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Abstract. Probabilistic timed automata (PTAs) are timed automata
(TAs) extended with discrete probability distributions. They serve as a
mathematical model for a wide range of applications that involve both
stochastic and timed behaviours. In this work, we consider the prob-
lem of model-checking linear dense-time properties over PTAs. In par-
ticular, we study linear dense-time properties that can be encoded by
TAs with infinite acceptance criterion. First, we show that the problem
of model-checking PTAs against deterministic-TA specifications can be
solved through a product construction. Based on the product construc-
tion, we prove that the computational complexity of the problem with
deterministic-TA specifications is EXPTIME-complete. Then we show
that when relaxed to general (nondeterministic) TAs, the model-checking
problem becomes undecidable. Our results substantially extend state of
the art with both the dense-time feature and the nondeterminism in TAs.

1 Introduction

Stochastic timed systems are systems that exhibit both timed and stochastic
behaviours. Such systems play a dominant role in many applications [1], hence
addressing fundamental issues such as safety and performance over these systems
are important. Probabilistic timed automata (PTAs) [2–4] serve as a good math-
ematical model for these systems. They extend the well-known model of timed
automata [5] (for nonprobabilistic timed systems) with discrete probability dis-
tributions, and Markov Decision Processes (MDPs) [6] (for untimed probabilistic
systems) with timing constraints.
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Formal verification of PTAs has received much attention in recent years [2].
For branching-time model-checking of PTAs, the problem is reduced to com-
putation of reachability probabilities over MDPs through well-known finite
abstraction for timed automata (namely regions and zones) [3,4,7]. Advanced
techniques for branching-time model checking of PTAs such as inverse method
and symbolic method have been further explored in [8–11]. Extension with cost
or reward, resulting in priced PTAs, has also been well investigated. Jurdzinski
et al. [12] and Kwiatkowska et al. [13] proved that several notions of accumu-
lated or discounted cost are computable over priced PTAs, while cost-bounded
reachability probability over priced PTAs is shown to be undecidable by Berend-
sen et al. [14]. Most verification algorithms for PTAs have been implemented in
the model checker PRISM [15]. Computational complexity of several verification
problems for PTAs has been studied, for example, [12,16,17].

For linear-time model-checking, much less is known. As far as we know,
the only relevant result is by Sproston [18] who proved that the problem of
model-checking PTAs against linear discrete-time properties encoded by untimed
deterministic omega-regular automata (e.g., Rabin automata) can be solved by a
product construction. In his paper, Sproston first devised a production construc-
tion that produces a PTA out of the input PTA and the automaton; then he
proved that the problem can be reduced to omega-regular verification of MDPs
through maximal end components.

In this paper, we study the problem of model-checking linear dense-time
properties over PTAs. Compared with discrete-time properties, dense-time prop-
erties take into account timing constraints, and therefore is more expressive and
applicable to time-critical systems. Simultaneously, verification of dense-time
properties is more challenging since it requires to involve timing constraints.
The extra feature of timing constraints also brings more theoretical difficulty,
e.g., timed automata [5] (TAs) are generally not determinizable, which is in
contrast to untimed automata (such as Rabin or Muller automata).

We focus on linear dense-time properties that can be encoded by TAs. Due
to the ability to model dense-time behaviours, TAs can be used to model real-
time systems, while they can also act as language recognizers for timed omega-
regular languages. Here we treat TAs as language recognizers for timed paths
from a PTA, and study the problem of computing the minimum or maximum
probability that a timed path from the PTA is accepted by the TA. The intuition
is that a TA can recognize the set of “good” (or “bad”) timed paths emitting
from a PTA, so the problem is to compute the probability that the PTA behaves
in a good (or bad) manner. The relationship between TAs and linear temporal
logic (e.g., Metric Temporal Logic [19]) is studied in [20,21].

Our Contributions. We distinguish between the subclass of deterministic TAs
(DTAs) and general nondeterministic TAs. DTAs are the deterministic subclass
of TAs. Although the class of DTAs is weaker than general timed automata,
it can recognize a wide class of formal timed languages, and express inter-
esting linear dense-time properties which cannot be expressed in branching-
time logics (cf. [22]). We consider Rabin acceptance condition as the infinite
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acceptance criterion for TAs. We first show that the problem of model-checking
PTAs against DTA specifications with Rabin acceptance condition can be solved
through a nontrivial product construction which tackles the integrated feature
of timing constraints and randomness. From the product construction, we fur-
ther prove that the problem is EXPTIME-complete. Then we show that the
problem becomes undecidable when one considers general TAs. Our results sub-
stantially extend previous ones (e.g. [18]) with both the dense-time feature and
the nondeterminism in TAs.

Due to lack of space, detailed proofs of several results and some experimental
results are put in the full version [23].

2 Preliminaries

We denote by N, N0, Z, and R the sets of all positive integers, non-negative
integers, integers and real numbers, respectively. For any infinite word w =
b0b1 . . . over an alphabet Σ, we denote by inf(w) the set of symbols in Σ that
occur infinitely often in w. A clock is a variable for a nonnegative real number.
Below we fix a finite set X of clocks.

Clock Valuations. A clock valuation is a function ν : X → [0,∞). The set of clock
valuations is denoted by Val (X ). Given a clock valuation ν, a subset X ⊆ X of
clocks and a non-negative real number t, we let (i) ν[X := 0] be the clock valu-
ation such that ν[X := 0](x) = 0 for x ∈ X and ν[X := 0](x) = ν(x) otherwise,
and (ii) ν + t be the clock valuation such that (ν + t)(x) = ν(x)+ t for all x ∈ X .
We denote by 0 the clock valuation such that 0(x) = 0 for x ∈ X .

Clock Constraints. The set CC (X ) of clock constraints over X is generated by
the following grammar: φ := true | x ≤ d | c ≤ x | x+c ≤ y+d | ¬φ | φ∧φ
where x, y ∈ X and c, d ∈ N0. We write false for a short hand of ¬true. The
satisfaction relation |= between valuations ν and clock constraints φ is defined
through substituting every x ∈ X appearing in φ by ν(x) and standard semantics
for logical connectives. For a given clock constraint φ, we denote by �φ� the set
of all clock valuations that satisfy φ.

2.1 Probabilistic Timed Automata

A discrete probability distribution over a countable non-empty set U is a function
q : U → [0, 1] such that

∑
z∈U q(z) = 1. The support of q is defined as supp(q) :=

{z ∈ U | q(z) > 0}. We denote the set of discrete probability distributions over
U by D(U).

Definition 1 (Probabilistic Timed Automata [2]). A probabilistic timed
automaton (PTA) C is a tuple

C = (L, �∗,X ,Act, inv, enab,prob, AP ,L) (1)
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where:

– L is a finite set of locations;
– �∗ ∈ L is the initial location;
– X is a finite set of clocks;
– Act is a finite set of actions;
– inv : L → CC (X ) is an invariant condition;
– enab : L × Act → CC (X ) is an enabling condition;
– prob : L × Act → D

(
2X × L

)
is a probabilistic transition function;

– AP is a finite set of atomic propositions;
– L : L → 2AP is a labelling function.

W.l.o.g, we consider that both Act and AP is disjoint from [0,∞). Below we fix
a PTA C. The semantics of PTAs is as follows.

States and Transition Relation. A state of C is a pair (�, ν) in L × Val (X ) such
that ν |= inv(�). The set of all states is denoted by SC . The transition relation
→ consists of all triples ((�, ν), a, (�′, ν′)) satisfying the following conditions:

– (�, ν), (�′, ν′) are states and a ∈ Act ∪ [0,∞);
– if a ∈ [0,∞) then ν + τ |= inv(�) for all τ ∈ [0, a] and (�′, ν′) = (�, ν + a);
– if a ∈ Act then ν |= enab(�, a) and there exists a pair (X, �′′) ∈

supp(prob(�, a)) such that (�′, ν′) = (�′′, ν[X := 0]).

By convention, we write s
a−→s′ instead of (s, a, s′) ∈→. We omit ‘C’ in ‘SC ’ if the

underlying context is clear.

Probability Transition Kernel. The probability transition kernel P is the function
P : S × Act × S → [0, 1] such that

P((�, ν), a, (�′, ν′)) =

⎧
⎪⎨

⎪⎩

1 if (�, ν) a−→(�′, ν′) and a ∈ [0,∞)
∑

Y ∈B prob(�, a)(Y, �′) if (�, ν) a−→(�′, ν′) and a ∈ Act

0 otherwise

where B := {X ⊆ X | ν′ = ν[X := 0]}.

Well-formedness. We say that C is well-formed if for every state (�, ν) and action
a ∈ Act such that ν |= enab(�, a) and every (X, �′) ∈ supp(prob(�, a)), one has
that ν[X := 0] |= inv(�′). The well-formedness is to ensure that when an action
is enabled, the next state after taking this action will always be legal. In the
following, we always assume that the underlying PTA is well-formed. Non-well-
formed PTAs can be repaired into well-formed PTAs [9].

Paths. A finite path ρ (under C) is a finite sequence 〈s0, a0, s1, . . . , an−1, sn〉 (n ≥
0) in S × ((Act ∪ [0,∞)) × S)∗ such that (i) s0 = (�∗,0), (ii) a2k ∈ [0,∞) (resp.
a2k+1 ∈ Act) for all integers 0 ≤ k ≤ n

2 (resp. 0 ≤ k ≤ n−1
2 ) and (iii) for all

0 ≤ k ≤ n − 1, sk
ak−→sk+1. The length |ρ| of ρ is defined by |ρ| := n. An infinite

path (under C) is an infinite sequence 〈s0, a0, s1, a1, . . . 〉 in (S × (Act ∪ [0,∞)))ω
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such that for all n ∈ N0, the prefix 〈s0, a0, . . . , an−1, sn〉 is a finite path. The set
of finite (resp. infinite) paths under C is denoted by Paths∗C (resp. PathsωC ).

Schedulers. A (deteterministic) scheduler is a function σ from the set of finite
paths into Act∪[0,∞) such that for all finite paths ρ = s0a0 . . . sn, (i) σ(ρ) ∈ Act
(resp. σ(ρ) ∈ [0,∞)) if n is odd (resp. even) and (ii) there exists a state s′ such

that sn
σ(ρ)−−−→s′.

Paths under Schedulers. A finite path s0a0 . . . sn follows a scheduler σ if for all
0 ≤ m < n, am = σ (s0a0 . . . sm). An infinite path s0a0s1a1 . . . follows σ if for
all n ∈ N0, an = σ (s0a0 . . . sn). The set of finite (resp. infinite) paths following
a scheduler σ is denoted by Paths∗C,σ (resp. PathsωC,σ). We note that the set
Paths∗C,σ is countably infinite from definition.

Probability Spaces under Schedulers. Let σ be any scheduler. The probability
space w.r.t σ is defined as (ΩC,σ,FC,σ,PC,σ) where (i) ΩC,σ := PathsωC,σ, (ii)
FC,σ is the smallest sigma-algebra generated by all cylinder sets induced by
finite paths for which a finite path ρ induces the cylinder set Cyl(ρ) of all infinite
paths in PathsωC,σ with ρ being their (common) prefix, and (iii) PC,σ is the unique
probability measure such that for all finite paths ρ = s0a0 . . . an−1sn in Paths∗C,σ,

P
C,σ(Cyl(ρ)) =

∏n−1
k=0 P(sk, σ(s0a0 . . . ak−1sk), sk+1).

For details see [4].

Zenoness and Time-Divergent Schedulers. An infinite path π = s0a0s1a1 . . . is
zeno if

∑∞
n=0 dn < ∞, where dn := an if an ∈ [0,∞) and dn := 0 otherwise. Then

a scheduler σ is time divergent if PC,σ({π | π is zeno}) = 0. In the following, we
only consider time-divergent schedulers. The purpose is to eliminate non-realistic
zeno behaviours (i.e., performing infinitely many actions within a finite amount
of time).

WORKα

x ≤ 10
{α}

•

WORKβ

x ≤ 15
{β}

•

τα, true

{x}, 0.1
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Fig. 1. A simple task-processing example
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In the following example, we illustrate a PTA which models a simple task-
processing example.

Example 1. Consider the PTA depicted in Fig. 1. WORKα,WORKβ are loca-
tions and x is the only clock. Below each location first comes (vertically)
its invariant condition and then the set of labels assigned to the loca-
tion. For example, inv(WORKα) = x ≤ 10 and L(WORKα) = {α}. The
two dots together with their corresponding solid line and dashed arrows
refer to two actions τα, τβ with their enabling conditions and transition
probabilities given by the probabilistic transition function. For example,
the upper dot at the right of WORKα refers to the action τα for which
enab(WORKα, τα) = true, prob(WORKα, τα)({x},WORKα) = 0.1, and
prob(WORKα, τα)({x},WORKβ) = 0.9. The PTA models a faulty machine
which processes two different kinds of jobs (i.e., α, β) in an alternating fashion.
If the machine fails to complete the current job, then it will repeat processing
the job until it completes the job. For job α, the machine always processes the
job within 10 time units (cf. the invariant condition x ≤ 10), but may fail to
complete the job with probability 0.1; Analogously, the machine always processes
the job β within 15 time units (cf. the invariant condition x ≤ 15), but may fail
to complete the job with probability 0.2. Note that we omit the initial location
in this example.

2.2 Timed Automata

Definition 2 (Timed Automata [22,24,25]). A timed automaton (TA) A is
a tuple

A = (Q,Σ,Y,Δ) (2)

where

– Q is a finite set of modes;
– Σ is a finite alphabet of symbols disjoint from [0,∞);
– Y is a finite set of clocks;
– Δ ⊆ Q × Σ × CC (Y) × 2Y × Q is a finite set of rules.

A is a deterministic TA (DTA) if the following holds:

1. (determinism) for (qi, bi, φi,Xi, q
′
i) ∈ Δ (i ∈ {1, 2}), if (q1, b1) = (q2, b2) and

�φ1� ∩ �φ2� = ∅ then (φ1,X1, q
′
1) = (φ2,X2, q

′
2);

2. (totality) for all (q, b) ∈ Q×Σ and ν ∈ Val (X ), there exists (q, b, φ,X, q′) ∈ Δ
such that ν |= φ.

Informally, A TA is deterministic if there is always exactly one rule applicable
for the timed transition. We do not incorporate invariants in TAs as we use TAs
as language acceptors.

Below we illustrate the semantics of TAs. We fix a TA A in the form (2).
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Configurations and One-Step Transition Relation. A configuration is a pair (q, ν),
where q ∈ Q and ν ∈ Val (Y). The one-step transition relation

⇒ ⊆ (Q × Val (Y)) × (Σ ∪ [0,∞)) × (Q × Val (Y))

is defined by: ((q, ν), a, (q′, ν′)) ∈⇒ iff either (i) a ∈ [0,∞) and (q′, ν′) = (q, ν+a)
or (ii) a ∈ Σ and there exists a rule (q, a, φ,X, q′) ∈ Δ such that ν |= φ and
ν′ = ν[X := 0]. For the sake of convenience, we write (q, ν) a=⇒(q′, ν′) instead of
((q, ν), a, (q′, ν′)) ∈⇒. Note that if A is deterministic, then there is a unique
(q′, ν′) such that (q, ν) a=⇒(q′, ν′) given any (q, ν), a.

Infinite Timed Words and Runs. An infinite timed word is an infinite sequence
w = {an}n∈N0 such that a2n ∈ [0,∞) and a2n+1 ∈ Σ for all n; the infinite timed
word w is time-divergent if

∑
n∈N0

a2n = ∞. A run of A on an infinite timed
word w = {an}n∈N0 with initial configuration (q, ν), is an infinite sequence ξ =
{(qn, νn, an)}n∈N0 satisfying that (q0, ν0) = (q, ν) and (qn, νn) an=⇒(qn+1, νn+1) for
all n ∈ N0; the trajectory traj(ξ) of the run ξ is defined as an infinite word over
Q such that traj(ξ) := q0q1 . . . . Note that if A is deterministic, then there is a
unique run on every infinite timed word.

Below we illustrate the acceptance condition for TAs. We consider Rabin
acceptance condition as the infinite acceptance condition.

Definition 3 (Rabin Acceptance Condition [1]). A TA with Rabin accep-
tance condition (TRA) is a tuple

A = (Q,Σ,Y,Δ,F) (3)

where (Q,Σ,Y,Δ) is a TA and F is a finite set of pairs F =
{(H1,K1), . . . , (Hn,Kn)} representing a Rabin condition for which Hi and Ki

are subsets of Q for all i ≤ n. A is a deterministic TRA (DTRA) if (Q,Σ,Y,Δ)
is a DTA. A set Q′ ⊆ Q is Rabin-accepting by F , written as the predicate
ACC (Q′,F), if there is 1 ≤ i ≤ n such that Q′ ∩ Hi = ∅ and Q′ ∩ Ki = ∅. An
infinite timed word w is Rabin-accepted by A with initial configuration (q, ν)
iff there exists a run ξ of (Q,Σ,Y,Δ) on w with (q, ν) such that inf(traj(ξ)) is
Rabin-accepting by F .

Example 2. Consider the DTRA depicted in Fig. 2. The alphabet of this DTRA
is the powerset of atomic propositions in Fig. 1. In the figure, INIT, qα, qβ and
FAIL are modes with the Rabin condition F = {({FAIL}, {qα, qβ})}, y is a clock
and arrows between modes are rules. Cγ ,Wγ (γ ∈ {α, β}) are undetermined
integer constants. For example, there are four rules emitting from qα:

(qα, {α}, y ≤ Cα, ∅, qα), (qα, {β}, y ≤ Wβ , {y}, qβ),

(qα, {α}, Cα < y, ∅,FAIL), (qα, {β},Wβ < y, ∅,FAIL).

INIT is the initial mode to read the first symbol upon which transiting to either
qα or qβ . FAIL is a deadlock mode from which all rules go to itself. Note that the
rules of the DTRA does not satisfy the totality condition. However, we assume
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that all missing rules lead to the mode FAIL and does not affect the Rabin
acceptance condition. The mode qα does not reset the clock y until it reads β.
Moreover, qα does not transit to FAIL only if the time spent within a maximal
consecutive segment of α’s (in an infinite timed word) is no greater than Cα time
units (cf. the rule (qα, {α}, y ≤ Cα, ∅, qα)) and the total time from the start of
the segment until β is read (the time within a maximal consecutive segment of
α’s plus the time spent on the last α in the segment) is no greater than Wβ

(cf. the rule (qα, {β}, y ≤ Wβ , {y}, qβ)). The behaviour of the mode qβ can be
argued similar to that of qα where the only difference is to flip α and β. From
the Rabin acceptance condition, the DTRA specifies a property on infinite timed
words that the time spent within a maximal consecutive segment of α’s (resp.
β’s) and the total time until β (resp. α) is read always satisfy the conditions
specified by qα (resp. qβ).

3 Problem Statement

In this part, we define the PTA-TRA problem of model-checking PTAs against
TA-specifications. The problem takes a PTA and a TRA as input, and computes
the minimum and the maximum probability that infinite paths under the PTA
are accepted by the TRA. Informally, the TRA encodes the linear dense-time
property by judging whether an infinite path is accepted or not through its
external behaviour, then the problem is to compute the probability that an
infinite path is accepted by the TRA. In practice, the TRA can be used to
capture all good (or bad) behaviours, so the problem can be treated as a task
to evaluate to what extent the PTA behaves in a good (or bad) way.

Below we fix a well-formed PTA C taking the form (1) and a TRA A taking
the form (3). W.l.o.g., we assume that X ∩ Y = ∅ and Σ = 2AP . We first show
how an infinite path in PathsωC can be interpreted as an infinite timed word.

Definition 4 (Infinite Paths as Infinite Timed Words). Given an infinite
path π = (�0, ν0)a0(�1, ν1)a1(�2, ν2)a2 . . . under C, the infinite timed word L(π)
is defined as L(π) := a0L(�2)a2L(�4) . . . a2nL(�2n+2) . . . . Recall that ν0 = 0,
a2n ∈ [0,∞) and a2n+1 ∈ Act for n ∈ N0.

Remark 1. Informally, the interpretation in Definition 4 works by (i) dropping
(a) the initial location �0, (b) all clock valuations νn’s, (c) all locations �2n+1’s fol-
lowing a time-elapse, (d) all internal actions a2n+1’s of C and (ii) replacing every
�2n (n ≥ 1) by L(�2n). The interpretation captures only external behaviours
including time-elapses and labels of locations upon state-change, and discards
internal behaviours such as the concrete locations, clock valuations and actions.
Although the interpretation ignores the initial location, we deal with it in our
acceptance condition where the initial location is preprocessed by the TRA.

Definition 5 (Path Acceptance). An infinite path π of C is accepted
by A w.r.t initial configuration (q, ν), written as the single predicate

ACC (A, (q, ν), π), if there is a configuration (q′, ν′) such that (q, ν)
L(�∗)
===⇒(q′, ν′)

and the infinite word L(π) is Rabin-accepted by A with (q′, ν′).



130 H. Fu et al.

The initial location omitted in Definition 4 is preprocessed by specifying
explicitly that the first label L(�∗) is read by the initial configuration (q, ν).
Below we define acceptance probabilities over infinite paths under C.

Definition 6 (Acceptance Probabilities). The probability that C observes A
under scheduler σ and initial mode q ∈ Q, denoted by pσ

q , is defined by:

pσ
q := P

C,σ(AccPathsA,q
C,σ )

where AccPathsA,q
C,σ is the set of infinite paths under C that are accepted by the

TRA A w.r.t (q,0) i.e. AccPathsA,q
C,σ =

{
π ∈ PathsωC,σ | ACC (A, (q,0), π)

}
.

Since the set Paths∗C,σ is countably-infinite, AccPathsA,q
C,σ is measurable since it

can be represented as a countable intersection of certain countable unions of
some cylinder sets (cf. [1, Remark 10.24] for details).

Now we introduce the PTA-TRA problem.

– Input: a well-formed PTA C, a TRA A and an initial mode q in A;
– Output: infσ pσ

q and supσ pσ
q , where σ ranges over all time-divergent sched-

ulers for C.

We refer to the problem as PTA-DTRA if A is deterministic.

4 The PTA-DTRA Problem

In this section, we solve the PTA-DTRA problem through a product construc-
tion. Based on the product construction, we also settle the complexity of the
problem. Below we fix a well-formed PTA C in the form (1) and a DTRA A in
the form (3). W.l.o.g, we consider that X ∩ Y = ∅ and Σ = 2AP .

The Main Idea. The core part of the product construction is a PTA which
preserves the probability of the set of infinite paths accepted by A. The intuition
is to let A reads external actions of C while C evolves along the time axis. The
major difficulty is that when C performs actions in Act, there is a probabilistic
choice between the target locations. Then A needs to know the labelling of the
target location and the rule (in Δ) used for the transition. A naive solution is to
integrate each single rule in Δ into the enabling condition enab in C. However,
this simple solution does not work since a single rule fixes the labelling of a
location in C, while the probability distribution (given by prob) can jump to
locations with different labels. We solve this difficulty by integrating into the
enabling condition enough information on clock valuations under A so that the
rule used for the transition is clear.

The Product Construction. For each q ∈ Q, we let

Tq := {h : Σ → CC (Y) | ∀b ∈ Σ. (q, b, h(b),X, q′) ∈ Δ for some X, q′)} .
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The totality of Δ ensures that Tq is non-empty. Intuitively, every element of Tq

is a tuple of clock constraints {φb}b∈Σ , where each clock constraint φb is chosen
from the rules emitting from q and b. The product PTA C⊗Aq (between C and A
with initial mode q) is defined as

(
L⊗, �∗

⊗,X⊗,Act⊗, inv⊗, enab⊗,prob⊗, Q,L⊗
)

where:

– L⊗ := L × Q;

– �∗
⊗ := (�∗, q
) where q
 is the unique mode such that (q,0)

L(�∗)
===⇒(q
,0);

– X⊗ := X ∪ Y;
– Act⊗ := Act ×

⋃
q Tq;

– inv⊗(�, q) := inv(�) for all (�, q) ∈ L⊗;
– enab⊗ ((�, q), (a, h)) := enab(�, a) ∧

∧
b∈Σ h(b) if h ∈ Tq, and enab⊗

((�, q), (a, h)) := false otherwise, for all (�, q) ∈ L⊗, (a, h) ∈ Act⊗.
– L⊗ (�, q) := {q} for all (�, q) ∈ L⊗;
– prob⊗ is given by

prob⊗ ((�, q), (a, h)) (Y, (�′, q′)) :=
⎧
⎪⎨

⎪⎩

prob (�, a) (Y ∩ X , �′) if (q,L (�′) , h(L (�′)), Y ∩ Y, q′)
is a (unique) rule in Δ

0 otherwise

for all (�, q), (�′, q′) ∈ L⊗, (a, h) ∈ Act⊗ and Y ∈ X⊗.
Besides standard constructions (e.g., the Cartesian product between L and

Q), the product construction also has Cartesian product between Act and
⋃

q Tq.
For each extended action (a, h), the enabling condition for this action is the
conjunction between enab(�, a) and all clock constraints from h. This is to ensure
that when the action (a, h) is taken, the clock valuation under A satisfies every
clock constraint in h. Then in the definition for prob⊗, upon the action (a, h),
the product PTA first perform probabilistic jump from C with the target location
�′, then chooses the unique rule (q,L (�′) , h(L (�′)), Y ∩ Y, q′) from the emitting
mode q and the label L (�′) for which the uniqueness comes from the determinism
of Δ, then perform the discrete transition from A. Finally, we label each (�, q)
by q to meet the Rabin acceptance condition. ��

It is easy to see that the PTA C⊗Aq is well-formed as C is well-formed and
A does not introduce extra invariant conditions.

Example 3. The product PTA between the PTA in Example 1 and the DTRA
in Example 2 is depicted in Fig. 3. In the figure, (WORKα, qα), (WORKβ , qβ)
and (WORKα,FAIL), (WORKβ ,FAIL) are product locations. We omit the ini-
tial location and unreachable locations in the product construction. From the
construction of Tq’s, the functions hi’s are as follows (we omit redundant labels
such as ∅ and {α, β} which never appear in the PTA):

– h0 = {{α} �→ y ≤ Cα, {β} �→ y ≤ Wβ};
– h1 = {{α} �→ y ≤ Cα, {β} �→ Wβ < y};
– h2 = {{α} �→ Cα < y, {β} �→ y ≤ Wβ};
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(WORKα, qα)
x ≤ 10
{qα}

(WORKβ , qβ)
x ≤ 15
{qβ}
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Fig. 3. The product PTA for our running example

– h3 = {{α} �→ Cα < y, {β} �→ Wβ < y};
– h4 = {{β} �→ y ≤ Cβ , {α} �→ y ≤ Wα};
– h5 = {{β} �→ y ≤ Cβ , {α} �→ Wα < y};
– h6 = {{β} �→ Cβ < y, {α} �→ y ≤ Wα};
– h7 = {{β} �→ Cβ < y, {α} �→ Wα < y}.

The intuition is that the DTA accepts all infinite paths under the PTA such
that the failing time for job γ (γ ∈ {α, β}) (the time within the consecutive γ’s)
should be no greater than Cγ and the waiting time for job γ (the failing time
plus the time spent on the last γ) should be no greater than Wγ .

Below we clarify the correspondence between C,A and C⊗Aq. We first show
the relationship between paths under C and those under C⊗Aq. Informally, paths
under C⊗Aq are just paths under C extended with runs of A.

Transformation T for Paths from C into C⊗Aq. The transformation is
defined as the function T : Paths∗C ∪ PathsωC → Paths∗C⊗Aq

∪ PathsωC⊗Aq
which

transform a finite or infinite path under C into one under C⊗Aq. For a finite path
ρ = (�0, ν0)a0 . . . an−1(�n, νn) under C (note that (�0, ν0) = (�∗,0) by definition),
we define T (ρ) to be the unique finite path

T (ρ) := ((�0, q0), ν0 ∪ μ0)a′
0 . . . a′

n−1((�n, qn), νn ∪ μn) (4)

under C⊗Aq such that the following conditions (†) hold:

– (q,0)
L(�∗)
===⇒(q0, μ0) (note that μ0 = 0);
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– for all 0 ≤ k < n, if ak ∈ [0,∞) then a′
k = ak and (qk, μk) ak=⇒(qk+1, μk+1);

– for all 0 ≤ k < n, if ak ∈ Act then a′
k = (ak, ξk) and

(qk, μk)
L(�k+1)=====⇒(qk+1, μk+1) where ξk is the unique function such that for each

symbol b ∈ Σ, ξk(b) is the unique clock constraint appearing in a rule emitting
from qk and with symbol b such that μk |= ξk(b).

Likewise, for an infinite path π = (�0, ν0)a0(�1, ν1)a1 . . . under C, we define T (π)
to be the unique infinite path

T (π) := ((�0, q0), ν0 ∪ μ0)a′
0((�1, q1), ν1 ∪ μ1)a′

1 . . . (5)

under C⊗Aq such that the three conditions in (†) hold for all k ∈ N0 instead of
all 0 ≤ k < n. From the determinism and totality of A, it is straightforward to
prove the following result.

Lemma 1. The function T is a bijection. Moreover, for any infinite path π
under C, π is non-zeno iff T (π) is non-zeno.

Below we also show the correspondence on schedulers before and after the
product construction.

Transformation θ for Schedulers from C into C⊗Aq. We define the func-
tion θ from the set of schedulers under C into the set of schedulers under C⊗Aq

as follows: for any scheduler σ for C, θ(σ) (for C⊗Aq) is defined such that
for any finite path ρ under C where ρ = (�0, ν0)a0 . . . an−1(�n, νn) and T (ρ)
given as in (4),

θ(σ)(T (ρ)) :=

{
σ(ρ) if n is even
(σ(ρ), λ(ρ)) if n is odd

where λ(ρ) is the unique function such that for each symbol b ∈ Σ, λ(ρ)(b) is
the clock constraint in the unique rule emitting from qn and with symbol b such
that μn |= λ(ρ)(b). Note that the well-definedness of θ follows from Lemma 1.

From Lemma 1, the product construction, the determinism and totality of
Δ, one can prove directly the following lemma.

Lemma 2. The function θ is a bijection.

Now we prove the relationship between infinite paths accepted by a DTRA before
product construction and infinite paths satisfying certain Rabin condition.

We introduce more notations. First, we lift the function T to all subsets of
paths in the standard fashion: for all subsets A ⊆ Paths∗C ∪ PathsωC , T (A) :=
{T (ω) | ω ∈ A}. Then for an infinite path π under C⊗Aq in the form (5), we
define the trace of π as an infinite word over Q by trace(π) := q0q1 . . . . Finally,
for any scheduler σ for C⊗Aq, we define the set RPathsσ by

RPathsσ :=
{

π ∈ PathsωC⊗Aq,σ | ACC (inf(trace(π)),F)
}

.

Intuitively, RPathsσ is the set of infinite paths under C⊗Aq that meet the Rabin
condition F from A. The following proposition clarifies the role of RPathsσ.
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Proposition 1. For any scheduler σ for C and any initial mode q for A, we
have T

(
AccPathsA,q

C,σ

)
= RPathsθ(σ).

Finally, we demonstrate the relationship between acceptance probabilities
before product construction and Rabin(-accepting) probabilities after product
construction. We also clarify the probability of zenoness before and after the
product construction. The proof follows standard argument from measure theory.

Proposition 2. For any scheduler σ for C and mode q, the followings hold:

– pσ
q = P

C,σ
(
AccPathsA,q

C,σ

)
= P

C⊗Aq,θ(σ)
(
RPathsθ(σ)

)
;

– P
C,σ ({π | π is zeno}) = P

C⊗Aq,θ(σ) ({π′ | π′ is zeno}) .

A side result from Proposition 2 says that θ preserves time-divergence for sched-
ulers before and after product construction. From Proposition 2 and Lemma 2,
one immediately obtains the following result which transforms the PTA-DTRA
problem into Rabin(-accepting) probabilities under the product PTA.

Corollary 1. For any initial mode q, optσpσ
q = optσ′PC⊗Aq,σ′

(RPathsσ′) where
opt refers to either inf (infimum) or sup (supremum), σ (resp. σ′) range over
all time-divergent schedulers for C (resp. C⊗Aq).

Solving Rabin Probabilities. We follow the approach in [18] to solve Rabin
probabilities over PTAs. Below we briefly describe the approach. The approach
can be divided into two steps. The first step is to ensure time-divergence. This
is achieved by (i) making a copy for every location in the PTA, (ii) enforcing a
transition from every location to its copy to happen after 1 time-unit elapses,
(iii) enforcing a transition from every copy location back to the original one
immediately with no time-delay, and (iv) putting a special label tick in every
copy. Then time-divergence is guaranteed by adding the label tick to the Rabin
condition. The second step is to transform the problem into limit Rabin proper-
ties over MDPs [1, Theorem 10.127]. This step constructs an MDP Reg[C⊗Aq]
from the PTA C⊗Aq through a region-graph construction so that the problem is
reduced to solving limit Rabin properties over Reg[C⊗Aq]. Regions are finitely-
many equivalence classes of clock valuations that serve as a finite abstraction
which capture exactly reachability behaviours over timed transitions (cf. [5]).
Then standard methods based on maximal end components (MECs) are applied
to Reg[C⊗Aq]. In detail, the algorithm computes the reachability probability to
MECs that satisfy the Rabin acceptance condition. In order to guarantee time-
divergence, the algorithm only picks up MECs with at least one location that
has a tick label. Based on this approach, our result leads to an algorithm for
solving the problem PTA-DTRA.

Note that in C⊗Aq, although the size of Act⊗ may be exponential due to
possible exponential blow-up from Tq, one easily sees that |L⊗| is |L| · |Q| and
|X⊗| = |X |+ |Y|. Hence, the size of Reg[C⊗Aq] is still exponential in the sizes of
C and A. It follows that optσp

σ
q can be calculated in exponential time from the

MEC-based algorithm illustrated in [1, Theorem 10.127], as is demonstrated by
the following proposition.
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Proposition 3. The problem PTA-DTRA is in EXPTIME in the size of the
input PTA and DTRA.

It is proved in [16] that the reachablity-probability problem for arbitrary
PTAs is EXPTIME -complete. Since Rabin acceptance condition subsumes
reachability, one obtains that the problem PTA-DTRA is EXPTIME-hard. Thus
we obtain the main result of this section which settles the computational com-
plexity of the problem PTA-DTRA.

Theorem 1. The PTA-DTRA problem is EXPTIME-complete.

Remark 2. The main novelty for our product construction is that by adopting
extended actions (i.e. Tq) and integrating them into enabling condition and prob-
abilistic transition function, the product PTA can know which rule to use from
the DTA upon any symbol to be read. This solves the problem that probabilistic
jumps can lead to different locations, causing the usage of different rules from
the DTA. Moreover, our product construction ensures EXPTIME-completeness
of the problem.

5 The PTA-TRA Problem

In this section, we study the PTA-TRA problem where the input timed automa-
ton needs not to be deterministic. In contrast to the deterministic case (which
is shown to be decidable and EXPTIME-complete in the previous section), we
show that the problem is undecidable.

The Main Idea. The main idea for the undecidability result is to reduce the
universality problem of timed automata to the PTA-TRA problem. The univer-
sality problem over timed automata is well-known to be undecidable, as follows.

Lemma 3 ([5, Theorem 5.2]). Given a timed automaton over an alphabet Σ
and an initial mode, the problem of deciding whether it accepts all time-divergent
timed words w.r.t Büchi acceptance condition over Σ is undecidable.

Although Lemma 3 is on Büchi acceptance condition, it holds also for Rabin
acceptance condition since Rabin acceptance condition extends Büchi accep-
tance condition. Actually the two acceptance conditions are equivalent over
timed automata (cf. [5, Theorem 3.20]). We also remark that Lemma 3 was
originally for multiple initial modes, which can be mimicked by a single initial
mode through aggregating all rules emitting from some initial mode as rules
emitting from one initial mode.

Now we prove the undecidability result as follows. The proof idea is that
we construct a PTA that can generate every time-divergent timed words with
probability 1 by some time-divergent scheduler. Then the TRA accepts all time-
divergent timed words iff the minimal probability that the PTA observes the
TRA equals 1.
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Theorem 2. Given a PTA C and a TRA A, the problem to decide whether the
minimal probability that C observes A (under a given initial mode) is equal to 1
is undecidable.

Proof (Proof Sketch). Let A = (Q,Σ,Y,Δ,F) be any TRA where the alphabet
Σ = {b1, b2, · · · , bk} and the initial mode is qstart. W.l.o.g, we consider that
Σ ⊆ 2AP for some finite set AP . This assumption is not restrictive since what
bi’s concretely are is irrelevant, while the only thing that matters is that Σ has
k different symbols. We first construct the TRA A′ = (Q′, Σ′,Y,Δ′,F) where
Q′ = Q ∪ {qinit} for which qinit is a fresh mode, Σ′ = Σ ∪ {b0} for which b0 is
a fresh symbol and Δ′ = Δ ∪ {〈qinit, b0, true,Y, qstart〉}. Then we construct the
PTA:

– L := Σ′, �∗ := b0, X := ∅ and Act := Σ;
– inv(bi) := true for bi ∈ L;
– enab(bi, bj) := true for bi ∈ L and bj ∈ Act;
– prob(bi, bj) is the Dirac distribution at (∅, bj) (i.e., prob(bi, bj)(∅, bj) = 1 and

prob(bi, bj)(X, b) = 0 whenever (X, b) = (∅, bj)), for bi ∈ L and bj ∈ Act;
– L(bi) := bi for bi ∈ L.

Note that we allow no clocks in the construction since clocks are irrelevant for
our result. Since we omit clocks, we also treat states (of C′) as single locations.
One can prove that A accepts all time-divergent timed words over Σ with initial
mode qstart iff the minimal probability that C′ observes A′ with initial mode qinit
equals 1. ��

Remark 3 Theorem 2 shows that the problem to qualitatively decide the minimal
probability is undecidable. On the other hand, the decidability of the problem
to decide maximum acceptance probabilities is left open.

6 Conclusion

In this paper, we studied the problem of model-checking PTAs against timed-
automata specifications. We considered Rabin acceptance condition as the accep-
tance criterion. We first solved the problem with deterministic-timed-automata
specifications through a product construction and proved that its computational
complexity is EXPTIME-complete. Then we proved that the problem with gen-
eral timed-automata specifications is undecidable through a reduction from the
universality problem of timed automata.

A future direction is zone-based algorithms for Rabin acceptance condition.
Another direction is to investigate timed-automata specifications with cost or
reward. Besides, it is also interesting to explore model-checking PTAs against
Metric Temporal Logic [19].
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7 Related Works

Model-checking TAs or MDPs against omega-regular (dense-time) properties is
well-studied (cf. [1,20,26], etc.). PTAs extend both TAs and MDPs with either
probability or timing constraints, hence require new techniques for verification
problems.On one hand, our technique extends techniques forMDPs (e.g. [26])with
timing constraints.On the other hand, our technique is incomparable to techniques
for TAs since linear-time model checking of TAs focus mostly on proving decidabil-
ity of temporal logic formulas (e.g. Metric Temporal logic [19–21]), while we prove
that model-checking PTAs against TA-specifications is undecidable.

Model-checking probabilistic timed models against linear dense-time prop-
erties are mostly considered for continuous-time Markov processes (CTMPs).
First, Donatelli et al. [22] proved an expressibility result that the class of lin-
ear dense-time properties encoded by DTAs is not subsumed by branching-
time properties. They also demonstrated an efficient algorithm for verifying
continuous-time Markov chains [22] against one-clock DTAs. Then various results
on verifying CTMPs are obtained for specifications through DTAs and general
timed automata (cf. e.g. [22,24,25,27–29]). The fundamental difference between
CTMPs and PTAs is that the former assign probability distributions to time
elapses, while the latter treat time-elapses as pure nondeterminism. As a conse-
quence, the techniques for CTMPs cannot be applied to PTAs.

For PTAs, the only relevant result is by Sproston [18] who developed an
approach for verifying PTAs against deterministic discrete-time omega-regular
automata by a similar product construction. Our results extend his result in
two ways. First, our product construction has the extra ability to tackle timing
constraints from the DTA. The extension is nontrivial since it needs to resolve
the integration between randomness (from the PTA) and timing constraints
(from the DTA), and still ensures the EXPTIME-completeness of the problem,
matching the computational complexity in the discrete-time case [18]. Second,
we have proved an undecidability result in the case of general nondeterministic
timed automata, thus extending [18] with nondeterminism.
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