
Chapter 4
What Kind of Opportunities Do Abstract
Algebra Courses Provide for
Strengthening Future Teachers’
Mathematical Knowledge for Teaching?

Sean Larsen, Erin Glover, Anna Marie Bergman, and John Caughman

Introduction

This section of the volume is focused on the cognitive complexity of abstract
algebra. The chapters highlight specific cognitive challenges around concepts that
are closely connected to important concepts in secondary mathematics. Drawing
on these connections, the authors leverage their research to develop insights about
preservice teacher education. In order to frame our commentary, we begin by briefly
reviewing the literature around students’ understanding of abstract algebra. We
situate the studies described in the two previous chapters within this literature. Then,
to support our efforts to examine the proposed implications for the mathematical
preparation for teachers, we introduce a framework (Ball, Thames, & Phelps, 2008)
that we will use to characterize and critically analyze the connections the authors
make between their research into students’ understanding of abstract algebra and
the mathematical preparation of teachers.

Students’ Understanding of Abstract Algebra

The early research on the teaching and learning of abstract algebra was often
focused on students’ difficulties and misunderstandings. Much of this work relied
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on the APOS (Action, Process, Object Schema) framework (Dubinsky, Dautermann,
Leron, & Zazkis, 1994; Dubinsky & Leron, 1994) to develop and refine proposed
cognitive models, called genetic decompositions, which were then used to inves-
tigate students’ understanding of topics, such as groups (Dubinsky et al., 1994),
binary operations (Brown, DeVries, Dubinsky, & Thomas, 1997), coset multipli-
cation (Asiala, Dubinsky, Mathews, Morics, & Oktaç, 1997), and permutations
(Asiala, Kleiman, Brown, & Mathews, 1998). For the most part, these studies
consistently found that many students possessed a very limited understanding of
these concepts. In particular, they struggled to coordinate the various objects and
processes involved (see Leron, Hazzan, & Zazkis, 1995) and they struggled with
the level of abstraction (see Hazzan, 1999) of the content. The research described
in the chapter by Melhuish and Fagan represents an important new phase of
this area of research. Drawing on previous work, Melhuish (2018) developed and
validated an instrument for assessing students’ conceptual understanding of group
theory, producing the first true large-scale investigation of students’ understanding
of abstract algebra.

More recent research has moved away from a focus on student difficulties
and utilized design research methodologies to explore alternative instructional
treatments that build on students’ thinking to support them in developing abstract
algebra concepts through a process of mathematical inquiry (e.g., Cook, 2014;
Larsen, 2009). In addition to supporting the creation of new curricular approaches
(Larsen, Johnson, & Bartlo, 2013), this research has provided new insights into the
complexity of concepts like group and isomorphism (e.g., Larsen, 2009), and has
uncovered cognitive challenges that mirror previously reported student difficulties
with secondary concepts like associativity and commutativity (e.g., Larsen, 2010).
The research described in Cook’s Chap. 3 is situated within this body of work
and represents a first step in developing an inquiry approach to ring and field
theory instruction. His approach builds on students’ previous experiences solving
equations to develop key abstract algebra concepts, such as zero divisors, units,
integral domains, and fields.

While both of the studies described in the two chapters are best understood
as fitting within (and advancing) the research on undergraduate students’ under-
standing of abstract algebra concepts, the authors leverage these studies to draw
attention to the potential value of an abstract algebra course as part of preservice
teachers’ mathematical preparation. In the case of Melhuish and Fagan, insights
about undergraduate students’ struggles with binary operations and functions in
abstract algebra suggest important connections to preservice teachers’ mathematical
knowledge for teaching around the secondary versions of these core concepts. In the
case of Cook, his qualitative analysis of students’ reinvention of the integral domain
concept highlights the relationship between the students’ understanding of the zero-
product property from secondary mathematics and their development of the abstract
algebra notion of a zero divisor. To support our analysis of these two chapters, we
now turn to the ongoing efforts of mathematics educators to understand the role of
mathematical knowledge in supporting the practice of teaching mathematics.

http://dx.doi.org/10.1007/978-3-319-99214-3_3
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Mathematical Knowledge in the Practice of Teaching

Likely spurred by Monk’s (1994) discouraging finding that taking advanced math-
ematics courses did not seem to help secondary teachers support their students’
learning, there has been much work done in the past couple of decades in order
to more fully understand the nature of the mathematical knowledge needed by
teachers. Ball et al. (2008) presented a framework that delineated six domains
of mathematical knowledge for teaching (MKT). These were divided into two
categories, pedagogical content knowledge and subject matter knowledge.

Pedagogical content knowledge (PCK) is the professional subject-specific
knowledge for teaching mathematics. Within the MKT framework, PCK contains
three subdomains that include such things as knowing which mathematical
representations or examples to use in teaching, or being aware of the difficulties
student typically encounter when engaging with particular mathematics—part of
Shulman’s (1986) original descriptions of PCK. Knowledge of content and teaching
(KCT) includes knowledge required to see the relationship between mathematics
and teaching and how instructional decisions are made based on these relationships.
For example, strategically sequencing examples or deciding whether to explore or
table student contributions, involves drawing on knowledge in the KCT subdomain.
The subdomain of knowledge of content and students (KCS) combines knowledge
of mathematics with knowledge of students’ mathematics. Teachers draw on KCS
when they anticipate how students are likely to approach a task, or when they
interpret their students’ solutions. The subdomain of knowledge of content and
curriculum includes knowledge of available curricular materials and how those
approach various mathematical topics. Teachers draw on knowledge of content
and curriculum to ascertain how well specific curricular materials are aligned with
educational goals and how effective they are likely to be in supporting their students’
learning.

The Subject Matter Knowledge domain includes the kinds of knowledge needed
for teaching that are more strictly mathematical, in that they do not explicitly involve
coordination with pedagogical issues. This includes common content knowledge
(CCK), which describes mathematics that can be used in a wide variety of settings
outside of teaching and is knowledge that is considered common among other
fields that use mathematics. In contrast, specialized content knowledge (SCK)
is knowledge that is needed specifically for the work of teaching mathematics.
Teachers draw on CCK when they recognize that a student answer is incorrect
or nonstandard while they draw on SCK when they notice patterns in students’
errors or determine the viability of a nonstandard approach. Lastly, and of particular
importance to this chapter, is horizon content knowledge (HCK), which describes an
awareness of the mathematical territory and “how mathematical topics are related
over the span of mathematics included in the curriculum” (Ball et al., 2008, p. 403).
Ball and Bass (2009) point out that teachers draw on HCK when they reconcile
pedagogical choices in relation to the larger mathematical landscape. An example
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of this is when a teacher makes an instructional decision based on knowledge that
particular choices may (or may not) align with the mathematics that students’ will
encounter in later courses.

An important purpose of this framework is to tease apart the different kinds
of knowledge that might be important for teachers in supporting their students’
learning. The work of finding ways to measure these kinds of teacher knowledge
and ascertain how they are (or could be) related to student success is ongoing. For
our purposes, we will assume that developing knowledge in any of these domains
can be useful to preservice teachers and we will draw on the framework in order to
characterize the nature of the learning opportunities that are highlighted in the two
previous chapters.

In the next section, we briefly summarize the way that each of the previous
chapters call explicit attention to the potentially bidirectional relationship between
preservice teachers’ learning of abstract algebra and their knowledge of secondary
mathematics. We then consider this relationship in light of Ball et al.’s (2008)
framework in order to characterize in what ways this relationship could provide
opportunities to strengthen teachers’ MKT. In the subsequent sections, we critically
consider the validity of the existence of such opportunities as an argument in support
of requiring preservice teachers to study abstract algebra. Finally, we share our
thoughts on how to leverage these opportunities along with some recommendations
and directions for future research on the topic.

Knowledge of Secondary Mathematics and Learning
Abstract Algebra

As Wasserman (this volume) notes in his introduction, there are a number of ways
to think about how secondary teachers might benefit from studying abstract algebra.
Perhaps the most obvious way to think about this is to focus on the mathematical
connections between abstract algebra and school mathematics. Such a focus is not
without its dangers, as indicated by the controversial New Math era reforms. Yet the
idea behind that reform can still be seen in the CBMS (2012) recommendations
for the mathematical preparation of teachers in the form of statements like, “it
would be quite useful for prospective teachers to see how C can be built as a
quotient of R[x]” (CBMS, 2012, p. 59). A very reasonable question to ask in
response to such a statement is “Why?” Abstract algebra certainly provides a
highly sophisticated perspective on a variety of secondary mathematics topics, but it
simply does not follow that a teacher’s pedagogical practice would (or even could)
benefit from studying abstract algebra. Or perhaps, rather, we should say it does not
follow simply. In their chapters, both Cook, and Melhuish and Fagan take a much
deeper (and focused) look at the connection between abstract algebra and secondary
mathematics. In doing so, they are able to make considerably more convincing and
specific conjectures about how studying abstract algebra could benefit preservice
teachers.
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Melhuish and Fagan report on a mixed methods study using the Group Concept
Assessment (GCA). The quantitative results from a large-scale administration of the
GCA tool demonstrated that abstract algebra students struggle with questions about
binary operations and functions, and struggle even more when tasks require the
coordination of these concepts with other abstract algebra concepts. The validation
interviews conducted as part of the development of the instrument provided richer
qualitative data that surfaced a number of critical ways in which students’ preex-
isting understandings of binary operation and function supported and constrained
their reasoning about the abstract algebra tasks. Further, these tasks appeared to
provide opportunities for students to confront limitations in these understandings
and to develop richer knowledge of binary operation and function. For example,
students tended to have views of both concepts that limited the kinds of things they
were able to perceive as functions or binary operations. Some students expected
functions to be injective; others expected binary operations to be presented in E-
O-E (element–operation–element) form. These limited conceptions constrained the
students’ abilities to construct the kernel of a non-injective homomorphism or to
determine whether the averaging operation was associative.

Although these observations are relevant to those interested in the teaching
and learning of abstract algebra for its own sake (they suggest that students’
prior experiences, especially regarding functions and operations, may have an
important impact on how they are able to engage with abstract algebra), the authors
appropriately focus on the possibility of an influence in the opposite direction. As
this volume is interested in the preparation of secondary mathematics teachers, it
is worth considering whether grappling with these sorts of abstract algebra tasks
might impact students’ understanding of the concepts of function and operation
(core K-12 concepts) in ways that can support their teaching practice. Melhuish
and Fagan frame this in terms of Hohensee’s (2014) notion of backward transfer.
Ultimately, they claim that there are opportunities, while studying abstract algebra,
for preservice teachers to deepen their understandings of secondary concepts, such
as functions and binary operations. They then describe a number of different ways
that preservice teachers’ knowledge could be deepened by studying abstract algebra.
For the most part, these are focused on increasing mathematical flexibility and
disentangling related concepts.

In his chapter, Cook provides an even richer analysis of a connection between
secondary mathematics and abstract algebra. He engages a pair of students in the
process of reinventing fundamental concepts of ring and field theory in the context
of a laboratory teaching experiment. This context gives him a unique opportunity
to watch students grapple with a limited view of the zero-product property (ZPP)
as they attempt to reinvent the related abstract algebra concept of a zero divisor,
on the way to developing a productive way to classify different kinds of rings. In
particular, Cook observed that one of the students came into the reinvention process
with a view that the ZPP is a universal truth. As such, this student rejected solutions
to an equation that involved two nonzero elements multiplying to produce zero.
This perspective was eventually refined as he began to use the label “awkward” to
describe products of nonzero elements that equaled zero. This refinement enabled
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him to build a new understanding, in which (for example) uniqueness of solutions is
a property that is enjoyed by systems that don’t have zero divisors (awkward ways
to get zero). In this way, Cook’s study provides an existence proof for the kind of
backward transfer that Melhuish and Fagan propose in their chapter.

To What Kinds of MKT Are These Chapters Referring?

The first two chapters of this section make claims about the potential of learn-
ing abstract algebra to deepen preservice teachers’ knowledge. Our aim in this
commentary is to critically examine these claims and then, under the assumption
that this potential exists, to consider how to capitalize on this potential in ways
that can positively impact preservice teacher education. We start by attempting to
characterize the nature of the learning opportunities the authors refer to in terms of
the MKT framework.

We begin by observing that while the kinds of knowledge referenced in the
two chapters might support preservice teachers in developing pedagogical content
knowledge, they cannot be categorized as examples of KCS, KCT, or knowledge
of content and curriculum. Each of these categories of MKT involves coordinating
mathematics and an aspect of pedagogy (students, teaching, and curriculum). Later,
when we discuss recommendations, we will briefly address the possibility of
promoting the development of pedagogical content knowledge in the context of
learning abstract algebra (drawing inspiration from Cook’s Chap. 3). However,
until then, we will focus on subject matter knowledge, which more accurately
captures the kinds of knowledge the authors explore as it is focused on knowledge
of mathematics itself.

Melhuish and Fagan delineate a number of aspects of knowledge related to
functions and binary operations that could be developed in the context of studying
abstract algebra. Here we will consider two specific aspects as we attempt to identify
the kinds of subject matter knowledge that might be developed in an abstract
algebra course: (1) symbolic expressions for binary operations; and (2) conceptual
understanding of the associative property. Similarly, we will attempt to characterize
the primary learning opportunity (involving the zero-product property) that was
highlighted in Cook’s Chap. 3. However, we first argue that none of these is properly
characterized as exemplifying specialized content knowledge (SCK).

Specialized content knowledge refers to knowledge “not typically needed for
purposes other than teaching” (Ball et al., 2008, p. 400). This includes things like
the ability to analyze a nonstandard student strategy to see if it is likely to work
in general, and the ability to recognize patterns in students’ errors. Johnson and
Larsen (2012) observed that it is likely the case that mathematicians make use of
this kind of knowledge in their research activity (e.g., reviewing research papers
or collaborating with other mathematicians), which suggests that it is perhaps an
overstatement to say that this kind of knowledge is not typically needed outside of
teaching. Nevertheless, it is useful to think of this category of knowledge as being
related closely to the activity of teaching.

http://dx.doi.org/10.1007/978-3-319-99214-3_3
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Can one categorize the kinds of learning opportunities described in the previous
two chapters as developing SCK? To help tease apart why we do not think so, we
consider Melhuish and Fagan’s observation that abstract algebra can help preservice
teachers develop flexibility in moving between and leveraging alternate function
representations. Certainly, when students generate nonstandard approaches, these
approaches often come with nonstandard representations. Thus, developing flexibil-
ity with representations likely positions a preservice teacher well to engage in the
activity of making sense of students’ ideas in practice. So, why do we not consider
developing such flexibility to be an example of developing SCK? First, as Melhuish
and Fagan note, this kind of flexibility is important to mathematics majors in the
context of abstract algebra, so it does not qualify as knowledge specific to teaching.
Second (and more importantly), having such flexibility is not the same thing as
having the ability to leverage it to make sense of student thinking. The argument,
that flexibility with representations likely supports teachers in making sense of
student thinking, actually suggests that a teacher’s ability to develop and apply
SCK is likely constrained by the nature of their common content knowledge (and
perhaps also by their horizon content knowledge). Given the goals of this book, this
is both an important connection and an important distinction to make between SCK
and other kinds of subject matter knowledge. The connection suggests the potential
usefulness of having teachers study abstract algebra, while the distinction suggests
that realizing this potential is a nontrivial proposition. In our summary remarks,
we pick up this thread again and consider the possibility of developing SCK in
the context of an abstract algebra course. Until that time, we will focus on the
potential of studying abstract algebra for supporting the development of preservice
teachers’ horizon content knowledge and the deepening of their common content
knowledge, which we regard as the two categories of MKT most appropriately
associated with the learning opportunities highlighted in these two chapters. We
begin by considering two issues addressed by Melhuish and Fagan and argue that
one exemplifies horizon content knowledge, while the other exemplifies common
content knowledge (CCK).

We first consider the observation by Melhuish and Fagan that abstract algebra
provides an opportunity to move students beyond limited views of binary operation
that would require symbolic expressions to be in the E-O-E form. For a secondary
teacher, horizon content knowledge would refer to knowledge of how ideas in
secondary mathematics evolve as one moves into undergraduate mathematics and
beyond. Certainly, binary operations are not assumed to be given by symbolic
formulae or presented in E-O-E form in advanced mathematics. Thus, it is clear
that this advance in knowledge about binary operations counts as an instance of
developing horizon content knowledge. An examination of the secondary math-
ematics curriculum suggests that students are confronted infrequently by binary
operations that are not expressed in terms of symbolic expressions and, while they
may be exposed to binary operations (e.g., averaging) not expressed in E-O-E form,
they are unlikely to need to think of them explicitly as binary operations (e.g.,
to prove averaging is non-associative). In this sense, this deepening of the binary
operation concept is probably not best categorized as an instance of common content
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knowledge, which refers to knowledge that is not specific to teaching, but that would
be expected of anyone with a working understanding of secondary mathematics.

However, when Melhuish and Fagan discuss opportunities to develop conceptual
understanding of the associative property, they are referring to an opportunity to
strengthen preservice teachers’ common content knowledge (CCK). While anyone
with a working knowledge of secondary mathematics would have some understand-
ing of the associative property, research suggests that preservice teachers may still
need to strengthen this knowledge by disentangling a number of related concepts
(e.g., commutativity, order of operations, bracketing). This raises an important issue
related to common content knowledge. While it is classified as knowledge that
is not specific to teaching, the strength of a preservice teachers’ common content
knowledge in terms of connections is likely to be a significant factor in their ability
to develop and utilize other kinds of MKT. For example, as Larsen (2010) notes,
understanding how commutativity and associativity are related to order (order of
operations versus order of operands) is a nontrivial matter, even for undergraduates.
Such an understanding is likely important when teachers are making sense of
students’ struggles (Kieran, 1979) with bracketing (SCK) or making decisions about
what kind of tasks will help their students in understanding associativity (KCT). So
while this and other kinds of knowledge highlighted in the previous two chapters are
best categorized as exemplifying common content knowledge (CCK), this should
not be taken as an indication that they do not represent important potential ways
that studying abstract algebra could support future teachers.

Cook focused on the relationship between the zero-product property (an impor-
tant concept from secondary mathematics) and zero divisors (a foundational idea
in ring theory). In his design experiment, Cook was able to identify a deepening of
students’ understanding of the zero-product property as they developed the concept
of zero divisors in the context of exploring uniqueness (or rather nonuniqueness) of
solutions to linear equations. We argue that the knowledge gained in this process
included both horizon and common content knowledge. On the one hand, the
students’ understanding of the zero-product property was deepened in the sense
that they realized that this is not a basic fact about the additive identity (zero), but
rather is dependent on the nature of the operation. Furthermore, the connection
between this property and the uniqueness of solutions was strengthened by the
awareness that systems that do not have this property contain linear equations
with multiple solutions. In this sense, the students were deepening their common
content knowledge (CCK). On the other hand, the students were able to build direct
connections between secondary algebra (ZPP, equation solving) and abstract algebra
(zero-divisors, integral domains) to develop knowledge of the trajectory of these
ideas across the mathematics curriculum. In this sense, the students were developing
horizon content knowledge.

In summary, we consider the two previous chapters to be compelling arguments
that abstract algebra courses provide numerous opportunities to develop preservice
teachers’ horizon content knowledge and deepen their common content knowledge.
We also argue that the nature of a preservice teachers’ common and horizon
content knowledge likely provides important constraints on and affordances for their
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development of other kinds of mathematical knowledge for teaching. We now turn
to the question of realizing these opportunities provided by abstract algebra courses.

Reasons to Be Skeptical About the Idea of Backward Transfer

Although both chapters make a credible case for the possibility that studying
abstract algebra can provide opportunities to deepen preservice teachers’ under-
standing of secondary mathematics, there are good reasons to be skeptical. Lobato
(2006) notes that students construct their own connections between situations and
that these do not necessarily reflect the mathematical invariants to which experts
attend (like algebraic structure). It seems that the prospects for backward transfer
are likely to be even worse, since in the context of an abstract algebra course
there is little reason to expect preservice teachers to do the work of reconsidering
their secondary mathematics knowledge in light of their new knowledge of abstract
algebra. Certainly, the research demonstrates that students are very capable of
maintaining unconnected and even contradictory ideas about concepts. For example,
students may have concept images of the limit of a function that are in conflict with
the formal definition of limit without perceiving any contradiction (Tall & Vinner,
1981). This suggests that a preservice teacher could develop a concept image of
a secondary concept that contains the more sophisticated aspects developed in an
abstract algebra course without these being coordinated with the aspects associated
with the secondary version of the concept. As a result, while we (as experts) may see
a more sophisticated version of a secondary mathematics concept when we observe
a preservice teacher reasoning successfully in an abstract algebra context, it does
not follow that the way the preservice teacher will reason about this concept in
a secondary context will reflect this sophisticated understanding. For example, a
preservice teacher who is able to construct an operation on the set {1, 2, 4} that
defines a group may still only bring to mind operations with explicit formulas when
designing and teaching a high school algebra lesson.

Even in the case where preservice teachers do make connections between abstract
algebra and secondary mathematics, it does not follow directly that as teachers they
will be able (or should even try) to leverage them to support student learning. Some
connections may hold more potential for positively impacting practice than others
and some means of leveraging such knowledge in practice may be more beneficial
than others. For example, it seems unlikely that it would be helpful for a high school
teacher to start using terms like zero divisor and integral domain when teaching a
lesson on polynomial equations. However, it could be quite helpful for a teacher to
make extra time in such a lesson to help students make sense of why it is useful
to manipulate the equation so that zero appears alone on one side of the equation,
while a factored polynomial appears on the other.

In short, one can argue that even with the more focused and nuanced connections
between abstract algebra and school mathematics that are elaborated in the two
previous chapters, we are still in very much the same place we were when the
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New Math reforms were initiated. As experts, we see a connection between abstract
algebra and school mathematics. It seems reasonable to us that knowledge of those
connections could somehow support teachers in their practice. However, even with
the ability to articulate what kind of mathematical knowledge this backward transfer
could support, we are still left to figure out how to actually promote the occurrence
of this kind of learning and how to support teachers in productively leveraging these
kinds of knowledge in their practice.

A Reason for Optimism about Intentionally Engineering
Backward Transfer Opportunities

We start this section by acknowledging that the field of mathematics education
is still working to understand connections between MKT, teaching practice, and
student learning. It may very well be the case that the field eventually learns that
some of the kinds of knowledge described in Ball et al.’s (2008) framework do
not actually have a significant impact on teachers’ practice or on their students’
learning. We will not take on this question in this commentary. Instead, we will
operate under the assumption that the domains of MKT are potentially valuable
to teachers, and accept the claims of Meluish and Fagan, and Cook that abstract
algebra provides an opportunity to promote these kinds of MKT. As such, we will
focus for the remainder of the chapter on the question of how to capitalize on these
opportunities.

We make two recommendations for teacher educators who find potential value
in the idea of supporting the development of MKT in preservice teachers through
a process of what Melhuish and Fagan refer to as backward transfer. The first
recommendation is to not expect it to happen without intentional intervention.
Here we note that preservice teachers sometimes take abstract algebra courses
that are not specifically designed for teachers. In this case, there is little reason
to hope that the preservice teachers in the course will make these connections for
themselves. As Wasserman (this volume) notes in his introduction, research suggests
that they are likely to see this course as having little or nothing to do with teaching
secondary mathematics. However, it is possible to follow up such a course with
an algebra course for teachers that could recreate the situations seen in Melhuish
and Fagan’s interviews, or Cook’s teaching experiment, in order to explicitly design
opportunities for preservice teachers to actively engage in actor-oriented (Lobato,
2006) backward transfer. We strongly recommend the inclusion of such courses
as part of the mathematical preparation of teachers. Frankly, given the findings of
Monk (1994) and others, we see no good argument for requiring preservice teachers
to take a regular abstract algebra course if it is not followed up by experiences that
are designed to leverage the MKT learning opportunities provided by the study of
abstract algebra.
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Our second recommendation stems from Cook’s experience with his participants.
His goal was to develop an approach to teaching ring and field theory featuring
a process of guided reinvention. With this approach, the students are explicitly
engaged in developing the formal abstract algebra concepts by building on the
informal understandings they bring to the process (including their knowledge of
secondary mathematics). This approach seems to have the potential to support
backward transfer in that it engages the students in a process that requires them
to navigate back and forth between their knowledge of secondary mathematics
(e.g., ZPP) and abstract algebra (e.g., zero divisors). This kind of process seems
well suited to support students in connecting these two domains. For this reason,
we argue that engaging students in this type of reinvention process is a promising
instructional approach for developing preservice teachers’ horizon content knowl-
edge and deepening their common content knowledge.

Additionally, we argue that such an approach also creates opportunities to expand
on the potential of studying abstract algebra to develop MKT by also supporting the
development of specialized content knowledge (SCK) and knowledge of content
and students (KCS). Collectively engaging abstract algebra students—who, in
this case, are preservice teachers—in guided reinvention requires an instructor
to elicit and then build on students’ informal understandings to develop formal
concepts. Often these informal understandings represent students’ common content
knowledge of related secondary concepts. We saw this in Cook’s Chap. 3, as
Brian’s understanding of the secondary concept of the zero-product property
provided the starting point for the development of the concept of zero divisors (and
eventually integral domains). In a classroom in which students are engaged in the
guided reinvention of abstract algebra concepts, students will frequently share their
informal understandings and be asked to make sense of and critique other students’
strategies and ideas. This provides two kinds of learning opportunities that are not
afforded by teacher-centered instructional approaches. First, this context provides
them with opportunities to confront common struggles that students (themselves
and others) have with core concepts (e.g., they can observe classmates struggle with
the notion of a zero divisor or with an operation not given by a formula) and thus
develop KCS (a category of knowledge that is focused on understanding typical
student approaches and struggles related to a concept). Second, this context provides
many opportunities to make sense of other students’ ideas, thus providing an
excellent opportunity to develop SCK. Essentially, the collective endeavor of guided
reinvention has a unique feature in that the students are engaged as participants in
what is typically a teaching activity (analyzing student thinking), which affords a
rare opportunity to engage in the kind of mathematical thinking that is (typically)
uniquely required in teaching. Notice that this offers a second argument in support
of providing preservice teachers with experiences, as learners, in the kinds of
classrooms (interactive and focused on student thinking) that they are encouraged
to create for their own students. Not only do such courses provide important models
of teaching for preservice teachers (as noted by Wasserman in his introduction to
this volume), but they also engage preservice teachers in the kinds of mathematical
activity that can promote the development of SCK and KCS.

http://dx.doi.org/10.1007/978-3-319-99214-3_3
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Summary and Directions for Future Research

In the previous two chapters, the authors make a credible case that learning abstract
algebra can provide opportunities to strengthen preservice teachers’ common
content knowledge and to develop their horizon content knowledge. However,
we cannot assume that these opportunities will be realized simply by requiring
preservice teachers to take a traditional abstract algebra course. Instead, we should
design experiences for preservice teachers that actively engage them in making
connections between their newly acquired knowledge of abstract algebra and sec-
ondary mathematics. Furthermore, preservice teachers should be actively engaged
in thinking about the consequences of these connections for their practice and how
their new and deeper knowledge of secondary mathematics could help them support
their students’ learning. Finally, we argue that actively engaging preservice teachers
in developing the concepts of abstract algebra by building on their understandings
of the secondary concepts (perhaps through guided reinvention) is likely to be
more effective than traditional approaches in terms of building connections between
secondary mathematics and abstract algebra. Additionally, such an approach has
the potential to develop aspects of MKT beyond horizon and common content
knowledge by actively engaging preservice teachers in making sense of and
critiquing the mathematics of others. In summary, Melhuish and Fagan, and Cook
provide us with productive ways to think about why preservice mathematics teachers
should study abstract algebra, but much work will need to be done to learn how to
consistently realize the potential of abstract algebra courses in preservice teacher
education.

We conclude by calling for research and development focused on ascertaining
and realizing the true potential of abstract algebra courses to develop preservice
teachers’ MKT. First, research is needed to determine the extent to which the kinds
of learning opportunities described in the two previous chapters are, in fact, realized
by preservice teachers who take standard courses in abstract algebra. A study
modeled after that of Melhuish and Fagan (but focused more closely on preservice
and/or inservice teachers, and with a more intentional emphasis on core concepts
of secondary mathematics) could address this issue nicely. We strongly suspect that
the results of such research may be discouraging because traditional abstract algebra
courses are not typically designed to support these specific kinds of learning. For
this reason, we also call for instructional design research focused on developing
means of intentionally engineering these kinds of opportunities in algebra courses
for teachers. Such research could profitably build on the work described in Cook’s
Chap. 3.

Finally, it is important that the field continue to take on the very difficult questions
regarding how and to what extent different kinds of MKT can have a positive impact
on teachers’ practice and students’ learning. We strongly suspect that it is necessary
to explicitly and intentionally support preservice teachers in developing these kinds
of knowledge and to explicitly and intentionally support them in translating this
knowledge to their teaching practice. For this reason, we encourage projects that
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bring together researchers primarily focused on the mathematical preparation of
teachers with researchers primarily focused on the pedagogical training of teachers.
Such collaborations hold the most promise for realizing the potential of abstract
algebra courses as an important part of preservice teacher education.
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