shovels chosen for
production do not differ so much in size, but in the case of a considerable difference,
the assumption implies that the truck fleet must be different in order for the condition
of cargo to be fulfilled.

4.3 General Parameters

Data associated with the mining operation: the ore tonnage requirement for the plant’s
feeding, the discount rate, the bench height, and the density of the material were
incorporated within the model.

5 Results

5.1 Model Simulations

To facilitate the representation and form in which the results are presented, the results
referring to the manual allocation of equipment and that obtained with the model are
displayed simultaneously. The following scenarios were considered:

— case A: Manual assignment of equipment selecting the lowest cost per ton

— case B: Manual assignment of equipment selecting those with the lowest invest-
ment

— case C: Assignment of equipment according to model considering lower invest-
ment equipment

— case D: Assignment of equipment according to model

— case E: Assignment of equipment according to model with restriction of area.

Scenario D resulted in the lowest global cost because the model did not have
restrictions associated with equipment usage nor with space restrictions. Table 1
shows the equipment assignment and the percentage difference in resulting cost
between each exercise with exercise D. Despite both scenarios B and C use the same
loading equipment the case C manages to obtain lower costs. This reveals the great
impact of the allocation of equipment and the sequence of extraction on costs and
how a better strategy for the use of equipment can help reduce the costs of the mine.

Between the cases C and D, it can be seen that by giving the model freedom to
choose the equipment to be used, it selects other equipment than equipment chosen
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Table 1 Type and quantity of equipment selected for each scenario: the percentage difference in
costs obtained in relation to case D

Scenarios Selected equipment A% to scenario D
A 2P01-2 P12 +162.2

B 2 PO1-2 P04 — P05 +42.4

C 2 P01-2 P04 — P05 +14.3

D 2 P01-2 P02-2 P03 -

E 2 P01-2 P03 — P04 +0.6

manually, thus achieving the production goal in the same way. The difference between
case A and B indicate that for the evaluation period of 1 year, the operational cost
less relevant than the acquisition cost. This may be reversed when several years of
operation are evaluated while the large tonnage to be moved allows the operational
cost to become an important part of the total costs.

Figure 2 shows the production plan generated by the assignment of equipment
from scenario E. It can be seen that the material movements have a ramp-up during
the first periods before stabilization; this is due to the area restrictions imposed on
benches. It is also possible to notice variations in the tons of waste and ore extracted
from one month to another. This is because production is conceived as the result of a
particular equipment assigned to a specific sector and not as a constant flow of tons.
In this way, the model manages to capture and better represent what happens in the
operation allowing to create more feasible plans.
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3,500,000
3,000,000

2,500,000

\ \ 12
2,000,000 3
1,500,000 ;
1,000,000
. - 0
1 2 3 a s 5 7 8 s 10 1 12
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g

EECre WWaste —Grade of Cu zent to plant

Fig. 2 Production plan for Scenario E
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5.2 Scenario E Versus Long-Term Plan

The comparison of the results obtained with Scenario E with the production plan
obtained in the long-term planning is shown in Fig. 3, where it can be seen that, for
the ore in Pushbacks 2 and 4, the extraction was slower than estimated according to
the long-term plan while Phase 1 does it faster after period 4 (the line graph obtained
by the model goes below the long-term line). This may mean that when the plan was
put into operation, there were problems with the mineral feed to the plant, especially
in the first 4 months.

6 Conclusion

The developed methodology allows to obtain an assignment for a fixed fleet of shovels
to the workplaces that meets operational and production restrictions for the short and
medium terms. It provides a guide for the planner, which saves time and resources.
The model also allows to evaluate different fleet investments options, in the case of
greenfield operations, based on their productivity in different work sector.

The consideration of the movement capacity associated with real equipment
instead of a defined daily movement allows obtaining a plan that is better adjusted
to what actually happens in the mining operation, allowing to estimate revenues and
costs more accurately as well as determining the vulnerabilities in the plant feed.

The model also delivers an operational plan that complies with the projected
production in the long-term plan, serving as a tool capable of incorporating the

40
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Fig. 3 Material depletion comparison of Scenario E with the initial plan. Base case is represented
by dotted line while model by the continuous line. Only selected pushbacks are presented given the
difference of order of magnitude between the movements among pushbacks
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characteristics of the mining operation and obtaining a sequencing that serves as a
bridge between the different levels of planning.
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A Transportation Problem-Based )
Stochastic Integer Programming Model i
to Dispatch Surface Mining Trucks

Under Uncertainty

A. M. Afrapoli, M. Tabesh and H. Askari-Nasab

1 Introduction

In surface mining operations, truck dispatching is the process of determining the best
assignment of trucks to the right destinations. All thus far, published research has
introduced a two-stage decision-making model to solve truck dispatching problem
with the exception of one proposed by [1]. The two stages are called upper stage or
production optimization stage and lower stage or truck dispatching stage [2]. The
set of decisions made in the lower stage is a set of dynamic operational outlines to
meet the upper stage targets. Several decision-making models have been developed
to address the two sets of decisions.

Researchers have applied different operational research approaches to solve the
upper stage problem. White and Olson [3] developed a two-segment linear pro-
gramming (LP) model that in its first segment, it maximizes shovels’ dig rate by
minimizing total material handling costs [3]. Then, it determines the optimum flow
rate for each path in the mine. They developed the most popular currently available
truck dispatching decision maker tool in the market [4] based on their two-segment
LP model.

In 1989, a combination of mixed-integer LP and nonlinear programming (NLP)
operational research approach was introduced by [5, 6]. The developed model sched-
ules trucks’ travel between any source and destination in the mine in two steps. One
important advantage of the model developed by [5, 6] is that before implementing
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an NLP model to allocate trucks to shovels, it first runs a MILP to assign shovels to
the right working faces.

Following that [7] published an LP model that was called transportation model for
truck dispatching in mines. The model tries to minimize transportation work required
for each path. Implementing the developed LP model, optimum number of trucks to
meet the path production requirement is determined.

In the late 1990s, [8] developed a truck allocation model that works based on goal
programming approach. With respect to ore grade, shovel dig rate, stripping ratio,
and dumping points’ capacities, the model maximizes shovel production.

A chance-constrained stochastic approach was applied to the upper stage (truck
allocation or production optimization) problem by [9]. The developed model deter-
mines optimum number of trucks of a kind to be allocated to a path to meet its
production requirement in presence of truck cycle time and its capacity uncertain-
ties.

By adding shovel assignment to the mining faces, [10] developed an LP truck
allocation model that is capable of minimizing deviation from the strategic level pro-
duction requirements. Ta et al. [11] developed a mixed-integer LP model that solves
truck allocation problem based on the probability of shovel idle time. The objective of
the developed model is to minimize total number of trucks required to meet the pro-
duction target. In the same year, [12] introduced an availability-based mixed-integer
LP model that tries to solve upper stage problem using knapsack problem approach.
The developed model maximizes cumulative truck fleet production within a fixed
time horizon. Chang et al. [13] developed a mixed-integer LP model to solve truck
allocation problem. The model maximizes transportation revenue with respect to
priority of shovels. A heuristic algorithm was developed to solve the model for each
operation shift. Readers are encouraged to read [2] and [14] for detailed information
regarding the approaches and solution methodologies.

Despite all the aforementioned efforts in developing mathematical models to solve
the upper stage problem, a limited number of models can be found in the literature
that deals with the lower stage truck dispatching problem. White and Olson [3] and
Soumiis et al. [6] applied assignment problem approach toward making decisions on
trucks next destination. Li [7] developed a model that minimizes the relative differ-
ence between the actual time that next truck will arrive at a destination and the time
that next truck must be in that destination based on upper stage results. Lizotte et al.
[15] developed a simulation-based semiautomated model that assigns trucks to the
destinations using three different heuristic models. Temeng et al. [16] implemented
a transportation-based approach toward dealing with the truck dispatching problem.
However, there is a limitation in the abovementioned models. Although most of the
input parameters are uncertain and show stochastic behavior, the developed models
use deterministic input parameter values. One of the input parameters that is used
in many models is truck cycle time. The truck cycle time in a mining operation is
subject to fluctuations from its deterministic value due to different factors including
road conditions, traffic conditions, intersection blockages, trucks’ bunching effects,
etc.
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The aim of this paper is to minimize the idle time of shovels and trucks through
improved dispatch logic that quantifies the impact of empty haulage travel time
uncertainty on the haulage cycle time calculations and truck assignments. To achieve
the objective of the paper, we present a stochastic integer programming model that
makes truck dispatching decisions while considering the uncertainties in truck travel
time. The travel time has been selected due to its higher contribution in the material
handling cycle time than any other components of a cycle time such as spot time,
load time, and dump time. To assess the developed model, we implemented it in an
open-pit mine operation simulation and results are presented here.

2 Model Formulation

The model development consists of two main steps. At the first step of the model
development, a deterministic model was developed. Then,by implementing the
recourse approach [17], we developed a stochastic model based on the model devel-
oped in the first step to capture uncertainty in truck travel time.

The model presented in this section is a deterministic model with all its input
parameters taking deterministic values. It can also be categorized as a mixed-integer
linear programming model based on transportation problem. The objective function
of the model, presented in Eq. 1, minimizes the cumulative absolute time difference
between the times truck t will reach shovel s after dumping at dump d (tts) and
the time shovel s will be available to load the next truck (nas). The second part
of the objective function tries to maximize the adjustment factor (AF) encouraging
the model to maximize a balanced material delivery to all destinations. AF will be
explained later on. Finally, VBN stands for very big number.

T D S
minZ =Y YY" CusXigs + VBN(nf — AF)

1=1 d=1 s=1
Vee{l,...,T},Vd e{l,..., D}, andVs € {1, ..., S} (1)

The objective function coefficient for each of the variables is calculated using
Eq.2

Cus = |tts - nas‘|
=|T(t,3+5)— S4,s)|
TT
= |ltty +qta+dta +ethg, — Y (tingys +tenrys) X (stys + i)
t'=1

Vie{l,..., T} &Vsell,...,S} &Vde{l,...,D} (2)

where
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Itty loaded travel time from current truck t position to dump d

qta time truck t must spend in queue at dump d to dump its material

dty time truck t spends at dump d to back up and dump its material

ettyy  time truck t spends to travel empty from the dump location d to shovel s
tingys time a truck of type ¢’ that is already in queue must spend in shovel s queue
tenryy time a truck of type ¢’ must travel from its current position to reach shovel s.
Sty spot time for a truck of type ¢’ at shovel s

Ity loading time for a truck of type ¢’ at shovel s

Moreover, the decisions need to meet operational constraints such as trucks’ and
shovels’ supply (Eqgs. 3 and 4), destination demand constraint (Eq. 5), balancing
truck distribution over the paths (Eq. 6), and binary constraints (Eq. 7).

D N
D xu<1Viell,....T) (3)
d=1 s=1
T D
ZZtc,xtdsfscsVse{1,...,S} 4@
t=1 d=1
T S
D> texas = AF x pegVd €{l, ..., D} (5)
t=1 s=1
0 <AF < mf (6)

xws €{0, 1} Ve e{l,..., T}, Vde{l,...,D}, andVse{l,...,S} (7)

where

Xids binary integer variable to assign truck t to the path connecting shovel s to
dump d

te capacity of truck ¢

SCs capacity of shovel s

PCd capacity of dump d (ton)

AF adjustment factor that forces model to evenly distribute extra available
trucks among all the possible destinations

mf proportion of the cumulative available trucks’ capacity to the cumulative

required path flow rate that can be met using the available trucks

Pfsa required path flow rate for path from shovel s to dump d based on upper
stage decisions

pmsf, met so far path flow rate for path from shovel s to dump d.

Constraint (3) makes sure that truck t cannot be assigned to more than one shovel.
Constraint (4) ensures that summation of nominal capacity of all the trucks assigned
to shovel s does not exceed the shovel’s nominal digging rate (capacity). AF in
constraint (5) is defined as adjustment factor. The adjustment factor is a variable
that is forcing the model to evenly distribute the truck fleet capacity between all
the destinations and is constrained by mf as in Eq. 6; mf is a matching factor that is
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calculated based on cumulative available truck capacity and cumulative path material
handling requirement. This factor is equal to 1 when the total truck fleet capacity is
less than the required path flow rate and is equal to the proportion of the available truck
capacity to the total path requirements when there is extra fleet capacity available.
The adjustment factor is constrained by mf in order to uniformly distribute the extra
truck fleet capacity among all the needy paths to balance ore and waste production.

The presented model uses expected (deterministic) values for the input parameters.
However, most of the parameters affecting the truck dispatching decisions are random
variables. In this paper, we formulated our model as a stochastic integer programming
model with recourse [17] to capture the uncertainty of one of the major parameters
affecting the operation (trucks’ empty travel time). Reason to capture uncertainty in
trucks’ empty travel time is that more than 90% of trucks’ cycle time in each cycle
is spent in traveling. From that time, about 50% is spent in travel empty. As most of
the time a truck needs to be dispatched has already passed some portion of its loaded
travel or even completed its loaded travel, the most important parameter where the
uncertainty associated with it needs to be captured is empty travel. Thus, the objective
function of the stochastic model that captures empty travel time uncertainty is (Eq. 8):

T D S
Minimize Z = Z Z Z Cuastts
=1 d=1 s=1
+ VBN(1 — AF)
1 T D § nR
TUR D202 D linta+gra+ dig + ety
=1 d=1 s=1 r=I
TT
- Z (tingys +tenryg) X (Stys +1t5)| X Xigs (8)

=1
where

etty;, time truck ¢ spends to travel empty from the dump location d to shovel s in
rth realization

r is an index referring to a scenario in the stochastic integer model

nR  number of realizations implemented to generate random variables for empty
travel time from its distribution.

In the developed model, the first two components of the objective function are the
same as the deterministic model. The third component is the minimization of the truck
or shovel idle time in material handling given the uncertainty in trucks empty travel
time. The model is constrained with Eqs. (3)—(7). For each of the realizations r in the
stochastic model with nR number of realizations, a random value is being sampled
from the fitted distribution of the historical data of the empty truck velocity. The
sample is then imported into the model after preprocessing procedure that calculates
required travel time and is used during the decision-making procedure.
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The developed model was implemented in a simulation study of an iron ore mine
and the results of key performance indicators (KPI) were compared against model
developed by [3] which is used as the backbone of the operation optimization in [4]
fleet management system. There are two small size shovels in the operation serving
two active processing plants with an input feed rate requirement of 2300 ton per
hour of the operation. Another small shovel alongside with two large ones is digging
waste material to meet the stripping ratio requirement.

3 Results

Some key performance indicators (KPI) were chosen to compare the results of imple-
mentation of the developed stochastic truck dispatching model against the benchmark
truck dispatching model as listed in Table 1.

Results of the simulation of the case study show that the required plant feed rates
are met when using the developed model as the dispatching logic while plant feed
rates will be short by 5-10% when using the benchmark dispatching logic (Fig. 1).

Using benchmark truck dispatching model, none of the plants are fed with their
required hourly feed rate. Plant 1 is on average 12% short on its hourly feed targetrate,
whereas plant 2 is on average of 8% short. However, by replacing the benchmark truck
dispatching model with the stochastic truck dispatching model, both plants’ target
rate is met. Figure 1 also shows that implementing benchmark truck dispatching, plant
2 is fed 4% more than plant 1. It is due to a critical drawback of the benchmark model.
The benchmark model dispatches trucks based on minimum distance between trucks
and destinations. However, it does not account for the queue that might happen after
a truck reaches to the assigned destination. Thus, if we have multiple destinations
similar to what we have in this case study, the benchmark model dispatches trucks to
the destinations with the shorter distance. Here in this case study, plant two is located
about 400 m closer to the ore shovels than plant one. As a result, plant one is served
more by the benchmark model comparing to plant two. This difference in feeding
rate is not happening when the benchmark truck dispatching model is replaced by

Table 1 Key performance indicators to assess the developed stochastic model
No. KPI Description

1 Plant feed rate (t/hr) Amount of material delivered
to each processing plant in an
hour of operation

2 Shovels’ utilization (%) Percentage of shovels’
available time being used in
the operation

3 Queue length Number of trucks lining up in
front of a resource when a
truck reaches there
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Fig. 1 Ore delivered to processing plants; the horizontal dashed line on 2300 (t/hr) stands for the
required plant feed rate for each of the active processing plants in the operation. For each processing
plant, the left-hand side box plot (hatched yellow) shows plant feed rate using benchmark model
and the right-hand side box plot (blue) shows the plant feed rate using the proposed model

the stochastic truck dispatching model. As one of the advantages of the stochastic
model, it does account for all of the possible queueing that will happen when the
truck is assigned. Thus, it is capable of feeding the plants equally in a multiplant
mining operation.

Another important KPI is the utilization of the shovels as the second most expen-
sive equipment after the processing plant in mining operation. A comparison of
shovels’ utilization when using the developed and the benchmark dispatching logic
is presented in Table 2.

Table 2 Comparison of utilization of active shovels in the operation

Shovel Utilization (%) (benchmark) Utilization (%) (stochastic Difference
model) (%)
Mean Standard Mean Standard
deviation deviation
1 88.9 1.1 96.4 2.9 8
2 84.7 1.2 95.5 3 11
3 97.5 1.7 75.8 2.8 22
4 96.4 1.4 76.7 2.9 -20
5 99.9 5.1 90.5 2.6 -9
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Shovel 1 and Shovel 2 feed the processing plants by extracting ore material and
Shovel 3, Shovel 4, and Shovel 5 remove waste materials. Shovels working on the
waste mining faces are approximately 10% more utilized than the ore shovels when
using the benchmark truck dispatching decision-making model. However, the trend
is reversed when using the stochastic model: the ore shovels are utilized more than
90% of their available time whereas the waste shovels are utilized about 80% of their
available time. The difference is mainly due to the fact that the benchmark truck
dispatching model makes decisions based on the distance between trucks and the
shovels and it does not include the time trucks have to spend in the queue at each
specific shovel when they reach to that shovel. Though, the stochastic model involves
the expected queue time in the decision-making procedure.

There are two possibilities when a truck reaches a loader. Either it encounters
a shovel standing idle and waiting for the next truck to load or it meets a shovel
that is currently loading a truck and has to enter a queue. In either case, the mine
is not working efficiently. In the former, shovel is utilized less than its available
time and in the latter, the truck is losing its available time in the queue. Figure 2
represents a graphical and statistical comparison of the histograms of the number of
trucks in the queue at shovels when a truck arrives to that shovel between the time

Base Model |BZZ] Stochastic Model
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Fig. 2 Histogram of number of trucks waiting in the queue when a truck arrives at a loading point
when the truck dispatching decisions are made by the base model (red bars) and the time the truck
dispatching decisions are made by the stochastic model (blue bars)
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the base decision-making model makes decisions on the truck dispatching problem
and the time the base decision-making model is substituted by the stochastic model
developed in this study.

Simulation results show that the average number of trucks in queue at shovel
when a truck arrives at that shovel decreases by 36% by replacing the benchmark
model with the stochastic model. The developed stochastic model also shows a 50%
reduction in the median. It means by replacing the base model with the developed
model most of the time when a truck reaches to a shovel it encounters with only
one truck waiting in the queue instead of 2 which happens in the base model. This
consequently results in shorter queue time.

4 Conclusion

Truck dispatching problem in the surface mining operations has been addressed in
this paper. Despite uncertainties associated with the governing operational parame-
ters, most of the conducted research in the field thus far has ignored random nature
of input parameters. However, in this paper, a stochastic integer programming model
was introduced that accounts for the uncertainties associated with truck travel times
into the truck dispatching problem-solving procedure. This helps to make more real-
istic decisions for trucks optimal destinations. The model was developed based on the
transportation problem approach. The model was implemented in a simulated case
study and results of its implementation were compared against results of implemen-
tation of the model developed by [3] which is backbone of [4] as benchmark truck
dispatching model from the literature. Results of the comparisons show a promising
improvement in all of the measured KPI.
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A Discrete-Event Simulation )
for a Truck-Shovel System L

E. Y. Baafi and W. Zeng

1 Introduction

The truck-shovel mining method is the most flexible mining method that can be
widely applied in open-pit mines. A truck-shovel mining system generally consists
of shovels and associated truck fleets. Ore of different qualities and waste are loaded
into trucks by shovels and transported from loading sites to ore crushers or waste
dumps. The productivity of an operating truck depends on the actual truck payload
and the truck cycle time. A single truck cycle includes spotting and loading, hauling
loaded, dumping, hauling empty, waiting and incorporates operational delays.

In a truck-shovel system, the complex and dynamic interactions between the
variables in the haulage system have determined that analytical methods are not
feasible for model development [1]. With simulation, it is possible to evaluate the
static, dynamic and stochastic elements of a truck-shovel system, and also offers a
management tool to evaluate and compare alternatives for better decision-making
[2].

According to the level of modelling detail, there are currently two kinds of sim-
ulation approaches to the traffic control problem: the macroscopic and microscopic
approaches [3]. The macroscopic approach describes the traffic process via the low-
level detailed traffic objects such as the traffic flow and density; while the micro-
scopic involves a high detailed modelling approach, considering the traffic elements,
for instance, individual vehicle units, haul routes, the interaction between the vehicle
units and the influence of the traffic network on the vehicle units.

Previous work on road transport [4-6] has pointed out that the macroscopic
approach is not able to reproduce the individual vehicle movement and to capture the
traffic interaction on the haul route networks. Furthermore, Jaoua et al. [7] proved
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that with no consideration of the real-time haulage network constraints or traffic con-
gestion and truck interaction, the macroscopic models could bias simulation results
[3]. However, most of the previous truck-allocation models [8—13] were developed
using the macroscopic approach. The macroscopic traffic models are usually sim-
plistic and tend to ignore factors such as the bunching effect and the truck behaviour
at an intersection area.

A discrete-event truck-shovel simulation model, referred to as Truck and Shovel
JaamSim Simulator (TSJSim), was developed to evaluate the Key Performance Indi-
cators (KPIs) of truck-shovel mining systems by considering a truck as an individual
traffic vehicle unit that dynamically interacts with other trucks in the system as well
as other elements of the entire traffic network.

2 Truck-Shovel Model with Arena and FlexSim Software

Arena is a discrete-event simulation software package developed by Rockwell
Automation [14]. The framework of Arena mainly consists of blocks called flowchart
modules along with data modules, allowing the truck-shovel mining system to be con-
verted to the following operational components: trucks, shovels, routes and queues.

The basic material flow considers the flowing Entities to be trucks which travel
between the loading sites and dumps without being destroyed or leaving the system.
The major mutually connected modules include: the Truck-allocation module, which
is responsible for assigning trucks under a fixed truck-allocation rule, the Shovel and
Dump modules which model loading and dumping procedures, the Route module,
which guides trucks to loaders and dumps, the Priority module, which manages the
intersection passing priority, and the MTBF/MTTR module, which is responsible for
operational delays that include non-scheduled equipment breakdowns.

In the Arena model, the truck assignments can be specified for each group of
Entities. After a truck fleet Resource is assigned to each group of Entities, these
Entities are sent to the dumps and then return to certain shovels according to the
Sequence data module. This means that the Entities keep circling within the system,
and the production data is generated by recording the accumulated the circle times
of the Entities in the system.

FlexSim is another discrete-event simulation software package developed by
FlexSim Software Products, Inc. [15], which provides an object-oriented environ-
ment for model development.

In the FlexSim model, the Flowitems are generated at the truck loading points
and disposed of at the dump sites. The main process is to transport the Flowitems
(ore and/or waste) with trucks from the loading sites to the dump sites, then send the
empty trucks back to the loading sites to repeat the cycle.

Based on the functionality, the truck-shovel simulation model in FlexSim includes
the following components: Truck Dispatcher, Truck, Loading Zone, Dump Zone and
States Recording objects. The Truck Dispatcher object manages the Task Sequences
of allocating Trucks to Loading Zones, initiating the Loading Zones to execute the
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loading task, allocating the Trucks to Dump Zones, initiating the Dump Zones to
execute the dumping task, and then reallocating the Trucks to the Loading Zones.

3 Limitations of Both Arena and FlexSim

Both Arena and FlexSim DES software are not designed specifically for the truck-
shovel mining operation, thus the need for modelling of operational components in the
truck-shovel mining system. The truck speed or hauling time is determined by truck
configurations, that include truck capacity, truck performance and retarder curves,
loading capacity, along with route parameters, such as, grade, rolling resistance
and the dynamic traffic conditions that include traffic intersection management and
route section speed control. Therefore, a more detailed model that considers the
actual operational constraints in the truck-shovel mining system is difficult, if not
impossible, to build using only the model units provided by Arena and FlexSim.
Furthermore, there are significant limitations with data communications among the
various model units in both Arena and FlexSim. The data communication depends
on the type of connection between the model units, for example, in FlexSim, the
information can only be shared between the two objects if they are connected via
Ports. However, access to information from all the operating units and the entire
traffic environment is necessary for a highly interactive and dynamic truck-shovel
mining system, especially when used for the purpose of truck-allocation.

4 Limitations of Commercial Truck-Shovel System
Simulation Software

Some commercial simulation software packages that are designed exclusively for
a truck-shovel mining system have been found to be not sophisticated enough for
the modelling of the dynamic and interactive aspects of a truck-shovel haulage net-
work system. For instance, TALPAC [16] can only model one single loading unit
at any one time; Caterpillar’s Fleet Production and Cost Analysis (FPC) simulator
supports only mean value inputs for the loading and dumping times. RPMGlobal’s
HAULSIM [17] integrates both the TALPAC equipment database and FlexSim’s
discrete-event simulation engine. HAULSIM includes multi-loader and truck anal-
ysis, full network travel time determination, modelling of congestion and queuing,
display of dashboard results and 3D visualisation. However, HAULSIM is a closed-
source commercial simulation software which does not allow users to create their
own modelling objects. Some important operational aspects, such as the bunching
effect and specific traffic management at an intersection, cannot be specified and
investigated using the functions provided by HAULSIM.
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5 Truck-Shovel System Development Using JaamSim

Java Animation Modelling and Simulation (JaamSim), is a free open-source discrete-
event simulation software package developed by Ausenco [18], that allows users to
create their own palettes of high-level objects for new applications. New objects can
be programmed with 3D graphics along with the Input Editor and Output Viewer and
can be dragged-and-dropped for direct usage. This is the key feature that distinguishes
JaamSim from commercial off-the-shelf simulation software packages.

JaamSim offers a highly effective simulation engine and allows users to estab-
lish their own high-level modelling objects for complex operating systems. With the
aid of JaamSim, the special functionality of the model objects based on the actual
truck-shovel operational elements and conditions can be developed, and a flexible
and customised truck-shovel mining system model can be built using these objects.
The loader, truck, dump, and the traffic environment, such as haul routes, traffic
intersections, can all be developed as model objects involving all the necessary oper-
ational constraints. The interactions between the objects for example, the interaction
between the individual trucks and the interaction between the hauling trucks and the
traffic environment, can be specified in detail.

OreGenerator > Queue
OreSink . Dump

OreEntity \ X Route

&

Truck

Routelntersection

Loader

| RouteSafeZone
Truck-allocation -} r—

Strategy

LoaderOperator

26f%e0

Fig. 1 TSJSim model objects



A Discrete-Event Simulation for a Truck-Shovel System 269

A flexible Truck-Shovel JaamSim Simulator (TSJSim) was developed for estimat-
ing the impact of operational elements on the performance of the truck-shovel system.
TSJSim considers the stochastic, dynamic and interactive features of a truck-shovel
network system. Twelve new objects shown in Fig. 1 was developed for modelling
a typical truck-shovel mining network system.

The main simulation model objects are OreGenerator, OreSink, OreEntity, Truck,
Loader, Dump, Queue, Route, Routelntersection, RouteSafeZone, Truck-allocation
Strategy and LoaderOperator.

The main functionality of each of these model objects is summarised in Table 1.

From a modelling point of view, the truck-shovel mining system was considered
as a material handling system in which the material mined (Entity) flows through
the system, with the trucks hauling this material in the system (between loaders and
dumps). The basic logic flow of the truck-shovel system model in TSJSim is shown
in Fig. 2.

The OreEntity object (material mined) is generated by the OreGenerator object,
and processed at the Loader object, and then transported by the Truck object from
the Loader object to the Dump object through the Route object. The travelling speed
of the Truck object is influenced by both the condition of the haul routes and the
operational factors of the truck. When the Truck object arrives at the Dump object,
the OreEntity object is sent to the OreSink object to be disposed of, and the empty
Truck object is sent back to the Loader object, completing a single truck cycle.

In TSJSim, the Route object is divided into various segments depending on the
combination of route variables which include grade, rolling resistance and traffic
infrastructure. Trucks travel along these segments of the hauling route with different
mean travelling speeds that are dependent on the particular segment. When bunching
occurs, depending on which of the segment(s) both the truck ahead (the slower truck)
and the truck behind (the faster truck) are within, three bunching possibilities are
considered in TSJSim, these being the three-stage bunching possibility, the two-
stage bunching possibility and the safe correction distance possibility [19].

| OreGenerator |----% Loader ---» Route ---3 Dump F---+  OreSink )
.""x_ ) | * 1 — S

Truck flow
—_—

Entity flow
—————

Fig. 2 Flow process chart of the truck-shovel system model in TSJSim
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Table 1 Functionality of TSJISim model objects
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Model objects Description Functionality
OreEntity Flows through the system as the Properties such as shape, weight,
material is transported by the Truck | can be assigned
OreGenerator Generates the OreEntity consistently | The first/inter arrival time and the
maximum amount of the OreEntity
can be set
OreSink Dispose of the OreEntity
Queue Works as a storage area for the Truck | Collects the information relating to
at the loading site or dump when the | the queuing trucks including the
Loader or the Dump is busy number of queuing trucks and
waiting times
Loader Receives the OreEntity from the 1. The loading time and loading
OreGenerator, processes it and amount can be specified according
sends it to the Truck when the Truck | to the capacity of the truck, the
is ready bucket capacity of the shovel, the
truck spotting time, fill factor, swell
factor, material density, and the
shovel working cycle time
2. Operators with different skills can
be assigned to the Loader to reflect
the varied performance of the
Loader
LoaderOperator | Influences the performance of the Working cycle time and working
Loader hours for each LoaderOperator can
be set
Dump Receives the OreEntity from the Dumping time varies according to
Truck the size of the Truck and the weight
assigned to the OreEntity
Truck Transports the OreEntity between 1. The speed of the Truck is set by
the Loader and the Dump on the considering the Truck’s
Route configurations, such as dimension,
weight, capacity, performance and
retarder curves, and the Route’s
condition including rolling
resistance and grade
2. The mutual influence of the Truck
has been considered. The bunching
effect resulting from mixed
equipment with varied capacities
has been considered
Route The track on which the Truck is The spatial coordinates of the Route,

hauling

the rolling resistance and the
coefficient of traction for each
segment can be specified

Routelntersection

The intersection of the routes

By combining the Routelntersection
and the Route, the traffic network
forms

(continued)
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Table 1 (continued)
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Model objects

Description

Functionality

RouteSafeZone

The abstract area that implements
the traffic management rules

1. The priority of the Route, namely
the main road for production, can be

set, so that the trucks hauling on the
main road have higher priority for
passing through the RouteSafeZone
area

2. The traffic rules for trucks to pass
through the intersection area can
also be specified, for instance, the
priority for heavy truck

Truck-allocation | Assigns the Truck under certain The truck-allocation rules are:

Strategy truck-allocation rules 1. Fixed truck assignment
2. Minimising truck waiting time
3. Minimising truck semi-cycle time
4. Minimising shovel production
requirement
& P3wWC
O 2
= 4
> S -8
&N i i P3EC
P1ED 540
pawp [~
>
ps & - »
. " . & RomDump
& PawD

Fig. 3 Active haul routes of Easter Ridge OB23/25 operation

6 A Truck-Shovel Network System Model

The developed TSJSim model was validated using field data collected by [20] at a
truck-shovel mining operation in Western Australia. The mining operation known as
Easter Ridge OB23/25 consists of four loading sites, namely S4C, P3WC, P3EC and
P4, and four dumping sites, namely PIED, P3WD, PAWD and ROM Dump (Fig. 3).
The Liebherr 9250 excavator works at P3WC, two Hitachi 1900BE excavators
work at S4C and P3EC and the CAT 993 wheel loader works at P4. Four trucks
(CAT 785C) are assigned to route P3WC—ROM Dump; four trucks (CAT 789C) to
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Table 2 Truck inputs for CAT 785C and 789C
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Truck type Empty weight | Capacity (kg) | Length (m) Width (m) Height (m)
(kg)
CAT 785C 102,150 147,330 11.02 6.64 4.98
CAT 789C 135,670 181,845 12.13 797 5.69
Table 3 Distributions of Loader type Distribution (s)
loading times
Liebherr 9250 Normal (122.35, 18.08)

Table 4 Distributions of
dumping times

route S4C—P1ED; four trucks (CAT 785C) to route PEC—P3WD; one truck (CAT

Hitachi 1900BE (loading
785C)

LogNormal (5.19, 0.16)

Hitachi 1900BE (loading
789C)

Normal (250.6, 33.14)

CAT 993 Wheel Loader LogNormal (5.73, 0.12)
(loading 785C)

Truck type Distribution (s)

CAT 785C Normal (35.77, 11.02)
CAT 789C Normal (46.88, 11.97)

785C) to route PA—ROM Dump and one truck (CAT 785C) to PA—P4WD.
The main input parameters associated with trucks are provided in Table 2.

The loading times of the four shovels and the dumping times of the trucks are
summarised in Tables 3 and 4, respectively. The bucket capacity of the Liebherr 9250

is 15 m? and the capacity of the Hitachi 1900BE and the CAT 993 is 12 m?.
The assumptions for the model implementation were:

— the bunching effect is considered

run

each truck is assigned to a fixed route (fixed truck-allocation mode)

the simulation model runs for 11 h representing one shift during the simulation

— the experiment comprises 100 simulation replications.
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Table 5 Case 1: Truck-shovel network shift simulation results

Loader Fleet size | Ave Ave cycle | Truck Shovel Shovel MF

waiting time (s) utilisation | utilisation | produc-

time (s) (%) (%) tion

®

Shovel 1 |7 51 867 94 99 51,656 1.04
Shovel 2 |8 119 1492 92 99 36,253 1.07
Shovel 3 |8 103 1455 93 99 34,005 1.08
Shovel4 |5 87 918 91 99 32,519 1.08

7 Case Study

7.1 Case 1: Over-Trucking to Maximise Production
at the Expense of OPEX

If the KPI for the entire truck-shovel network system is tonnes of materials moved,
the focus for the operation is to maximise total production across the entire fleet of
shovels and trucks. The following two production constraints can be set:

1. The utilisation of each shovel above 95%;
2. The truck utilisation in the range of 90-95%.

Table 5 shows the truck fleets configuration and the associated performance
parameters for the entire truck-shovel network system using these production con-
straints. There are 28 trucks serving the system in which 7 trucks are allocated to
Shovel 1, 8 trucks to Shovel 2, 8 trucks to Shovel 3 and 5 trucks to Shovel 4. The
match factor for each fleet is close to 1, the balance point which implies that the
shovel and the associated trucks are well matched. The production of each shovel in
the system is maximised as indicated by the full utilisation of the shovel and also the
truck utilisation is controlled. The system production per shift (11 h) is 154,433 t.

Assuming that the cost for a mining dump truck to operate is AU$ 400 per hour
and an excavator AU$ 800 per hour [21]. The total queuing time for all the trucks
is 83,381 s or 23.16 h, and the total idle time for all the loaders is 1430 s or nearly
0.40 h. In this case, the total OPEX caused by truck queuing and the loader waiting
is AU$ 9582 per shift at approximately 6 cents per tonne.
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7.2 Case 2: Slightly Under Trucking to Reduce OPEX
Savings at the Cost of Production

If the KPI for the truck-shovel network system is to maximise truck utilisation and
also the focus of operational planning is to reduce OPEX by slightly under trucking,
then the following two production constraints can be imposed:

1. The utilisation of each shovel at around 90%;
2. The truck utilisation above 95%.

Table 6 shows the simulation results. In this case, the truck fleet size is 24 with 6
trucks assigned to Shovel 1, 7 trucks to Shovel 2, 7 trucks to Shovel 3 and 4 trucks
to Shovel 4. As the shovel utilisation decreases, the total shift production is reduced
to 138,498 tonnes.

The total queuing time for all the trucks is reduced to 26,758 s or 7.43 h, with the
total idle time for all the loaders increasing to 17,144 s or 4.76 h. The total OPEX
caused by truck queuing and loader waiting is AU$ 6783 per shift at approximately
5 cents per tonne. Compared with Case 1, AU$ 2799 per shift (1.3 cent per tonne)
is saved from OPEX. In Case 2, the fleet size is reduced to 24. Suppose the capital
cost of each saved truck is approximately AU$ 1,650,000 [22] and the serving time
of the truck fleet is 20 years, without considering depreciation, the cost saved from
CAPEX is AUS$ 414 per shift at approximately 0.3 cent per tonne. Therefore, the
total cost saved from OPEX and CAPEX, compared with Case 1, is AU$ 3214 per
shift at 1.6 cent per tonne.

Table 6 Case 2: Truck-shovel network shift simulation results

Loader Fleet size | Ave Ave cycle | Truck Shovel Shovel MF

waiting time (s) utilisation | utilisation | produc-

time (s) (%) (%) tion

®

Shovel 1 |6 19 835 98 88 46,041 0.89
Shovel 2 |7 40 1417 97 92 33,386 0.93
Shovel 3 |7 45 1398 97 92 31,068 0.94
Shovel 4 |4 24 859 97 85 28,003 0.86
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8 Conclusion

This paper presents a developed discrete-event truck-shovel simulation model,
referred to as Truck and Shovel JaamSim Simulator (TSJSim), based on a micro-
scopic traffic and truck-allocation approach. The TSJSim simulation model may be
used to evaluate the Key Performance Indicators (KPIs) of the truck-shovel mining
system in an open-pit mine. TSJSim considers a truck as an individual traffic vehi-
cle unit that dynamically interacts with other trucks in the system as well as other
elements of the traffic network. The developed model provides the capability for eval-
uating the impacts of bunching, intersection traffic management and truck-allocation
strategies on a surface mine truck-shovel system. The model can also be used to
estimate the optimal truck fleet size for the entire truck-shovel network system.
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Increasing the Productivity )
of the Transport Fleet by Reducing L
the Carryback Load

W. Felsch Jr., M. das Gracas Silva, C. Arroyo, M. Vinicius Baeta,
A. C. Souza, R. Fonseca and A. Curi

1 Introduction

The oscillations in the mining market together with constant changes in the productive
process of the companies make it increasingly necessary to apply improvement works
that reduce the operational cost and increase the productivity of the organizations.

The transport operation in mining can contribute about 52% of the total production
costs, depending on the method of mining adopted and type of ore mined. Therefore,
the implementation of an improvement in this step implies a significant impact on
the final cost of production [1].

The mine haulage truck selection was based on the following criteria [2]:

— loading tool match required for mining ore and waste,
— availability of capital to and delivery dates,

— productivity rate to achieve the mine plan,

— pit geometry and haulage routes.

In open-pit mining, many parameters can affect the efficiency of the fleet such as
(3, 4]:

— mine plan and mine layout

speed, payload and cycle time

— tire wear and rolling resistance

age and maintenance of the vehicles
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— dump site design
— idle time
— engine operating parameters and transmission shift patterns.

The average load carried has a great impact on the productivity of transport equip-
ment. The retention of material in the trucks’ bed is a problem that directly affects the
productive potential of the equipment because it limits the mass transported in each
cycle, besides increasing costs with fuel consumption. These materials tend to accu-
mulate and increase in volume with each loading and unloading performed, which
means that after a few cycles, there is a considerable loss of volume transported.

This problem known as “Carry Back” is characterized by materials that become
agglutinated in the trucks’ bed after unloading the material from the bucket, as shown
in Fig. 1. This retention occurs mainly due to the humidity of the material transported
associated with high alumina and manganese grade.

High humidity increases the possibility of aggregate particles, resulting in an
increase in the load trapped in the trucks’ bed, among other operational factors that
make mining difficult [5].

The lithotypes that possess the minerals aluminum and manganese have
hydrophilic characteristics, that is, minerals with greater affinities in the absorption
of water, thus making minerals with greater concentration of humidity.

Aluminum is the most abundant metal element on earth, being the most modern of
common metals, having been isolated in 1825 and introduced to the public in 1855.
Its lack of knowledge over time is due to the fact that, unlike other metallic elements
(copper or iron), it does not occur naturally in its metallic form, always existing in
combination with other elements, mainly oxygen, with which forms an extremely
hard oxide, known as alumina [6].

The article was developed at the “Casa da Pedra” mine, located in the state of
Minas Gerais, Brazil. The method of mining is open-pit mining, requiring transport
by trucks of both ore and waste. The trucks used in mining have a transportation
capacity of 240 metric tons.

Fig. 1 Examples of carryback load in trucks
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There are some solutions in the market aiming to reduce the carryback load,
most of them liners made exclusively for truck bed. Among the liners identified, the
following stand out: polyethylene-based liners; polyurea-based liners; rubber liners.
These liners have several positive and negative aspects in their use. Its viability
depends on factors such as type of material transported and dimension of the trucks.

The solution used in the present work consists of the implantation of the technol-
ogy of heating of the truck floor bed. A comparative analysis was performed between
two similar equipment, applied in the same operational conditions, measuring the
carryback of both, in two different period. The duration of first period was 7 days,
having a requirement that the trucks must be dispatched to the same mining front.
The duration of the second period was 30 days, and the trucks were dispatched as if
running through normal operation, there were no fixed routes.

Carryback load information is identified through the embedded telemetry system.
The concept of telemetry can be defined by the transfer and use of data originated
from a network of remote equipment, with the purpose of monitoring, measurement,
and control. Communication can be done via fixed network or wireless network.

For the implementation of the monitoring of the equipment through the telemetry,
it is necessary that there are specific sensors, correctly installed; persons capable of
analyzing parameters and systematic routines of analysis.

To maximize the benefits of using information technology, the mining industry
must standardize data formats and protocols for unrestricted data exchange. The
adoption of such rules facilitates the provision of real-time data to support managerial
decision [7].

2 Objective

The objective of this work is the reduction of operational costs through the increase

of productivity and effective use of the haulage fleet. The approach used will be to

reduce the volume of carryback load using heated truck bed system. The system

disaggregates the material that is hang-up, letting the floor bed without retained

material. The reduction of the aggregate material results in the reduction of floor bed

cleaning events, generating an increase in the effective use of the haulage fleet.
Secondary objectives include:

reduction of diesel oil consumption

agility of material unloading, reducing dumping time

— reduction of the number of occurrences of floor bed cleaning

extension in the useful life of the beds due to the reduction of the impacts of
auxiliary machines performing cleaning.
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(a) (b)

Fig. 2 Illustration of gas impact locations (a) and thermal analysis of the active system (b)

3 Methodology

The methodology used to reduce the retention of material in the trucks’ bed is to use
the exhaust gases themselves from the combustion of the diesel engine to heat the
internal galleries of the floor bed. Exhaust gases run through the entire bed, until they
are exhausted into the atmosphere at the back of it. These gases are not harmful to
the useful life of the bed, because they have constant flow, and due to the favorable
climate in the region do not condense and do not generate sulfuric acid. The heated
bed is designed not to generate backpressure in the engine. With the application of
this system of piping and redirection of the gases, the bed will always remain warm
and, consequently, the material will not clump [8].

The exhaust system makes a noise as the dump bed is lifted. Noise measurement
was performed, resulting in the overall mean of 63.5 dB in the dumping period,
which lasts approximately 45 s. The maximum level allowed by Brazilian legislation
is 85 dB.

The heating kit will be applied to Caterpillar model 793F trucks with MSDII
body (Mine-specific Design). This lightweight body has great use in mining activities
around the world [9]. At the “Casa de Pedra” mine, there are 31 trucks in operation,
with 8 trucks with MSDII type body. Figure 2a illustrates the locations where the
gases impact on the trucks’ bed, and Fig. 2b shows the thermal analysis of the active
system.

Comparative operational tests were performed with two identical trucks. The
equipment used in the test were:

— CM-7924—Caterpillar Model 793F (heated system installed)
— CM-7927—Caterpillar model 793F (without heated system).

As assumptions adopted in the test, the following adjustments were made to the
equipment:

— balances and suspensions check
— height and equalization of the adjusted suspensions (10” in the front suspensions
and 8” in the rear suspensions)
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— cleaning the floor bed
— fuel tank full
— allocation of the trucks for loading on the same mining fronts.

The first test was conducted over a period of seven consecutive days, with trucks
allocated on the same operational routes through the Intellimine fleet management
system. For the second test, the CM-7924 truck was maintained with the heated
body system and its results were followed up by another 30 days of operation. The
allocations related to this test were dynamic, that is, the optimization algorithm of
the Intellimine system was used to direct the equipment to the loading and dumping
places.

The type of material transported has great relevance in the test results. High
alumina and manganese lithotypes have a property that facilitates the bonding of
material in the truck bed along with finer, drier materials. In order to stratify the
impact of these materials, a differentiated analysis criterion was proposed. Materials
with alumina content above 2% or manganese content above 1% were classified as
materials with a high degree of retention impact.

Table 1 shows the list of geological lithotypes contained in the mining.

Figure 3 identifies the lithotypes present in “Casa de Pedra” mine with their
respective alumina and manganese content. According to stipulated classification,
the lithotypes (CGM, ARG, CEL, IBG, and IBM) were classified as high impact
materials in agglutination of transported mass.

The database of the fleet management system (electronic dispatch) was used to
store the test data. This information is handled through Structured Query Language
(SQL) queries in the Database Management System (DBMS) and displayed through
the Report Service (reporting platform integrated with SQL tools and components)
[10].

After this treatment, several information is collected, being the most relevant for
this work: Haulage mass (t); Average load (t); Number of cycles; material moved
lithotype; equipment used for transportation, among others.

Table 1 Geological lithotypes mapped in the “Casa de Pedra” mine

Lithotypes List

CGM Ore canga IBS Soft siliceous
itabirite

ARG Clay HBA Soft hematite

CEL Colluvium ICC Hard carbonated
itabirite

IBG Soft goethite itabirite HCP Hard hematite

IBM Soft manganiferous itabirite ICS Hard siliceous
itabirite

IBR Sift high-grade itabirite RBIB Soft intrusive basic
rock
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Fig. 3 Average global content of lithotypes related to Alumina and manganese

Table 2 Result of the first operational test for the 7-day operating period

Truck Number of | Haulage Carryback | % Average % high
cycles mass (t) load (t) Carryback | carryback | impact
load load (t) material
CM-7924 | 142 34.187 117 0.34 0.8 28
CM-7927 | 247 58.989 1.319 224 53 34
4 Results

The first operational test carried out (7 days of operation) showed that the truck with
the installed system carried 85% less carryback load (volume) compared to the truck
that does not have the system. During the test, the CM-7924 truck carried the average
carryback load value of 0.8 tons per cycle, while the CM-7927 carried an average
value of 5.3 tons per cycle. This information is shown in Table 2. The difference
in the number of cycles performed between the equipment was due to corrective
maintenance in the CM-7924.

The second test lasted 30 days and generated similar results to the initial test. It
was verified that the CM-7924 truck carried 75% lower carryback load compared to
CM-7927. The highlight was the identical volume of high impact material transported
by trucks through dynamic allocations. The results can be verified in Table 3.

The results of the two test periods are shown in Fig. 4. The CM-7924 truck proved
to be more productive in both scenarios.

A secondary analysis was carried out, regarding the carryback load values of each
geological lithotype transported. The CM-7924 was more productive in the trans-
port of all types of materials, even in materials more adhered to the bed (lithotypes
classified with high impact of agglutination), according to Fig. 5.
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Table 3 Result of the second operational test for the 30-day operating period
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Truck Number of | Haulage Carryback | % Average % high
cycles mass (t) load (t) Carryback | carryback |impact
load load (t) material
CM-7924 | 750 211.192 821 0.39 1.1 21
CM-7927 | 867 223.063 3.846 1.72 4.4 21
Analisys: Carry back (t) X High Impact Material (%)
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Fig. 4 Consolidated result for carryback and percentage of high impact material
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Gains from reduction of bed floor cleaning and driving to the cleanup site may
result in a 0.76% increase in the use of the transportation fleet.

5 Discussion

Production processes are constantly being optimized with the aid of embedded elec-
tronics, information technology, and communication systems for real-time informa-
tion. Remote data transmission technology is a resource of fundamental importance
for the mineral sector, since with the economic advance, online communication is
an essential factor for strategic decision making and reduction of operational costs.

The accounting of the carryback load through the embedded telemetry system
provides the possibility of seeking improvements in the transportation process, with
the quantification of the financial gains and viability of the projects.

Material with low-grade minerals retained in truck beds may disintegrate and
cause ore contamination as they are dumped to the plants, increasing their dilution.

Several factors can influence the accumulation of carryback load in the floor bed
of the trucks of several fleets:

— Rainfall indices

— Type of material loaded and transported

— Dimension of the bed

— Fragmentation index of the material transported

— Type of allocation of the equipment for the loading fronts.

6 Conclusion

Heated bed floor technology was tested on a Caterpillar 793F truck in two distinct
periods (7 days and 30 days). The truck tested transported a lower mean carryback
volume by 85% on the first test and 75% on the subsequent test compared to other
similar sized equipment.

The final result showed that deployment of the technology throughout the transport
fleet can result in a 1.8% increase in productivity and 0.76% in the actual use of the
equipment.

Among the different geological lithotypes present in the mining, the tests were also
favorable to the reduction of the carryback load transported for all types of materials,
including those more adherent to the bed (materials classified as high impact).

In addition to improved productivity and fleet utilization, benefits such as
increased physical availability of trucks can be identified by extending truck beds
lifespan.



Increasing the Productivity of the Transport Fleet by Reducing ... 285

The noise emitted by the system does not cause hearing damage to the operators.

It can be seen that there is no exposure to levels above 85 dB (maximum level allowed
by Brazilian legislation).
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for their support.
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Environmental Comparison of Different )
Transportation Systems—Truck-Shovel oo
and IPCCs—In Open-Pit Mines

by System Dynamic Modeling

H. Abbaspour and C. Drebenstedt

1 Introduction

Nowadays, environmental problems of mining activities became an important part
such that mine design without considering environmental concerns cannot be accept-
able. These environmental concerns are normally defined based on laws that will
finally result in a “sustainable design”, which not only economic, but also environ-
mental issues are covered [1-4]. The transportation system of any mining project
is counted as one of the most crucial sections of the mine that is responsible for
a major part of environmental condition in mine sites. Trucks, as the conventional
transportation systems in mines, are producing a remarkable amount of emissions
and dusts [5-8]. Accordingly, introducing a substitutional transportation system that
can reduce these effects is highly in demand. In-Pit Crushing and Conveying (IPCC)
systems in which the crusher station is located in the pit and crushed ore or waste
transferred to its related destination through the conveyor belt, was introduced in
1956 in Germany [9]. It is used as an alternative to the conventional transportation
system (Truck-Shovel system) in surface mining operations [10]. These systems can
reduce the environmental effects of transportation, especially by using electricity
instead of burning fossil fuels for conveying materials.

Environmental-friendly feature of IPCC systems attracted a few researches to
focus on this issue. One of the focusing points was studying the greenhouse gas emis-
sion from IPCC systems [11]. The researchers in that study estimated the reduction
of greenhouse gas generation by using IPCC systems. Based on a life cycle assess-
ment study, it was shown that using IPCC systems produced 4-22% less greenhouse
gases, which the former amount is related to the electricity generated by coal and
the latter is electricity generated by natural gas [11]. They also mentioned that this
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emission is highly dependent on the transportation distances and annual capacity of
the system. In a more or less similar research, the difference of trucks and in-pit
crushing and conveying system in the case of using energy and CO, emission was
investigated [12]. Some other researchers examined the environmental benefits of
utilizing conveyor belt against trucks for transferring ore in a gold open-pit mine
through the life cycle assessment [13]. They showed that using trucks would result
in 300% more potential of acid rain. They also demonstrated that using natural gas
instead of coal for producing electricity could reduce the environmental impact by
using conveyor belts.

Based on the literature, the concentration was only in the evaluation of just one
transportation system, Truck-Shovel or IPCC systems, and a comparison of these
systems was not thoroughly investigated. On the other hand, most of these stud-
ies are statistical, which do not consider the time during evaluation. Accordingly,
this research presents an investigation about the efficiency of different transportation
systems in an environmental point of view in a frame of dynamic behavior. Hence,
a dynamic model of environmental factors for these systems by system dynamic
modeling was built and compared together to choose the one with the highest envi-
ronmental index.

2 Method

2.1 General Description of System Dynamic Modeling

System Dynamics is a method for modeling, simulating, and analyzing complicated
systems to evaluate changes through the time [14]. This method was first developed in
the 1950s in order to assist managers to enhance their understanding of the processes.
Nowadays, system dynamics is used in all sectors for policy analysis and design.
In contrast to statistical modeling, which time has no role in simulation, system
dynamics modeling is dealing with the dynamic status of systems, which is the
behavior of systems through the time. In system dynamics modeling, the modelers
try to recognize the patterns of behavior expressed by important system variables,
and then construct a model that can simulate the patterns. When a model has this
ability, it can be used as a pilot for testing different scenarios [15]. Generally, there are
two different types of system dynamic models: “open systems”, which the outputs
do not have any effect on their inputs, in contrast with “closed systems” where the
outputs can control the inputs. Every system dynamic model consists of constants,
auxiliaries, stocks, flows, and feedbacks. They are briefly explained in the following
sections.
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2.2 Constants and Auxiliaries

All the parameters that form a system dynamic model are divided into two different
groups: constants or auxiliaries. Constants are permanently fixed along the system
processing, while auxiliaries are defined as an equation among different constants,
which might change during system processing [15].

2.3 Stocks and Flows

The main variables in system dynamic are known as stocks and flows. Stocks show
results of accumulations over time. Their values are “level”, which are also called
“states” as they integrally represent the state of the system at any time [16]. Some
examples of stock could be number of injuries, fatalities, lost time injuries, accidents,
etc. Flows directly flow into and out of the stocks, which lead to changing their
levels. They are representative of the “rate of change” in stocks [16]. Emission rate,
particulate matter rate, etc., are examples of flows. The unit of the rates must be
defined as quantity/time. This feature fulfills the possibility of accumulation of the
stocks during the time. The graphical representation of stock and flow diagram is as
Fig. 1. The general equation of any stock—flow diagram can be described as

d(Stock)

T Inflow(t) — Outflow(t) (1)

2.4 Feedback and Feedback Loops

Although stocks and flows are both necessary and sufficient for generating dynamic
behavior, they are not the only components of system dynamics. In a more precise
description, the stocks and flows in real-world systems, that may get feedback from
each other, are part of a feedback loop. These feedback loops could be consisted
of different feedbacks and occasionally connected together via nonlinear couplings
that often cause counterintuitive behavior [15]. Figure 2 shows a simple stock—flow
system with a feedback that connects stock to inflow.

Generally, closed systems are controlled by positive or negative feedback loops.
Positive loops depict “self-reinforcing” processes, which an action creates a result

Lo v - Stock = -

iy B )
Inflow | I Qutflow e

Fig. 1 A schematic view of a simple stock and flow diagram
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Fig. 2 Feedback loop in a stock—flow diagram

that generates more of the action, and hence more of the result. Positive feedback
loop processes make systems unstable and force them to change their current state.
Accordingly, they are responsible for the growth or decline of systems [15]. On the
other hand, negative feedback loops, define “goal-seeking” processes that generate
actions aimed at moving a system toward, or keeping a system in a desired state.
In general, negative feedback loop processes stabilize systems, although they may
occasionally destabilize them by causing them to oscillate [15].

2.5 The Concept of In-Pit Crushing and Conveying (IPCC)
Systems

In Truck-Shovel system in open-pit mines, the material is transferred from inside the
pit to the destinations outside, which are crusher station for ore and waste dump for
waste. However, in the In-Pit Crushing and Conveying (IPCC) systems, the crusher
station is located in the pit and crushed ore or waste transferred to its related destina-
tion through the conveyor belt. The idea of using this system was introduced in 1956
in Germany [9]. It was used as an alternative to the conventional transportation sys-
tem (Truck-Shovel system) in surface mining operations [10]. It generally resolves
many deficits of Truck-Shovel system, e.g., reducing operating costs [17] mainly
because of the reduction of the labor force and fuel consumption [18]. In addition, in
safety point of view, conveyor belts (as one of the important parts of IPCCs) showed
lower quantity of accidents, injuries, and fatalities [19]. Despite of these advantages,
there are still some particular attitudes to its flexibility [20], reliability, and efficiency
[21].

Generally, this system is categorized into four different types: (1) Fixed In-Pit
Crushing and Conveying (FIPCC) system, in which the location of the crusher is
fixed along the mine’s life. Commonly, the position of this type of IPCC systems
is near the pit rim or inside, which is not affected by mining operations. (2) Semi-
Fixed In-Pit Crushing and Conveying (SFIPCC) system is located in a strategic
junction point in the pit and mostly is fed by the mining trucks. Its relocation needs
disassembly of the entire crusher station into several parts or multiple modules. (3)
Semi-Mobile In-Pit Crushing and Conveying (SMIPCC) system, which is usually
located at the operational level. It is possible to be fed through trucks or loaders from



Environmental Comparison of Different Transportation ... 291

different loading points. (4) Fully Mobile In-Pit Crushing and Conveying (FMIPCC)
system, which can continuously change its location and benefit from an integrated
transportation mechanism [22].

The common feature of FIPCC, FMIPCC, and SMIPCC is that trucks perform
feeding and conveyor belt transfers crushed material outside the pit. In fact, these
systems are a combination of two transporting equipment: trucks and conveyor belt.
On the other hand, shovels directly feed FMIPCC and the conveyor belt is responsible
for transporting crushed material.

3 Modeling in System Dynamic

The primary step in building a system dynamic model is to define its constants and
variables, which determine the system behavior. Unlike constants, which are fixed
during the simulation, variables including auxiliaries, flows, and stocks can change
during simulation. In addition, they interactively influence each other and the whole
system.

In spite of this fact that numerous items can be described as influencing factors
on environmental condition, however, more relevant and measurable factors in the
transportation system are considered. Accordingly, the following items are taken into
account for building the system dynamic model and measuring the environmental
index of the system:

— total emissions (CO», SO,, and NOy)
— total particulate matter (PM; 5, PM;o, and PM3)
— total water consumption.

The total emissions, particulate matter, and water consumption comprise the total
emissions, particulate matter, and water consumption in trucks and conveyor belt. A
general view of the system dynamic built for defining the environmental index of the
transportation system of an open-pit mine is shown in Fig. 3. Each part of this model
is shown in Figs. 4 through 6, which are total emissions, total particulate matters,
and total water consumption, respectively.

3.1 Total Emissions (CO;, SO», and NO,)

Trucks and conveyor belts are the most important transportation equipments in Truck-
Shovel and IPCC systems, respectively, produce different kind of emissions while
operating. Trucks and conveyor belts generate emissions through burning fossil fuels
and electricity consumption generated from different sources of energy (e.g., coal,
oil, peat, and natural gas). This introduces truck as a direct source of emissions and
the conveyor belt as an indirect source of emission. The most significant and well-
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Fig. 3 System dynamic model for environmental index of transportation system in an open-pit
mine
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Fig. 4 System dynamic model for total emissions

known emissions are considered as CO,, SO,, and NOscattered into the surroundin.
Therefore, in this study, these emissions are evaluated.

Emission factor is one of the most important items that determine the quantity of
emission; however, it can be different from one place to another [23-25]. Accordingly,
one of the main tasks is to determine these factors. In this research, it is assumed
that lignite is burnt in the power plant to produce electricity. In addition, the fuel of
trucks is considered as diesel. With these assumptions, the related emission factors
for CO,, SO,, and NOy are calculated according to Egs. 3 through 5.
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Table 1 Emission factors of CO;, SO, and NOy in conveyor belts

Emission factor Equation/Quantity Unit References
CO, 0.36 kg/kWh [29]
SO, SO; coefficient x kg/t [30]
Weight percent of
sulfur in fuel
NOy 6.81 kg/t [30]

3.1.1 Total Emissions of Conveyor Belt

For calculating the emissions from the conveyor belt, it is necessary to quantify the
burnt fuel for producing electricity. Therefore, the concepts of heat rate and heat
content need to be introduced. Heat rate is the energy consumed by a power plant or
an electrical generator to produce one kilowatt-hour (kWh) of electricity [26] while
heat content means how much energy will be produced by burning a specific amount
of fuel. The former is expressed in Btu/kWh and the latter is defined in Btu/t. Hence,
Eq. (2) for calculating the amount of burnt fuel is defined

Heat rat t
Burnt fuel = — - 12¢ )
Heat content \ kWh

In this model, it is assumed that coal is burnt in power plants for producing
electricity. Hence, the quantity of heat rate and heat content would be 10,059 Btu/kWh
and 21.258 MBtu/t, respectively [27, 28]. Regarding the emission factors of CO,,
SO,, and NOy (Table 1), Egs. (3), (4), and (5) for the determination of CO,, SO,,
and NOy can be defined as

CO; emission = CO, emission factor x Conveyor power
x Number of working days in a year
x Working hours per day 3)
SO, emission = Burnt fuel x SO, emission factor
x Conveyor power x Number of working days in a year
x Working hours per day “)
NO, emission = Burnt fuel x NO, emission factor
x Conveyor power x Number of working days in a year
x Working hours per day (5)
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Table 2 Emission factors of CO;, SO», and NOy in trucks

Emission factor Quantity Unit References
CO, 2.622 kg/L [31]
SO, 247 %1073 kg/L [31]
NOx 0.034 kg/L [32]

3.1.2 Total Emissions of Trucks

The emission of trucks is originated from burning fuels in trucks’ engines. There-
fore, in contrast with the conveyor belt, which indirectly considered as an agent of
emission, trucks are directly responsible for emissions and pollution. As the first step
for evaluating emissions from trucks, it is required to determine the emission factors
of CO;,, SO,, and NOy. In the case of CO; and SO,, Eqs. (6) and (7) are introduced
based on the content of carbon and sulfur in diesel fuel [31]

(44/12) x Oxidization factor (CO,) x Carbon content of fuel x Fuel mass (6)
(64/32) x Oxidization factor (SO;) x Sulfur content of fuel x Fuel mass (7)

“44/12” and “64/32” represent the portion of the molecular weight of CO, and
SO, to the molecular weight of carbon and sulfur, respectively. Oxidization factors
depict that how much percent of carbon or sulfur are changed to CO, and SO, after
burning, respectively. In fact, in a complete combustion, 100% of carbon and sulfur
are burnt. However, in most cases, it is not happening and a percentage of carbon
and sulfur remain unburnt. Therefore, the oxidization factors for CO, and SO, in
this study is considered as 99 and 98%. The carbon and sulfur content of fuels are
different from one to another. However, for diesel fuel, the carbon and sulfur content
of fuels are generally 86% and 15 ppm of the fuel mass, respectively. Fuel mass
(diesel mass) is also set as 840 (g/L). Table 2 shows a summary of emission factors
of diesel fuel in trucks. By multiplying the emission factors of CO,, SO,, and NOy
in total fuel consumption of trucks, their relevant emissions will be determined. The
total emissions of the truck will be the sum of the emissions of CO,, SO,, and NOy.

3.2 Total Particulate Matters (PM3 5, PM 9, and PM3y)

Particulate Matter (PM) is a definition for a mixture of solid and liquid particles that
are scattered into the surrounding air [33]. There are different forms of classification
for particulate matter; however, the most famous classification forms are categorizing
by their physical size. Particle size is generally based on the aerodynamic diameter
[33]. The abbreviation PMy denotes all particles with a diameter less than x microm-



296 H. Abbaspour and C. Drebenstedt

Table 3 Emission factors of particulate matter in transition points of conveyor belt

PMy Quantity (g/t) References
PM> 5 6.5x107° [34]
PMo 23x1073 [34]
PM3 7% 1073 [34]

eters (um). The most common diameter considered in research is PM, 5, PM;, and
PM3.

In transportation system of a mine, various sources of particulate matters can be
recognized. For instance, the transition points between conveyor sets (chutes) and
wind erosion in transferring material by conveyor belt and the particulate matters from
haul roads and wind erosion in moving material by trucks, are the main sources.

3.2.1 Particulate Matter Generated from the Conveyor Belt

In the crushing process, different factors can affect the emission of particulate matters
such as rock type (ore or waste type), feed size and distribution, moisture content, out-
put rate, crusher type, size reduction ratio, and fines content [34]. Different emission
factors of particulate matter are provided in any steps of crushing through various
references [34]. Since crusher for all the transportation systems is assumed the same,
the transition points of conveyor belt (chutes) as the most important source of gener-
ating particulate matters are merely considered. These emission factors are shown in
Table 3. These quantities can be measured and modified for any project. Equation (8)
can be set for calculating the total amount of particulate matter 2.5, 10, and 30 based
on the production rate

Emission of (PM; s, PMo, PM3p) = Number of conveyor sets x Production per year
x Emission factor (PM, 5, PMo, PM3y)  (8)

3.2.2 Particulate Matter Generated from Trucks

Generally, in mine site, trucks are moving on roads and ramps that are unpaved.
This causes of dust generation in a way that when a truck travel on the road, surface
materials are pulverized due to the forces of the trucks’ wheel. Consequently, these
powder materials lifted and dropped continuously by rolling wheels. In addition, by
passing truck, a turbulent is generated behind it, which worsens this situation [35].
As previously described, emission factor is the most important part of calculating
the particulate matter. For trucks traveling on unpaved surfaces at industrial sites, the
emission factor (9) is defined [35] as
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Table 4 The constant of emission factor of particulate matters from trucks in industrial roads (EPA

1995)
Constant PM; 5 PM,o PM3,
k (Ib/VMT) 0.15 L5 49
A 0.9 0.9 0.7
B 0.45 0.45 0.45
.. s\a/ W\’
Emission factor of PM, = k(ﬁ) <?) 9)

where s is surface material silt content (%), W is mean vehicle weight (t), k is the
emitted particulate matter in pound per vehicle mile traveled' (Ib/VMT), and a and
b are constants (Table 4).

Based on the definition of PM,, PMj3 consisted of both PM ;¢ and PM, 5. Accord-
ingly, the total emission of particulate matter of trucks can be estimated from Eq. (10)

Total PM = Emission factor PM3y x Number of cycles

x Total truck traveling distance x 2 (10)

3.3 Total Water Consumption

In the transportation system of a mine, there are different means of water consump-

tion. In trucks and conveyor belts, water is mostly consumed for dust suppression

caused by trucks movement and in transition points at conveyor belts. However,

there are other sources of water consumption, e.g., the cooling system of trucks and

washing. The water consumption in this model is considered as the total water is

consumed for particulate matter suppression caused by trucks and conveyor belts.
The control efficiency of spraying water is as Eq. 11 [36]:

c:100—< (11)

1

O.Sxpxdxt)

where p is potential average hourly daytime evaporation rate (mm/h), d is the average
hourly daytime traffic rate (vehicles/h), i is the application intensity of water (lit/m?),
and 7 represents the time between watering applications (h). The goal is to find the
water intensity (i) with the assumption of a road width of 30 m. In the model, c, p,
and ¢ are set as 75%, 0.28 mm/h, and 0.5 h, respectively. For suppression of dust
in transition points of conveyor belt, a rate of 20 L per minute of water sprayed is

IVMT is calculated by adding up all the miles driven by all the cars and trucks on all the roadways
in a region.
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considered. Hence, the water needed in conveyor belt in order to suppress the dust
is calculated from Eq. (12)

Water sprayed(lit/min) x Number of working days in a year

x Working hours per day x Number of conveyor sets x 60 (12)

3.4 Environmental Index

As it mentioned before, the environmental factors that are used for defining the envi-
ronmental index of the transportation system are total emissions, total particulate
matter, and total water consumption. The relation of the environmental index with
each of these factors is inversely proportional, in which the higher emissions, partic-
ulate matter, and water consumption resulted in worst environmental situation and
the environmental index would be decreased. Accordingly, the Environmental Index
(EI) can be defined as Eq. (13)

106
El = — . (13)
Total emissions + Total PMs + Total water consumption

The environment index is defined as 100 at the start of the project and it would
be reduced by progressing the project through the years because of the expansion of
the transportation system.

4 Results and Discussion

A hypothetical copper mine with a reserve of 700 million tonnes was simulated
during its life. Based on Taylor’s method [37], the mine’s life and annual production
calculated by the Egs. (14) and (15), respectively.

T = 0.2(ore reserve)’ (14)

Production per Year = 5(ore reserve)o‘75 (15)

Accordingly, the mine’s life and production per year of the project were
32.53 years (2049 as the final year of the project) and 21.52 million tonnes, respec-
tively.

Year 2016 is considered as the start of the ore extraction. The model was run
for five transportation systems of the Truck-Shovel, FIPCC, SFIPCC, SMIPCC, and
FMIPCC. The technical parameters considered in the simulations are represented in
Table 5.
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Table 5 Technical parameters in dynamic simulation of the model

Parameter Quantity Unit
Working days in a year 350

‘Working hours per day 22 (h)
FIPCC relocation’s year 2030

Depth of relocation of FIPCC 150 (m)
First year of SFIPCC relocation 2018

Intervals of relocations of SFIPCC 4 (years)
Depth of relocation of SFIPCC 100 (m)

Last year of SFIPCC relocation 2040

First year of SMIPCC relocation 2018

Intervals of relocations of SMIPCC 2 (years)
Depth of relocation of SMIPCC 70 (m)

Last year of SMIPCC relocation 2040

Average FMIPCC advancement rate in 40 (m/year)
depth

Average faces advancement rate in depth 40 (m/year)

4.1 Total Emissions

As it can be seen in Fig. 7, the total emissions (CO,, SO,, and NOy) increase by
progressing the project due to increasing the quantity of trucks and conveyors sets.
However, the total emissions in FMIPCC system are lower than others along mine’s
life. It can be interpreted as the lack of trucks in this system, which is one of the most
dominant sources of emissions. In addition, it shows that producing electricity in
power plant for using in FMIPCC system generates fewer emissions in comparison
with its equivalent Truck-Shovel system, which directly uses fuels. In fact, it is more
environmentally friendly to use electricity in transportation system even considering
that lignite is burnt to generate electricity. In other systems and until 2028, the
difference in emission is not considerable; however, afterward SMIPCC and SFIPCC
generated more emission.

4.2 Total Particulate Matter

The total particulate matter emitted from FMIPCC system is the lowest and has a
considerable difference with others (Fig. 8). As it was expected, the total particulate
matter of the Truck-Shovel system is the highest due to the higher number of trucks,
which are the most important sources of particulate matters. FIPCC produces the
same level of particulate matter until 203 1; however, after this year, which relocation
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Fig. 7 Total emission from different transportation systems
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Fig. 8 Total particulate matters emitted from different transportation systems

happens, the number of trucks does not increase anymore and conveyor belt system is
inserted. This results in lower particulate matters of FIPCC rather than Truck-Shovel
system after 2031. SFIPCC shows the higher amount of particulate matters rather
than SMIPCC. This can be explained based on the lower relocations in this system,
which results in using more trucks rather than SMIPCC.
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Fig. 10 Environmental index of different transportation systems

4.3 Total Water Consumption

In this study, the total water consumption was considered as the water needed for the
dust suppression in the site area. Accordingly, the water consumption of FMIPCC
system shows the lowest (Fig. 9) because of not using trucks in this system. On
the other hand, dust generated in the conveyor system, especially in transition points
(chutes) is considerably lower than dust generated by trucks. Similar to the particulate
matter emission, SMIPCC consumes lower water than SFIPCC, FIPCC, and Truck-

Shovel systems.
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Table 6 Ranking of different transportation systems based on the environmental index

Transportation Total emissions | Total particulate | Total water Environmental
system ranking lowest matters lowest consumption index best (1) to
(1) to highest (5) | (1) to highest (5) | lowest (1) to worst (5)
highest (5) 2016-2019

/2019-2021
/2021-2049

Truck-Shovel 2 5 5 2/4/3

FIPCC 3 4 4 2/4/3

SFIPCC 4 3 3 2/2/2

SMIPCC 5 2 2 2/3/2

FMIPCC 1 1 1 1/1/1

4.4 Environmental Index

According to the environmental factors, which are, the environmental index based
on the Eq. (13) would be as Fig. 10. It is clear from Fig. 10, FMIPCC system stands
as the first rank with a high difference rather than others. This can be concluded
because of the lowest amount of emissions, particulate matters and water consump-
tion in this system. From 2016 to 2019 (Fig. 11a), other transportation systems, i.e.,
Truck-Shovel, FIPCC, SFIPCC, and SMIPCC, show the same environmental index.
However, from 2019 to 2021 (Fig. 11b), SMIPCC is near the FIPCC and SFIPCC
systems and from 2021 until the end of the project (Fig. 11c), SMIPCC depicts a
better environmental index rather than SFIPCC. Table 6 reports a ranking for dif-
ferent types of transportation systems based on emissions, particulate matters, water
consumption, and environmental index.

The following points need to be considered while building and running the model:

1. In spite of numerous environmental factors, which are resulted from mining
activities, this model considered the most important factors including emissions,
particulate matters, and water consumption.

2. TItis possible to add any other environmental factor into the model; however, it
is important to recognize its proper location and connection with other variables
in the model.

3. Theresult of the model was based on fixed inputs and obviously can be changed by
modelers. However, attention needs to be paid in this case, while the conclusion
can be totally affected by taking inputs.
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5 Conclusion

Transportation system of any mining project counted as one of the most signifi-
cant sources of environmental issues. Accordingly, it is favorable for planners to
select the most environmental-friendly transportation system, especially in the case
of high sensitivity in environmental concerns. In this paper, five transportation sys-
tems, i.e., the Truck-Shovel, FIPCC, SFIPCC, SMIPCC, and FMIPCC systems were
introduced. A system dynamics model, based on the environmental factors of total
emissions, total particulate matters, and total water consumption, for evaluating the
environmental index of these systems was built. This model was able to evaluate the
environmental index of each transportation system in the mine’s life, which based on
them a decision could be made. In all environmental factors, FMIPCC system stood
at the first rank with the highest environmental index, which the reason can be inter-
preted as the lack of trucks, as the most important sources of emissions, particulate
matters, and water consumption. On the contrary, the Truck-Shovel system is placed
at the fifth rank due to operating trucks in this system.
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Truck-and-Loader Versus Conveyor Belt )
System: An Environmental oo
and Economic Comparison

C. M. de Almeida, T. de Castro Neves, C. Arroyo and P. Campos

1 Introduction

The oscillation in commodities prices and the significant increase in operating costs
have made the mining sector seek to obtain processes that are more and more effi-
cient. In addition, some other factors, such as the relationship with stakeholders and
increased environmental and social responsibilities, complement the main motiva-
tions for organizations to look into better processes [1-4].

In this scenario, the mapping of an organization’s operational processes assists in
identifying the stages that most contribute to the high costs of the most inefficient
processes [5]. The main mining stages involved in the production of ore in open-
pit mines are rock blasting, loading, and transportation, in which the latter can be
responsible for 40-60% of the mining costs [3, 6, 7].

The definition of the best transportation method becomes, therefore, fundamental
for obtaining the most efficient and cheapest mining process. In addition, environ-
mental and social factors need to be taken into account, since these systems can
generate waste, emit gases [8, 9], noise and dust [10], which impacts the residents
near the mine, if any, and the environment as a whole.

According to [3], the conventional mining method consists of transportation by
trucks that are loaded by loaders or excavators. Lopes also presents the belt conveyor
system as an efficient method for transportation of ore into the mine.
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