
On the Verification of Weighted Kripke
Structures Under Uncertainty

Giovanni Bacci(B), Mikkel Hansen, and Kim Guldstrand Larsen

Department of Computer Science, Aalborg University, Aalborg, Denmark
{giovbacci,mhan,kgl}@cs.aau.dk

Abstract. We study the problem of checking weighted CTL proper-
ties for weighted Kripke structures in presence of imprecise weights.
We consider two extensions of the notion of weighted Kripke struc-
tures, namely (i) parametric weighted Kripke structures, having tran-
sitions weights modelled as affine maps over a set of parameters and, (ii)
weight-uncertain Kripke structures, having transition labelled by real-
valued random variables as opposed to precise real valued weights.

We address this problem by using extended parametric dependency
graphs, a symbolic extension of dependency graphs by Liu and Smolka.
Experiments performed with a prototype tool implementation show that
our approach outperforms by orders of magnitude an adaptation of a
state-of-the-art tool for WKSs.

1 Introduction

The rapid diffusion of cyber-physical systems (CPSs) poses the challenge of
handling their growing complexity, while meeting requirements on correctness,
predictability, performance without compromising time- and cost-to-market. In
this respect, model-driven development is a promising approach that allows for
early design and verification and may be used as the basis for systematic testing
of a final product. The verification of cyber-physical systems should not only
address functional properties but also a number of non-functional properties
related to the quantitative aspects that are typical of such systems.

In the area of model checking, a number of modelling formalisms have
emerged, allowing for quantitative aspects to be expressed. Among these,
Weighted Kripke structures (WKSs) were proposed as a natural extension of
the usual notion of Kripke structures with a (real-valued) weighted transition
relation [8].

Interesting properties of WKSs may be expressed by means of quantitative
extensions of CTL. There are different ways of extending CTL with quantitative
information. Fahrenberg et al. [8] proposed to generalise the classical Boolean
interpretation of CTL to a map that assigns to states and temporal formulas a
real-valued distance describing the degree of satisfaction. This paper considers
weighted CTL (WCTL), an extension of CTL with weight-constrained modali-
ties, because it is an expressive logic with efficient tool support for WKSs [9].
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Fig. 1. (Left) A lawn mower example from [9]; (Right) the lawn mower model with
weights parametric in p, q and, r.

Consider the WKS in Fig. 1(left) representing a grass field with different
routes a lawn mower can take from the starting state s0 to s6 where the grass
can be dumped. The weights on the transitions represent the amount of grass
that is accumulated in the container when selecting a particular route. Assume
that the lawn mower breaks when it is forced to store more than 6.5 units of grass,
then the property “the grass is always dumped before the lawn mower breaks,
irrelevant of the selected route” is expressed in WCTL as ∀(mow U≤6.5 dump).

The above example models the accumulated grass by means of precise weight
values. This is an unrealistic simplification, since the amount of mowed grass may
vary depending on different factors (e.g., distribution of the grass in the field,
meteorologic conditions, etc.) that cannot be modelled with precise values. The
same argument applies to CPSs, that typically rely on sensor measurements
which are inherently imprecise.

Typically, there are two ways for dealing with uncertain sensor measurements:
(i) determine the precision of the instrument and associate an error ε with each
measurement, or (ii) perform estimation statistics (e.g., by recursive Bayesian
estimation [14]) and associate a probability distribution with each measurement.

In this paper we aim at providing adequate formal basis and tool-support for
the verification of WKSs in presence of imprecise weights. We consider two exten-
sions of the notion of WKS: (i) parametric weighted Kripke structures (pWKSs),
having weights depending on a set of parameters (cf. Fig. 1(right)) and, (ii)
weight-uncertain Kripke structures (WUKSs), having as weights real-valued ran-
dom variables as opposed to precise real values. On the one hand, verification
of pWKSs is done by inferring constraints over its parameters characterising the
valuations that ensure correctness then, verify the robustness of the model within
the given precision. On the other hand, verifying WUKSs consists of measuring
the degree of satisfaction of the model w.r.t. the given specification.

Our contribution is twofold. First, we extend and improve the model checking
algorithm of [5] for pWKSs. In contrast with [5], our method supports negation
and implements an efficient termination condition. In line with [5,6,9], our algo-
rithm uses an extension of dependency graphs by Liu and Smolka [11] to model-
check pWKSs. Specifically, we integrate cover-edges from [9] and negation-edges
from [6] and, lift the computation of fixed points from the boolean domain to
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that of non-negative real-valued maps to cope with parametric weights and the
non-monotonic reasoning necessary to deal with negation.

As for our second contribution, we introduce the notion of weight-uncertain
Kripke structures and address two natural problems related to their analysis:
(i) checking whether the expected behaviour of the model satisfies a given spec-
ification and, (ii) measuring the probability that a concrete realisation of the
model satisfies a given WCTL formula.

The proposed model checking framework has been implemented on a proto-
type tool. Experiments show that our approach considerably improves w.r.t. the
PVTool from [5] and outperforms an adaptation of the WKTool from [9].

We refer to the full version of this paper [2] for the omitted proofs.

Related Work. Our paper fits within the area of weighted automata [7] where
weights come as elements of a semi-ring. By combining the tropical and the
probability semi-rings, one obtains probabilistic weighted automata (PWA) [1,4].
There, transitions are labelled with a cost and a probability and the weight that
the PWA assigns to a word is the expected accumulated costs of the runs pro-
ducing the word. A similar approach is seen with Markov reward models whose
analysis consider the computation of the expected reward for reachability prop-
erties or their verification against probabilistic reward CTL [3]. In contrast to
PWAs and Markov reward models, where transitions are executed probabilisti-
cally and the weights are fixed, WUKSs choose transitions non-deterministically
and generate weights according to the given probability distributions.

Fahrenberg et al. [8] consider the verification of WKSs with respect to two
interpretations of WCTL where the satisfaction of a formula by a model is no
longer interpreted in the Boolean domain, but rather assigns to a state a truth
value in the domain of extended non-negative reals where a smaller value means
a better match of the specified weights in the formula. Differently from [8], we
keep the classical boolean interpretation of WCTL and measure how likely is the
model to be correct. In this respect, our approach resembles that of probabilistic
LTL model checking for Markov chains [3,15].

2 Weighted Kripke Structures and Weighted CTL

In this section we present weighted Kripke structures (WKSs) as an expressive
modelling formalism for quantitative systems, and weighted CTL (WCTL), an
extension of computation tree logic (CTL) with weight-constrained modalities,
interpreted with respect to WKSs.

We denote by R, Q, and N respectively the sets of real numbers, rational
numbers, and natural numbers. We write R≥0 (resp. Q≥0) to denote the set of
non-negative real (resp. rational) numbers.

Definition 1 (WKS). A weighted Kripke structure is a tuple K = (S,R, �),
where S is a finite nonempty set of states, R ⊆ S ×R≥0 × S is a finite weighted
transition relation and � : S → 2AP is a function labelling the states with subsets
of AP, where AP is a fixed set of atomic propositions.
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Let K = (S,R, �) be a WKS. We write s
w−→ s′ to indicate that (s, w, s′) ∈ R

and, we denote with ω(K) ∈ R
m
≥0 the vector of weighs of K, where m = |R|.

A run in K from s0 ∈ S is a (finite or infinite) sequence π = (wi, si)i∈I , such
that w0 = 0 and I is an interval of N containing 0 where, for all i ∈ I \ {0},
si−1

wi−→ si. The accumulated weight of a run π = (wi, si)i∈I at position j ∈ I is
defined as W(π, j) =

∑j
i=0 wi.

We write |π| for the length of π (the cardinal of I); and, for i ∈ I, we write
π[i] for the i-th state in π, i.e., π[i] = si. A run is maximal if it has infinite
length (|π| = ω) or its last state has no outgoing transitions. Run(K, s0) denotes
the set of all maximal runs from s0 in K.

We can now define WCTL with upper-bounds on weights. WCTL allows
for state formulas describing properties about states in the system and path
formulas describing properties about runs in a WKS. State formulas Φ,Ψ and
path formluae ϕ are constructed over the following abstract syntax

Φ,Ψ ::= tt | a | ¬Φ | Φ ∧ Ψ | ∃ϕ | ∀ϕ . ϕ ::= X≤qΦ | Φ U≤q Ψ

where a ∈ AP and q ∈ Q≥0.
Given a WKS K = (S,R, �), a state s ∈ S, and a run π ∈ Run(K, s), we

denote by K, s |= Φ (resp. K, π |= ϕ) the fact that the state s satisfies the
state formula Φ (resp. the path π satisfies the path formula ϕ). Formally, the
satisfiability relation |= is inductively defined as:

K, s |= tt always holds
K, s |= a if p ∈ �(s)
K, s |= ¬Φ if K, s �|= Φ
K, s |= Φ ∧ Ψ if K, s |= Φ and K, s |= Ψ
K, s |= ∃ϕ if there exists π ∈ Run(K, s) such that K, π |= ϕ

K, s |= ∀ϕ if for all π ∈ Run(K, s) it holds that K, π |= ϕ

K, π |= X≤qΦ if |π| > 0, W(π, 1) ≤ q, and K, π[1] |= Φ
K, π |= Φ U≤q Ψ if there exists j ≤ |π| such that K, π[j] |= Ψ,

W(π, j) ≤ q, and K, π[j′] |= Φ for all j′ < j

As usual, we can derive the logical operators ff , ∨ and → as follows: ff
def
= ¬tt,

Φ ∨ Ψ
def
= ¬(¬Φ ∧ ¬Ψ) and, Φ → Ψ

def
= ¬Φ ∨ Ψ.

Example 2. Consider the WKS K in Fig. 1(left) described before. The WCTL
state formulas Φ = ∀(mow U≤6 dump) and Φ′ = ∃(mow U≤4 dump) express
respectively the properties “the grass is always dumped before the lawn accu-
mulates more that 6 grass units, irrelevant of the selected route” and “there
exists a mowing route that accumulates at most 4 grass units before dumping”.
Clearly K, s0 |= Φ holds true because all paths from s0 to s6 accumulate at most
6 grass units, whereas K, s0 |= Φ′ doesn’t hold true, because each path from s0

to s6 accumulates at least 5 grass units. ��
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3 Parametric Weighted Kripke Structures

In this section we present parametric weighted Kripke structures and demon-
strate how they can be employed for verifying the robustness of WKSs in pres-
ence of imprecise weights.

Parametric weighted Kripke structures (pWKSs) model families of WKSs
that rely on the same graph structure, but differ in the concrete transition
weights, which are specified as expressions built over a set of parameters.

Let x = (x1, . . . , xk) be a vector of real-valued parameters. We denote by
E the set of affine maps f : Rk → R of the form f(x) = a · x + b, with a =
(a1, . . . , ak) ∈ Q

k
≥0 and b ∈ Q≥0, i.e., f(x1, . . . , xk) = (

∑k
i=1 aixi) + b. Hereafter

we may denote the map f by means of the augmented vector1 (a, b) ∈ N
k+1.

Accordingly, for f, g ∈ E the map addition (f + g)(x) = f(x) + g(x) is encoded
as the vector addition.

Definition 3. A parametric weighted Kripke structure is a tuple P = (S,R, �),
where S is a finite nonempty set of states, R ⊆ S × E × S is a finite parametric
weighted transition relation and � : S → 2AP is a labelling function.

Intuitively, a pWKS P = (S,R, �) defines a family of WKSs arising by plugging
in concrete values for the parameters. A parameter valuation v ∈ R

k is said to be
admissible for P if for each transition (s, f, s′) ∈ R we have f(v) ≥ 0. Let VP , or
just V when P is clear from the context, denote the set of admissible valuations
for P. Given v ∈ V, we denote P(v) the WKS associated with v. In this respect,
it will be convenient to think at P as a partial function P : Rk ⇀ WKS with
domain VP . The semantics of K, written [P], is defined as the image of P, i.e.,
[P] = {P(v) | v ∈ V}.

A task typically addressed in the analysis of parametric Kripke structures is
that of finding symbolic representations of the set of parameter valuations for
which a given WCTL formula holds [5].

Formally, given a pWKS P = (S,R, �), a state s ∈ S and a state formula Φ,
the set of admissible valuations for which Φ holds at s is

�P, s |= Φ�
def
=

{
v ∈ V | P(v), s |= Φ

}
. (1)

Example 4. Consider the pWKS P depicted in Fig. 1(right) representing a fam-
ily of lawn mower models parametric in p, q and, r. Its parameters represent
the amount of grass measured in different parts of the field. The admissible
valuations for P, i.e., VP , are represented by the constraint

α(p, q, r) = p ≥ 0 ∧ q ≥ 0 ∧ r ≥ 0 . (2)

Let Φ = ∀(mow U≤6.5dump) be our specification. The set of valuations satisfying
Φ, i.e., �P, s |= Φ�, is represented by the following constraint

β(p, q, r) = α(p, q, r) ∧ p + 4q ≤ 6.5 ∧ 2p + 2q + r ≤ 6.5. (3)
1 Our is a special case of the so called affine transformation matrix (or projective

transformation matrix) representation for generic affine tranformations.
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Assume that we have measured p ∼= 2 ± ε, q ∼= 1 ± ε and, r ∼= 0 ± ε where
ε > 0 is the measurement error. One can determine if P is robust w.r.t. Φ by
checking that all possible measurement values lay in �P, s |= Φ�, formally

VP ∩ {(p, q, r) | |p − 2| ≤ ε, |q − 1| ≤ ε, |r| ≤ ε} ⊆ �P, s |= Φ�.

The above can be expressed as first-order formula in theory of linear real arith-
metic

∀p ∈ [0, 2 + ε].∀q ∈ [0, 1 + ε].∀r ∈ [0, ε]. β(p, q, r). (4)

By performing quantifier elimination (e.g., using mjollnir [12]) we reduce (4)
to ε ≤ 0.1, indicating that robustness for P is ensured iff ε does not exceed 0.1.

In Example 4 we showed how to exploit pWKSs to verify a simple WKSs
against a given specification up-to some error.

Clearly, with an increasing complexity of the model (or the formula) it
becomes necessary to have an automatic procedure to resolve (1). The follow-
ing two sections are devoted to present a generalization of the model checking
algorithm presented in [5] that can also accept WCTL formulas with negation.

4 Extended Parametric Dependency Graphs

Dependency graphs as originally introduced by Liu and Smolka [11] can be
applied to model-checking of the alternation-free modal μ-calculus, including
its sub-logics like CTL. Jensen et al. [9] proposed to extend the dependency
graphs framework using cover-edges and weighted hyper-edges for the verification
of WKSs against negation-free WCTL formulas. Later, Christoffersen et al. [5]
further generalised their approach to pWKSs by using parametric hyper-edges
and cover-edges.

In this section we present an extension of the parametric dependency graph
framework by incorporating a new type of edges, called negation-edges. Negation-
edges were originally used in [6] for extending the applicability of dependency
graphs w.r.t. CTL model checking of Petri Nets.

Definition 5. An Extended Parametric Dependency Graph (EPDG) is a tuple
G = (V,H,N,C) where V is a nonempty set of configurations and

– H ⊆ V × 2E×V is a set of hyper-edges,
– N ⊆ V × V is a set of negation-edges, and
– C ⊆ V × Q≥0 × V is a set of cover-edges.

For v, u ∈ V , we write v
f−→ u if (v, T ) ∈ H and (f, u) ∈ T ; v ⇒ u if (v, u) ∈ N ;

v
q��� u if (v, q, u) ∈ C and v and u are said resp. the source and the target

configurations of the edge. We write v � u if v and u are respectively the
source and target configurations of some edge in G and, �∗ for the reflexive and
transitive closure of �.

We identify a class of EPDGs having some convenient structural properties.



On the Verification of Weighted Kripke Structures Under Uncertainty 77

Definition 6. Let G = (V,H,N,C) be an EPDG. G is safe if

(i) its components are finite and for all (v, T ) ∈ H, T is finite.
(ii) for all v ∈ V |{(v, u) ∈ N} ∪ {(v, q, u) ∈ C}| ≤ 1 and if |{(v, u) ∈ N} ∪

{(v, q, u) ∈ C}| = 1 then {(v, T ) ∈ H} = ∅.
(iii) there are no u, v ∈ V such that v

q��� u and u �∗ v, or v ⇒ u and u �∗ v.

Intuitively, to be safe an EPDG G needs to have (i) finitely many configurations
and edges, and each hyper-edge needs to be finitely branching; (ii) each of its
configurations admits at most one type of outgoing edges and no cover edges
or negation edges share the same source configuration; (iii) finally, no loop in G
shall have any cover- or negation-edges.

In the rest of the section we fix G = (V,H,N,C) to be a safe EPDG.
We assign to each configuration v ∈ V a distance d(v) ∈ N counting the

maximum number of negation- and cover-edges in the paths starting from v

d(v)
def
= max

{
0, sup

{
d(v′′) + 1 | v′ ⇒ v′′ or v′ q��� v′′ for v′, v′′ ∈ V s.t.v �∗ v′ }}

.

Notice that the distance is bounded because G is assumed to be safe.
We define d(G) = maxv∈V d(v). The distance value is used to identify some

components C0, . . . , Cd(G), where Ci = (Vi,Hi, Ni, Ci) is the sub-EPDG of G
induced by the configurations Vi = {v ∈ V | d(v) ≤ i}. Note that by construction
N0 = C0 = ∅.

A valuation v ∈ R
k is said admissible for G if whenever v

f−→ u we have
f(v) ≥ 0. We denote by VG the set of admissible valuations for G.

Definition 7. An assignment A of G is a function A : V → (VG → R≥0) where
R≥0 = R≥0 ∪ {∞}. The set of all assignments of G is denoted AG.

We equip AG with the partial order � ⊆ AG × AG defined as

A1 � A2 iff ∀v ∈ V. ∀v ∈ VG . A1(v)(v) ≥ A2(v)(v) .

(AG ,�) forms a complete lattice, with bottom element A⊥ and top element A	
respectively defined as A⊥(v)(v) = ∞ and A	(v)(v) = 0 for all v ∈ V and
v ∈ VG . Given E ⊆ AG such that E �= ∅ the greatest lower bound

�
E and least

upper bound
⊔

E are defined, for arbitrary v ∈ V and v ∈ VG , as2

(
�

E)(v)(v) = supA∈E A(v)(v) , (
⊔

E)(v)(v) = infA∈E A(v)(v).

We are now ready to define the least fixed-point assignment of an EPDG G.

Definition 8. The least fixed-point assignment for G, denoted AG
min, is defined

inductively on its components C0, . . . , Cd(G). For 0 ≤ i ≤ d(G), ACi
min is the least

fixed-point of the function Fi : ACi → ACi , defined as

Fi(A)(v)(v) =

⎧
⎪⎪⎨

⎪⎪⎩

χ(ACi−1
min (u)(v) > 0) if v ⇒ u

χ(ACi−1
min (u)(v) ≤ q) if v

q��� u

min
(v,T )∈Hi

max
(f,u)∈T

A(u)(v) + f(v) otherwise

2 As usual,
� ∅ = A� and

⊔ ∅ = A�.
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where χ(p) = 0 if the predicate p holds, ∞ otherwise. We assume that max ∅ = 0
and min ∅ = ∞.

Lemma 9. Let i ∈ {0, . . . , d(G)} and {Aj}j∈N ⊆ ACi be an ascending chain.
Then, Fi(

⊔
j∈N

Aj) =
⊔

j∈N
Fi(Aj), i.e., Fi is ω-continuous.

Corollary 10. Fi is monotonic for all i ∈ {0, . . . , d(G)}.
By Knaster-Tarski’s fixed-point theorem, ACi

min exists for all i ≤ d(G), moreover,
by Kleene’s fixed-point theorem, it is the limit of the ascending chain A⊥ �
Fi(A⊥) � Fi(Fi(A⊥)) � · · · � Fn

i (A⊥) � · · · , i.e.,
⊔

n∈N
Fn

i (A⊥).
The following result states that the limit of the above chain is reached within

|Vi| steps. This result is essential for our algorithm.

Lemma 11. Let i ∈ {0, . . . , d(G)} and k = |Vi|. Then, F k
i (ACi

⊥ ) = ACi
min.

By Lemma 11, we can compute AG
min symbolically by repeated application of

F until we are sure that the fixed-point has been reached. It is worth noting that
our termination condition only depends on the number of configurations of the
EPDG. Therefore, in contrast with [5], we don’t need to perform any symbolic
comparison of the assignments to check whether a fixed-point has been reached.
Not only does it simplifies the algorithm, but it also reduces the overhead caused
by symbolic comparison.

Lemma 12. For any safe EPDG G = (V,H,N,C) and component Ci of G,
the symbolic computation of the least fixed-point assignment, ACi

min, by repeated
application of the function Fi on ACi

⊥ runs in time O(|Vi| · (|Hi| + |Ni| + |Ci|)
)
.

5 Model Checking Parametric WKSS Using EPDGs

In this section we present a reduction from the model checking problem of WCTL
on pWKSs to the computation of least fixed-point assignments for EPDGs. Then,
we show how to obtain from those assignments a symbolic representation of (1)
as a (quantifier-free) first-order formula in the linear theory of the reals.

Given a pWKS P = (S,R, �), a state s ∈ S and a WCTL formula Φ, we
construct an EPDG G where every configuration is a pair consisting of a state
and a formula. Starting from the initial pair 〈s,Φ〉, G is constructed according
to the rules given in Fig. 2.

It is worth noting that the size of G does not depend on the actual weight
values of Φ or P but only on the size of P and the number of sub-formulas of Φ.

The following result ensures that the EPDG framework described in Sect. 4
can be applied to the EPDGs constructed according to the rules in Fig. 2.

Lemma 13. The EPDG G rooted at 〈s,Φ〉 is safe.

In G we distinguish two types of configurations: concrete configurations have
concrete WCTL formulas, while symbolic configurations have symbolic formulas
of the form QX≤? Φ or QΦ U≤? Ψ where Q ∈ {∃,∀} and Φ,Ψ are concrete
WCTL formulas. Given a symbolic formula Φ and q ∈ Q≥0, we denote by Φq

the corresponding concrete formula with bound q.
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〈s, tt〉

∅
(a) True

〈s, p〉

∅
if p ∈ �(s)

(b) Proposition

〈s, ¬Φ〉

〈s, Φ〉
(c) Negation

〈s, Φ ∧ Ψ〉

〈s, Φ〉 〈s, Ψ〉
(d) Conjunction

〈s, Φ ∨ Ψ〉

〈s, Φ〉 〈s, Ψ〉
(e) Disjunction

〈s, QX≤q Φ〉

〈s, QX≤? Φ〉

q

(f) Bounded next

〈s, QΦ U≤qΨ〉

〈s, QΦ U≤?Ψ〉

q

(g) Bounded until

〈s, ∃X≤? Φ〉

〈s1, Φ〉 〈sn, Φ〉

f1 fn

for (s, fi, si) ∈ R

(h) Existential next

〈s, ∀X≤? Φ〉

〈s1, Φ〉 〈sn, Φ〉

f1 fn

for (s, fi, si) ∈ R

(i) Universal next

〈s, ∃Φ U≤? Ψ〉

〈s, Ψ〉

〈s, Φ〉

〈s1, ∃Φ U≤? Ψ〉

〈sn, ∃Φ U≤? Ψ〉

f1

fn

fo
r

(s
,f

i
,s

i
)

∈
R

(j) Existential until

〈s, ∀Φ U≤? Ψ〉

〈s, Ψ〉

〈s, Φ〉

〈s1, ∀Φ U≤? Ψ〉

〈sn, ∀Φ U≤? Ψ〉

f1

fn fo
r

(s
,f

i
,s

i
)

∈
R

(k) Universal until

Fig. 2. EPDG construction rules. Here Q ∈ {∃, ∀} and hyper-edges without labels shall
be assumed to be labelled with the constant weight map 0.

Lemma 14. Let v = 〈s,Φ〉 be a concrete configuration of G and v ∈ VG an
admissible valuation. Then, AG

min(v)(v) ∈ {0,∞}.
The next theorem states that the set of correct valuations �P, s |= Φ� corresponds
to the set {v ∈ VG | AG

min(〈s,Φ〉)(v) ≤ 0}. This reduces the model checking
problem to the computation of least fixed-point assignments for EPDGs.

Theorem 15. Let v = 〈s,Φ〉 be a configuration of G and v ∈ VG an admissible
valuation. Then, the following hold

(1) if v is concrete, then AG
min(v)(v) = 0 iff P(v), s |= Φ and,

(2) if v is symbolic, then for all q ∈ Q, AG
min(v)(v) ≤ q iff P(v), s |= Φq.

We showed that AG
min(〈s,Φ〉) can be computed symbolically as a partially

evaluated expression. During the computation one can perform some simplifica-
tions (e.g., min ∅ = ∞ or max ∅ = 0), nevertheless, the parts of the expression
that depend on the actual value of the parameters are left unevaluated.
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Fig. 3. EPDG rooted at 〈s0, ∀(mow U≤6.5 dump)〉 (cf. Example 16).

By Theorem 15 we are interested in a symbolic representation of the valua-
tions v such that AG

min(〈s,Φ〉)(v) ≤ 0. As anticipated in Example 4, this can be
done by means of a (quantifier-free) first-order formula in the linear theory of
the reals. In practice, such a formula is obtained as Γ

(
AG

min(〈s,Φ〉) ≤ 0
)

where
Γ is defined by cases as follows3, for �� ∈ {≤, >}, m ∈ {min,max} and, q ∈ Q≥0

Γ(max{e1, . . . , en} �� q) = Γ(e1 �� q) ∧ · · · ∧ Γ(e1 �� q)
Γ(min{e1, . . . , en} �� q) = Γ(e1 �� q) ∨ · · · ∨ Γ(e1 �� q)

Γ(χ(b) ≤ q) = Γ(b) Γ(χ(b) > q) = ¬Γ(b)
Γ(e + m{e1, . . . , en} �� q) = Γ(m{e + e1, . . . , e + en} �� q)

Γ(e �� q) = e �� q. (if e has no occurrence of min,max or χ)

Example 16. Consider the pWKS P and the formula Φ = ∀(mow U≤6.5 dump)
from Example 4. In Fig. 3 is depicted the EPDG G rooted at 〈s0,Φ〉. By running
our symbolic algorithm we obtain the following expression

AG
min(〈s0, Φ〉) = χ(max{p+ q +max{p+ r, 2q}, p+2q +max{p+ r, 2q}, 2p+ q} ≤ 6.5) .

The above expression can be then turned into the following formula

2p + q + r ≤ 6.5 ∧ p + 3q ≤ 6.5 ∧ 2p + 2q + r ≤ 6.5 ∧ p + 4q ≤ 6.5 ∧ 2p + q ≤ 6.5,

that, in conjunction with p ≥ 0 ∧ q ≥ 0 ∧ r ≥ 0 (cf. (2)) simplifies to (3). ��
3 To simplify the exposition, here unevaluated expressions are assumed to be modulo

commutativity and associativity of +.
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6 Weight-Uncertain Kripke Structures

In Sect. 3 we have seen how to use pWKSs for modelling and verifying the
robustness of WKSs when the imprecision of the weights is quantified by means
of an absolute accuracy error ε. However, for an experimental weight value w,
not all values in the interval w ± ε are equally likely to occur in practice.

It’s common practice to model experimental measurements by means of real-
valued random variables distributed according to well studied family of distri-
bution (e.g., normal or student’s T). In this section we introduce the notion
of weight-uncertain Kripke structures (WUKSs), where weights are modelled as
random variables and present a WCTL model checking framework for them.

Before we start let us recall some notions from measure theory.

Measure Theory. Let Ω be a set. A family Σ ⊆ 2Ω is called σ-algebra if it contains
the empty set ∅ and is closed under complement and countable unions, in this
case (Ω,Σ) is said measurable space and elements of Σ measurable sets. If Ω is
given a topology then B(Ω) denotes the Borel σ-algebra of Ω, i.e., the smallest
σ-algebra having all open subsets of Ω. We say that Ω is a Borel space to indicate
the measurable space (Ω,B(Ω)), and elements of B(Ω) are called Borel sets. As an
example, R is assumed to have the usual Euclidean topology and B(R) denotes
the induced Borel σ-algebra which makes R a Borel space.

A measure on (Ω,Σ) is a σ-additive function μ : Σ → R, i.e, a map satisfying
μ(

⋃
i∈I Ei) =

∑
i∈I μ(Ei) for any countable family of pairwise disjoint measur-

able sets (Ei)i∈I , in this case (Ω,Σ, μ) is said measure space. If μ additionally
satisfies μ(Ω) = 1, it is called probability measure and (Ω,Σ, μ) probability space.

For (Ω,Σ) and (Y,Θ) measurable spaces, the map f : Ω → Y is measurable
if for all E ∈ Θ, f−1(E) = {x | f(x) ∈ E} ∈ Σ. Given a measurable map
f : Ω → Y and a measure μ on (Ω,Σ) we define the measure μ[f ] on (Y,Θ) as
μ[f ](E) = μ(f−1(E)), for E ∈ Θ, a.k.a. the push forward of μ under f .

A real-valued random variable X : Ω → R is a measurable function from a
probability space (Ω,Σ, P ) to the Borel space R. Intuitively, X can be understood
as the outcome value of an experiment (e.g., measuring some sensor value). Given
a “test” A ∈ B(R), we write P [X ∈ A] for the probability that X has value in A,
i.e., P [X ∈ A] = P [X](A). A random variable X is associated with its cumulative
distribution function (CDF) FX : R → [0, 1] defined as FX(x) = P [X ∈ (∞, x]];
and a probability density function (PDF) fX , a non-negative Lebesgue-integrable
function satisfying P [X ∈ [a, b]] =

∫ b

a
fX(x)dx. The expected value of X, written

E[X] is intuitively understood as the long-run average value of repetitions of the
experiment X, formalised by the Lebesgue integral

∫
Ω

X dP (corresponding to∫
R

fX(x)dx when X admits density function fX).
In the rest of the section we fix the probability space (Ω,Σ, P ) representing

the environment where the experiments are performed, and we use Y to denote
the set of real-valued random variables of the form Y : Ω → R.

We are now ready to define the concept of weight-uncertain Kripke structure.
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Definition 17. A weight-uncertain Kripke structure is a tuple J = (S,R, �),
where S is a finite nonempty set of states, R ⊆ S × Y × S is a finite random
weighted transition relation and � : S → 2AP is a labelling function.

Consider the WUKS J = (S,R, �). We denote by WKSJ the set of all WKSs
having the same underlying graph as J . We construct the σ-algebra ΣJ as the
family of sets A ⊆ WKSJ whose corresponding set of weights is Borel measurable
in R

m (m = |R|). Formally,

A ∈ ΣJ iff A ⊆ WKSJ and {ω(K) | K ∈ A} ∈ B(Rm).

J can be seen as a measurable function J : Ω → WKSJ , where J (ω) is
the WKS associated with ω ∈ Ω, justifying the intuition the it represents an
experiment whose outcomes are WKSs. Accordingly, the semantics of J is the
probability space (WKSJ ,ΣJ , P [J ]).

Given a WUKS J , a state s ∈ S, and a WCLT property Φ, two natural
model checking questions are (i) whether the expected behaviour of J satisfies
Φ at s, informally “E[J ], s |= Φ”, (ii) and how likely is that a concrete instance
of J satisfies Φ at s, denoted by P [J , s |= Φ].

We address the above problems for a subclass of WUKSs having random
variables (Y : Ω → R) ∈ EX of the form Y (ω) = a · X(ω) + b, with a ∈ Q

k
≥0,

b ∈ Q≥0 and, where X = (X1, . . . , Xk) is vector of pairwise independent non-
negative real-valued random variables4. Observe that, elements in EX may not
be independent from each other.

From here on we consider the WUKS J = (S, E , R, �) with R ⊆ S × EX × S,
and we use P to refer to the pWKS obtained by replacing the random variables
Xi in J with the parameters xi (for i = 1..k).

Let’s consider the first question, namely “E[J ], s |= Φ”. There, E[J ] was
informally denoting the WKS obtained by replacing each transition weight in J
with the corresponding expected value. Formally, E[J ] is defined as the unique
K ∈ WKSJ such that ωi(K) =

∫
WKSJ

ωi dP [J ] for all i ∈ {1, . . . , m} where
ωi : WKSJ → R≥0 is the function that returns the i-th weight from a given
WKS.

The assumption made on the weights in J allows us to rephrase E[J ], s |= Φ
as a model checking problem for P.

Lemma 18. E[J ], s |= Φ if and only if E[X] ∈ �P, s |= Φ�.

We are now ready to address the second question, that is formalised as follows

P [J , s |= Φ]
def
= P [J ]({K ∈ WKSJ | K, s |= Φ}) . (5)

For the above definition to be well-defined the set {K ∈ WKSJ | K, s |= Φ}
needs to be a measurable event in ΣJ . The following result ensures that.

Lemma 19. {K ∈ WKSJ | K, s |= Φ} ∈ ΣJ
4 In fact, the vector X is a multivariate random variable X : Ω → R

n with marginals
Xi : Ω → R≥0 (i = 1..n).
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The following theorem characterizes the model checking problem for the
WUKS J in terms of the model checking problem of its associated pWKS P.

Theorem 20. P [J , s |= Φ] = P [X ∈ �P, s |= Φ�].

Remark 21. For the sake of clarity, so far we have assumed that X is non-negative
real-valued random vector. However, provided that P [X ∈ VP ] > 0, the non-
negativity assumption can be dropped by replacing the probability distribution
P [X] with the conditional probability P [X|X ∈ VP ].

By Theorem 20 we can estimate the value p of (5) by applying Monte Carlo
simulation techniques. For this, we sample n independent repetitions of X, asso-
ciating with each repetition a Bernoulli random variable Bi. A realisation bi

of Bi is 1 if the corresponding sampled value of X lays in �P, s |= Φ�, and 0
otherwise. Finally, we estimate p by means of the observed relative success rate
p̃ = (

∑n
i=1 bi)/n. The absolute error ε of the estimation can be bound with a

certain degree of confidence δ ∈ (0, 1] by tuning the number of required simula-
tions based on the inequality P (|p̃ − p| ≥ ε) ≤ δ where δ = e−2nε2

(cf. [10,13]).
Therefore the required number n of samples is obtained as

n =
⌈

− ln(δ)
2ε2

⌉

. (6)

Example 22. Consider the WUKS J depicted in Fig. 1(right), where p, q and,
r shall now be interpreted as real-valued random variables distributed as p ∼
N (2, ε), q ∼ unif(1 − ε, 1 + ε), and r ∼ N (0, ε) for ε = 0.1. We can estimate
P [J , s0 |= Φ] = 0.959 with an error ε = 0.003 and confidence of 99, 9% (i.e.,
δ = 0.001) by generating n = 383765 samples.

7 Experimental Results

To evaluate the performance of the algorithms discussed in this paper, we devel-
oped a prototype tool suite for WCTL model checking of WKSs under uncertain
weights. The tool suite consists of two parts: a back-end, called PVTool25 and
a front-end, called UVTool6. UVTool supports the verification of pWKSs
and WUKSs as described in Sects. 5 and 6 making use of the PVTool2 which
implements the EPDG construction and the symbolic fixed-point computation.

We have evaluated the PVTool2 and the UVTool separately.

Evaluation of the PVTool2. We compared the performance of the PVTool2
with the PVTool from [5]. For a fair comparison we used as benchmarks
the vacuum cleaner models from [5] checking them against the WCTL formula
∃(∀dirty U≤10clean)U≤1000 done. The table depicted in Fig. 4a reports the results
obtained by increasing the number of rooms in the vacuum cleaning model.
5 The PVTool2 is available at https://github.com/AcId9381/PVTool.
6 The UVTool is implemented using Mathematica [16] and is available at http://

people.cs.aau.dk/∼giovbacci/tools.html.

https://github.com/AcId9381/PVTool
http://people.cs.aau.dk/~giovbacci/tools.html
http://people.cs.aau.dk/~giovbacci/tools.html
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The first and the second columns respectively present the number of states of
the model and the number of configurations of the resulting EPDG, while the
last two columns present respectively the computation time and the memory
consumption of the two tools. The results of the experiments show that the
PVTool2 performs worse than the PVTool on small models but it scales
way better than the PVTool both in terms of computation time and memory
consumption. This may be due to the fact that our algorithm does not perform
any comparison of the symbolic assignments during the fixed-point computation.
The improvement is measured when the overhead of the symbolic comparison
exceeds the cost of the additional iterations required by the PVTool2.

Figure 4b shows how the computation time and memory consumption of the
PVTool2 grows linearly in the number of configurations of the EPGD.

Model EPGD Time (s) Memory (KB)
# states # conf. v1 v2 v1 v2

7 41 0.0015 0.073 1,004 43,616
13 77 0.017 0.083 1,504 48,686
19 113 0.190 0.095 3,808 54,274
25 149 0.250 0.096 14,264 60,780
31 185 35 0.119 60,548 67,806
34 203 781 0.112 263,832 71,667
40 239 N/A 0.142 N/A 79,530
46 275 N/A 0.155 N/A 88,252
52 311 N/A 0.168 N/A 97,889
58 347 N/A 0.202 N/A 107,574
64 383 N/A 0.227 N/A 118,044

(a) Comparison with the PVtool from [5] (b) Performance of the PVTool2

Fig. 4. Experiments on an Intel i7 (5th gen.) 2.6 GHz processor with 12 GB RAM

Evaluation of the UVTool. For the verification of WUKS, our algorithm first
samples valuations from X, then estimates the relative number of valuation-
samples that are correct in the sense of (1). Alternatively, one could first sample
WKSs from the given WUKS and then estimate the relative number of mod-
els that satisfy the specification. In the second approach one could employ the
WKTool7 and exploit the efficient local algorithm from [9].

We compared the two approaches on the WUKS of Example 22 and per-
formed the evaluation with increasing precision and accuracy of the estimation.
The results are presented in Table 1. The first three columns report the error, the
confidence and the number of generated samples (cf. Eq. (6)), and the last two
columns present the computation time respectively for the UVTool and the
adaptation of the WKTool. It is worth mentioning that the values reported
in the last column do not consider the time required to sample and generate
the models, but only the total time used for the model checking. The results
clearly show that our approach outperforms the second one by several orders of
magnitude, showing that computing the symbolic representation of the correct
valuations in advance gives a huge speed-up in the overall computation time.
7 The WKTool is available at https://github.com/jonasfj/WKTool.

https://github.com/jonasfj/WKTool
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Table 1. Experiments on an Intel Core i5 3.1 GHz with 8 GB RAM.

Error ε Confidence δ # samples UVTool (s) WKTool (s)

0.02 0.01 5,757 0.137 181.009

0.01 0.01 23,026 0.533 724.206

0.01 0.001 34,539 0.828 1086.88

0.005 0.001 138,156 3.231 4,347.96

0.003 0.001 383,756 8.876 5,886.670

8 Conclusion and Future Work

We addressed the model checking problem of weighted Kripke structures under
uncertainty. We proposed to employ parametric weighted Kripke structures and
weight-uncertain Kripke structures for modelling WKSs with imprecise real-
valued weights. For the verification of pWKSs against WCTL formulas we
developed a model checking algorithm that, compared with [5], implements an
improved termination condition and accepts formulas with negation. The algo-
rithm, given a pWKS and a WCTL formula, and produces a quantifier free
first-order formula in the linear theory of the reals representing the set of param-
eter valuations satisfying the specification. The outcome formula is then used as
underlying ingredient for verifying the robustness of WKSs. If the imprecision of
the weights by means of an absolute accuracy error the verification can be per-
formed via quantifier elimination (cf. Example 4). Otherwise, if the imprecision
is quantified by mean of random variables, the probability of satisfying the spec-
ification in estimated via Monte Carlo simulation techniques (cf. Example 22).

In the future we plan to consider an alternative semantic interpretation for
WUKSs where the random weights are dynamically sampled while unfolding
the model, thus modelling WKSs with an infinite state space. This alternative
semantics would fit well in the contexts of reactive systems that respond to exter-
nal stimuli whose values are uncertain. Another direction for future work would
be to consider the model checking of weighted LTL properties under uncertainty.
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