
Chapter 7
Understanding School Mathematics
in Terms of Linear Measure and Discrete
Real Additive Groups

Hyman Bass

Introduction

I report here on a capstone mathematics course for secondary mathematics teach-
ers,1 developed experimentally over the past several years. In this course I have
attempted, among other things, to incorporate ideas of abstract algebra that are
situated in the fundamental mathematical structures of school mathematics, and to
use them to illuminate those structures, and reveal often-unseen connections. For
example, rather than develop general group theory, I focus on the structure of the
additive and multiplicative groups of the basic rings of school mathematics, and
use the group theoretic perspective to illuminate and connect many school topics. I
contend that this exposure to “abstract algebra in context” contributes significantly
to mathematical knowledge for teaching (Ball, Thames, & Phelps, 2008), perhaps
an aspect of “horizon knowledge.” But this might be less clear, or less accessible,
with other important abstract algebra topics (Sylow Theorems, Galois Theory, etc.).

In addition to making curricular connections across mathematical topics, I have
designed some novel problem-solving formats to prompt making connections.
These connections have, primarily, been of one of two forms: (1) connections across
mathematical domains, and (2) structural connections between apparently unrelated
problems. Examples of these also are presented below.

1Though addressed to secondary teachers, much of the course content deepens understanding of
mathematics in the early grades as well. The course is also suitable for regular mathematics majors.

H. Bass (�)
Department of Mathematics and School of Education, University of Michigan, Ann Arbor, MI,
USA
e-mail: hybass@umich.edu

© Springer Nature Switzerland AG 2018
N. H. Wasserman (ed.), Connecting Abstract Algebra to Secondary Mathematics,
for Secondary Mathematics Teachers, Research in Mathematics Education,
https://doi.org/10.1007/978-3-319-99214-3_7

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99214-3_7&domain=pdf
mailto:hybass@umich.edu
https://doi.org/10.1007/978-3-319-99214-3_7


126 H. Bass

I begin below with a brief overview of abstract algebra and its origins. Fol-
lowing that, I outline the structure of my course. The content of the course
represents my own mathematical perspective on school mathematics, aimed at
conceptual coherence. It centrally features the real number line, with its geometric
and arithmetic structures. Linear measurement, expressed through division with
remainder, leads directly to place value and modular congruence. Abstract algebra
enters through the study of discrete additive groups of real numbers, from which
multiplicative arithmetic and commensurability (irrationality) naturally emerge.
Brief treatments of polynomial algebra and combinatorics then culminate in discrete
calculus, the natural generalization of the “pattern generalization” activities in
school mathematics. Finally, I present and discuss some problem-solving designs,
which I regard as a way to cultivate important mathematical practices in the course.

What Is Abstract Algebra, and Where Did It Come from?

“Algebra” signifies many things. First, it provides a compact and efficient (but
sometimes opaque) symbolic notational system to compose mathematical expres-
sions and relations involving abstract quantities. An early appearance of this is the
(x, y) Cartesian coordinate system, which supported the algebraic formulation of
many geometric ideas. The origins of algebra as a substantive mathematical domain
came from efforts to solve polynomial equations in one variable, for example finding
higher degree analogues of the quadratic formula (degree 2, “known” already by the
ancient Babylonians and Egyptians). Italian mathematicians in the sixteenth century
succeeded with cubic and quartic equations (degrees 3 and 4), but the quintic (degree
5) resisted. The deep proof (by Abel) that the general quintic equation could not
be solved by radicals ushered in some of the most fundamental ideas of modern
mathematics, group theory in particular, via algebraically permissible permutations
of the roots of a polynomial. This strand culminates today in Galois Theory, the
capstone of some abstract algebra courses.

“Modern” or “abstract” algebra, with its emphasis on general structures (groups,
rings, and fields), axiomatically defined, took hold in the twentieth century, starting
with the lectures of Emmy Noether and Emil Artin, and captured in van der
Waerden’s classic text, Moderne Algebra (van der Waerden, 1930, 1931). These
structures arise from both number theory (studying generalizations of the arithmetic
of integers and the rational numbers) and from efforts to understand solutions
of polynomial equations (with real or complex coefficients)—eventually, several
equations of arbitrary degree in several variables. One linear (i.e., degree 1) equation
in one variable reduces to elementary arithmetic with the four operations (typically
learned in grades 1–6); the solution of ax + b = 0 is x = − b/a. One equation
in one variable of higher degree is a big jump in sophistication and culminates
with Galois Theory (undergraduate math majors). Many linear equations in several
variables are the core of linear algebra, for which there is a fairly complete and
accessible algebraic theory (undergraduate STEM students). This is fundamental
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Table 7.1 The “geography” of algebraic equations

Domain Degree Variables Learners

Elementary arithmetic 1 1 Grades 1–6
Linear algebra 1 >1 STEM majors
Field and Galois theory >1 1 Math majors
Algebraic geometry >1 >1 Research mathematicians

since, whereas the world is mostly nonlinear; many problems are first approached by
linear approximation, calculus being a preeminent example of this. The vast general
case (many equations, many variables, high degree) is algebraic geometry, one of
the most advanced areas of contemporary mathematics (research mathematicians)
(see Table 7.1).

The power of axiomatic methods became clear in the twentieth century: math-
ematicians were able to solve many longstanding problems2 that had earlier
seemed intractable. As such, abstract algebra gained a prominent place in the
professional training of mathematicians. This standing gradually trickled down
into the curriculum of general mathematics majors, thereby affecting secondary
mathematics teachers, who are required to be mathematics majors. The “New Math”
reforms of the 1950s and 1960s even witnessed (eventually aborted) efforts to have
abstract approaches infiltrate the early school grades.

Abstract Algebra for Secondary Teaching

The power of mathematical abstraction is its generality, thus having the potential to
conceptually unify many apparently distinct mathematical contexts. But abstraction
also exacts a cost for the novice learner since, by its nature, abstraction purges the
concepts of the concrete individual contexts that it generalizes, and these are a main
source of sense making.

Thus, one may reasonably ask, “What is the abstract algebra easily accessible to
secondary teachers that deeply relates to their work as teachers?” This question is
hard to manage since teachers’ mathematics content courses are generally taught in
mathematics departments, and it makes sense for these departments to require their
majors to learn abstract algebra. At the same time, the work of teaching requires a
depth and flexibility of mathematical understanding of the fundamental structures
of the school curriculum (place value, the number line, algebraic equations, and

2For example, Hilbert’s proof, using Noetherian conditions, that the ring of invariant polynomials
of a reductive group action is finitely generated, thus eclipsing years of laborious, inconclusive
computation.
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functions) that is often not fully achieved in typical academic mathematics courses,
and is even lacking among many mathematics majors.3

While the main ideas and constructs of abstract algebra are arguably relevant
to school mathematics, their typical academic presentation contains much that
is remote from the needs of K-12 teachers, in two respects. First, its generality
and basic examples quickly exceed the context of school mathematics. This is
a pragmatic consideration since teachers’ exposure to mathematics is limited in
time. Second, the rich algebraic structures already present in school mathematics
(for example the algebraic (and geometric) structure of additive and multiplicative
groups of real numbers and of modular rings) are often not treated, in abstract
algebra courses, in sufficient detail to illuminate and add depth and coherence to
related school mathematics topics.

Consider the case of group theory. In an abstract algebra course, among the first
examples after cyclic groups are the symmetric groups. While they are of major
mathematical importance, they are not familiar objects to school students, and com-
putations in them are difficult and notationally complex. Non-commutative groups
first arise most naturally as groups of geometric transformations (symmetries), a rich
and beautiful development. While geometric transformations appear in high school
curricula, they are not generally treated from a group theoretic perspective.

The Conceptual Foundations of My Course

I take the real number line, with its combined arithmetic and geometric structures,
to be a central object of in-depth study throughout. In this regard, I am influenced
by the ideas of Davydov (1990), who emphasized the centrality of quantities and
their measurement in the teaching and learning of mathematics, starting in the
earliest grades. In particular, I feature division with remainder as the far-reaching
conceptual foundation of linear measurement, not as a computational task in whole
number arithmetic. It leads directly to both the detailed development of place value
expansion (in any base) of a positive real number, and to modular congruence.

In the treatment of the four arithmetic operations, school mathematics empha-
sizes algorithmic computation in the place value, or fraction, notational systems.
While concrete computation is vitally important, what is relatively neglected in
school mathematics is the conceptual geometric meaning of the operations on the
number line. For example, addition and subtraction can be interpreted in terms
of translations, and multiplication in terms of 0-centered dilation and reflection.
These understandings are at once intuitively accessible, pre-computational, and
they are the foundation for proving some striking and consequential theorems about

3I say this from having taught the course several times to successful mathematics majors, who
consistently note that they are learning things about place value, and about the number line, that
they had never known before.
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real additive groups, starting with division with remainder itself. Interestingly, this
treatment leads naturally to the notion of commensurability, providing a deepened
understanding of the distinction between rational and irrational numbers, as well as
group theoretic definitions of gcd and lcm, thus making their basic properties all
easily derivable, prior to prime factorization theory.

Group theory enters through the study of the additive and multiplicative groups
of the basic rings of school mathematics—integers, rationals, reals, and, eventually,
complex numbers, and modular rings. Many of the early theorems in arithmetic
(Fermat’s Little Theorem, Cauchy’s Theorem, multiplicativity of the phi-function,
quadratic residues, and even gcd and lcm) are essentially group theoretic in
nature. Division with remainder is used to give a complete description of discrete
additive groups of real numbers. The multiplicative group R∗ (with R∗ = R{0})
of nonzero real numbers exhibits torsion, {±1}, and a direct product structure,
R∗ = {±1} × (0, ∞), with corresponding homomorphisms, sign, and absolute value.
Moreover we have an order preserving group isomorphism, exp : R → (0, ∞), from
the additive to the positive multiplicative group, with inverse log. The latter permits
us to transport additive group theorems to the multiplicative group, where they
would be much more difficult to discover and prove directly. So these real additive
and multiplicative groups provide a direct and organic connection of significant
school mathematics to some substantial, yet “familiar,” abstract algebra—even prior
to the axiomatic definition of a group. And this arises even before number theoretic
ideas, which are captured in the study of additive and multiplicative groups of
modular rings. The eventual study of additive and multiplicative groups of complex
numbers leads to two-dimensional vector algebra and to two-dimensional geometric
transformations.

The course also includes some fundamental “classical algebra,” for example a
brief treatment of the basic properties of polynomials (root theorems, Binomial The-
orem, interpolation, etc.), coupled naturally with an introduction to combinatorics.
The proof of the Binomial Theorem is derived from a more basic algebraic identity
(“A product of sums is a sum of products” or “distributivity on steroids”) that
yields also a proof of the inclusion–exclusion formula, even in geometric measure
settings. Combining the root theorems with group theory, we show that any finite
multiplicative group of a field (e.g., the multiplicative group of a finite field) is
cyclic.4

Many of these ideas converge in the chapter on Discrete Calculus. Many
secondary curricula now introduce functions largely as an activity of “finding a
pattern” in some finite sequence of numbers (or figures), on the basis of determining
the next term, and, eventually, the general term. The data presented are equivalent
to a table pairing the term number in the sequence with the corresponding value, or

4This is derived from the following theorem about a finite group G of order n. For each whole
number d, let Gd = {x ∈ G| xd = 1}. If: (∗ ) [For each divisor d of n, #Gd ≤ d], then G is cyclic. If
G is in a field, then (∗ ) follows from the root theorem for Xd − 1.The theorem is proved by close
comparison of G with Z/Zn.
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equivalently, a finite list of points in the plane. An expression for the general term
then simply defines a function whose graph passes through the given points. In other
words, this is essentially an interpolation problem. The “pattern” comes into play in
suggesting a simplest function solution, linear in the case of constant difference,
exponential in the case of a constant ratio. If the differences are not constant, one
can look at differences of differences, etc., thus reaching quadratic functions, for
example.

The method of looking at successive differences is just the “differential” aspect of
Discrete Calculus, a topic that is built on the basic algebraic foundations described
above. It provides an elegant and accessible formal analogue of Calculus itself,
and it leads quickly to a number of interesting results and connections to school
mathematics—e.g., the Binomial Theorem, the formulas for sums of powers of
consecutive natural numbers, etc. Above all, Discrete Calculus provides, in my view,
a much more comprehensive and powerful framework for initial understanding of
functions. It is perhaps a good alternative to high school calculus, one that would
strengthen the often-underdeveloped algebraic skills of high school graduates, even
those having taken AP Calculus.

A consistent aim of my course, as I hope can be discerned in the above overview,
is conceptual coherence, building on connections between mathematical ideas,
something I feel is often lost in the fragmentation and shallow treatments of many
curricular materials.

Detailed Description of the Course

The outline of a book project (Chaps. 1–12) based on the course is presented in
Table 7.2 below. The book’s contents are more comprehensive than those of the (one
term) course, and would be more suitable for a full-year course. Though oriented
toward secondary teachers, the course also could be of interest to more general
mathematics majors (and would not substantially duplicate their typical advanced
undergraduate mathematics coursework). At the same time much of the course
content is highly relevant to the elementary math curriculum, and so it could be
of value to mathematically well-motivated and prepared elementary teachers. For
the present, necessarily brief, discussion of the course, I will simply highlight some
of the novel ideas and approaches that each of the topics (i.e., chapters) of the book
offers.

Division with Remainder (DwR) and Place Value

Dividing a by b (b �= 0), a = qb + r, yields an integer quotient q, and a remainder
r smaller than b. I view the problem of dividing a by b not as a piece of integer
arithmetic, but rather as the foundation of linear measurement, where a and b are
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Table 7.2 Outline of a book developed from the capstone course

Chapter Topics

1 Division with Remainder and Place Value
Division with Remainder (DwR):
Given a, b ∈ R, b �= 0, ∃ ! q ∈ Z, r ∈ R, 0 ≤ r < |b| such that a = qb + r
q = qb(a), r = rb(a). The case b = 1: [a] = q1(a), a = r1(a)
Place value: b ∈ Z, b ≥ 2, a ∈ R:
a = ∑

h

dh(a)bh, with dh(a) = rb([ab−h])

Order of magnitude
2 Modular Congruence

Given a, b, m ∈ R : a =mb means a − b ∈ Zm ⇐⇒ rm(a) = rm(b)
Divisibility tests; “Fast track to the remainder”
Base-b representation of a fraction, N/D : d−h(N/D) = qD(rD(Nbh − 1)b);
eventually periodic; Wait time t; period p; Write D = D0D1, so that D0 divides be

for some e, gcd(D1, b) = 1. Then t = least e such that be =D0 0, and p = least e
such that be =D11

3 Rules of Arithmetic: Commutative Rings
Quick axiomatic definitions of (semi-)groups, rings, commutativity. Unit groups,
zero divisors, etc. Examples, including modular rings and polynomials. Some
geometric series polynomial identities. It is shown that for positive relatively
prime integers a, b, the largest integer not in the semi-group Na + Nb is
ab − a − b.

4 Geometry of the Number Line
Metric spaces (X, d). Ball and spheres. Isolated points. Discrete sets. Closure;
density. Detailed study of (often arithmetic) examples on the number line

5 (Discrete) Additive Groups of Real Numbers
Let A be an additive group of real numbers. Theorems: I. If 0 is isolated in A then
A is uniformly discrete; II. A is either discrete or dense in R; III. If A is discrete
then A = Za for a unique a ≥ 0

6 Commensurability: gcd and lcm
Theorem IV. Za + Zb is discrete iff a and b are commensurable. In this case,
d = gcd (a, b) and m = lcm (a, b) are defined to be the nonnegative generators of
Za + Zb and Za ∩ Zb, respectively. Chinese Remainder Theorem

7 Primes and Factorization
Definition; infinitely many. Prime (Power) Factorization: a = ± �pe(p, a).
Mersenne, perfect, and Fermat numbers. Appendices: Multiplicative groups of
modular rings; applications to cryptography

8 Combinatorics
Brief introduction. “n-choose-d,” nCd; Pascal’s Triangle

9 Polynomials
Degree, leading term, roots. f (a) = 0 iff (x − a) divides f. f has ≤ deg(f ) roots
Interpolation. Cor. f (Q) ⊆ Q iff all coefficients of f are in Q. Binomial Theorem.
A finite multiplicative group in a field is cyclic. Appendix: Inclusion–Exclusion
Formula

10 Discrete Calculus
Sequences as (the ring F of) functions f : N → R. The discrete derivative � and
integral S, as linear operators Δ, S:F → F . Fundamental Theorem: ΔSf = f and
SΔf = f − f (0). Binomial polynomials Bd(x) = xCd . Polynomials f = ∑

adBd .
f (Z) ⊆ Z iff all ad ∈ Z. Formulas for sums of consecutive dth powers

(continued)
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Table 7.2 (continued)

Chapter Topics

11 Complex Numbers
Beyond the course

12 Plane Transformation Geometry Using Complex Numbers
Beyond the course
Appendix: Some Problem-Solving Activity Designs
1. Finding a structure common to a diverse set of problems
2. Showing that a diverse set of problems are all modeled by the same equation

real numbers, with b the unit of measure. Note that q (but not r in general) is still an
integer. Thus, Division with Remainder (DwR) is a theorem about linear measure,
and whose meaning is easily pictured on the number line, partitioned by the integer
multiples of b, between two of which a lies. The uniqueness of DwR says that
q = qb(a) and r = rb(a) are multivariate functions of (a, b). Here, dividing by 1
is interesting! q1(a) = [a] is the “integer part of a,” and r1(a) = 〈a〉 is the “fractional
part of a.” If a is a whole number, written in base-10, then r10(a) is the unit (or ones)
digit of a. This observation leads to the following explicit formula for the coefficient
dh of bh in the base-b expansion (with b an integer greater than 1) of a real number
a ≥ 0: dh = rb([ab−h]). We also define the order of magnitude of an integer N as
the number of significant digits of N, and show that this is sub-multiplicative. I pose
questions showing that bases b �= 10 commonly and naturally occur, for example: (1)
What is a base-1000 representation of 48,279,506,371,817? Answer: You’re staring
at one! In fact, we recite the number in base-1000! (2) Calculating a89 from the
definition requires 88 multiplications. How many multiplications are required using
iterated squaring? This depends on the base-2 expansion of 89, and needs only nine
multiplications. (3) The best time ever in the NY marathon is: 2:05:06 = 2 h, 5 min,
6 s. Maria ran her first NY marathon in 3:05:02. How much longer than the record
was her time? This is a problem of 3-digit subtraction in base 60.

Modular Congruence

“a =m b” is my notation for what is usually written in the more cumbersome
form, “a ≡ b (mod m).”5 Importantly, I allow a, b, m to be real numbers, and
take the congruence to mean that a − b is an integer multiple of m; equivalently,
rm(a) = rm(b). (This is the equivalence relation corresponding to the additive
group R/Zm.) It is shown that modular congruence preserves sums, but it preserves
products in general only when a, b, m, etc. are integers. This chapter also includes
a systematic discussion of so called “divisibility tests,” such as “casting out nines”

5After 6 years of use, this notation has not encountered any mathematical difficulties or conflicts.
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(N is divisible by 9 iff the sum of its (base-10) digits is so). Instead, for a given
divisor D, we show more generally how one can construct a function S(N) with
two properties: (1) S(N) is, in general, much smaller than N; and (2) S(N)=D N. It
follows that iterating S gives “a fast track to rD(N).”

Base-b Expansion of a Proper Reduced Fraction N/D = ∑
h>0d−hb

−h

It is shown that d−h = qD(rD(Nbh − 1)b). Note that this involves quotients and
remainders only of division by the denominator D (not N or b). This formula
essentially encodes base-b long division of N by D. From this, one shows that for
some “wait time t,” and “period p,” we have d−h = d−k whenever t < h < k and
h=p k. Write D = D0D1 so that D0 divides some power of b, and gcd(D1, b) = 1.
Then t is the least e such that be =D0 0, and p is the least e such that be =D11.

Rules of Arithmetic: Commutative Rings

Commutative rings are introduced at this point, presented as formalizing the “Rules
of Arithmetic,” accompanied by numerous examples. Starting with one binary
operation, I define semi-groups and groups, particularly the group of units of a
semi-group. Among the interesting (additive) examples are: the set of fractions with
square-free denominator; and the set of periods of a function of a real variable.
We also derive the “Frobenius number,” ab − a − b, of the additive semi-group
generated by relatively prime integers a, b > 0. Next come rings, with the distributive
law linking multiplication and addition. In this general context we prove familiar
identities, like 0 • a = 0, −(−a) = a, (−a) • (−b) = a • b, etc. Then we construct
the modular rings Z/Zm, and polynomial rings A[x].

Geometry of the Number Line

The geometry of the number line is treated in the context of general metric spaces, a
topic initially independent of the preceding material (except for the examples used),
but then merged with the algebra in the next chapter. Though metric spaces may
seem excessively general, I find this context both mathematically and pedagogically
advantageous. Mathematically, it is natural and useful to understand the line as
a (one-dimensional) case of Euclidean geometry. Pedagogically, geometric ideas
(like the “neighborhood” of a point) are intuitively easier to process in dimensions
greater than 1. Also, the geometry of R is defined by its order structure, but this
feature, unique to dimension 1, does not convey a general geometric intuition. This
is a territory notorious for definitions with multiple quantifiers, which are often
difficult for students to manage. To mitigate this, I have found it helpful to use
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the concept of a point being isolated in a metric space (having “room of its own,”
or having “its private space”). For example, a point x �∈ Y is in the closure of Y (in
a metric space X) if x is not isolated in Y ∪ {x}. The main concepts we need for our
applications are discreteness of a metric space (all points are isolated), and density
of one metric space Y in another space X (X is the closure of Y). Here is a sample
problem: If a sequence of fractions converges to an irrational number, show that
their denominators go to infinity.

(Discrete) Additive Groups of Real Numbers

The (discrete) additive groups of real numbers are a central, but, at this point, decep-
tively easy part of the course. We prove the following three important theorems
about any additive group A of real numbers, as relatively simple applications of
DwR (division with remainder). (I) If 0 is isolated in A, then A is uniformly discrete.
(II) A is either discrete or dense in R. (III) If A is discrete, then A = Za for a unique
a ≥ 0.

Commensurability: gcd and lcm

Real numbers a and b are commensurable if b = 0 or if a/b is rational. Also
using DwR, we prove the following theorem: (IV) (Commensurability Theorem)
Za + Zb is discrete iff a and b are commensurable. In this case, d = gcd (a, b)
and m = lcm (a, b) are defined to be the nonnegative generators of Za + Zb and
Za ∩ Zb, respectively. From this, one can directly develop extensive properties of
gcd and lcm, all prior to prime factorization (see Appendix 2).

Primes and Prime Factorization

Here I emphasize the uniqueness of the factorization, which gives rise to the
functions ep(a), which is the exponent of p in the prime power factorization of
an integer a �= 0. These functions extend to rational numbers a �= 0, and define
homomorphisms from the multiplicative group of Q to the additive group of Z. This
easily gives the traditional characterizations of gcd and lcm, the divisor function,
and the Euler phi function, as well as the criteria for a dth root of a rational number
to be rational. There is also discussion of Mersenne, perfect, and Fermat numbers.
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Combinatorics

The formula nCd = n(n − 1) . . . (n − d + 1)/d!, for the number of d-sets in an n-set,
is derived by first showing that the numerator counts the number of ordered d-sets,
while the denominator counts the number of orderings of a d-set. I emphasize that it
is worth noting the non-obvious fact that this fraction is an integer. In the next class
I ask the class to show that the product of d consecutive integers is always divisible
by d!, to find out if they see the connection between this question and the formula.
We also verify several identities that lead to Pascal’s Triangle.

Polynomials

After the basics on the degree and leading term of polynomials, the “root theorems”
are proved; in particular, f has at most deg(f ) roots if the coefficient ring is an
integral domain. This, combined with some group theory and combinatorics, is used
to show that a finite multiplicative group in a field is cyclic. We then demonstrate
interpolation: Given aj, bi (1 ≤ i ≤ n), with the aj twice distinct, there is a unique
f of degree less than n such that f (ai) = bi, (1 ≤ i ≤ n). It follows that if, for an
infinite field Q, f (Q) ⊆ Q, then the coefficients of f belong to Q. The analogue for Z
in place of a field is false, but this situation is precisely analyzed later using Discrete
Calculus. We also prove the Binomial Theorem using combinatorial arguments.
Similar arguments give a proof of the Inclusion–Exclusion Formula.

Discrete Calculus

The section on “Discrete Calculus” vastly generalizes the part of the high school
curriculum focused on “finding patterns” in a partially given sequence. I view the
set of (infinite) sequences as the ring F of functions f : N → R. The discrete
derivative Δ (where Δf (x) = f (x + 1) − f (x)) and the discrete integral S (where
S(x) = f (0) + f (1) + . . . + f (x − 1)) are linear operators (i.e., Δ, S : F → F).
The Fundamental Theorem of Discrete Calculus is then a pair of simple algebraic
identities: ΔSf = f, and SΔf = f − f (0). Then I introduce the Binomial Polynomials
Bd(x)= “x-choose-d.” These are perfectly suited for discrete calculus, because:
ΔBd = Bd − 1 (Pascal’s Relation), and SBd = Bd + 1. Any polynomial f can be
uniquely written as f = ∑

adBd, and it is shown that f (Z) ⊆ Z iff all ad ∈ Z.
By expressing xn as a linear combination of Bd(0 ≤ d ≤ n), and integrating, we
obtain formulas for the sums of consecutive nth powers.
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Problem-Solving Activities that Emphasize Connections

Complementary to the topical connections developed in the construction of the
course curriculum, I have tried to design instructional problem-solving activities that
explicitly involve seeing and using (sometimes subtle) mathematical connections.
In this section, I discuss two different types of activities: (1) connections across
mathematical domains, and (2) structural connections between apparently unrelated
problems.

Connections Across Mathematical Domains

A simple example of connecting across mathematical domains would be the
problem discussed above, about a base-1000 representation of 48,217,589,625,903.
Another example asks for a description of all real functions f (x) of a real variable
such that |f (x) – f (y)| = |x – y| for all x and y, to see if students recognize that this
is asking for all isometries of the line.

For another example, one that spans several topics of the book, after deriving
the combinatorial formula, n(n − 1)(n − 2) . . . (n − d + 1)/d!, for nCd, in the
next class I ask students to show that any product of d consecutive integers is
divisible by d! The exercise is intended to prompt them to see this connection
between combinatorics and arithmetic. Relatedly, the xCd (note, x in place of n)
function gives examples of polynomials (with non-integer coefficients) that have
integer values at integers. In our later discussion of Discrete Calculus, we show
that integer linear combinations of the xCd function are, in fact, the only such
polynomials. This contrasts with our earlier conclusion, from the interpolation
formula, that a polynomial taking rational values at rational numbers must have
rational coefficients. All of these examples provide an opportunity for students
to identify and reflect on mathematical connections that span different areas of
mathematics—discrete mathematics, arithmetic, algebra, etc.

Structural Connections Between Apparently Unrelated Problems

In a more structured design activity, I focus deliberately on the goal of “seeing
and using mathematical structure” (one of the eight mathematical practices in the
Common Core State Standards of the United States (CCSSM, 2010)). Here, I use
some designs and examples also presented in Bass (2017). The general idea is to
give the class sets of diverse problems for which the task is to seek, or to discover,
unexpected connections between them. This work is done collaboratively in small
groups, over a period of two or more classes.
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Table 7.3 An elementary sorting task (from Bass, 2017)

1. What are all three-digit numbers that you can make using each of the digits 1, 2, 3, and using
each digit only once?
2. Angel, Barbara, and Clara run a race. Assuming there is no tie, what are all possible
outcomes of the race (first, second, third)?
3. You are watching Angel, Barbara, and Clara playing on a merry-go-round. As the
merry-go-round spins, what are all the different ways that you see the three of them from left to
right?
4. You want to choose from among Angel, Barbara, and Clara, a two-person rowing team, one
for the bow, the other for the stern. What are all ways to do this?
5. In a 3 × 3 grid square, color three of the (unit) squares blue, in such a way that there is at
most (or at least) one blue square in each row and in each column. What are all ways of doing
this?
6. Find all of the symmetries of an equilateral triangle

In one format for these problems, sorting, I provide students with a list of
diverse problems and ask them to group together problems which are “essentially”
the same, and also indicate other significant but perhaps weaker connections,
using a “connection network” representation. In another format, common structure,
I provide a set of problems that, although quite diverse, all share a common
mathematical structure. The students are asked not only to solve the problems,
but also to identify and articulate the common structure, and to demonstrate how
it is involved in each of the problems. The problems in these common structure
sets often seem, on the surface, to be unrelated. This is a challenging and engaging
activity that is best enacted over several class sessions. Students have reacted quite
positively to these activities, noting specifically the elements of “mathematical
surprise” involved.

Tables 7.3 and 7.4 present two examples. (Other examples can be found in Bass
(2017).)

It is easy to see that problems 1 and 3 are “isomorphic.” And problem 5 is
likewise, though the connection is more subtle. Problems 2 and 6, though giving
the same kind of answer, are fundamentally different from the others, and from each
other. One way to see this is to replace the “3” in these problems by an n > 3.
Problem 4 is an outlier, essentially unrelated to the other problems.

The next example is an expansion of a set of six problems (Ar1-4, R1, and
G1) published by Usiskin (1968). The thirteen problems are grouped into four
different subject areas. I formed my class into small groups, each one assigned
to solve, and relate, the problems in a single one of the subject areas, and to
prepare a class presentation of its work the following week. In the course of these
collective presentations, the class discovers, to their great surprise, that in fact all of
the problems are modeled by a simple variant of the same Diophantine equation,
1/n + 1/m = 1/2 (Ar1). I have used this activity in professional development
settings, with teachers and mathematics educators, with the same effect. As a
follow up to this activity, it can be shown how the combinatorial classification of
Platonic solids reduces, using Euler’s formula, to finding all solutions (V, E, F
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Table 7.4 The expanded Usiskin set

ARITHMETIC
Ar1 Find all ways to express 1/2 as the sum of two unit fractions (i.e., fractions of the form
1/n, n a positive integer)
Ar2 Find all rectangles with integer side lengths whose area and perimeter are numerically
equal
Ar3 The product of two integers is positive and twice their sum. What can these integers be?
Ar4 For which integers n > 1 does (n − 2) divide 2n?
RATES
R1 Which pairs of positive integers have harmonic mean equal to 4? [The harmonic mean h
of n numbers a1, a2, . . . , an is defined so that 1/h is the average of the reciprocals,
1
a1

, 1
a2

. . . 1
an

]

R2 Nina can paint a house in n days, and Maria can paint it in m days (n and m positive
integers). Working together they can paint the house in 2 days. What are the possible values of
n and m?
R3 A turtle travels up a hill at n miles per hour, and returns down the hill at m miles per hour
(n ≤ m, n and m positive integers). The average speed for the round trip is 4 miles per hour.
What are the possible values of (n, m)?
GEOMETRY
G1 Given a point P in the plane, find all n such that a small circular disk centered at P can by
covered by nonoverlapping congruent tiles shaped like regular n-gons that have P as a common
vertex.
G2 Two vertical poles, N and M, have heights n meters and m meters, respectively, with n and
m being integers. A wire is stretched from the top of pole N to the base of pole M, and another
wire is stretched from the top of pole M to the base of pole N. These wires cross at a point 2 m
above the ground. What are the possible values of (n, m)?
G3 The base b and corresponding height h of a triangle are integers. A square is inscribed in
the triangle with one side on the given base. Suppose that the side length of the square is 2.
What are the possible values of (b, h)?
ALGEBRA
Al1 For which numbers s does p(x) = x2 − sx + 2s have positive integer roots?
Al2 Let u be a positive real number. Find all solutions (n, m, v) with n and m positive integers,
and v > 0, of the equations: (uv)2 = un = vm

A13 Let (r, b) be positive integers. In a bin containing r • b balls, r of them are red and b of
them are blue. For which (r, b) is there a 50–50 chance that a randomly chosen ball will be
either red or blue?

being integers greater than or equal to 3) of the (related) Diophantine equation:
1/V + 1/F = 1/2 + 1/E. Analysis of these problems can be found in Appendix 1.

Conclusion

The course I have described aims to achieve coherence by emphasizing math-
ematical connections, in two ways: curricular, by making explicit some often
undeveloped connections among different topics; and cognitive, through the design
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of novel cross-domain and common structure problem-solving activities. Abstract
algebra fundamentally enables both aspects of this mathematical coherence, via the
group theoretic study of the additive and multiplicative groups of the basic rings of
school mathematics: integers, rationals, reals, complex numbers, and modular rings.
The connections are most dramatic in the last chapters, which exhibit a confluence
of ideas from combinatorics, number theory, algebra, and calculus.

The course provides a number of useful enlargements of the topics of typical
school curricula that would likely be new for both school students and their teachers.
But these could enrich and deepen their understanding of the basic structures of
school mathematics, while still being mathematically accessible, and also challeng-
ing. I regard a pedagogy that features collaboration and group work, and emphasizes
mathematical exposition, explanation, and justification, as an important component
of this course. In addition to a course structure, various units could also be adapted
and used in professional development settings. In sum, the course provides one
example of how ideas from abstract algebra—and other areas of mathematics—can
be developed from and connected to the mathematics of the school curriculum.

Appendix 1: Analysis of the Extended Usiskin Problem Set

Problems Ar1, Ar2, Ar3, Ar4, in order, lead directly to the following Diophantine
equations (“Diophantine” because one seeks (positive) integer solutions):

1/n + 1/m = 1/2 (7.1)

2 (n + m) = nm (7.2)

2n = m (n − 2) (7.3)

For which n > 1 does n − 2 divide 2n (7.4)

Version (7.4) is essentially a verbal expression of the Eq. (7.3). Moreover, it is
not difficult to see how Eqs. (7.1–7.3) are algebraically equivalent. For example,
multiply (7.1) by 2nm to get (7.2); and subtract 2m from (7.2) to get (7.3). Hence,
solving any one of them provides solutions to the others.

My students generally preferred to use (7.3) to express m in terms of n:

m = 2n/(n − 2). (7.5)
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They then did numerical experiments to find those n for which 2n/(n − 2) is
an integer. (Some students even graphed m in (7.5) as a function of n > 0, and
highlighted the integer points on the graph.) The solutions they found were:

(n,m) = (4, 4) , (3, 6) , or (6, 3) . (7.6)

None of the students tried to work directly with (7.1), which is my preferred
approach. Using the symmetric roles of m and n, we can assume that n ≤ m. Then
n ≥ 3; otherwise 1/n ≥ 1/2. Also n ≤ 4; otherwise 1/n + 1/m < 1/2. Thus either
n = 3 (and so m = 6) or n = 4 (and so m = 4).

Problem R1 corresponds to the equation,

1/4 = (1/2) (1/n + 1/m) , (7.7)

which is (7.1) multiplied by 1/2.
For Problem R3: If one travels distance d at speed v in time t, then: d = vt and

t = d/v. Now suppose that one travels distance d at speed v1 in time t1, and then
returns at speed v2 in time t2. What is the average speed for the whole trip? It is

vave = (total distance) / (total time)
= 2d/ (t1 + t2)

= 2d
d
v1

+ d
v1

= 2
1
v1

+ 1
v2

Thus,

1

vave
= 1

2

(
1

v1
+ 1

v2

)

.

In other words, vave is the harmonic mean of v1 and v2. In problem R2, d would
be the work of painting the house, and n and m are the rates at which Nan and her
Mom do that job. The rate of doing it together (analogous to average speed) is the
harmonic mean of the two rates.

The geometry problems are less obviously related, but they too lead to the same
Diophantine equations. In Problem G1, let α(n) denote the (equal) interior angle(s)
of a regular n-gon: then it is known that α(n) = n−2

n
·180

◦
. For some number, say m,

of these regular n-gons to fit together to cover the area around a point P, we would
need: m · n−2

n
· 180

◦ = 360
◦
, i.e.,

m (n − 2) = 2n, as in Ar3. (7.8)
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For G2 (also framed as the “crossing ladders problem”), consider the diagram:

Using similar triangles we have:

(a + b) /n = a/2, and

(a + b) /m = b/2

Adding these equations, and then dividing by a + b, gives

1/n + 1/m = 1/2, as in Ar1. (7.9)

For G3, consider the diagram:
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The big triangle and the one above the square are similar (corresponding sides
are parallel), and so h/b = (h − 2)/2, whence, multiplying this by 2b, the equation

2h = b (h − 2) , as in Ar3. (7.10)

In Al1, if we formally factor p:
p(x) = x2 − sx + 2s = (x − n)(x − m) . . . (n, m being integers)
we find that

n + m = s, and

nm = 2s

whence n and m are positive, since s is, and so we have the equation

nm = 2 (n + m) , as in Ar2. (7.11)

Then s (=n + m) = 8 (=4 + 4) or 9 (=3 + 6).
In Al2, the mathematics is mainly happening in the exponents: (uv)2 = un = vm

We first get, from (uv)2 = vm, that u2 = vm − 2, so

v = u2/(m−2).

Then, substituting for v in (uv)2 = un gives: (u • u2/(m − 2)) = un

Equating exponents then gives:

n = 2 [1 + 2/ (m − 2)] = 2m/ (m–2) ,

whence, again, equation

2m = n (m − 2) . (7.12)

In Al3, the conditions on (r, b) are that, r + b = rb/2. Dividing this by rb gives,

1/b + 1/r = 1/2, as in Ar1. (7.13)

Appendix 2: Group Theoretic Derivation of Properties of gcd
and lcm

Note that all of what follows precedes, and does not depend on, prime factorization.
(DM0): Let a and b be real numbers. Then we have proved that:
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Za + Zb is discrete ⇐⇒ a and b are commensurable
In what follows we shall assume that a and b are commensurable, unless the

contrary is indicated. In this case we define
d = gcd (a, b) ≥ 0 and m = lcm (a, b) ≥ 0
by
Za + Zb = Zd and Za ∩ Zb = Zm
Note that a and b are integers if and only if d is an integer. When d = 1, we say

that a and b are “relatively prime.” We say that a fraction a/b is “reduced” if
gcd(a, b) = 1.

To ease writing we shall here abbreviate:
(a, b) = gcd (a, b) and [a, b] = lcm (a, b)
We now record some basic properties. We omit proofs if they follow easily from

the definitions. We have bolded the items that are especially important and/or useful.
(DM1): There exist integers r, s such that d(=(a, b)) = ra + sb.

(DM2): (d) d | a and d | b. If d
′ | a and d

′ | b, then d
′ | d

“d is the greatest common divisor of a and b”

(m) a | m and b | m. If a | m
′

and b | m
′
, then m | m

′

“m is the least common multiple of a and b”
(DM3): Suppose that a | A and b | B. Then (a, b) | (A, B) and [a, b] | [A, B].
Put d = (a, b) and D = (A, B). Then d | a and a | A, so d | A. Similarly d | B, and

so d | D, by (DM3(a)). In similar fashion one shows that [a, b] | [A, B].
(DM4): (a, b) = (b, a) = (| a| , | b| ), and

[a, b] = [b, a] = [| a| , | b| ] “Absolute Symmetry”
(DM5): (a, 0) = | a| and [a, 0] = 0.
(DM6): For any real number c, (ac, bc) = (a, b) · | c|, and

[ac,bc] = [a, b] · | c| “Multiplicative scaling”
This follows from the easily verified relations:

Zac + Zbc = (Za + Zb) · c, and

Zac ∩ Zbc = (Za ∩ Zb) · c

Multiplicative scaling is a very useful property. For example, when a and b are
commensurable, we know that there is a nonzero number c such that ca and cb are
integers. Then, for example, (a, b) = | c−1 | (ca, cb), so this reduces the calculation
of (a, b) to the case of integers. Similarly for [a, b].

(DM7): Let d = (a, b) and a = a
′
d and b = b

′
d. Then (a

′
, b

′
) = 1.

In fact, d = (a, b) = (a
′
d, b

′
d) = (a

′
, b

′
) · d, by (DM6), and so (a

′
, b

′
) = 1.

(DM8): If (a, b) = 1 then [a, b] = | a · b|
Proof. Write 1 = ra + sb, r, s ∈ Z. Let m

′
be a common multiple of a and b:

m
′ = ua = vb, with u, v ∈ Z. Then m

′ = m
′
ra + m

′
sb = vbra + uasb = (vr + us)ab,

so ab | m
′
. Since ab is visibly a common multiple of a and b, it follows that

|ab | = [a, b].
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(DM9): |a · b | = (a, b) · [a, b].

Proof. m = [a
′
d, b

′
d] = [a

′
, b

′
] · d by (DM7)

=| a′ · b′ | · d by (DM8 and 9)

so

d · m =| a′ · b′ · d2 |=| a′d · b′d |=| a · b | .

(DM10): If (a, b) = 1 = (a, c), then (a, bc) = 1.

Proof. Note that a, b, c ∈ Z. Write 1 = ra + sb = ua + vc, with r, s, u, v ∈ Z. Then

1 = (ra + sb) (ua + vc) = (rua + rvc + sbu) a + (sv)bc.

(DM11): Given a1a2, . . . , an and b1b2, . . . , bm with
(aibj) = 1 for 1 ≤ i ≤ n and 1 ≤ j ≤ m,

it follows that (a1a2 . . . an, b1b2 . . . bm) = 1.
This follows from (DM10) by induction on max(n, m), as follows. In the case

n = m = 1 there is nothing to prove. Suppose that m ≥ 2. Then, by induction, we
have that

(a1a2 . . . an, b1b2 . . . bm − 1) = 1 = (a1a2 . . . an, bm)
and so the result follows from (DM11).
(DM12): Suppose that (a, b) = 1 = (c, d). Then (ad, bc) = (a, c) · (b, d).

Proof. Let =Zad + Zbc. We want to show that:

A = (Za + Zc) · (Zb + Zd) = Zab + Zad + Zbc + Zbd

Clearly the right side contains the left side. For the reverse inclusion, we must
show that ab, bd ∈ A. Write 1 = ra + sb and 1 = uc + vd with r, s, u, v ∈ Z. Then

ab = abuc + abvd = (au)(bc) + (bv)(ad) ∈ A.

Similarly, bd ∈ A.

(DM13): Suppose that a/b and c/d are reduced fractions.
Then (a/b, c/d) = (a, c) / [b, d]

= gcd (numerators) /lcm (denominators)
.

Proof. |bd | (a/b, c/d) = (ad, bc) by (DM7)
= (a, c) · (b, d) by (DM13)

so

(a/b, c/d) = (a, c) · (b, d) / | b · d |

= (a, c) · (b, d)/(b, d) · [b, d] by (DM9)

= (a, c) / [b, d]
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For the next items, we shall use the following notation: If a and b are real numbers
we shall write: Z(a, b) = Za + Zb. If a and b are commensurable, then Z(a, b) is
a discrete additive group, generated by (a, b). If a and b are incommensurable then
we have shown that Z(a, b) is dense in R.

(DM14): Let a and b be real numbers, and let t be an integer. Then

Z (a, b + ta) = Z (a, b)

In case a and b are commensurable, it follows that:
(a, b + ta) = (a, b) “Additive translation”

Proof. Let A = Z(a, b), and B = Z(a, b + ta). We want to show that A = B. Since a,
(b + ta) ∈ A, it follows that B ⊆ A. Writing b = (b + ta) − ta, we see that a, b ∈ B,
and so A ⊆ B. Hence, A = B, as claimed.

Example. The Fibonacci sequence Fn is defined recursively by: F0 = 0, F1 = 1,
and, for n ≥ 2, Fn = Fn − 1 + Fn − 2 (i.e., 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,
. . . )

It follows from (DM14) that, for all n ≥ 1, gcd(Fn, Fn + 1) = 1.

(DM15): Given real numbers a ≥ b > 0, put c = rb(a) < b. Then Z(b, c) = Z(a, b).
Hence, if a and b are commensurable, then so also are b and c, and
(b, c) = (a, b).

Proof. By DwR, a = qb + r with q an integer and 0 ≤ r = rb(a) < b. Thus,
0 ≤ r = a − qb = c < b, and it follows then from Additive Translation (DM14)
that: Zb + Zc = (a − qb) = Za + Zb.

(DM16): The Euclidean Algorithm (EA). Let a and b be commensurable real
numbers, not both equal to 0. The Euclidean Algorithm (EA) is an algorithm to
produce (a, b) = gcd (a, b). Without loss of generality (DM5), we can assume that
a ≥ b ≥ 0, and we shall then write a0 = a and a1 = b. Then there is an integer
n = n(a0, a1) ≥ 0, and a sequence, a0 ≥ a1 > a2 > . . . > an > an + 1 = 0 such that
(aj, aj + 1) = (a0, a1) for all j ≤ n. In particular, (a0, a1) = (an, an + 1) = an.

Proof. If a1 = 0, we set n = 0, and all is clear. So suppose that a1 > 0. Suppose that
j ≥ 1, and that we have constructed a0 > a1 > a2 > . . . > aj > 0.

Then, with the notation (of DM16), we set aj + 1 = raj(aj − 1) and we have (aj,
aj + 1) = (aj − 1, aj).

We continue in this fashion if aj + 1 > 0. If aj + 1 = 0, then we set n = j, and stop.
All of the properties above follow from (DM16). The process must stop in a finite
number of steps since Z(a, b) is uniformly discrete, so it cannot contain an infinite
decreasing sequence of positive numbers.

(DM17): Suppose that a > b > 0 are incommensurable real numbers. Then
we can still apply the Euclidean Algorithm process, but it won’t stop in finitely
many steps. Explicitly, set a0 = a and a1 = b. Then we can produce an



146 H. Bass

infinite sequence of positive numbers a0 > a1 > a2 > . . . > an > an + 1 > . . .

such that Z(aj, aj + 1) = Z(a0, a1) for all j ≥ 0.
This follows inductively from (DM16). We can’t have aj + 1 = 0 since Z(a0, a1)

is not discrete, in fact it is dense in R. It can further be shown that an → 0 as n → ∞.
(DM18): Multiple gcds and lcms. Define commensurability for a sequence

(a1, a2, . . . , an) of real numbers to mean that Za1 + Za2 + . . . + Zan is discrete.
Then, as above, we can define gcd(a1, a2, . . . , an) and lcm(a1, a2, . . . , an)

to be the nonnegative generators of Za1 + Za2 + . . . + Zan and of
Za1 ∩ Za2 ∩ . . . ∩ Zan, respectively. These are clearly symmetric functions
of their n variables. Moreover, we have recursive descriptions,

gcd(gcd (a1, a2, . . . , an − 1), an) = gcd (a1, a2, . . . , an)
lcm(lcm(a1, a2, . . . , an − 1), an) = lcm (a1, a2, . . . , an).
To simplify writing we shall put

δ (a1, a2, . . . , an) = gcd (a1, a2, . . . , an) , and

μ (a1, a2, . . . , an) = lcm (a1, a2, . . . , an)

Note that the aj are all integers if and only if δ(a1, a2, . . . , an) is an integer.
Moreover, δ(a1, a2, . . . , an) and μ(a1, a2, . . . , an) satisfy the analogue of
multiplicative scaling (DM7).

(DM19): Writing d = δ(a1, a2, . . . , an) and aj = aj
′ · d for each j, we have

δ
(
a1

′, a2
′, . . . , an

′) = 1.

(DM20): Assume that all aj �= 0. If δ(a1, a2, . . . , an) = 1, then μ
(

1
a1

, 1
a2

, . . . , 1
an

)

= 1. (i.e., if Za1 +Za2 + . . . +Zan =Z, then Za1
−1 ∩Za2

−1 ∩ . . . ∩Zan
−1 =Z.)

Proof. Put G = Za1
−1 ∩ Za2

−1 ∩ . . . ∩ Zan
−1. Clearly G contains Z. It remains

to show that any a in G is an integer. For each j we can write a = sj/aj with sj an
integer. By hypothesis we can write 1 = r1a1 + r2a2 + . . . + rnan, with all rj

integers. Then

a = r1a1a + r2a2a + · · · + rnana

= r1a1s1

a1
+ r2a2s2

a2
+ · · · + rnansn

an

= r1s1 + r2s2 + · · · + rnsn ∈ Z.

(DM21): Put A = a1 · a2 · . . . · an. Then A = δ (a1, a2, . . . , an) ·
μ

(
A
a1

, A
a2

, . . . , A
an

)
.
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This is a nice, but nonobvious, generalization of the case n = 2, which is just
(DM10): a · b = gcd (a, b) · lcm (a, b).

Proof. Writing aj = aj
′
d, with the notation of (DM20), we can apply (DM21) to

obtain:
δ
(
a1

′, a2
′, . . . , an

′) = 1 = μ
(

1
a1

′ , 1
a2

′ , . . . , 1
an

′
)

.

Multiplying the right side by A
d

, and using multiplicative scaling, we get

μ
(

A
a1

, A
a2

, . . . , A
an

)
= A

d
, whence the result.
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