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Preface

This volume contains the papers presented at QEST 2018: 15th International Confer-
ence on Quantitative Evaluation of Systems held during September 4–7, 2018, in
Beijing.

QEST is a leading forum on quantitative evaluation and verification of computer
systems and networks, through stochastic models and measurements. This year’s
QEST was part of the CONFESTA event, which brought together the Conference on
Concurrency Theory (CONCUR), the International Conference on Formal Modelling
and Analysis of Timed Systems (FORMATS), the Symposium on Dependable Soft-
ware Engineering Theories, Tools and Applications (SETTA), as well as QEST.
CONFESTA also included workshops and tutorials before and after these major
conferences.

As one of the premier fora for research on quantitative system evaluation and
verification of computer systems and networks, QEST covers topics including classic
measures involving performance and reliability, as well as quantification of properties
that are classically qualitative, such as safety, correctness, and security. QEST wel-
comes measurement-based studies as well as analytic studies, diversity in the model
formalisms and methodologies employed, as well as development of new formalisms
and methodologies. QEST also has a tradition in presenting case studies, highlighting
the role of quantitative evaluation in the design of systems, where the notion of system
is broad. Systems of interest include computer hardware and software architectures,
communication systems, embedded systems, infrastructural systems, and biological
systems. Moreover, tools for supporting the practical application of research results in
all of the aforementioned areas are also of interest to QEST. In short, QEST aims to
encourage all aspects of work centered around creating a sound methodological basis
for assessing and designing systems using quantitative means.

This year’s edition of QEST emphasized two frontier topics in research: quantitative
information flow for security and industrial formal methods. Each topic was repre-
sented by two outstanding keynote speakers. Kostas Chatzikokolakis (École
Polytechnique, France) gave a talk on “Quantifying Leakage and the Science of
Quantitative Information Flow” and Mark Wallace (Monash University, Australia)
spoke on “Constraints and the 4th Industrial Revolution.” A special tutorial session
providing an overview of machine learning was given by Mark Dras (Macquarie
University, Australia). The program also included a joint keynote talk by Moshe Vardi
(Rice University, USA).

The Program Committee (PC) consisted of 38 experts and we received a total of 51
submissions. Each submission was reviewed by several reviewers, either PC members
or external reviewers. Based on the reviews and the PC discussion phase, 24 full papers
were selected for the conference program.

Our thanks go to the QEST community for making this an interesting and lively
event; in particular, we acknowledge the hard work of the PC members and the



additional reviewers for sharing their valued expertise with the rest of the community.
The collection and selection of papers was organized through the EasyChair Confer-
ence System. We are also indebted to Alfred Hofmann and Anna Kramer for their help
in the preparation of this LNCS volume, and we thank Springer for kindly sponsoring
the prize for the best paper award.

Also, thanks to the local organization team, especially Lijun Zhang, for his dedi-
cation and excellent work. Finally, we would like to thank Jane Hillston, chair of the
QEST Steering Committee, for her guidance throughout the past year, as well as the
members of the QEST Steering Committee.

We hope that you find the conference proceedings rewarding and will consider
submitting papers to QEST 2019.

July 2018 Annabelle McIver
Andras Horvath

VI Preface
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On the Additive Capacity Problem
for Quantitative Information Flow

Konstantinos Chatzikokolakis(B)

CNRS, Paris, France
kostas@chatzi.org

Abstract. Preventing information leakage is a fundamental goal in
achieving confidentiality. In many practical scenarios, however, eliminat-
ing such leaks is impossible. It becomes then desirable to quantify the
severity of such leaks and establish bounds on the threat they impose.
Aiming at developing measures that are robust wrt a variety of opera-
tional conditions, a theory of channel capacity for the g-leakage model
was developed in [1], providing solutions for several scenarios in both the
multiplicative and the additive setting.

This paper continuous this line of work by providing substantial
improvements over the results of [1] for additive leakage. The main idea
of employing the Kantorovich distance remains, but it is now applied
to quasimetrics, and in particular the novel “convex-separation” quasi-
metric. The benefits are threefold: first, it allows to maximize leakage
over a larger class of gain functions, most notably including the one of
Shannon. Second, a solution is obtained to the problem of maximizing
leakage over both priors and gain functions, left open in [1]. Third, it
allows to establish an additive variant of the “Miracle” theorem from [3].

Keywords: Quantitative information flow · Capacity
Kantorovich distance

1 Introduction

Preventing sensitive information from being leaked is a fundamental goal of
computer security. There are many situations, however, in which completely
eliminating such leaks is impossible for a variety of reasons. Sometimes the leak is
intentional : we want to extract knowledge from a statistical database; sometimes
it is due to side channels that are hard or impossible to fully control; sometimes
the leak is in exchange to a service, as in the case of Location-Based Services;
sometimes it is in exchange for efficiency : i.e. using a weaker but more efficient
anonymous communication system.

In these cases, it becomes crucial to quantify such leaks, measure how impor-
tant the threat they pose is and decide whether they can be tolerated or not.
This problem is studied in the area of quantitative information flow, in which
much progress has been done in recent years, both from a foundational view-
point [3,6,11,12,17,21,22,24], but also in the development of counter-measures
c© Springer Nature Switzerland AG 2018
A. McIver and A. Horvath (Eds.): QEST 2018, LNCS 11024, pp. 1–19, 2018.
https://doi.org/10.1007/978-3-319-99154-2_1
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2 K. Chatzikokolakis

and verification techniques [4,5,7,8,10,16,19,23,25,27], and the analysis of real
systems [14,15,18,20].

Robustness is a fundamental theme in this area; we aim at developing mea-
sures and bounds that are robust wrt a variety of adversaries and operational
scenarios. In the context of the successful g-leakage model, the operational sce-
nario is captured by a gain function g, and the adversary’s knowledge by a prior
π. Developing the theme of robustness in this model, [1] studied the theory of
channel capacity, that is the problem of maximizing leakage over π for a fixed g,
maximizing over g for a fixed π, or maximizing over both π and g. Comparing
the system’s prior and posterior vulnerability can be done either multiplicatively
or additively, leading to a total of six capacity scenarios.

In this paper we make substantial progress in two of the scenarios for additive
leakage, namely in maximizing over g alone, or over both π, g. When maximizing
over g, we quickly realize that if we allow vulnerability to take values in the whole
R≥0, we can always scale it up, leading to unbounded capacity. In practice,
however, it is common to measure vulnerability within a predefined range; for
instance, vulnerabilities capturing the probability of some unfortunate event
(e.g. Bayes vulnerability) take values in [0, 1], while vulnerabilities measuring
bits of information (e.g. Shannon vulnerability) take values in [0, log2 |X |]. It is
thus natural to restrict to a class G of gain functions, in which the range of
vulnerabilities is limited. In [1], this is achieved by the class G

1X of 1-spanning
gain functions, in which the gain of different secrets varies by at most 1.

Although G
1X provides a solution for capacity, this choice is not completely

satisfactory from the point of view of robustness, since it excludes important
vulnerability functions. Most notably, Shannon vulnerability (the complement
of entropy) is not k-spanning for any k, hence the capacity bound for G1X does
not apply, and indeed the leakage in this case (known as mutual information)
does exceed the bound. In this paper we take a more permissive approach, by
imposing the 1-spanning condition not on g itself, but on the corresponding
vulnerability function Vg, leading to the class G

�X . Since any vulnerability is
k-spanning for some k, this class does not a priori exclude any type of adversary,
it only restricts the range of values.

Solving the capacity problem for G
�X is however not straightforward. It

turns out that the core technique from [1], namely the use of the Kantorovich
distance on the hyper-distribution produced by the channel, can still be applied.
However, substantial modifications are needed, involving the use of quasimetrics,
and in particular the novel “convex-separation” quasimetric, replacing the total
variation used in [1]. These improvements not only lead to a solution to the
problem of maximizing leakage over g : G

�X , but also lead to a solution for
the third scenario of maximizing over both π, g, as well as to a variant of the
“Miracle” theorem for the additive setting.
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Indetail, thepapermakes the following contributions to the studyofg-capacity:

– We present a general technique for computing additive capacity wrt a class of
gain functions G, using the Kantorovich distance over a properly constructed
quasimetric.

– This technique is instantiated for G1X using the total variation metric, recov-
ering the results of [1] in a more structured way.

– The same technique is then instantiated for the larger class G
�X , using

the novel “convex-separation” quasimetric for which an efficient solution is
provided.

– The results for G
�X also provide an immediate solution to the scenario of

maximizing over both π, g, which was left completely open in [1].
– Finally, the results for G

�X lead to an “Additive Miracle” theorem, similar
in nature to the “Miracle” theorem of [3] for the multiplicative case.

2 Preliminaries

Channels and Their Effect on the Adversary’s Knowledge. A channel
C is a simple probabilistic model describing the behavior of a system that takes
input values from a finite set X (the secrets) and produces outputs from a finite
set Y (the observations). Formally, it is a stochastic |X | × |Y| matrix, meaning
that elements are non-negative and rows sum to 1. Cx,y can be thought of as the
conditional probability of producing y when the input is x.

We denote by DA the set of all discrete distributions on A, and by [a]:DA the
point distribution, assigning probability 1 to a: A. Given C and a distribution
π:DX , called the prior, we can create a joint distribution J :D(X ×Y) as Jx,y =
πxCx,y. When J is understood, it is often written in the usual notation p(x, y),
in which case the conditional probabilities p(y|x) = p(x,y)/p(x) coincide with Cx,y

(when p(x) is non-zero) and the x-marginals p(x) =
∑

y p(x, y) coincide with πx.
The prior π can be thought of as the initial knowledge that the adversary has

about the secret. When secrets are passwords, for instance, she might know that
some are more likely to be chosen than others. Always assuming that C is known
to the adversary, each output y provides evidence that allows her to update
her knowledge, creating a posterior distribution δy, defined as δy

x = p(x,y)/p(y).
This, of course, can be done for each output; every y:Y potentially provides
information to the adversary leading to an updated probabilistic knowledge δy.
But not all outputs have the same status; each happens with a different marginal
probability p(y) =

∑
x p(x, y), denoted by ay.

Hence, the effect of a channel C to the adversary’s prior knowledge π, is to
produce a set of posteriors δy, each with probability ay. It is conceptually use-
ful to view this outcome as a single distribution on distributions, called a hyper -
distribution or just hyper. Such a hyper has type D2X and is denoted by [πŻC] =∑

y ay[δy].1 The ay-component of [πŻC] is called the outer distribution, express-
ing the probability of obtaining the posteriors δy, called the inner distributions.
1 The notation is due to the fact that distributions can be convexly combined (DA is

a vector space).
∑

y ay[δy] is exactly the hyper assigning probability ay to each δy.
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π
1/3
1/3
1/3

C y1 y2 y3 y4

x1 1 0 0 0
x2 0 1/2 1/4 1/4
x3

1/2 1/3 1/6 0

−→
J y1 y2 y3 y4

x1
1/3 0 0 0

x2 0 1/6 1/12 1/12
x3

1/6 1/9 1/18 0

−→
[π C] 1/2 5/12 1/12

x1
2/3 0 0

x2 0 3/5 1
x3

1/3 2/5 0

Fig. 1. A prior π (type DX ), a channel C (rows have type DY), a joint J (type D(X ×
Y)), and a hyper [π C] (type D

2X , each column has type DX ).

An example of all constructions is given in Fig. 1. From a channel C and
the uniform prior π we can construct the joint J by multiplying (element-wise)
each column of C by π. J is then a single distribution assigning probabilities to
each pair (x, y). To construct the hyper [πŻC], we normalize (i.e. divide by p(y))
each column J−,y, forming the posterior δy. The marginals p(y) become the outer
probabilities ay, labeling the columns of [πŻC]. Finally, note that [πŻC] no longer
records the original label y of each column. As a consequence, the columns y2
and y3, both producing the same posterior δy2 = δy3 = (0, 3/5, 2/5), are merged in
[πŻC], which assigns to that posterior the combined probability p(y2) + p(y3) =
5/12. This phenomenon happens automatically by the construction of the hyper.

Vulnerability and Leakage. A fundamental notion in measuring the infor-
mation leakage of a system is that of a vulnerability function V : DX → R≥0.
The goal of V (π) is to measure how vulnerable a system is when the adversary
has knowledge π about the secret. To create a suitable vulnerability function we
need to consider the operational scenario at hand: we first determine what the
adversary is trying to achieve, then take V (π) as a measure of how successful
the adversary is in that goal. Clearly, no single function can capture all opera-
tional scenarios; as a consequence a variety of vulnerability functions has been
proposed in the literature, each having a different operational interpretation.

For instance, Bayes-vulnerability VB(π):= maxx πx measures the probabil-
ity of success of an adversary who tries to guess the complete secret in one
try; Shannon-vulnerability VH(π):= log2 |X |+∑

x πx log2 πx (the complement of
entropy) measures the expected number of Boolean questions needed to reveal
the secret; and Guessing-vulnerability VG(π) = |X |+1/2 − ∑

i iπi (where the i-
indexing of X is in non-decreasing probability order) measures the expected
numbers of tries to guess the secret correctly.

To study vulnerability in a unifying way, the g-leakage framework was intro-
duced in [3], in which the operating scenario is parametrized by a (possibly
infinite) set of actions W, and a gain function g:W × X → R. Intuitively, W
consists of actions that the adversary can perform to exploit his knowledge about
the system. Then, g(w, x) models the adversary’s reward when he performs the
action w and the actual secret is x. In such an operational scenario, it is natural
to define g-vulnerability Vg as the expected gain of a rational adversary who
chooses the best available action:

Vg(π) := supw

∑
x πxg(w, x) .
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The g-leakage framework is quite expressive, allowing to obtain a variety of
vulnerability functions as special cases for suitable choices of g. For instance,
by picking W = X and the identity gain function given by gid(w, x) = 1 iff
w = x and 0 otherwise, we get Vgid = VB. Similarly, we can construct gain
functions expressing Shannon (for which an infinite W is needed) and Guessing
vulnerabilities, as well as a variety of other operational scenarios. In fact, it can
be shown that any continuous and convex vulnerability V : DX → R≥0 can be
written as Vg for some g [2].

For expressiveness, it is crucial to allow g to potentially take negative values,
and W to be infinite. However, it is desirable that Vg itself be non-negative
and finite-valued, since it is meant to express vulnerability. As a consequence we
always restrict to the class of GX of gain functions, defined as those such that
Vg : DX →R≥0. As already discussed in the introduction, it is often desirable to
further restrict to subsets of GX .

Having established a way to measure vulnerability in the prior case, we move
on to measuring how vulnerable our system is after observing the output of a
channel C. Viewing the outcome of C on π as the hyper [πŻC], there is a natural
answer: we can measure the vulnerability of each posterior (inner) distribution of
[πŻC], then average by the outer probabilities, leading to the following definition
of posterior g-vulnerability :

Vg[πŻC] :=
∑

y ayVg(δy) where [πŻC] =
∑

y ay[δy]

Finally, information leakage is measured by comparing the vulnerability in
the prior and posterior case. Depending on how we compare the two vulnerabil-
ities, this leads to the additive or multiplicative leakage, defined as:

L+
g (π,C) := Vg[πŻC] − Vg(π) , L×

g (π,C) :=
Vg[πŻC]
Vg(π)

.

Additive g-Capacities. A fundamental theme when measuring information
leakage is robustness; we need bounds that are robust wrt a variety of different
adversaries and operational scenarios. Following this theme, since the g-leakage
of a channel C depends on both the prior π and the gain function g, it is natural
to ask what is the maximum leakage of C, over a class of gain functions G ⊆ GX
and a class of priors D ⊆ DX . This maximum leakage is known as the capacity
of C.

Definition 1. The additive (G,D)-capacity of C, for G ⊆ GX , D ⊆ DX , is

ML+
G (D, C) := sup

g:G,π:D
L+

g (π,C) .

For brevity, when maximizing only over π for a fixed g, we write ML+
g (D, C)

instead of ML+
{g}(D, C); similarly, when π is fixed we write ML+

G (π,C); for
specific classes, say G = GX , D = DX , we write ML+

G
(D, C) instead of

ML+
GX (DX , C). We can maximize over π, or g, or both, getting three scenarios
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for additive capacity. The multiplicative capacity ML×
G (D, C), defined similarly,

is outside the scope of this paper; the corresponding three scenarios are studied
in [1].

For the first scenario, g is fixed and we maximize over the whole DX . For some
gain functions an efficient solution exists; for instance, for gH giving Shannon vul-
nerability, ML+

gH
(D, C) is the Shannon capacity (maximum transmission rate)2

which can be computed using the well-known Blahut-Arimoto algorithm [13].
However, for gid (giving Bayes vulnerability), bounding ML+

gid
(D, C) is known

to be NP-complete [1], which of course leaves no hope for a general solution.
The second scenario (fixed π, maximize over g) is the main focus of this

paper and is studied in detail in Sect. 3. Our solution turns out to also provide
an answer for the third scenario (maximize over both π, g), discussed in Sect. 3.5.

3 Computing Additive Capacities

In this section we study the problem of computing the additive (G, π)-capacity.
We quickly realize, however, that the unrestricted maximization over the whole
GX yields unbounded leakage. The problem is the unbounded range of Vg, and
can be illustrated by “scaling” g. Define the scaling of g by k > 0 as g×k(w, x) =
k · g(w, x). It is easy to show [1] that this operation gives leakage L+

g×k
(π,C) =

k · L+
g (π,C), and since k can be arbitrary we get that ML+

G
(π,C) = +∞.3

There are important classes of gain functions, however, which effectively limit
the range of Vg, causing the additive leakage to remain bounded. Even when
ML+

G (π,C) is finite, computing it efficiently is non-trivial. A solution can be
obtained by exploiting the fact that ML+

G (π,C) is connected to the well-known
Kantorovich distance between [π] and [πŻC].

This section proceeds as follows. In Sect. 3.1 we recall the Kantorovich dis-
tance and then use it in Sect. 3.2 to obtain a generic technique for computing
ML+

G (π,C), in time linear on the size of C, using properties of G. We apply these
bounds to obtain efficient solutions for the class G

1X of 1-spanning gain func-
tions in Sect. 3.3, as well as the class G

�X of gain functions giving 1-spanning
vulnerability in Sect. 3.4. Finally, Sect. 3.5 discusses the scenario of maximizing
over both π and g.

3.1 The Kantorovich and Wasserstein Distances

We begin by recalling the Kantorovich distance between probability distribu-
tions. Given α:DA and random variable F :A→R we write EαF for the expected
value of F over α, or Ex∼αF (x) to make precise the variable we are averag-
ing over. Observe that for a point distribution centered at a ∈ A we have
E[a]F = F (a).

2 Which is why we generally refer to the maximization of leakage as “capacity”.
3 The same phenomenon happens for multiplicative leakage, this time demonstrated

by shifting. To keep ML×
G (π, C) bounded we can restrict to the class G

+X of non-
negative gain functions.
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A function d : A2 → R is called a quasimetric iff it satisfies the triangle
inequality and d(a, a′) = 0 ∧ d(a′, a) = 0 iff a = a′. If d is also symmetric it is
called a metric. The set of all quasimetrics on A is denoted by MA. Although
less frequently used than metrics, quasimetrics will play an important role in
computing additive capacity in Sect. 3.4.

A natural quasimetric on R is given by

d<
R(x, y) := max{y − x, 0} .

Intuitively, d<
R
(x, y) measures “how much smaller” than y is x; 0 means that x is

no smaller than y. This quasimetric can be extended to x, y ∈ R
n as d<

Rn(x, y) =∑
i d<

R
(xi, yi), giving an “asymmetric Manhattan” distance.

A function F : A→R is called d, dT -Lipschitz iff

dT (F (a), F (a′)) ≤ d(a, a′) for all a, a′ ∈ A . (1)

The set of all such functions (also called contractions) is denoted by C
d,dT A.

For the source metric, a scaled distance k · d (for some k ≥ 0) is often used. For
the target metric dT the Euclidean distance dR is commonly employed (in which
case we might simply write d-Lipschitz for brevity). In this section, however, we
consider functions that are d, d<

R
-Lipschitz, which holds iff

F (a′) − F (a) ≤ d(a, a′) for all a, a′ ∈ A . (2)

Note that the max from the definition of d<
R

is not needed, since d(a, a′) is non-
negative.

The Kantorovich construction allows us to lift a metric d on A to a met-
ric on probability distributions over A. The standard construction is done by
maximizing |EαF − EαF ′| over all functions that are d, dR-Lipschitz. Note that
the Euclidean distance is implicitly used twice in this construction: first, in the
Lipschitz condition and second, for comparing EαF and EαF ′. We can, however,
define variants of the Kantorovich by using any other distance on R. Our pur-
pose is to work with quasimetrics, hence we employ d<

R
, leading to the following

definition.

Definition 2. The Kantorovich quasimetric is the mapping K
< : MA → MDA:

K
<(d)(α, α′) := sup

F :Cd,d<
R A

d<
R(EαF, Eα′F ) = sup

F :Cd,d<
R A

Eα′F − EαF .

Note that max was again dropped from d<
R
, since the sup is anyway non-negative

(Eα′F − Eα′F = 0 for F constant).
An important property of the Kantorovich distance is that it has a dual

formulation as the Wasserstein (or “earth-moving”) metric, for which efficient
algorithms exist. Earth moving measures measuring the cost of transforming one
distribution into another, using the underlying distance d as the cost function.
Given two distributions α, α′:DA (the “source” and “target”), an earth-moving
strategy is a joint distribution S ∈ DA2 whose two marginals are α and α′.
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We write Sα,α′ for the set of such strategies. The Wasserstein distance is then
defined as the minimum transportation cost; similarly to Kantorovich, it provides
a lifting from MA to MDA.

Definition 3. The Wasserstein distance is the mapping W : MA → MDA given
by:

W(d)(α, α′) := infS:Sα,α′ ESd .

The well-known Kantorovich-Rubinstein theorem [26] states that, if (d,A)
is a separable metric space then K(d) = W(d). For our purposes, we will use
this result in the restricted case where one of the two distributions is a point
distribution [a]. This restriction is useful for two reasons: first, it allows us to
give a simplified proof, adjusted to our K

< variant, drop the assumption of
separability and allow d to be a quasimetric. Second, we show that W(d)([a], α)
can be easily obtained as the expected (wrt α) distance between a and the
elements in the support of α.

We first fix some notation: given d ∈ MA and a ∈ A, we denote by da : A → R

the function “currying” a, defined by da(x) = d(a, x). Note that da is d, d<
R
-

Lipschitz since da(y)−da(x) = d(a, y)−d(a, x) ≤ d(x, y) follows from the triangle
inequality. We are now ready to state the result relating the two distances.

Theorem 1. Let d ∈ MA be any quasimetric. For all [a], α ∈ DA it holds that

K
<(d)([a], α) = W(d)([a], α) = Eαda .

Proof. We start with the Wasserstein distance. The crucial observation is that
for point [a], there is informally a single source “pile of earth”: all the probability
has to come from a. As a consequence, S[a],α contains a unique strategy Sx,y =
[a]x · αy with independent marginals [a] and α. We can then calculate

W(d)([a], α)
= infS:S[a],α ESd “definition of W”

= E(x,y)∼S d(x, y) “take unique S with independent marginals [a], α”

= Ey∼αEx∈[a] d(x, y) “independence of marginals”

= Ey∼α d(a, y) “expectation over point distribution”

= Eαda

For the Kantorovich distance, we bound it from above by Eαda, as follows:

K
<(d)([a], α)

= sup
F :Cd,d<

R A EαF − E[a]F “definition of K<”

= sup
F :Cd,d<

R A EαF − F (a) “expectation over point distribution”

= sup
F :Cd,d<

R A Ex∼α(F (x) − F (a))
≤ sup

F :Cd,d<
R A Ex∼αd(a, x) “(2), F is d, d<

R-Lipschitz”

= Eαda
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Finally we bound K
<(d)([a], α) from below by Eαda, as follows:

K
<(d)([a], α)

= sup
F :Cd,d<

R A EαF − E[a]F “definition of K<”

≥ Eαda − E[a]da “da ∈ C
d,d<

RA”

= Eαda “E[a]da = da(a) = 0” ��

3.2 Computing Additive (G, π)-capacity

We now discuss a generic technique for computing the additive (G, π)-capacity,
for a given family of gain functions G ⊆ GX , using the Kantorovich distance.
Recall that ML+

G (π,C) (Definition 1) is defined as the maximum difference
between the posterior and prior vulnerabilities Vg[πŻC], Vg[π]. The latter are
simply the expected value of Vg over the distributions [π], [πŻC], which are hyper
distributions, having sample space DX .

We start by taking A = DX as the underlying space of the Kantorovich
construction. A quasimetric d ∈ MDX measures the distance between two dis-
tributions on secrets. The key for bounding ML+

G (π,C) from above is to find
such a quasimetric d wrt which Vg is Lipschitz for all g ∈ G. Since the Kan-
torovich distance maximizes Eα′F − EαF over all Lipschitz functions F , it will
provide an upper bound to the additive capacity.

Bounding the capacity from below is also possible if there exists some g ∈ G
such that dπ = Vg. This is due to the fact that the g-leakage for this g is exactly
E[π C]dπ.

In the following, given a class of gain function G ⊆ GX , we denote by VG =
{Vg | g ∈ G} the set of g-vulnerabilities induced by G. The bounding technique
is formalized in the following result.

Theorem 2. Let d ∈ MDX , let G ⊆ GX and fix a channel C and prior π. Then

dπ ∈ VG implies ML+
G (π,C) ≥ k , and (3)

C
d,d<

RDX ⊇ VG implies ML+
G (π,C) ≤ k , (4)

where k = K
<(d)([π], [πŻC]) = W(d)([π], [πŻC]) = E[π C]dπ.

Proof. The fact that K
<(d)([π], [πŻC]) = W(d)([π], [πŻC]) = E[π C]dπ comes

from Theorem 1, for A = DX , a = π, α = [πŻC]. We start with (3): for Vg = dπ

we have that Vg(π) = 0 and Vg[πŻC] = E[π C]dπ hence ML+
G (π,C) ≥ L+

g (π,C) =
E[π C]dπ. For (4) we have that

ML+
G (π,C)

= supVg:VG E[π�C]Vg − E[π]Vg “definition”

≤ sup
F :Cd,d<

RDX E[π�C]F − E[π]F “sup over larger class”

= K
<(d)([π], [πŻC]) “definition” ��
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So far we have considered an unknown quasimetric d on probability distri-
butions, and identified in Theorem2 two properties of d that provide bounds
for additive leakage. It is not clear, however, whether such a quasimetric exists
and what is its relationship with the class G. We now show that the choice of d
is in fact canonical for each class. More precisely, for any G we can construct a
quasimetric d<

G satisfying the second condition of Theorem 2. Furthermore, if a
quasimetric d satisfying both conditions (for any π) does exist, then it is unique
and equal to d<

G .

Theorem 3. Let G ⊆ GX and define a quasimetric d<
G :MDX as

d<
G(π, σ) := sup

g∈G
d<
R(Vg(π), Vg(σ)) .

Then VG ⊆ C
d<

G ,d<

RDX . Moreover, if {dπ | π:DX} ⊆ VG ⊆ C
d,d<

RDX holds for
some quasimetric d, then d = d<

G.

Proof. Let g ∈ G. We trivially have that

d<
R(Vg(π), Vg(σ)) ≤ sup

g∈G
d<
R(Vg(π), Vg(σ)) = d<

G(π, σ) ,

hence Vg is d<
G , d<

R
-Lipschitz. Now let d:MDX such that {dπ | π:DX} ⊆ VG ⊆

C
d,d<

RDX and let π, σ:DX . From dπ ∈ VG , we get that

d(π, σ) = d<
R(dπ(π), dπ(σ)) ≤ sup

g∈G
d<
R(Vg(π), Vg(σ)) = d<

G(π, σ) .

Then, since Vg is d, d<
R
-Lipschitz for all g ∈ G, we get that

d<
G(π, σ) = sup

g∈G
d<
R(Vg(π), Vg(σ)) ≤ sup

g∈G
d(π, σ) = d(π, σ) ,

hence d and d<
G coincide. 
�

Finally, an important corollary of this technique is that, assuming that d can
be computed in time O(|X |), ML+

G (π,C) can be computed in time O(|X ||Y|).
Indeed, calculating E[π C]dπ involves computing the output and posterior distri-
butions of [πŻC]. The former can be computed in O(|X ||Y|) time via the joint
matrix J ; then for each posterior δy, we need to construct δy (O(|X |)) and
compute d(π, δy) (O(|X |)).

3.3 Additive Capacity for 1-spanning Gain Functions

We are now ready to provide a complete method for computing additive capacity
for an important family of gain functions. The span of a function f : A→R is
defined as

‖f‖ := supa,a′∈A |f(a) − f(a′)| ,

while for gain functions (having two arguments) we define ‖g‖:= supw∈W
‖g(w, ·)‖. Since scaling g causes unbounded leakage, a natural solution is to
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limit the range of g. This can be done in an elegant way, without completely
fixing g’s range, by requiring that ‖g‖ ≤ 1, which brings us to the class G

1X of
1-spanning gain functions, the topic of study in this section. In the following we
see that this restriction in fact limits the steepness of Vg.

Note that any result for G
1X can be straightforwardly extended to k-

spanning gain functions, since L+
g×k

(π,C) = k · L+
g (π,C) implies that the k-

spanning additive capacity is simply k · ML+
G1(π,C). Note also that this class is

quite large: any g with a finite number of actions has finite span. For an infinite
number of actions, however, it is possible that ‖g‖ = +∞, i.e. that g is not
k-spanning for any k; important functions such as Shannon vulnerability fall in
this category. In Sect. 3.4 we enlarge our class of gain functions to include such
cases.

Total Variation, Steepness and g’s span. To apply the bounding technique
of Sect. 3.2 to G

1X we need a (quasi)metric d ∈ MDX with respect to which Vg

is Lipschitz when g is 1-spanning. Conveniently, this is the case of the well-known
total variation distance:

tv(π, π′) := supX⊆X |π(X) − π′(X)| .

For discrete distributions, expressed as vectors, the total variation is equal to
d<
Rn(π, π′), which is in fact symmetric when restricted to probability distributions

(because the elements sum up to 1), and equal to 1/2 the Manhattan distance
‖π−π′‖1. Total variation is a natural choice for DX when X is an “unstructured”
space with no underlying metric. Indeed, such spaces can be naturally equipped
with the discrete metric dm:MX , defined as dm(x, x′) = 0 iff x = x′ and 1
otherwise. It is well known that the Kantorovich lifting of this metric gives total
variation, namely tv = K(dm). Note, however, that the fact that tv is the result
of Kantorovich is not important for our goals; our technique involves applying
K

< to tv itself, lifting it to hyper-distributions.
The Lipschitz property wrt tv and the standard Euclidean dR naturally

expresses the steepness of Vg. If Vg is k·tv-Lipschitz then the vulnerability can be
modified by at most k·ε while changing the probability of any subset of secrets
by ε. The larger k is, the steeper Vg can be, i.e. the faster it is allowed to change.
It turns out that this property is tightly connected to the span of g, as the
following result from [1] states.

Proposition 1. For all g:GX it holds that Vg is ‖g‖·tv-Lipschitz.

As a consequence of the above result we get that ‖Vg‖ ≤ ‖g‖, since |Vg(π) −
Vg(π′)| can be no greater than ‖g‖·tv(π, π′) ≤ ‖g‖.

Putting the Pieces Together. We can finally recover (in a more structured
way) the result of [1] for computing the additive (G1,π)-capacity. Denote by
1S(x) the indicator function, equal to 1 if x ∈ S and 0 otherwise.
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Theorem 4. Given a channel C and prior π, it holds that

ML+
G1(π,C) = E[π C]tvπ .

The capacity is realized by the gain function g:G1X defined by

W := 2X , g(W,x) := 1W (x) − π(W ) ,

for which it holds that Vg = tvπ.4

Proof. The result comes from Theorem 2 for d = tv and G = G
1X ; we show here

that the two conditions of this theorem hold.
For the upper bound we need to show that g:G1X implies that Vg is tv, d<

R
-

Lipschitz. But from Proposition 1 we know that Vg is tv, dR-Lipschitz, which is
a stronger property since d<

R
is no greater than dR for all reals.

For the lower bound, we need to show that the claimed gain function g is
1-spanning and Vg(τ) = tvπ(τ). Note that g clearly depends on the fixed π. For
the 1-spanning part we have that |g(W,x) − g(W,x′)| = |1W (x) − 1W (x′)| ≤ 1.
Moreover, it holds that

Vg(τ)
= maxW Ex∼τg(w, x) “definition of Vg”

= maxW

(Ex∼τ1W (x) − π(W )
)

“definition of g”

= maxW

∑
x∈W (τx−πx)

=
∑

x d<
R
(πx, τx) “take W = {x | τx ≥ πx}”

= tv(π, τ) . “tv(π, π′) = d<
Rn(π, π′)” ��

In the above proof we showed that tv satisfies the two conditions of Theo-
rem 2. From Theorem 3 we known that there is a unique quasimetric satisfying
these conditions which can be constructed explicitly from the class G = G

1X ,
that is: tv(π, π′) = d<

G1(π, σ) = supg:G1X Vg(σ) − Vg(π). Note also that tv can
be computed in |X | time, hence, as discussed in Sect. 3.2, ML+

G1(π,C) can be
computed in time O(|X ||Y|).

3.4 Additive Capacity for 1-spanning Vulnerability Functions

As discussed in the introduction it is often desirable to measure vulnerability
within a predefined range, for instance [0, 1] or [0, log2 n] (n = |X |). A natural
way to achieve this is to consider k-spanning gain functions, implicitly limiting
the range of Vg to an interval of size at most k. This choice, however, excludes
important vulnerabilities that cannot be expressed as Vg for any k-spanning g.

For instance, for the Shannon vulnerability function VH (see Sect. 2) the addi-
tive capacity is equal to the well known Shannon mutual information. Although
4 The choice W = X → {−1, 1}, g(w, x) = 1

2

(
w(x) − Eπw

)
is also capacity-realizing

[1].
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VH lies within [0, log2 n] and it can be expressed as VgH
for a suitable gH , this

gain function is not log2 n-spanning, in fact ‖gH‖ = +∞. As a consequence,
the additive capacity ML+

G1(π,C), discussed in the previous section, does not
provide a bound for gH -leakage. Indeed, the mutual-information of the fully
transparent identity channel Cid on a uniform prior is L+

gH
(πu, Cid) = log2 n,

which exceeds its additive capacity wrt log2 n-spanning gain functions, which is
equal to log2 n · ML+

G1(πu, Cid) = n−1
n log2 n.

Aiming at robustness wrt a larger class of vulnerabilities, we can allow func-
tions Vg that have a bounded range, even though g itself is unbounded. Simi-
larly to G

1X , we choose to limit the range of Vg without completely fixing it,
by restricting to the class G�X = {g:GX | ‖Vg‖ ≤ 1} of 1-spanning vulnerability
functions.

Since ‖Vg‖ ≤ ‖g‖, but not vice-versa (as VH demonstrates), it holds that
G

1X ⊂ G
�X . Since any convex (and continuous) function can be expressed as

Vg for some properly constructed g [2], VG�X is the class of all 1-spanning convex
functions. Note also that, since any Vg, g:GX is bounded, it is k-spanning for
some k.

To compute the additive capacity via the technique of Sect. 3.2, we need a
quasimetric satisfying both conditions of Theorem2. From Theorem 3 we know
that such a quasimetric (if it exists) is unique and equal to the d<

G construction.
In the previous section, this turned out to be the well-known total variation
distance. In this section, on the other hand, we start directly with d<

G for our
class G = G

�X . The resulting quasimetric d<
G� is called the “convex-separation”

quasimetric, and is given by

d<
G�(π, σ) := sup

g∈G�X
d<
R(Vg(π), Vg(σ)) = sup

g∈G�X
Vg(σ) − Vg(π) .

Note that, once again, we removed the max from the definition of d<
R

since the
sup is anyway non-negative.

An important property of d<
G� is that it admits a simple closed-form solution.

Theorem 5. The convex-separation quasimetric d<
G� is equal to

d<
G�(π, σ) = max

x: 	π

1 − σx

πx
.

Proof. Let π, σ ∈ DX . Assume π �= σ (the case π = σ is trivial) and consider
the line in R

n joining the two priors, as shown in Fig. 2. The points on that line,

π σ

π + c(σ − π)

πc

Fig. 2. Line connecting π and σ, extended to the boundary of the simplex.
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starting from π and moving towards σ can be written as πc = π + c(σ − π) for
c ≥ 0. Continuing on that line, at some point we are going to hit the boundary
of the probability simplex DX . Let πc be the point on that boundary, i.e.

c := max{c | πc ∈ DX} . (5)

Note that c ≥ 1 since π1 = σ ∈ DX . Now let F :DX → R be convex and
1-spanning. Since σ lies in the line segment between π and πc, we can write it
as a convex combination

σ = c−1πc + (1 − c−1)π (6)

with c−1 ∈ (0, 1]. From convexity we get that

F (σ) ≤ c−1F (πc) + (1 − c−1)F (π) ,

from which, together with F (πc) − F (π) ≤ 1 (F is 1-spanning), we get

F (σ) − F (π) ≤ c−1(F (πc) − F (π)) ≤ c−1 . (7)

We now compute c, which is given by the maximization problem (5). The
problem has a single variable c and the constraint πc ∈ DX can be expressed
by

∑
x πc

x = 1 and the inequalities πc
x ≥ 0. The first constraint

∑
x πc

x = 1
is always satisfied by construction of πc. Hence we only need to ensure that
πc

x = πx + c(σx − πx) ≥ 0 for all x: X . If πx = σx this is always satisfied, and if
πx < σx then this imposes a lower bound on c. The only interesting case is when
πx > σx which gives us an upper bound c ≤ πx/πx−σx. The max c satisfying all
upper bounds is equal to the smallest of them:

c = min
x:πx>σx

πx

πx − σx
.

Replacing c in (7) we get

F (σ) − F (π) ≤ max
x:πx>σx

πx − σx

πx
= max

x:	π

1 − σx

πx
.

We finally show that the above bound is attainable. Define

Fπ(τ) := max
x:	π


1 − τx

πx
.

Fπ is convex as the max of convex (in fact linear) functions of τ , so it can be
expressed as Vg (see Theorem 6 for the exact g). Moreover, Fπ(π) = 0, hence
Fπ(σ) − Fπ(π) = maxx:	π
 1 − σx

πx
, which concludes the proof. 
�
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We can now use d<
G� to compute the additive (G�,π)-capacity.

Theorem 6. Given a channel C and prior π, it holds that

ML+
G�(π,C) = E[π�C]d

<
G� π

= 1 −
∑

y:Y
min
x: 	π


Cx,y .

The capacity is realized by the complement of the “π-reciprocal” gain function

W = �π� , gc
π–1 =

{
1 − 1

πx
, if w = x

1, if w �= x
,

for which it holds that Vgc
π–1

= d<
G� π

, and as a consequence gc
π–1 :G�X .

Proof. The result comes from Theorem 2 for d = d<
G� and G = G

�X ; we
show here that its two conditions of the theorem hold. The second is satisfied
automatically by the construction of d<

G� (Theorem 3). For the first condition,
after simple calculations we find that the gc

π–1 -vulnerability function is equal to
Vgc

π–1
(σ) = maxx: 	π
 1 − σx

πx
, hence from Theorem 5 we have that Vgc

π–1
= d<

G� π
.

Finally, simple calculations show that Vgc
π–1

[πŻC] = 1−∑
y minx∈	π
 Cx,y, which

concludes the proof since Vgc
π–1

(π) = d<
G� π

(π) = 0. 
�
Note that the capacity-realizing gain function gc

π–1 essentially “cancels out”
the effect of the prior, making ML+

G�(π,C) independent from π, and equal to 1
minus the sum of the column minima of C (ignoring the rows when πx = 0).
Remarkably, the “π-reciprocal” gain function gπ–1 (the complement of gc

π–1) pro-
duces the same “cancellation” effect for multiplicative (G+,π)-capacity, making
it independent from π.

An observation that can be made from Theorem6 is that the capacity
realizing g is k-spanning for k = maxx: 	π
 1

πx
. From this we can conclude

that ML+
G�(π,C) ≤ k · ML+

G1(π,C) for k = maxx: 	π
 1/πx. In particular
ML+

G�(πu, C) ≤ |X | · ML+
G1(πu, C) for the uniform πu.

A final note about our use of quasimetrics. Although the total variation
tv, used in Sect. 3.3 for G

1X , is a proper metric, d<
G� used in this section for

G
�X is not, since it is not symmetric. This is why we had to work with quasi-

metrics; it is certainly possible to define a symmetric variant of d<
G� (eg. as

max{d<
G�(π, σ), d<

G�(σ, π)}), however this metric would not satisfy both condi-
tions of Theorem 2. Recall that for each class G there can be at most one quasi-
metric satisfying both properties, and for G

�X this is d<
G� .

3.5 Maximize over both g and π

This scenario was left open in [1] (which uses the class G1X ), since ML+
G1(π,C)

depends on the prior, and maximizing it over π is challenging. Our results on
the larger class G

�X , however, lead to a complete solution since ML+
G�(π,C) is

independent from π. By Theorem 6, any full-support π with gc
π–1 are capacity-

realizing, giving

ML+
G�(D, C) = 1 − ∑

y minx Cx,y .
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4 The Additive Miracle Theorem

The multiplicative Bayes-capacity ML×
gid

(D, C) is well known to be realized on
a uniform prior, and is equal to the sum of the column maxima of C [9,24]. A
result from [3], which was surprising enough to be named “Miracle”, states that
ML×

gid
(D, C) is in fact a universal upper bound for multiplicative leakage (wrt

non-negative g’s).

Theorem 7 (“Miracle”, [3]). For any C, π:DX , and non-negative g:G+X ,
we have

L×
g (π,C) ≤ ∑

y maxx Cx,y = ML×
gid

(D, C) .

In [1], this theorem was used to easily conclude that the capacity ML×
G+(π,C) is

equal to ML×
gid

(D, C) for any full-support π. In the additive case, having already
a solution for ML+

G�(π,C), we can go in the opposite direction and obtain an
additive variant of the miracle theorem. Denote by gc

id = 1−gid the complement
of gid.

Theorem 8 (“Additive Miracle”). For any C, π:DX , and g:G�X , we have

L+
g (π,C) ≤ 1 − ∑

y minx Cx,y = |X | · ML+
gc
id

(D, C) .

Proof. The inequality is a direct consequence of Theorem 6; note that it holds
for any prior since 1 − ∑

y:Y minx:X Cx,y ≥ 1 − ∑
y:Y minx: 	π
 Cx,y. Now let

g∗ = gc
id × |X |, for which it holds that ML+

g∗(D, C) = |X | · ML+
gc
id

(D, C). We
have that Vg∗ = |X |(1 − minx:X πx). For uniform πu we compute L+

g∗(πu, C) =
1 − ∑

y minx Cx,y, and since g∗:G�X , this is an upper bound for all π:DX , and
hence equal to ML+

g∗(D, C). 
�
The multiplicative and additive miracle theorems are similar in nature,

although they do have several differences. They both provide a universal bound
for leakage, which holds for all priors and all gain functions within a certain
class. In the multiplicative case, this is the class G+X of non-negative gain func-
tions, while in the additive case, the class G

�X of gain functions producing a
1-spanning Vg. In the multiplicative case the bound is given by the sum of column
maxima of C, while in the additive case by 1 minus the sum of column minima.
In the multiplicative case the bound coincides with the (gid,D)-capacity for the
identity gain function (i.e. the Bayes-capacity), which is realized on a uniform
prior. In the additive case the bound is (|X | times) the (gc

id,D)-capacity for the
“complement of identity” gain function, also realized on a uniform prior.

C y1 y2
x1 0.8 0.2
x2 0.2 0.8

Example. Consider the case X = {x1, x2} with a gain function
penalizing wrong guesses, defined as W = X , and g(w, x) = 1
iff w = x and −1 otherwise. Note that Vg is always non-negative
since the probability of a correct guess is at least 0.5 (for |X | =
2). For a uniform prior πu, both guesses are equivalent, giving expected gain
0.5 · 1 + 0.5 · −1 = 0, so Vg(πu) = 0.
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Now consider the illustrated channel C which gives rather good information
about the secret. Computing the two posteriors we get δy1 = (0.8, 0.2) and δy2 =
(0.2, 0.8), which both give g-vulnerability Vg(δy1) = Vg(δy2) = 0.8 − 0.2 = 0.6.
Hence Vg[πuŻC] = 0.6 and as a consequence L×

g (πu, C) = +∞, clearly larger
than the multiplicative Bayes capacity ML×

gid
(D, C) = 0.8 + 0.8 = 1.6. The

miracle theorem does not apply here since g takes negative values.
On the other hand, Vg is 1-spanning (although g itself is 2-spanning),

since its value is at least 0 (for a uniform prior) and at most 1 (for a point
prior). As a consequence the additive miracle theorem applies, guaranteeing that
L+

g (πu, C) ≤ 1−∑
y minx Cx,y = 1−0.2−0.2 = 0.6. Indeed L+

g (πu, C) = 0.6−0,
exactly matching the bound. 
�

5 Conclusion and Future Work

We studied the problem of computing additive g-capacities. Extending the Kan-
torovich technique of [1] with quasimetrics, we provided a solution for the class
G

�X of 1-spanning vulnerabilities, which, in contrast to G
1X , can include any

vulnerability function (by scaling). The results also provided a solution to the
problem of maximizing leakage over both π and g, and lead to an additive variant
of the miracle theorem of [3].

In future work we plan to study approximation algorithms for all scenarios,
especially ML+

g (D, C) which is NP-complete in general. Moreover, we aim at
developing a theory that unifies the two main approaches to robustness, namely
capacity and refinement.

Acknowledgements. All results were obtained in the process of preparing a
manuscript on Quantitative Information Flow with my long-term collaborators
M. Alvim, C. Morgan, A. McIver, C. Palamidessi and G. Smith, and were heavily
influenced by their feedback.
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Abstract. In this paper, we propose a new temporal logic for express-
ing and reasoning about probabilistic hyperproperties. Hyperproperties
characterize the relation between different independent executions of a
system. Probabilistic hyperproperties express quantitative dependencies
between such executions. The standard temporal logics for probabilis-
tic systems, i.e., PCTL and PCTL∗ can refer only to a single path at a
time and, hence, cannot express many probabilistic hyperproperties of
interest. The logic proposed in this paper, HyperPCTL, adds explicit and
simultaneous quantification over multiple traces to PCTL. Such quantifi-
cation allows expressing probabilistic hyperproperties. A model check-
ing algorithm for the proposed logic is also introduced for discrete-time
Markov chains.

1 Introduction

Four decades ago, Lamport [16] used the notion of trace properties as a means
to specify the correctness of individual executions of concurrent programs. This
notion was later formalized and classified by Alpern and Schneider [1] to safety
and liveness properties. Temporal logics (e.g., LTL [17] and CTL [3]) were built
based on these efforts to give formal syntax and semantics to requirements of
trace properties. Subsequently, verification algorithms were developed to reason
about individual traces of a system.

It turns out that many interesting requirements are not trace properties.
For example, important information-flow security policies such as noninterfer-
ence1 [10] and observational determinism2 [22] cannot be expressed as properties
of individual execution traces of a system. Also, service level agreement require-
ments (e.g., mean response time and percentage uptime) that use statistics of a
system across all executions of a system are not trace properties. Rather, they
are properties of sets of execution traces, also known as hyperproperties [5]. Tem-
poral logics HyperLTL and HyperCTL∗ [4] have been proposed to provide a unifying
1 Noninterference stipulates that input commands from high-privileged users have no

effect on the system’s behavior observed by low-privileged observers.
2 Observational determinism requires that two executions that start at two low initial

states appear deterministic to a low user.
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framework to express and reason about hyperproperties. They allow explicit and
simultaneous quantification over multiple paths to LTL and to CTL∗.

Hyperproperties can also be probabilistic. Such probabilistic hyperproperties
generally express probabilistic relations between independent executions of a
system. For example, in information-flow security, adding probabilities is moti-
vated by establishing a connection between information theory and information
flow across multiple traces. It is also motivated by using probabilistic sched-
ulers, which opens up an opportunity for the attacker to set up a probabilistic
covert channel, whereby information is obtained by statistical inferences drawn
from the relative frequency of outcomes of a repeated computation. Policies that
defend against such an attempt, known as probabilistic noninterference, stipu-
late that the probability of every low-observable trace be the same for every
low-equivalent initial state. Such policies quantify on different execution traces
and the probability of reaching certain states in the independent and simultane-
ous executions.

Consider the following classic example [21] comprising of two threads th and
th ′:

th : while h > 0 do {h ← h − 1}; l ← 2 || th ′ : l ← 1

where h is an input by a high-privileged user and l is an output observable by
low-privileged users. Probabilistic noninterference would require that l obtains
values of 1 and 2 with equal probabilities, regardless of the initial value of h.
However, assuming that the scheduler chooses to execute atomic statements of
the threads th and th ′ iteratively with uniform probability distribution, the likely
outcome of the race between the two assignments l ← 1 and l ← 2 depends on the
initial value of h: the larger the initial value of h, the greater the probability that
the final value of l is 2. For example, if the initial value of h is 0 in one execution,
then the final value of l is 1 with probability 1/4 and 2 with probability 3/4, but
for the initial value h = 5 in another independent execution we can observe the
final value l = 1 with probability 1/4096 and l = 2 with probability 4095/4096.
Thus, it holds that for two independent executions with initial h values 0 resp.
5 the larger h value leads to a lower probability for l = 1 upon termination. I.e.,
this program does not satisfy probabilistic noninterference.

It is straightforward to observe that requirements such as probabilistic non-
interference cannot be expressed in existing probabilistic temporal logics such as
PCTL [12] and PCTL∗, as they cannot draw connection between the probability
of reaching certain states in independent executions. Also, introducing proba-
bility operators to HyperLTL is not quite natural, as the semantics of HyperLTL

is trace-based and probabilistic logics are branching-time in nature. Moreoever,
introducing probability operators to HyperCTL∗ cannot be done trivially. With
this motivation, in this paper, we propose the temporal logic HyperPCTL that lifts
PCTL by allowing explicit quantification over initial states and, hence, multiple
computation trees simultaneously, as well as probability of occurring proposi-
tions that stipulate relationships among those traces. For the above example,
the following HyperPCTL formula expresses probabilistic noninterference, which
obviously does not hold:
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∀σ.∀σ′.
(

initσ ∧ initσ′ ∧ hσ �= hσ′

)
⇒

( (
P (finσ ∧ (l=1)σ) = P (finσ′ ∧ (l=1)σ′)

)
∧

(
P (finσ ∧ (l=2)σ) = P (finσ′ ∧ (l=2)σ′)

))

That is, for any two executions from initial states σ and σ′ (i.e., initial values
of h), the probability distribution of terminating with value l = 1 (or l = 2) is
uniform.

In addition to probabilistic noninterference, we show that HyperPCTL

can express other important requirements and policies, some not related to
information-flow security. First, we show that HyperPCTL subsumes probabilis-
tic bisimulation. We also show that HyperPCTL can express requirements such
as differential privacy, quantitative information flow, and probabilistic causa-
tion (a.k.a. causality). We also present a HyperPCTL model checking algorithm
for discrete-time Markov chains (DTMCs). The complexity of the algorithm is
polynomial-time in the size of the input DTMC and is PSPACE-hard in the size
of the input HyperPCTL formula. We also discuss a wide range of open problem
to be tackled by future research. We believe that this paper opens a new area in
rigorous analysis of probabilistic systems.

Organization. The rest of the paper is organized as follows. Section 2 defines the
syntax and semantics of HyperPCTL. Section 3 provides a diverse set of example
requirements that HyperPCTL can express. We present our model checking algo-
rithm in Sect. 4. Related work is discussed in Sect. 5. Finally, we make concluding
remarks and discuss future work in Sect. 6.

2 HyperPCTL

We assume the systems to be described by HyperPCTL formulas to be modeled
as discrete-time Markov chains.

Definition 1. A (discrete-time) Markov chain (DTMC) M = (S,P,AP, L) is
a tuple with the following components:

– S is a finite nonempty set of states,
– P : S ×S → [0, 1] is a transition probability function with

∑
s′∈S P(s, s′) = 1

for all states s ∈ S,
– AP is a set of atomic propositions, and
– L : S → 2AP is a labeling function. �

A path of a Markov chain M = (S,P,AP, L) is defined as an infinite sequence
π = s0s1s2 · · · ∈ Sω of states with P(si, si+1) > 0, for all i ≥ 0; we write π[i]
for si. Let Pathss(M) denote the set of all (infinite) paths starting in s in M,
and Pathss

fin(M) denote the set of all finite prefixes of paths from Pathss(M),
which we sometimes call finite paths.
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2.1 HyperPCTL Syntax

To be able to express probabilistic hyperproperties of DTMCs, the syntax of
HyperPCTL differs from computation tree logic (CTL) in two different aspects.
Firstly, CTL quantification over paths starting in a given state is replaced by
a probability operator expressing the probability that a certain property holds
on the paths starting in a given state; this extension is similar to probabilistic
computation tree logic (PCTL), but whereas PCTL allows only the comparison
of these probabilities to constant thresholds, we allow the arbitrary usage of
such probabilities in arithmetic constraints. Secondly, we add quantification over
states to express hyperproperties; note that whereas HyperCTL∗ extends CTL∗ by
path quantification, in the probabilistic setting the argumentation moves from
paths to the probabilities of paths, which are determined in the context of states
(where the paths start).

HyperPCTL state formulas are inductively defined by the following grammar:

ψ ::= ∀σ.ψ
∣∣∣ ∃σ.ψ

∣∣∣ true
∣∣∣ aσ

∣∣∣ ψ ∧ ψ
∣∣∣ ¬ψ

∣∣∣ p ∼ p

p ::= P(ϕ)
∣∣∣ c

∣∣∣ p + p
∣∣∣ p − p

∣∣∣ p · p

where c ∈ Q, a ∈ AP is an atomic proposition, ∼∈ {<,≤,=,≥, >}, σ is a state
variable from a countably infinite supply of variables V = {σ1, σ2, . . .}, p is a
probability expression, and ϕ is a path formula. HyperPCTL path formulas are
formed according to the following grammar:

ϕ ::= ψ
∣∣∣ ψ U ψ

∣∣∣ ψ U [k1,k2] ψ

where ψ is a state formula and k1, k2 ∈ N≥0 with k1 ≤ k2.
As syntactic sugar, we introduce state formulas of the form p ∈ J , where

J = [l, u] ⊆ [0, 1] is an interval with rational bounds, defined as l ≤ p ∧ p ≤
u. We also define the syntactic sugar ψ1 U ≤k ψ2 for ψ U [0,k] ψ. As usual, we
furthermore introduce ψ1 ∨ ψ2 = ¬(¬ψ1 ∧ ¬ψ2), ψ = true U ψ, [k1,k2] ψ =
true U [k1,k2] ψ,P( ψ) = 1 − P( ¬ψ), and P( [k1,k2] ψ) = 1 − P( [k1,k2] ¬ψ).
We denote by F the set of all HyperPCTL state formulas.

An occurrence of an indexed atomic proposition aσ in a HyperPCTL state
formula ψ is free if it is not in the scope of a quantifier bounding σ and oth-
erwise bound. HyperPCTL sentences are HyperPCTL state formulas in which all
occurrences of all indexed atomic propositions are bound. HyperPCTL (quanti-
fied) formulas are HyperPCTL sentences.

Example. Consider the following formula:

∀σ1.∃σ2.P( aσ1) = P( bσ2).
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This formula holds if for each instantiated state s1, there exists another instan-
tiated state s2, such that the probability to finally reach a state labeled with a
from s1 equals the probability of reaching b from s2.

2.2 HyperPCTL Semantics

We present the semantics of HyperPCTL based on n-ary self-composition of a
DTMC. We emphasize that it is possible to define the semantics in terms of the
non-self-composed DTMC, but it will essentially result in a very similar setting,
but more difficult to understand.

Definition 2. The n-ary self-composition of a DTMC M = (S,P,AP, L) is a
DTMC Mn = (Sn,Pn,APn, Ln) with

– Sn = S × . . . × S is the n-ary Cartesian product of S,
– Pn

(
s, s′) = P(s1, s′

1

) · . . . · P(sn, s′
n) for all s = (s1, . . . , sn) ∈ Sn and s′ =

(s′
1, . . . , s

′
n) ∈ Sn,

– APn = ∪n
i=1APi, where APi = {ai | a ∈ AP} for i ∈ [1, n], and

– Ln(s) = ∪n
i=1Li(si) for all s = (s1, . . . , sn) ∈ Sn with Li(si) = {ai | a ∈ L(si)}

for i ∈ [1, n]. �

The satisfaction of a HyperPCTL quantified formula by a DTMC M =
(S,P,AP, L) is defined by:

M |= ψ iff M, () |= ψ

where () is the empty sequence of states. Thus, the satisfaction relation |= defines
the values of HyperPCTL quantified, state, and path formulas in the context of
a DTMC M = (S,P,AP, L) and an n-tuple s = (s1, . . . , sn) ∈ Sn of states
(which is () for n = 0). Intuitively, the state sequence s stores instantiations for
quantified state variables. Remember that HyperPCTL quantified formulas are
sentences. The semantics evaluates HyperPCTL formulas by structural recursion.
Quantifiers are instantiated and the instantiated values for state variables are
stored in the state sequence s. To maintain the connection between a state in this
sequence and the state variable which it instantiates, we introduce the auxiliary
syntax ai with a ∈ AP and i ∈ N>0, and if we instantiate σ in ∃σ.ψ or ∀σ.ψ by
state s, then we append s at the end of the state sequence and replace all aσ that
is bound by the given quantifier by ai with i being the index of s in the state
sequence. We will express the meaning of path formulas based on the n-ary self-
composition of M; the index i for the instantiation of σ also fixes the component
index in which we keep track of the paths starting in σ. The semantics judgment
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rules to evaluate formulas in the context of a DTMC M = (S,P,AP, L) and an
n-tuple s = (s1, . . . , sn) ∈ Sn of states are the following:

M, s |= ∀σ.ψ iff ∀sn+1 ∈ S. M, (s1, . . . , sn, sn+1) |= ψ[APn+1/APσ]
M, s |= ∃σ.ψ iff ∃sn+1 ∈ S. M, (s1, . . . , sn, sn+1) |= ψ[APn+1/APσ]
M, s |= true
M, s |= ai iff a ∈ L(si)
M, s |= ψ1 ∧ ψ2 iff M, s |= ψ1 and M, s |= ψ2

M, s |= ¬ψ iff M, s � |= ψ
M, s |= p1 ∼ p2 iff �p1�M,s ∼ �p2�M,s

�P(ϕ)�M,s = Pr{π ∈ Pathss(Mn) | M, π |= ϕ}
�c�M,s = c
�p1 + p2�M,s = �p1�M,s + �p2�M,s

�p1 − p2�M,s = �p1�M,s − �p2�M,s

�p1 · p2�M,s = �p1�M,s · �p2�M,s

where ψ, ψ1, and ψ2 are HyperPCTL state formulas; the substitution
ψ[APn+1/APσ] replaces for each atomic proposition a ∈ AP each free occur-
rence of aσ in ψ by an+1; a ∈ AP is an atomic proposition and 1 ≤ i ≤ n; p1 and
p2 are probability expressions and ∼∈ {<,≤,=,≥, >}; ϕ is a HyperPCTL path
formula and c is a rational constant.

The satisfaction relation for HyperPCTL path formulas is defined as follows,
where π is a path of Mn for some n ∈ N>0; ψ, ψ1, and ψ2 are HyperPCTL state
formulas and k1, k2 ∈ N≥0 with k1 ≤ k2:

M, π |= ψ iff M, π[1] |= ψ

M, π |= ψ1 U ψ2 iff ∃j ≥ 0.
(
M, π[j] |= ψ2 ∧ ∀i ∈ [0, j).M, π[i] |= ψ1

)
M, π |= ψ1 U [k1,k2] ψ2 iff ∃j ∈ [k1, k2].

(
M, π[j] |= ψ2 ∧
∀i ∈ [0, j).M, π[i] |= ψ1

)

s0 s1

s2 s3 s4

s5 s6

{init} {init}

{a}

{a}

0.4 0.2

0.4

0.7 0.3

1 0.8 0.2 1

1 1

Fig. 1. Semantics example.

Note that each HyperPCTL formula can
be transformed into an equivalent formula
in prenex normal form Q1σ1. . . . Qnσn.ψ,
where each Qi ∈ {∀,∃} is a quantifier, σi

is a state variable, and ψ is a quantifier-
free HyperPCTL formula. Note furthermore
that the semantics assures that each path
formula ϕ is evaluated in the context of a
path of Mn such that 1 ≤ i ≤ n for each
ai in ϕ.

Example. Consider the DTMC M in Fig. 1 and the following HyperPCTL formula:

ψ = ∀σ.∀σ′.(initσ ∧ initσ′) ⇒
(
P( aσ) = P( aσ′)

)
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This formula is satisfied by M if for all pairs of initial states (labeled by the
atomic proposition init), the probability to satisfy a is the same, i.e., for each
(si, sj) ∈ S2 with init ∈ L(si) and init ∈ L(sj) it holds that M, (si, sj) |=
P( a1) = P( a2). The probability of reaching a from s0 is 0.4 + (0.2 × 0.2) =
0.44. Moreover, the probability of reaching a from s1 is 0.3 + (0.7 × 0.2) = 0.44.
Hence, we have M |= ψ.

3 HyperPCTL in Action

We now put HyperPCTL into action by formulating probabilistic requirements
from different areas, such as information-flow security, privacy, and causality
analysis.

3.1 Probabilistic Bisimulation

A bisimulation is an equivalence relation over a set of states of a system such that
equivalent states cannot be distinguished by observing their behaviors. In the
context of DTMC states and PCTL properties, a probabilistic bisimulation is an
equivalence relation over the DTMC states such that any two equivalent states
satisfy the same PCTL formulas. The latter property can be assured inductively
by requiring that equivalent states have the same labels and the probability to
move from them to any of the equivalence classes is the same.

Assume a partitioning S1, . . . , Sk of S with ∪k
i=1Si = S and Si ∩ Sj = ∅ for

all 1 ≤ i < j ≤ k. To express that the equivalence relation R = ∪k
i=1Si × Si is

a probabilistic bisimulation, we define M′ = (S,P,AP′, L′) with AP′ = AP ∪
{a1, . . . , ak}, where each ai, for all i ∈ [1, k], is a fresh atomic proposition not in
AP, and for each s ∈ Si, we set L′(s) = L(s) ∪ {ai}. The equivalence relation R
is a bisimulation for M if M′ satisfies the following HyperPCTL formula

ϕpb = ∀σ.∀σ′.
k∧

i=1

⎡
⎣(ai

σ ∧ ai
σ′) ⇒

[
ψAP ∧

k∧
j=1

P( aj
σ) = P( aj

σ′)

]⎤
⎦

where ψAP =
∧

a∈AP(aσ ⇔ aσ′).

3.2 Probabilistic Noninterfence

Noninterference is an information-flow security policy that enforces that a low-
privileged user (e.g., an attacker) should not be able to distinguish two computa-
tions from their publicly observable outputs if they only vary in their inputs by a
high-privileged user (e.g., a secret). Probabilistic noninterference [14] establishes
connection between information theory and information flow by employing prob-
abilities to address covert channels. Intuitively, it requires that the probability
of every low-observable trace pattern is the same for every low-equivalent initial
state. Probabilistic noninterference can be expressed in HyperPCTL as follows:

ϕpni = ∀σ.∀σ′.
(
lσ ∧ lσ′

)
⇒

(
P( lσ) = P( lσ′)

)
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where l denotes a low-observable atomic proposition. Observe that formula ϕpni is
a simplification of formula ϕpb in Sect. 3.1, but a stronger form of the noninterfer-
ence formula for the example in Sect. 1. In fact, most approaches to prove prob-
abilistic noninterference is by showing probabilistic bisimulation with respect to
low-observable propositions.

3.3 Differential Privacy

Differential privacy [6] is a commitment by a data holder to a data subject
(normally an individual) that he/she will not be affected by allowing his/her data
to be used in any study or analysis. Formally, let ε be a positive real number
and A be a randomized algorithm that makes a query to an input database
and produces an output. Algorithm A is called ε-differentially private, if for all
databases D1 and D2 that differ on a single element, and all subsets S of possible
outputs of A, we have:

Pr [A(D1) ∈ S] ≤ eε · Pr [A(D2) ∈ S].

Differential privacy can be expressed in HyperPCTL by the following formula:

ψdp = ∀σ.∀σ′.
[
dbSim(σ, σ′)

]
⇒

[
P

(
(qOut ∈ S)σ

)
≤ eε · P

(
(qOut ∈ S)σ′

)]

where dbSim(σ, σ′) means that two different dataset inputs have all but one
similarity and qOut is the result of the query. For example, one way to provide
differential privacy is through randomized response in order to create noise and
provide plausible deniability. Let A be an embarrassing or illegal activity. In
a social study, each participant is faced with the query, “Have you engaged in
activity A in the past week?” and is instructed to respond by the following
protocol:

1. Flip a fair coin.
2. If tail, then answer truthfully.
3. If head, then flip the coin again and respond “Yes” if head and “No” if tail.

Thus, a “Yes” response may have been offered because the first and second coin
flips were both heads. This implies that, there are no good or bad responses and
an answer cannot be incriminating.

We now show that this social study is (ln 3)-deferentially private. For each
participant in the study, Fig. 2 shows the Markov chain of the response proto-
col, where {t = y} (respectively, {t = n}) denotes that the truth is that the
participant did (respectively, did not) engage in activity A, and {r = y} (respec-
tively, {r = n}) means that the participant responds “Yes” (respectively, “No”).
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s0{t=y}

{r=y}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

s1{t=n}

{r=n}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

Fig. 2. Markov chain of the randomized response protocol.

The HyperPCTL formula to express (ln 3)-deferentially privacy for this protocol
is the following:

∀σ.∀σ′.
[(

(t=n)σ ∧ (t=y)σ′

)
⇒

(
P

(
(r=n)σ

)
≤ eln 3 · P

(
(r=n)σ′

))]
∧

[(
(t=y)σ ∧ (t=n)σ′

)
⇒

(
P

(
(r=y)σ

)
≤ eln 3 · P

(
(r=y)σ′

))]

Observe that compared to formula ψdp, we have decomposed dbSim(σ, σ′) to
two cases of t = y and t = n. Thus, in the left conjunct, the set S represents the
case where the response is “No” and in the right conjunct, the set S represents
the case where the response is “Yes”. It is straightforward to see that the DTMC
in Fig. 2 satisfies the formula, when for the left conjunct σ and σ′ are instantiated
by s0 and s1, respectively, and for the right conjunct σ and σ′ are instantiated
by s1 and s0, respectively.

3.4 Probabilistic Causation

Probabilistic causation [8] aims to characterize the relationship between cause
and effect using the tools of probability theory. The reason for using probabili-
ties is that most causes are not invariably followed by their effects. For example,
smoking is a cause of lung cancer, even though some smokers do not develop
lung cancer and some people who have lung cancer are not smokers. Thus, we
need to somehow express that some causes are more likely to develop an effect.
Specifically, the central idea in probabilistic causation is to assert that the prob-
ability of occurring effect e if cause c happens is higher than the probability of
occurring e when c does not happen. We can express the most basic type of
probabilistic causation in HyperPCTL as follows:

ψpc1 = ∀σ.∀σ′.cσ ∧
(
P( eσ) > P(¬cσ′ U eσ′)

)
.

Observe that expressing causation in the standard PCTL by stripping the state
quantifiers in formula ψpc1 will damage the meaning of causation. The resulting
PCTL formula captures the causation relation from each initial state in isolation
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and it wrongly allows the probability of e from one initial state to be less than
the probability of (¬c U e) from another initial state.

One problem with formula ψpc1 is spurious correlations. For example, if c is
the drop in the level of mercury in a barometer, and e is the occurrence of a
storm, then the above formula may hold in a system, though c is not really the
cause of e. In fact, the real cause for both is the drop in atmospheric pressure.
To address this problem, we add a constraint, where there should be no further
event a that screens off e from c [18]:

ψpc2 = ∀σ.∀σ′.¬∃σ′′.cσ ∧
(
P( eσ) > P(¬cσ′ U eσ′)

)
∧

∧
a∈AP\{e,c}

[
(aσ′′ ∧ cσ′′) ∧

(
P( eσ′′) = P( eσ)

)]
.

The negation behind the existential quantifier can be pushed inside to obtain a
proper HyperPCTL formula. We note that for simplicity, in formula ψpc2 , propo-
sitions a and c occur in the same state in σ′′. A more general way is to allow
a happen before or simultaneously with c. Finally, we note that other concepts
in probabilistic causation such as Reichenbach’s Common Cause Principle and
Fork Asymmetry [18] (which emulates the second law of thermodynamics), as
well as Skyrms’s Background Contexts [20] can be expressed in a similar fashion.

4 HyperPCTL Model Checking

In the following, we show that the HyperPCTL model checking problem is decid-
able by introducing a model checking algorithm. The space complexity of our
algorithm is exponential in the number of quantifiers of the input formula,
because for n state quantifiers, we build the n-ary self-composition of the input
DTMC. We are uncertain whether there exists a PSPACE algorithm, but we show
the PSPACE-hardness of the problem.

Let M = (S,P,AP, L) be a DTMC and ψ be a HyperPCTL quantified formula.
Let furthermore n be the number of state quantifiers in ψ if it has any and let
n = 1 otherwise. Informally, our model checking algorithm decides whether
M |= ψ as follows (detailed pseudo-code is formulated in the Algorithms 1–3 ):

1. Apply variable renaming such that the quantified state variables are named
σ1, . . . , σn.

2. Build the self-composition Mn.
3. Compute a labeling L̂n(s) for all states s ∈ Sn of Mn as follows. Initially

L̂n(s) = ∅ for all s ∈ Sn (Line 5 in Algorithm 1). For all sub-formulas ψ′ of
ψ inside-out do the following:

– If the subformula ψ′ has the form true, add true to the label sets L̂n(s)
of all states s ∈ Sn (Line 3 in Algorithm 2).

– If the subformula ψ′ is an atomic proposition aσi
, add aσi

to the label set
of each state s ∈ Sn with ai ∈ Ln(s) (Line 5 in Algorithm 2).
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Algorithm 1. HyperPCTL model checking algorithm I
Input : DTMC M = (S,P,AP, L), HyperPCTL quantified formula ψ
Output : Whether M |= ψ

1 Function main(M, ψ)
2 n := number of quantifiers in ψ
3 if n = 0 then
4 n:=1 % n will be the arity of the self-composition

5 let L̂n : Sn → 2F with L̂n(s) = ∅ for all s ∈ Sn

6 L̂n := HyperPCTL(M, ψ, n, L̂n) % see Algorithm 2

7 if ψ ∈ L̂n(s) for some s ∈ Sn then
8 return true

9 else
10 return false

– If the subformula ψ′ is ψ1 ∧ ψ2, then add ψ1 ∧ ψ2 to L̂n(s) for each
s ∈ Sn with ψ1 ∈ L̂n(s) and ψ2 ∈ L̂n(s) (Lines 6–9 in Algorithm 2).

– If the subformula ψ′ is ¬ψ1, then add ¬ψ1 to L̂n(s) for each s ∈ Sn with
ψ1 �∈ L̂n(s) (Lines 10–12 in Algorithm 2).

– If the subformula ψ′ is p1 ∼ p2 (respectively p ∈ J), then compute for all
P(ϕ) appearing in p1 ∼ p2 (respectively, p ∈ J) for all states s ∈ Sn the
probability that ϕ holds in s using standard PCTL model checking, and
add for all s ∈ Sn the property p1 ∼ p2 (respectively, p ∈ J) to L̂n(s)
if p1 ∼ p2 (respectively, p ∈ J) evaluates to true in s (Lines 13–16 in
Algorithm 2).

– If the subformula ψ′ is of the form ∃σi.ψ1, then label all states s =
(s1, . . . , sn) ∈ Sn with ∃σi.ψ1 iff there exists an s′

i ∈ S, such that ψ1 ∈
L̂n(s1, . . . , si−1, s

′
i, si+1, . . . , sn) (Lines 17–19 in Algorithm 2).

– If the subformula ψ′ is of the form ∀σi.ψ1, then label all states s =
(s1, . . . , sn) ∈ Sn with ∀σi.ψ1 iff for all s′

i ∈ S it holds that ψ1 ∈
L̂n(s1, . . . , si−1, s

′
i, si+1, . . . , sn) (Lines 20–22 in Algorithm 2).

4. Upon termination of the above iterative labeling procedure, as ψ is a sentence
and thus state-independent, either all states are labelled with it or none of
them. Return true if for an arbitrary state s we have ψ ∈ L̂n(s) and return
false otherwise.

Theorem 1. For a finite Markov chain M and HyperPCTL formula ψ, the
HyperPCTL model checking problem (to decide whether M |= ψ) can be solved
in time O(poly(|M|)).
Theorem 2. The HyperPCTL model checking problem is PSPACE-hard in the
number of quantifiers in the formula.
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Algorithm 2. HyperPCTL model checking algorithm II
Input : DTMC M = (S,P,AP, L), HyperPCTL quantified formula ψ,

non-negative integer n, L̂n : Sn → 2F

Output : An extension of L̂n to label each state s ∈ Sn with sub-formulas of ψ
that hold in s

1 Function HyperPCTL(M, ψ, n, L̂n)
2 if ψ = true then

3 for all s ∈ Sn set L̂n(s) := L̂n(s) ∪ {true}
4 else if ψ = aσi then

5 for all s ∈ Sn with ai ∈ Ln(s) set L̂n(s) := L̂n(s) ∪ {aσi}
6 else if ψ = ψ1 ∧ ψ2 then

7 L̂n:=HyperPCTL(M,ψ1,n,L̂n)

8 L̂n:=HyperPCTL(M,ψ2,n,L̂n)

9 for all states s ∈ Sn with {ψ1, ψ2} ⊆ L̂n(s) set L̂n(s) := L̂n(s) ∪ {ψ}
10 else if ψ = ¬ψ1 then

11 L̂n:=HyperPCTL(M,ψ1,n,L̂n)

12 for all states s ∈ Sn with ψ1 /∈ L̂n(s) set L̂n(s) := L̂n(s) ∪ {ψ}
13 else if ψ = p1 ∼ p2 then

14 Ln
1 := ProbMC(M, p1, n, L̂n) % see Algorithm 3

15 Ln
2 := ProbMC(M, p2, n, L̂n) % see Algorithm 3

16 for all states s ∈ Sn with Ln
1 (s) ∼ Ln

2 (s) set L̂n(s) := L̂n(s) ∪ {ψ}
17 else if ψ = ∃σi.ψ1 then

18 L̂n:=HyperPCTL(M,ψ1,n,L̂n)

19 for all states s = (s1, . . . , sn) ∈ Sn with ψ1 ∈ L̂n(s′) for some s′
i ∈ S and

s′ = (s1, . . . , si−1, s
′
i, si+1, . . . , sn) set L̂n(s) := L̂n(s) ∪ {ψ}

20 else if ψ = ∀σi.ψ1 then

21 L̂n:=HyperPCTL(M,ψ1,n,L̂n)

22 for all states s = (s1, . . . , sn) ∈ Sn with ψ1 ∈ L̂n(s′) for all s′
i ∈ S and

s′ = (s1, . . . , si−1, s
′
i, si+1, . . . , sn) set L̂n(s) := L̂n(s) ∪ {ψ}

23 return L̂n

Proof. We show that the HyperPCTL model checking problem is PSPACE-hard by
reducing the following PSPACE-hard quantified Boolean formula (QBF) satisfia-
bility problem [9] to it:

Given is a set {x1, x2, . . . , xn} of Boolean variables and a quantified
Boolean formula

y = Q1x1.Q1x2 . . .Qn−1xn−1.Qnxn.ψ

where Qi ∈ {∀,∃} for each i ∈ [1, n] and ψ is an arbitrary Boolean formula
over variables {x1, . . . , xn}. Is y true?
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Algorithm 3. HyperPCTL model checking algorithm III
Input : DTMC M = (S,P,AP, L), HyperPCTL probability expression p,

non-negative integer n, L̂n : Sn → 2F

Output : Ln
p : Sn → Q specifying the values Ln

p (s) of p in all states s ∈ Sn

1 Function ProbMC(M, p, n, L̂n)
2 let Ln

p : Sn → Q with Ln
p (s) = 0 for all s ∈ Sn

3 if p = c then
4 for all s ∈ Sn set Ln

p (s) = c

5 else if p = p1 op p2 with op ∈ {+, −, ·} then

6 Ln
1 := probMC(M, p1, n, L̂n)

7 Ln
2 := probMC(M, p2, n, L̂n)

8 for each s ∈ Sn set Ln
p (s) := Ln

1 (s) op Ln
2 (s)

9 else if p = P(ϕ) then
10 if ϕ = ψ then
11 for all s ∈ Sn set Ln

p (s) =
∑

s′∈Sn, ψ∈L̂n(s′) P
n(s, s′)

12 else if ϕ = ψ1 U ψ2 then
13 compute the unique solution ν for the following equation system:

14 (1) ps = 0 for all states s ∈ Sn with ψ1 /∈ L̂n(s) and ψ2 /∈ L̂n(s), or

if no state s′ with ψ2 ∈ L̂n(s′) is reachable from s

15 (2) ps = 1 for all states s ∈ Sn with ψ2 ∈ L̂n(s)
16 (3) ps =

∑
s′∈Sn Pn(s, s′) · ps′ for all other states

17 for all s ∈ Sn set Ln
p (s) = ν(ps)

18 else if ϕ = ψ1 U [k1,k2]ψ2 then

19 for each s ∈ Sn set P n
0 (s) = 1 if ψ2 ∈ L̂n(s) and P n

0 (s) = 0 otherwise
20 for i = 1 to k2 do
21 for each s ∈ Sn set P n

i (s) =
∑

s′∈Sn Pn(s, s′) · P n
i−1(s

′) if

ψ1 ∈ L̂n(s) and P n
i (s) = 0 otherwise

22 for all s ∈ Sn set Ln
p (s) =

∑k2
i=k1

P n
i (s)

23 return Ln
p

We reduce the satisfiability problem for a quantified Boolean formula to
the model checking problem for a HyperPCTL formula with the same quantifier
structure as follows. We define the simple DTMC M = (S,P,AP, L) shown in
Fig. 3, which contains two states s0 and s1 and has two paths sω

0 and sω
1 . The

HyperPCTL formula in our mapping is the following:

Q1σ1.Q1σ2 . . .Qn−1σn−1.Qnσn. ψ′ (1)

s0 s1{x} ∅

1 1

Fig. 3. DTMC in the
proof of Theorem 2.

where ψ′ is constructed from ψ by replacing every occur-
rence of a variable xi in ψ by xσi

. The given quantified
Boolean formula is true if and only if the DTMC obtained
by our mapping satisfies HyperPCTL formula (1). We
translate every assignment to the trace quantifiers to a
corresponding assignment of the Boolean variables, and
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vice versa, as follows: Assigning state s0 (s1) to σi means that xi is set to true
(false). �

5 Related Work

Probabilistic noninterference [13,14] establishes connection between information
theory and information flow by employing probabilities to address covert chan-
nels. Intuitively, it requires that the probability of every pattern of low-observable
trace be the same for every low-equivalent initial state. Most efforts in reason-
ing about probabilistic noninterference is through probabilistic weak bisimu-
lation (e.g. [21]). More recently, Sabelfeld and Sands [19] introduce a frame-
work to ensure nonintereference for multi-threaded programs, where a proba-
bilistic scheduler non-deterministically manages the execution of threads. They
introduce operational semantics for a simple imperative language with dynamic
thread creation, and how compositionality is ensured.

Epistemic logic [7] is a subfield of modal logic that is concerned with rea-
soning about knowledge. The semantic model of the logic is a Kripke structure,
where a set of agents are related with each other based on which states they
consider possible. A probabilistic version of the logic [11] assigns a probability
function to each agent at each state such that its domain is a non-empty subset
of the set of possible states. Epistemic temporal logic has been used to express
information-flow security policies (e.g., [2]). The relation between the expressive
power of probabilistic epistemic logic and HyperPCTL remains an open ques-
tion in this paper. Gray and Syverson [15] propose a modal logic for multi-level
reasoning about security of probabilistic systems. The logic is axiomatic and is
based on the Halpern and Tuttle [11] framework for reasoning about knowledge
and probability. The logic is sound, but it may run into undecidability.

Clarkson and Schneider [5] introduce the notion of hyperproperties, a set-
theoretic framework for expressing security policies. A hyperproperty is a set
of sets of traces. In other words, a hyperproperty is a second-order property of
properties. The expressive power of hyperproperties do not exceed the second-
order logic, but it is currently unclear whether the full power of second-order
logic is needed to express hyperproperties of interest. Clarkson and Schneider
have shown two fundamental things: (1) a hyperproperty is an intersection of a
safety and a liveness hyperproperty, and (2) hyperproperties can express many
important requirements such as information-flow security policies (e.g., nonin-
tereference, observational determinism, etc.), service-level agreement, etc.

Second-order logic is not verifiable in general, as it cannot be effectively and
completely axiomatized. Thus, temporal logics for subclasses of hyperproper-
ties have emerged [4]. HyperLTL and HyperCTL∗ allow explicit and simultane-
ous quantification over multiple paths to LTL and to CTL∗, respectively. As the
names suggest, HyperLTL allow quantification of linear traces and HyperCTL∗ per-
mits quantification over multiple execution traces simultaneously while allowing
branching-time paths for each trace. HyperLTL and HyperCTL∗ are not equipped
with probabilistic operators and cannot reason about probabilistic systems.
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6 Conclusion and Future Work

In this paper, we proposed the temporal logic HyperPCTL to express and reason
about probabilistic hyperproperties. HyperPCTL is a natural extension to PCTL by
allowing explicit and simultaneous quantification over model states. We defined
the syntax and semantics and presented a model checking algorithm for discrete-
time Markov chains. The complexity of the algorithm is PSPACE-hard in the
number of quantifiers in the input HyperPCTL formula. We presented multiple
examples from different domains, where HyperPCTL can elegantly express the
requirements.

We believe the results in this paper pave the path for new research direc-
tions. As for future work, an important unanswered question in this paper is
to determine tighter lower and upper bounds for the complexity of HyperPCTL
model checking in the size of the formula. We believe most of the literature
and fundamental lines of research on PCTL verification should now be revisited
in the context of HyperPCTL. Examples include HyperPCTL model checking for
Markov decision processes (MDPs), Markov chains with costs, parameter syn-
thesis and model repair for probabilistic hyperproperties, HyperPCTL conditional
probabilities, developing abstraction/refinement, comparing expressive power to
existing related logics such as probabilistic epistemic logic [11], etc. An orthogo-
nal direction is deeper investigation of the examples presented in Sect. 3. Each of
those areas (e.g., differential privacy and probabilistic causation) deserve more
research to develop effective and efficient model checking techniques.
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Abstract. MQTT is one of the major messaging protocols in the Inter-
net of things (IoT). In this work, we investigate the expected performance
of MQTT implementations in various settings. We present a model-based
performance testing approach that allows a fast simulation of specific
usage scenarios in order to perform a quantitative analysis of the latency.
Out of automatically generated log-data, we learn the distributions of
latencies and apply statistical model checking to analyse the functional
and timing behaviour. The result is a novel testing and verification tech-
nique for analysing the performance of IoT protocols. Two well-known
open source MQTT implementations are evaluated and compared.
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1 Introduction

With the growing popularity of the Internet of Things (IoT), the quality of
its underlying infrastructure moves into focus. In particular, the software needs
special attention, since it is often exempted from any warranty. In this work, we
are investigating implementations of the Message Queuing Telemetry Transport
(MQTT) protocol, one of the major machine-to-machine messaging protocols
of the IoT. MQTT follows a publish-subscribe pattern and allows clients, e.g.,
sensors in a smart home, to distribute messages via a central server, called the
broker [7]. Recently, we have found 18 protocol violations in four open-source
MQTT brokers [30]. In this work, we concentrate on performance.

In contrast to previous performance studies [13,17,20,31], we present a sta-
tistical model checking (SMC) approach that is able to (1) predict the expected
performance on a model, and (2) to verify the prediction on a real system.
SMC [21] is a verification method that can answer both, quantitative and quali-
tative questions. The questions are expressed as properties of a stochastic model
which are checked by analysing simulations of this model.

Our method is realised with a property-based testing (PBT) tool that per-
forms the data generation for learning the distributions of broker latencies, the
model simulation, and the verification of the system. PBT is a random testing
c© Springer Nature Switzerland AG 2018
A. McIver and A. Horvath (Eds.): QEST 2018, LNCS 11024, pp. 36–52, 2018.
https://doi.org/10.1007/978-3-319-99154-2_3
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technique that tries to falsify a given property. Properties describe the expected
behaviour of a system-under-test (SUT) and may be algebraic or model-based.
A PBT tool generates inputs and checks if the property holds.

Previously, we had integrated SMC into a PBT tool [3] in order to check
stochastic models as well as implementations. With this technique, we checked
the expected response-time of an industrial web application [29]. Based on this
previous work, we present a method that statistically verifies the latencies of
MQTT brokers from a client’s perspective.

Figure 1 illustrates our method: (1) we automatically test a broker from
multiple clients and record its latencies in log-files. For every client, we run
a model-based testing process concurrently and generate test cases from a func-
tional model. (2) We derive latency distributions via linear regression. Since
the latency is influenced by the parallel activity on the server, the distributions
are parametrised by the number of active clients. These latency distributions
are added to the functional model resulting in a stochastic timed automata
(STA) [6] model. (3) For simulating the behaviour of real MQTT clients, we add
usage profiles, containing probabilities and waiting times related to messages.
(4) We perform SMC on the resulting stochastic model in order to answer the
question “What is the probability that the message latency is under a certain
threshold?”. This process can be accelerated by using a virtual time scale, i.e., a
fraction of real time. (5) We check if the predicted performance hypothesis holds
on the SUT. This is achieved via a statistical hypothesis test (another SMC
algorithm). For this final test, less samples than for forming the hypothesis are
needed, and hence, this SMC step scales well, although carried out under real
time with real delays.

Related Work. In contrast to our work, classical load testing methods anal-
yse the performance directly on the SUT. Models are mostly used for test-case
generation [5] and for modelling user populations [14,28]. Others focus solely on
simulation on the model-level [8,9,11,23]. In our work, we exploit the models for
both, testing a system as well as simulating the performance on the model.

The most related tool is UPPAAL SMC [10], because it supports SMC
and test-case generation. However, our use of PBT facilitates the definition of
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Fig. 1. Overview of the data flow of our method.
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specialized generators for complex test-data, which is important for load testing.
Furthermore, modelling in a programming language may be more acceptable to
programmers and testers.

The performance of MQTT implementations has been tested in the past
[13,20,31], but without constructing a performance model for simulating MQTT
under different usage scenarios. The most similar work to ours [17] modelled
MQTT with probabilistic timed automata and checked performance with SMC.
However, they did not validate their model against real implementations, and
hence, it did not include real timing behaviour.

To the best of our knowledge our work is novel: we are the first who apply
SMC to the performance analysis of MQTT brokers with learned latency distri-
butions, and who check the results from the model against real MQTT brokers
by performing hypothesis testing.

Contributions. This research builds upon our previous work [29], where we
introduced our method and applied it to an industrial web-service applica-
tion. Here, we present the following novel contributions: (1) the evaluation of
our method for another application domain, namely for protocol testing. This
demonstrates the generality of our method. (2) We present a comparative eval-
uation of two MQTT implementations. This shows that our method is also able
to compare the performance of different systems and helps to choose the right
one, depending on a specific usage scenario. (3) This is the first SMC approach
for MQTT that also supports a direct verification of the results by testing real
MQTT brokers. (4) We release the source of our tool in order to make our
method available to the public and to facilitate the reproduction of our results.1

Structure. First, Sect. 2 introduces the background of SMC and PBT based
on our previous work [3]. Next, in Sect. 3 we give an example and demonstrate
our method. Then, Sect. 4 presents an evaluation with two open-source MQTT
implementations. Finally, we conclude in Sect. 5.

2 Background

2.1 Statistical Model Checking (SMC)

SMC is a verification method for checking qualitative and quantitative proper-
ties of a stochastic model. These properties are usually defined with (temporal)
logics. In order to answer questions, like “What is the probability that the model
satisfies a property?” or “Is the probability that the model satisfies a property
above or below a certain threshold?”, a statistical model checker produces sam-
ples, i.e. random walks on the stochastic model and checks whether the property
holds for these samples. Various SMC algorithms are applied in order to compute
the total number of samples needed to find an answer for a specific question, or to
compute a stopping criterion. This criterion determines when we can stop sam-
pling, because we have found an answer with a required certainty. In this work,
we focus on the following algorithms common in the SMC literature [21,22].
1 https://github.com/schumi42/mqttCheck

https://github.com/schumi42/mqttCheck
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Monte Carlo Simulation with Chernoff-Hoeffding Bound. The algorithm
computes the required number of simulations n in order to estimate the proba-
bility γ that a stochastic model satisfies a Boolean property. The procedure is
based on the Chernoff-Hoeffding bound [16] that provides a lower limit for the
probability that the estimation error is below a value ε. Assuming a confidence
1 − δ the required number of simulations is n ≥ 1/(2ε2) ln(2/δ).

The n simulations represent Bernoulli random variables X1, . . . , Xn with out-
come xi = 1 if the property holds for the i-th simulation run and xi = 0 other-
wise. Let the estimated probability be γ̄n = (

∑n
i=1 xi)/n, then the probability

that the estimation error is below ε is greater than our required confidence. For-
mally we have: Pr(|γ̄n − γ| ≤ ε) ≥ 1 − δ. After the calculation of the number of
required samples n, a standard Monte Carlo simulation is performed [22].

Sequential Probability Ratio Test (SPRT). This sequential method [32]
is a form of hypothesis testing that can answer qualitative questions. Given a
random variable X with a probability density function f(x, θ), we want to decide,
whether a null hypothesis H0 : θ = θ0 or an alternative hypothesis H1 : θ = θ1
is true for desired type I and II errors (α, β). In order to make the decision, we
start sampling and calculate the log-likelihood ratio after each observation of xi:

log Λm = log
pm
1

pm
0

= log

m∏

i=1

f(xi, θ1)

m∏

i=1

f(xi, θ0)
=

m∑

i=1

log
f(xi, θ1)
f(xi, θ0)

We continue sampling as long as the ratio is inside the indifference region
log β

1−α < log Λm < log 1−β
α . H1 is accepted when log Λm ≥ log 1−β

α , and H0

when log Λm ≤ log β
1−α [15].

In this work, we form a hypothesis about the expected latencies with the
Monte Carlo method on the model. Then, we check with SPRT if this hypothesis
holds on the SUT. This is faster than running Monte Carlo directly on the SUT.

2.2 Property-Based Testing (PBT)

PBT is a random-testing technique that aims to check the correctness of prop-
erties. A property is a high-level specification of the expected behaviour of a
function- or system-under-test that should always hold. With PBT, inputs can
be generated automatically by applying data generators, e.g., a random list gen-
erator. The inputs are fed to the function or system-under-test and the property
is evaluated. If it holds, then this indicates that the function or system works as
expected, otherwise a counterexample is produced.

One of the key features of PBT is its support for model-based testing. Models
encoded as extended finite state machines (EFSMs) [19] can serve as source for
state-machine properties. An EFSM is a 6-tuple (S, s0, V, I, O, T ). S is a finite
set of states, s0 ∈ S is the initial state, V is a finite set of variables, I is a
finite set of inputs, O is a finite set of outputs, T is a finite set of transitions.
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A transition t ∈ T can be described as a 6-tuple (ss, i, g, op, o, st), ss is the source
state, i is an input, g is a guard, op is a sequence of assignment operations, o is
an output, st is the target state [19].

In order to derive a state-machine property from an EFSM, we have to write
a specification comprising the initial state, commands and a generator for the
next transition given the current state of the model. Commands encapsulate (1)
preconditions that define the permitted transition sequences, (2) postconditions
that specify the expected behaviour and (3) execution semantics of transitions for
the model and the SUT. A state-machine property states that for all permitted
transition sequences, the postcondition must hold after the execution of each
command [18,25]. Simplified, such properties can be defined as follows:

cmd .runModel , cmd .runActual : S × I → S × O

cmd .pre : I × S → Boolean, cmd .post : (S × O) × (S × O) → Boolean
∀s ∈ S, i ∈ I, cmd ∈ Cmds :

cmd .pre(i , s) =⇒ cmd .post(cmd .runModel(i , s), cmd .runActual(i , s))

We have two functions to execute a command on the model and on the SUT:
cmd .runModel and cmd .runActual . The precondition cmd .pre defines the valid
inputs for a command. The postcondition cmd .post compares the outputs and
states of the model and the SUT after the execution of a command.

PBT is a powerful testing technique that allows a flexible definition of gen-
erators and properties via inheritance or composition. The first implementation
of PBT was QuickCheck for Haskell [12]. Numerous reimplementations followed
for other programming languages. We use FsCheck2 for C#.

2.3 Stochastic Timed Automata

Several probabilistic extensions of timed automata [4] have been proposed. Here,
we follow the definition of stochastic timed automata (STA) by Ballarini et
al. [6]: an STA is a tuple (L, l0, A,C, I, E, F,W ) comprising a classical timed
automaton (L, l0, A,C, I, E), probability density functions (PDFs) F = (fl)l∈L

for the sojourn time, and natural weights W = (we)e∈E for the edges. L is a
finite set of locations, l0 ∈ L is the initial location, A is a finite set of actions, C
is a finite set of clocks with valuations u(c) ∈ R>0, I : L �→ B(C) is a finite set
of invariants for the locations and E ⊆ L × A × B(C) × 2C × L is a finite set of
edges between locations, with an action, a guard and a set of clock resets.

The transition relation can be described as follows. For a state given by
the pair (l, u), where l is a location and u a clock valuation u ∈ C → R≥0,
the PDF fl is used to choose the sojourn time d, which changes the state to
(l, u + d), where we lift the plus operator to the clock valuation as follows:
u + d =def {c �→ u(c) + d | c ∈ C}. After this change, an edge e is selected out
of the set of enabled edges E(l, u + d) with the probability we/

∑
h∈E(l,u+d) wh.

Then, a transition to the target location l′ of e and u′ = u + d is performed.
2 https://fscheck.github.io/FsCheck

https://fscheck.github.io/FsCheck
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For our models the underlying stochastic process is a semi-Markov process, since
the clocks are reset at every transition, but we do not assume exponential waiting
times, and therefore, the process is not a standard continuous-time Markov chain.

2.4 Integration of SMC into PBT

State-Machine
Property

SUT

Model

SMC Property

SMC Algorithm

Configurations

Parameter

Result

Fig. 2. Data flow diagram of an SMC property.

Recently, we have demon-
strated that SMC can be inte-
grated into a PBT tool in
order to perform SMC of PBT
properties [3]. With this app-
roach, we can verify stochastic
models, like in classical SMC,
as well as stochastic implemen-
tations. For the integration, we introduced our own new SMC properties that
take a PBT property, configurations for the PBT execution, and parameters
for the specific SMC algorithm as input. Then, our properties perform an SMC
algorithm by utilizing the PBT tool as simulation environment and they return
either a quantitative or qualitative result, depending on the algorithm. Figure 2
illustrates how we evaluate a PBT state-machine property within an SMC
property.

Algorithm 1 shows pseudo code of an SMC property for the SPRT (see
Sect. 2.1). The inputs of this algorithm are a PBT property, configurations for
PBT, probabilities for H0/H1 and the type I and type II error parameters α, β.
The algorithm produces samples (Line 3) and calculates the log likelihood ratio
(Line 4 & 6) repeatedly, until we are outside the indifference region that is defined
by α and β (Line 7). Finally, when we are outside the indifference region, we
return H1 as result, when the ratio is below the lower bound and H0 otherwise.
Our integration method can, e.g., be applied for a statistical conformance anal-
ysis by comparing an ideal model to a stochastic faulty implementation or it can
also simulate a stochastic model. In this work, we apply it for a performance
analysis with the model and for the verification of real brokers.

Algorithm 1. Pseudo code of a SPRT Property.
Input: prop: PBT property for producing a sample, config: configuration for checking the property

with PBT, p0 , p1 : probabilities for H0 and H1 α, β: type I and type II error parameters
1: ratio ← 0
2: do
3: if prop.Check(config) then � produces sample and checks result of PBT property
4: ratio ← ratio + log(

p1
p0

) � calculate the log likelihood ratio

5: else
6: ratio ← ratio + log(

1−p1
1−p0

) � calculate the log-likelihood ratio

7: while log β
1−α < ratio ∧ ratio < log 1−β

α � stop when threshold was reached

8: if ratio ≥ log 1−β
α then

9: return H1 � H1 is accepted
10: else
11: return H0 � H0 is accepted
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3 Method

In this section, we show how we derive timed models from logs and how we can
apply these models to simulate stochastic usage profiles. The description follows
the steps from the overview in Fig. 1.

Model-Based Testing. Our SUT is an MQTT broker that allows clients to
connect/disconnect, subscribe/unsubscribe to topics and publish messages for
such topics. Each of these actions can be performed with a corresponding control
message, which is defined by the MQTT standard [7]. We treat the broker as a
black box and test it from a client’s perspective.

The upper state machine in Fig. 3 represents the messages that we test. We
run multiple of these state machines concurrently, in order to produce log-data
that includes latencies for simultaneous messages of several clients. Each transi-
tion of the state machine is labelled with an input i, an optional guard g / assign-
ment operations op, and an output o. Some transition inputs are parametrised
with generated data, e.g., a topic for subscribe. We apply PBT generators in
order to produce inputs and their required data. Previously, we have demon-
strated the data generation for such functional models and also model-based
testing [1,2]. To keep it simple, we assume that a client can only subscribe to
topics that it did not subscribe to before (the same for unsubscribe).

In order to manage the subscriptions, we have a global map Subs that stores
the subscription numbers for each topic. This map is needed when publishing,
because we want to check if the number of received messages corresponds to
the number of subscribed clients. In order to perform this check, we have a
second state machine (Fig. 3 bottom) that represents the message receivers. This
machine stores the number of received messages in a map Received that takes the
topic concatenated with the message (topic&msg) as key. The map is updated
for each message receiver, and when all messages were delivered, then a PubFin
output is produced. For simplicity, we omit some assignment operations, e.g.,
for a subscriptions set.

disconnectedstart

connected

connect, -
-, ConnAck

disconnect, -
-, ConnClosed

subscribe(topic), -
Subs[topic] := Subs[topic]+1, SubAck

unsubscribe(topic), -
Subs[topic] := Subs[topic]-1, UnSubAck

publish(topic,msg), -
-, PubAck

start

publish(topic,msg), Subs[topic] < Received[topic&msg]
Received[topic&msg] := Received[topic&msg]+1, MsgRec

publish(topic,msg), Subs[topic] = Received[topic&msg]
Received[topic&msg] := 0, PubFin

Fig. 3. Functional model for an MQTT client.
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Based on this functional model, we perform model-based testing with a PBT
tool, which generates random test cases that are executed on an MQTT broker.
During this testing phase, we capture the latencies of messages in a log-file.
Note that the latency is the duration that a client must wait until it receives a
response to a sent message from the broker or until the message is delivered to
all receivers in case of a publish.

Table 1. Example log-data of one client for Mosquitto.

Msg #ActiveMsgs #TotalSubs TopicSize MsgSize #Subs #Receivers Latency [ms]

connect 47 266 0 - - - 110.82

subscribe 47 270 14 - - - 2.45

publish 47 270 14 52 7 7 32.72

unsubscribe 45 12 14 - - - 1.25

publish 46 272 14 74 1 1 2.13

A simplified log excerpt from the MQTT implementation Mosquitto is pre-
sented in Table 1. It shows that we record the message type (Msg), the number of
active clients resp. open message exchanges (#ActiveMsgs), the total number of
subscriptions (#TotalSubs), the size of the topic (TopicSize) and message string
(MsgSize), the number of subscribers for a topic when a publish occurs (#Subs),
the number of receivers of a published message (#Receivers), and the latency.
For this initial logging phase, the available transitions in the current state of
the functional model (Fig. 3 top) are chosen with a uniform distribution. In the
disconnected state, the only choice is a connect message and in the connected
state all other messages are selected with equal frequency. We do not apply any
sojourn times in this phase, since we want to capture the latencies for many
concurrent messages.

Linear Multiple Regression. In previous work, we showed that linear regres-
sion can be applied for learning response-time distributions of a web application
[29]. Now, we learn latency distributions with this method.

Linear regression produces a regression model that describes the relationships
of the log-variables (or features) with the target variable and can be applied for
the prediction of the target variable. The quality of the regression model can
be measured with the coefficient of determination (R2-score) [24], which defines
how well a prediction model for regression fits given data.

First, we checked if we can find any bias in our logs, e.g., a bias might be
caused by log-data generation that is not random enough. In this case, we could
obtain an artificial correlation between features. Another problem might be that
the log-data generation might be unintentionally set up in a way, where relevant
scenarios for the prediction were not tested frequently enough. Both these issues
can result in a regression model that has a good R2-score, but it would not
produce reliable predictions for our simulation with SMC. In order to reduce the
risk of such biases, it is helpful to carefully analyse the data with visualisations,
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like scatter plots, histograms or correlation matrices. For example, if a correlation
matrix shows correlations that should not be there, then this might indicate a
problem during the initial test-case generation.

In the next step, the data cleaning, these data visualisations also helped to
find issues with the data. Here, log-entries with disproportionately long latencies,
i.e. outliers, are removed. We consider the top 5% of the entries per message type
as outlier. Moreover, we flag and remove entries where exceptions were raised,
e.g., due to time-outs or connection failures, since they are rare and we are
primarily interested in latencies of successful message exchanges.

Next, comes the feature selection, where we select variables that have a signif-
icant influence on the target variable. We can also apply the correlation matrices
and look for features that are correlated with the target variable. The correlation
can be measured with a correlation coefficient r, e.g., a common one was intro-
duced by Pearson [26] and gives us a value r ∈ [−1, 1], where 1 is a total positive
correlation and −1 a negative correlation. Features that have a medium or strong
correlation r ≥ 0.3 are most important for the regression, but sometimes also
features with a weak correlation 0.1 < r ≤ 0.3 can help to improve the regres-
sion model. In addition, most regression tools show what features are relevant
for the regression, which we will see later. Note, we should avoid features that
have a high correlation among each other, since they might be redundant. For
example, the number of subscribers to a topic of a published message is highly
correlated with the number of message receivers. Hence, we only select one of
these. Additionally, we checked if certain features only have an effect on specific
message types, which can, e.g., be resolved by setting these features to zero for
this message. The selected features can be seen in our regression formula:

Latency ∼ Msg + #ActiveMsgs + #TotalSubs + #Subs

We performed the regression in R with the standard lm function.3 It was per-
formed with log-data from Mosquitto, which contained 100 test cases with a
random number of clients (3–100) and a length of 50 messages. This produced
log-files with about 300,000 entries. The required number of test cases was deter-
mined by stepwise increasing the dataset and by executing the regression, until
there was no more increase in the R2-score.

1 Estimate Std . Error t value Pr(>| t | )
2 ( In t e r c ep t ) −8.009707 0.1106356 −72.397 < 2e−16 ∗∗∗
3 Msgdisconnect 8.084679 0.1234019 65.515 < 2e−16 ∗∗∗
4 Msgpublish 9.066681 0.1395017 64.993 < 2e−16 ∗∗∗
5 Msgsubscribe 8.771242 0.1419899 61.774 < 2e−16 ∗∗∗
6 Msgunsubscribe 9.294850 0.1294843 71.784 < 2e−16 ∗∗∗
7 #ActiveMsgs 1.358794 0.0033433 406.417 < 2e−16 ∗∗∗
8 #TotalSubs 0.002503 0.0002084 12.011 < 2e−16 ∗∗∗
9 #Subs 0.294270 0.0307663 9.565 < 2e−16 ∗∗∗

Listing 1.1. Excerpt of the linear regression output.

Listing 1.1 shows
the results of the lin-
ear multiple regres-
sion. We are mainly
interested in the first
three columns of this
listing. The first col-
umn shows the intercept and the regression coefficients. The intercept is the
mean of the latency, when all features are zero and the coefficients come from
the features. For categorical variables, e.g., the message type Msg, we have mul-
tiple coefficients. In the second column, there is the estimate of the mean and
3 https://www.r-project.org/

https://www.r-project.org/
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MinTimeBetwMsg : 0 , MaxTimeBetwMsg : 500 ,
MsgWeights :{ connect : 1 , d i s connect : 1 , pub l i sh : 5 , subsc r ibe : 3 , unsubscr ibe : 2}

Listing 1.2. Usage profile UP1 with time bounds and weights for messages.

the third column shows the standard error that gives the average variation of
the estimate from the actual average value. Note that the ∗∗∗ at the end of each
line, shows that the variables are all highly significant. For more details, see [27].

In order to apply this regression model in our method, we encode it in a delay
function that takes the message type, the number of active messages, the total
number of subscribers, and the number of subscribers for the currently published
message as input and returns the parameters μ and σ of the normal distribution
as result:

delay : Msg × N>0 × N≥0 × N≥0 → R × R

In this function, we perform a linear combination of the distributions given by
the estimates and standard errors of the associated regression coefficients for the
inputs. This gives us a combined normal distribution that depends on the inputs
of this function. For example, for a subscribe message that happens when 15 other
messages are active and when there are zero subscribers, the linear combination
works as follows. The associated regression coefficients of Listing 1.1 (Lines 2,
5 & 7) are combined in order to obtain parameters for a normal distribution
μ = −8.010 + 8.771 + 15 × 1.359 and σ =

√
0.1112 + 0.1422 + (15 × 0.003)2. In

the next phase, we integrate the delay function that calculates these parameters
into the functional model.

disconnected
[0,500]start

d1
N (μ, σ)

d5
N (μ, σ)

connected
[0,500]

d2
N (μ, σ)

d3
N (μ, σ)

d4
N (μ, σ)

!ConnClosed

!ConnAck

!SubAck

!UnSubAck

!PubFin

?connect
(μ, δ) := delay()

?disconnect
(μ, δ) := delay()

1

?subscribe
(μ, δ) := delay()

3

?unsubscribe
(μ, δ) := delay()2?publish

(μ, δ) := delay()

4

Fig. 4. Stochastic timed automaton for the timing
behaviour of an MQTT client.

Statistical Model Check-
ing. For the evaluation of
the model, we introduce
usage profiles that describe
the behaviour of an MQTT
client, i.e. how long it should
wait between sending mes-
sages, and with what prob-
abilities it should send cer-
tain messages. An exam-
ple usage profile (UP1) is
shown in Listing 1.2. The
time between messages is
selected uniformly inside the
bounds [MinTimeBetwMsg,
MaxTimeBetwMsg] and we
have weights that define the
message frequency. (In spe-
cific settings, it may make
sense to create different usage profiles for certain types of components, e.g.,
a sensor might only publish messages.)
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This usage profile is added to the functional model and also the learned
latency distributions (expressed in the delay function) are integrated. This gives
us a combined timed model in the form of a stochastic timed automaton, as
explained in Sect. 2.3 and illustrated in Fig. 4. In this model, all locations have
probability density functions fl for the sojourn time. The connected and discon-
nected locations have a uniform distribution given by an upper and lower bound
[a, b]. These bounds come from our usage profile. All other locations have a nor-
mal distribution for the sojourn time. The parameters for this distribution are
computed by the delay function. In contrast to the functional model, these addi-
tional locations apply the message latencies. The locations have one incoming
edge that represents sending a message and an outgoing edge for the response.
Moreover, the weights we from our usage profile are added to the transitions
for sending messages. Note that we have omitted the parameters of the delay
function and also some assignments that are necessary for these parameters, in
order to keep the figure more readable.

With this model, we can evaluate a usage profile by simulating the expected
latencies. Moreover, we can simulate a complete MQTT setup by running mul-
tiple models concurrently. A run of the model can be defined as: (l0, u0)

d1,a1−−−→
(l1, u1)

d2,a2−−−→ . . . and it produces a timed trace in the form (d1, a1), (d2, a2), . . .,
where di is a delay and ai ∈ A. An example trace may look like this:

(97,connect),(9,ConAck),(344,subscribe)(24,SubAck),(58,subscribe),(64,Suback)

While we execute the model, we can check properties to answer questions,
like “What is the probability that the latency of each interaction of a client
within a given MQTT setup is under a certain threshold?”. In order to estimate
the probability of such properties, we perform a Monte Carlo simulation with
Chernoff-Hoeffding bound. This evaluation requires too many samples to be
efficiently executed on the SUT, and hence, we only run it on the model. For
example, checking the probability that the latency threshold of 50 ms is satisfied
for each client of an MQTT setup with 130 clients with parameters ε = 0.05
and δ = 0.01, requires 1060 samples and returns a probability of 0.84, when a
test-case length of ten is considered.

Fortunately, the SPRT requires fewer samples, and is therefore, better suited
for the evaluation of the SUT. The probability that was computed on the model
serves as a hypothesis to be checked on the model, i.e. we check if the SUT
is at least as good as predicted. We consider the predicted probability 0.84 as
alternative hypothesis and select a probability of 0.74 as null hypothesis, which
is 0.1 smaller, because we want to be able to reject the hypothesis that the
SUT has a smaller probability. (We select a difference of 0.1, because for this
difference our model prediction was close enough to the actual probability of the
SUT in most cases, and a smaller difference would need too many samples for an
efficient evaluation of the SUT.) By running the SPRT (with 0.01 as type I and II
error parameters) for each client, we can check these hypotheses. The alternative
hypothesis (probability 0.84) was accepted for all clients and on average 41.15
samples (test cases) were needed for the decision.
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Implementation. Our method was implemented in a similar way, as described
in our previous work [29], where we illustrated how timed models can be exe-
cuted with PBT. Previously, we introduced custom generators for the simulation
of response times, which work in a similar way for latencies. Moreover, we demon-
strated the application of user profiles that work in the same way as our usage
profiles, and we presented a test-case generation algorithm for PBT that can
perform the initial model-based testing phase as well as the execution of our
timed model. For brevity, we omit the details of the implementation and refer
to our previously mentioned published source code.

4 Evaluation

We evaluated our method by applying it to two open-source MQTT implementa-
tions: Mosquitto 1.4.15 and emqtt 2.3.5, running with quality of service level one
and with the default configurations. We analyse the needed number of samples
and the run times. MQTT implementations typically have various settings, e.g.,
the length of the in-flight message queue or an option to group together TCP
packets (Nagle’s algorithm). The influence of such settings might be a potential
threat to the validity of our comparison. We worked with the default settings
as this is commonly done and we also tried to adapt the mentioned settings to
face this threat. A comparison of the regression models and response-time visu-
alisations did not show a difference for the adapted settings. Note that Nagle’s
algorithm has no effect, because it only groups messages if acknowledgements
are pending. This situation does not occur, since our tests are synchronous, i.e.
we always wait for an acknowledgement before sending a new message.

The evaluation was performed on a Windows server (version 2008 R2) with
a 2.1 GHz Intel Xeon E5-2620 v4 CPU with 8 Cores and 32 GB RAM. This
machine was running the clients and the broker in order to avoid an influence of
the network. However, a possible influence of the client processes on the broker
might cause a threat to validity of our evaluation. To face this issue, we measured
the CPU load, to make sure that it is no bottle neck. During the evaluation, the
CPU load was below 60% most of the time, and there were only some rare
peaks, where the CPU was over 90%. We also tried to increase the priority of
the broker process, but this showed no difference. The RAM usage of the brokers
was insignificant since the total RAM of the servers was more than enough.

We applied Visual Studio 2012 with .NET framework 4.5, NUnit 2.64, and
FsCheck 2.92 in order to run the tests and for SMC. The library M2Mqtt4 served
as a client interface to facilitate the interaction with the brokers.

We follow the method of Sect. 3, in order to answer the question “What is
the probability that the message latency is under a certain threshold?”. Hence,
we check the probability that all messages within a sequence of ten messages
for all clients of a selected MQTT setup have a latency under this threshold.
We perform the analysis as shown in Sect. 3, with the difference that we test
Mosquitto and emqtt, and we check various thresholds and different numbers of
4 https://m2mqtt.wordpress.com

https://m2mqtt.wordpress.com
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MinTimeBetwMsg : 50 , MaxTimeBetwMsg : 250 ,
MsgWeights :{ connect : 1 , d i s connect : 1 , pub l i sh : 7 , subsc r ibe : 1 , unsubscr ibe : 1}

Listing 1.3. Usage profile UP2 with more frequent publish messages.

clients. We apply the same usage profile as before and the regression model for
emqtt was similar to the one shown for Mosquitto in Listing 1.1. Additionally, we
evaluate another usage profile (UP2), as shown in Listing 1.3 that has a higher
weight for publish messages and different bounds for the time between messages.

As shown before, we apply a Monte Carlo simulation with Chernoff-Hoeffding
bound with parameters ε = 0.05 and δ = 0.01, which requires 1060 samples per
data point, to evaluate the timed model. The results for Mosquitto and emqtt
for both user profiles are shown in Figs. 5 and 6. Table 2 shows the average time
needed for these evaluations.

As expected, a decrease in the probability can be observed, when the number
of clients increases, and a higher threshold causes a higher probability. The
advantage of applying SMC on a model is that it runs much faster than on the
SUT. With a virtual time of 1/10 of the actual time, we can perform evaluations
that would take hours on the SUT within minutes.

Table 2. Average time [min:s] for the Monte Carlo sim-
ulation of the model.

Number of Clients 50 70 90 110 130 150

UP1 Mosquitto 4:27 4:48 4:54 5:00 5:09 5:25

UP1 emqtt 4:28 4:49 4:57 5:05 5:15 5:23

UP2 Mosquitto 2:39 3:03 3:16 3:22 3:40 3:51

UP2 emqtt 2:39 3:02 3:18 3:27 3:41 3:55

It is also important
to check the probabilities
that we received through
SMC of the timed model,
on the SUT. This was done
as explained in Sect. 3 with
the SPRT. Tables 3 and 4
show the results for both
usage profiles and brokers.
We focused on some of the
more interesting data points for the evaluation. The tables show hypotheses, test
results, the needed number of samples and execution times for different numbers
of clients and thresholds. Note that in order to obtain an average number of
needed samples, we run the SPRT concurrently for each client and calculate the
average of these runs.

20 40 60 80 100 120
0.6

0.7

0.8

0.9

1

threshold[ms]

pr
ob

ab
ili
ty

20 40 60 80 100 120
threshold[ms]

50 Clients
70 Clients
90 Clients
110 Clients
130 Clients
150 Clients

Fig. 5. UP1 Monte Carlo simulation results for Mosquitto (left) & emqtt (right).

In most cases, hypothesis H1 was accepted for almost all clients, which means
that the probability of the SUT was at least as high, as the predicted one from the
model. However, the prediction was not always accurate. H0 was also sometimes
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Fig. 6. UP2 Monte Carlo simulation results for Mosquitto (left) & emqtt (right).

accepted and in some cases H1 was only accepted by a fraction of the clients that
tested this hypothesis, e.g., for Mosquitto with threshold 30 ms and 90 clients,
only 60% of the clients accepted H1 for UP1. The prediction was sometimes
inaccurate for small latency thresholds. The reason might be that we mainly
learned the latency distributions under conditions with high load, and hence,
our model might not be completely accurate for small latencies.

Moreover, the prediction performed rather poorly for high numbers of clients
(≥130), especially for UP2. This might be caused by the fact that the initial
testing phase for log-data had only a maximum of 100 clients and the higher
number of clients might be too far away from this initial test phase. However,
H1 was still accepted for most data points, which means that the model was
good enough in these cases. Furthermore, it is apparent that the SPRT can be
performed with fewer samples, i.e. we need mostly about 50 samples (except for
some outliers), compared to the 1060 for the Monte Carlo simulation.

By comparing the results of Mosquitto and emqtt, it can be seen that pre-
dicted probabilities are too similar to make a clear distinction. However, the
evaluation of the SUT with hypothesis testing was able to find some differences,
i.e. in some cases emqtt showed a slightly better performance. For example, the
second data row of Table 3 shows that Mosquitto was not able to accept H1,
where emqtt accepted it, although the same hypotheses were tested. This means
that emqtt had a better performance in this case. For UP1, this was the case
especially for small thresholds, for UP2 the performance was more similar for
both implementations and there is also a case where Mosquitto showed better
performance. (Row 13 of Table 4, shows that only 90% of the clients accepted
H1 for emqtt, but all clients for Mosquitto.)

We analysed the execution times of the different phases of our method. The
initial testing phase took about 5–8 min and the linear regression about 10–12 s.
Note that these two phases have to be performed only once, and the resulting
model can then be applied for various evaluations.

A Monte Carlo simulation of the model required about 3–5 min for 1060
samples as shown in Table 2. The evaluation of the SUT with hypothesis testing
took most of the time 2–4 min, in some cases about 10 min and in only in one
case 39 min. Hence, most of our predictions could be tested efficiently in about
the same time that was needed to make the prediction with the timed model.

Running a Monte Carlo simulation with 1060 samples directly on the SUT
would take approximately 2–3 h. Performing this simulation becomes quickly
impractical when various data points should be analysed. Therefore, our model-
based approach makes sense, because it can be executed faster.
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Table 3. Results of the evaluation of the SUT with the SPRT for UP1.

Threshold #Clients Mosquitto emqtt

H0 H1 Result #Samples Time

[min:s]

H0 H1 Result #Samples Time

[min:s]

30 50 0.9 1 H1 44 2:31 0.9 1 H1 44 2:28

30 70 0.88 0.98 H0 22.47 5:43 0.88 0.98 H1 44.14 2:51

30 90 0.79 0.89 60% H1 276.31 39:12 0.8 0.9 H1 41.02 2:56

30 110 0.74 0.84 H1 73.26 7:22 0.72 0.82 H1 42.55 3:40

30 130 0.68 0.78 H0 46.68 11:33 0.64 0.74 H1 77.92 9:21

50 50 0.9 1 H1 44 2:10 0.9 1 H1 44 2:06

50 70 0.9 1 73% H1 43.53 10:01 0.9 1 H1 44 2:09

50 90 0.88 0.98 H1 50.47 4:18 0.88 0.98 H1 43 2:30

50 110 0.8 0.9 H1 41.35 3:19 0.84 0.94 H1 41.25 2:50

50 130 0.74 0.84 H1 41.15 3:12 0.75 0.85 H1 38.41 2:37

70 50 0.9 1 H1 44 2:04 0.9 1 H1 44 2:33

70 70 0.9 1 H1 44 2:10 0.9 1 H1 44 2:08

70 90 0.9 1 H1 44 2:37 0.9 1 H1 44 2:29

70 110 0.88 0.98 H1 43.16 2:57 0.89 0.99 H1 44.38 3:14

70 130 0.78 0.88 H1 39.32 3:00 0.83 0.93 H1 41.21 2:37

Table 4. Results of the evaluation of the SUT with the SPRT for UP2.

Threshold #Clients Mosquitto emqtt

H0 H1 Result #Samples Time

[min:s]

H0 H1 Result #Samples Time

[min:s]

30 50 0.9 1 96% H1 42.88 1:18 0.9 1 96% H1 43.42 1:16

30 70 0.88 0.98 H0 17.6 1:15 0.88 0.98 H1 46.4 2:07

30 90 0.8 0.9 H0 17.18 3:55 0.8 0.9 H1 44.98 1:42

30 110 0.72 0.82 H0 13.43 1:39 0.72 0.82 H0 14.61 1:14

30 130 0.65 0.75 H0 14.55 0:56 0.7 0.8 H0 12.68 0:24

50 50 0.9 1 H1 44 1:17 0.9 1 H1 44 1:19

50 70 0.9 1 67% H1 37.94 3:48 0.9 1 H1 44 1:44

50 90 0.88 0.98 H1 51.36 3:01 0.89 0.99 H1 46.2 1:54

50 110 0.79 0.89 H1 41.42 1:46 0.81 0.91 87% H1 152.34 8:34

50 130 0.72 0.82 H0 16.46 0:58 0.76 0.86 H0 9.51 0:23

70 50 0.9 1 H1 44 2:07 0.9 1 H1 44 1:16

70 70 0.9 1 H1 44 2:11 0.9 1 H1 44 1:18

70 90 0.9 1 H1 46.04 2:41 0.9 1 90% H1 52.81 2:47

70 110 0.87 0.97 H1 65.55 4:39 0.88 0.98 H1 43.82 1:58

70 130 0.79 0.89 H0 48.18 5:28 0.81 0.91 H0 9.58 0:34

5 Conclusion

We have shown, how to apply SMC in order to predict the performance of MQTT
implementations under various usage scenarios. Moreover, we showed how such
predictions can be verified by testing real implementations with the SPRT.

First, we collected log-data by running model-based testing with a functional
model. Then, we applied linear regression to learn latency distributions that
we integrated into our model. Additionally, we combined this model with usage
profiles. The resulting model is a stochastic timed automaton that was simulated
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to predict the expected latencies of different MQTT implementations. Finally,
we verified our prediction with hypothesis testing of the implementations.

A big advantage of our method is that we can predict the performance for
various usage scenarios with a fast model simulation and we can efficiently test
the prediction on the SUT with the SPRT. The prediction can be accelerated by
applying a virtual time that is a fraction of real time, and the test of the SUT
is efficient, because it needs fewer samples. Another benefit is that we can do
both, SMC and testing of models and SUTs, inside a PBT tool. This enables an
easy verification of the model prediction inside the same tool and it facilitates
the model and property definition in a high-level programming language.

We have evaluated our method by applying it to well-known open-source
implementations of MQTT: Mosquitto and emqtt, and the results were promis-
ing. We analysed various numbers of clients and checked the probability that
the latency is within certain thresholds. Moreover, we demonstrated that the
predicted probability was accurate in most cases and we showed that emqtt has
better performance in some cases.

In the future, we plan to evaluate different learning methods for latency
distributions and we envisage to test various types of usage profiles.
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Abstract. Markov Decision Processes (MDPs) are a popular class of
models suitable for solving control decision problems in probabilistic
reactive systems. We consider parametric MDPs (pMDPs) that include
parameters in some of the transition probabilities to account for stochas-
tic uncertainties of the environment such as noise or input disturbances.

We study pMDPs with reachability objectives where the parameter
values are unknown and impossible to measure directly during execution,
but there is a probability distribution known over the parameter values.
We study for the first time computing parameter-independent strate-
gies that are expectation optimal, i.e., optimize the expected reachabil-
ity probability under the probability distribution over the parameters.
We present an encoding of our problem to partially observable MDPs
(POMDPs), i.e., a reduction of our problem to computing optimal strate-
gies in POMDPs.

We evaluate our method experimentally on several benchmarks: a
motivating (repeated) learner model ; a series of benchmarks of varying
configurations of a robot moving on a grid; and a consensus protocol.

1 Introduction

Markov decision processes (MDPs) [5] are a popular class of models suitable for
solving decision making and dependability problems in a randomized environ-
ment. An MDP is a state-based model representing a probabilistic process that
satisfies the Markov property (memorylessness), where for each state it is pos-
sible to choose nondeterministically some action-labeled transitions governing
the probability distribution to end up in the next state. MDPs are employed in
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several applications including the analysis of queueing systems [38], bird flock-
ing [30], confidentiality [6] and robotics [32].

One of the main problems of interest for MDPs is the synthesis of an opti-
mal policy (scheduler, strategy) choosing the sequence of actions that maxi-
mizes/minimizes the probability or the expected accumulated reward/cost to
reach a target state. Model-checking tools such as PRISM [28] or Storm [20]
provide a push-button technology to automate such analyses and to derive sim-
ple deterministic and memoryless schedulers.

We study here parametric Markov decision processes (pMDPs) [16,22], in
which (some of) the transition probabilities depend on a set of parameters. This
class allows to include unknown quantities in the model such as the fault rate
or the input disturbances that are responsible for stochastic uncertainty. These
quantities are often unavailable at the design time or impossible to measure
directly at runtime. Intuitively, a pMDP represents a family of MDPs—one for
each possible valuation of the parameters.

In the past years, there has been a great effort to solve reachability analysis in
pMDPs using symbolic approaches [2,16,17,22,35,36]. These methods generally
partition the parameter space in regions, associating each region to the optimal
memoryless scheduler that maximizes/minimizes the probability to reach the
target state. The common assumption of all these approaches is the possibility
to observe the unknown quantities at some point and then to choose accordingly
the best scheduler. However, this is not always feasible.

Our Contribution. We analyze pMDPs with reachability objectives1 without
assuming that parameter values are accessible directly during execution. Specifi-
cally, we find parameter-independent strategies that are expectation ε-optimal [2],
for ε ≥ 0, i.e., optimize the expected reachability probability given a probabil-
ity distribution over the parameters. To achieve this goal, we consider partially
observable Markov decision processes (POMDPs) where an agent cannot directly
observe the environment’s state and must take decisions according to its belief on
the current state; the belief can be updated by interacting with the environment.

We provide an encoding of a pMDP as a POMDP where the states consist
of pairs of the original pMDP states and parameter values and transitions can
occur only between states with the same parameter values. We prove that solving
the induced POMDP corresponds to finding parameter-independent expectation
ε-optimal policies for the pMDP. Note that here memoryless policies are not
sufficient for optimality, see the discussion on the motivating learner model in
Sect. 5. We leverage algorithms such as point-based value iteration (PBVI) [34]
and Incremental Pruning (IP) [10] to find the solution. We have implemented
our approach using Storm [20] and AI-Toolbox [7].

Finally, we evaluate our approach experimentally on several benchmarks: a
motivating (repeated) learner model ; a series of benchmarks of varying configu-
rations of a robot moving on a grid; and a consensus protocol model.

1 We can deal with objectives beyond reachability as long as they are induced by a
reward structure (for applicability of the available tools), see Sects. 3 and 4.
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Paper Organization. Sect. 2 discusses related work. In Sect. 3 we introduce MDPs,
pMDPs, and POMDPs. Section 4 presents the encoding of a pMDP in POMDP
and the reduction result. In Sect. 5 we illustrate our approach on several case
studies and report on experimental results, while in Sect. 6 we wrap up with
conclusions and discussion of future work.

2 Related Work

Parametric probabilistic models [18,29] are a special class of Markov models
where some of the transition probabilities (or rates) depend on one or more
parameters that are not known a-priori. These models are particularly useful to
study systems characterized by stochastic uncertainty due to the impossibility
to access certain quantities (e.g., fault rates, packet loss ratios, etc.).

In the last decade, there was a great effort to study the problem of symbolic
model checking of parametric probabilistic Markov chains [8,18,19,21,25,33,36].
In [18], Daws introduced a method to express the probability to reach the target
state as a multivariate rational function with the domain in the parameter space.
This approach was then efficiently implemented in the PARAM1 and PARAM2
tools [21] and included later on in the PRISM model checker [28].

The parameter synthesis problem consists of (exploiting the generated multi-
variate rational function and) finding the parameter values that would maximize
or minimize the probability to reach the target state.

Repairing a probabilistic model [8] consists instead of solving a constrained
nonlinear optimization problem where the objective function represents the min-
imal change in the transition probabilities such that the probability to reach the
target state is constrained to a given bound.

The price to pay for these techniques is the increasing complexity of the
multivariate rational functions in the presence of large models [27,29], causing
the parameter synthesis to be also very computationally expensive. However, the
introduction of new efficient heuristics [19,25,33,36] has helped to alleviate this
problem by supporting the parameter synthesis for quite large models.

This symbolic approach to parameter synthesis has been recently extended to
handle also the nondeterministic choice in parametric Markov decision processes
(pMDPs) [2,16,17,22,35,36], where each different sequence of inputs can induce
a distinct Markov chain, resulting potentially in several multivariate rational
functions.

The parameter synthesis problem for pMDP consists in solving a nonlin-
ear program (NLP) with multiple objectives. Recently, the authors in [17] have
shown that many NLPs related to pMDP belong to a certain class of nonconvex
optimization problems called signomial programs (SGPs). In the same paper,
they have also introduced an approach to relax nonconvex constraints in SGPs
generating geometric programs, a particular class of convex programs that can
be solved in a number of steps that is polynomial in the number of variables.
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Another approach proposed in [16] is based on sampling techniques (i.e.,
Metropolis-Hastings algorithm, particle swarm optimization, and cross-entropy
method) that are used to search the parameter space. These heuristics usually
do not guarantee that global optimal parameters will be found. Furthermore,
when the regions of the parameters satisfying a requirement are very small, a
large number of simulations is required.

All the proposed methods provide a map that relates the regions of the
parameter space to the optimal memoryless scheduler that maximizes/minimizes
the probability to reach the target state. The underlying assumption for these
approaches is the possibility to measure the parameters during system execution.
Once the values of the parameters have been measured, one can use this map
to choose the best policy. In this paper, we consider a different assumption
with respect to the state of the art: We want to synthesize an expectation ε-
optimal scheduler for pMDP that is independent from the possibility to measure
the parameters. To achieve this goal we show how to recast the problem into
finding an ε-optimal policy for a partially observable Markov decision process
(POMDP) after providing a suitable encoding. While we are not aware of any
other work that establishes such a correspondence, it is worth mentioning that
instead parameter synthesis for parametric Markov chains has been recently
employed to find permissive finite-state controllers for POMDPs in [26].

The qualitative analysis of POMDPs has been widely studied: complexity
results have been established [4,11] and symbolic algorithms [13]. However, for
the general quantitative problem and its approximation the computational ques-
tions are undecidable [12,31]. Despite the undecidability there are several prac-
tical approaches such as point-based methods [39].

3 The Models

In this section we introduce the models of importance for this paper: MDPs, para-
metric MDPs, and partially observable MDPs. The models can be arbitrarily large,
we do not impose restrictions on the size for the theoretical part of the paper.

3.1 Markov Decision Processes – MDPs

A (discrete) probability distribution on a set S is a function μ : S → [0, 1] with
the property

∑
s∈S μ(s) = 1. By D S we denote the set of all (discrete) proba-

bility distributions on S. For s ∈ S, we write δs for the Dirac distribution that
assigns 1 to s.

Definition 3.1 (Markov Decision Process – MDP). A Markov Decision
Process (MDP) is a tuple M = (S,A, T, i) where:

– S is a set of states,
– A is a set of actions,
– T : S × A → D S is the transition function, and
– i ∈ D S is the initial state distribution. �
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From a given state with a given label, an MDP makes a step to a probability
distribution over states that describes the probability of reaching a next state.
As usual, we write s

a→ μ for μ = T (s, a). We will write s
a,p→ t for s

a→ μ and
p = μ(t), as well as s

a→ t for s
a,p→ t with p > 0. It is also common to write

T (t|s, a) for T (s, a)(t).

Remark 3.1. In our definition no action is disabled in any state. This is somewhat
unusual for MDPs, but very common for partially observable MDPs which we
are interested in.

A run (also called path or play) of an MDP is an infinite sequence
s0, a0, s1, a1, . . . in (S × A)ω of states and actions such that si

ai→ si+1 for
all i ≥ 0. When convenient, we will also write s0 · a0 · s1 · a1 . . . for the run
s0, a0, s1, a1, . . . . A history h is a finite prefix of a run in (S ×A)∗ ×S. We write
first(h) and last(h) for the first and last state in a history h, respectively. The
cone Cone(h) of a history h is the set of all runs with prefix h. We write Runs
for the set of all runs, Hist for the sets of all histories, and Cones for the smallest
σ-algebra containing the cones of all histories.

Definition 3.2 (MDP policy). A policy (strategy, scheduler) π for an MDP
M is a map

π : Hist → D A

from histories to probability distributions over the actions. It is a deterministic
policy if the image of π consists only of Dirac distributions. It is a memoryless
(or Markov) policy if π(w · s) = π(s) for w ∈ (S × A)∗ and s ∈ S. �

A policy π together with the initial state distribution i ∈ D S induces a prob-
ability space (Runs,Cones,Pπ,i), i.e., a probability measure Pπ,i on the measur-
able space (Runs,Cones). This construction is done in several steps: First, for a
given state s, we consider a function Pπ,s assigning a number in [0, 1] to cones of
histories in Hist. It is defined inductively as follows. We set Pπ,s(Cone(h)) = 1
if h = s and Pπ,s(Cone(h)) = 0 if h = t �= s. For h = w · a · t we set
Pπ,s(Cone(h)) = Pπ,s(Cone(w)) · π(w)(a) · T (last(w), a)(t). By Carathéodory’s
extension theorem, the function Pπ,s extends to a unique measure on the mea-
surable space (Runs,Cones) which we denote by Pπ,s. Finally, given the initial
state distribution i ∈ D S, Pπ,i is the measure on (Runs,Cones) defined as
Pπ,i =

∑
s∈S i(s) · Pπ,s .

We write Eπ,i for the expectation operator of Pπ,i. Recall that the expec-
tation operator of a measure μ on a measurable space (X,Σ) is defined as
Eμ(f) =

∫
fdμ for a measurable function f : X → R where we consider the

Borel σ-algebra on the reals. Hence Eπ,i(f) =
∫

fdPπ,i for a measurable func-
tion f : Runs → R. We may sometimes decorate the notation of the measures and
the expectation operators by superscript M , to emphasize the involved model.

We can now specify what it means to solve an MDP.
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Definition 3.3 (Objective, value, solution of MDP). Given an MDP
M = (S,A, T, i), a Borel objective, also called return, is a measurable func-
tion r : Runs → R. The value of the MDP M for the objective r is defined as
Val(r) = supπ Eπ,i(r). A solution to an MDP M regarding the objective r is a
policy π with Eπ,i(r) = Val(r). A policy π is an ε-solution, for ε > 0, of M with
respect to r if Eπ,i(r) is ε-close to Val(r). �

Note that a solution to an MDP need not exist. We will say objective for
a Borel objective. Some objectives arise via the payoff or accumulated reward
of runs. For MDPs with such reward-based objectives, a solution always exists.
Solving (partially observable) MDPs often refers to solving reward-based objec-
tives.

Definition 3.4 (MDP with rewards). An MDP with rewards is a tuple
MR = (M,R) where M = (S,A, T, i) is an MDP and R : S × A × S → R is
the reward function. �

Upon performing a transition, an MDP with rewards collects reward as
described by the reward function. We will sometimes write s

a,p,r→ t for s
a,p→ t and

R(s, a, t) = r, and s
a,r→ t for s

a→ t and R(s, a, t) = r. If clear from the context,
we will drop the subscript R in an MDP MR with rewards.

Reward structures may induce objectives as follows: The (undiscounted)
accumulated reward of a run in an MDP with rewards is

rR(s0, a0, s1, a1 . . . ) =
∑

i≥0

R(si, ai, si+1). (1)

The accumulated reward induces the reward objective rR if the above assignment
defines a measurable function rR : Runs → R.2

Reachability Objectives
Of special interest to us is optimizing reachability, that is optimizing the prob-
ability to reach a target state (or a set of target states). Computing extremal
(i.e., maximal/minimal) reachability probabilities is at the heart of MDP model
checking: PCTL and LTL model checking boil down to computing reachabil-
ity probabilities. The same holds for omega-regular properties: determining the
maximal probability of any omega-regular property ϕ in an MDP M amounts
to determining the maximal probability to reach an accepting end component
in the product of M with a deterministic omega-automaton for ϕ. Verifying
PCTL properties under fair policies, i.e., policies that can almost surely reach
a state satisfying some fairness constraint, can also be reduced to computing
reachability probabilities.

2 The discounted accumulated reward objective is defined in a similar way, by adding
a factor γi to the i-th summand in (1) with γ ∈ [0, 1) being the discount factor. For
solving reachability objectives, undiscounted rewards are sufficient.
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Definition 3.5 (Reachability objective). Let M = (S,A, T, i) be an MDP
and t ∈ T a state. The reachability objective rt of reaching the state t is given
by the indicator function of the set Runst of runs that reach t, i.e.,

Runst = {s0, a0, s1, a1, · · · ∈ Runs | ∃i ≥ 0.si = t}

and rt(ρ) = 1 if ρ ∈ Runst and rt(ρ) = 0 otherwise. �
Note that Runst is a measurable set, i.e., Runst ∈ Cones and hence rt is a

measurable function. Moreover, a solution to the reachability objective rt is a
policy π that maximizes the reachability probability, as Eπ,i(rt) = Pπ,i(Runst).

Reachability objectives are induced by reward structures as follows. Given
an MDP M = (S,A, T, i) and a target state t ∈ S we construct the MDP with
rewards Mt = (S,A, Tt, i, Rt) where

Tt(s, a) =

{
δt if s = t

T (s, a) otherwise
Rt(s, a, s′) =

{
1 if s �= t and s′ = t

0 otherwise .

The following standard property relates the accumulated reward of Mt to solving
the reachability objective and is not difficult to show. (The condition i(t) = 0 is
technical: in Mt the history t does not accumulate any reward.)

Proposition 3.1. For any policy π for an MDP M = (S,A, T, i) with t ∈ S
and i(t) = 0, the probability to reach t in M under π is the (undiscounted)
accumulated reward of π in Mt, i.e., PM

π,i(Runst) = E
Mt
π,i (rRt

). �	
The finite-horizon reachability objective is reachability within k steps for

k ∈ N being called horizon. This objective is induced by the rewards via

rk
Rt

(s0, a0, s1, a1 . . . ) =
∑

0≤i≤k−1

Rt(si, ai, si+1) (2)

with Rt being the reachability reward structure in Mt.

3.2 Parametric MDPs – pMDPs

Definition 3.6 (Parametric MDP – pMDP3). A parametric Markov Deci-
sion Process (pMDP) is a tuple M = (S,A,X, T, i) where S, A, and i are as in
the definition of an MDP and

– X is the parameter space,
– T : S × A → (D S)X is the transition function. �

3 We use the abbreviation pMDP rather than PMDP as it is common in the recent
literature, see (e.g. [17,35] and as it reminds of the parameter p.).
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For a pMDP M as above and a parameter point x ∈ X we write M(x) for
the evaluation of M at x, that is the MDP M(x) = (S,A, Tx, i) with Tx(s, a) =
T (s, a)(x).

We are interested in finding ε-optimal policies independent of the parameter,
i.e., policies that are somehow ε-optimal over the whole parameter space X.
Since for pMDPs the expected return is a function in the parameter, it is not a
priori clear what optimality criterion to choose — see [2] for several alternatives.
Here we consider the case where a parameter distribution p ∈ D X is given
and we optimize the expected reward given p (this setting is called expectation
optimal in [2])—as formalized below.

Runs, histories, and policies are defined similarly as for MDPs including in
addition the parameter value, and the probability measure now also depends on
p. For a parameter space X, the sample space is RunsX = {(x, ρ) | x ∈ X, ρ ∈
Runs(M(x))}; the set of histories is HistX = {(x, h) | x ∈ X,h ∈ Hist(M(x))};
and the σ-algebra is the smallest σ-algebra ConesX that contains the sets

{{x} × Cone(h) | x ∈ X,h ∈ Hist(M(x))}.

Definition 3.7 (pMDP policy). A policy πX of a pMDP M is a map
πX : HistX → D A that is independent from the parameters, i.e., that satis-
fies the property

πX(x, h) = πX(y, h) for all x, y ∈ X,h ∈ Hist(M(x)) ∩ Hist(M(y)). (3)

Note that in general Hist(M(x)) may differ from Hist(M(y)) for x �= y, as different
parameter values may make the transition probabilities of certain transitions equal
to zero. Furthermore, note that a pMDP policy, due to the requirement (3) can
equivalently be defined as a map πX :

⋃
x∈X Hist(M(x)) → D A.

A pMDP policy πX , induces a family of MDP policies (πx | x ∈ X) with πx

a policy for M(x) by projection, i.e., πx(h) = πX(x, h) for all h ∈ Hist(M(x)).
The measurable space (RunsX ,ConesX) is (isomorphic to) the disjoint union

(coproduct) measurable space

RunsX =
∐

x∈X

Runs(M(x)), ConesX = {
∐

x∈X

Ax | Ax ∈ Cones(M(x))}

and by PπX ,i,p we denote the measure that is the p-convex combination of the
measures P

M(x)
πx,i , i.e.,

PπX ,i,p(
∐

x∈X

Ax) =
∑

x∈X

p(x) · PM(x)
πx,i (Ax). (4)

Remark 3.2. Note that PπX ,i,p is the unique extension of the assignment

PπX ,i,p({x} × Cone(h)) = p(x) · PM(x)
πx,i (Cone(h))

to the measurable space (RunsX ,ConesX).
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We write EπX ,i,p for the expectation operator of PπX ,i,p. The value of a pMDP
M given parameter distribution p and objective r is Val(p, r) = supπX

EπX ,i,p(r)
where the supremum is taken over all pMDP policies πX .

Definition 3.8 (Expectation ε–optimal policy). A policy πX is expecta-
tion ε-optimal for a pMDP M iff EπX ,i,p(r) is ε-close to Val(p, r). �

3.3 Partially Observable MDPs – POMDPs

Definition 3.9 (Partially observable MDP – POMDP). A partially
observable MDP (POMDP) is a tuple M = (S,A, T, i, Ω,O) where:

– (S,A, T, i) is the underlying MDP,
– Ω is the set of observations,
– O : S → Ω is the observation function. �

Note that our observation function is deterministic and only state-dependent,
which is not a restriction [14]. Runs and histories of a POMDP are the runs and
the histories of its underlying MDP. The reward structure for a POMDP is a
reward structure of its underlying MDP. The observation function O extends
naturally to runs and histories as follows, by slight abuse of the notation we
denote all these functions by O. We have O : Runs → (Ω × A)ω given by

O(s0, a0, s1, a1, . . . ) = O(s0), a0, O(s1), a1, . . .

and similarly we define O : Hist → (Ω × A)∗ × Ω.
The crucial difference to MDPs is that the policy of a POMDP can only

observe the observations but not the states directly:

Definition 3.10 (POMDP policy). A policy π for a POMDP M is a policy
for the underlying MDP of M with the additional requirement that π(h) = π(h′)
whenever O(h) = O(h′), for all h, h′ ∈ Hist. �

POMDP policies, together with the initial state distribution, also induce a
probability measure over runs. The measurable space is again (Runs,Cones).
The measure Pπ,i is defined in exactly the same way as for the underlying MDP,
and Eπ,i again denotes the expectation operator. The value of a POMDP M
on an objective r, also denoted by Val(r), is defined as Val(r) = supπ Eπ,i(r)
where the supremum is taken over all POMDP policies π. A POMDP policy π
is a solution of the POMDP M for an objective r, iff Eπ,i(r) = Val(r); it is an
ε-solution for ε > 0 iff Eπ,i(r) is ε-close to Val(r).

Finite-horizon accumulated reward objectives as defined in (2) are by far the
most studied class of POMDP objectives; one might even say that solving such
objectives is the POMDP problem [10,34].

Remark 3.3. We note two important facts for solutions of POMDPs:

(1) For POMDPs, deterministic policies are not a restriction (they are as pow-
erful as randomized policies, but can require more memory) for any Borel
objective, see [15, Lemma 1,Theorem 7].
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(2) For POMDPs with reachability objectives, for ε-approximation with ε > 0,
finite-memory policies are sufficient for optimality. This is because given any
ε > 0, there exists a finite horizon Nε, such that reachability within Nε steps
ε-approximates the optimal reachability probability, and for finite-horizon
reachability optimal finite-memory policies are sufficient.

4 The Encoding

In this section we reduce the problem of finding an expectation-optimal policy
for a pMDP to the problem of solving a POMDP, by presenting an encoding of
pMDPs to POMDPs that will relate the policies in the desired way.

The main technical observation of our paper, the observation that enables
the method of finding parameter-independent optimal policies for pMDPs via
solving the induced POMDP, is the encoding and the correspondence result,
Theorem 4.2 below. We start with presenting the encoding.

Definition 4.1 (Induced POMDP). Given a pMDP M = (S,A,X, T, i), its
induced POMDP is M ′ = (S × X,A, T ′, S,O) with:

T ′((s, x), a)(s′, x′) = T (s, a)(x)(s′) · δx(x′)

and O((s, x)) = s. �
Hence, the encoding, i.e., the induced POMDP of a pMDP M is a POMDP

with much larger state space: new states are pairs of states of M (“old” states)
and parameter values in X. Transitions are only possible among new states with
the same parameter value, i.e., transitions can not change the parameter values,
and the transitions are inherited from the pMDP. Observations are the old states,
i.e., in a new state (s, x) we can observe the old state s but not the parameter
value x.

Our correspondence result is a consequence of the classical “change of vari-
able” result of measure theory, which we recall next.

Theorem 4.1 ([24, Theorem VIII.C]). Let (X,Σ) and (X ′, Σ′) be measur-
able spaces, f : (X,Σ) → (X ′, Σ′) a measurable function, μ : Σ → R

+ a measure,
and ϕ′ : X ′ → R

+ ∪ {∞} a measurable function.
Let μ′ : X ′ → R

+ be the push-forward measure of μ along f , i.e. μ′ = μ◦f−1

and let ϕ = ϕ′ ◦ f : X → R
+ ∪ {∞}.

Then ∫

X

ϕdμ =
∫

X′
ϕ′ dμ′,

that is, if one of the integrals exists, the other does too and they are equal. �	
At this point, let us denote by Runs′, Hist′ and Cones′ the runs, histories,

and the σ-algebra generated by the cones of histories of the encoding M ′. Note
that a policy of M ′ is a map π′ : Hist′ → D A. Moreover, note that

Runs′ = {(s0, x), a0, (s1, x), a1, · · · | x ∈ X and s0, a0, s1, a0, · · · ∈ Runs(M(x))}
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and analogously for histories. This is a consequence of the construction of the
encoding, i.e., of the fact that every run of M ′ involves a single parameter point
as T ′((s, x), a)(s′, x′) = 0 whenever x �= x′.

We now state several direct consequences of the definitions needed for the
correspondence result. The proofs of all results are in the extended version [1].

Lemma 4.1. The function f : RunsX → Runs′ defined by

f(x, s0 · a0 · s1 · · · ) = (s0, x) · a0 · (s1, x) · · ·

is an isomorphism between the measurable spaces (RunsX ,ConesX) of the pMDP
M and (Runs′,Cones′) of its induced POMDP M ′. �	
This means that f is a bijection and both f and f−1 are measurable functions.
In the sequel, we also write f for the bijection from HistX to Hist′ defined in the
same way. Note that f maps generators of ConesX to generators of Cones′ as

f({x} × Cone(hx)) = Cone(f(x, hx))

for any x ∈ X and hx ∈ Hist(M(x)). Moreover, to state the obvious, f is related
to the observation map O as follows: O(f(x, h)) = h.

Lemma 4.2. There is a bijective correspondence Φ between the policies of the
pMDP M and the policies of its induced POMDP M ′ given by Φ(πX) = πX ◦f−1.
Its inverse acts as Φ−1(π′) = π′ ◦ f . �	
We are now able to relate the induced measures in a pMDP and its encoding.

Lemma 4.3. Given a pMDP M = (S,A,X, T, i), parameter distribution p, and
policy πX , we have

P
M
πX ,i,p = P

M ′
π′,i′ ◦ f

where M ′ is the induced POMDP of M , π′ = Φ(πX), and i′(s, x) = i(s) ·p(x). �	
Now the correctness of the encoding follows easily from the next result.

Theorem 4.2. Given a pMDP M = (S,A,X, T, i), parameter distribution p ∈
D X, policy πX , and an objective function r, we have

E
M
πX ,i,p(r) = E

M ′
π′,i′(r′) (5)

where M ′ is the induced POMDP of M , π′ = Φ(πX), r′ = r ◦f−1, and i′(s, x) =
i(s) ·p(x). The opposite also holds: Given a policy π′ of the induced POMDP M ′

of M , Eq. (5) holds for πX = Φ−1(π′). �	

As a consequence, ValM (p, r) = ValM
′
(r′) and the policy πX is expectation

ε-optimal for M if and only if π′ = Φ(πX) is an ε-solution of M ′, for ε ≥ 0.
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5 Experiments4

In this section, we present several case studies to illustrate our approach of
finding an expectation ε-optimal policy of a pMDP using an existing POMDP
solver. The solver we use is AI-Toolbox [7], a well-known suite of algorithms
for Markov models, which includes several algorithms for POMDPs with finite-
horizon accumulated-reward objectives. For our case studies we evaluate two
algorithms: point-based value iteration (PBVI) [34] and Incremental Pruning
(IP) [10], for reasons explained in the extended version [1].

The PBVI implementation in AI-Toolbox does not generate beliefs on the fly
(as in the anytime algorithm described in [34]), but generates a fixed number of
beliefs upfront. First the simplex corners (i.e. the Diracs) and the midpoint are
generated, then more are sampled (the point-based algorithms differ mainly in
how the beliefs are sampled). Without at least the simplex corners and midpoint,
the results are quite off - we chose to always pick at least all of those.

Experimental Setup. All the models that we analyze are described in PRISM file
format. We use Storm [20] to parse the files and build the parametric model, that
we then translate and pass to AI-Toolbox. Both Storm and AI-Toolbox have
Python bindings allowing us to perform our encoding in Python. The experi-
ments reported here ran on a NUMA machine with four 16-core 2.3 GHz AMD
Opteron 6376 processors, 504 GB of main memory, and Linux kernel version
4.13.0. We used BenchExec [9] to run experiment series.

Selected Case Studies. We start by discussing a motivating learner model exam-
ple that shows all important aspects. Then we present some results on a model
of a robot moving on a grid and a consensus protocol model.

It is important to note here that many of the pMDP models studied (e.g.,
in the PARAM benchmarks [23]) exhibit only a weak form of nondeterminism,
where the optimal policy does not depend on the parameters, i.e., the optimal
policy is the same for any values of the parameters. Examples of such are, e.g.,
the Bounded Retransmission Protocol (BRP) and Zeroconf. Consensus is the
exception, and we have solved some instances of Consensus as reported below. In
the examples used in [35], showing how to obtain policies that optimize learning
the parameter values, the optimal policy is again independent of the parameters.

Motivating Example – The (Repeated) Learner Model. Figure 1a shows
the learner model, mentioned in [2], with initial state s and target state t, ignoring
for the moment the grey (loop) transition labelled with action c.

After two steps we end up in state c, having visited state a with probability p
and state b with probability 1− p. Here is the only choice in the model: between
the actions a and b. Even though we assume p to be inaccessible, we can do
better than flipping a coin: If we are given a prior belief over the parameter (an
initial parameter distribution) we can use Bayesian inference to update this belief
4 All of our code and models, as well as detailed results of the experiments can be

found at http://github.com/sarming/pMDP-Toolbox.

http://github.com/sarming/pMDP-Toolbox
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Fig. 1. (Repeated) learner

with the information that either state a or b was visited. As a concrete example,
assume we start with the uniform distribution over the parameter values as prior
and state a was visited. Doing the calculation gives a posterior distribution with
higher probability that the parameter value is close to 1 than to 0, suggesting
that a is the better action to choose.

Let π be the policy that chooses action a in state c when state a was visited
and action b when state b was visited. Figure 1b shows π (labelled h = 3) and the
two memoryless policies (always a and always b). The policy π is clearly better
in expectation than the two memoryless ones.

Actually, π is the optimal policy (among the 4 possible deterministic poli-
cies) when assuming a uniform parameter distribution. For a concrete parameter
value x ∈ [0, 1], the probability to reach t under π in the evaluated MDP M(x)
is x2 + (1 − x)2. Putting things together, using Eq. (4), we get that for a uni-
form parameter distribution the expected return is (a discrete approximation of)
∫ 1

0
x2 + (1 − x)2 dx = 2/3.
We consider the uniform distributions over 2, 3, 5, 10, 20, 50, 100, 200, 500,

and 1000 evenly spaced points between 0 and 1. The expected return depends
on the distribution: for just 2 points (the distribution assigning 1/2 to 0 and
1/2 to 1) the optimal policy provides probability 1 for reaching t; while for 1000
points the expected return is 0.6670. IP can solve all mentioned instances and
generates π verifying that it is optimal.

The learner is inherently a finite-horizon model, as nothing happens after
three steps. When we add the grey transition, we obtain the repeated learner
model in which we can repeat the “experiment” getting closer and closer to the
“sea surface” [2] given by the memoryless policies. The larger the horizon, the
more experiments the ε-optimal policy runs. Only an odd number of experiments
gives an actual improvement because we need a majority: having two experiments
is as good as just having one. Therefore the value increases at h = 3(2n+1), see
Fig. 1b and Table 1b.

Figure 2 shows the results of the experimental evaluation of the repeated
learner with increasing horizon and up to 100 parameter points. IP provides
better policies than PBVI with respect to the same number of points in the
parameter space. However, it does not scale as well as PBVI and we had to drop
it for more complex models.
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Table 1. IP results for (repeated) learner

0 5 10 15 20 25 30 35

0

5

10

15

horizon

tim
e
(s
)

Runtime

IP 3 pts
IP 4 pts
IP 5 pts
IP 10 pts

PBVI 10 pts
PBVI 20 pts
PBVI 50 pts
PBVI 100 pts

0 5 10 15 20 25 30 35

0.7

0.75

0.8

horizon

va
lu
e

Reachability

Fig. 2. IP and PBVI results for repeated learner

Robot on a Grid. Our next case study is a variant of the ever popular Grid-
world [37]. The instance that we report on is a 3 × 3 grid with initial state at
position (1, 1), sink at position (2, 2), and target at position (3, 3). We want to
maximize the probability to reach the target from the initial position.

The robot has (up to) 4 actions available: up, down, left, right. The actions
are probabilistic in the sense that with some probability, instead of going forward
the robot may end up in the cell to the left or to the right. We compare two
variants: In both variants there is a parameter p that describes the total error
probability. In the 1-parameter variant, the probability to err left and right is
equal to p/2; In the 2-parameter variant we also include a left-right bias b,
resulting in probability p ∗ b to err left and p ∗ (1 − b) to err right. If it is not
possible to go left or right, then the other option gets probability p. For example,
the action up in cell (1, 1) leads correctly to cell (2, 1) with probability 1−p and
to cell (1, 2) on the right with probability p (as no cell is on the left), in both
models. The action up in cell (1, 2) has the possibility to err left and right, hence
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shows the difference between the two models. See [2] for a detailed description of
robot-on-a-grid models. In that terminology, we use the “fixed failure” variant.

Consensus. The consensus protocol model is the only PARAM benchmark
[23] that has true nondeterminism in the sense that its policy depends on the
parameter values. The protocol was introduced by Aspnes and Herlihy [3]. The
2-parameter model is exactly the same as the PARAM model, see [23] for all
details. The 1-parameter model depends on a parameter p and is obtained by
setting p1 = p and p2 = 1 − p, i.e., it is a bias parameter with average 1/2. We
used N = K = 2 and the target state is the state in which consensus is reached
with the preferred value.

Figures 3 and 4 show the experimental results of the robot on a grid, and
the consensus protocol benchmarks, respectively. We only ran PBVI as IP was
too slow and in both cases notice that the runtime grows exponentially with
the horizon. The grid pMDP model has 10 states and 2 parameters, hence the
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Fig. 3. PBVI results for robot on a grid
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induced POMDP for 10 parameter points has 1000 states. The consensus proto-
col model has 273 states and hence the induced POMDP for 5 parameter points
has 1365 states.

6 Conclusion

We have presented a way to compute parameter-independent strategies that
are expectation ε-optimal for pMDP by encoding the problem as to compute
ε-solutions in POMDPs. We have implemented this approach using Storm [20]
and AI-Toolbox [7] and we have evaluated on different case studies. Future work
will focus on improving the efficiency of the current algorithms (for better scal-
ability) by taking into account the particular POMDP structure resulting from
the encoding.
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Abstract. We study the problem of checking weighted CTL proper-
ties for weighted Kripke structures in presence of imprecise weights.
We consider two extensions of the notion of weighted Kripke struc-
tures, namely (i) parametric weighted Kripke structures, having tran-
sitions weights modelled as affine maps over a set of parameters and, (ii)
weight-uncertain Kripke structures, having transition labelled by real-
valued random variables as opposed to precise real valued weights.

We address this problem by using extended parametric dependency
graphs, a symbolic extension of dependency graphs by Liu and Smolka.
Experiments performed with a prototype tool implementation show that
our approach outperforms by orders of magnitude an adaptation of a
state-of-the-art tool for WKSs.

1 Introduction

The rapid diffusion of cyber-physical systems (CPSs) poses the challenge of
handling their growing complexity, while meeting requirements on correctness,
predictability, performance without compromising time- and cost-to-market. In
this respect, model-driven development is a promising approach that allows for
early design and verification and may be used as the basis for systematic testing
of a final product. The verification of cyber-physical systems should not only
address functional properties but also a number of non-functional properties
related to the quantitative aspects that are typical of such systems.

In the area of model checking, a number of modelling formalisms have
emerged, allowing for quantitative aspects to be expressed. Among these,
Weighted Kripke structures (WKSs) were proposed as a natural extension of
the usual notion of Kripke structures with a (real-valued) weighted transition
relation [8].

Interesting properties of WKSs may be expressed by means of quantitative
extensions of CTL. There are different ways of extending CTL with quantitative
information. Fahrenberg et al. [8] proposed to generalise the classical Boolean
interpretation of CTL to a map that assigns to states and temporal formulas a
real-valued distance describing the degree of satisfaction. This paper considers
weighted CTL (WCTL), an extension of CTL with weight-constrained modali-
ties, because it is an expressive logic with efficient tool support for WKSs [9].
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Fig. 1. (Left) A lawn mower example from [9]; (Right) the lawn mower model with
weights parametric in p, q and, r.

Consider the WKS in Fig. 1(left) representing a grass field with different
routes a lawn mower can take from the starting state s0 to s6 where the grass
can be dumped. The weights on the transitions represent the amount of grass
that is accumulated in the container when selecting a particular route. Assume
that the lawn mower breaks when it is forced to store more than 6.5 units of grass,
then the property “the grass is always dumped before the lawn mower breaks,
irrelevant of the selected route” is expressed in WCTL as ∀(mow U≤6.5 dump).

The above example models the accumulated grass by means of precise weight
values. This is an unrealistic simplification, since the amount of mowed grass may
vary depending on different factors (e.g., distribution of the grass in the field,
meteorologic conditions, etc.) that cannot be modelled with precise values. The
same argument applies to CPSs, that typically rely on sensor measurements
which are inherently imprecise.

Typically, there are two ways for dealing with uncertain sensor measurements:
(i) determine the precision of the instrument and associate an error ε with each
measurement, or (ii) perform estimation statistics (e.g., by recursive Bayesian
estimation [14]) and associate a probability distribution with each measurement.

In this paper we aim at providing adequate formal basis and tool-support for
the verification of WKSs in presence of imprecise weights. We consider two exten-
sions of the notion of WKS: (i) parametric weighted Kripke structures (pWKSs),
having weights depending on a set of parameters (cf. Fig. 1(right)) and, (ii)
weight-uncertain Kripke structures (WUKSs), having as weights real-valued ran-
dom variables as opposed to precise real values. On the one hand, verification
of pWKSs is done by inferring constraints over its parameters characterising the
valuations that ensure correctness then, verify the robustness of the model within
the given precision. On the other hand, verifying WUKSs consists of measuring
the degree of satisfaction of the model w.r.t. the given specification.

Our contribution is twofold. First, we extend and improve the model checking
algorithm of [5] for pWKSs. In contrast with [5], our method supports negation
and implements an efficient termination condition. In line with [5,6,9], our algo-
rithm uses an extension of dependency graphs by Liu and Smolka [11] to model-
check pWKSs. Specifically, we integrate cover-edges from [9] and negation-edges
from [6] and, lift the computation of fixed points from the boolean domain to
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that of non-negative real-valued maps to cope with parametric weights and the
non-monotonic reasoning necessary to deal with negation.

As for our second contribution, we introduce the notion of weight-uncertain
Kripke structures and address two natural problems related to their analysis:
(i) checking whether the expected behaviour of the model satisfies a given spec-
ification and, (ii) measuring the probability that a concrete realisation of the
model satisfies a given WCTL formula.

The proposed model checking framework has been implemented on a proto-
type tool. Experiments show that our approach considerably improves w.r.t. the
PVTool from [5] and outperforms an adaptation of the WKTool from [9].

We refer to the full version of this paper [2] for the omitted proofs.

Related Work. Our paper fits within the area of weighted automata [7] where
weights come as elements of a semi-ring. By combining the tropical and the
probability semi-rings, one obtains probabilistic weighted automata (PWA) [1,4].
There, transitions are labelled with a cost and a probability and the weight that
the PWA assigns to a word is the expected accumulated costs of the runs pro-
ducing the word. A similar approach is seen with Markov reward models whose
analysis consider the computation of the expected reward for reachability prop-
erties or their verification against probabilistic reward CTL [3]. In contrast to
PWAs and Markov reward models, where transitions are executed probabilisti-
cally and the weights are fixed, WUKSs choose transitions non-deterministically
and generate weights according to the given probability distributions.

Fahrenberg et al. [8] consider the verification of WKSs with respect to two
interpretations of WCTL where the satisfaction of a formula by a model is no
longer interpreted in the Boolean domain, but rather assigns to a state a truth
value in the domain of extended non-negative reals where a smaller value means
a better match of the specified weights in the formula. Differently from [8], we
keep the classical boolean interpretation of WCTL and measure how likely is the
model to be correct. In this respect, our approach resembles that of probabilistic
LTL model checking for Markov chains [3,15].

2 Weighted Kripke Structures and Weighted CTL

In this section we present weighted Kripke structures (WKSs) as an expressive
modelling formalism for quantitative systems, and weighted CTL (WCTL), an
extension of computation tree logic (CTL) with weight-constrained modalities,
interpreted with respect to WKSs.

We denote by R, Q, and N respectively the sets of real numbers, rational
numbers, and natural numbers. We write R≥0 (resp. Q≥0) to denote the set of
non-negative real (resp. rational) numbers.

Definition 1 (WKS). A weighted Kripke structure is a tuple K = (S,R, �),
where S is a finite nonempty set of states, R ⊆ S ×R≥0 × S is a finite weighted
transition relation and � : S → 2AP is a function labelling the states with subsets
of AP, where AP is a fixed set of atomic propositions.
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Let K = (S,R, �) be a WKS. We write s
w−→ s′ to indicate that (s, w, s′) ∈ R

and, we denote with ω(K) ∈ R
m
≥0 the vector of weighs of K, where m = |R|.

A run in K from s0 ∈ S is a (finite or infinite) sequence π = (wi, si)i∈I , such
that w0 = 0 and I is an interval of N containing 0 where, for all i ∈ I \ {0},
si−1

wi−→ si. The accumulated weight of a run π = (wi, si)i∈I at position j ∈ I is
defined as W(π, j) =

∑j
i=0 wi.

We write |π| for the length of π (the cardinal of I); and, for i ∈ I, we write
π[i] for the i-th state in π, i.e., π[i] = si. A run is maximal if it has infinite
length (|π| = ω) or its last state has no outgoing transitions. Run(K, s0) denotes
the set of all maximal runs from s0 in K.

We can now define WCTL with upper-bounds on weights. WCTL allows
for state formulas describing properties about states in the system and path
formulas describing properties about runs in a WKS. State formulas Φ,Ψ and
path formluae ϕ are constructed over the following abstract syntax

Φ,Ψ ::= tt | a | ¬Φ | Φ ∧ Ψ | ∃ϕ | ∀ϕ . ϕ ::= X≤qΦ | Φ U≤q Ψ

where a ∈ AP and q ∈ Q≥0.
Given a WKS K = (S,R, �), a state s ∈ S, and a run π ∈ Run(K, s), we

denote by K, s |= Φ (resp. K, π |= ϕ) the fact that the state s satisfies the
state formula Φ (resp. the path π satisfies the path formula ϕ). Formally, the
satisfiability relation |= is inductively defined as:

K, s |= tt always holds
K, s |= a if p ∈ �(s)
K, s |= ¬Φ if K, s �|= Φ
K, s |= Φ ∧ Ψ if K, s |= Φ and K, s |= Ψ
K, s |= ∃ϕ if there exists π ∈ Run(K, s) such that K, π |= ϕ

K, s |= ∀ϕ if for all π ∈ Run(K, s) it holds that K, π |= ϕ

K, π |= X≤qΦ if |π| > 0, W(π, 1) ≤ q, and K, π[1] |= Φ
K, π |= Φ U≤q Ψ if there exists j ≤ |π| such that K, π[j] |= Ψ,

W(π, j) ≤ q, and K, π[j′] |= Φ for all j′ < j

As usual, we can derive the logical operators ff , ∨ and → as follows: ff
def
= ¬tt,

Φ ∨ Ψ
def
= ¬(¬Φ ∧ ¬Ψ) and, Φ → Ψ

def
= ¬Φ ∨ Ψ.

Example 2. Consider the WKS K in Fig. 1(left) described before. The WCTL
state formulas Φ = ∀(mow U≤6 dump) and Φ′ = ∃(mow U≤4 dump) express
respectively the properties “the grass is always dumped before the lawn accu-
mulates more that 6 grass units, irrelevant of the selected route” and “there
exists a mowing route that accumulates at most 4 grass units before dumping”.
Clearly K, s0 |= Φ holds true because all paths from s0 to s6 accumulate at most
6 grass units, whereas K, s0 |= Φ′ doesn’t hold true, because each path from s0

to s6 accumulates at least 5 grass units. ��
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3 Parametric Weighted Kripke Structures

In this section we present parametric weighted Kripke structures and demon-
strate how they can be employed for verifying the robustness of WKSs in pres-
ence of imprecise weights.

Parametric weighted Kripke structures (pWKSs) model families of WKSs
that rely on the same graph structure, but differ in the concrete transition
weights, which are specified as expressions built over a set of parameters.

Let x = (x1, . . . , xk) be a vector of real-valued parameters. We denote by
E the set of affine maps f : Rk → R of the form f(x) = a · x + b, with a =
(a1, . . . , ak) ∈ Q

k
≥0 and b ∈ Q≥0, i.e., f(x1, . . . , xk) = (

∑k
i=1 aixi) + b. Hereafter

we may denote the map f by means of the augmented vector1 (a, b) ∈ N
k+1.

Accordingly, for f, g ∈ E the map addition (f + g)(x) = f(x) + g(x) is encoded
as the vector addition.

Definition 3. A parametric weighted Kripke structure is a tuple P = (S,R, �),
where S is a finite nonempty set of states, R ⊆ S × E × S is a finite parametric
weighted transition relation and � : S → 2AP is a labelling function.

Intuitively, a pWKS P = (S,R, �) defines a family of WKSs arising by plugging
in concrete values for the parameters. A parameter valuation v ∈ R

k is said to be
admissible for P if for each transition (s, f, s′) ∈ R we have f(v) ≥ 0. Let VP , or
just V when P is clear from the context, denote the set of admissible valuations
for P. Given v ∈ V, we denote P(v) the WKS associated with v. In this respect,
it will be convenient to think at P as a partial function P : Rk ⇀ WKS with
domain VP . The semantics of K, written [P], is defined as the image of P, i.e.,
[P] = {P(v) | v ∈ V}.

A task typically addressed in the analysis of parametric Kripke structures is
that of finding symbolic representations of the set of parameter valuations for
which a given WCTL formula holds [5].

Formally, given a pWKS P = (S,R, �), a state s ∈ S and a state formula Φ,
the set of admissible valuations for which Φ holds at s is

�P, s |= Φ�
def
=

{
v ∈ V | P(v), s |= Φ

}
. (1)

Example 4. Consider the pWKS P depicted in Fig. 1(right) representing a fam-
ily of lawn mower models parametric in p, q and, r. Its parameters represent
the amount of grass measured in different parts of the field. The admissible
valuations for P, i.e., VP , are represented by the constraint

α(p, q, r) = p ≥ 0 ∧ q ≥ 0 ∧ r ≥ 0 . (2)

Let Φ = ∀(mow U≤6.5dump) be our specification. The set of valuations satisfying
Φ, i.e., �P, s |= Φ�, is represented by the following constraint

β(p, q, r) = α(p, q, r) ∧ p + 4q ≤ 6.5 ∧ 2p + 2q + r ≤ 6.5. (3)
1 Our is a special case of the so called affine transformation matrix (or projective

transformation matrix) representation for generic affine tranformations.
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Assume that we have measured p ∼= 2 ± ε, q ∼= 1 ± ε and, r ∼= 0 ± ε where
ε > 0 is the measurement error. One can determine if P is robust w.r.t. Φ by
checking that all possible measurement values lay in �P, s |= Φ�, formally

VP ∩ {(p, q, r) | |p − 2| ≤ ε, |q − 1| ≤ ε, |r| ≤ ε} ⊆ �P, s |= Φ�.

The above can be expressed as first-order formula in theory of linear real arith-
metic

∀p ∈ [0, 2 + ε].∀q ∈ [0, 1 + ε].∀r ∈ [0, ε]. β(p, q, r). (4)

By performing quantifier elimination (e.g., using mjollnir [12]) we reduce (4)
to ε ≤ 0.1, indicating that robustness for P is ensured iff ε does not exceed 0.1.

In Example 4 we showed how to exploit pWKSs to verify a simple WKSs
against a given specification up-to some error.

Clearly, with an increasing complexity of the model (or the formula) it
becomes necessary to have an automatic procedure to resolve (1). The follow-
ing two sections are devoted to present a generalization of the model checking
algorithm presented in [5] that can also accept WCTL formulas with negation.

4 Extended Parametric Dependency Graphs

Dependency graphs as originally introduced by Liu and Smolka [11] can be
applied to model-checking of the alternation-free modal μ-calculus, including
its sub-logics like CTL. Jensen et al. [9] proposed to extend the dependency
graphs framework using cover-edges and weighted hyper-edges for the verification
of WKSs against negation-free WCTL formulas. Later, Christoffersen et al. [5]
further generalised their approach to pWKSs by using parametric hyper-edges
and cover-edges.

In this section we present an extension of the parametric dependency graph
framework by incorporating a new type of edges, called negation-edges. Negation-
edges were originally used in [6] for extending the applicability of dependency
graphs w.r.t. CTL model checking of Petri Nets.

Definition 5. An Extended Parametric Dependency Graph (EPDG) is a tuple
G = (V,H,N,C) where V is a nonempty set of configurations and

– H ⊆ V × 2E×V is a set of hyper-edges,
– N ⊆ V × V is a set of negation-edges, and
– C ⊆ V × Q≥0 × V is a set of cover-edges.

For v, u ∈ V , we write v
f−→ u if (v, T ) ∈ H and (f, u) ∈ T ; v ⇒ u if (v, u) ∈ N ;

v
q��� u if (v, q, u) ∈ C and v and u are said resp. the source and the target

configurations of the edge. We write v � u if v and u are respectively the
source and target configurations of some edge in G and, �∗ for the reflexive and
transitive closure of �.

We identify a class of EPDGs having some convenient structural properties.
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Definition 6. Let G = (V,H,N,C) be an EPDG. G is safe if

(i) its components are finite and for all (v, T ) ∈ H, T is finite.
(ii) for all v ∈ V |{(v, u) ∈ N} ∪ {(v, q, u) ∈ C}| ≤ 1 and if |{(v, u) ∈ N} ∪

{(v, q, u) ∈ C}| = 1 then {(v, T ) ∈ H} = ∅.
(iii) there are no u, v ∈ V such that v

q��� u and u �∗ v, or v ⇒ u and u �∗ v.

Intuitively, to be safe an EPDG G needs to have (i) finitely many configurations
and edges, and each hyper-edge needs to be finitely branching; (ii) each of its
configurations admits at most one type of outgoing edges and no cover edges
or negation edges share the same source configuration; (iii) finally, no loop in G
shall have any cover- or negation-edges.

In the rest of the section we fix G = (V,H,N,C) to be a safe EPDG.
We assign to each configuration v ∈ V a distance d(v) ∈ N counting the

maximum number of negation- and cover-edges in the paths starting from v

d(v)
def
= max

{
0, sup

{
d(v′′) + 1 | v′ ⇒ v′′ or v′ q��� v′′ for v′, v′′ ∈ V s.t.v �∗ v′ }}

.

Notice that the distance is bounded because G is assumed to be safe.
We define d(G) = maxv∈V d(v). The distance value is used to identify some

components C0, . . . , Cd(G), where Ci = (Vi,Hi, Ni, Ci) is the sub-EPDG of G
induced by the configurations Vi = {v ∈ V | d(v) ≤ i}. Note that by construction
N0 = C0 = ∅.

A valuation v ∈ R
k is said admissible for G if whenever v

f−→ u we have
f(v) ≥ 0. We denote by VG the set of admissible valuations for G.

Definition 7. An assignment A of G is a function A : V → (VG → R≥0) where
R≥0 = R≥0 ∪ {∞}. The set of all assignments of G is denoted AG.

We equip AG with the partial order � ⊆ AG × AG defined as

A1 � A2 iff ∀v ∈ V. ∀v ∈ VG . A1(v)(v) ≥ A2(v)(v) .

(AG ,�) forms a complete lattice, with bottom element A⊥ and top element A	
respectively defined as A⊥(v)(v) = ∞ and A	(v)(v) = 0 for all v ∈ V and
v ∈ VG . Given E ⊆ AG such that E �= ∅ the greatest lower bound

�
E and least

upper bound
⊔

E are defined, for arbitrary v ∈ V and v ∈ VG , as2

(
�

E)(v)(v) = supA∈E A(v)(v) , (
⊔

E)(v)(v) = infA∈E A(v)(v).

We are now ready to define the least fixed-point assignment of an EPDG G.

Definition 8. The least fixed-point assignment for G, denoted AG
min, is defined

inductively on its components C0, . . . , Cd(G). For 0 ≤ i ≤ d(G), ACi
min is the least

fixed-point of the function Fi : ACi → ACi , defined as

Fi(A)(v)(v) =

⎧
⎪⎪⎨

⎪⎪⎩

χ(ACi−1
min (u)(v) > 0) if v ⇒ u

χ(ACi−1
min (u)(v) ≤ q) if v

q��� u

min
(v,T )∈Hi

max
(f,u)∈T

A(u)(v) + f(v) otherwise

2 As usual,
� ∅ = A� and

⊔ ∅ = A�.
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where χ(p) = 0 if the predicate p holds, ∞ otherwise. We assume that max ∅ = 0
and min ∅ = ∞.

Lemma 9. Let i ∈ {0, . . . , d(G)} and {Aj}j∈N ⊆ ACi be an ascending chain.
Then, Fi(

⊔
j∈N

Aj) =
⊔

j∈N
Fi(Aj), i.e., Fi is ω-continuous.

Corollary 10. Fi is monotonic for all i ∈ {0, . . . , d(G)}.
By Knaster-Tarski’s fixed-point theorem, ACi

min exists for all i ≤ d(G), moreover,
by Kleene’s fixed-point theorem, it is the limit of the ascending chain A⊥ �
Fi(A⊥) � Fi(Fi(A⊥)) � · · · � Fn

i (A⊥) � · · · , i.e.,
⊔

n∈N
Fn

i (A⊥).
The following result states that the limit of the above chain is reached within

|Vi| steps. This result is essential for our algorithm.

Lemma 11. Let i ∈ {0, . . . , d(G)} and k = |Vi|. Then, F k
i (ACi

⊥ ) = ACi
min.

By Lemma 11, we can compute AG
min symbolically by repeated application of

F until we are sure that the fixed-point has been reached. It is worth noting that
our termination condition only depends on the number of configurations of the
EPDG. Therefore, in contrast with [5], we don’t need to perform any symbolic
comparison of the assignments to check whether a fixed-point has been reached.
Not only does it simplifies the algorithm, but it also reduces the overhead caused
by symbolic comparison.

Lemma 12. For any safe EPDG G = (V,H,N,C) and component Ci of G,
the symbolic computation of the least fixed-point assignment, ACi

min, by repeated
application of the function Fi on ACi

⊥ runs in time O(|Vi| · (|Hi| + |Ni| + |Ci|)
)
.

5 Model Checking Parametric WKSS Using EPDGs

In this section we present a reduction from the model checking problem of WCTL
on pWKSs to the computation of least fixed-point assignments for EPDGs. Then,
we show how to obtain from those assignments a symbolic representation of (1)
as a (quantifier-free) first-order formula in the linear theory of the reals.

Given a pWKS P = (S,R, �), a state s ∈ S and a WCTL formula Φ, we
construct an EPDG G where every configuration is a pair consisting of a state
and a formula. Starting from the initial pair 〈s,Φ〉, G is constructed according
to the rules given in Fig. 2.

It is worth noting that the size of G does not depend on the actual weight
values of Φ or P but only on the size of P and the number of sub-formulas of Φ.

The following result ensures that the EPDG framework described in Sect. 4
can be applied to the EPDGs constructed according to the rules in Fig. 2.

Lemma 13. The EPDG G rooted at 〈s,Φ〉 is safe.

In G we distinguish two types of configurations: concrete configurations have
concrete WCTL formulas, while symbolic configurations have symbolic formulas
of the form QX≤? Φ or QΦ U≤? Ψ where Q ∈ {∃,∀} and Φ,Ψ are concrete
WCTL formulas. Given a symbolic formula Φ and q ∈ Q≥0, we denote by Φq

the corresponding concrete formula with bound q.
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〈s, tt〉

∅
(a) True

〈s, p〉

∅
if p ∈ �(s)

(b) Proposition

〈s, ¬Φ〉

〈s, Φ〉
(c) Negation

〈s, Φ ∧ Ψ〉

〈s, Φ〉 〈s, Ψ〉
(d) Conjunction

〈s, Φ ∨ Ψ〉

〈s, Φ〉 〈s, Ψ〉
(e) Disjunction

〈s, QX≤q Φ〉

〈s, QX≤? Φ〉

q

(f) Bounded next

〈s, QΦ U≤qΨ〉

〈s, QΦ U≤?Ψ〉

q

(g) Bounded until

〈s, ∃X≤? Φ〉

〈s1, Φ〉 〈sn, Φ〉

f1 fn

for (s, fi, si) ∈ R

(h) Existential next

〈s, ∀X≤? Φ〉

〈s1, Φ〉 〈sn, Φ〉

f1 fn

for (s, fi, si) ∈ R

(i) Universal next

〈s, ∃Φ U≤? Ψ〉

〈s, Ψ〉

〈s, Φ〉

〈s1, ∃Φ U≤? Ψ〉

〈sn, ∃Φ U≤? Ψ〉

f1

fn

fo
r

(s
,f

i
,s

i
)

∈
R

(j) Existential until

〈s, ∀Φ U≤? Ψ〉

〈s, Ψ〉

〈s, Φ〉

〈s1, ∀Φ U≤? Ψ〉

〈sn, ∀Φ U≤? Ψ〉

f1

fn fo
r

(s
,f

i
,s

i
)

∈
R

(k) Universal until

Fig. 2. EPDG construction rules. Here Q ∈ {∃, ∀} and hyper-edges without labels shall
be assumed to be labelled with the constant weight map 0.

Lemma 14. Let v = 〈s,Φ〉 be a concrete configuration of G and v ∈ VG an
admissible valuation. Then, AG

min(v)(v) ∈ {0,∞}.
The next theorem states that the set of correct valuations �P, s |= Φ� corresponds
to the set {v ∈ VG | AG

min(〈s,Φ〉)(v) ≤ 0}. This reduces the model checking
problem to the computation of least fixed-point assignments for EPDGs.

Theorem 15. Let v = 〈s,Φ〉 be a configuration of G and v ∈ VG an admissible
valuation. Then, the following hold

(1) if v is concrete, then AG
min(v)(v) = 0 iff P(v), s |= Φ and,

(2) if v is symbolic, then for all q ∈ Q, AG
min(v)(v) ≤ q iff P(v), s |= Φq.

We showed that AG
min(〈s,Φ〉) can be computed symbolically as a partially

evaluated expression. During the computation one can perform some simplifica-
tions (e.g., min ∅ = ∞ or max ∅ = 0), nevertheless, the parts of the expression
that depend on the actual value of the parameters are left unevaluated.
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C1

<s0, A(mow)U[6.5](dump)>

C0

<s3, A(mow)U(dump)>

<s3, mow>

<s2, mow>

<s1, A(mow)U(dump)>

<s0, dump>

<s1, dump>

<s0, A(mow)U(dump)>

<s1, mow>

<s5, dump>

<s4, A(mow)U(dump)>

<s2, dump>

<s4, dump>

<s4, mow>

<s0, mow>

<s5, A(mow)U(dump)>

<s5, mow>

<s6, dump>

<s6, A(mow)U(dump)>

<s3, dump>

<s2, A(mow)U(dump)>

6.5

0

0

q

0

0

q

0

0
pp

p

0

0

r

2q

0

0 p

0

0

0
2q

Fig. 3. EPDG rooted at 〈s0, ∀(mow U≤6.5 dump)〉 (cf. Example 16).

By Theorem 15 we are interested in a symbolic representation of the valua-
tions v such that AG

min(〈s,Φ〉)(v) ≤ 0. As anticipated in Example 4, this can be
done by means of a (quantifier-free) first-order formula in the linear theory of
the reals. In practice, such a formula is obtained as Γ

(
AG

min(〈s,Φ〉) ≤ 0
)

where
Γ is defined by cases as follows3, for �� ∈ {≤, >}, m ∈ {min,max} and, q ∈ Q≥0

Γ(max{e1, . . . , en} �� q) = Γ(e1 �� q) ∧ · · · ∧ Γ(e1 �� q)
Γ(min{e1, . . . , en} �� q) = Γ(e1 �� q) ∨ · · · ∨ Γ(e1 �� q)

Γ(χ(b) ≤ q) = Γ(b) Γ(χ(b) > q) = ¬Γ(b)
Γ(e + m{e1, . . . , en} �� q) = Γ(m{e + e1, . . . , e + en} �� q)

Γ(e �� q) = e �� q. (if e has no occurrence of min,max or χ)

Example 16. Consider the pWKS P and the formula Φ = ∀(mow U≤6.5 dump)
from Example 4. In Fig. 3 is depicted the EPDG G rooted at 〈s0,Φ〉. By running
our symbolic algorithm we obtain the following expression

AG
min(〈s0, Φ〉) = χ(max{p+ q +max{p+ r, 2q}, p+2q +max{p+ r, 2q}, 2p+ q} ≤ 6.5) .

The above expression can be then turned into the following formula

2p + q + r ≤ 6.5 ∧ p + 3q ≤ 6.5 ∧ 2p + 2q + r ≤ 6.5 ∧ p + 4q ≤ 6.5 ∧ 2p + q ≤ 6.5,

that, in conjunction with p ≥ 0 ∧ q ≥ 0 ∧ r ≥ 0 (cf. (2)) simplifies to (3). ��
3 To simplify the exposition, here unevaluated expressions are assumed to be modulo

commutativity and associativity of +.
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6 Weight-Uncertain Kripke Structures

In Sect. 3 we have seen how to use pWKSs for modelling and verifying the
robustness of WKSs when the imprecision of the weights is quantified by means
of an absolute accuracy error ε. However, for an experimental weight value w,
not all values in the interval w ± ε are equally likely to occur in practice.

It’s common practice to model experimental measurements by means of real-
valued random variables distributed according to well studied family of distri-
bution (e.g., normal or student’s T). In this section we introduce the notion
of weight-uncertain Kripke structures (WUKSs), where weights are modelled as
random variables and present a WCTL model checking framework for them.

Before we start let us recall some notions from measure theory.

Measure Theory. Let Ω be a set. A family Σ ⊆ 2Ω is called σ-algebra if it contains
the empty set ∅ and is closed under complement and countable unions, in this
case (Ω,Σ) is said measurable space and elements of Σ measurable sets. If Ω is
given a topology then B(Ω) denotes the Borel σ-algebra of Ω, i.e., the smallest
σ-algebra having all open subsets of Ω. We say that Ω is a Borel space to indicate
the measurable space (Ω,B(Ω)), and elements of B(Ω) are called Borel sets. As an
example, R is assumed to have the usual Euclidean topology and B(R) denotes
the induced Borel σ-algebra which makes R a Borel space.

A measure on (Ω,Σ) is a σ-additive function μ : Σ → R, i.e, a map satisfying
μ(

⋃
i∈I Ei) =

∑
i∈I μ(Ei) for any countable family of pairwise disjoint measur-

able sets (Ei)i∈I , in this case (Ω,Σ, μ) is said measure space. If μ additionally
satisfies μ(Ω) = 1, it is called probability measure and (Ω,Σ, μ) probability space.

For (Ω,Σ) and (Y,Θ) measurable spaces, the map f : Ω → Y is measurable
if for all E ∈ Θ, f−1(E) = {x | f(x) ∈ E} ∈ Σ. Given a measurable map
f : Ω → Y and a measure μ on (Ω,Σ) we define the measure μ[f ] on (Y,Θ) as
μ[f ](E) = μ(f−1(E)), for E ∈ Θ, a.k.a. the push forward of μ under f .

A real-valued random variable X : Ω → R is a measurable function from a
probability space (Ω,Σ, P ) to the Borel space R. Intuitively, X can be understood
as the outcome value of an experiment (e.g., measuring some sensor value). Given
a “test” A ∈ B(R), we write P [X ∈ A] for the probability that X has value in A,
i.e., P [X ∈ A] = P [X](A). A random variable X is associated with its cumulative
distribution function (CDF) FX : R → [0, 1] defined as FX(x) = P [X ∈ (∞, x]];
and a probability density function (PDF) fX , a non-negative Lebesgue-integrable
function satisfying P [X ∈ [a, b]] =

∫ b

a
fX(x)dx. The expected value of X, written

E[X] is intuitively understood as the long-run average value of repetitions of the
experiment X, formalised by the Lebesgue integral

∫
Ω

X dP (corresponding to∫
R

fX(x)dx when X admits density function fX).
In the rest of the section we fix the probability space (Ω,Σ, P ) representing

the environment where the experiments are performed, and we use Y to denote
the set of real-valued random variables of the form Y : Ω → R.

We are now ready to define the concept of weight-uncertain Kripke structure.
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Definition 17. A weight-uncertain Kripke structure is a tuple J = (S,R, �),
where S is a finite nonempty set of states, R ⊆ S × Y × S is a finite random
weighted transition relation and � : S → 2AP is a labelling function.

Consider the WUKS J = (S,R, �). We denote by WKSJ the set of all WKSs
having the same underlying graph as J . We construct the σ-algebra ΣJ as the
family of sets A ⊆ WKSJ whose corresponding set of weights is Borel measurable
in R

m (m = |R|). Formally,

A ∈ ΣJ iff A ⊆ WKSJ and {ω(K) | K ∈ A} ∈ B(Rm).

J can be seen as a measurable function J : Ω → WKSJ , where J (ω) is
the WKS associated with ω ∈ Ω, justifying the intuition the it represents an
experiment whose outcomes are WKSs. Accordingly, the semantics of J is the
probability space (WKSJ ,ΣJ , P [J ]).

Given a WUKS J , a state s ∈ S, and a WCLT property Φ, two natural
model checking questions are (i) whether the expected behaviour of J satisfies
Φ at s, informally “E[J ], s |= Φ”, (ii) and how likely is that a concrete instance
of J satisfies Φ at s, denoted by P [J , s |= Φ].

We address the above problems for a subclass of WUKSs having random
variables (Y : Ω → R) ∈ EX of the form Y (ω) = a · X(ω) + b, with a ∈ Q

k
≥0,

b ∈ Q≥0 and, where X = (X1, . . . , Xk) is vector of pairwise independent non-
negative real-valued random variables4. Observe that, elements in EX may not
be independent from each other.

From here on we consider the WUKS J = (S, E , R, �) with R ⊆ S × EX × S,
and we use P to refer to the pWKS obtained by replacing the random variables
Xi in J with the parameters xi (for i = 1..k).

Let’s consider the first question, namely “E[J ], s |= Φ”. There, E[J ] was
informally denoting the WKS obtained by replacing each transition weight in J
with the corresponding expected value. Formally, E[J ] is defined as the unique
K ∈ WKSJ such that ωi(K) =

∫
WKSJ

ωi dP [J ] for all i ∈ {1, . . . , m} where
ωi : WKSJ → R≥0 is the function that returns the i-th weight from a given
WKS.

The assumption made on the weights in J allows us to rephrase E[J ], s |= Φ
as a model checking problem for P.

Lemma 18. E[J ], s |= Φ if and only if E[X] ∈ �P, s |= Φ�.

We are now ready to address the second question, that is formalised as follows

P [J , s |= Φ]
def
= P [J ]({K ∈ WKSJ | K, s |= Φ}) . (5)

For the above definition to be well-defined the set {K ∈ WKSJ | K, s |= Φ}
needs to be a measurable event in ΣJ . The following result ensures that.

Lemma 19. {K ∈ WKSJ | K, s |= Φ} ∈ ΣJ
4 In fact, the vector X is a multivariate random variable X : Ω → R

n with marginals
Xi : Ω → R≥0 (i = 1..n).
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The following theorem characterizes the model checking problem for the
WUKS J in terms of the model checking problem of its associated pWKS P.

Theorem 20. P [J , s |= Φ] = P [X ∈ �P, s |= Φ�].

Remark 21. For the sake of clarity, so far we have assumed that X is non-negative
real-valued random vector. However, provided that P [X ∈ VP ] > 0, the non-
negativity assumption can be dropped by replacing the probability distribution
P [X] with the conditional probability P [X|X ∈ VP ].

By Theorem 20 we can estimate the value p of (5) by applying Monte Carlo
simulation techniques. For this, we sample n independent repetitions of X, asso-
ciating with each repetition a Bernoulli random variable Bi. A realisation bi

of Bi is 1 if the corresponding sampled value of X lays in �P, s |= Φ�, and 0
otherwise. Finally, we estimate p by means of the observed relative success rate
p̃ = (

∑n
i=1 bi)/n. The absolute error ε of the estimation can be bound with a

certain degree of confidence δ ∈ (0, 1] by tuning the number of required simula-
tions based on the inequality P (|p̃ − p| ≥ ε) ≤ δ where δ = e−2nε2

(cf. [10,13]).
Therefore the required number n of samples is obtained as

n =
⌈

− ln(δ)
2ε2

⌉

. (6)

Example 22. Consider the WUKS J depicted in Fig. 1(right), where p, q and,
r shall now be interpreted as real-valued random variables distributed as p ∼
N (2, ε), q ∼ unif(1 − ε, 1 + ε), and r ∼ N (0, ε) for ε = 0.1. We can estimate
P [J , s0 |= Φ] = 0.959 with an error ε = 0.003 and confidence of 99, 9% (i.e.,
δ = 0.001) by generating n = 383765 samples.

7 Experimental Results

To evaluate the performance of the algorithms discussed in this paper, we devel-
oped a prototype tool suite for WCTL model checking of WKSs under uncertain
weights. The tool suite consists of two parts: a back-end, called PVTool25 and
a front-end, called UVTool6. UVTool supports the verification of pWKSs
and WUKSs as described in Sects. 5 and 6 making use of the PVTool2 which
implements the EPDG construction and the symbolic fixed-point computation.

We have evaluated the PVTool2 and the UVTool separately.

Evaluation of the PVTool2. We compared the performance of the PVTool2
with the PVTool from [5]. For a fair comparison we used as benchmarks
the vacuum cleaner models from [5] checking them against the WCTL formula
∃(∀dirty U≤10clean)U≤1000 done. The table depicted in Fig. 4a reports the results
obtained by increasing the number of rooms in the vacuum cleaning model.
5 The PVTool2 is available at https://github.com/AcId9381/PVTool.
6 The UVTool is implemented using Mathematica [16] and is available at http://

people.cs.aau.dk/∼giovbacci/tools.html.

https://github.com/AcId9381/PVTool
http://people.cs.aau.dk/~giovbacci/tools.html
http://people.cs.aau.dk/~giovbacci/tools.html
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The first and the second columns respectively present the number of states of
the model and the number of configurations of the resulting EPDG, while the
last two columns present respectively the computation time and the memory
consumption of the two tools. The results of the experiments show that the
PVTool2 performs worse than the PVTool on small models but it scales
way better than the PVTool both in terms of computation time and memory
consumption. This may be due to the fact that our algorithm does not perform
any comparison of the symbolic assignments during the fixed-point computation.
The improvement is measured when the overhead of the symbolic comparison
exceeds the cost of the additional iterations required by the PVTool2.

Figure 4b shows how the computation time and memory consumption of the
PVTool2 grows linearly in the number of configurations of the EPGD.

Model EPGD Time (s) Memory (KB)
# states # conf. v1 v2 v1 v2

7 41 0.0015 0.073 1,004 43,616
13 77 0.017 0.083 1,504 48,686
19 113 0.190 0.095 3,808 54,274
25 149 0.250 0.096 14,264 60,780
31 185 35 0.119 60,548 67,806
34 203 781 0.112 263,832 71,667
40 239 N/A 0.142 N/A 79,530
46 275 N/A 0.155 N/A 88,252
52 311 N/A 0.168 N/A 97,889
58 347 N/A 0.202 N/A 107,574
64 383 N/A 0.227 N/A 118,044

(a) Comparison with the PVtool from [5] (b) Performance of the PVTool2

Fig. 4. Experiments on an Intel i7 (5th gen.) 2.6 GHz processor with 12 GB RAM

Evaluation of the UVTool. For the verification of WUKS, our algorithm first
samples valuations from X, then estimates the relative number of valuation-
samples that are correct in the sense of (1). Alternatively, one could first sample
WKSs from the given WUKS and then estimate the relative number of mod-
els that satisfy the specification. In the second approach one could employ the
WKTool7 and exploit the efficient local algorithm from [9].

We compared the two approaches on the WUKS of Example 22 and per-
formed the evaluation with increasing precision and accuracy of the estimation.
The results are presented in Table 1. The first three columns report the error, the
confidence and the number of generated samples (cf. Eq. (6)), and the last two
columns present the computation time respectively for the UVTool and the
adaptation of the WKTool. It is worth mentioning that the values reported
in the last column do not consider the time required to sample and generate
the models, but only the total time used for the model checking. The results
clearly show that our approach outperforms the second one by several orders of
magnitude, showing that computing the symbolic representation of the correct
valuations in advance gives a huge speed-up in the overall computation time.
7 The WKTool is available at https://github.com/jonasfj/WKTool.

https://github.com/jonasfj/WKTool
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Table 1. Experiments on an Intel Core i5 3.1 GHz with 8 GB RAM.

Error ε Confidence δ # samples UVTool (s) WKTool (s)

0.02 0.01 5,757 0.137 181.009

0.01 0.01 23,026 0.533 724.206

0.01 0.001 34,539 0.828 1086.88

0.005 0.001 138,156 3.231 4,347.96

0.003 0.001 383,756 8.876 5,886.670

8 Conclusion and Future Work

We addressed the model checking problem of weighted Kripke structures under
uncertainty. We proposed to employ parametric weighted Kripke structures and
weight-uncertain Kripke structures for modelling WKSs with imprecise real-
valued weights. For the verification of pWKSs against WCTL formulas we
developed a model checking algorithm that, compared with [5], implements an
improved termination condition and accepts formulas with negation. The algo-
rithm, given a pWKS and a WCTL formula, and produces a quantifier free
first-order formula in the linear theory of the reals representing the set of param-
eter valuations satisfying the specification. The outcome formula is then used as
underlying ingredient for verifying the robustness of WKSs. If the imprecision of
the weights by means of an absolute accuracy error the verification can be per-
formed via quantifier elimination (cf. Example 4). Otherwise, if the imprecision
is quantified by mean of random variables, the probability of satisfying the spec-
ification in estimated via Monte Carlo simulation techniques (cf. Example 22).

In the future we plan to consider an alternative semantic interpretation for
WUKSs where the random weights are dynamically sampled while unfolding
the model, thus modelling WKSs with an infinite state space. This alternative
semantics would fit well in the contexts of reactive systems that respond to exter-
nal stimuli whose values are uncertain. Another direction for future work would
be to consider the model checking of weighted LTL properties under uncertainty.
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Abstract. Stock management in a hospital requires the achievement
of a trade-off between conflicting criteria, with mandatory requirements
on the quality of patient care as well as on purchasing and logistics
costs. We address daily drug ordering in a ward of an Italian public
hospital, where patient admission/discharge and drug consumption dur-
ing the sojourn are subject to uncertainty. To derive optimal control
policies minimizing the overall purchasing and stocking cost while avoid-
ing drug shortages, the problem is modeled as a Markov Decision Pro-
cess (MDP), fitting the statistics of hospitalization time and drug con-
sumption through a discrete phase-type (DPH) distribution or a Hidden
Markov Model (HMM). A planning algorithm that operates at run-time
iteratively synthesizes and solves the MDP over a finite horizon, applies
the first action of the best policy found, and then moves the horizon
forward by one day. Experiments show the convenience of the proposed
approach with respect to baseline inventory management policies.

Keywords: Inventory management · Markov decision processes
Receding horizon · Discrete phase-type distributions
Hidden markov models

1 Introduction

Stock replenishment in a hospital is a complex and critical task, facing a number
of major conflicting challenges [16,23]. On the one hand, the quality of patient
care is subject to mandatory requirements, even allowing expensive emergency
orders to avoid stock-out danger. On the other hand, hospitals are subject to
limitations in budget and storage space. Additional factors of complexity include
uncertainty on patient admission/discharge, limited predictability of drug con-
sumption, imprecise monitoring of stock state, and delays in drug delivery.
Despite these complexities, orders are typically performed by nurses on a daily
basis and in a manual fashion, resulting in a time consuming and yet imper-
fect process, with frequent emergency orders. According to this, optimization
of inventory management has been advocated as a means to improve the effi-
ciency of healthcare services while maintaining the same clinical guarantees [10],
motivating the investigation in quantitative approaches to decision support.
c© Springer Nature Switzerland AG 2018
A. McIver and A. Horvath (Eds.): QEST 2018, LNCS 11024, pp. 87–103, 2018.
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Markov Decision Processes (MDPs) [20] have been widely used to solve inven-
tory control problems in a variety of contexts [24], supporting determination of
the optimal reorder points and quantities over the decision-making horizon. An
MDP inventory problem is formulated in [5] considering perishable commodities
with selling cost depending on their lifetime, deriving the policy that maximizes
the average profit per period. In [6], solution of an MDP yields the optimal
ordering policy for a retailer with two suppliers, one perfectly reliable and one
less reliable but offering a lower price. An integrated approach is proposed in [12]
to coordinate inventory management in the stages of supply, manufacturing, and
distribution of a supply chain subject to customer demand uncertainty and lead
time variability, solving an MDP through a reinforcement learning algorithm.
As a common trait, all these approaches formulate an infinite-horizon optimiza-
tion problem, often too computationally-intensive to be solved online.

In run-time environments, complexity is managed by repeatedly solving the
optimization problem over a finite-horizon, leveraging a model@run.time [8] that
adapts its behavior in response to new observations and measurements. The
result of the optimization is exploited according to the receding horizon philoso-
phy typical of Model Predictive Control (MPC) [11], applying the first move of
the optimal command sequence while discarding the remaining optimal moves,
and then solving a new optimal control problem at the next time step. In [15],
MPC is applied to minimize the stock-out probability in a hospital pharmacy
while limiting the overall cost and the number of orders. Demand is modeled as
a stochastic disturbance process, yet without deriving a probabilistic character-
ization from historical data. Inventory control problems for the management of
distribution chains are solved in [7] by combining MPC with min-max optimiza-
tion, considering the uncertainty on long-term predictions of customer demand.

The feedback loop of receding horizon control perfectly fits the MAPE-K pat-
tern (Monitor, Analyze, Plan, Execute, Knowledge), initially proposed by IBM for
autonomic computing systems [1]. Despite the different application context, self-
adaptation of software-intensive systems under environment uncertainty relies
on a control problem formulation similar to that of inventory management with
stochastic supply and demand. In [18], an optimal control policy for self-adaptive
systems is derived solving an MDP over a finite horizon, considering the latency
in the execution of different adaptation tactics. An MPC self-adaptation strat-
egy is computed in [14] for software systems described by queuing networks,
exploiting a linearization technique to efficiently solve the non-linear optimiza-
tion problem and continuously meet the desired performance requirements.

In this paper, we present a probabilistic approach to stock replenishment in
a hospital ward, aimed to minimize the overall cost for purchasing and stock-
ing pharmaceuticals while preventing stock-outs. The approach is developed with
reference to the case of a ward in a public Italian hospital, where patient sojourn
time and drug consumption are subject to uncertainty, and drugs have a pur-
chasing cost and a stocking cost, with no additional expenses for standard orders
but with a charge on emergency orders. The problem is modeled as a Markov
Decision Process (MDP), fitting the statistics of sojourn time and drug con-
sumption through a discrete phase-type (DPH) distribution or a Hidden Markov
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Model (HMM). At run-time, the MDP parameters are derived and the model is
solved over a finite horizon, applying the first action of the best policy found and
then moving the horizon forward by one day. A sensitivity analysis is performed
on a real data set with respect to the stocking cost per drug unit, showing the
convenience of the approach compared to baseline policies.

Among reviewed works, the proposed method has similarities with the app-
roach of [18] in the way an MDP is used to build a receding horizon controller.
However, this paper addresses a much different application context and proposes
a completely different methodology to synthesize the MDP, not using an autore-
gressive time series predictor as in [18], but rather leveraging domain knowledge
to define the states of the model, and exploiting the statistics of hospitalization
time and drug consumption to derive probabilistic transitions between them.

The rest of the paper is organized in four sections. Section 2 formulates the
problem of stock replenishment with reference to the considered application sce-
nario; Sect. 3 presents the solution approach; and, Sect. 4 illustrates the experi-
mental results. Finally, conclusions are drawn in Sect. 5.

2 Application Context

We address stock replenishment in a ward of a public hospital in Tuscany, Italy.
Information and data were collected as a part of the LINFA project (Intelligent
Pharmaceutical Logistics) [4], funded by the Regional Government of Tuscany
for the investigation of technologies and methods supporting smart stock replen-
ishment in wards of the Tuscan healthcare system. In the following, we formulate
the problem with reference to the specific application context (Sect. 2.1) and we
illustrate available data on drug consumption (Sect. 2.2).

2.1 Problem Formulation

In the public healthcare system of Tuscany, small-sized hospital wards indepen-
dently issue orders to a central supplier. There is neither a specific employee in
charge of inventory management, nor a decision support system or a training
course that can help health professionals in performing such task: orders are
placed by nurses on a daily basis and in a manual fashion, depending on their
work shift and personal experience. Each drug has a purchasing cost per unit in
case of standard orders, and an increased cost in case of emergency orders, with
no fixed cost for the order itself. Each drug has also a stocking cost per unit per
day, representing a penalty on drug units stored and not yet consumed.

The amount of drug units consumed in a ward depends on several factors,
notably including the number of patients, the duration of the stay of each patient,
the healthcare protocol assigned to each patient as well as his/her physical char-
acteristics and response to the treatment. Depending on the type of ward, patient
arrivals are distinguished in scheduled arrivals, which are known in advance, and
urgent arrivals (e.g., in an emergency ward, no arrival is scheduled). The number
of patient arrivals in a ward is also limited by the maximum number Pmax of
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available beds. The number of days of hospitalization of a patient has no max-
imum and a minimum equal to zero, which corresponds to the case that the
patient is discharged the same day of admission.

We address the problem of stock replenishment for a single drug over a time
horizon of H days, with the aim of minimizing the overall purchasing and stock-
ing cost while avoiding stock-outs. To this end, let cd, cu > cd, and cs be the
standard purchasing cost per unit, the purchasing cost per unit in case of emer-
gency orders, and the stocking cost per unit per day, respectively. And, let qd(h)
and qu(h) be the number of drug units restocked on the h-th day of the horizon
through a standard order and an emergency order, respectively, and let qs(h) be
the number of drug units stocked at the beginning of the h-th day of the horizon.
According to this notation, the objective function is defined as follows:

min
H∑

h=1

qd(h) cd + qu(h) cu + qs(h) cs (1)

where 0 ≤ qd(h) + qu(h) + qs(h) ≤ Smax guarantees that the number of drug
units restocked plus the number of those already stocked and not yet used does
not exceed the maximum number Smax of drug units that can be stored.

2.2 Drug Consumption Data

Data on drug consumption were collected in a ward of a public hospi-
tal in Tuscany, Italy, under a non-disclosure agreement, and therefore they
can be described only in an aggregate form. The data set is composed of
nearly 30 000 entries describing drug units consumed by nearly 1000 patients
hospitalized in the ward within about a year. The data set has an entry for each
drug intake of each patient. Each entry is a tuple < id, tintake, tend, n, d >, where
id is the anonymous unique identifier of the patient, tintake is the hospitalization
day during which the drug intake was consumed, tend is the discharge date of
the patient, n is the number of consumed drug units, and d is the drug type.

While treatment protocols applied to patients are not always known and thus
cannot be explicitly used to predict drug usage and support stock replenishment,
statistics on drug consumption can be derived from collected data. Figure 1a
shows the Probability Mass Function (PMF) of the number of patient arrivals
per day, with average around 2.80 and maximum equal to 9. Though in the
considered ward arrivals can be either scheduled or emergency, the data set does
not distinguish between them. The average number of patients in the ward per
day (not shown in Fig. 1a) is approximately equal to 7.62.

Figure 1b shows the PMF of the number of hospitalization days (black curve),
with average approximately equal to 2.72 and maximum equal to 26. Figure 1b
also shows the probability to consume a unit of a specific drug in each day of
hospitalization (gray curve), computed for the most widely used drug in the ward
during the period in which data were collected, which is the drug considered in
the experiments reported in this paper. The plot shows that the probability of
drug consumption from day 1 to day 7 of hospitalization is almost constant and
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Fig. 1. (a) Probability mass function of the number of patient arrivals per day.
(b) Probability mass function of the number of hospitalization days (black), and prob-
ability to consume a unit of a specific drug in each day of hospitalization (gray),
computed for the most consumed drug in the ward.

equal to 0.4. The maximum number of drug units consumed by each patient
within a single day (not shown in Fig. 1b) is equal to 1.

3 Solution Method

We solve the problem of daily stock replenishment by repeatedly performing
probabilistic model checking of an MDP over a finite horizon. In the following,
we define the MDP model and we present the solution method (Sect. 3.1), illus-
trating how the statistics of hospitalization time and drug consumption can be
fitted through a DPH distribution (Sect. 3.2) or an HMM (Sect. 3.3).

3.1 Probabilistic Model Checking of an MDP @runtime

MDPs [20] are popular for modeling systems that feature both probabilistic
and nondeterministic state transitions, supporting the derivation of the optimal
sequence of nondeterministic choices with respect to a given reward function.

Definition 1. An MDP is a tuple M = 〈S, s0, A, P,R〉 where: S is a finite set
of states; s0 ∈ S is the initial state; A is a set of nondeterministic actions;
P : S

Ś
A

Ś
S → [0, 1] is the state transition probability matrix such that

(i)
∑

s′∈S P (s, a, s′) ∈ {0, 1} ∀ s ∈ S and ∀ a ∈ A, and (ii) ∀ s ∈ S ∃ a ∈ A
such that

∑
s′∈S P (s, a, s′) = 1; and, R : S

Ś
A → R≥0 is a reward function,

assigning to each state-action pair a non-negative reward.

In each state s ∈ S, a nondeterministic choice is made in the set of enabled
actions A(s) = {a ∈ A | ∑

s′∈S P (s, a, s′) = 1}. A reward of R(s, a) is obtained,
and a successor state s′ is chosen with probability P (s, a, s′) through a proba-
bilistic choice. A path is an execution that resolves both nondeterministic and
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probabilistic choices, i.e., γ = s0
a0→ s1

a1→ . . ., where si ∈ S, ai ∈ A(si), and
P (si, ai, si+1) > 0 ∀ i ∈ N. A policy resolves nondeterministic choices only, select-
ing which action to take in each state.

Definition 2. A policy of an MDP is a function λ : P∗ → D(A) s.t. λ(γ, a) = 0
∀ a 
∈ A(last(γ)), where P∗ is the set of infinite paths; D(a) is the set of discrete
probability distributions over A; last(γ) is the last state of path γ; and λ(γ, a) is
the probability of choosing a at state last(γ) under λ.

The problem of stock replenishment defined in Sect. 2 can be formulated as
an MDP where states represent the number of stored drug units in each day of
the horizon, nondeterministic actions model the choice to order a certain number
of drug units, and probabilistic transitions account for drug consumption by the
patients. The MDP can be specified through the high-level PRISM language [17]
as a module with constants and variables. Listing 1.1 shows a fragment of the
PRISM code, consisting of a module termed WARD (lines 12–48) and a reward
termed cost (lines 50–59). The code is instantiated for a finite horizon of H = 5
days (constant horizonDuration, line 5), standard purchasing cost per drug
unit cd = 10 (constant drugCost, line 6), emergency purchasing cost per drug
unit cu = 40 (constant urgentDrugCost, line 7), stocking cost per drug unit per
day cs = 2 (constant stockCost, line 8), and maximum number Smax = 30 of
stored drug units (constant maxStock, line 9).

States. The set of states of the MDP is the set of reachable combinations of
values of the integer variables day (representing the current day of the hori-
zon, line 13), stock (modeling the number of stored drug units, line 14), and s
(comprising an index variable used to repeat the commands of drug ordering,
drug consumption, and reward evaluation for each day of the horizon, line 15).
Specifically, S ⊆ [0, horizonDuration] × [−maxMissed, maxStock] × [0, 7] =
[0, 5] × [−30, 30] × [0, 7], where constant maxMissed= 30 (line 10) is the maxi-
mum number of consumed drug units per day, obtained as the product of the
maximum number of hospitalized patients (i.e., 30) and the maximum number
of consumed drug units per patient per day (i.e., 1). Negative values of stock
account for missing drug units to be supplied through an emergency order.

The initial state is s0 = 〈day = 0, stock = 6, s = 0〉, where the value of stock
is the best threshold obtained for the order-up-to (R, T) policy in the experi-
ments of Sect. 4. Starting from s0, a nondeterministic choice is performed repre-
senting the standard order issued on day 0 (lines 17–23), and the corresponding
cost is evaluated (lines 51–56). Then, the following steps indexed by variable s
are repeated for each day h ∈ {1, . . . , horizonDuration}: (1) time is moved for-
ward by one day increasing variable day by 1 (s= 1, line 25); (2) a probabilistic
transition representing drug consumption on day h is performed (s= 2, lines 27–
31); (3) an urgent order is issued in case of missing drug units (s= 3, line 32), and
the corresponding cost is evaluated (line 57); (4) the stocking cost is evaluated
(s= 4, line 35); (5) a standard order is issued on day h (s= 5, lines 36–42), and
the corresponding cost is evaluated (lines 51–56); (6) termination is checked by
comparing the value of variable day against constant horizonDuration (s= 6,
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lines 45–47), repeating steps 1–6 if day<horizonDuration, otherwise reaching a
final absorbing state where s= 7. In doing so, a standard order is issued on day 0,
day 1, . . . , and day horizonDuration-1 based on the expected drug consump-
tion on the next day, with the aim of minimizing the overall cost for standard
purchasing, emergency purchasing, and stocking. Conversely, the last standard
order is not followed by a next day, thus being associated with a purchasing cost
but neither with an emergency cost nor with a stocking cost. Therefore, cost min-
imization yields a solution where no drug is ordered on day horizonDuration.

Listing 1.1. Fragment of the PRISM code.

1 mdp
2
3 label ”horizonEnd” = s=7;
4
5 const int hor izonDurat ion = 5 ;
6 const int drugCost = 10 ;
7 const int urgentDrugCost = 40 ;
8 const int stockCost = 2 ;
9 const int maxStock = 30 ;

10 const int maxMissed = 30 ;
11
12 module WARD
13 day : [ 0 . . hor izonDurat ion ] i n i t 0 ;
14 stock : [−maxMissed . . maxStock ] i n i t 6 ;
15 s : [ 0 . . 7 ] i n i t 0 ;
16 // 0) Standard order
17 [ order0 ] s=0 −> ( s ’=1) ;
18 [ order5 ] s=0 −> ( stock ’=min(maxStock , s tock+5) ) & ( s ’=1) ;
19 [ order10 ] s=0 −> ( stock ’=min(maxStock , s tock+10) ) & ( s ’=1) ;
20 [ order15 ] s=0 −> ( stock ’=min(maxStock , s tock+15) ) & ( s ’=1) ;
21 [ order20 ] s=0 −> ( stock ’=min(maxStock , s tock+20) ) & ( s ’=1) ;
22 [ order25 ] s=0 −> ( stock ’=min(maxStock , s tock+25) ) & ( s ’=1) ;
23 [ order30 ] s=0 −> ( stock ’=min(maxStock , s tock+30) ) & ( s ’=1) ;
24 // 1) Move time forward of one day
25 [ ] s=1 −> ( s ’=2) & (day ’=day+1) ;
26 // 2) Drug consumption
27 [ ] s=2&(day=1) −> 0 . 0 1 8 : ( stock ’= stock )&(s ’=3) + 0 . 9 8 2 : ( stock ’= stock −1)&(s ’=3) ;
28 [ ] s=2&(day=2) −> . . . <omitted> . . . ;
29 [ ] s=2&(day=3) −> . . . <omitted> . . . ;
30 . . . <omitted> . . .
31 [ ] s=2&(day=horizonDurat ion ) −> . . . <omitted> . . . ;
32 // 3) Urgent order
33 [ missingDrugs ] s=3 −> ( stock ’=max( stock , 0 ) ) & ( s ’=4) ;
34 // 4) Stocking cost evaluation
35 [ storageDrugs ] s=4 −> ( s ’=5) ;
36 // 5) Standard order
37 [ order0 ] s=5 −> ( s ’=6) ;
38 [ order5 ] s=5 −> ( stock ’=min(maxStock , s tock+5) ) & ( s ’=6) ;
39 [ order10 ] s=5 −> ( stock ’=min(maxStock , s tock+10) ) & ( s ’=6) ;
40 [ order15 ] s=5 −> ( stock ’=min(maxStock , s tock+15) ) & ( s ’=6) ;
41 [ order20 ] s=5 −> ( stock ’=min(maxStock , s tock+20) ) & ( s ’=6) ;
42 [ order25 ] s=5 −> ( stock ’=min(maxStock , s tock+25) ) & ( s ’=6) ;
43 [ order30 ] s=5 −> ( stock ’=min(maxStock , s tock+30) ) & ( s ’=6) ;
44 // 6) Check termination
45 [ ] ( s=6)&(day<hor izonDurat ion ) −> ( s ’=1) ;
46 [ ] ( s=6)&(day=horizonDurat ion ) −> ( s ’=7) ;
47 [ ] s=7 −> ( s ’=7) ;
48 endmodule
49
50 rewards ” cos t ”
51 [ order5 ] t rue : (5∗ drugCost ) ;
52 [ order10 ] t rue : (10∗ drugCost ) ;
53 [ order15 ] t rue : (15∗ drugCost ) ;
54 [ order20 ] t rue : (20∗ drugCost ) ;
55 [ order25 ] t rue : (25∗ drugCost ) ;
56 [ order30 ] t rue : (30∗ drugCost ) ;
57 [ missingDrugs ] t rue : urgentDrugCost ∗( − min( stock , 0 ) ) ;
58 [ storageDrugs ] t rue : stockCost∗ s tock ;
59 endrewards

Nondeterministic Actions. The set of actions of the MDP collects nonde-
terministic choices on the number of drug units to order, which can be spec-
ified in the PRISM language by multiple concurrently enabled guarded com-
mands of the form [action] guard → update; changing the value of variables
according to the update if the guard condition is satisfied. In Listing 1.1, the
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minimum number of drug units that can be ordered is 5, Hence, actions model
the choice of ordering 0, 5, 10, 15, 20, 25, or 30 drug units (lines 17–23 and 37–
43), i.e., A = {order0, order5, order10, order15, order20, order25, order30}.
Each action increases variable stock by the corresponding number of drug units,
e.g., order5 increases stock by 5.

Probabilistic Transitions. The state transition probability matrix of the MDP
depends on the probability pdayintake(i |h) that i drug units are consumed by the
hospitalized patients during the h-th day of the horizon. Specifically, for any pair
of states su, sv ∈ S and for any action a ∈ A(su), the transition probability from
su to sv through a is defined as:

P (su, a, sv) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pdayintake(i |h) if su = 〈h, r, 2〉
∧ sv = 〈h, r − i, 3〉

1 if (su = 〈·, r, s〉
∧ sv = 〈·,min{maxStock, r + t}, s + 1〉
∧ s ∈ {0, 5})

∨ (su = 〈h, ·, 1〉 ∧ sv = 〈h + 1, ·, 2〉)
∨ (su = 〈·, ·, 3〉 ∧ sv = 〈·,max{r, 0}, 4〉)
∨ (su = 〈·, ·, 4〉 ∧ sv = 〈·, ·, 5〉)
∨ (su = 〈h, ·, 6〉 ∧ sv = 〈h, ·, 1〉 ∧ h < 5)
∨ (su = 〈horizonDuration, ·, 6〉
∧ sv = 〈horizonDuration, ·, 7〉)
∨ (su = 〈·, ·, 7〉 ∧ sv = 〈·, ·, 7〉)

0 otherwise

(2)

where t is the number of ordered drug units when s ∈ {0, 5}.
Probabilistic transitions can be specified in the PRISM language by guarded

commands of the form [action] guard → prob1 : update1 + . . . + probn : updaten;
associating each update with a nonzero probability; when there is a single update,
consequently with probability 1, the preceding ”prob :” can be omitted. In par-
ticular, commands modeling consumption of drug units are defined for each
day of the horizon (lines 27–31) with at most Smax + 1 updates, represent-
ing the probability of consuming 0, 1, . . . , Smax drug units, respectively. For
example, in Listing 1.1, at most one drug unit can be consumed on day 1
with probability 0.982, i.e., pdayintake(0|1) = 0.018, pdayintake(1|1) = 0.982, and
pdayintake(i|1) = 0 ∀ i > 1, which yields the following command: [] s=2&(day=1)
-> 0.018:(stock’=stock)&(s’=3) + 0.982: (stock’=stock-1)&(s’=3);.
The probability distribution pdayintake(·|h) is estimated for each day h ∈ {1, . . . , H}
of the horizon from the statistics of drug consumption and hospitalization time,
using either a DPH distribution (Sect. 3.2) or an HMM (Sect. 3.3).

Reward. The policy that minimizes the objective function of Eq. (1) can be
derived using the PRISM tool to perform probabilistic model checking of the
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property R"cost"min=?[F "horizonEnd"], requiring that the expected cumu-
lated cost of the paths reaching the last day of the horizon is minimum.

Receding Horizon Control. The evaluation is repeatedly performed according
to the receding horizon paradigm [11]: (i) an MDP model of the stock replenish-
ment problem is synthesized, using data on drug consumption and hospitaliza-
tion time to estimate transition probabilities; (ii) the MDP is solved to derive
the policy that minimizes the overall cost over a finite horizon of H days; (iii) the
first action of the best policy found is applied, ordering the number of drug units
suggested for the current day while discarding the subsequent actions; (iv) the
horizon is moved forward by one day. In doing so, the MDP model can adapt at
runtime to variations of drug consumption and hospitalization time, which may
be due to changes in clinical protocols or modifications in prescribed drugs.

3.2 Estimating Drug Consumption Probabilities Through a DPH

The probability pdayintake(i |h) that i drug units are consumed by the hospital-
ized patients during the h-th day of the horizon can be estimated by fit-
ting the statistic of hospitalization time through an acyclic DPH distribu-
tion [9,19], i.e., the distribution of the time until absorption in a Discrete-
Time Markov Chain (DTMC) with a finite number of transient states (termed
phases), one absorbing state, and no cycle. Let D be the obtained DTMC
and Σ = {σ1, . . . , σT } be the set of its states. On the one hand, for each
state σ ∈ Σ, we derive the probability pDTMC

intake (i, σ) that i drug units are con-
sumed by a patient during a single day given that the elapsed hospitalization
time of the patient is described by state σ of D. On the other hand, for each vec-
tor n = 〈n1, . . . , nT 〉 ∈ N

T such that ‖n‖1 =
∑T

t=1 nt ≤ Pmax, we compute the
probability ppatients(n, h) that, on day h of the horizon, state σt ∈ Σ describes
the elapsed hospitalization time of nt patients for each t ∈ {1, . . . , T}. Therefore,
pdayintake(i |h) can be derived as:

pdayintake(i |h) =
∑

n∈N
T

‖n‖1≤Pmax

ppatients(n, h)
∑

u∈N
‖n‖1

‖u‖∞≤Qmax
‖u‖1=i

‖n‖1∏

q=1

pDTMC
intake (γ(u, q), φ(n, q))

(3)
where u = 〈u1, . . . , u‖n‖1

〉 is a vector of integer values representing the number
of drug units consumed by each of ‖n‖1 patients, Qmax is the maximum number
of drug units that a patient may intake, γ(u, q) is the number of drug units
consumed by the q-th considered patient, and φ(n, q) is the state of D that
describes the elapsed hospitalization time of the q-th considered patient. In doing
so, pdayintake(i |h) is derived by summing, over all feasible allocations of patients to
states of D (outer summation) and over all feasible combinations of the number
of drug units consumed by each patient (inner summation), the product of the
probabilities that each patient consumes the specific number of drug units given
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the specific state of D that describes his/her elapsed hospitalization time (note
that drug consumptions by patients are independent events).

Derivation of pDTMC
intake (i, σ). By the law of total probability, we obtain the fol-

lowing expression for pDTMC
intake (i, σ), i.e., the probability that the number G of

drug units consumed by a patient during a single day is equal to i given that the
state V of D that describes the elapsed hospitalization time of the patient is σ:

pDTMC
intake (i, σ) := P{G = i|V = σ}

=
Kmax∑

l=0

P{G = i|V = σ,K = l}P{K = l|V = σ} (4)

where K ∈ {0, . . . , Kmax} is the hospitalization day (Kmax = 26 in Fig. 1b).
Given that the number of drug units consumed by a patient does not depend

on the state of D that describes its elapsed hospitalization time, we obtain that
P{G = i|V = σ,K = l} = P{G = i|K = l}, where P{G = i|K = l} can be
easily computed from the hospitalization time statistic as the ratio between the
number of times that a patient intakes i drug units during the l-th hospitalization
day and the number of times that a patient has been hospitalized for at least
l days.

Finally, by the Bayes theorem, P{K = l|V = σ} can be expressed as:

P{K = l |V = σ} =
P{V = σ |K = l}P{K = l}

P{V = σ}
=

P{V = σ |K = l}P{K = l}
Kmax∑

m=0

P{V = σ |K = m}P{K = m}
(5)

where P{V = σ |K = l} can be computed from the one-step transition prob-
ability matrix of D as the probability of being in state σ after l transitions
conditioned to not having reached the absorbing state through any of the pre-
vious l − 1 transitions, while P{K = l} can be computed as the ratio between
the number of times that a patient has been hospitalized for at least l days and
the total number of hospitalization days of all patients.

Derivation of ppatients(n, h). For each vector n = 〈n1, . . . , nT 〉 ∈ N
T such that

‖n‖1 =
∑T

t=1 nt ≤ Pmax and for each day h ∈ {1, . . . , H} in the considered
horizon, we exploit pdayDTMC(σ, h) := P{V = σ |K = h}, i.e., the probability
of being in state σ given that the current day of the horizon is h, to derive
ppatients(n, h), i.e., the probability that, on day h of the horizon, state σt ∈ Σ
describes the elapsed hospitalization time of nt patients for each t ∈ {1, . . . , T}.

The derivation of ppatients(n, h) is performed through an iterative algorithm
that takes into account all the possible allocations of patients to states of D

and the corresponding probability. The overall algorithm is not shown due to
space limitations. As an example, Algorithm 1 shows a pseudo-code fragment
that computes a quantity used in the evaluation of ppatients(n, h), namely the
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Algorithm 1. Calculation of pinit(n)

ptmp(n) :=

{
1 if n = [0, .., 0]
0 otherwise

for i = 1 to Ninit do
for all n = 〈n1, . . . , nT 〉 ∈ N

T such that ‖n‖1 =
∑T

t=1 nt ≤ Pmax do

pnew(n) =
T∑

j=1

ptmp(〈n1, . . . , (nj − 1), . . . , nT 〉) · pday
DTMC(σj , li)

ptmp(.) = pnew(.)
end for

end for
pinit(.) := pnew(.)

probability pinit(n) that, for each t ∈ {1, . . . , T}, state σt ∈ Σ describes the
elapsed hospitalization time of nt of the initial Ninit patients, with 〈l1, . . . , Ninit〉
being the vector containing the current hospitalization day of each patient.

3.3 Estimating Drug Consumption Probabilities Through an HMM

The probability pdayintake(i |h) that i drug units are consumed by the patients
during the h-th day of the horizon can be estimated by fitting the statistics of
hospitalization time and drug consumption through an HMM [21], i.e., a DTMC
with unobserved (hidden) states, generating an observation at each state tran-
sition. We use hidden states to account for the hospitalization time of patients
and observations to model drug consumption. Since in general an HMM does
not have a final absorbing state indicating the end of the hospitalization time,
the set of observations is extended into a new set where, for each symbol qj
representing the consumption of j drug units by a patient, a new symbol qEj is
added modeling not only the drug consumption but also the discharge of the
patient from the ward. Given a set of such observations and a selected number
of desired hidden states, the Expectation-Maximization (EM) algorithm permits
to automatically evaluate the HMM parameters that maximize the probability
that the considered observation sequences are generated by the model.

Following the notation of Sect. 3.2, let D be the DTMC of the HMM and
Σ = {σ1, . . . , σT } be the set of its states. For each vector n = 〈n1, . . . , nT 〉 ∈ N

T

such that ‖n‖1 =
∑T

t=1 nt ≤ Pmax, the initial state probabilities and the transi-
tion probability matrix of the HMM permit to derive ppatients(n, h), i.e., the prob-
ability that, on day h of the horizon, state σt ∈ Σ describes the elapsed hospital-
ization time of nt patients for each t ∈ {1, . . . , T}. The derivation is performed
through an iterative algorithm similar to that used for DPHs, which is also not
reported due to space limitations. Once ppatients(n, h) is known, pdayintake(i |h) can
be computed according to Eqs. 3–5, as discussed in Sect. 3.2.

Note that the EM algorithm yields the joint probability distribution of drug
consumption and discharge time. While leading to better predictions, taking
advantage of this joint distribution in the MDP model requires to maintain in
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memory the number of consumptions produced in each phase, massively increas-
ing the state space. According to this, we used the marginal distributions of drug
consumption and discharge time both to maintain a manageable state space and
to obtain a more comparable model with respect to the DPH fitting.

4 Experiments

The approach is experimented in combination with the techniques described
in Sects. 3.2 and 3.3 for estimating drug consumption probabilities, based on
DPH distributions (DPH approach) and HMMs (HMM approach), respectively.
Experiments are performed on the data set introduced in Sect. 2.2, comparing
results with those obtained with two standard inventory management policies.

4.1 Experimental Setup

The data set is split into a training set of nearly 10 months and a test set of nearly
2 months. The training set is used to perform parameter tuning and hyperpa-
rameter optimization, whereas the test set is used to evaluate the performance
of the approaches in terms of total cost C obtained at the end of the test period.

Baseline Competitors. As baseline competitors, we consider the inventory
policies (Q, r) and (R, T) [22], which decide when and how much to order based
on the quantity of drugs in the inventory only, neither considering the number
of patients in the ward, nor their sojourn times. In addition, both policies are
subject to a periodic review constraint, being able to order only once per day.
Specifically, the (Q, r) policy, also termed reorder point, fixed quantity policy,
issues an order of a predefined fixed quantity Q when the number of stocked
drugs falls below a threshold r. Conversely, the (R, T) policy, also termed order-
up-to (R, T) policy, issues an order equal to the minimum quantity required to
get back over the threshold R at each periodic interval T (each day in our case).

For the two baselines, we select the hyperparameters producing the mini-
mum cost C on the training set. As for the values of r and R, we test all integers
between 1 and 15 (in the data set, the maximum number of drug units consumed
in a single day is 12). For (Q, r), for all the possible values of r, the fixed quantity
to be reordered Q is selected among the multiples of Δ ∈ {1, . . . , 20}.

DPH Approach. In the DPH approach, the hyperparameter to fit is the num-
ber of phases Φ, selected using a cross-validation approach. Over 10 rounds, the
training set is split into a reduced training set of 9 months, and a validation set
of 1 month. We let Φ ∈ {1, . . . , 6}, which is a reasonable choice since the mean
sojourn time of patients is 2.72 days and a higher number of phases would result
in a much higher complexity in the evaluation of pdayintake(i |h). In each round r
of the cross-validation, for each possible value of Φ, we fit parameters on the
reduced training set with the PhFit tool [13], and we evaluate the cost on the
validation set. Such cost is evaluated using a horizon of H = 5 days, with the
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possibility to order between 0 and 20 drug units (that is, with 21 nondetermin-
istic choices in the MDP): the number of phases is thus chosen as the value
that minimizes the average cost over the 10 rounds. We remark that PhFit fol-
lows a gradient-based approach, which can stop in local optima. Therefore, a
multi-start methodology is employed, by repeating parameter fitting a number
of times with different random starting points, and by selecting the distribution
that best fits samples.

HMM Approach. The hyperparameter to fit in HMMs is the number of hidden
states, which is selected in {2, . . . , 7} to guarantee a fair the comparison with
the DPH approach (the number of phases of a DPH does not include the final
absorbing state, so that the DPH approach with φ phases compares with the
HMM approach with φ+1 states). Given that also HMMs suffer from the problem
of local minima, also in this case we exploit a multi-start methodology. The
Python library HMMlearn [3] is used for HMM training.

Both in the DPH approach and in the HMM approach, we use the Java
Apache Velocity template engine [2] for the automatic construction of the MDP
model at runtime, and the Prism API [17] for the synthesis of the optimal policy.

4.2 Experimental Results

All experiments were performed on a 64-bit Intel I7 4690k @4GHz CPU with
16 GB RAM. The selected hyperparameters are the following: a threshold r = 4
and a fixed quantity Q = 4 for the (Q, r) policy; a threshold R = 6 for the
(R, T) policy; equivalently 1 or more phases for the DPH; 3 hidden states for
the HMM. For the DPH approach, since sojourn times are almost geometrically
distributed when excluding a null stay (as shown in Fig. 1b), a single phase
is already sufficient to approximate the distribution with high precision. For
comparison with the HMM approach, the number of phases selected for the
DPH approach is 2. Training required 14 ms both for the (Q, r) and the (R, T)
policies. The DPH and HMM approaches required 116 s and 151 s, respectively,
most of which spent in the evaluation of pdayintake(i, h), with PRISM requiring <1 s.

Figure 2a shows day-by-day cumulated costs on the test set for all approaches,
considering a horizon of H = 5 days for the MDP and assuming the following
costs (so that the ratio between them is realistic for the context of use): standard
cost cd = 10, urgent cost cu = 40, and stocking cost cs = 5. Results show that the
total cost of the HMM and DPH approaches is considerably lower than that of the
inventory level policies, proving the effectiveness of utilizing information on the
ward state. In particular, all approaches initially have a comparable cumulated
cost, but, after nearly 40 days, costs start diverging due to a sudden increase in
the number of patients in the ward and the consequent higher drug consumption.
Since the inventory level approaches do not consider this information, they end
up requiring urgent orders to meet the increasing demand. The HMM costs
are lower than the DPH costs by around 1%, but the HMM approach requires
a running time (29 s) slightly larger than that of the DPH approach (22 s). We
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Fig. 2. (a) Cumulative cost on the test set. (b) Cumulative cost on the test set for the
DPH approach with 2 phases and the HMM approach with 3 hidden states.

remark that the time required by the DPH approach could be sensibly lowered by
setting the number of phases equal to 1, since there are no significant differences
in results, while the state space would be much smaller.

Figure 2b shows how the cumulated cost varies with the considered horizon H
for the DPH approach with 2 phases and the HMM approach with 3 hidden
states. Specifically, the cumulative cost reduces as H increases until H = 3,
with no significant variations for H ≥ 3: reasonably, a horizon of 3 days turns
out to be sufficient to achieve good performance due to the fact that the mean
hospitalization time is 2.72 days, as discussed in Sect. 2.2. The complexity of the
approach increases with H: specifically, for H = 1, 2, 3, 4, 5, the running times
of the DPH approach on the test set are 3 s, 6 s, 11 s, 16 s, and 21 s, respectively,
while for the HMM approach they are 3 s, 8 s, 14 s, 20 s, and 26 s, respectively.

Another factor with significant impact on results is the stocking cost cs. If it
is low, all approaches tend to maintain a high number of drugs as safety stock,
to avoid to issue urgent orders. As the stocking cost increases, it becomes more
relevant to maintain a trade-off between having a low number of drug units in
stock and avoiding urgent orders. According to this, the advantage of the HMM
approach and the DPH approach over the inventory level policies increases with
the stocking cost. In Fig. 3a, we compare the cost of the HMM approach with
3 hidden states and H = 5 with the cost of the (Q, r) policy, which are the
best performing methods for the two different classes of approaches, varying the
stocking cost cs between 1 and 5. In particular, the hyperparameters of both
approaches have been re-computed for different stocking costs. While the num-
ber of hidden states of the HMM remains equal to 3, the (Q, r) thresholds vary:
for cs increasing from 1 to 5 we have (Q, r)= (6, 5), (5, 4), (5, 4), (4, 4) and (4, 4),
respectively. The relation between the costs of the HMM approach and the
(Q, r) policy is expressed through ρ(d) := (C(Q,r)(d) − CHMM(d))/C(Q,r)(d)
in the y-axis, where CHMM(d) is the cumulative HMM cost until day d and
C(Q,r)(d) is the cost for (Q, r). After the instability of the first few days due to



Hospital Inventory Management Through MDPs @runtime 101

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60
days

stocking cost 1
stocking cost 2
stocking cost 3
stocking cost 4
stocking cost 5

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  10  20  30  40  50  60
days

Δ = 1 DPH
HMM

Δ = 2 DPH
HMM

Δ = 5 DPH
HMM

Δ = 10 DPH
HMM

(b)

Fig. 3. (a) Profit ρ(d) of the HMM approach over the (Q, r) policy as a function of
days. (b) Cumulative cost on the test set for the DPH approach with 2 phases and the
HMM approach with 3 hidden states.

delayed purchases, the advantage of the HMM approach increases with higher
stocking costs: HMM saves almost 20% of the cost when cs = 5.

Figure 3b shows the cumulative costs of the HMM approach with 3 hidden
states and the DPH approach with 2 phases varying the granularity Δ of the
admissible orders in {1, 2, 5, 10} (and H = 5): as the granularity decreases, two
approaches tune orders with more precision, while reducing the overall cost. The
best performances are in fact achieved with Δ = 1 and Δ = 2, with only slightly
differences. With Δ = 10, the performance drops by more than 30%. We can
therefore conclude that flexibility in order granularity plays an important role
in reducing costs in the drug restocking problem.

5 Conclusions

We formulate the problem of stock management in a hospital ward as a Markov
Decision Process (MDP), where nondeterministic actions model the choice of
ordering drug units, while probabilistic transitions represent drug consumption.
The model is iteratively solved at run-time, applying only the first action of the
best policy found and moving the horizon forward by one day. Experiments on a
real-world case study, with data collected from a ward of a public Italian hospital,
show the convenience of the approach with respect to standard baselines.

The problem formulation could be extended in various aspects, for instance
by considering a fixed cost for orders or a different purchasing cost depending
on the supplier. It would be interesting also to compare the proposed approach
with reorder point policies that issue a variable-size order whenever stock drops
below a given threshold, so as to bring it up to the pre-determined level [16]. A
notable challenge would be accounting for dependencies in the use of different
drugs, which would require joint optimization of the orders of multiple drugs. To
this end, integration with efficient solution techniques based on Model Predictive
Control (MPC) such as those used in [14] comprises a direction to explore.
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18. Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.: Proactive self-adaptation under
uncertainty: a probabilistic model checking approach. In: Joint Meeting on Foun-
dations of Software Engineering, ESEC/FSE 2015, pp. 1–12. ACM (2015)

19. Neuts, M.F.: Probability Distributions of Phase Type. Purdue University,
Baltimore (1974). Department of Statistics

20. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, New York (2014)

21. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in
speech recognition. Proc. IEEE 77(2), 257–286 (1989)

http://velocity.apache.org/
http://hmmlearn.readthedocs.io/en/latest/
http://www.linfasystem.it/
https://doi.org/10.1007/3-540-46029-2_5
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/3-540-46029-2_13


Hospital Inventory Management Through MDPs @runtime 103

22. Tempelmeier, H.: Inventory Management in Supply Networks Problems, Models,
Solutions. Books on Demand, Norderstedt (2011)
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Abstract. It is well known that exact notions of model abstraction and
reduction for dynamical systems may not be robust enough in practice
because they are highly sensitive to the specific choice of parameters. In
this paper we consider this problem for nonlinear ordinary differential
equations (ODEs) with polynomial derivatives. We introduce approxi-
mate differential equivalence as a more permissive variant of a recently
developed exact counterpart, allowing ODE variables to be related even
when they are governed by nearby derivatives. We develop algorithms
to (i) compute the largest approximate differential equivalence; (ii) con-
struct an approximate quotient model from the original one via an appro-
priate parameter perturbation; and (iii) provide a formal certificate on
the quality of the approximation as an error bound, computed as an over-
approximation of the reachable set of the perturbed model. Finally, we
apply approximate differential equivalences to study the effect of para-
metric tolerances in models of symmetric electric circuits.

1 Introduction

Ordinary differential equations (ODEs) are a prominent model of dynamical sys-
tems across many branches of science and engineering, and have enjoyed increas-
ing popularity in computer science, for instance, in computational systems biol-
ogy [4,13,30], as an approximation to large-scale Markov models and as the laws
of continuous motion in hybrid systems [7]. This has motivated techniques for the
comparison and minimization of ODEs based on behavioral relations, along the
lines of other foundational quantitative models of computation, e.g. [25]. Here we
consider differential equivalence [11], recently developed as an equivalence over
ODE variables yielding a quotient that preserves the dynamics of the original one.
However, differential equivalences (reviewed in Sect. 2) are exact, hence highly sen-
sitive to parameter values and initial conditions. This may hinder their practical
c© Springer Nature Switzerland AG 2018
A. McIver and A. Horvath (Eds.): QEST 2018, LNCS 11024, pp. 104–121, 2018.
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usability in some applications domains, for instance due to parameter uncertainty
arising from finite-precision measurements in biology or the tolerances of electric
components in electrical engineering.

Our objective is to develop approximate variants of differential equivalence
(in Sect. 3). We study models with derivatives given by multivariate polynomials
(over the ODE variables) of any degree, thus restricting the scope of [11]. However
we remark that this is still quite a generous class since it includes chemical reaction
networks (CRNs) with mass-action kinetics and linear/affine systems, thus cov-
ering, e.g., continuous-time Markov chains through their Kolmogorov equations.

Considering polynomial derivatives allows us to introduce a notion of equiv-
alence that just concerns the ODE “syntax” (while the nonlinear class of ODEs
of [11] required symbolic SMT-based checks). Our main idea is to consider a
threshold parameter ε ≥ 0, which intuitively captures perturbations in poly-
nomials coefficients. This allows relating ODE variables that would be distinct
otherwise. Like in other established approaches such as behavioral pseudomet-
rics (e.g., [1,9]), ε = 0 corresponds to an exact differential equivalence of [11]. In
addition to defining criteria for approximate differential equivalences, we provide
an algorithm for obtaining the largest one. This is done via partition refinement,
computing the coarsest refinement of a given initial partition of ODE variables
for a given “structural” tolerance ε.

A quotient ODE system can be constructed from a reference model, obtained
through a perturbation of the coefficients of the original model which makes the
given approximate differential equivalence an exact one. By considering a metric
(the Euclidean norm) to measure the degree of perturbation, the reference model
is the one which minimizes such perturbation. This can be done efficiently by
solving an optimization problem which runs polynomially with the size of the
ODE system [22]. This approach is analogous to optimal approximate lumping
for Markov chains (e.g., [16]), although our theory can be applied to other choices
of reference models.

The bound of the error produced by the reference model with respect to
the original system can be computed by studying the reachable set of the ref-
erence model from an uncertain set of initial conditions that covers the applied
perturbation. Since the reference model subsumes any behavior of the quotient,
the bound formally relates the quotient model to the original model. Section 4
presents a bound which relies on a linearization of the reference model (which can
be efficiently computed in the case of polynomial ODE systems). First, we bound
the reachable set of the linearized model using closed form solutions, similarly
to [24]. Then, we provide a conservative condition (i.e., an over-approximation)
that ensures that the linearized model describes the original nonlinear behavior
dynamics well. Our bound is given in terms of an ε-δ argument (similar in spirit
to the ones routinely used in calculus). Informally, it states the following: for any
choice of the structural tolerance ε, there exist a degree of perturbation δ and an
amplifier λ such that, for any ODE system obtained by applying a perturbation
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to the reference model of at most δ, at all time points the difference between the
solution of the reference model and the perturbed one is at most λ times the
perturbation.

Being based on a linearization, it is perhaps not surprising that the as-
computed δ will account only for small perturbations of the parameters. Yet
numerical experiments in Sect. 5 show that these can be enough to explain quasi-
symmetric behavior due to parametric tolerances in components of real electric
network designs [31]. By comparing to over-approximation techniques supported
by state-of-the-art tools C2E2 [17], CORA [2,3] and Flow∗ [12], we show that
our bounding technique can complement them in that it can scale to larger sys-
tems while being more conservative in the size of the initial uncertain set that
it supports.

Further Related Work. Differential equivalence is promising when the ODE sys-
tem is composed of several identical subsystems that depend on some common
context [33]. It is related but not comparable to bisimulation for differential
systems [18,20] since it partitions ODE variables rather than the state space.
Likewise, it complements [8] that captures nonlinear relations between ODE
variables but does not enjoy a polynomial time algorithm like [10].

A classic approximation approach relies on Lyapunov-like functions [15,27]
known from stability theory of ODEs. However, for nonlinear systems the
automatic computation of Lyapunov-like functions remains a challenging task.
Restricting to special classes of Lyapunov-like functions (e.g., sum-of-squares
polynomials [18]) leads to efficient construction algorithms which may provide
tight bounds, but existence is not guaranteed. On the other hand, approxima-
tions with differential inequalities [34] can be computed efficiently, but may be
loose. Abstraction, supported by CORA and Flow∗, locally approximates the
nonlinear model by a multivariate polynomial or an affine system, see [5,12] and
references therein. Similarly in spirit we linearize across a reference trajectory. A
closer approach to ours is discussed in [17] and supported by the corresponding
tool C2E2. It combines local Lyapunov-like functions and techniques based on
sensitivity analysis [24]. Our bound is however different because the nonlinear
part is bounded analytically by restricting to polynomial derivatives.

More in general, research on approximate quotients of ODE systems spans
many disciplines. In chemistry, it can be traced back to Kuo and Wei [23].
They studied monomolecular reaction networks, which give rise to affine ODE
systems. The approximation consists in nearly exact lumping, i.e., a linear trans-
formation of the state space that would be exact up to a perturbation of the
parameters (hence we are similar in spirit). The approximation, however, only
applies when the transition matrix underlying the linear system is diagonaliz-
able. Li and Rabitz extend approximate lumping to general CRNs [26], but an
explicit error bound is not given. In a similar vein, approximate quotients in
ecology have been studied from the point of view of finding a reduced ODE
system whose derivatives are as close as possible (in norm) to the derivatives of
the original ODE system, where the 0-distance induce the exact quotient [21].
The justification that variables underlying similar ODEs have nearby solutions
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is grounded on Gronwall’s inequality which is also at the basis of more recent
quotient constructions [19], which however are not algorithmic, unlike in this
paper.

Notation and Basic Definitions. We denote the infinity norm ‖ · ‖∞ by ‖ · ‖,
while ‖ · ‖2 is the Euclidian norm. Whenever convenient, for a given partition
of variables H, we write H = {xH,1, . . . , xH,|H|} for any H ∈ H. We denote by
ψ[t/s] the term that arises by replacing each occurrence of t in ψ by s. Let S
be a set, and H1, H2 two partitions of S. Then, H1 is a refinement of H2 if for
any block H1 ∈ H1 there exists a block H2 ∈ H2 such that H1 ⊆ H2. For any
partition H of S, let ∼H denote the unique equivalence relation with H = S/∼H.
The transitive closure of a relation ∼ is denoted by ∼∗.

2 Background

Throughout the paper we consider a polynomial initial value problem (PIVP)
over the set of ODE variables S = {x1, . . . , xn}. It is defined by the ODEs ẋi = qi,
1 ≤ i ≤ n, where qi is a multivariate polynomial over S. The initial condition of
the PIVP is given by σ : S → R; xi(t) denotes the unique solution for variable
xi at time point t starting from xi(0) = σ(xi). We consider PIVPs that do not
exhibit finite explosion times, i.e., whose solutions do not have a singularity at
any finite point in time. This property is shared by the vast majority of practical
models and can be efficiently checked via numerical ODE solvers.

A polynomial qi is given in the normal form if each monomial xα ≡∏
xi∈S x

αxi
i , where α ∈ N

S
0 is a multi-index, appears in qi at most once. The

normal form of a polynomial qi is denoted by N (qi). Without loss of generality,
we assume that the polynomials qi of a PIVP ẋ = q(x), where q = (qi)xi∈S , are
given in normal form. For a polynomial qi in normal form with variables in S,
let c(qi, x

α) denote the coefficient of the monomial xα, where α ∈ N
S
0 .

Example 1. We use the following ODE system, with variables S = {x1, x2, x3},
as a running example.

ẋ1 = −4.00x1 + x2 + x3 ẋ2 = 1.99x1 − x2 ẋ3 = 2.01x1 − x3 (1)

In [11] two variants of differential equivalence were introduced for IDOL, a
class of nonlinear ODE systems covering derivatives more general than polyno-
mials. Here we find it convenient to restate them for a PIVP. (The proofs for
this correspondence are straightforward hence we omit them).

We begin with backward differential equivalence (BDE), which relates vari-
ables that have the same solutions at all time points. The definition of BDE for
PIVP makes pairwise comparisons between the coefficients of any two variables
in the same equivalence class.

Definition 1 (BDE). Fix a PIVP, a partition H of S and write xi ∼B
H xj if

all coefficients of the following polynomial are zero,

℘H
i,j := (qi − qj)

[
xH′,1

/
xH′ , . . . , xH′,|H′|

/
xH′ :H ′ ∈H]
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i.e., when ∑

α∈NS
0

|c(℘H
i,j , x

α)| = 0. (2)

A partition H is a BDE if H = S/(∼B∗
H ∩ ∼H).

Essentially, establishing that a candidate partition is a BDE consists in com-
paring the coefficients of the monomials of the ODEs of related variables, up to
the natural equivalence class induced on monomials by the equivalence relation
through ℘H

i,j—for instance, the partition {{x1}, {x2, x3}} will equate the mono-
mials x1x2 and x1x3. Then, for any two variables in the same block it must hold
that the differences between the coefficients of the same monomials (modulo the
induced equivalence class) are zero.

Example 2. In our running example let us consider the partition of variables
H = {H1,H2}, with H1 = {x1} and H2 = {x2, x3}. Then H is not a BDE
because

℘H
2,3 = −0.02x1 and c(℘H

2,3, x1) = −0.02 �= 0.

Forward differential equivalence (FDE) identifies a partition that induces
a quotient ODE that tracks sums of variables in each equivalence class. For
instance, for any initial condition we have that {{x1}, {x2, x3}} is an FDE for
(1) because we can find an ODE system for x2 + x3:

ẋ1 = −4.00x1 + (x2 + x3) ˙(x2 + x3) = 4.00x1 − (x2 + x3)

The change of variable x23 = x2 +x3 gives us the quotient ODE ẋ1 = −4.00x1 +
x23, ẋ23 = 4.00x1−x23. From this we conclude that the solution satisfies x23(t) =
x2(t) + x3(t) for all time t if this holds for the initial condition, i.e., x23(0) =
x2(0) + x3(0).

For a PIVP, FDE can be checked by requiring that the evaluation of the
polynomial that represents the quotient derivative for an equivalence class is
invariant with respect to a redistribution of the values of any two variables
within that equivalence class.

Definition 2 (FDE). Fix a PIVP, a partition H of S and write xi ∼F
H xj if

all coefficients of the polynomial
∑

H∈H ℘H
i,j are zero, where

℘H
i,j :=

∑

xk∈H

qk −
∑

xk∈H

qk[xi/s(xi + xj), xj/(1 − s)(xi + xj)]

That is, when
m∑

k=1

∑

α∈N
S∪̇{s}
0

|c(℘Hk
i,j , xα)| = 0. (3)

H = {H1, . . . , Hm} is an FDE when H = S/(∼F ∗
H ∩ ∼H).
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Algorithm 1. Template partition refinement algorithm for the computation of
the coarsest ε-FDE/ε-BDE partition that refines a given initial partition G.
Require: A PIVP over variables S, a partition G of S, a threshold ε ≥ 0, and a mode

χ ∈ {F, B}.
H ←− G
while true do

H′ ←− S/(∼χ∗
H,ε ∩ ∼H)

if H′ = H then
return H

else
H ←− H′

end if
end while

3 Approximate Differential Equivalences

Definitions. Approximate differential equivalence relaxes the equality conditions
(2)–(3) of Definitions 1 and 2 to inequalities with respect to a tolerance level ε.

Definition 3 (Approximate BDE). Fix a PIVP, a partition H =
{H1, . . . , Hm} of S, and ε ≥ 0. We write xi ∼B

H,ε xj if
∑

α∈NS
0

|c(℘H
i,j , x

α)| ≤
ε, where ℘H

i,j is as in Definition 1. A partition H is an ε-BDE if H =
S/(∼B∗

H,ε ∩ ∼H).

Definition 4 (Approximate FDE). Fix a PIVP, a partition H = {H1, . . . ,
Hm} of S, and ε ≥ 0. We write xi ∼F

H,ε xj if
∑m

k=1

∑
α∈N

S∪̇{s}
0

|c(℘Hk
i,j , xα)| ≤ ε,

where ℘H
i,j is as in Definition 2. A partition H is an ε-FDE when H =

S/(∼F ∗
H,ε ∩ ∼H).

Setting ε = 0 recovers the exact counterparts in both cases. That is, H is an
BDE (resp., FDE) partition if and only if H is a 0-BDE (resp., 0-FDE) partition.
The two approximate differential equivalences are not comparable since their
exact counterparts are not [11]. Since these two notions have similar structure
in the rest of this paper we will illustrate only approximate BDE using small
examples. Instead, both notions will be discussed in more detail for the numerical
evaluation of Sect. 5.

Example 3. Let us consider our running example (1). Then, the partition{{x1}, {x2, x3}
}

is a 0.02-BDE partition, as can be easily seen from Example 2.

The next two results show the existence of largest approximate differential
equivalences and of a partition-refinement algorithm to compute it.

Theorem 1. Fix a PIVP, a partition G of S, and ε ≥ 0. Then, there exists a
unique coarsest ε-FDE (ε-BDE) partition refining G.
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Theorem 2. Fix a PIVP, a partition G of S, and ε ≥ 0. Then, Algorithm 1
computes the coarsest ε-FDE (ε-BDE) that refines G if χ = F (χ = B).

We now study how efficiently the conditions for approximate differential
equivalence can be computed. The notions are defined with respect to the
coefficients of the polynomials ℘H

i,j and ℘H
i,j and thus require the computa-

tion of their normalization. In the case of ε-FDE, this yields exponential com-
plexity due to term replacement. To see this, consider for instance the PIVP
ẋ1 = xk

2 , ẋ2 = xk
1 , for some k > 0. Then, for H =

{{x1, x2}}, the term
q1[x1/s(x1 + x2), x2/(1 − s)(x1 + x2)] will be of size O(2k). This stands in stark
contrast to ε-BDE, where the conditions involve a difference between polynomi-
als terms with no term rewritings. This discussion can be formalized as follows.

Theorem 3. There exists a polynomial Π such that, under the assumptions of
Theorem 2, the number of steps done by Algorithm 1 is O(

Π(2d · p)
)

if χ = F

and O(
Π(p)

)
if χ = B, respectively, where d is the maximum degree of the

polynomial and p is the number of monomials present in the PIVP.

In practice, d is usually not large. For example, mass-action CRNs feature
ODEs with degree-two polynomials because in nature at most two species inter-
act in every reaction. An experimental comparison between the reduction run-
times of ε-FDE and ε-BDE will be presented in Sect. 5. We also remark that since
0-FDE/BDE coincides with FDE/BDE, the above result provides a complexity
bound for a subclass of ODE systems considered in [11].

Other computational considerations motivate the choice of the definitions of
approximate differential equivalence given in this paper. Another natural def-
inition could have involved the computation of the maximal distance between
derivatives “semantically”, i.e., under all possible evaluations within a given
domain of interest. For example, consider the PIVP ẋ1 = x3

1 − x2, ẋ2 = x1 − x3
2.

Establishing that {{x1, x2}} is an ε-BDE would require checking that the differ-
ence between the derivatives satisfies

|ẋ1 − ẋ2| = |x3
1 − x1 + x3

2 − x2| ≤ ε, for all 0 ≤ x1, x2 ≤ C (4)

for some finite C > 0 that represents some bounded domain where the trajec-
tories are assumed to live. Since this example shows that this question is in
general equivalent to solving a nonconvex optimization problem, we infer that
the problem is NP-hard [29].

However it can be easily shown that our approximate differential equivalence,
defined through the coefficients of the polynomials, corresponds to checks such
as (4) in the following sense: If a partition H satisfies constraints similar to (4)
with respect to some ε > 0, then there exists an ε′ > 0 such that H is an
ε′-FDE/BDE, and vice versa. The basic idea is to observe that a polynomial is
the zero function if and only if its coefficients are all zero.

Finally, we remark that our structural/syntactic criteria can be used for PIVPs
only. It is the lack of analogous conditions in the case of more general functions like
minima or roots which prevents our approximate differential equivalences to be
extended in a straightforward way to the full class of nonlinear ODEs of [11].
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Reference PIVP. Given a partition of variables that represents an approxi-
mate differential equivalence, we construct a reference PIVP by finding a “per-
turbation” of the original PIVP—i.e., a modification of the initial condition
σ and the coefficients present in q1, . . . , qn—which ensures that very partition
becomes an exact differential equivalence. On this reference PIVP one can use
the quotienting algorithms for FDE/BDE developed in [11] (and not restated
here formally for brevity). Therefore, the as-obtained quotient represents an
approximate reduction of the original PIVP.

We obtain the desired perturbation by treating the original initial conditions
and polynomial coefficients uniformly as initial conditions on an extended PIVP
where every coefficient is parameterized and turned into a new ODE variable.

Definition 5. The parameterization of a polynomial qi in normal form with
variables S is denoted by q̂i and arises from qi by replacing, for each α ∈ N

S
0 ,

the constant c(qi, x
α) with the parameter c(q̂i, x

α).

Example 4. The polynomials q2 = 1.99x1 −x2 and q3 = 2.01x1 −x3 from Exam-
ple 1 give rise to the parameterized polynomials q̂2 = c(q̂2, x1)x1 + c(q̂2, x2)x2

and q̂3 = c(q̂3, x1)x1 + c(q̂2, x3)x3, respectively.

Definition 6 (Extended PIVP). For a PIVP P with variables S, set Θ =
{c(q̂i, x

α) | 1 ≤ i ≤ n, α ∈ N
S
0 }. Its extended version P̂ has variables S ∪ Θ

and is given by ẋi = q̂i and ċ(q̂i, x
α) = 0, where xi ∈ S and α ∈ N

S
0 . For a

given σ̂ ∈ R
S∪Θ, let P̂(σ̂) denote the PIVP which arises from P̂ by replacing

each v ∈ S ∪ Θ by the corresponding real value σ(v) ∈ R in P̂. In particular, let
σ̂0 ∈ R

S∪Θ be such that P(σ) = P̂(σ̂0).

Example 5. If P is the PIVP from Example 1, its extended version P̂ is

ẋ1 = c(q̂1, x1)x1 + c(q̂1, x2)x2 + c(q̂1, x3)x3, ċ(q̂1, xi) = 0, i = 1, 2, 3,

ẋ2 = c(q̂2, x1)x1 + c(q̂2, x2)x2, ċ(q̂2, xi) = 0, i = 1, 2, 3,

ẋ3 = c(q̂3, x1)x1 + c(q̂3, x2)x2, ċ(q̂3, xi) = 0, i = 1, 2, 3.

The corresponding σ̂0 satisfies σ̂0(xi) = σ(xi) for 1 ≤ i ≤ 3 and

σ̂0

(
c(q̂1, x1)

)
= −4.00, σ̂0

(
c(q̂1, x2)

)
= 1.00, σ̂0

(
c(q̂1, x3)

)
= 1.00,

σ̂0

(
c(q̂2, x1)

)
= 1.99, σ̂0

(
c(q̂2, x2)

)
= −1.00,

σ̂0

(
c(q̂3, x1)

)
= 2.01, σ̂0

(
c(q̂3, x2)

)
= −1.00.

The following is needed for the definition of the reference PIVP.

Definition 7. Given constant free polynomial ℘̂ (i.e., such that ℘̂(0) = 0) and
Ξ ⊆ S ∪ Θ ∪ {s}, let t(℘̂, xα,Ξ) denote the coefficient term of xα in N (℘̂,Ξ),
where α ∈ N

Ξ
0 and N (℘̂,Ξ) is the normal form of ℘̂ where variables outside Ξ

are treated as parameters.

Example 6. With q̂2 and q̂3 as in Example 4 and Ξ = {x1, x2, x3}, the normal
form N (q̂2 − q̂3,Ξ) is given by (c(q̂2, x1) − c(q̂3, x1))x1 + (c(q̂2, x2) − c(q̂3, x2))x2,
while t(q̂2 − q̂3, x1,Ξ) = c(q̂2, x1) − c(q̂3, x1).
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Definition 8. Given a PIVP with variables S and an ε-FDE partition H of S,
the set of linear constraints of H is given by

{
t(℘̃H

i,j , x
α,S ∪ {s}) = 0 | α ∈ N

S∪{s}
0 ,H ∈ H and xi ∼H xj

}
(5)

with ℘̃H
i,j =

∑
xk∈H q̂k − ∑

xk∈H q̂k[xi/s(xi + xj), xj/(1 − s)(xi + xj)].
If H is an ε-BDE partition of S, the corresponding set of linear constraints

is
{
t(℘̃H

i,j , x
α,S) = 0 | α ∈ N

S
0 , xi ∼H xj

}

∪{
xij − xij+1 = 0 | 1 ≤ j ≤ k − 1 and {xi1 , . . . , xik} ∈ S/∼H

}
, (6)

where ℘̃H
i,j = (q̂i − q̂j)

[
xH′,1

/
xH′ , . . . , xH′,|H′|

/
xH′ :H ′ ∈H]

.

Example 7. From Example 2, we know that H = {{x1}, {x2, x3}} is a 0.02-BDE
partition of the PIVP (1). The set of linear constraints underlying H is given by
c(q̂2, x1) − c(q̂3, x1) = 0 and x2 − x3 = 0.

Remark 1. In line with its exact counterpart, an ε-BDE is “useful” under the
further constraint that related variables have the same initial conditions in the
reference model, as a necessary condition for having equal solutions at all time
points. This translates into adding the constraints in (6) that perturbed initial
conditions of related variables are equal. This leads, for instance, to the con-
straint x2 −x3 = 0 in the running example. For ε-FDE, instead, only constraints
on the parameters Θ are made.

Theorem 4. Given a PIVP P with variables S, an ε-FDE/BDE partition H
and a configuration σ̂ ∈ R

S∪Θ that satisfies (5)/(6), it holds that H is an
FDE/BDE of P̂(σ̂).

The linear system of constraints from Theorem 4 can be shown to be under-
determined, hence there are infinitely many perturbations that lead to an exact
differential equivalence. This observation is an instance of the well-known fact
that, in general, an approximate quotient is not unique. Here, we fix one candi-
date perturbation by assuming that nearby initial conditions yield nearby trajec-
tories. This fact is asymptotically true due to Gronwall’s inequality, as mentioned
in Sect. 1.

We are interested in finding a configuration σ̂ which satisfies the constraints
of Theorem 4 and minimizes the distance ‖σ̂ − σ̂0‖2. Mathematically, this cor-
responds to the optimization problem

σ̂∗ = argmin
σ̂:Eq. (5)/(6) holds

‖σ̂ − σ̂0‖2 (7)

Since the solution space of a linear system is convex, the Euclidian norm yields
a convex quadratic program that can be solved in polynomial time [22].



Guaranteed Error Bounds on Approximate Model Abstractions 113

Example 8. Let us continue Example 7 and assume that σ(x2) = σ(x3). In such
a case, it can be easily seen that σ̂∗ and σ̂0 satisfy σ̂∗(c(q̂2, x1)) = σ̂∗(c(q̂3, x1)) =(
σ̂0(c(q̂2, x1)) + σ̂0(c(q̂3, x1))

)
/2 = 2.00 and coincide on all other parameters. In

other words, the closest PIVP that enjoys an exact BDE relating x2 and x3 is
given, as expected, by perturbing the coefficients 1.99 and 2.01 of (1) to their
average value, yielding:

ẋ1 = −4.00x1 + x2 + x3 ẋ2 = 2.00x1 − x2 ẋ3 = 2.00x1 − x3

The above discussions are summarized in the following.

Theorem 5. Given a PIVP, ε ≥ 0, and an ε-FDE/BDE partition H, the solu-
tion of (7) exists and can be computed in polynomial time.

The solution of the optimization problem (7) stated in Theorem 5 is infor-
mally depicted in Fig. 1a.

The reference PIVP is the extended, exactly reducible PIVP with the opti-
mum initial condition σ̂∗, i.e., P̂(σ̂∗). Its ODE solution is called the reference
trajectory.

4 Error Bounds

The objective of this section is to provide a tight bound on the difference
between the solution of the original PIVP and the reference. More specifi-
cally, we will show how to compute two values δ > 0 and λ > 0 such that
for all initial conditions σ̂1 ∈ R

S∪Θ with ‖xσ̂1(0) − xσ̂∗(0)‖ ≤ δ, it holds that
max0≤t≤τ̂ ‖xσ̂1(t)−xσ̂∗(t)‖ ≤ λ‖xσ̂1(0)−xσ̂∗(0)‖, where xσ̂ denotes the solution
underlying P̂(σ̂) and τ̂ > 0 is a previously fixed finite time horizon.

δ

σ̂0

σ̂∗

Solution set of Eq. (5) / (6)

di
st
an
ce

σ̂∗
σ̂0

ε-FDE/BDE quotient

R
S∪Θ

Figure 1(b)Figure 1(a)

Fig. 1. Given a PIVP P, a partition G of S, and an ε > 0, the coarsest ε-FDE/BDE
partition H that refines G is constructed. Afterwards, the solution σ̂∗ of the optimiza-
tion problem (7) is computed in Fig. 1(a). This allows to compute the ε-FDE/BDE
quotient P̂(σ̂∗) of H. With this, λ and δ from Theorem 7 are calculated. In the case
the distance between σ̂0 and σ̂∗ does not exceed δ, the tight bounds of Theorem 7
can be applied and relate the trajectories of P̂(σ̂∗) and P̂(σ̂0) = P(σ), as depicted in
Fig. 1(b).
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The quantity δ gives the size of the ball around the initial condition σ̂∗ of the
reference PIVP, whereas λ is the amplifier that relates the maximum distance
between trajectories to the distance between the initial conditions. Therefore,
if the initial condition of the original PIVP P̂(σ̂0) falls within the prescribed δ
ball, then the above statement will provide a formal bound of the error made in
approximating the original PIVP P̂(σ̂0) with the reference PIVP. This idea is
visualized in Fig. 1(b).

Let us recall the notion of Jacobian matrix.

Definition 9. Given an extended PIVP with variables S ∪ Θ, the entries of the
Jacobian matrix A = (Ai,j)xi,xj∈S∪Θ are given by Ai,j = ∂xj

q̂i, where ∂x denotes
the partial derivative with respect to x.

Let A(t) ∈ R
S∪Θ×S∪Θ denote the Jacobian obtained by plugging in the reference

trajectory xσ̂∗(t). We will need the following result from the theory of ODEs.

Theorem 6. There exists a family of matrices Λ(t0, t1), with 0 ≤ t0 ≤ t1 ≤ τ̂ ,
such that the solution of ẏ(t) = A(t)y(t), where y(t0) = y0 and t0 ≤ t ≤ τ̂ , is
given by y(t) = Λ(t0, t)y0 for all t0 ≤ t ≤ τ̂ .

This is needed in the following.

Theorem 7. Consider an extended PIVP P̂ with variables S ∪ Θ and define
λ0 = max0≤t≤τ̂ ‖Λ(0, t)‖ and λ1 = max0≤t0≤t1≤τ̂ ‖Λ(t0, t1)‖. Further, define the
remainder function r : [0; τ̂ ] × R

S∪Θ → R
S∪Θ via

r(t, x − xσ̂∗(t)) = q̂(x) − q̂(xσ̂∗(t)) − A(t)(x − xσ̂∗(t))

and let 0 ≤ d2, d3, . . . be such that ‖r(t, y)‖ ≤ ∑deg(P̂)
k=2 dk‖y‖k for all y ∈ R

S∪Θ

and 0 ≤ t ≤ τ̂ . Then, with λ = 2λ0, for any xσ̂1(0) ∈ R
S∪Θ, it holds that

‖xσ̂1(0) − xσ̂∗(0)‖ ≤ δ ⇒ max
0≤t≤τ̂

‖xσ̂1(t) − xσ̂∗(t)‖ ≤ λ‖xσ̂1(0) − xσ̂∗(0)‖

whenever δ > 0 satisfies
∑deg(P̂)

k=2 dk(2λ0δ)k−1 ≤ (2λ1τ̂)−1.

Theorem 7 provides a bound on the difference xσ̂1(t) − xσ̂∗(t) in terms
of the initial perturbation xσ̂1(0) − xσ̂∗(0) if the latter is sufficiently small,
i.e., does not exceed δ. We wish to point out that the maximal δ satisfying
∑deg(P̂)

k=2 dk(2λ0δ)k−1 ≤ (2λ1τ̂)−1 is a root of a polynomial in one variable and
thus can be efficiently approximated from below via Newton’s method. Instead,
the assumption ‖r(s, y)‖ ≤ ∑deg(P̂)

k=2 dk‖y‖k on the remainder function r states
essentially that, for any k ≥ 2, the sum of all k-th order derivatives of r are
bounded by dk along the reference trajectory xσ̂∗ .

The next result shows that the bound of Theorem 7 is tight and relies on the
sharp bound available in the special case of linear systems (i.e., deg(P̂) = 1) as
discussed in [14].
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Theorem 8. If an extended PIVP P̂ satisfies deg(P̂) = 1 and λ = 2λ0, it holds
that

max
0≤t≤τ̂

‖xσ̂1(t) − xσ̂∗(t)‖ ≤ λ

2
‖xσ̂1(0) − xσ̂∗(0)‖

for any xσ̂1(0) ∈ R
S∪Θ. The bound is tight in the sense that there exist 0 ≤ t ≤ τ̂

and xσ̂1(0) ∈ R
S∪Θ such that ‖xσ̂1(t) − xσ̂∗(t)‖ = λ

2 ‖xσ̂1(0) − xσ̂∗(0)‖.
Note that the amplifier in Theorem 7 is twice as large as the amplifier in

Theorem 8. This is because the proof of Theorem 7 has to estimate nonlinear
terms present in the remainder function r. More importantly, Theorem 8 shows
that the amplifier of Theorem 7 cannot be substantially improved.

Remark 2. We note that λ0, λ1 can be estimated efficiently. Indeed, let exi
∈

R
S∪Θ be the xi-th unit vector in R

S∪Θ, i.e., exi
(xj) = δi,j where δi,j is the Kro-

necker delta. Then, if y(t0) = exi
, Theorem 6 implies y(t1) = Λ(t0, t1)exi

. Since
Λ(0, t1)exi

is the xi-column of Λ(0, t1) and Λ(t0, t1) = Λ(0, t1)Λ(0, t0)−1, this
shows that the matrices Λ(t0, t1) can be computed by solving |S ∪ Θ| instances
of the linear ODE system from Theorem 6 up to time τ̂ .

By calculating a bound L > 0 on max0≤t≤τ̂ ‖A(t)‖ and by computing the
matrices Λ(ti, tj) for all time points tk underlying a fixed discretization step
Δt > 0 of [0; τ̂ ], the following can be shown.

Lemma 1. Together with λ+
0 = maxi ‖Λ(0, ti)‖ and λ+

1 = maxi≤j ‖Λ(ti, tj)‖, it
holds that λ0 ≤ λ+

0 eLΔt and λ1 ≤ λ+
1 [1 + LΔt(eLΔt + 1)].

The next result simplifies the constraints on δ from Theorem 7 if deg(P̂) ≤ 3.

Lemma 2. In the case where deg(P̂) ≤ 3, the constraint on δ of Theorem 7

simplifies to δ ≤
[
2τ̂λ0λ1

(
d2 +

√
d2
2 + 2d3

λ1τ̂

)]−1

.

The above lemma applies, for instance, to most biochemical systems, as discussed
in Sect. 3. The next result, instead, allows for an efficient estimation of dk, with
2 ≤ k ≤ deg(P̂).

Lemma 3. Given an extended PIVP P̂ with variables S ∪ Θ, let #k(q̂i) be
the number of degree k monomials in N (q̂i) and D(q̂i, σ̂) the largest coeffi-
cient of N (q̂i) for configuration σ̂ ∈ R

S∪Θ. With C = max0≤t≤τ̂ ‖xσ̂∗(t)‖,
M = maxxi∈S maxk≥2 #k(q̂i) and D = maxxi∈S D(q̂i, σ̂∗), it suffices to set dk

in Theorem 7 to Cdeg(P̂)−kMD.

For the case of linear systems whose parameters are subject to perturbation,
instead, the following lemma can be applied. It provides a sharper estimate on
d2 but comes at the price of more involved computation.

Lemma 4. Given an extended PIVP P̂ with variables S∪Θ, the Hessian matrix
Hk = (Hk

i,j)xi,xj
of q̂k is given by Hk

i,j = ∂xi
∂xj

q̂k. With this, d2 can be chosen
as d2 = 1

2 · maxxi∈S∪Θ max0≤t≤τ̂ ‖Hi(xσ̂∗(t))‖.
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Fig. 2. H-tree network adapted from [31].

Table 1. Nominal parameters of elec-
tronic components at different depths i.

Example 9. Since deg(P̂) = 2 in Example 5, coefficients d3, d4, . . . are zero and
we only need to bound d2. Moreover, the constraint in Theorem 7 simplifies to
δ ≤ (4τ̂λ0λ1d2)−1 thanks to Lemma 2. By applying Lemma 3, instead, we see
that it suffices to choose d2 = 2.00 because M = 2.00 and D = 1.00. In the case
of τ̂ = 3.00, we thus get λ0 = λ1 = 1.40 which yields δ ≤ 0.02.

5 Evaluation

We consider a simplified (inductance free) version of a power distribution elec-
trical network from [31], arranged as a tree called H-tree (Fig. 2). We let N be
the depth of the tree and denote the resistances and the capacitances at depth
i by Ri,k and Ci,k, respectively. The source voltage is vs, here assumed to be
constant, vs = 2.0V. Then, the voltage across Ci,k, denoted by vi,k, obeys the
affine ODE

v̇1,1 =
vS − v1,1

R1,1C1,1
− v1,1 − v2,1

R2,1C1,1
− v1,1 − v2,2

R2,2C1,1
, v̇i,k =

vi−1,l − vi,k

Ri,kCi,k
, (8)

where 1 ≤ i ≤ N , k = 1, . . . , 2i−1, and l = �k/2�, where �·� denotes the ceil
function. Here we considered networks with depth up to N = 8. For depths
i ≤ 4, the nominal parameter values R∗

i and C∗
i were taken from [31]; for i ≥ 5,

instead, we extrapolated them. The parameters are summarized in Table 1.
In [31] the authors show that when the values of resistors and capacitors of

any depth are equal, i.e., Ri,· ≡ R∗
i and Ci,· ≡ C∗

i then the network is symmetric.
That is, the voltages at the capacitors in any level are equal at all time points.
Indeed,

{{vi,k | 1 ≤ k ≤ 2i−1} | 1 ≤ i ≤ N
}

is an exact BDE partition (with N
equivalence classes).

We now study the robustness of the symmetry under the realistic assumption
that resistances and capacitances are only approximately equal. In particular, we
test whether it is possible to explain quasi-symmetries when the parameters have
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Table 2. H-tree model results.

tolerance η = 0.01%. This corresponds to a practical situation when components
or measurements parameters enjoy high accuracy. We considered networks of
different size by varying the maximum depth N from 2 to 8. For each size, in
order to simulate a quasi-symmetric scenario we built 30 distinct ODE models
by sampling values for Ri,k and Ci,k uniformly at random within η percent
from their nominal values. These repetitions were made in order to avoid fixing
a single instance that might unfairly favor our algorithm. To each model we
applied the ε-BDE reduction algorithm; choosing ε = 6.00E−4, it returned a
quotient corresponding to a perfectly symmetrical case. The reduction times
were below 0.5 s in all cases. (Throughout this section, the runtimes reported
were measured on a VirtualBox virtual machine running Ubuntu 64 bits over an
actual 2.6 GHz Intel Core i5 machine with 4 GB of RAM.) Then, we computed
the values of δ and λ over a time horizon of 7 times units. This was chosen as
a representative time point, for any N , of the transient state of the network (to
account for the fact that, typically, circuits are analyzed in the time domain for
transient analysis only).

The presence of uncertain parameters required us to transform the originally
affine system (8) into a polynomial system of degree two (by substituting each
1/(Ri,kCj,l) with a corresponding new state variable) with 2N+1 states. This
nonlinearity ruled out the application of standard over-approximation techniques
for linear systems.

We present the results for the random model with the smallest value of δ
in Table 2. The runtimes (second column) refer to the computation cost of the
λ-δ pair. In all cases, δ turned out to be larger than the distance between the
original model and its quotient ‖σ̂0 − σ̂∗‖ = ‖xσ̂0(0)−xσ̂∗(0)‖ (shown in column
‖ · ‖). This demonstrates that the 0.01% tolerance can be formally explained
by approximate differential equivalence, as confirmed by the small values of the
amplifiers λ.

We compared against C2E2, CORA, and Flow∗. (We did not compare
our technique with other approaches applicable to nonlinear dynamics such as
VNODE-LP [32], Ariadne [6] or HySAT/iSAT [28] because those have been com-
pared to Flow∗ in the past [12].) While for CORA and Flow∗ the comparison
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can be made directly, C2E2 seeks to decide whether a given set is reachable.
In order to perform as fair a comparison as possible we chose unreachable sets
generously far away from the over-approximations computed with our bound, in
order to ensure that C2E2 computes an over-approximation proving this. In all
three cases, the initial uncertain set was fixed so as to correspond to the ball
around the initial condition of the reference model σ̂∗ that included the original
model σ̂0. This is the most favorable condition for the tools since it corresponds
to the smallest uncertainty set which can provide a guaranteed error bound.
Other settings of C2E2, CORA, and Flow∗ were chosen such to ensure success-
ful termination. In the case of Flow∗ we used estimation remainder 0.10 and
allowed for adaptive Taylor model degree between 2 and 6. In C2E2 we set the
K value to 2000. We used the time step 0.10 for C2E2 since this ensured safety
for the models that could be analyzed. For CORA and Flow∗ we set time step
equal to 0.01 as this led to tight enough bounds. For our approach, instead, we
used time step 0.023 because this ensured tight approximations of λ0 and λ1 via
Lemma 1. In all cases the time-out was set to 3 h.

The comparison results are also reported in Table 2. The over-approximations
computed by C2E2 are not shown because they need not to be tight in order
to verify the reachability problem. This is because C2E2 is refining an over-
approximation only if this is necessary to decide safety. Thus, we report that
C2E2 was able to verify a set to be safe, i.e., unreachable. For a network of
depth N , the over-approximations for CORA and Flow∗ are reported as the
maximal diameter of the flowpipe underlying vN,1 across all time points. As
such, it can be compared to the product λ · ‖σ̂0 − σ̂∗‖ given by our bound, which
is also explicitly reported in the table for the sake of easy comparability (column
λ·‖·‖). Both CORA and Flow∗ reported tight bounds, of the same orders as ours.
These correspond to at most ca. 1% error on the observed variable, which cannot
exceed the value of 2.0 (the source voltage applied to the network). C2E2 did
not terminate within the time-out with models with N > 3, while Flow∗ ran out
of memory for N > 4; CORA, instead, failed to compute the symbolic Jacobian
matrices for N > 5. Our approach, instead, timed out for N = 8. However, we
wish to point out that our algorithm naturally applies to parallelization. Indeed,
its bottleneck is in the computation of the set of linear ODE systems discussed
in Remark 2, which can be trivially solved independently from each other.

Discussion. In summary, the experimental results suggest that our bounding
technique may complement the current state of the art in reachability analysis.
Indeed, it has been shown to handle ODE systems of larger size, but it provides a
δ neighborhood that can explain perturbations up to ca 0.1% at best. This makes
our approach beneficial for the automatic detection and abstraction from quasi-
symmetries due to small uncertainties, e.g., measurement errors. On the other
hand, algorithms such as those implemented in C2E2, CORA, and Flow∗ can
theoretically cover arbitrarily larger initial uncertainties, but at a computational
cost that blocked their applicability to our larger benchmarks. In future work it
is worth investigating a possible combination of these techniques.
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6 Conclusion

Reasoning about quantitative properties approximately can represent an effec-
tive way of taming the complexity of real systems. Here we have considered
ordinary differential equations (ODEs) with polynomial derivatives. We devel-
oped notions of equivalence as a relaxation of their exact counterparts, allowing
the derivatives of related ODE variables to vary up to a desired tolerance. Our
algorithmic approach can be useful to systematically discover quasi-symmetries
in situations such as those presented in our case study. In future work, it would
be also possible to integrate other bounding techniques, such as [34] which lacks
an automatic synthesis of a reference model but can offer a tradeoff between
tightness of the bound and computation cost in its derivation.
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12. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

13. Danos, V., Laneve, C.: Formal molecular biology. Theoret. Comput. Sci. 325(1),
69–110 (2004)
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Abstract. Probabilistic timed automata (PTAs) are timed automata
(TAs) extended with discrete probability distributions. They serve as a
mathematical model for a wide range of applications that involve both
stochastic and timed behaviours. In this work, we consider the prob-
lem of model-checking linear dense-time properties over PTAs. In par-
ticular, we study linear dense-time properties that can be encoded by
TAs with infinite acceptance criterion. First, we show that the problem
of model-checking PTAs against deterministic-TA specifications can be
solved through a product construction. Based on the product construc-
tion, we prove that the computational complexity of the problem with
deterministic-TA specifications is EXPTIME-complete. Then we show
that when relaxed to general (nondeterministic) TAs, the model-checking
problem becomes undecidable. Our results substantially extend state of
the art with both the dense-time feature and the nondeterminism in TAs.

1 Introduction

Stochastic timed systems are systems that exhibit both timed and stochastic
behaviours. Such systems play a dominant role in many applications [1], hence
addressing fundamental issues such as safety and performance over these systems
are important. Probabilistic timed automata (PTAs) [2–4] serve as a good math-
ematical model for these systems. They extend the well-known model of timed
automata [5] (for nonprobabilistic timed systems) with discrete probability dis-
tributions, and Markov Decision Processes (MDPs) [6] (for untimed probabilistic
systems) with timing constraints.
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Formal verification of PTAs has received much attention in recent years [2].
For branching-time model-checking of PTAs, the problem is reduced to com-
putation of reachability probabilities over MDPs through well-known finite
abstraction for timed automata (namely regions and zones) [3,4,7]. Advanced
techniques for branching-time model checking of PTAs such as inverse method
and symbolic method have been further explored in [8–11]. Extension with cost
or reward, resulting in priced PTAs, has also been well investigated. Jurdzinski
et al. [12] and Kwiatkowska et al. [13] proved that several notions of accumu-
lated or discounted cost are computable over priced PTAs, while cost-bounded
reachability probability over priced PTAs is shown to be undecidable by Berend-
sen et al. [14]. Most verification algorithms for PTAs have been implemented in
the model checker PRISM [15]. Computational complexity of several verification
problems for PTAs has been studied, for example, [12,16,17].

For linear-time model-checking, much less is known. As far as we know,
the only relevant result is by Sproston [18] who proved that the problem of
model-checking PTAs against linear discrete-time properties encoded by untimed
deterministic omega-regular automata (e.g., Rabin automata) can be solved by a
product construction. In his paper, Sproston first devised a production construc-
tion that produces a PTA out of the input PTA and the automaton; then he
proved that the problem can be reduced to omega-regular verification of MDPs
through maximal end components.

In this paper, we study the problem of model-checking linear dense-time
properties over PTAs. Compared with discrete-time properties, dense-time prop-
erties take into account timing constraints, and therefore is more expressive and
applicable to time-critical systems. Simultaneously, verification of dense-time
properties is more challenging since it requires to involve timing constraints.
The extra feature of timing constraints also brings more theoretical difficulty,
e.g., timed automata [5] (TAs) are generally not determinizable, which is in
contrast to untimed automata (such as Rabin or Muller automata).

We focus on linear dense-time properties that can be encoded by TAs. Due
to the ability to model dense-time behaviours, TAs can be used to model real-
time systems, while they can also act as language recognizers for timed omega-
regular languages. Here we treat TAs as language recognizers for timed paths
from a PTA, and study the problem of computing the minimum or maximum
probability that a timed path from the PTA is accepted by the TA. The intuition
is that a TA can recognize the set of “good” (or “bad”) timed paths emitting
from a PTA, so the problem is to compute the probability that the PTA behaves
in a good (or bad) manner. The relationship between TAs and linear temporal
logic (e.g., Metric Temporal Logic [19]) is studied in [20,21].

Our Contributions. We distinguish between the subclass of deterministic TAs
(DTAs) and general nondeterministic TAs. DTAs are the deterministic subclass
of TAs. Although the class of DTAs is weaker than general timed automata,
it can recognize a wide class of formal timed languages, and express inter-
esting linear dense-time properties which cannot be expressed in branching-
time logics (cf. [22]). We consider Rabin acceptance condition as the infinite
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acceptance criterion for TAs. We first show that the problem of model-checking
PTAs against DTA specifications with Rabin acceptance condition can be solved
through a nontrivial product construction which tackles the integrated feature
of timing constraints and randomness. From the product construction, we fur-
ther prove that the problem is EXPTIME-complete. Then we show that the
problem becomes undecidable when one considers general TAs. Our results sub-
stantially extend previous ones (e.g. [18]) with both the dense-time feature and
the nondeterminism in TAs.

Due to lack of space, detailed proofs of several results and some experimental
results are put in the full version [23].

2 Preliminaries

We denote by N, N0, Z, and R the sets of all positive integers, non-negative
integers, integers and real numbers, respectively. For any infinite word w =
b0b1 . . . over an alphabet Σ, we denote by inf(w) the set of symbols in Σ that
occur infinitely often in w. A clock is a variable for a nonnegative real number.
Below we fix a finite set X of clocks.

Clock Valuations. A clock valuation is a function ν : X → [0,∞). The set of clock
valuations is denoted by Val (X ). Given a clock valuation ν, a subset X ⊆ X of
clocks and a non-negative real number t, we let (i) ν[X := 0] be the clock valu-
ation such that ν[X := 0](x) = 0 for x ∈ X and ν[X := 0](x) = ν(x) otherwise,
and (ii) ν + t be the clock valuation such that (ν + t)(x) = ν(x)+ t for all x ∈ X .
We denote by 0 the clock valuation such that 0(x) = 0 for x ∈ X .

Clock Constraints. The set CC (X ) of clock constraints over X is generated by
the following grammar: φ := true | x ≤ d | c ≤ x | x+c ≤ y+d | ¬φ | φ∧φ
where x, y ∈ X and c, d ∈ N0. We write false for a short hand of ¬true. The
satisfaction relation |= between valuations ν and clock constraints φ is defined
through substituting every x ∈ X appearing in φ by ν(x) and standard semantics
for logical connectives. For a given clock constraint φ, we denote by �φ� the set
of all clock valuations that satisfy φ.

2.1 Probabilistic Timed Automata

A discrete probability distribution over a countable non-empty set U is a function
q : U → [0, 1] such that

∑
z∈U q(z) = 1. The support of q is defined as supp(q) :=

{z ∈ U | q(z) > 0}. We denote the set of discrete probability distributions over
U by D(U).

Definition 1 (Probabilistic Timed Automata [2]). A probabilistic timed
automaton (PTA) C is a tuple

C = (L, �∗,X ,Act, inv, enab,prob, AP ,L) (1)



Verifying Probabilistic Timed Automata 125

where:

– L is a finite set of locations;
– �∗ ∈ L is the initial location;
– X is a finite set of clocks;
– Act is a finite set of actions;
– inv : L → CC (X ) is an invariant condition;
– enab : L × Act → CC (X ) is an enabling condition;
– prob : L × Act → D

(
2X × L

)
is a probabilistic transition function;

– AP is a finite set of atomic propositions;
– L : L → 2AP is a labelling function.

W.l.o.g, we consider that both Act and AP is disjoint from [0,∞). Below we fix
a PTA C. The semantics of PTAs is as follows.

States and Transition Relation. A state of C is a pair (�, ν) in L × Val (X ) such
that ν |= inv(�). The set of all states is denoted by SC . The transition relation
→ consists of all triples ((�, ν), a, (�′, ν′)) satisfying the following conditions:

– (�, ν), (�′, ν′) are states and a ∈ Act ∪ [0,∞);
– if a ∈ [0,∞) then ν + τ |= inv(�) for all τ ∈ [0, a] and (�′, ν′) = (�, ν + a);
– if a ∈ Act then ν |= enab(�, a) and there exists a pair (X, �′′) ∈

supp(prob(�, a)) such that (�′, ν′) = (�′′, ν[X := 0]).

By convention, we write s
a−→s′ instead of (s, a, s′) ∈→. We omit ‘C’ in ‘SC ’ if the

underlying context is clear.

Probability Transition Kernel. The probability transition kernel P is the function
P : S × Act × S → [0, 1] such that

P((�, ν), a, (�′, ν′)) =

⎧
⎪⎨

⎪⎩

1 if (�, ν) a−→(�′, ν′) and a ∈ [0,∞)
∑

Y ∈B prob(�, a)(Y, �′) if (�, ν) a−→(�′, ν′) and a ∈ Act

0 otherwise

where B := {X ⊆ X | ν′ = ν[X := 0]}.

Well-formedness. We say that C is well-formed if for every state (�, ν) and action
a ∈ Act such that ν |= enab(�, a) and every (X, �′) ∈ supp(prob(�, a)), one has
that ν[X := 0] |= inv(�′). The well-formedness is to ensure that when an action
is enabled, the next state after taking this action will always be legal. In the
following, we always assume that the underlying PTA is well-formed. Non-well-
formed PTAs can be repaired into well-formed PTAs [9].

Paths. A finite path ρ (under C) is a finite sequence 〈s0, a0, s1, . . . , an−1, sn〉 (n ≥
0) in S × ((Act ∪ [0,∞)) × S)∗ such that (i) s0 = (�∗,0), (ii) a2k ∈ [0,∞) (resp.
a2k+1 ∈ Act) for all integers 0 ≤ k ≤ n

2 (resp. 0 ≤ k ≤ n−1
2 ) and (iii) for all

0 ≤ k ≤ n − 1, sk
ak−→sk+1. The length |ρ| of ρ is defined by |ρ| := n. An infinite

path (under C) is an infinite sequence 〈s0, a0, s1, a1, . . . 〉 in (S × (Act ∪ [0,∞)))ω
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such that for all n ∈ N0, the prefix 〈s0, a0, . . . , an−1, sn〉 is a finite path. The set
of finite (resp. infinite) paths under C is denoted by Paths∗C (resp. PathsωC ).

Schedulers. A (deteterministic) scheduler is a function σ from the set of finite
paths into Act∪[0,∞) such that for all finite paths ρ = s0a0 . . . sn, (i) σ(ρ) ∈ Act
(resp. σ(ρ) ∈ [0,∞)) if n is odd (resp. even) and (ii) there exists a state s′ such

that sn
σ(ρ)−−−→s′.

Paths under Schedulers. A finite path s0a0 . . . sn follows a scheduler σ if for all
0 ≤ m < n, am = σ (s0a0 . . . sm). An infinite path s0a0s1a1 . . . follows σ if for
all n ∈ N0, an = σ (s0a0 . . . sn). The set of finite (resp. infinite) paths following
a scheduler σ is denoted by Paths∗C,σ (resp. PathsωC,σ). We note that the set
Paths∗C,σ is countably infinite from definition.

Probability Spaces under Schedulers. Let σ be any scheduler. The probability
space w.r.t σ is defined as (ΩC,σ,FC,σ,PC,σ) where (i) ΩC,σ := PathsωC,σ, (ii)
FC,σ is the smallest sigma-algebra generated by all cylinder sets induced by
finite paths for which a finite path ρ induces the cylinder set Cyl(ρ) of all infinite
paths in PathsωC,σ with ρ being their (common) prefix, and (iii) PC,σ is the unique
probability measure such that for all finite paths ρ = s0a0 . . . an−1sn in Paths∗C,σ,

P
C,σ(Cyl(ρ)) =

∏n−1
k=0 P(sk, σ(s0a0 . . . ak−1sk), sk+1).

For details see [4].

Zenoness and Time-Divergent Schedulers. An infinite path π = s0a0s1a1 . . . is
zeno if

∑∞
n=0 dn < ∞, where dn := an if an ∈ [0,∞) and dn := 0 otherwise. Then

a scheduler σ is time divergent if PC,σ({π | π is zeno}) = 0. In the following, we
only consider time-divergent schedulers. The purpose is to eliminate non-realistic
zeno behaviours (i.e., performing infinitely many actions within a finite amount
of time).

WORKα

x ≤ 10
{α}

•

WORKβ

x ≤ 15
{β}

•

τα, true

{x}, 0.1

{x}, 0.9τβ , true

{x}, 0.2
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Fig. 1. A simple task-processing example
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Fig. 2. A DTRA specification
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In the following example, we illustrate a PTA which models a simple task-
processing example.

Example 1. Consider the PTA depicted in Fig. 1. WORKα,WORKβ are loca-
tions and x is the only clock. Below each location first comes (vertically)
its invariant condition and then the set of labels assigned to the loca-
tion. For example, inv(WORKα) = x ≤ 10 and L(WORKα) = {α}. The
two dots together with their corresponding solid line and dashed arrows
refer to two actions τα, τβ with their enabling conditions and transition
probabilities given by the probabilistic transition function. For example,
the upper dot at the right of WORKα refers to the action τα for which
enab(WORKα, τα) = true, prob(WORKα, τα)({x},WORKα) = 0.1, and
prob(WORKα, τα)({x},WORKβ) = 0.9. The PTA models a faulty machine
which processes two different kinds of jobs (i.e., α, β) in an alternating fashion.
If the machine fails to complete the current job, then it will repeat processing
the job until it completes the job. For job α, the machine always processes the
job within 10 time units (cf. the invariant condition x ≤ 10), but may fail to
complete the job with probability 0.1; Analogously, the machine always processes
the job β within 15 time units (cf. the invariant condition x ≤ 15), but may fail
to complete the job with probability 0.2. Note that we omit the initial location
in this example.

2.2 Timed Automata

Definition 2 (Timed Automata [22,24,25]). A timed automaton (TA) A is
a tuple

A = (Q,Σ,Y,Δ) (2)

where

– Q is a finite set of modes;
– Σ is a finite alphabet of symbols disjoint from [0,∞);
– Y is a finite set of clocks;
– Δ ⊆ Q × Σ × CC (Y) × 2Y × Q is a finite set of rules.

A is a deterministic TA (DTA) if the following holds:

1. (determinism) for (qi, bi, φi,Xi, q
′
i) ∈ Δ (i ∈ {1, 2}), if (q1, b1) = (q2, b2) and

�φ1� ∩ �φ2� = ∅ then (φ1,X1, q
′
1) = (φ2,X2, q

′
2);

2. (totality) for all (q, b) ∈ Q×Σ and ν ∈ Val (X ), there exists (q, b, φ,X, q′) ∈ Δ
such that ν |= φ.

Informally, A TA is deterministic if there is always exactly one rule applicable
for the timed transition. We do not incorporate invariants in TAs as we use TAs
as language acceptors.

Below we illustrate the semantics of TAs. We fix a TA A in the form (2).
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Configurations and One-Step Transition Relation. A configuration is a pair (q, ν),
where q ∈ Q and ν ∈ Val (Y). The one-step transition relation

⇒ ⊆ (Q × Val (Y)) × (Σ ∪ [0,∞)) × (Q × Val (Y))

is defined by: ((q, ν), a, (q′, ν′)) ∈⇒ iff either (i) a ∈ [0,∞) and (q′, ν′) = (q, ν+a)
or (ii) a ∈ Σ and there exists a rule (q, a, φ,X, q′) ∈ Δ such that ν |= φ and
ν′ = ν[X := 0]. For the sake of convenience, we write (q, ν) a=⇒(q′, ν′) instead of
((q, ν), a, (q′, ν′)) ∈⇒. Note that if A is deterministic, then there is a unique
(q′, ν′) such that (q, ν) a=⇒(q′, ν′) given any (q, ν), a.

Infinite Timed Words and Runs. An infinite timed word is an infinite sequence
w = {an}n∈N0 such that a2n ∈ [0,∞) and a2n+1 ∈ Σ for all n; the infinite timed
word w is time-divergent if

∑
n∈N0

a2n = ∞. A run of A on an infinite timed
word w = {an}n∈N0 with initial configuration (q, ν), is an infinite sequence ξ =
{(qn, νn, an)}n∈N0 satisfying that (q0, ν0) = (q, ν) and (qn, νn) an=⇒(qn+1, νn+1) for
all n ∈ N0; the trajectory traj(ξ) of the run ξ is defined as an infinite word over
Q such that traj(ξ) := q0q1 . . . . Note that if A is deterministic, then there is a
unique run on every infinite timed word.

Below we illustrate the acceptance condition for TAs. We consider Rabin
acceptance condition as the infinite acceptance condition.

Definition 3 (Rabin Acceptance Condition [1]). A TA with Rabin accep-
tance condition (TRA) is a tuple

A = (Q,Σ,Y,Δ,F) (3)

where (Q,Σ,Y,Δ) is a TA and F is a finite set of pairs F =
{(H1,K1), . . . , (Hn,Kn)} representing a Rabin condition for which Hi and Ki

are subsets of Q for all i ≤ n. A is a deterministic TRA (DTRA) if (Q,Σ,Y,Δ)
is a DTA. A set Q′ ⊆ Q is Rabin-accepting by F , written as the predicate
ACC (Q′,F), if there is 1 ≤ i ≤ n such that Q′ ∩ Hi = ∅ and Q′ ∩ Ki = ∅. An
infinite timed word w is Rabin-accepted by A with initial configuration (q, ν)
iff there exists a run ξ of (Q,Σ,Y,Δ) on w with (q, ν) such that inf(traj(ξ)) is
Rabin-accepting by F .

Example 2. Consider the DTRA depicted in Fig. 2. The alphabet of this DTRA
is the powerset of atomic propositions in Fig. 1. In the figure, INIT, qα, qβ and
FAIL are modes with the Rabin condition F = {({FAIL}, {qα, qβ})}, y is a clock
and arrows between modes are rules. Cγ ,Wγ (γ ∈ {α, β}) are undetermined
integer constants. For example, there are four rules emitting from qα:

(qα, {α}, y ≤ Cα, ∅, qα), (qα, {β}, y ≤ Wβ , {y}, qβ),

(qα, {α}, Cα < y, ∅,FAIL), (qα, {β},Wβ < y, ∅,FAIL).

INIT is the initial mode to read the first symbol upon which transiting to either
qα or qβ . FAIL is a deadlock mode from which all rules go to itself. Note that the
rules of the DTRA does not satisfy the totality condition. However, we assume
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that all missing rules lead to the mode FAIL and does not affect the Rabin
acceptance condition. The mode qα does not reset the clock y until it reads β.
Moreover, qα does not transit to FAIL only if the time spent within a maximal
consecutive segment of α’s (in an infinite timed word) is no greater than Cα time
units (cf. the rule (qα, {α}, y ≤ Cα, ∅, qα)) and the total time from the start of
the segment until β is read (the time within a maximal consecutive segment of
α’s plus the time spent on the last α in the segment) is no greater than Wβ

(cf. the rule (qα, {β}, y ≤ Wβ , {y}, qβ)). The behaviour of the mode qβ can be
argued similar to that of qα where the only difference is to flip α and β. From
the Rabin acceptance condition, the DTRA specifies a property on infinite timed
words that the time spent within a maximal consecutive segment of α’s (resp.
β’s) and the total time until β (resp. α) is read always satisfy the conditions
specified by qα (resp. qβ).

3 Problem Statement

In this part, we define the PTA-TRA problem of model-checking PTAs against
TA-specifications. The problem takes a PTA and a TRA as input, and computes
the minimum and the maximum probability that infinite paths under the PTA
are accepted by the TRA. Informally, the TRA encodes the linear dense-time
property by judging whether an infinite path is accepted or not through its
external behaviour, then the problem is to compute the probability that an
infinite path is accepted by the TRA. In practice, the TRA can be used to
capture all good (or bad) behaviours, so the problem can be treated as a task
to evaluate to what extent the PTA behaves in a good (or bad) way.

Below we fix a well-formed PTA C taking the form (1) and a TRA A taking
the form (3). W.l.o.g., we assume that X ∩ Y = ∅ and Σ = 2AP . We first show
how an infinite path in PathsωC can be interpreted as an infinite timed word.

Definition 4 (Infinite Paths as Infinite Timed Words). Given an infinite
path π = (�0, ν0)a0(�1, ν1)a1(�2, ν2)a2 . . . under C, the infinite timed word L(π)
is defined as L(π) := a0L(�2)a2L(�4) . . . a2nL(�2n+2) . . . . Recall that ν0 = 0,
a2n ∈ [0,∞) and a2n+1 ∈ Act for n ∈ N0.

Remark 1. Informally, the interpretation in Definition 4 works by (i) dropping
(a) the initial location �0, (b) all clock valuations νn’s, (c) all locations �2n+1’s fol-
lowing a time-elapse, (d) all internal actions a2n+1’s of C and (ii) replacing every
�2n (n ≥ 1) by L(�2n). The interpretation captures only external behaviours
including time-elapses and labels of locations upon state-change, and discards
internal behaviours such as the concrete locations, clock valuations and actions.
Although the interpretation ignores the initial location, we deal with it in our
acceptance condition where the initial location is preprocessed by the TRA.

Definition 5 (Path Acceptance). An infinite path π of C is accepted
by A w.r.t initial configuration (q, ν), written as the single predicate

ACC (A, (q, ν), π), if there is a configuration (q′, ν′) such that (q, ν)
L(�∗)
===⇒(q′, ν′)

and the infinite word L(π) is Rabin-accepted by A with (q′, ν′).
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The initial location omitted in Definition 4 is preprocessed by specifying
explicitly that the first label L(�∗) is read by the initial configuration (q, ν).
Below we define acceptance probabilities over infinite paths under C.

Definition 6 (Acceptance Probabilities). The probability that C observes A
under scheduler σ and initial mode q ∈ Q, denoted by pσ

q , is defined by:

pσ
q := P

C,σ(AccPathsA,q
C,σ )

where AccPathsA,q
C,σ is the set of infinite paths under C that are accepted by the

TRA A w.r.t (q,0) i.e. AccPathsA,q
C,σ =

{
π ∈ PathsωC,σ | ACC (A, (q,0), π)

}
.

Since the set Paths∗C,σ is countably-infinite, AccPathsA,q
C,σ is measurable since it

can be represented as a countable intersection of certain countable unions of
some cylinder sets (cf. [1, Remark 10.24] for details).

Now we introduce the PTA-TRA problem.

– Input: a well-formed PTA C, a TRA A and an initial mode q in A;
– Output: infσ pσ

q and supσ pσ
q , where σ ranges over all time-divergent sched-

ulers for C.

We refer to the problem as PTA-DTRA if A is deterministic.

4 The PTA-DTRA Problem

In this section, we solve the PTA-DTRA problem through a product construc-
tion. Based on the product construction, we also settle the complexity of the
problem. Below we fix a well-formed PTA C in the form (1) and a DTRA A in
the form (3). W.l.o.g, we consider that X ∩ Y = ∅ and Σ = 2AP .

The Main Idea. The core part of the product construction is a PTA which
preserves the probability of the set of infinite paths accepted by A. The intuition
is to let A reads external actions of C while C evolves along the time axis. The
major difficulty is that when C performs actions in Act, there is a probabilistic
choice between the target locations. Then A needs to know the labelling of the
target location and the rule (in Δ) used for the transition. A naive solution is to
integrate each single rule in Δ into the enabling condition enab in C. However,
this simple solution does not work since a single rule fixes the labelling of a
location in C, while the probability distribution (given by prob) can jump to
locations with different labels. We solve this difficulty by integrating into the
enabling condition enough information on clock valuations under A so that the
rule used for the transition is clear.

The Product Construction. For each q ∈ Q, we let

Tq := {h : Σ → CC (Y) | ∀b ∈ Σ. (q, b, h(b),X, q′) ∈ Δ for some X, q′)} .
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The totality of Δ ensures that Tq is non-empty. Intuitively, every element of Tq

is a tuple of clock constraints {φb}b∈Σ , where each clock constraint φb is chosen
from the rules emitting from q and b. The product PTA C⊗Aq (between C and A
with initial mode q) is defined as

(
L⊗, �∗

⊗,X⊗,Act⊗, inv⊗, enab⊗,prob⊗, Q,L⊗
)

where:

– L⊗ := L × Q;

– �∗
⊗ := (�∗, q
) where q
 is the unique mode such that (q,0)

L(�∗)
===⇒(q
,0);

– X⊗ := X ∪ Y;
– Act⊗ := Act ×

⋃
q Tq;

– inv⊗(�, q) := inv(�) for all (�, q) ∈ L⊗;
– enab⊗ ((�, q), (a, h)) := enab(�, a) ∧

∧
b∈Σ h(b) if h ∈ Tq, and enab⊗

((�, q), (a, h)) := false otherwise, for all (�, q) ∈ L⊗, (a, h) ∈ Act⊗.
– L⊗ (�, q) := {q} for all (�, q) ∈ L⊗;
– prob⊗ is given by

prob⊗ ((�, q), (a, h)) (Y, (�′, q′)) :=
⎧
⎪⎨

⎪⎩

prob (�, a) (Y ∩ X , �′) if (q,L (�′) , h(L (�′)), Y ∩ Y, q′)
is a (unique) rule in Δ

0 otherwise

for all (�, q), (�′, q′) ∈ L⊗, (a, h) ∈ Act⊗ and Y ∈ X⊗.
Besides standard constructions (e.g., the Cartesian product between L and

Q), the product construction also has Cartesian product between Act and
⋃

q Tq.
For each extended action (a, h), the enabling condition for this action is the
conjunction between enab(�, a) and all clock constraints from h. This is to ensure
that when the action (a, h) is taken, the clock valuation under A satisfies every
clock constraint in h. Then in the definition for prob⊗, upon the action (a, h),
the product PTA first perform probabilistic jump from C with the target location
�′, then chooses the unique rule (q,L (�′) , h(L (�′)), Y ∩ Y, q′) from the emitting
mode q and the label L (�′) for which the uniqueness comes from the determinism
of Δ, then perform the discrete transition from A. Finally, we label each (�, q)
by q to meet the Rabin acceptance condition. ��

It is easy to see that the PTA C⊗Aq is well-formed as C is well-formed and
A does not introduce extra invariant conditions.

Example 3. The product PTA between the PTA in Example 1 and the DTRA
in Example 2 is depicted in Fig. 3. In the figure, (WORKα, qα), (WORKβ , qβ)
and (WORKα,FAIL), (WORKβ ,FAIL) are product locations. We omit the ini-
tial location and unreachable locations in the product construction. From the
construction of Tq’s, the functions hi’s are as follows (we omit redundant labels
such as ∅ and {α, β} which never appear in the PTA):

– h0 = {{α} �→ y ≤ Cα, {β} �→ y ≤ Wβ};
– h1 = {{α} �→ y ≤ Cα, {β} �→ Wβ < y};
– h2 = {{α} �→ Cα < y, {β} �→ y ≤ Wβ};
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Fig. 3. The product PTA for our running example

– h3 = {{α} �→ Cα < y, {β} �→ Wβ < y};
– h4 = {{β} �→ y ≤ Cβ , {α} �→ y ≤ Wα};
– h5 = {{β} �→ y ≤ Cβ , {α} �→ Wα < y};
– h6 = {{β} �→ Cβ < y, {α} �→ y ≤ Wα};
– h7 = {{β} �→ Cβ < y, {α} �→ Wα < y}.

The intuition is that the DTA accepts all infinite paths under the PTA such
that the failing time for job γ (γ ∈ {α, β}) (the time within the consecutive γ’s)
should be no greater than Cγ and the waiting time for job γ (the failing time
plus the time spent on the last γ) should be no greater than Wγ .

Below we clarify the correspondence between C,A and C⊗Aq. We first show
the relationship between paths under C and those under C⊗Aq. Informally, paths
under C⊗Aq are just paths under C extended with runs of A.

Transformation T for Paths from C into C⊗Aq. The transformation is
defined as the function T : Paths∗C ∪ PathsωC → Paths∗C⊗Aq

∪ PathsωC⊗Aq
which

transform a finite or infinite path under C into one under C⊗Aq. For a finite path
ρ = (�0, ν0)a0 . . . an−1(�n, νn) under C (note that (�0, ν0) = (�∗,0) by definition),
we define T (ρ) to be the unique finite path

T (ρ) := ((�0, q0), ν0 ∪ μ0)a′
0 . . . a′

n−1((�n, qn), νn ∪ μn) (4)

under C⊗Aq such that the following conditions (†) hold:

– (q,0)
L(�∗)
===⇒(q0, μ0) (note that μ0 = 0);
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– for all 0 ≤ k < n, if ak ∈ [0,∞) then a′
k = ak and (qk, μk) ak=⇒(qk+1, μk+1);

– for all 0 ≤ k < n, if ak ∈ Act then a′
k = (ak, ξk) and

(qk, μk)
L(�k+1)=====⇒(qk+1, μk+1) where ξk is the unique function such that for each

symbol b ∈ Σ, ξk(b) is the unique clock constraint appearing in a rule emitting
from qk and with symbol b such that μk |= ξk(b).

Likewise, for an infinite path π = (�0, ν0)a0(�1, ν1)a1 . . . under C, we define T (π)
to be the unique infinite path

T (π) := ((�0, q0), ν0 ∪ μ0)a′
0((�1, q1), ν1 ∪ μ1)a′

1 . . . (5)

under C⊗Aq such that the three conditions in (†) hold for all k ∈ N0 instead of
all 0 ≤ k < n. From the determinism and totality of A, it is straightforward to
prove the following result.

Lemma 1. The function T is a bijection. Moreover, for any infinite path π
under C, π is non-zeno iff T (π) is non-zeno.

Below we also show the correspondence on schedulers before and after the
product construction.

Transformation θ for Schedulers from C into C⊗Aq. We define the func-
tion θ from the set of schedulers under C into the set of schedulers under C⊗Aq

as follows: for any scheduler σ for C, θ(σ) (for C⊗Aq) is defined such that
for any finite path ρ under C where ρ = (�0, ν0)a0 . . . an−1(�n, νn) and T (ρ)
given as in (4),

θ(σ)(T (ρ)) :=

{
σ(ρ) if n is even
(σ(ρ), λ(ρ)) if n is odd

where λ(ρ) is the unique function such that for each symbol b ∈ Σ, λ(ρ)(b) is
the clock constraint in the unique rule emitting from qn and with symbol b such
that μn |= λ(ρ)(b). Note that the well-definedness of θ follows from Lemma 1.

From Lemma 1, the product construction, the determinism and totality of
Δ, one can prove directly the following lemma.

Lemma 2. The function θ is a bijection.

Now we prove the relationship between infinite paths accepted by a DTRA before
product construction and infinite paths satisfying certain Rabin condition.

We introduce more notations. First, we lift the function T to all subsets of
paths in the standard fashion: for all subsets A ⊆ Paths∗C ∪ PathsωC , T (A) :=
{T (ω) | ω ∈ A}. Then for an infinite path π under C⊗Aq in the form (5), we
define the trace of π as an infinite word over Q by trace(π) := q0q1 . . . . Finally,
for any scheduler σ for C⊗Aq, we define the set RPathsσ by

RPathsσ :=
{

π ∈ PathsωC⊗Aq,σ | ACC (inf(trace(π)),F)
}

.

Intuitively, RPathsσ is the set of infinite paths under C⊗Aq that meet the Rabin
condition F from A. The following proposition clarifies the role of RPathsσ.
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Proposition 1. For any scheduler σ for C and any initial mode q for A, we
have T

(
AccPathsA,q

C,σ

)
= RPathsθ(σ).

Finally, we demonstrate the relationship between acceptance probabilities
before product construction and Rabin(-accepting) probabilities after product
construction. We also clarify the probability of zenoness before and after the
product construction. The proof follows standard argument from measure theory.

Proposition 2. For any scheduler σ for C and mode q, the followings hold:

– pσ
q = P

C,σ
(
AccPathsA,q

C,σ

)
= P

C⊗Aq,θ(σ)
(
RPathsθ(σ)

)
;

– P
C,σ ({π | π is zeno}) = P

C⊗Aq,θ(σ) ({π′ | π′ is zeno}) .

A side result from Proposition 2 says that θ preserves time-divergence for sched-
ulers before and after product construction. From Proposition 2 and Lemma 2,
one immediately obtains the following result which transforms the PTA-DTRA
problem into Rabin(-accepting) probabilities under the product PTA.

Corollary 1. For any initial mode q, optσpσ
q = optσ′PC⊗Aq,σ′

(RPathsσ′) where
opt refers to either inf (infimum) or sup (supremum), σ (resp. σ′) range over
all time-divergent schedulers for C (resp. C⊗Aq).

Solving Rabin Probabilities. We follow the approach in [18] to solve Rabin
probabilities over PTAs. Below we briefly describe the approach. The approach
can be divided into two steps. The first step is to ensure time-divergence. This
is achieved by (i) making a copy for every location in the PTA, (ii) enforcing a
transition from every location to its copy to happen after 1 time-unit elapses,
(iii) enforcing a transition from every copy location back to the original one
immediately with no time-delay, and (iv) putting a special label tick in every
copy. Then time-divergence is guaranteed by adding the label tick to the Rabin
condition. The second step is to transform the problem into limit Rabin proper-
ties over MDPs [1, Theorem 10.127]. This step constructs an MDP Reg[C⊗Aq]
from the PTA C⊗Aq through a region-graph construction so that the problem is
reduced to solving limit Rabin properties over Reg[C⊗Aq]. Regions are finitely-
many equivalence classes of clock valuations that serve as a finite abstraction
which capture exactly reachability behaviours over timed transitions (cf. [5]).
Then standard methods based on maximal end components (MECs) are applied
to Reg[C⊗Aq]. In detail, the algorithm computes the reachability probability to
MECs that satisfy the Rabin acceptance condition. In order to guarantee time-
divergence, the algorithm only picks up MECs with at least one location that
has a tick label. Based on this approach, our result leads to an algorithm for
solving the problem PTA-DTRA.

Note that in C⊗Aq, although the size of Act⊗ may be exponential due to
possible exponential blow-up from Tq, one easily sees that |L⊗| is |L| · |Q| and
|X⊗| = |X |+ |Y|. Hence, the size of Reg[C⊗Aq] is still exponential in the sizes of
C and A. It follows that optσp

σ
q can be calculated in exponential time from the

MEC-based algorithm illustrated in [1, Theorem 10.127], as is demonstrated by
the following proposition.
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Proposition 3. The problem PTA-DTRA is in EXPTIME in the size of the
input PTA and DTRA.

It is proved in [16] that the reachablity-probability problem for arbitrary
PTAs is EXPTIME -complete. Since Rabin acceptance condition subsumes
reachability, one obtains that the problem PTA-DTRA is EXPTIME-hard. Thus
we obtain the main result of this section which settles the computational com-
plexity of the problem PTA-DTRA.

Theorem 1. The PTA-DTRA problem is EXPTIME-complete.

Remark 2. The main novelty for our product construction is that by adopting
extended actions (i.e. Tq) and integrating them into enabling condition and prob-
abilistic transition function, the product PTA can know which rule to use from
the DTA upon any symbol to be read. This solves the problem that probabilistic
jumps can lead to different locations, causing the usage of different rules from
the DTA. Moreover, our product construction ensures EXPTIME-completeness
of the problem.

5 The PTA-TRA Problem

In this section, we study the PTA-TRA problem where the input timed automa-
ton needs not to be deterministic. In contrast to the deterministic case (which
is shown to be decidable and EXPTIME-complete in the previous section), we
show that the problem is undecidable.

The Main Idea. The main idea for the undecidability result is to reduce the
universality problem of timed automata to the PTA-TRA problem. The univer-
sality problem over timed automata is well-known to be undecidable, as follows.

Lemma 3 ([5, Theorem 5.2]). Given a timed automaton over an alphabet Σ
and an initial mode, the problem of deciding whether it accepts all time-divergent
timed words w.r.t Büchi acceptance condition over Σ is undecidable.

Although Lemma 3 is on Büchi acceptance condition, it holds also for Rabin
acceptance condition since Rabin acceptance condition extends Büchi accep-
tance condition. Actually the two acceptance conditions are equivalent over
timed automata (cf. [5, Theorem 3.20]). We also remark that Lemma 3 was
originally for multiple initial modes, which can be mimicked by a single initial
mode through aggregating all rules emitting from some initial mode as rules
emitting from one initial mode.

Now we prove the undecidability result as follows. The proof idea is that
we construct a PTA that can generate every time-divergent timed words with
probability 1 by some time-divergent scheduler. Then the TRA accepts all time-
divergent timed words iff the minimal probability that the PTA observes the
TRA equals 1.
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Theorem 2. Given a PTA C and a TRA A, the problem to decide whether the
minimal probability that C observes A (under a given initial mode) is equal to 1
is undecidable.

Proof (Proof Sketch). Let A = (Q,Σ,Y,Δ,F) be any TRA where the alphabet
Σ = {b1, b2, · · · , bk} and the initial mode is qstart. W.l.o.g, we consider that
Σ ⊆ 2AP for some finite set AP . This assumption is not restrictive since what
bi’s concretely are is irrelevant, while the only thing that matters is that Σ has
k different symbols. We first construct the TRA A′ = (Q′, Σ′,Y,Δ′,F) where
Q′ = Q ∪ {qinit} for which qinit is a fresh mode, Σ′ = Σ ∪ {b0} for which b0 is
a fresh symbol and Δ′ = Δ ∪ {〈qinit, b0, true,Y, qstart〉}. Then we construct the
PTA:

– L := Σ′, �∗ := b0, X := ∅ and Act := Σ;
– inv(bi) := true for bi ∈ L;
– enab(bi, bj) := true for bi ∈ L and bj ∈ Act;
– prob(bi, bj) is the Dirac distribution at (∅, bj) (i.e., prob(bi, bj)(∅, bj) = 1 and

prob(bi, bj)(X, b) = 0 whenever (X, b) = (∅, bj)), for bi ∈ L and bj ∈ Act;
– L(bi) := bi for bi ∈ L.

Note that we allow no clocks in the construction since clocks are irrelevant for
our result. Since we omit clocks, we also treat states (of C′) as single locations.
One can prove that A accepts all time-divergent timed words over Σ with initial
mode qstart iff the minimal probability that C′ observes A′ with initial mode qinit
equals 1. ��

Remark 3 Theorem 2 shows that the problem to qualitatively decide the minimal
probability is undecidable. On the other hand, the decidability of the problem
to decide maximum acceptance probabilities is left open.

6 Conclusion

In this paper, we studied the problem of model-checking PTAs against timed-
automata specifications. We considered Rabin acceptance condition as the accep-
tance criterion. We first solved the problem with deterministic-timed-automata
specifications through a product construction and proved that its computational
complexity is EXPTIME-complete. Then we proved that the problem with gen-
eral timed-automata specifications is undecidable through a reduction from the
universality problem of timed automata.

A future direction is zone-based algorithms for Rabin acceptance condition.
Another direction is to investigate timed-automata specifications with cost or
reward. Besides, it is also interesting to explore model-checking PTAs against
Metric Temporal Logic [19].
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7 Related Works

Model-checking TAs or MDPs against omega-regular (dense-time) properties is
well-studied (cf. [1,20,26], etc.). PTAs extend both TAs and MDPs with either
probability or timing constraints, hence require new techniques for verification
problems.On one hand, our technique extends techniques forMDPs (e.g. [26])with
timing constraints.On the other hand, our technique is incomparable to techniques
for TAs since linear-time model checking of TAs focus mostly on proving decidabil-
ity of temporal logic formulas (e.g. Metric Temporal logic [19–21]), while we prove
that model-checking PTAs against TA-specifications is undecidable.

Model-checking probabilistic timed models against linear dense-time prop-
erties are mostly considered for continuous-time Markov processes (CTMPs).
First, Donatelli et al. [22] proved an expressibility result that the class of lin-
ear dense-time properties encoded by DTAs is not subsumed by branching-
time properties. They also demonstrated an efficient algorithm for verifying
continuous-time Markov chains [22] against one-clock DTAs. Then various results
on verifying CTMPs are obtained for specifications through DTAs and general
timed automata (cf. e.g. [22,24,25,27–29]). The fundamental difference between
CTMPs and PTAs is that the former assign probability distributions to time
elapses, while the latter treat time-elapses as pure nondeterminism. As a conse-
quence, the techniques for CTMPs cannot be applied to PTAs.

For PTAs, the only relevant result is by Sproston [18] who developed an
approach for verifying PTAs against deterministic discrete-time omega-regular
automata by a similar product construction. Our results extend his result in
two ways. First, our product construction has the extra ability to tackle timing
constraints from the DTA. The extension is nontrivial since it needs to resolve
the integration between randomness (from the PTA) and timing constraints
(from the DTA), and still ensures the EXPTIME-completeness of the problem,
matching the computational complexity in the discrete-time case [18]. Second,
we have proved an undecidability result in the case of general nondeterministic
timed automata, thus extending [18] with nondeterminism.
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12. Jurdziński, M., Kwiatkowska, M., Norman, G., Trivedi, A.: Concavely-priced prob-
abilistic timed automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009.
LNCS, vol. 5710, pp. 415–430. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04081-8 28

13. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods Syst. Des.
29(1), 33–78 (2006)

14. Berendsen, J., Chen, T., Jansen, D.N.: Undecidability of cost-bounded reachability
in priced probabilistic timed automata. In: Chen, J., Cooper, S.B. (eds.) TAMC
2009. LNCS, vol. 5532, pp. 128–137. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02017-9 16

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

16. Laroussinie, F., Sproston, J.: State explosion in almost-sure probabilistic reacha-
bility. Inf. Process. Lett. 102(6), 236–241 (2007)

17. Jurdzinski, M., Sproston, J., Laroussinie, F.: Model checking probabilistic timed
automata with one or two clocks. LMCS 4(3), 1–28 (2008)

18. Sproston, J.: Discrete-time verification and control for probabilistic rectangular
hybrid automata. In: QEST, pp. 79–88 (2011)

19. Koymans, R.: Specifying real-time properties with metric temporal logic. Real
Time Syst. 2(4), 255–299 (1990)

20. Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: LICS,
pp. 188–197 (2005)

21. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996)

22. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic prop-
erties with CSL̂ {TA}. IEEE Trans. Software Eng. 35(2), 224–240 (2009)

23. Fu, H., Li, Y., Li, J.: Verifying probabilistic timed automata against omega-regular
dense-time properties. CoRR abs/1712.00275 (2017)

https://doi.org/10.1007/978-3-642-04368-0_17
https://doi.org/10.1007/978-3-642-04368-0_17
https://doi.org/10.1007/978-3-319-22975-1_10
https://doi.org/10.1007/978-3-642-04081-8_28
https://doi.org/10.1007/978-3-642-04081-8_28
https://doi.org/10.1007/978-3-642-02017-9_16
https://doi.org/10.1007/978-3-642-02017-9_16
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47


Verifying Probabilistic Timed Automata 139

24. Chen, T., Han, T., Katoen, J., Mereacre, A.: Model checking of continuous-time
Markov chains against timed automata specifications. Log. Methods Comput. Sci.
7(1), 1–34 (2011)

25. Fu, H.: Approximating acceptance probabilities of CTMC-paths on multi-clock
deterministic timed automata. In: HSCC, pp. 323–332 (2013)

26. Vardi, M.Y.: Probabilistic linear-time model checking: an overview of the
automata-theoretic approach. In: Katoen, J.-P. (ed.) ARTS 1999. LNCS, vol. 1601,
pp. 265–276. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48778-
6 16
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Abstract. The analysis of parametrised systems is a growing field in
verification, but the analysis of parametrised probabilistic systems is still
in its infancy. This is partly because it is much harder: while there are
beautiful cut-off results for non-stochastic systems that allow to focus
only on small instances, there is little hope that such approaches extend
to the quantitative analysis of probabilistic systems, as the probabilities
depend on the size of a system. The unicorn would be an automatic trans-
formation of a parametrised system into a formula, which allows to plot,
say, the likelihood to reach a goal or the expected costs to do so, against
the parameters of a system. While such analysis exists for narrow classes
of systems, such as waiting queues, we aim both lower—stepwise explor-
ing the parameter space—and higher—considering general systems.

The novelty is to heavily exploit the similarity between instances of
parametrised systems. When the parameter grows, the system for the
smaller parameter is, broadly speaking, present in the larger system.
We use this observation to guide the elegant state-elimination method
for parametric Markov chains in such a way, that the model transfor-
mations will start with those parts of the system that are stable under
increasing the parameter. We argue that this can lead to a very cheap
iterative way to analyse parametric systems, show how this approach
extends to reconfigurable systems, and demonstrate on two benchmarks
that this approach scales.

1 Introduction

Probabilistic systems are everywhere, and their analysis can be quite challenging.
Challenges, however, come in many flavours. They range from theoretical ques-
tions, such as decidability and complexity, through algorithms design and tool
development, to the application of parametric systems. This paper is motivated
by the latter, but melds the different flavours together.

We take our motivation from the first author’s work on biologically inspired
synchronisation protocols [8,9]. This application leaning work faced the problem
of exploring a parameter space for a family of network coordination protocols,
where interacting nodes achieve consensus on their local clocks by imitating
the behaviour of fireflies [22]. Global clock synchronisation emerges from local
interactions between the nodes, whose behaviour is that of coupled limit-cycle
c© Springer Nature Switzerland AG 2018
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oscillators. The method used was the same that we have seen applied by several
practitioners from engineering and biology: adjust the parameters, produce a
model, and use a tool like ePMC/IscasMC [12], PRISM [20], or Storm [6] to
analyse it.

In the case of the synchronisation protocols, the parameters investigated were
typical of those considered when evaluating the emergence of synchronisation in
a network of connected nodes: the number of nodes forming the network, the
granularity of the model (discrete length of an oscillation cycle), the strength
of coupling between the oscillators, the likelihood of interactions between nodes
being inhibited by some external factor, for instance message loss in a communi-
cation medium, and the length of the refractory period, an initial period in the
oscillation cycle of a node where interactions with other nodes are ignored.

The reason to explore the parameter space can be manifold. Depending on
the application, one might simply want to obtain a feeling of how the parameters
impact on the behaviour. Another motivation is to see how the model behaves,
compare it with observations, and adjust it when it fails to comply. Regardless
of the reason to adjust the parameter, the changes often lead to very similar
models.

Now, if we want to analyse hundreds of similar models, then it becomes
paramount to re-use as much of the analysis as possible. With this in mind, we
have selected model checking techniques for safety and reachability properties
of Markov chains that build on repeated state elimination [11] as the backbone
of our verification technique. State elimination is a technique that successively
changes the model by removing states. It works like the transformation from
finite automata to regular expressions: a state is removed, and the new structure
has all successors of this state as (potentially new) successors of the predecessors
of this state, with the respectively adjusted probabilities (and, if applicable,
expected rewards).

If these models are changed in shape and size when playing with the param-
eters, then these changes tend to be smooth: small changes of the parameters
lead to small changes of the model. Moreover, the areas that change—and, con-
sequentially, the areas that do not change—are usually quite easy to predict,
be it by an automated analysis of the model or by the knowledge of the expert
playing with her model, who would know full well which parts do or do not
change when increasing a parameter. These insights inform the order in which
the states are eliminated.

When, say, the increase of a parameter allows for re-using all elimination steps
but the last two or three, then repeating the analysis is quite cheap. Luckily, this
is typically the case in structured models, e.g. those who take a chain-, ring-,
or tree-like shape that can be inductively defined. As a running example of
a structured model we consider the Zeroconf protocol [3] for the autonomous
configuration of multiple hosts in a network with unique IP addresses (Fig. 1).
A host that joins the network selects an address uniformly at random from a
available addresses. If the network consists of h hosts, then the probability that
the selected address is already in use is q = h

a .
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The protocol then checks n times if the selected address is already in use by
sending a request to the network. If the address is fresh (which happens with a
probability of 1− q), none of these tests will fail, and the address will be classed
as new. If the address is already in use (which happens with a probability of q),
then each test is faulty: collisions go undetected with some likelihood p due to
message loss and time-outs. When a collision is detected (which happens with
a likelihood of 1 − p in each attempt, provided that a collision exists), then the
host restarts the process. If a collision has gone undetected after n attempts,
then the host will incorrectly assume that its address is unique.

While the family of Zeroconf protocols is also parameterised in the transition
probabilities, we are mostly interested in their parametrisation in the structure
of the model. Figures 1a and b show the models for n = k and n = k + 1,
respectively, successive checks after each selection of an IP. These two models
are quite similar: they structurally differ only in the introduction of a single state,
and the transitions that come with this additional state. If we are interested in
calculating the function that represents the probability of reaching the state
err in both models, where this function is given in terms of individual rational
functions that label the transitions, then the structural similarities allow us to
re-use the intermediate terms obtained from the evaluation for n = k when
evaluating for n = k + 1.

iok k k−1 . . . 1 err
1− q q p p p p

1− p
1− p

1− p

(a)

iok k+1 k k−1 . . . 1 err
1− q q p p p p p

1− p
1− p

1− p

1− p

(b)

Fig. 1. The zeroconf protocol for n = k (a) and n = k + 1 (b).

The structure of the paper is as follows. We begin by comparing our work to
similar approaches in Sect. 2. In Sect. 3, we introduce the novel algorithms for the
analysis of reconfigured models. We then evaluate our approach on two different
types of parametric models which are discussed in Sect. 4. Section 5 concludes
the paper and outlines future work.



Incremental Verification of Parametric and Reconfigurable Markov Chains 143

2 Related Work

Our work builds on previous results in the area of parametric Markov model
checking and incremental runtime verification of stochastic systems.

Daws [4] considered Markov chains, which are parametric in the transition
probabilities, but not in their graph structure. He introduced an algorithm to
calculate the function that represents the probability of reaching a set of target
states for all well-defined evaluations for a parametric Markov chain. For this, he
interprets the Markov chain under consideration as a finite automaton, in which
transitions are labelled with symbols that correspond to rational numbers or
variables. He then uses state elimination [13] to obtain a regular expression for
the language of the automaton. Evaluating these regular expressions into rational
functions yields the probability of reaching the target states. One limiting factor
of this approach is that the complete regular expression has to be stored in
memory.

Hahn et al. introduced [11] and implemented [10] a simplification and refine-
ment of Daws’ algorithm. Instead of using regular expressions, they store rational
functions directly. This has the advantage that possible simplifications of these
functions, such as cancellation of common factors, can be applied on the fly. This
allows memory to be saved. It also provides a more concise representation of the
values computed to the user. They have also extended the scope of the approach
from reachability, to additionally handle accumulated reward properties. Several
works from RWTH Aachen have followed up on solution methods for parametric
Markov chains [5,14,23]. This type of parametric model checking has been used
in [2] to build a model-repair framework for stochastic systems and in [15–17] to
reason about the robustness of robot controllers against sensor errors.

Our paper borrows some ideas from the work of Kwiatkowska et al. [21].
Their work considers MDPs that are labelled with parametric transition proba-
bilities. The authors do not aim to compute a closed-form function that repre-
sents properties of a model, but rather at accelerating the computation of results
for individual instantiations of parameter values. Rather than state elimination,
they use value iteration and other methods to evaluate the model for certain
parameter values. In doing so, they can for instance, re-use computations for
different instantiations of parameters that only depend on the graph structure
of the model that remains unchanged for different instantiations.

We also take inspiration from Forejt et al. [7], where the role of parameters
is different. Forejt et al. describe a policy iteration-based technique to evaluate
parametric MDPs. While they also considered parameters in [7] that can influ-
ence the model structure, they would exploit similarities to inform the search for
the policy when moving from one parameter value to the next. The repeatedly
called model checking of Markov chains, on the other hand, is not parametric.
Our approach is therefore completely orthogonal, as we focus on the analysis of
Markov chains. In more detail, Forejt et al. [7] would use an incremental app-
roach to find a good starting point for a policy iteration approach for MDPs. The
intuition there is that an optimal policy is likely to be good—if not optimal—on
the shared part of an MDP that grows with a parameter. This approach has
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the potential to find the policy in less steps, as less noise disturbs the search
in smaller MDPs, but its main promise is to provide an excellent oracle for a
starting policy. Moreover, in the lucky instances where the policy is stable, it can
also happen that there is a part of the Markov chain, obtained by using a policy
that builds on a smaller parameter, that is outside of the cone of influence of the
changes to the model. In this case, not only the policy, but also its evaluation is
stable under the parameter change.

3 Algorithms

We first describe the state elimination method of Hahn [11] for paramet-
ric Markov Chains (PMCs), and then introduce an algorithm that substan-
tially reduces the cost of recomputation of the parametric reachability prob-
ability for a reconfigured PMC. First we give some general definitions. Given
a function f we denote the domain of f by Dom(f). We use the notation
f ⊕ f ′ = f �Dom(f)\Dom(f ′) ∪f ′ to denote the overriding union of f and f ′.
Let V = {v1, . . . , vn} denote a set of variables over R. A polynomial g over V is
a sum of monomials

g(v1, . . . , vn) =
∑

i1,...,in

ai1 , . . . ,in vi1
1 . . . vin

n ,

where each ij ∈ N and each ai1 , . . . ,in ∈ R. A rational function f over a set of
variables V is a fraction f(v1, . . . , vn) = f1(v1,...,vn)

f2(v1,...,vn)
of two polynomials f1, f2

over V . We denote the set of rational functions from V to R by FV .

Definition 1. A parametric Markov chain (PMC) is a tuple D = (S, s0,P, V ),
where S is a finite set of states, s0 is the initial state, V = {v1, . . . , vn} is a
finite set of parameters, and P is the probability matrix P : S × S → FV .

A path ω of a PMC D = (S, s0,P, V ) is a non-empty finite, or infinite,
sequence s0, s1, s2, . . . where si ∈ S and P(si, si+1) > 0 for i � 0. We denote the
ith state of ω by ω[i], the set of all paths starting at state s by Paths(s), and the
set of all finite paths starting in s by Pathsf (s). For a finite path ωf ∈ Pathsf (s)
the cylinder set of ωf is the set of all infinite paths in Paths(s) that share the
prefix ωf . The probability of taking a finite path s0, s1, . . . , sn ∈ Pathsf (s0) is
given by

∏n
i=1 P(si−1, si). This measure over finite paths can be extended to a

probability measure Prs over the set of infinite paths Paths(s), where the smallest
σ-algebra over Paths(s) is the smallest set containing all cylinder sets for paths
in Pathsf (s). For a detailed description of the construction of the probability
measure we refer the reader to [18].

Definition 2. Given a PMC D = (S, s0,P, V ), the underlying graph of D is
given by GD = (S, E) where E = {(s, s′) | P(s, s′) > 0}.

Given a state s, we denote the set of all immediate predecessors and successors
of s in the underlying graph of D by preD(s) and postD(s), respectively, and we
define the neighbourhood of s as Neigh(s) = s ∪ preD(s) ∪ postD(s). We write
reachD(s, s′) if s′ is reachable from s in the underlying graph of D.
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Algorithm 1. State Elimination
1: procedure StateElimination(D, se)
2: requires: A PMC D and se, a state to eliminate in D.
3: for all (s1, s2) ∈ preD(se) × postD(se) do
4: P(s1, s2) ← P(s1, s2) + P(s1, se)

1
1−P(se,se)

P(se, s2)
5: end for
6: Eliminate(D, se) // remove se and incident transitions from D
7: return D
8: end procedure

3.1 State Elimination

The algorithm of Hahn [11] proceeds as follows, where the input is a PMC
D = (S, s0,P, V ) and a set of target states T ⊂ S. Initially, preprocessing is
applied and without loss of generality all outgoing transitions from states in T
are removed and a new state st is introduced such that P(t, st) = 1 for all t ∈ T .
All states s, where s is unreachable from the initial state or T is unreachable from
s, are then removed along with all incident transitions. A state se in S \ {s0, st}
is then chosen for elimination and Algorithm 1 is applied. Firstly, for every pair
(s1, s2) ∈ preD(se) × postD(se), the existing probability P(s1, s2) is incremented
by the probability of reaching s2 from s1 via se. The state and any incident
transitions are then eliminated from D. This procedure is repeated until only
s0 and st remain, and the probability of reaching T from s0 is then given by
P(s0, st).

3.2 Reconfiguration

Recall that we are interested in the re-use of information when recalculating
reachability for a reconfigured PMC. We can do this by choosing the order in
which we eliminate states in the original PMC. The general idea is that, if the
set of states where structural changes might occur is known a priori, then we
can apply state elimination to all other states first. We say that states where
structural changes might occur are volatile states.

Definition 3. A volatile parametric Markov chain (VPMC) is a tuple D =
(S, s0,P, V,Vol) where (S, s0,P, V ) is a PMC and Vol ⊆ S is a set of volatile
states for D.

Given a VPMC D = (S, s0,P, V,Vol), we can define an elimination ordering
for D as a bijection ≺D: S → {1, . . . , |S|} that defines an ordering for the
elimination of states in S, such that ≺D(s) < ≺D(s′) holds for all s ∈ S\Vol, s′ ∈
Vol, where ≺D(s) < ≺D(s′) indicates that s is eliminated before s′. Observe that
a volatile state in D is only eliminated after all non-volatile states.

Definition 4. A reconfiguration for a VPMC D = (S, s0,P, V,Vol) is a PMC
DR = (SR, s0,PR, V ), where SR is a set of states with SR ∩ S 
= {s0}, s0 and
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V are the initial state and the finite set of parameters for D. The reconfigured
probability matrix PR is a total function PR : SR × SR → FV such that, for all
s, s′ ∈ SR where P(s, s′) is defined, P(s, s′) 
= PR(s, s′) implies s, s′ ∈ Vol.

Fig. 2. Venn diagram showing the consis-
tent, reconfigured, and introduced states
for a VPMC D and reconfiguration DR.

Given a VPMC D and a reconfig-
uration DR for D we say that a state
s in S is consistent in DR if s is also
in SR, and the set of all predecessors
and successors of s remains unchanged
in DR (that is preD(s) = preDR(s),
postD(s) = postDR(s), P(s1, s) =
PR(s1, s) for every s1 ∈ preD(s), and
P(s, s2) = PR(s, s2) for every s2 ∈
postD(s)). We say that a state s in S
is reconfigured in DR if s is also in SR

and s is not consistent. Finally, we say
that a state s in SR is introduced in DR

if s is neither consistent nor reconfig-
ured. We denote the sets of all consistent, reconfigured, and introduced states by
Con(D,DR),Rec(D,DR), and Int(D,DR), respectively. Figure 2 shows the con-
sistent, reconfigured, and introduced states for D and DR.

Algorithm 2 computes the parametric reachability probability of some target
state in a VPMC D = (S, s0,P, V,Vol) for a given elimination ordering for D.
Observe that we compute the reachability probability with respect to a single
target state. The reachability of a set of target states can be computed by first
removing all outgoing transitions from existing target states, and then introduc-
ing a new target state to which a transition is taken from any existing target
state with probability 1. We introduce a new initial state to the model, from
which a transition is taken to the original initial state with probability 1. The
algorithm computes a partial probability matrix P′, initialised as a zero matrix,
that stores the probability of reaching s2 from s1 via any eliminated non-volatile
state, where s1, s2 are either volatile states, the initial state, or the target state.
It also computes an elimination map mVol

D , a function mapping tuples of the
form (se, s1, s2), where se is an eliminated volatile state and s1, s2 are either
volatile states, the initial state, or the target state, to the value computed dur-
ing state elimination for the probability of reaching s2 from s1 via se. We are only
interested in transitions between volatile states, the initial state, or the target
state, since all non-volatile states in any reconfiguration of D will be eliminated
first. Computed values for transitions to or from these states therefore serve no
purpose once they have been eliminated.

Given a reconfiguration DR = (SR, s0,PR, V ) for D, an elimination ordering
for D, and the partial probability matrix and mapping computed using Algo-
rithm 2, Algorithm 3 computes the parametric reachability probability for DR

as follows. Firstly the set of all non-volatile states of D and incident transitions
are removed from DR, though state elimination itself does not occur. A set of
infected states is then initialised to be the set of all states that are reconfigured
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Algorithm 2. Parametric Reachability Probability for VPMCs
1: procedure ParametricReachability(D, ≺D, st)
2: requires: a target state st ∈ S, and for all s ∈ S it holds reachD(s0, s) and

reachD(s, st).
3: E ← S \ {s0, st} // states to be eliminated from D
4: P′ ← 0|S|,|S| // partial probability matrix
5: mVol

D ← ∅ // elimination map
6: while E �= ∅ do
7: se ← arg min ≺D�E
8: for all (s1, s2) ∈ preD(se) × postD(se) do
9: p = P(s1, se)

1
1−P(se,se)

P(se, s2)

10: if s1 ∈ Vol ∪ {s0, st} and s2 ∈ Vol ∪ {s0, st} then
11: if se �∈ Vol then
12: P′(s1, s2) ← P′(s1, s2) + p
13: else
14: mVol

D ← mVol
D ⊕ {(se, s1, s2) 	→ p}

15: end if
16: end if
17: P(s1, s2) ← P(s1, s2) + p
18: end for
19: Eliminate(D, se) // remove se and incident transitions from D
20: E ← E \ {se}
21: end while
22: return (P(s0, st),P

′,mVol
D )

23: end procedure

in DR. Then, for every other remaining state that is not introduced in DR, if
that state or its neighbours are not infected we treat this state as a non-volatile
state. That is, we update P′ with the corresponding values in mVol

D and remove
the state and its incident transitions without performing state elimination. If
the state, or one of its neighbours, is infected then the probability matrix is
updated such that all transitions to and from that state are augmented with the
corresponding values in P′. These entries are then removed from the mapping.
Subsequently, state elimination (Algorithm 1) is applied, and the infected area
is expanded to include the immediate neighbourhood of the eliminated state.
Finally, state elimination is applied to the set of all remaining introduced states
in DR.

Example 1. Consider again the Zeroconf models from Figs. 1a and b. Let Zk =
(S, s0,P, V,Vol) be a VPMC for n = k, such that S = {1, . . . , k} ∪ {s0, i, err},
V = {p, q}, and Vol = {i, k}. We are interested in the parametric reachability
probability of the state err. Note that preprocessing removes the state ok from Zk

since reachZk
(ok, err) does not hold. Now define ≺Zk

= {1 �→ 1, 2 �→ 2, . . . , k �→
k, i �→ k+1} to be an elimination ordering for Zk. State elimination then proceeds
according to ≺Zk

, and after the first k − 1 states have been eliminated we have
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Algorithm 3. Parametric Reachability Probability for reconfigured VMPC
1: procedure ReconfiguredParametricReachability(D, DR, ≺D, P′, mVol

D , st)
2: requires: absorbing target state st such that st ∈ S and st ∈ SR, for all s ∈ S it

holds reachDR(s0, s) and reachDR(s, st), and for all s′ ∈ SR it holds reachDR(s0, s
′)

and reachDR(s′, st).
3: M ← (Vol ∩ SR) ∪ {s0, st}
4: Elim ← Con(D,DR) \ M
5: Eliminate(DR,Elim) // remove all se ∈ Elim and incident transitions from D
6: Elim ← Vol ∩ SR

7: Infected ← Rec(D,DR)
8: PR(s0, st) = P′(s0, st)
9: while Elim �= ∅ do

10: se ← arg min ≺D�Elim
11: if Infected ∩ Neigh(se) = ∅ then
12: for all (s′

e, s1, s2) ∈ Dom(mVol
D �{se}×M2) do

13: P′(s1, s2) ← P′(s1, s2) + mVol
D (s′

e, s1, s2)
14: end for
15: Eliminate(DR, se) // remove se and incident transitions from DR

16: else
17: for all {(s1, s2) ∈ SR × SR | s1 = se or s2 = se} do
18: PR(s1, s2) ← PR(s1, s2) + P′(s1, s2)
19: P′(s1, s2) ← 0
20: end for
21: DR ← StateElimination(DR, se)
22: Infected ← Infected ∪ Neigh(se)
23: end if
24: Elim ← Elim \ {se}
25: end while
26: for all se ∈ Int(D,DR) do
27: DR ← StateElimination(DR, se)
28: end for
29: return PR(s0, st)
30: end procedure

P′(k, err) = pk, P′(k, i) =
k−1∑

j=1

(pj − pj+1).

Eliminating the remaining volatile states k and i then yields

mVol
Zk

= {(k, i, err) �→ qpk, (k, i, i) �→ q(1 − pk), (i, s0, err) �→ qpk

1 − q(1 − pk)
}.

Now let Zk+1 = (SR, s0,PR, V ) be a reconfiguration for Zk such that
SR = S ∪ {k + 1}. We then have Con(Zk, Zk+1) = {1 . . . k − 1} ∪ {s0, err},
Rec(Zk, Zk+1) = {k, i}, and Int(Zk, Zk+1) = {k +1}. First, all states 1, . . . , k −1
and their incident transitions are simply eliminated from Zk+1, and the infected
set is initialised to be {k, i}. Since k is already infected we update the probability
matrix as follows,
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PR(k, err) ← PR(k, err) + P′(k, err)

← 0 + pk = pk,

PR(k, i) ← PR(k, i)+P′(k, i)

← (1−p)+
k−1∑

j=1

(pj−pj+1)=
k−1∑

j=0

(pj−pj+1) = 1−pk.

State elimination is then applied to state k and the corresponding entries in P′

are set to zero. The state of the model after this step is shown in Fig. 3a. State
i is also infected, but this time there are no corresponding non-zero values in
P′. State elimination is then applied to state i resulting in the model shown in
Fig. 3b. Finally, state elimination is applied to the single introduced state k + 1,
resulting in the model shown in Fig. 3c, and the algorithm terminates.

i

s0

k+1 err
q pk+1

1− pk+1

s0 k+1 err
q pk+1

q(1− pk+1)

s0 err

qpk+1

1−q(1−pk+1)

(a) (b) (c)

Fig. 3. Zk+1 after the elimination of states k (a), i (b), and k + 1 (c).

3.3 Correctness

The correctness of the approach follows as an easy corollary from the correctness
of Hahn’s general state elimination approach [11]. We outline the simple induc-
tive argument, starting with the first parameter under consideration—which
serves as the induction basis—and then look at incrementing the parameter
value—which serves as the induction step.

For the induction basis, the first parameter considered, there is really nothing
to show: we would merely choose a particular order in which states are elimi-
nated, and the correctness of Hahn’s state-elimination approach does not depend
on the order in which states are eliminated.

For the induction step, consider that we have an order for one parameter
value, and that we have an execution of the state elimination along this given
order <o. Our approach then builds a new order for the next parameter value.
The new order <n is quite closely linked to the old order <o, but for correctness,
a very weak property suffices.

To prepare our argument, let us consider a set E of states with the following
properties: the neighbourhood of E is the same in the Markov chains for the old
and new parameter; the restriction of <o and <n to E define the same order; and
E is the set of smallest states w.r.t. <o and <n (s ∈ E and (s′ <o s ∨ s′ <n s)
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implies s′ ∈ E). In this case, the initial sequence of the first |E| reductions for
the new Markov chain (along <n) are the same as the first |E| state eliminations
along the old Markov chain (along <o). Consequently, these elimination steps
can be re-used, rather than re-done.

In Algorithm 3 we require less: we still require that the neighbourhood of E is
the same in the Markov chains for the old and new parameter and the restriction
of <o and <n to E define the same order, but relax the third requirement to
s ∈ E and (s′ <o s ∨ s′ <n s) implies that s′ ∈ E or s′ is no neighbour of s.
The result is the same: for the states in E, the |E| state eliminations for the new
Markov chain (along <n) are the same as |E| state eliminations along the old
Markov chain (along <o). Consequently, these elimination steps can be re-used.

3.4 Extension to Parametric Markov Reward Models

We now describe how we can extend the algorithms to PMCs annotated with
rewards.

Definition 5. A Parametric Markov Reward Model (PMRM) is a tuple R =
(D, r) where D = (S, s0,P, V ) is a PMC and r : S → FV is the reward function.

The reward function labels states in R with a rational function over V that
corresponds to the reward that is gained if that state is visited. Given a PMRM
R = (D, r) with D = (S, s0,P, V ), we are interested in the parametric expected
accumulated reward [19] until some target state st ∈ S is reached. This is defined
as the expectation of the random variable XR : Paths(s0) → R ∪ {∞} over the
infinite paths of R. Given the set ωst

= {i | w[i] = st} we define

XR(ω) =

{
∞ if ωst

= ∅∑k−1
i=0 r(ω[i]) otherwise, where k = min ωst

,

and define the expectation of XR with respect to Prs0 as

E[XR] =
∑

ω∈Paths(s0)

XR(ω)Prs0(ω).

We extend our notion of volatility to PMRMs as follows. We say that a state is
volatile if structural changes might occur in that state or if the reward labelling
that state might change. Because of space limitations we omit the full definitions
for volatile PMRMs, but the constructions are straightforward. Algorithms 1 to 3
are extended to incorporate rewards. For Algorithm 1, in addition to updating
the probability matrix for the elimination of some state se, we also update the
reward function as follows,

r(s1) ← r(s1) + P(s1, se)
P(se, se)

1 − P(se, se)
r(se).

The updated value for r(s1) reflects the reward that would be accumulated if
a transition would be taken from s1 to se, where the expected number of self
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transitions would be P(se,se)
1−P(se,se)

. Algorithm 2 then constructs additional map-
pings to record these computed expected reward values, which are then used for
reconfiguration in Algorithm 3.

4 Case Studies

We provide a prototypical implementation1 of the technique and define the met-
ric that we will use for the evaluation of different models to be the total number
of arithmetic operations performed for the elimination of all states in a model.
Our implementation serves only to illustrate the potential of the method, and
we will integrate the technique into the probabilistic model checker ePMC [12].

Due to space limitations we restrict our analysis to two classes of models.
Firstly we consider the family of Zeroconf protocols described in Sect. 1, and
secondly we consider a family of models used for the analysis of biologically
inspired firefly synchronisation protocols—the class of protocols that inspired
this work.

4.1 Zeroconf

We are interested in the reachability of the error state for the family of Zeroconf
models, parameterised in the number n of attempts, after which the protocol will
(potentially incorrectly) assume that it has selected a unique address. The initial
model for n = 1 is defined, its volatile region is determined as in Example 1,
and Algorithm 2 is applied. In each incremental step we increment n and apply
Algorithm 3 to the model. Volatile states can be identified in each step.

Figures 4a and b show the total number of performed arithmetic operations
accumulated during the incremental analysis of the models and the ratio of the
number of arithmetic operations performed for regular state elimination, respec-
tively. This ratio shows the small share of the number of iterations required when
the values are calculated for a range of parameters in our approach (repeated
applications of Algorithm 3), when compared to the näıve approach to re-
calculate all values from scratch (applying Algorithm 2).

Figure 4a shows that the total number of operations is quadratic in the
parameter when regular state elimination (applying Algorithm 2) is repeatedly
applied from scratch. This is a consequence of the number of operations for
each parameter being linear in the parameter value when näıvely applying Algo-
rithm 2. This is in stark contrast to the number of operations needed when the
parameter is stepwise incremented using Algorithm 3, stepwise capitalising on
the analysis of the respective predecessor model. Here the update cost is con-
stant: since the extent of structural change at each step is constant. This leads
to dramatic savings (quadratic vs. linear) when exploring the parameter space,
as illustrated by Fig. 4b.

1 https://github.com/PaulGainer/PMC.

https://github.com/PaulGainer/PMC
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Fig. 4. Cumulative total of arithmetic operations performed for iterative analysis of
Zeroconf for n = 1 . . . 200 (a), and the ratio of total operations for reconfiguration to
total operations for regular state elimination, given as a percentage (b).

4.2 Oscillator Synchronisation

We now consider the models developed in [8,9] to analyse protocols for the clock
synchronisation of nodes in a network. In these protocols, consensus on clock val-
ues emerges from interactions between the nodes. The underlying mathematical
model is that of coupled oscillators. This family of models is parametric in the
number N of nodes that form the network; the granularity T of the discretisa-
tion of the oscillation cycle; the length R of the refractory period, during which
nodes ignores interactions with their neighbours; the strength ε of the coupling
between the oscillators; and finally the likelihood μ of any individual interaction
between two nodes not occurring due to some external factor.

Each state of the model corresponds to some global configuration for the
network—a vector encoding the size of node clusters that share the same progress
through their oscillation cycle. The target states of interest are those in which
all nodes share the same progression through their cycle and are therefore syn-
chronised.

Changing the parameters N and T redefines the encoding of a global network
state. This results in drastic changes to the structure of the model and therefore
makes it hard to identify volatile states. Our prototypical implementation only
considers low-level models defined explicitly as a set of states and a transition
matrix, which trivialises the identification of volatile areas. Future implemen-
tation into ePMC, however, will allow volatile states to be clearly identified by
analysing the guards present in high-level model description languages [1]. This
works in particular for the parameters N and T we have studied.

Changing the parameter ε results in such severe changes in the structure of
the model that we do not see how the synergistic effects we have observed can
be ported to analysing its parameter space, while changing μ does not change
the structure of the underlying graph and hence is not interesting for what we
want to show.

In this paper, we therefore focus on the incremental analysis for the parameter
R. We arbitrarily fix N to be 5 and ε to be 0.1, and repeat the incremental
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Fig. 5. Cumulative total of arithmetic operations performed for iterative analysis of
synchronisation models with respect to R (a), and the ratio of totals for reconfiguration
to totals for regular state elimination given as a percentage (b).

analysis for four different values for T . The parameter R varies from 1 to T (for
each of the different values of T we have considered).

Figures 5a and b show the total number of performed arithmetic operations
and the ratio of the totals for regular state elimination to the totals for recon-
figuration given as a percentage, respectively. The effectiveness of the approach
lessens as T increases, a result of the rounding of real values to discrete inte-
ger values that occurs when generating the transitions for the initial model [8].
Higher values of T result in an increase in the number of possible successor
states for global states of the network, which in turn leads to an increase in the
number of transitions in the model. Similarly, incrementing R results in reduced
effectiveness as fewer interactions between nodes are ignored, and again more
transitions are introduced to the model.

Overall it is clear that, while still substantial, the gains here are not as
pronounced as those seen for the analysis of the Zeroconf protocol. This is to be
expected, since the structural changes induced by changing the parameter R are
not constant for each iteration—the higher the value of R the greater the extent
of the structural changes incurred.

5 Conclusion and Future Work

It is clear—and, in hindsight, unsurprising—that our approach works well for
structured Markov chains, such as chain-, ring-, or tree-like structures. Our
experiments have lent evidence to this by showing that where the cost of model-
checking an individual model grows linearly with a parameter, model checking
up to a parameter becomes linear in the maximal parameter considered, whereas



154 P. Gainer et al.

the overall costs grow quadratically if all models are considered individually.
Thus, we expect significant gain wherever changes can be localised and isolated.
Moreover, we expect this to be the norm rather than the exception. After all,
chains, rings, and trees are common structures in models.

It is quite striking that very specialised structures have enjoyed a lot of atten-
tion, and so have absolutely general ones. The standard example for very spe-
cialised structures is waiting queues. Fixed length waiting queues, for example,
have closed form solutions. Thus, when the system analyst creates a structure,
which is so standard that it has a known closed form solution and—and this is
a big ‘and’—realises that this is the case and looks up the closed form solution,
then this analysis is the unicorn. However, if the structure is slightly different,
if she fails to see that the problem has a closed form solution, or if she does not
want to invest the time to research the closed form solution, then she would cur-
rently have to fall back to the näıve solution. Here our technique is a nice sweet
spot between these extremes: the speed is close to evaluating closed form solu-
tions, but applying our method does not put any burden on the system analyst
who creates the parametrised model.

The limitations of our model are that it loses much of its advantage when a
change in a parameter induces severe structural changes in the model. For the
synchronisation protocol, some parameters severely change the structure. This is
because most of the nodes are connected by an edge, and for such dense graphs,
structural changes can have a huge cone of influence. In the worst case, e.g. a
fully connected graph, a cubic overhead is incurred [10].

The next step of our work will be to tap the full potential of our approach by
integrating it into the probabilistic model checker ePMC [12]. Here the symbolic
description of the system will expose the volatile areas and—more importantly—
the non-volatile areas that appear to be stable under successive increments of
the parameter values. We also expect to obtain synergies by combining our
method with the approach of [7], extending our approach to models with non-
determinism, such as interactive Markov chains and Markov decision processes.

Acknowledgements. This work was supported by the Sir Joseph Rotblat Alumni
Scholarship at Liverpool, EPSRC grants EP/M027287/1 and EP/N007565/1, and by
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Abstract. Complex networks play an important role in human society
and in nature. Stochastic multistate processes provide a powerful frame-
work to model a variety of emerging phenomena such as the dynamics
of an epidemic or the spreading of information on complex networks. In
recent years, mean-field type approximations gained widespread atten-
tion as a tool to analyze and understand complex network dynamics.
They reduce the model’s complexity by assuming that all nodes with
a similar local structure behave identically. Among these methods the
approximate master equation (AME) provides the most accurate descrip-
tion of complex networks’ dynamics by considering the whole neighbor-
hood of a node. The size of a typical network though renders the numer-
ical solution of multistate AME infeasible. Here, we propose an efficient
approach for the numerical solution of the AME that exploits similari-
ties between the differential equations of structurally similar groups of
nodes. We cluster a large number of similar equations together and solve
only a single lumped equation per cluster. Our method allows the appli-
cation of the AME to real-world networks, while preserving its accuracy
in computing estimates of global network properties, such as the fraction
of nodes in a state at a given time.

Keywords: Complex networks · Multistate processes · AME
Model reduction · Lumping

1 Introduction

Various emerging phenomena of social, biological, technical, or economic nature
can be modeled as stochastic multistate processes on complex networks [1,3,24,
26]. Such networks typically consist of millions or even billions of nodes [1,3], each
one being in one of a finite number of states. The state of a node can potentially
change over time as a result of interaction with one of its neighboring nodes. The
interactions among neighbors are specified by rules and occur independently
at random time points, governed by the exponential distribution. Hence, the
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underlying process is a discrete-state space Markovian process in continuous time
(CTMC). Its state space consists of all labeled graphs representing all possible
configurations of the complex network. For instance, in the susceptible-infective
(SI) model, which describes the spread of a simple epidemic process, each node
can either be susceptible or infected; infected nodes propagate the infection to
their susceptible neighbors [5,19].

Monte-Carlo simulations can be carried out only for small networks [11,19],
as they become very expensive for large networks, due to the large number
of simulation runs which are necessary to draw reliable conclusions about the
network’s dynamics.

An alternative and viable approach is based on mean-field approximations, in
which nodes sharing a similar local structure are assumed to behave identically
and can be described by a single equation, capturing their mean behavior [3,
4,10,12,18]. The heterogeneous (also called degree-based) mean-field (DBMF)
approach proposes a system of ordinary differential equations (ODEs) with one
equation approximating the nodes of degree k which are in a certain state [9,
18,25]. The approximate master equation (AME) provides a far more accurate
approximation of the network’s dynamics, considering explicitly the complete
neighborhood of a node in a certain state [14,16,17]. However, the corresponding
number of differential equations that have to be solved is of the order O(

k
|S|
max

)
,

where kmax is the network’s largest degree and |S| the number of possible states.
A coarser approximation called pair approximation (PA) can be derived from
AME by imposing the multinomial assumption for the number of neighbors in
a state [16,17]. Nevertheless, solving PA instead of AME is faster but for many
networks not accurate enough [17].

Lumping is a popular model reduction technique for Markov-chains and sys-
tems of ODEs [6–8,21,28]. It has also been applied to the underlying model of
epidemic contact processes [19,27] and has recently been shown to be extremely
effective for the DBMF equation as well as for the PA approach [20]. In this
work, we generalize the approach of [20] providing a lumping scheme for the
AME, leveraging the observation that nodes with a large degree having a simi-
lar neighborhood structure have also typically very similar behaviors. We show
that it is possible to massively reduce the number of equations of the AME
while preserving the accuracy of global statistical properties of the network. Our
contributions, in particular, are the following: (i) we provide a fully automated
aggregation scheme for the multistate AME; (ii) we introduce a heuristic to find
a reasonable trade-off between number of equations and accuracy; (iii) we evalu-
ate our method on different models from literature and compare our results with
the original AME and Monte-Carlo simulation; (iv) we provide an open-source
tool1 written in Python, which takes as input a model specification, generates
and solves the lumped (or original) AME.

The remainder of this paper is organized as follows: In Sect. 2 we describe
multistate Markovian processes in networks and formally introduce the AME. In
Sect. 3 we derive lumped equations for a given clustering scheme and in Sect. 4

1 https://github.com/gerritgr/LumPyQest.
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we propose and evaluate a clustering algorithm for grouping similar equations
together. Case studies are presented in Sect. 5. We draw final conclusions and
identify open research problems in Sect. 6.

2 The Multistate Approximate Master Equation

In this section, we first define contact processes and introduce our notation and
terminology for the multistate AME.

2.1 Multistate Markovian Processes

We describe a contact process in a network (G,S, R, L) by a finite undirected
graph G = (V,E), a finite set of states S, a set of rules R, and an initial state
for each agent (node) of the graph L : V → S. We use s, s′, s′′ and s1, s2, . . . to
denote elements of S. At each time point t ≥ 0, each node v ∈ V is in a state
s ∈ S. The rules R define how neighboring nodes influence the probability of
state transitions. A rule consists of a consumed state, a produced state, and a
transition rate, which depends on the neighborhood of the node. We use integer
vectors to model a node’s neighborhood. For a given set of states S and maximal
degree kmax, the set of all potential neighborhood vectors is M = {m ∈ Z

|S|
≥0 |∑

s∈S m[s] ≤ kmax}, where we write m[s] to refer to the number of neighbors in
state s.

A rule r ∈ R is a triplet r = (s, f, s′) with s, s′ ∈ S, s �= s′ and rate function
f : M → R≥0 corresponding to the exponential distribution. A rule r (also

denoted as s
f−→ s′) can be applied at every node in state s, and, when applied,

it transforms this node into state s′. Note that this general formulation of a rule
containing the rate function can express all types of rules that are described in
[14,16,17] such as spontaneous changes of a node’s state (independent rules) or
changes due to the state of a neighbor (contact rules). The delay until a certain
rule is applied is exponentially distributed with rate f(m), with rules competing
in a race condition where the one with the shortest delay is executed. This results
in an underlying stochastic model described by a CTMC.

In the following, we indicate with Rs+ = {(s′, f, s) ∈ R, s′ ∈ S} all the rules
that change the state of a node into s, and with Rs− = {(s, f, s′) ∈ R, s′ ∈ S}
all rules that change an s-node into a different state.

Example. In the SIS model, a susceptible node can become infected by one
of its neighbors. An infected node becomes susceptible again, independently of

its neighbors. Hence, the infection rule is S
λ1·m[I]−−−−−→ I and the recovery rule is

I λ2−→ S, where m[I] denotes the number of infected neighbors and λ1, λ2 ∈ R≥0

are rule-specific rate constants.
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2.2 Multistate AME

Here, we briefly present the multistate AME, similarly to [14,20]. The AME
assumes that all nodes in a certain state and with the same neighborhood struc-
ture are indistinguishable. We define Mk = {m ∈ M | ∑

s∈S m[s] = k} to be
the subset of neighborhood vectors referring to nodes of degree k. In addition,
for s1, s2 ∈ S and m ∈ M, we use m{s+

1 ,s−
2} to denote a neighborhood vector

where all entries are equal to those of m, apart from the s1-th entry, which is
equal to m[s1] + 1, and the s2-th entry, which is equal to m[s2] − 1.

Let xs,m(t) be the fraction of network nodes that are in state s and have
a neighborhood m at time t, and assume the initial state xs,m(0) is known.
Formally, the AME approximates the time evolution of xs,m with the following
set of deterministic ODEs2:

∂xs,m

∂t
=

∑

(s′,f,s)∈Rs+

f(m)xs′,m −
∑

(s,f,s′)∈Rs−
f(m)xs,m

+
∑

(s1,s2)∈S2

s1 �=s2

βss1→ss2x
s,m{s+

1 ,s−
2}m{s+

1 ,s−
2}[s1]

−
∑

(s1,s2)∈S2

s1 �=s2

βss1→ss2xs,mm[s1] ,

(1)

where, the term βss1→ss2 is the average rate at which an (s, s1)-edge changes
into an (s, s2)-edge, if s, s1, s2 ∈ S with s1 �= s2.

The first term in the right hand side models the inflow into (s,m) nodes
from (s′,m) nodes, while the second term models the outflow from (s,m) due
to the application of a rule. The other two terms describe indirect effects on a
(s,m) node due to changes in its neighboring nodes, again considering inflow
and outflow (cf. Fig. 1). In particular, a node in the neighborhood m of (s,m),
say in state s1, changes to state s2 by the firing of a rule.

To compute βss1→ss2 we need to define the subset of rules which consume a
s1-node and produce an s2-node: Rs1→s2 = {(s1, f, s2) ∈ R | f : M → R≥0}.
Then

βss1→ss2 =

∑

m∈M

∑

(s1,f,s2)∈Rs1→s2

f(m)xs1,mm[s]

∑

m∈M
xs1,mm[s]

, (2)

where in the denominator we normalize dividing by the fraction of (s, s1) edges.
The total number of equations of AME is determined by the number of states
|S| and the maximal degree kmax, and equals:

(
kmax + |S|

|S| − 1

)
(kmax + 1) . (3)

2 We omit t for the ease of notation.
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The binomial arises from the number of ways in which, for a fixed degree k, one
can distribute k neighbors into |S| different states, see [20] for the proof.

As xs,m are fractions of network nodes, the following identity holds for all t:
∑

s,m∈S×M
xs,m(t) = 1 (4)

Moreover, we use xs to denote the global fraction of nodes in a fixed state s,
which we get by summing over all possible neighborhood vectors

xs(t) =
∑

m∈M
xs,m(t) , (5)

again with
∑

s∈S xs(t) = 1. Intuitively, xs is the probability that a randomly
chosen node from the network is in state s. This is the value of primary interest
in many applications, e.g. [3,24,26]. Finally, the degree distribution P (k) gives
the probability that a randomly chosen node is of degree k (0 ≤ k ≤ kmax). If
we sum up all xs,m which belong to a specific k (i.e. m ∈ Mk), as the network

xs,(2,2)

s’

ss’

s

xs,(1,3)

s’

s’s’

s

xs’,(2,2)

s’

ss’

s

xs,(3,1)

s

ss’

s

node changes neighborhood changes

3βss’→ssxs,(1,3)

2βss→ss’xs,(2,2)

f1(2, 2)xs’,(2,2)

f2(2, 2)xs,(2,2)

2βss’→ssxs,(2,2)

3βss→ss’xs,(3,1)

Fig. 1. Illustration of how the AME governs the fraction of xs,(2,2) in a two-state model
with rules (s′, f1, s), (s, f2, s

′). The inflow and outflow between xs,(2,2) and xs′,(2,2) is
induced by the direct change of a node’s state from s to s′ or vice versa. The inflow
and outflow between xs,(2,2) and xs,(3,1), xs,(1,3) is attributed to the change of state of
a node’s neighbor.
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structure is assumed to be static, we will necessarily obtain the corresponding
degree probability. Hence, for each t ≥ 0, we have

∑

s,m∈S×Mk

xs,m(t) = P (k) . (6)

3 Lumping

The key idea of this paper is to group together equations of the AME which have
a similar structure and to solve only a single lumped equation per group. This
lumped equation will capture the evolution of the sum of the AME variables in
each group.

Therefore, we divide the set {xs,m | s ∈ S,m ∈ M} into groups or clusters,
constructing our clustering such that two equations xs,m, xs′,m′ can only end
up in the same group if s = s′ and m is ‘sufficiently’ similar to m′. This ensures
that the fractions within a cluster as well as their time derivatives are similar,
provided the change in the rate as a function of m is relatively small when m is
large.

Next we consider a clustering C defined as a partition over M, i.e., C ⊂ 2M

and
⋃

C∈C C = M and all clusters C are disjoint and non-empty. Before we
discuss in detail the construction of C in Sect. 4, we derive the lumped equations
for a given clustering C.

First, recall that we want to approximate the global fractions for each state
(cf. Eq. (5)), which can be split into sums over the clusters

xs(t) =
∑

C∈C

∑

m∈C

xs,m(t) . (7)

Our goal is now to construct a smaller equation system, where the variables
zs,C approximate the sum over all xs,m with m ∈ C

zs,C(t) ≈
∑

m∈C

xs,m(t) . (8)

Henceforth, we can approximate the global fractions as

xs(t) ≈
∑

C∈C
zs,C(t) . (9)

The number of equations is then given by |S| · |C|. As one might expect, there is
a trade-off between the accuracy of zs,C(t) and the computational cost, propor-
tional to the number of clusters.

3.1 Lumping the Initial State and the Time Derivative

As the initial values of xs,m are given, we define the initial lumped values

zs,C(0) =
∑

m∈C

xs,m(0) . (10)
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To achieve the criterion in Eq. (8) for the fractions computed at t > 0, we
seek for time derivatives which fulfill

∂zs,C

∂t
≈

∑

m∈C

∂xs,m

∂t
. (11)

Note that an exact lumping is in general not possible as ∂zs,C

∂t is a function of the
individual xs,m(t). In order to close the equations for zs,C , we need to express
xs,m as an approximate function of zs,C . The naive idea is to assume that the
true fractions xs,m are similar for all m that belong to the same cluster, i.e., if
m,m′ ∈ C then xs,m ≈ xs,m′ , leading to an approximation of xs,m as zs,C/|C|.

This is however problematic, as it neglects the fact that neighbors of nodes
of different degree have different size. In fact, even if for two degrees k1 < k2
in the same cluster we have P (k1) = P (k2) (while typically P (k1) > P (k2)),
the number of possible different neighbors m2 of a k2-node is larger than the
number of different neighbors m1 of a k1-node, |Mk1 | < |Mk2 |, hence typically
xs,m2 < xs,m1 , as the mass of P (k2) has to be split among more variables. In
order to correct for this asymmetry between degrees in each cluster, we introduce
the following assumption:

Assumption: All fractions xs,m inside a cluster C that refer to the same degree
contribute equally to the sum zs,C . Equations of different degree contribute pro-
portionally to their degree probability P (k) and inversely proportionally to the
neighborhood size for that degree.

Based on the above assumption, we define a degree dependent scaling-factor
wC,k ∈ R≥0, which only depends on the corresponding cluster C and degree k.
According to the above assumption wC,k ∝ P (k)

|Mk| . To ensure that the weights of
one cluster sum up to one, we define

wC,k =
P (k)
|Mk| ·

(
∑

m∈C

P (km)
|Mkm |

)−1

, (12)

where km =
∑

s∈S m[s] is the degree of a neighborhood m. We compute approx-
imations of xs,m based on zs,C as

xs,m ≈ zs,C · wC,km . (13)

3.2 Building the Lumped Equations

To define a differential equation for the lumped fraction zs,C , we consider again
Eq. (11) and replace ∂xs,m

∂t by the r.h.s. of Eq. (1). Then we substitute every
occurrence of xs,m by its corresponding lumped variable multiplied with the
scaling factor, i.e., zs,C · wC,km , where m ∈ C. Since m ∈ C does generally
not imply that m{s+

1 ,s−
2} ∈ C, the substitution of x

s,m{s+
1 ,s−

2} is somewhat more
complicated. Let C(m) denote the cluster m belongs to. If m lies “at the border”
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of a cluster then C(m{s+
1 ,s−

2 }) might be different than C(m). The lumped AME
takes then the following form3:

∂zs,C

∂t
=

∑

(s′,f,s)∈Rs+

zs′,C

( ∑

m∈C

wC,kmf(m)
)

−
∑

(s,f,s′)∈Rs−
zs,C

( ∑

m∈C

wC,kmf(m)
)

+
∑

(s1,s2)∈S2

s1 �=s2

βss1→ss2
L

( ∑

m∈C

w
C(m{s+

1 ,s−
2}),km

z
s,C(m{s+

1 ,s−
2})

m{s+
1 ,s−

2}[s1]
)

−
∑

(s1,s2)∈S2

s1 �=s2

βss1→ss2
L zs,C

( ∑

m∈C

wC,kmm[s1]
)

,

(14)

where

βss1→ss2
L =

∑

C∈C
zs1,C

∑

(s1,f,s2)∈Rs1→s2

∑

m∈C

f(m)wC,kmm[s]

∑

C∈C
zs1,C

∑

m∈C

wC,kmm[s]
. (15)

To gain a significant speedup compared to the original equation system, it is
necessary that the lumped equations can be efficiently evaluated. In particular,
we want the number of terms in the lumped equation system to be proportional
to the number of fractions zs,C and not to the number of xs,m. This is possi-
ble for Eq. (14), because each time we have a sum over m ∈ C, for instance∑

m∈C wC,kmf(m), we can precompute this value during the generation of the
equations and do not have to evaluate it at every step of the ODE solver. The
sum

∑

m∈C

z
s,C(m{s+

1 ,s−
2})

m{s+
1 ,s−

2}[s1]

can be evaluated efficiently since we only have to consider lumped variables
that correspond to clusters C(m{s+

1 ,s−
2}) that are close to C(m), i.e., that can

be reached from a state in C(m) by the application of a rule. The number of
such neighboring clusters is typically small, due to our definition of clusters, see
Sect. 4.

Remark 1. For large kmax, the number of neighbor vectors in M, i.e. the size of
the AME, becomes prohibitively large. For instance, for a maximum degree of
the order of 10 thousands, quite common in real networks, the size of M becomes
of the order of 1012. Even summing a number of elements of this order while
generating equations becomes very costly. To overcome this limit, the solution is
to approximate terms involving summations in Eq. (14). Consider for instance∑

m∈C wC,kmf(m). Instead of evaluating f at every m ∈ C and averaging it

3 We omit once more t for easiness.
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w.r.t. wC,km , we can only evaluate f at the mean neighborhood vector 〈m〉C ,
where each coordinate is defined as 〈m〉C [s] =

∑
m∈C wC,kmm[s]. We can then

approximate
∑

m∈C wC,kmf(m) ≈ f
(〈m〉C

)
. Note that can compute 〈m〉C with-

out iterating over all m ∈ C. Likewise, we can efficiently approximate the sum in
the third term, concerning the inflow induced by changes in the neighborhood,
by exploiting the nice, triangle-based, geometrical structure of the clustering.

4 Partitioning of the Neighborhood Set

In this section we describe an algorithm to partition M, and construct the clus-
tering C. Our algorithm builds partitions with a varying granularity to control
the trade-off between accuracy and execution speed. We consider three main
criteria: the similarity of different equations, their impact on the global error,
and how fast is the evaluation of the lumped equations. Furthermore, as the size
of M can be extremely large, we cannot rely on typical hierarchical clustering
algorithms having a cubic runtime in the number of elements to be clustered.
Our solution is to decouple each m into two components: its degree km (encod-
ing its length) and its projection to the unit simplex (encoding its direction).
We cluster these two components independently.

4.1 Hierarchical Clustering for Degrees

Since our clustering is degree-dependent, we first partition the set of degrees
{0, . . . , kmax}. Let K ⊂ 2{0,...,kmax} be a degree partitioning, i.e., the disjoint
union of all K ∈ K is the set of degrees. The goal of the degree clustering is to
merge together consecutive degrees with small probability while putting degrees
with high probability mainly in separate clusters. This is particularly relevant for
the power-law distribution, which is predominantly found in real world networks
[1,2] as it allows us to cluster a large number of high degrees with low total
probability all together without losing much information.

We use an iterative procedure inspired by bottom-up hierarchical clustering
to determine K. We start by assigning to each degree an individual cluster and
iteratively join the two consecutive clusters that increase the cost function L
by the least amount. The cost function L punishes disparity in the spread of
probability mass over clusters, leading to clusters that have approximately the
same total probability mass. It is defined as

L(K) =
∑

K∈K

( ∑

k∈K

P (k)
)2

. (16)

Note that L(K) is minimal when all
∑

k∈K P (k) have equal values. The algorithm
needs O(k2

max) comparisons to determine the degree cluster of each element. At
the end of this procedure, each m ∈ M has a corresponding degree-cluster K
with km ∈ K.
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(a) (b)

Fig. 2. Left: Clustering of M for a 2–state model with kmax = 20 and |K| = |P| = 7.
Right: Proportionality cluster of a 3–state (S = {S,I,R}) model with kmax = 50 and
|P| = 5. Only the plane M50 is shown.

4.2 Proportionality Clustering

Independently of K, we partition M along the different components of vectors
m ∈ M. First, observe that if we normalize m by dividing each dimension by
km, we can embed each Mk into the unit simplex in R

|S|. The idea is then
to partition the unit simplex, and apply the same partition to all Mk. More
specifically, we construct such partition coordinate-wise. As each element of the
normalized m takes values in [0, 1], we split the unit interval in p+1 subintervals
P = {[0, 1

p ), [ 1p , 2
p ), . . . , [p−1

p , 1]}. Then, two normalized neighbor vectors are in
the same proportionality cluster if and only if their coordinates all belong to the
subinterval P ∈ P, possibly different for each coordinate.

4.3 Joint Clusters

Finally, we construct C such that two points m, m′ are in the same cluster if
and only if they are in the same degree-cluster (i.e., ∃K ∈ K : km, km′ ∈ K) and
in the same proportionality cluster, (i.e., for each dimension s ∈ S, there exists
a P ∈ P, such that m[s]

km
, m′[s]

km′ ∈ P ).
The effect of combining degree and proportionality clusters, for a model with

two different states, is shown in Fig. 2a, where the proportionality clustering gives
equally sized triangles that are cut at different degrees by the degree clustering. If
we fix a degree k, each cluster has only two neighbors (one in each direction). In
the 3d-case, the proportionality clustering creates tetrahedra, which correspond
to triangles if we fix a degree k (cf. Fig. 2b).

The above clustering admits some advantageous properties: (1) If we fix a
degree, all clusters have approximately the same size and spatial shape; (2) The
number of ‘direct spatial neighboring clusters’ of each cluster is always small,
which simplifies the identification of clusters in the ‘border’ cases and eases
the generation and evaluation of the lumped AME. Hence, the clusters can be
efficiently computed even if M is very large. Next, we discuss how to choose the
size of the clusterings K and P.
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4.4 Stopping Heuristic

To find an adequate number of clusters, we solve the lumped AME of the model
multiple times while increasing the number of clusters. We stop when the differ-
ence between different lumped solutions converges. The underlying assumption
is that the approximations become more accurate with an increasing number
of clusters and that the respective difference between consecutive lumped solu-
tions becomes evidently smaller when the error starts to level off. Our goal is to
stop when the increase in the number of clusters does not bring an appreciable
increase in accuracy.

Let z′(t), z′′(t) be two solution vectors, i.e., containing the fractions of nodes
in each state at time t, of the lumped AME that correspond to two different
clusterings C′ and C′′. We define the difference between two such solutions z′,
z′′ as their maximal Euclidean distance over time.

ε(z′,z′′) = max
0≤t≤H

√
∑

s∈S

(
z′
s(t) − z′′

s (t)
)2

. (17)

For the initial clustering we choose |K| = |P| = c0. In each step, we increase the
number of clusters by multiplying the previous ci with a fixed constant, thus
ci+1 = rci� (r > 1). We find this to be a more robust approach than increasing
ci by only a fixed amount in each step. We stop when the difference between
two consecutive solutions are smaller than εstop > 0. We consistently observe in
all our case studies that ε(z′,z′′) is a very good indicator on the behavior of the
real error (cf. Fig. 6b). For our experiments we set empirically c0 = 10, r = 1.3,
and εstop = 0.01.

5 Case Studies

We demonstrate our approach on three different processes, namely the well-
known SIR model, a rumor spreading model, and a SIS model with competing
pathogens [13,22]. We test how the number of clusters, the accuracy, and the
runtime of our lumping method relate. In addition, we compare the dynamics
of the original and lumped AME with the outcome of Monte-Carlo simulations
on a synthetic network of 105 nodes [15,23]. We performed our experiments
on an Ubuntu machine with 8 GB of RAM and quad-core AMD Athlon II X4
620 processor. The code is written in Python 3.5 using SciPy’s vode4 ODE
solver. The lumping error we provide is the difference between lumped solutions
(corresponding to different granularities) and the outcome of the original AME.
That is, for the original solution x and a lumped solution z, we define the
lumping errors of z as ε(x, z). To generate the error curves, we start with |P| =
|K| = 5 and increase both quantities by one in each step. Note that we test our
approach on models with comparably small kmax. In general, this undermines
the effectiveness of our lumping approach; however using a larger kmax would
have hindered the generation of the complete error curve.
4 https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.integrate.ode.

html.

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.integrate.ode.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.integrate.ode.html
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(a) (b)

Fig. 3. SIR model. (a): We investigate how the lumping error (star) and the runtime
of the ODE solver (circle) change with increasing number of clusters. For each cluster
three ODEs are solved, one fore ach state. (b): Fractions of S,I,R nodes over time,
as predicted by the original AME (solid line), by the lumped AME (dashed line), and
based on Monte-Carlo simulations (diamonds).

5.1 SIR

First, we examine the well-known SIR model, where infected nodes (I) go through
a recovery state (R) before they become susceptible (S) again:

S
λ1·m[I]−−−−−→ I I λ2−−→ R R λ3−−→ S .

We choose (λ1, λ2, λ3) = (3.0, 2.0, 1.0) and assume a network structure with
kmax = 60 and a truncated power-law degree distribution with γ = 2.5. The
initial distribution is (xI(0), xR(0), xS(0)) = (0.25, 0.25, 0.5).

In this model the lumping is extremely accurate. In particular, we see that the
lumping error of our method becomes quickly very small (Fig. 3a) and that we
only need a few hundred ODEs to get a reasonable approximation of the original
AME. The lumped solution z we get from the stopping heuristic, consisting of less
than 5% of the original equations, is almost indistinguishable from the original
AME solution x and the Monte-Carlo simulation (Fig. 3b). The lumping error
is ε(x, z) = 0.0015. The lumped solution used here 1791 clusters with a runtime
of 235 s while solving the original AME we needed 39711 clusters and 7848 s.

5.2 Rumor Spreading

In the rumor spreading model [13], agents are either ignorants (I) who do not
know about the rumor, spreaders (S) who spread the rumor, or stiflers (R)
who know about the rumor, but are not interested in spreading it. Ignorants
learn about the rumor from spreaders and spreaders lose interest in the rumor
when they meet stiflers or other spreaders. Thus, the rules of the model are the
following:

I
λ1·m[S]−−−−−→ S S

λ2·m[R]−−−−−→ R S
λ3·m[S]−−−−−→ R .
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(a) (b)

Fig. 4. Rumor spreading model. (a): Lumping error and runtime of the ODE solver
w.r.t. the number of clusters. (b): Fractions of nodes in each state over time given
by the original AME (solid line), by the lumped AME (dashed line), and based on
Monte–Carlo simulations (diamonds).

We assume (λ1, λ2, λ3) = (6.0, 0.5, 0.5) with kmax = 60 and γ = 3.0. The initial
distribution is set to (xI(0), xR(0), xS(0)) = (35 , 1

5 , 1
5 ). Again, we find that Monte–

Carlo simulations, original AME, and lumped AME are in excellent agreement
(Fig. 4b). The error curve, however, converges slower to zero than in the SIR
model but it gets fast enough close to it (Fig. 4a). The lumped solution corre-
sponds to 1032 clusters with a lumping error of 0.0059 and a runtime of 35 s
compared to 39711 clusters of the original AME solution the runtime of which
was 1606 s.

(a) (b)

Fig. 5. Competing pathogens dynamics. (a): Fractions of nodes in I, J, S: original
AME (solid line); lumped AME (dashed line); Monte-Carlo simulations (diamonds).
(b): Comparison of pair approximation with Monte-Carlo simulation (diamonds).

5.3 Competing Pathogens

We, finally, examine an epidemic model with two competing pathogens [22]. The
pathogens are denoted by I and J and the susceptible state by S:

S
λ1·m[I]−−−−−→ I S

λ2·m[J]−−−−−→ J I λ3−−→ S J λ4−−→ S .
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We assume that both pathogens have the same infection rate and differ
only in their respective recovery rates. Specifically, we set (λ1, λ2, λ3, λ4) =
(5.0, 5.0, 1.5, 1.0) and assume network parameters of kmax = 55 and γ = 2.5.
The initial distribution is (xI(0), xJ(0), xS(0)) = (0.2, 0.1, 0.7).

This model is the most challenging case study for our approach. AME solu-
tion and naturally lumped AME are not in perfect alignment with Monte Carlo
simulations (Fig. 5a) and, compared to the previouse cases, our lumping app-
roach needs a larger number of clusters to get a reasonably good approximation
of the AME (Fig. 6a). The computational gain is, however, large as well. The
lumped solution that comes with an approximation error of 0.02 corresponds
to 2135 clusters and a runtime of 961 s compared to 30856 clusters and 17974 s
of the original AME solution. Pair approximation approach (Fig. 5b), although
being faster than the lumped AME (40 s runtime), would have here resulted to
a much larger approximation error than our method (cf. Fig. 5b).

At last, the slow convergence of the error curve makes the competing
pathogen model a good test case for our stopping heuristic. The heuristic eval-
uates the model for three different clusterings (509, 986, 2135 clusters). It stops
as the difference between the two last clusterings is smaller than εstop, showing
its effectiveness also for challenging models. In Fig. 6b we show the alignment
between the true lumping error and the surrogate error used by the heuristic.

(a) (b)

Fig. 6. Competing pathogens lumping. (a): Lumping error and runtime of the ODE
solver w.r.t. the number of clusters. (b): Lumping error compared to the error used by
the heuristic.

6 Conclusions and Future Work

In this paper, we present a novel model-reduction technique to overcome the
large computational burden of the multistate AME and make it tractable for
real world problems. We show that it is possible to describe complex global
behavior of dynamical processes using only an extremely small fraction of the
original equations. Our approach exploits the high similarity among the original
equations as well as the comparably small impact of equations belonging to the
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tail of the power-law degree distribution. In addition, we propose an approach
for finding a reasonable trade-off between accuracy and runtime of our method.
Our approach is particularly useful in situations where several evaluations of
the AME are necessary such as for the estimation of parameters or for model
selection.

For future work, we plan to develop a method for on-the-fly clustering, which
joins equations and breaks them apart during integration. This would allow the
clustering to take into account the concrete (local) dynamics and to analyze
adaptive networks with a variable degree distribution.
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Abstract. Uppaal SMC is a state-of-the-art tool for modelling and sta-
tistical analysis of hybrid systems, allowing the user to directly model
the expected battery consumption in battery-operated devices. The tool
employs a numerical approach for solving differential equations describ-
ing the continuous evolution of a hybrid system, however, the addition
of a battery model significantly slows down the simulation and decreases
the precision of the analysis. Moreover, Uppaal SMC is not optimized
for obtaining simulations with durations of realistic battery lifetimes.
We propose an analytical approach to address the performance and pre-
cision issues of battery modelling, and a trace extrapolation technique for
extending the prediction horizon of Uppaal SMC. Our approach shows a
performance gain of up to 80% on two industrial wireless sensor protocol
models, while improving the precision with up to 55%. As a proof of
concept, we develop a tool prototype where we apply our extrapolation
technique for predicting battery lifetimes and show that the expected
battery lifetime for several months of device operation can be computed
within a reasonable computation time.

1 Introduction

Battery lifetime is one of the main concerns in the usability evaluation of mod-
ern portable devices. Modelling of battery consumption can help to evaluate the
expected power consumption prior to the actual construction and deployment of
the system. Uppaal SMC [4] is a state-of-the-art tool that allows one to model
and evaluate a behaviour of (stochastic) hybrid systems via a statistical model
checking approach. Among others, it can be applied to modelling of battery-
operated devices as abstract hybrid automata. We take a closer look at the pos-
sibilities of battery modelling in Uppaal SMC, focusing primarily on estimating
the battery lifetime for nonadaptive systems, i.e., systems whose behaviour does
not depend on the actual state of the battery.

A straightforward approach to modelling energy consumption is to annotate
an existing Uppaal SMC model with the information in what locations energy is
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consumed and by what rate, and to extend the model with a hybrid automaton
representing the battery. However, this method has several practical drawbacks
and limitations. First, hybrid modelling in Uppaal SMC is performed numerically
with the Euler method [21] and this causes a large performance overhead and
precision loss, in particular when we want to reason about long simulation runs
lasting for months. Second, Uppaal SMC is not optimized for generating long
lasting simulations that are necessary for estimating typical battery lifetimes.
In applications like adhoc wireless networks where sensors and other network
components are battery-operated, an average battery life is expected to last for
several months, whereas simulating just a few hours of such a network operation
in Uppaal SMC takes unaffordable computation time and memory.

We propose an analytical approach for computing the current battery charge.
As we restrict ourselves to nonadaptive systems, we can first simulate the sys-
tem’s behaviour (without the battery model) with Uppaal SMC and then anno-
tate the produced simulation trace with battery consumption, instead of adding
a hybrid automaton of the battery to the Uppaal SMC model. We also replace
the numerical method used in the tool by computing a precise analytical solution
to the battery model equations based on the kinetic battery model (KiBaM) [17].
We demonstrate on two industrial-strength case studies that our approach con-
siderably speeds up the simulations and improves the precision of battery predic-
tion. By analytically solving the equations for polynomials of arbitrary degree,
we enable an accurate modelling of the electrical current as an input to the bat-
tery model. Our experiments show that this is achievable within acceptable time
and memory usage and significantly faster than a direct modelling in Uppaal
SMC. Moreover, we propose a trace extension technique for the traces gener-
ated by Uppaal SMC in order to estimate battery lifetimes for several months
of device operation. We apply this technique to two case studies that model two
different wireless network protocols and show that our approach allows us to
obtain simulation results within an acceptable time horizon, while at the same
time extending the prediction precision.

Related Work. The research in battery modelling and lifetime optimization has
several directions. Some of the existing battery models were extended to capture
environmental parameters and usage patterns more precisely. Jongerden et al.
[15] observed that KiBaM parameters change over time for rechargeable batter-
ies. Their experiments show that the modelling error grows with the amount of
the recharge cycles of the battery. Rodrigues et al. [20] proposed a temperature-
dependent KiBaM (T-KiBaM). They applied the Arrhenius law to the parameter
k of the KiBaM making it dependent on the temperature. Thus, T-KiBaM rep-
resents the intensity of the chemical processes inside the battery induced by
the temperature. Various approaches exist for applying battery models to bat-
tery lifetime maximization problems. Model checking is one of such approaches.
Bisgaard et al. [1] used Uppaal CORA for finding an optimal schedule for a
satellite. However, they used a naive battery model instead of KiBaM because
the model does not match the priced timed automata (PTA) formalism used by
Uppaal CORA. Jongerden et al. [13] proposed a discretized version of KiBaM
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for finding an optimal schedule with Uppaal CORA. The discretized model can
be expressed as a PTA and thus passed to Uppaal CORA. They experimen-
tially compared the accuracy of the discretized version to the original model.
The experiments showed a deviation up to 1%. However, the comparison was
done for parameter sets corresponding to batteries with very small capacities
(92 mAh and 183 mAh). Moreover, the experiments were done for scenarios
with very short battery lifetimes (less than 100 min). Hence, it is an open ques-
tion whether this experimental setup is relevant for evaluating the modelling
accuracy for much longer battery lifetimes.

Wognsen et al. [23] introduced a wear score function based on dynamic evo-
lution of state-of-charge. Using the recent branch UPPAAL Stratego the score
function was used to optimize the life time of a battery powered nano-satellite of
the company GOMSpace. David et al. [5] applied Uppaal SMC to measure the
power consumption of the LMAC protocol. No battery model was considered
in this work. These two approaches are helpful for battery life prolongation,
although they do not predict the lifetime. Boker et al. [2] introduced battery
transition systems based on a discretized KiBaM. They proved that for a certain
class of these models model checking is decidable but restricted to the discretized
model. We consider the undiscretized version of KiBaM and use the analytical
solution to it, which promises to be more precise. Heni et al. [11] model a mobile
network as an on/off Markov decision chain and use a naive battery model.
Panigrahi et al. [18] estimate the battery life of mobile embedded systems with
a stochastic process (a discrete time Markov chain by Chiasserini and Rao [3]).
In our work we complement Uppaal SMC models with the battery model, thus
enabling the battery life prediction for more complicated systems. Xue et al. [24]
introduce an energy saving mechanism for the IEEE 802.16e standard for mobile
stations. They analyze the current performance by using a Markov chain model
of the protocol but do not consider the KiBaM battery model. They evaluate
their proposal by simulation in the discrete event simulation tool NS2 while we
use a statistical model checker instead. Energy-aware software engineering [7]
can model energy on different levels of abstraction: on the instruction set or the
LLVM IR. It uses Horn clauses coupled with energy information. If the average
values are used, the bounds on the energy consumption can be unsafe. Static
energy profiling [10] is a variant of static analysis for energy consumption that
gives probability distributions instead of static bounds. Unfortunately, these two
approaches are not applicable for network protocol modeling when the source
code is unavailable, especially on the design phase. We are not aware of any
work on integrating an analytical solution to the existing modelling approaches
and most of the methods above either cannot deal with long lifetime battery
modelling or consider naive battery models. In our work, we allow to compute
the precise analytical solution of KiBaM battery model for several months of
system execution and we can provide precise estimates on battery lifetimes.
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2 Battery Model

The simplestway tomodel a battery is to assume that its capacity is constant (inde-
pendent from the consumption pattern) and its charge decreases proportionally
with the drawn current. However, the main drawback of this approach is that it
ignores nonlinear battery effects. In reality, the delivered battery capacity, or the
real amount of energy the battery provides, depends on the actual profile of the
current, which is also known as the rate capacity effect. Different battery models
were developed taking this into account and they can be classified as electrochemi-
cal [6], electrical-circuit [9], stochastic [3], and analytical models [17,19]. We choose
to work with the analytical model KiBaM [17] as it is a relatively simple model and
for most practical scenarios there is only a small precision gain when considering
more advanced models like the diffusion model [14,15].

2.1 Kinetic Battery Model

The Kinetic Battery Model (KiBaM) [17] captures nonlinear rate capacity effects
by representing the battery as two communicating vessels. The charge is split
into two parts: the available charge a and the bound charge b. The charge is
modelled as a liquid stored in two interconnected vessels of width c and 1 − c
that represent the available and bound charges, respectively. The liquid levels
correspond to the charges and are written as ha and hb. Figure 1 illustrates the
model.

qmax

1− c c

k′ i

b a
hb

ha

Fig. 1. KiBaM battery model

The available charge is taken on current i directly, and the bound charge sup-
plies the available charge whenever ha is smaller than hb. The flow rate between
the available and bound charges is proportional to the difference between their
heights and the parameter k′. When the available charge is zero, the battery is
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considered as discharged even though there may still be some bound charge left.
Equation 1 formalizes the relationship between available and bound charge [17].{

ȧ = −i + k′(hb − ha)
ḃ = −k′(hb − ha)

(1)

As we can see from the model abstraction, the battery life depends on the energy
consumption pattern. If energy is drawn rapidly then the available charge can
become empty, having a significant amount of the bound charge left. Conversely,
a slower energy consumption allows the available charge to restore and it reduces
the amount of the bound charge left unused. Considering that ha = a

c and
hb = b

1−c , and substituting k′ with kc(1 − c), where 0 ≤ c ≤ 1 is the available
charge fraction, we obtain Eq. 2.{

ȧ = −i + kcb − k(1 − c)a
ḃ = −kcb + k(1 − c)a

(2)

We can solve this equation for a constant current i by using Laplace trans-
forms [17] and obtain{

a = a0e
−kt + (q0kc−i)(1−e−kt)−ic(kt−1+e−kt)

k

b = b0e
−kt + q0(1 − c)(1 − e−kt) − i(1−c)(kt−1+e−kt)

k

(3)

where a0, b0, and q0 are the available, bound, and full charge at the zero-time.
For evaluation purposes we also consider a naive battery model. It represents

the battery as a single charge vessel from where the current is drawn. The naive
model corresponds to KiBaM with c = 1 and where k′ becomes insignificant.
A battery life computed for the naive model is a theoretical upper bound for the
KiBaM battery life. The difference between them shows how much the battery
life can be increased by changing the energy consumption pattern. For setting
up the KiBaM parameters, we use the data sheet for the battery TADIRAN
SL-750 [22]. For the parameter estimation we compute the discharge rate and
lifetime pairs for model fitting as explained by Manwell et al. [17]. We use the
obtained parameters c ≈ 0.06, k ≈ 0.46 h−1, q0 ≈ 1.17 Ah in all our experiments.

2.2 Modeling KiBaM in Uppaal SMC

Uppaal SMC [4], the frontend of our work, is a statistical extension of the Uppaal
model checker. It combats state space explosion by focusing on stochastic prop-
erties of the model. Uppaal models that are used for classical model checking can
be adjusted to meet the requirements of Uppaal SMC, namely, input determin-
ism, independent progress, and absence of priority between channels or processes.
When all three requirements are met, one can apply both classical and statis-
tical model checking. Uppaal SMC features probability evaluation, hypothesis
testing, probability comparison, and simulation framework. In our work we focus
primarily on generating simulations.
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const doub l e INIT CHARGE = 4.2 e+09,
BATTERY C = 0 .06 ,
BATTERY K = 1.3 e−07;

c lock a = INIT CHARGE ∗ BATTERY C,
b = INIT CHARGE ∗ (1 − BATTERY C ) ;

Listing 1.1. Uppaal declarations for a KiBaM

Let us consider a simple Uppaal SMC model with two locations shown in
Fig. 2a. We assume that the power consumption is zero as long as the model
stays in the initial location and equal to the current draw CONFIG POWER TX in
the other location. The variable power keeps track of the current power con-
sumption level. We now extend this model by introducing constant declaration
in Listing 1.1 and by adding invariants, i.e., flow equations to the model loca-
tions as shown in Fig. 2b. The new declarations include the battery constants
qmax, c, and k, and clocks that store the available and bound charge values. We
map the battery model constants to the constant double type because they do
not change over time in our setup. The available charge and the bound charge
have to be clocks since their evolution is continuous.

(a) Simple Uppaal SMC model

(b) Uppaal SMC model annotated with battery equations

Fig. 2. Uppaal SMC model and its annotation with KiBaM equations

This direct implementation of KiBaM in Uppaal has several practical draw-
backs. First, Uppaal SMC solves the differential equations with the Euler
method [4], which is less precise than the analytical solution. Second, the simula-
tion of a hybrid model requires a considerable computational effort compared to
the non-hybrid one (we will show this in the evaluation section) because Uppaal
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SMC solves the flow equations numerically. The performance measurements from
Table 1 show that the battery equations slow down the simulations even for our
simple example by an approximate factor of 25 whereas our implementation of
the analytical solution (described below) significantly improves the performance
for longer simulations. Finally, a model time unit corresponds to one millisecond
of the real time. Estimating battery life (which can last several months) therefore
requires a very long simulation. This motivates our effort in finding an analytical
solution to battery consumption as described in the next subsection.

Table 1. Simulation time in seconds for the model from Fig. 2

Simulation length (ms) 104 105 106 107

Model from Fig. 2a 0.125 ± 0.002 1.125 ± 0.011 11.4 ± 0.11 107 ± 1.1

Model from Fig. 2b 2.7 ± 0.02 26 ± 0.2 268 ± 2 2615 ± 21

Analytical solution to Fig. 2a 1.6 ± 0.05 4 ± 0.1 30 ± 0.6 457 ± 9

2.3 Analytical Solution to KiBaM

The KiBaM equations can be solved both numerically and analytically. A numer-
ical solution, e.g., the Euler method, performs a discretization step on which the
computations are performed. The discretization step should be reasonably small
for precise results. In case of very long simulations, numerical methods become
computationally expensive and imprecise due to error accumulations. In con-
trast, the analytical solution has no discretization step, i.e., the computations
can be done only when the current level function changes. It means that the
analytical solution can save the computational power on constant or polynomial
pieces of the current. Moreover, the analytical solution does not accumulate the
discretization error over the simulation time, which is beneficial for long simula-
tions. Hence, we shall develop the analytical solution to KiBaM. In what follows,
we provide solutions to KiBaM equations both in general and piecewise cases.

First, we solve Eq. 1 for an arbitrary current i in order to provide an analytical
solution not only for a piecewise constant current intensity but also for piecewise
polynomial intensities. Let i = i(t), then Eq. 2 can be rewritten as follows.{

ȧ = −i(t) + kcb − k(1 − c)a
ḃ = −kcb + k(1 − c)a

(4)

We solve Eq. 4 by the Laplace transform and obtain the following.
{

a = a0e
−kt + q0c(1 − e−kt) − ∫ t

0
i(τ)dτ + (1 − c)

∫ t

0
i(τ)(1 − ek(τ−t))dτ

b = b0e
−kt + q0(1 − c)(1 − e−kt) − (1 − c)

∫ t

0
i(τ)(1 − ek(τ−t))dτ

(5)

Equation 5 is the analytical solution to Eq. 2 for an arbitrary current i = i(t).
Next, we need to solve the integral

∫ t

0
i(τ)(1 − ek(τ−t))dτ for a polynomial i(t)
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to obtain the solution to KiBaM for a polynomial current and substitute the
polynomial i(t) in Eq. 5:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = a0e
−kt + q0c(1 − e−kt) − ∑n

j=0
ijtj+1

j+1

+ (1 − c)
∑n

j=0 j!ij

[ ∑j+1
l=0

(−1)ltj−l+1

kl(j−l+1)!
+ (−1)je−kt

kj+1

]

b = b0e
−kt + q0(1 − c)(1 − e−kt)

− (1 − c)
∑n

j=0 j!ij

[ ∑j+1
l=0

(−1)ltj−l+1

kl(j−l+1)!
+ (−1)je−kt

kj+1

] (6)

Equation 6 is now the analytical solution to Eq. 2 for a polynomial current i =∑n
j=0 ijt

j . For n = 0 it coincides with Eq. 3 and for n = 1, or a linear current,
Eq. 6 gives the final solution.

{
a = a0e

−kt + (q0kc−i0)(1−e−kt)−i0c(kt−1+e−kt)
k − i1(1−c)(kt−1+e−kt)

k2 − ci1t2

2

b = b0e
−kt + q0(1−c)(1−e−kt) − i0(1−c)(kt−1+e−kt)

k − i1(1−c)(k2t2/2−kt+1−e−kt)
k2

(7)
Provided that the charge level of a battery does not affect the system

behaviour, the KiBaM data can be computed independently based only on a
given electric current function. Assuming that the current intensity is a piecewise
constant function of time, we can use the analytical solution of Eq. 3 provided
above to track the charge of the battery.

2.4 Tool Chain for KiBaM Battery Consumption

We assume that the protocols have been already modeled using the Uppaal
SMC formalism. Our task is to design a backend to Uppaal SMC that captures
the computed simulation trace (without the battery model but with annotated
locations with their power consumption profile), computes the analytical solution
to KiBaM, and transparently extends the simulation trace with available and
bound charge values in the format used by Uppaal SMC. Such a way of extending
the output allows to load the annotated trace back to Uppaal SMC but allows
also for its visualization in other tools like VisuAAL [16] (for a demo see a video
at https://youtu.be/hGfMww97xWw demonstrating a battery drain of network
devices sharing the same protocol over the elapsed time). Moreover, we can
interpret the simulation trace in a different way for solving other problems, in
particular, for computing the battery lifetime or combining the trace with real
data as discussed later. Figure 3 shows the data flow for our trace-extender tool.
Uppaal SMC is launched in the command line mode having as input a model
extended with information on its power consumption and a simulation query
requesting the trace of the current. For example, the query

simulate 1 [<=1000]{power}

https://youtu.be/hGfMww97xWw
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Uppaal SMC

KiBaM Solver

VisuAAL

model file query file

trace

configuration file

extended trace

Fig. 3. KiBaM solver data flow

generates one simulation trace for the variable power lasting 1000 time units.
Our extender then combines the settings, model parameters, and information on
input and output expressions from a user-defined configuration file.

3 Case Study on Battery Charge in Wireless Networks

We present now two case studies in order to evaluate the performance of battery
charge modelling. Our aim is to evaluate both precision and performance of our
implementation of the analytical solution compared to the numerical solution
provided in Uppaal SMC. We consider two wireless network protocols used in
industry, namely the LMAC [8] and Neocortec’s MAC [12] protocols, both of
them being examples of nonadaptive systems. The two protocols differ in the
frequency of scheduled transmissions (LMAC is switching more often from sleep
to power-consuming modes) and hence the power consumption of both protocols
is different. The constants used in the Neocortec’s MAC protocol were modified
in our model as the exact configuration of the protocol is not publicly avail-
able and hence our predicted battery lifetime in this case can differ from the
performance of the actual devices sold by the company.

3.1 Protocol Descriptions

The LMAC [8] protocol is a medium access control protocol for multi-hop,
energy-constrained wireless sensor networks. This protocol addresses energy effi-
ciency, self-configuration, and distributed operation. The main concept of the
LMAC is scheduling. The protocol tries to avoid idle listening by dedicating
a time slot to each node. Neocortec’s MAC protocol is an alternative attempt
on designing an energy-efficient wireless network protocol. The patent [12] dis-
closes some of the protocol details, however, a more detailed description was
provided at [16]. We emphasize that this explanation is an approximation of
the actual protocol behaviour and hence cannot be used for drawing conclusions
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about the actual Neocortec implementation of the protocol. Neocortec’s MAC
protocol is designed to broadcast data between neighbouring nodes and it syn-
chronizes the nodes while performing beacon scans. As the LMAC, Neocortec’s
MAC protocol benefits from scheduling the data transmission, however does so
with a focus on energy preservation. We use both protocols for our evaluation
purposes because they show two degrees of power change densities: Neocortec’s
MAC protocol exhibits very sparse communications with long sleep periods,
whereas the LMAC protocol has a more uniform activity with around 50 times
more frequent power state changes than Neocortec’s MAC. Moreover, the proto-
cols have different power consumption. Thus, in the setup explained in Sect. 4.2
the LMAC and Neocortec’s MAC consume the average current of 13 mA and
0.5 mA respectively.

3.2 Power Modes in Protocols

Power consumption modelling of network protocols by using power modes pro-
vides a simple yet precise abstraction of the underlying physical phenomenon.
In our approach, a network protocol is represented as an automaton where each
state is annotated with a power mode. For example, the Neocortec’s MAC pro-
tocol has the transmission (TX), the receive (RX), and the sleep (Sleep) power
mode. The power modes represent the basic operations of the protocol (TX and
RX) as well as their absence (Sleep). Usually, the current is assumed to be con-
stant within a power state. This is a simplification of the actual profile of the
current consumption and this simplification can have some bias regarding the
current behaviour with frequent power mode shifts. Hence we propose a more
precise interpretation of power modes capturing this effect.

time

transition

from

the previous mode

steady period
transition

to

the next mode

current

Fig. 4. Three stages of a power mode

We distinguish three stages in a power mode: transition from the previous
mode, a steady period, and transition to the next mode. Figure 4 illustrates
this division (based on the actual measurements provided to us by Neocortec).
We assume that the steady period is constant and can be of arbitrary dura-
tion. With this interpretation, we can use real measurements in our simulations
and model the reality more precisely. By extending and compressing the steady
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period we can fit an arbitrarily long power mode that appears in the simulation
trace. However, our approach may restrict the shortest possible duration for an
operation. Eliminating the steady period completely, we obtain the power mode
consisting of transitions only. Its duration defines the lower bound of the power
mode duration.

3.3 Experiments

We use the Uppaal SMC model of Neocortec’s MAC protocol described in [16]
and the LMAC protocol model from [8]. We annotate the locations in the
models with power consumption levels in order to evaluate the performance
of the KiBaM model. We integrate the polynomial analytical solution into our
tool KiBaM Solver, which is available on GitHub via link https://github.com/
DIvanov503/KiBaM-Solver.git.

First, we evaluate how much the numerical solution computed by Uppaal
SMC differs from the precise analytical solution, i.e., accumulates the error, as
we increase the length of the simulation. We simulate the two protocols 50 times
for 90,000 time units (90 s of real time). Table 2 shows the evolution of the aver-
age absolute difference between the numerical and analytical solution with 95%
confidence intervals. We can see that for both protocols, the difference grows
over time as the numerical solution gets less and less precise. The difference for
the LMAC protocol is on average higher than for Neocortec’s MAC because the
more intensive power consumption of the LMAC protocol causes larger accu-
mulated truncation errors of the Euler method. This relatively short simulation
does not give us an estimate of the precision gain for the battery life estimation
as the drop of batter capacity within 90 s is negligible. However, assuming an
average battery lifetime to be 100 days for Neocortec’s MAC and 3 days for the
LMAC protocol, we can express the simulation time and the absolute error of the
available and the bound charge as fractions of the battery life and initial charge
values respectively. For Neocortec’s MAC the simulation models 1 ·10−3% of the
average battery life, and the Euler method accumulates an error of 5.5 · 10−4%
for the available charge, and 3.5 · 10−5% for the bound charge. The percentages
for the LMAC protocol are 3.5 ·10−2%, 1.6 ·10−3%, and 1.1 ·10−4% respectively.
Assuming that the truncation error grows linearly, we can extrapolate our mea-
surements to the duration of the average battery lifetime. Thus, we can predict
the available and bound charge for the Neocortec’s MAC to have numerical
errors of 55% and 3.5%. For the LMAC the estimate is better: 4.6% and 0.3%.
We see that the relative error for Neocortec’s MAC gets very high. One expla-
nation to this phenomenon is that the average battery lifetime is too long for
the Euler method with the given discretization step. Same applies to the LMAC
protocol experiment showing a smaller relative error because of the 8.5 times
shorter average battery lifetime compared to Neocortec’s MAC. The difference
between relative errors for the available and bound charges can arise because we
use the parameter c ≈ 0.06 reflecting the available/bound charge ratio is very
small meaning that the same absolute error is larger for the available charge
than for the bound charge.

https://github.com/DIvanov503/KiBaM-Solver.git
https://github.com/DIvanov503/KiBaM-Solver.git
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Table 2. Absolute difference between the Euler method and the analytical solution
for available and bound charges

Simulation length
(seconds)

10 30 50 70 90

Neocortec’s MAC
avail., mAms

60 ± 0.6 243 ± 0.6 502 ± 0.9 811 ± 1.3 1401 ± 1.8

Neocortec’s MAC
bound, mAms

66 ± 0.1 270 ± 0.4 527 ± 0.7 837 ± 1.1 1402 ± 1.8

LMAC avail.,
mAms

85 ± 0.3 788 ± 2.5 2249 ± 6.7 4442 ± 13.0 8997 ± 26.6

LMAC bound,
mAms

92 ± 0.2 833 ± 2.2 2310 ± 6.3 4520 ± 12.5 9191 ± 25.7

Next, we compare the performance of the KiBaM model to the naive battery
model. The naive model represents the battery as a single power vessel, which
can be considered as a KiBaM with c = 1 and non-significant k, simplifying
the Uppaal SMC model for the naive battery to the one shown in Fig. 5 where
charge represents the remaining charge of the battery. Table 3 shows the time
required to simulate 10000 units of time (10 s of real time) of the Uppaal SMC
model annotated with the KiBaM and the naive battery model and compared
to our analytical solution for KiBaM. The problems a scaled by the number of
nodes in randomly generated network topologies.

The experiments show in case of Neocortec’s MAC significantly faster run-
ning times of the analytical approach, compared to numerical solution. We also
notice that the performance gain of the analytical solution depends on the den-

Fig. 5. Naive model of battery in Uppaal SMC

Table 3. Time (in seconds) required for simulating 10,000 time units (average of 100
repetitions with 97% confidence interval)

# nodes 5 10 50 100

Neocortec’s MAC, numeric. KiBaM 54 ± 0.5 119 ± 0.8 686 ± 6.6 2159 ± 19.4

Neocortec’s MAC, numeric. naive 42 ± 0.3 87 ± 0.4 544 ± 4.2 1671 ± 14.1

Neocortec’s MAC, analyt. KiBaM 0.6 ± 0.01 1.9 ± 0.33 20.6 ± 0.18 121.6 ± 1.01

LMAC, numeric. KiBaM 22 ± 0.1 45 ± 0.1 288 ± 1.0 713 ± 2.1

LMAC, numeric. naive 0.8 ± 0.02 2.1 ± 0.02 41.6 ± 0.23 145.7 ± 0.59

LMAC, analyt. KiBaM 3 ± 0.1 4 ± 0.1 33 ± 0.2 108 ± 0.4
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sity of power mode changes—the more changes occur, the longer time it takes to
compute the analytical solution. The data for LMAC indicate a lot smaller per-
formance advantage of our analytical solution since the LMAC model changes
the power state around 50 times more frequently than Neocortec’s MAC, how-
ever, the advantage becomes more obvious when we consider larger networks like
e.g. 100 nodes in the table.

4 Simulation Traces for Estimating Long Battery
Lifetime

In our approach we focus on nonadaptive protocols, meaning that the behaviour
of the protocol/system does not depend on the actual charge of the battery. This
allows us to extend an existing protocol model with the information on power
modes and use a statistical model checker like Uppaal SMC to generate the trace
for further analysis. However, the generation of battery lifetime-long simulations
is problematic since the model time unit corresponds to one millisecond of the
real time and that makes estimating battery life (which can last several months)
to require a very long simulation exceeding the typical time and memory con-
straints. Hence, we designed an extrapolation technique that allows us to expand
shorter simulation traces to longer ones.

4.1 Extension of Simulation Traces

We shall introduce an extrapolation technique where we first generate a time-
bounded trace and repeat the latter half of it until the battery discharges. We
exploit that network protocols have a warm-up period and a steady state. The
warm-up period is not representative for the model behaviour in the long term.
In contrast, the steady period has a nondeterministic regularity: the variable
distributions are similar from time to time. If the steady period part of the
trace is long enough to assume approximate statistical independence, it can be
repeated to model the behaviour on arbitrarily long timeline. We use this idea
to continue battery simulation until it fully discharges.

We assume the first half of the simulation to be a warm-up period due to the
initial routines that are performed by the protocols. The fraction of the trace to be
skipped as the warm-up period can be adjusted depending on the trace duration.

4.2 Experiments with Long Battery Lifetime Prediction

As a proof of concept, we perform two case studies investigating the battery
lifetime of the already discussed protocols: Neocortec’s MAC and LMAC. We
implement a battery life estimator on top of our KiBaM Solver. For battery life
evaluation, we generate in VisuAAL a network consisting of 25 nodes with a ran-
dom topology. We generate 100 traces of 10,000,000 time units corresponding to
2.8 h of real time in Uppaal SMC. Then we apply the trace extrapolation tech-
nique (Sect. 4.1) to continue the modelling up to the end of the battery lifetime.
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We also investigate how a more complex power consumption modelling from
Sect. 3.2 affects performance of battery lifetime prediction. We discretize cur-
rent consumption graphs from real wireless sensor network nodes and manually
divide power modes into stages. We interpolate the stages with splines and vary
the number of points a spline interpolates and the maximal degree of splines.
Thus, we construct a sequence of interpolation schemes of ascending complexity.
First, we use constant splines and increase their number until each spline inter-
polates two points only. Then we replace the constant splines with linear ones.
We perform these refinement steps for Neocortec’s MAC only because we do not
have graphs for idle mode in LMAC.

Table 4. Execution time (in seconds) for generating a 10,000,000 time units long
trace with Uppaal SMC and computing battery lifetimes with trace extrapolation and
various current mode modelling approaches

Method Protocol

Neocortec’s MAC LMAC

trace 1852 ± 6 8746 ± 153

const 238 ± 1 535 ± 9

const6 2127 ± 9 —

const5 2551 ± 12 —

const4 3624 ± 13 —

const3 6178 ± 27 —

const2 7428 ± 41 —

lin2 11814 ± 49 —

Table 4 shows the computation time required for generating an input trace
with Uppaal SMC and predicting the battery lifetime. Here “const” is a usual
piecewise constant approach without distinguishing stages in power modes,
“consti” stands for a refined piecewise constant interpolating i points with a
single constant function, i.e., a smaller i corresponds to a more complex inter-
polation, “lini” is same as “consti” but uses linear splines. We emphasize that
computation of the KiBaM solution takes time comparable to generating a rela-
tively short trace in Uppaal SMC but reaches a much longer prediction horizon:
between 83 and 123 days for Neocortec’s MAC and between 1.8 and 4.7 days for
the LMAC. The table also shows the performance of the battery life estimation
involving a more precise power mode model. While decreasing i in “consti” we
add constant steps to the transition state approximations and finally switch
to linear splines in “lin2.” Our observations show that our trace extrapola-
tion method allows for using more complex input for a reasonable performance
penalty but most importantly, by the combination of our techniques, we are able
to predict the battery lifetime in the duration of several months.
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5 Conclusion and Future Work

We investigated two approaches to improve the precision and performance of
battery modelling in hybrid automata simulation tools like Uppaal SMC. We
developed an analytical solution of the flow equations allowing us to use a sepa-
rate postprocessing unit and we implemented a tool for computing the analytical
solution to the kinetic battery model. Moreover, we proposed a method of com-
puting the battery lifetime by extrapolating simulation traces. This technique
allows estimating battery lifetimes without simulating the model for the whole
battery discharge period, which is infeasible in practice. As a proof of concept we
applied our implementation of the analytical solution for comparing the battery
lifetimes of two energy-efficient wireless sensor network protocols: LMAC and
Neocortec’s MAC.

As a part of the detailed current modelling, we solved the KiBaM equa-
tions in the general case. From the general solution we obtained the solution for
polynomial currents and we proposed a method for using real current measure-
ments with simulation traces. The evaluation part of our work included various
setups. We showed that our implementation of the analytical solution has a bet-
ter performance than the numerical one and we demonstrated that the difference
between the numerical and the analytical solution grows over time.

We suggest several directions of the future work. First, we can continue refin-
ing the modelling approach. The trace extrapolation technique we use now is
rather simplistic. More advanced statistical methods can be applied to our prob-
lem. For instance, one can try to obtain a discrete-time Markov chain from the
simulation trace and perform the battery life estimation stochastically, similarly
to stochastic battery models by Chiasserini and Rao [3]. Second, we can use
a more advanced battery model. For example, we can take the temperature-
dependent KiBaM [20] to capture the temperature influence. Furthermore, we
can investigate the impact on the battery lifetime of various protocol optimiza-
tions, e.g. the node can nondeterministically select the neighbours it is going to
interact with and ignore the others. Such an optimization can reduce the power
consumption of the node but also can deteriorate the network characteristics.
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Abstract. The computation tree measurement language (CTML) is
a real-valued specification formalism, designed to express performance
measures and dependability properties in a single framework. It is a fur-
ther extension of probabilistic model checking logic in such a way that it
expands the input and output value from the range of [0, 1] to the range of
[0, ∞). Unlike probabilistic computation tree logic (PCTL) or continuous
stochastic logic (CSL), CTML can nest real values. As such, it turns out
that CTML can express a nontrivial subset of probabilistic linear time
logic (PLTL) formulas that cannot be expressed by PCTL while keep-
ing the overall computational complexity being polynomial in the size of
both an input formula and model. Moreover, it can express queries such
as “when a message is sent, what is the expected time until it is received?”
that cannot be expressed by an existing probabilistic logic, because they
are“probabilistic” at most. While powerful, CTML is a state-based spec-
ification formalism. In this work, we introduce a stronger formal query
language, called action and state based computation tree measurement
language (asCTML). asCTML extends from CTML, for answering per-
formance queries that operates over paths featured by a combination of
states and actions. Inspired by the action and state based continuous
stochastic logic (asCSL), asCTML supports multiple actions.

Keywords: Markov chain · Performance measures
Probabilistic model checking

1 Introduction

Previously, we introduced the computation tree measurement language
(CTML) [1] that is designed to express performance measures and dependabil-
ity properties in a single framework. It takes as inputs a probabilistic model
structure with real-valued “rewards” functions [2] and a real-valued specifica-
tion formalism and outputs a real value. CTML differentiates from probabilistic
model checking logics in such a way that it takes a real value in the range of [0,∞)
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as input, and output a real value in the range of [0,∞). As such, it can nest real
values, in a sense that it does not require to convert a quantitative result from an
intermediate formula to 0/1 (or true/false) value before an outer-level formula is
being solved. Comparing to the probabilistic model checking formalisms, CTML
has at least one of the following advantages: (1) It covers PCTL [3]. (2) It can
express a nontrivial subset of PLTL [4] formulas that cannot be expressed by
PCTL while keeping the overall computational complexity being polynomial in
both the size of an input formula and model. (3) It can express queries such as
“when a message is sent, what is the expected time until it is received?”; this
type of queries cannot be expressed by an existing probabilistic specification
formalism, because they are“probabilistic” at most.

While powerful, CTML is a state-based specification formalism. For action
driven performance queries, it is either not intuitive or simply not expressible,
particularly when considering a model with multiple actions between the same
pair of states. Inspired by asCSL [5], in this work, we introduce a new formalism,
called action and state based computation tree measurement language(asCTML),
that extends from CTML, in support of performance queries that operate over
a combination of states and actions. As such, the expressive power expands sig-
nificantly. Take the classic dining philosophers model [6] as an example, with
asCTML, it is natural to express survivability queries such as: “given a philoso-
pher is hungry, how much amount of food that the philosopher consumes on
average before he/she eventually releases the forks?”, where food is a state for-
mula representing rate rewards, hungry and release are action formulas repre-
senting impulse rewards (i.e., a real value assigned to an action received at its
corresponding state) [2,7].

The remainder of the paper is organized as follows. Section 2 presents foun-
dations for asCTML measures. Section 3 presents the syntax and semantics of
the proposed language. Section 4 presents a translation algorithm from asCTML
to CTML. Section 5 presents an application example and experimental results.
Section 6 discusses related work. Section 7 concludes the paper and gives some
directions for future work.

2 Foundations

In this section, we recall some well-known definitions, introduce notation, and
define the underlying structures necessary for this work.

A (time-homogeneous) discrete-time Markov chain (DTMC) [8] is a tuple
(S,P,π0), where S = {0, . . . , N} is a finite set of states with N ∈ N, π0 : S →
[0, 1] is an initial probability distribution under the constraint

∑
i∈S π0(i) = 1,

and P : S × S → [0, 1] is a stochastic matrix.

Definition 1 (MAMC structure). A DTMC with multiple actions, or
MAMC for short, is a tuple (S, ACT , γ, δ, π0), where

– S is a finite set of states.
– ACT is a finite set of action symbols.
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– γ : S × ACT → S specifies the state transitions.
– δ : S×ACT → [0, 1] specifies the transition probabilities, under the constraint

that ∀s ∈ S, δ(s, ACT ) =
∑

a∈ACT δ(s, a) = 1.
– π0 : S → [0, 1] is an initial probability distribution with

∑
s∈S π0[s] = 1.

Note that by the definition of γ, if (s, a) = (s, b), then γ(s, a) = γ(s, b) and
t = t′, where t, t′ are the next states that a, b lead to, respectively. That is, given
a state s, different next states implies different actions associated with s.

0

1

2

3

a
=
0.5

c =
0.2b =

0.3

a =
1

b
=

0.
5

c
=

0.
5

a
=
0.2

d
=
0.2

c = 0.6

Fig. 1. An example of MAMC structure

Figure 1 shows an example of MAMC structure, with S = {0, 1, 2, 3}, ACT =
{a, b, c, d}; at state 0, action a occurs, leading to state 1, with probability 0.5;
when action b occurs, leading to state 2, with probability 0.3; when action c
occurs, leading to state 2, with probability 0.2, so on and so forth.

Definition 2 (path in MAMC). Let Y = (S,ACT ,Γ,π0) be a MAMC struc-
ture, a path in Y is an infinite sequence π = (s0, a0), (s1, a1), . . . ∈ (S ×ACT )ω,
with πi = (si, ai), δ(si, ai) > 0, si+1 = γ(si, ai), and i ∈ N.

Definition 3 (path formula). Given a MAMC structure Y , a path formula
is a function ψ : (S × ACT )ω → R

∗, where R
∗ denotes nonnegative reals.

Definition 4 (prefix). A prefix in an MAMC structure Y is a finite sequence
of state, action pairs

p = (s0, a0), . . . , (sn−1, an−1) ∈ (S × ACT )n,

or an infinite sequence p = (s0, a0), (s1, a1) . . . ∈ (S × ACT )ω, where pi is the
ith element in p, and |p| = n ∈ N ∪ {ω} is the length of the sequence.

Let Ωω denote a set of paths in MAMC. For a given prefix p, define Ωω
p as

the set of all infinite length paths that start with prefix p. If |p| = n ∈ N, we
have

Ωω
p = (s0, a0) × . . . × (sn−1, an−1) × Ωω (1)

otherwise, if |p| = ω, then we have Ωω
p = {p}.
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Definition 5 (determines ψ on MAMC). We say a prefix p determines ψ
if, for any paths x,x′ ∈ Ωω

p , ψ(x) = ψ(x′); since all paths must have the same
value for ψ in this case, we denote this quantity as ψ(p). Note that any infinite
prefix determines ψ.

Definition 6 (finitely measurable ψ on MAMC). We say a path formula
ψ is finitely measurable on a MAMC structure Y if, for every path x ∈ Ωω

p with
ψ(x) > 0, either there exists a finite prefix p with x ∈ Ωω

p that determines ψ, or
the probability measure for path x is zero.

Like CTML, we wish to define a measure of the expected value of a path
formula ψ. Let X be any set. A σ-algebra is a subset G of the power set of a set
X such that:

1. X , ∅ ∈ G.
2. if C ∈ G, then X \ C ∈ G. That is, G is closed under complementation.
3. if C0, C1, . . . with Ci ∈ G, then

⋃∞
i=0 Ci ∈ G.

An important property is that, for any collection C of subsets of X , there is a
unique smallest σ-algebra on X that includes (i.e., is a superset of) C, called
the σ-algebra generated by C. Then, a function μ : G → [0,∞] is a measure if
μ(∅) = 0, and for any sequence C0, C1, . . . of disjoint sets in G,

μ

( ∞⋃

i=0

Ci

)

=
∞∑

i=0

μ(Ci). (2)

A more rigorous treatment of measure theory may be found for example in [9].

Definition 7 (measure of the expected value of ψ on MAMC). For any
finitely measurable formula ψ on Y = (S,ACT , γ, δ,π0), we define the measure
of the expected value μψ : GS×ACT → R

∗ by

μψ(Ω
ω
p ) =

{
ψ(p)

∏|p|−1
i=1 δ(si, ai) if p = ((s0, a0), (s1, a1), . . .) determines ψ∑

(s,a)∈S×ACT μψ(Ω
ω
(p,(s,a))) otherwise

with μψ(∅) = 0.

Note that in this measure definition of the extended model of MAMC, since the
starting point is now a pair of state, action, the probability of the initial action
associated with (s0, a0) is not included, rather, it is treated as part of the initial
distribution and captured at the end.

Similar to CTML, for this work, every path formula ψ is finitely measurable.
The finitely measurable property helps us to avoid the difficulty of having to
observe an infinitely–long prefix to determine the value of ψ, since any such
path with p = π must have μψ(Ωω

π ) = 0.
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3 Action and State Based Computation Tree
Measurement Language

In this section, we introduce a new formal language called Action and state based
computation measurement language, or asCTML for short. asCTML is designed
to express performance queries based on action and/or state properties over
probabilistic systems. asCTML is syntactically the same, but semantically more
powerful than CTML, for supporting multiple actions, and paths featured by a
combination of states and actions. The main differences between asCTML and
CTML are in their semantics, the interpretation structure, the underlying paths,
and the basic set of atomic functions. The new language is largely inspired by
asCSL [5] and CSLTA [10], for reasoning about both state and action properties
over probabilistic systems. Unlike asCSL and CSLTA, however, this language
works naturally with the performance measures of reward functions [2,7,11]
that are used to be specified within high level models. In the following, we first
give the definition of the basic formulas. Then, we present syntax and semantics
of the languages.

Definition 8 (state+action formula). A state+action formula ϕ is defined
as a function that maps from a pair of state and action to a nonnegative real
value.

ϕ : S × ACT → R
∗

Definition 9 (restricted state+action formula). A restricted state+action
formula ϕr is defined as a function that maps from a pair of state and action to
a real value in interval [0, 1].

ϕr : S × ACT → [0, 1]

In principle, a state+action formula f ranges over S and ACT , meaning they
are defined on every pair of (s, a) ∈ S × ACT ; in practice, however, only the
pairs with positive value of f are given explicitly. To this end, we assume the
following sets of atomic items that are required for the specification of asCTML,
but not required to be tied to a model.

– a finite set AF of atomic state+action formulas,
– AR ⊆ AF of restricted atomic state+action formulas.

For convenience, we also assume one, zero ∈ AR, that evaluate to 1 and 0,
respectively, over any element (s, a) ∈ (S × ACT ).

3.1 asCTML Syntax

Given the definition of atomic state+action formula, the syntax of asCTML and
the meanings of operators M (“expected value” of a path formula), X(“next”),
U (“until”), and V (“weak until”) are kept the same as CTML, except:
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– asCTML operates on state+action formulas, not merely state formulas.
– asCTML supports paths of combination of states and actions, whereas CTML

supports paths of sequences of states only.
– asCTML distinguishes among multiple actions, whereas CTML does not.

Definition 10 (syntax of asCTML). Let f be a state+action formula, let
r be a restricted state+action formula, and let ψr be a restricted path formula
defined as ψr : (S × ACT )ω → [0, 1], the syntax of asCTML can be recursively
defined as follows:

ϕ ::= f | ϕr | ϕ 	 ϕ | Mψ
ϕr ::= r | 1 − ϕr | ϕ 
� ϕ | ϕr × ϕr | Mψr

ψ ::= Xϕ | ϕ U≤t
� ϕ | ϕ V ≤t

� ϕ | ϕ U+ ϕ | ϕr U× ϕ | ϕr V× ϕ

ψr ::= Xϕr | ϕr U≤t
� ϕr | ϕr V ≤t

� ϕr | ϕr U× ϕr | ϕr V× ϕr

where 
�∈ {≤,≥, <,>}, 	 ∈ {+,×}, f ∈ AF , and fr ∈ AR.

Finally we note that asCTML’s top level formula is a state+action formula.
Also, for the same rationale as CTML, the unbounded operators ϕr U× ϕ and
ϕr V× ϕ require that ϕr is restricted to values no greater than one.

3.2 Semantics of asCTML

We now give the formal semantics of the operators appearing in the language.
Unlike model checking logics such as PCTL or asCSL, which define a satisfaction
relation, asCTML formulas are defined as real-valued functions.

Definition 11 (Semantics of asCTML). Semantics of asCTML are induc-
tively defined as follows:

– If ϕ = f , then ϕ(s, a) = f(s, a), ∀f ∈ AF .
– If ϕ = ϕ1 × ϕ2, then ϕ(s, a) = ϕ1(s, a) × ϕ2(s, a).
– If ϕ = ϕ1 + ϕ2, then ϕ(s, a) = ϕ1(s, a) + ϕ2(s, a).
– If ϕ = ϕ1 
� ϕ2, with 
�∈ {>,≥, <,≤} then ϕ(s, a) = 1 if ϕ1(s, a) 
� ϕ2(s, a)

holds; ϕ(s, a) = 0 otherwise.
– If ϕ = 1 − ϕ1, then ϕ(s, a) = 1 − ϕ1(s, a).
– If ϕ = Mψ, then ϕ(s, a) = μψ(Ωω

(s,a)).
– If ψ = Xϕ, then ψ(π0, π1, . . .) = ϕ(π1),
– If ψ = ϕ1U

≤t
� ϕ2, then

• if ∃j ≤ t, ϕ2(πj) > 0, and ∀i < j, ϕ2(πi) = 0,

ψ(π0, π1, . . .) =

(
j−1⊙

i=0

ϕ1(πi)

)

· ϕ2(πj)

• otherwise, ψ(π0, π1, . . .) = 0.
Also, we have ϕ1U

≤∞
� ϕ2 ≡ ϕ1U�ϕ2.

– If ψ = ϕ1V
≤t
� ϕ2, then
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• if ∃j ≤ t, ϕ2(πj) > 0, and ∀i < j, ϕ2(πi) = 0,

ψ(π0, π1, . . .) =

(
j−1⊙

i=0

ϕ1(πi)

)

· ϕ2(πj)

• otherwise, if ∀i ≤ t, ϕ2(i) = 0 then

ψ(π0, π1, . . .) =
t⊙

i=0

ϕ1(πi)

Also, we have ϕ1V
≤∞
× ϕ2 ≡ ϕ1V×ϕ2.

Note that the finitely measurable property of asCTML path formula ψ can be
proved exactly the same CTML [1].

Finally, we define the measure of the top-level formula ϕ on MAMC structure
M based on the initial distribution as follow.

Definition 12 (measure of Mϕ). Given a MAMC structure M = (S,ACT ,
γ, δ,π0), the total value of a state+action formula ϕ on M is defined by

Mϕ =
∑

s∈S

(
∑

a∈ACT

ϕ(s, a) · δ(s, a)

)

· π0(s). (3)

4 asCTML Computation

The computation of asCTML can be reduced to the computation of CTML [1]
via a translation algorithm described below. The algorithm takes a MAMC
structure and a set of asCTML formula, and produces a DTMC structure and
a corresponding set of CTML formula. It is then proved that the translated
DTMC+CTML formula always gives the same value as the MAMC+asCTML
formula.

MAMC+asCTML to DTMC+CTML Translation Algorithm:

– MAMC to DTMC: Given a MAMC structure M = (S,ACT , γ, δ,π0), a
corresponding DTMC D = (S ′,P,π′

0) can be built by the following:
• S ′ = {(sa)|(sa) ∈ S × ACT , δ(s, a) > 0}.
• For all (sa), (s′a′) ∈ S ′,

P[(sa), (s′a′)] =

{
δ(s′, a′) if γ(s, a) = s′,
0 otherwise.

• π′
0[(sa)] = π0[s] · δ(s, a).
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Given this model translation, it is clear that the number of states in the
translated DTMC equals to the number of actions (arcs) in MAMC. The
number of arcs in the translated DTMC is bounded by the number of actions
in MAMC multiplied by the largest degree of outgoing arcs of a certain state.

– asCTML to CTML:
• Given a set of atomic state+action formulas AF , for each f ∈ AF on M ,

we have f ′ ∈ AF ′ on D, with f(s, a) = f ′(sa), for all (sa) ∈ S ′.
Note that since the two sets AF and AF ′ are exactly the same except

one is defined on M with the parameter (s, a) being a pair of state and
action and the other is defined on D with parameter (sa) being a state,
for the following discussion, we use notations such as fM and fD, respec-
tively, to refer to the same formulas on different model structures.

• Any asCTML formula φ on M , denoted by φM , is translated to the same
formula φ on D, denoted by φD, such that for each atomic state+action
formula fM in φM , it is replaced by the corresponding fD in φD.

Theorem 1 (asCTML reduction to CTML). Let φM be an asCTML for-
mula on MAMC structure M , and D be the translated DTMC structure, then
φM (s, a) evaluate the same as φD(sa) on D, where φD is the translation of φM .

Proof. According to the translation method, there is a one to one mapping
between state+action pair (s, a) on M and state (sa) on D, and each atomic
state+action formula f on M is mapped to an atomic state formula f on D. As
such, fM = fD holds trivially. By structural induction, assume that φM = φD,
φM
1 = φD

1 , and φM
2 = φD

2 . Then,

– (φ1×φ2)M = (φ1×φ2)D, (φ1+φ2)M = (φ1+φ2)D, (φ1 
� φ2)M = (φ1 
� φ2)D,
and (1 − φ)M = (1 − φ)D hold trivially, by the assumption.

Note that for succinctness, when the context is clear (e.g., when the
parameter is given as a state such as (sa), then it is a CTML formula; if
the parameter is given as a pair of state and action such as (s, a), then it is
an asCTML formula), we drop the superscript D and M , respectively.

Also, for the following proof of Mψ, we utilize the fact that there exists a
one to one mapping between each state, action pair (s, a) on MAMC and the
translated state (sa) on DTMC. Then, each element (si, ai) in a given MAMC
path πM = (s, a), (s1, a1), · · · matches the state (siai) in the corresponding
path πD = sa, s1a1, · · · of the translated DTMC.

– (MXφ)M = (MXφ)D. By asCTML semantics on MXφ, for all paths: π =
(s, a), (s1, a1), · · · , we have:

(MXφ)M (s, a) =
∑

(s1,a1)∈{γ(s,a)}×ACT

φ(s1, a1)δ(s1, a1)

By the assumption, and translations given s1 = γ(s, a),

=
∑

(s1a1)∈S′
φ(s1a1) · P[sa, s1a1]

= (MXφ)D(sa).
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– (Mφ1U
≤t
� φ2)M = (Mφ1U

≤t
� φ2)D. By asCTML semantics on Mφ1U

≤t
� φ2, for

all paths of π = (s, a), (s1, a1), · · · , with (s, a) = (s0, a0), if ∃j : 0 ≤ j ≤ t, s.t.
φ2(sj , aj) > 0 and for all 0 ≤ i ≤ j, φ2(si, ai) = 0, we have:

(Mφ1U
≤t
� φ2)M (s, a)

=
t∑

j=0

∑

((s0,a0),...,(sj ,aj))∈(S×ACT )j ,
si+1=γ(si,ai)

(
j−1⊙

i=0

φ1(si, ai)

)

· φ2(sj , aj) ·
j∏

i=1

δ(si, ai)

By the assumption, and translations given si = γ(si−1, ai−1),

=
t∑

j=0

∑

(s0a0,...,sjaj)∈S′j

(
j−1⊙

i=0

φ1(siai)

)

· φ2(sjaj) ·
j∏

i=1

P[si−1ai−1, siai]

= (Mφ1U
≤t
� φ2)D(sa).

– (Mφ1V
≤t
� φ2)M = (Mφ1V

≤t
� φ2)D. According to the asCTML and CTML

semantics of Mφ1V
≤t
� φ2, there are two cases for this formula. One case is

that if ∃j : 0 ≤ j ≤ t, s.t. φ2(sj , aj) > 0 and for all 0 ≤ i ≤ j, φ2(si, ai) = 0.
In this case, we have just established that (Mφ1U

≤t
� φ2)M = (Mφ1U

≤t
� φ2)D.

The second case is when ∀i : i ≤ t, φ2(si, ai) = 0. In this case, we have:

(Mφ1V
≤t
� φ2)M (s, a)

=
∑

((s0,a0),...,(st,at))∈(S×ACT )t

si+1=γ(si,ai)

(
t⊙

i=0

φ1(si, ai)

)

·
t∏

i=1

δ(si, ai)

By the assumption, and translations given si = γ(si−1, ai−1),

=
∑

(s0a0,...,stat)∈S′t

(
t⊙

i=0

φ1(siai)

)

·
t∏

i=1

P[si−1ai−1, siai]

= (Mφ1V
≤t
� φ2)D(sa).

– Finally, according to the CTML definition in [1] for the final value of φ on
D, denoted by Dφ and asCTML Definition 12 for the final value of φ on M,
denoted by Mφ, we have:

Mφ =
∑

s∈S

(
∑

a∈ACT

φ(s, a) · δ(s, a)

)

· π0(s)

=
∑

(sa)∈S′
φ(sa) · π′

0(sa) by the translation algorithm

= Dφ

We now compare the expressiveness between asCTML and CTML. First of all,
there are asCTML queries that are not expressible by CTML; see Sect. 5 for
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example queries 1, 2, and 5. On the other hand, although CTML cannot be
directly expressed by asCTML, any CTML formula can be simulated by a corre-
sponding asCTML formula. Algorithm 1 gives details about the simulation. The
overall idea about the simulation is that, for each case of CTML formula, we set
the value of atomic formulas such that f(s, a) = f(s), then compute the corre-
sponding asCTML formula, then sum over the actions of the computed asCTML
formula. The correctness of this algorithm is proven. Due to the limited space,
the proof is omitted here.

We are ready to discuss the expressiveness between asCTML and the estab-
lished probabilistic model checker (PRISM) [12,13]. In general, asCTML and
PRISM are incomparable. First of all, PRISM is a comprehensive tool that incor-
porates PCTL, CSL, PLTL, and PCTL*, which means there are a lot of queries
that can be expressed by PRISM cannot be expressed by asCTML. For example,
PLTL formulas that have LTL formula of the form (a1Ub1)∧· · ·∧(anUbn) (where
ai, bi, 1 ≤ i ≤ n are atomic propositions [14]) are not expressible by asCTML
or CTML, because those are proven to be NP-hard [15], whereas the overall
computational complexity of both asCTML and CTML are linear in the size of
the operators in a formula, and polynomial in the size of a model. In addition,
PRISM has mechanisms to associate a real-valued rewards to actions and/or
states on DTMC models. It has R=? and P=? operators that denote rewards
and probability, respectively, and can express formulas such as R=?[.] or P=?[.],
where [.] denotes a classic temporal logic path formula (see examples in [16]).
Nonetheless, the core formalisms in PRISM still defines a satisfaction relation;
in another words, they cannot express formulas such as R=?[f1U [R=?f2Uf3]],
or R=?[f1U [P=?f2Uf3]] (where f1, f2, f3 are atomic formulas associated with
actions and/or states), because unlike asCTML or CTML they cannot nest real
values naturally in general (see the most recent PRISM work announced here:
http://www.prismmodelchecker.org/).

5 The University Graduation Application

We have a prototype software tool implemented in Java, for the evaluation of
asCTML and CTML queries. The heart of the software tool is the CTML engine
that implements all the CTML algorithms discussed in [1]. For asCTML queries,
we add an additional translator that translates from MAMC to DTMC and
asCTML to CTML as discussed in Sect. 4. The software has been tested on
several applications, including large dining philosopher models with millions of
states and edges. Due to the limited space, for this work, we select to present
a small model structure to illustrate capabilities of asCTML and CTML. With
this small structure, we tend to show users more clearly the quantification of
action driven paths, how action dependent queries can be expressed by asCTML
but not CTML, how action independent queries can be expressed by CTML,
and their syntactic similarities. More importantly, through this small application
example, we tend to deliver the overall specification idea of asCTML with respect
to CTML.

http://www.prismmodelchecker.org/
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Algorithm 1. simulate(φ′, M)
Input: φ′, M
Output: vector π such that π[s] = φ′(s)

switch φ′ do
case f ′

for ∀s ∈ S do
π[s] = f ′(s);

f = setOperand(π, M);
for ∀s ∈ S do

π[s] =
∑

a∈ACT f(s, a)δ(s, a);
return π;

case φ′
1 � φ′

2

φ1 = setOperand(simulate(φ′
1, M), M);

φ2 = setOperand(simulate(φ′
2, M), M);

for ∀s ∈ S do
π[s] =

∑
a∈ACT (φ1 � φ2)(s, a)δ(s, a);

return π;

case φ′
1 �� φ′

2

φ1 = setOperand(simulate(φ′
1, M), M);

φ2 = setOperand(simulate(φ′
2, M), M);

for ∀s ∈ S do
π[s] =

∑
a∈ACT (φ1 �� φ2)(s, a)δ(s, a);

return π;

case 1 − φ′

φ = setOperand(simulate(φ′, M), M);
for ∀s ∈ S do

π[s] =
∑

a∈ACT (1 − φ)(s, a)δ(s, a);
return π;

case MXφ′

φ = setOperand(simulate(φ′, M), M);
for ∀s ∈ S do

π[s] =
∑

a∈ACT (MXφ)(s, a)δ(s, a);
return π;

case Mφ′
1U

≤t
� φ′

2

φ1 = setOperand(simulate(φ′
1, M), M);

φ2 = setOperand(simulate(φ′
2, M), M);

for ∀s ∈ S do
π[s] =

∑
a∈ACT (Mφ1U

≤t
� φ2)(s, a)δ(s, a);

return π;

case Mφ′
1V

≤t
� φ′

2

φ1 = setOperand(simulate(φ′
1, M), M);

φ2 = setOperand(simulate(φ′
2, M), M);

for ∀s ∈ S do
π[s] =

∑
a∈ACT (Mφ1V

≤t
� φ2)(s, a)δ(s, a);

return π;
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Algorithm 2. setOperand(π, M)

Input: vector π, M
Output: asCTML atomic formula f such that f(s, a) = π[s]

for ∀s ∈ S do
for ∀a ∈ ACT do

f(s, a) = π[s];
return f ;

5.1 Specification Examples

The University Graduation example as shown in Fig. 2 is from [17]. Each year,
at a fictitious four year undergraduate university, a student has probability p to
move up to a higher grade, has probability r to repeat for the same grade, and
probability q to drop the school. The following presents interesting queries for
this model.

fr so jr sr

gradflunk

upgrade = p

repeat = r

drop =q

upgrade = p

repeat = r

drop
=
q

upgrade = p

repeat = r

dr
op

=
q

upgrade = p

repeat = r

dro
p =

q

succ = 1

fail = 1

Fig. 2. University graduation example

1. “What’s the average number of years of repeating at the freshman level?”
First of all, the query requires to count the repeat action at the freshman
year only. So we define an atomic formula repeats-fr such that it has value
1 on (fr , repeat), and 0 on all others. Also, for this model, there are only
two destinations which are either finish successfully indicated by grad or
flunk. So we define another atomic formula finish such that it has value
1 on (grad , succ) and (flunk , fail), and 0 otherwise. The query can then be
expressed as

M repeats-fr U+ finish
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In general, this type of query is not expressible by CTML, especially if we
change the value of repeats-fr(fr , repeat) to some other positive value other
than 1. In this particular case, however, we can use the CTML expression
M fr U+ (1 − fr) to get the average number of years spent as a freshman,
and then we subtract one to get the number of repeats.

2. “What’s the average number of repeating at all levels of grades given that
students graduate successfully?” Unlike the previous query, this query asks for
the quantification of the repeating behavior at all levels of grades, so we define
an atomic formula repeats such that repeats({fr, so, jr, sr}, repeat) = 1 and
0 for all others. Also, we need an atomic formula graduate(grad, succ) = 1
and 0 otherwise. Then the query can be expressed as

Mrepeats U+ graduate

By the definition of the conditional expectation equation [18]:

E(B | A) =
∑

∀ b

b · Pr(B = b | A) =
∑

∀ b b · Pr(B = b ∩ A)
Pr(A)

(4)

the result of the expression must be divided by the quantity of
Mone U× graduate. The query is not expressible by CTML in general.

3. “What’s the probability to quit the school after sophomore year?” Let
quit-after -soph be an atomic formula such that quit-after -soph({so, jr, sr},
drop) = 1, and 0 for all others. Then the query can be expressed as

Mone U× quit-after -soph

This query is expressible by CTML as

Mone U×(M so U× flunk)

and by PLTL as
P?=F (so U flunk)

In this case, asCTML requires one path operator U×, whereas both CTML
and PLTL requires two path operators.

4. “What’s the probability of graduation in 6 years?” Let graduate be an atomic
formula with graduate(grad, succ) = 1 and 0 otherwise. Then the query can
be expressed as

M one U≤6
× graduate

This query is expressible by CTML, with the same syntax as for asCTML,
except that with CTML the atomic formulas graduate and one quantify the
corresponding states only, rather than the (state, action) pairs.
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5. “Given that a student reached the junior state and never repeated a year
before, what’s the probability that the student will graduate in 3 years?” This
query requires to only quantify the upgrade action at the fr and so states as
the conditional statement imposes. Let no-repeat-soph({fr, so}, upgrade) =
1, and 0 otherwise. Let graduate(grad, succ) = 1 and 0 otherwise. Let
junior(jr, {repeat, upgrade, drop}) = 1, and 0 otherwise. Then this query
can be expressed as

M no-repeat-soph U×(junior × M one U≤3
× graduate)

and the result must be divided by M no-repeat-soph U× junior , according to
the conditional probability definition [18]. Since the query depends on actions,
it is not expressible by CTML.

Note that in case there are multiple actions between the same pair of states,
the idea of the specification would be the same.

5.2 Experimental Results

We now discuss experimental results for the queries. First, we come up with
a MAMC model structure for the University Graduation example, and a set of
atomic state+action formulas for the queries. we (arbitrary) set the probabilities
p, r, q to be 0.1, 0.8, and 0.1, respectively. The MAMC model and the atomic
state+action formulas are then translated into DTMC model and CTML atomic
state formulas, which are then plugged into CTML software for evaluation of
each query. Since the specifications are syntactically the same for asCTML and
CTML, they can either be included in MAMC model and carried over to the
DTMC model, or be put in the translated DTMC model directly. For this small
model, we omit the discussion of testing environment and CPU time. Table 1
presents the numerical results for each query discussed above. All outputs are
verified by the numerical solutions computed by hand.

Table 1. Numerical results of asCTML queries for Fig. 2

# Query Initial state Numerical
result

1 M repeats-fr U+ finish fr 0.11111

2
M repeats U+ graduate

M one U× graduate
fr 0.44443

3 M one U× quit-after -soph fr 0.26459

4 M one U≤6
× graduate fr 0.57344

5
M no-repeat-soph U×(junior ·M one U

≤3
× graduate)

M no-repeat-soph U×junior
fr 0.64000
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6 Related Work

There is a body of past work on stochastic model checking formalisms. The
most relevant work such as PRISM and CTML has already been discussed in
Sect. 4. Other rewards augmented stochastic formalisms include PRCTL [19]
and CSRL [20] (which is similar to PRCTL, but operates on continuous-time
Markov chains). They are more related to asCTML’s prior work, CTML, since
all those are the extensions of PCTL with rewards functions, but they don’t have
action formulas. For action and state based stochastic formalisms, CSLTA [10]
and asCSL [5] (which is an extension of CSL [21] and aCSL [22] that work with
continuous-time Markov chains) are closely related to asCTML in a sense that
both allow multiple actions between a pair of states and can quantify paths
featured by a combination of states and actions. CSLTA is more expressive
than asCSL for reasoning state and action properties over probabilistic systems.
Unlike asCTML, however, they don’t support real-valued rewards. Another work
we would like to mention is performance trees [23], as it can describe results of
various types (real–valued or otherwise, including distributions). Unlike CTML
or asCTML, however, performance trees is a more general framework that relies
on the existing performance evaluation algorithms as well as some of the existing
model checking algorithms (such as PCTL, CSL, etc.) for the expression of both
logic and real–valued measures.

7 Conclusions and Future Work

We have introduced a formal query language, asCTML, for describing
quantitative performance measures. The combination of nesting and real-
valued state/action formulas, particularly the nesting of action formulas, unique
to asCTML, extend the expressive power of the familiar temporal operators.
Through proper translation, asCTML can simulate any CTML formula. Our
asCTML algorithm has complexity similar to that of PCTL, but better than
PLTL. We are currently working on to apply asCTML for continuous time
Markov chains or semi-Markov processes. For unbounded until and unbounded
weak until queries, this is fairly straightforward: since asCTML can handle real–
valued state/action formulas, we can instead analyze the embedded DTMC using
asCTML, and scale the state/action formulas by the expected time spent in each
state or action. The time bounded versions of these formulas are not so straight-
forward to handle, and will likely require significant changes.
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Abstract. We investigate the use of probabilistic model checking to syn-
thesise optimal strategies for autonomous systems that operate among
uncontrollable agents such as humans. To formally assess such uncon-
trollable behaviour, we use models obtained from reinforcement learning.
These behaviour models are, e.g., based on data collected in experiments
in which humans execute dynamic tasks in a virtual environment. We
first describe a method to translate such behaviour models into Markov
decision processes (MDPs). The composition of these MDPs with mod-
els for (controllable) autonomous systems gives rise to stochastic games
(SGs). MDPs and SGs are amenable to probabilistic model checking
which enables the synthesis of strategies that provably adhere to formal
specifications such as probabilistic temporal logic constraints. Experi-
ments with a prototype provide (1) systematic insights on the credibil-
ity and the characteristics of behavioural models and (2) methods for
automated synthesis of strategies satisfying guarantees on their required
characteristics in the presence of humans.

1 Introduction

The control of autonomous agents like robots often necessitates to account for
other, potentially uncontrollable, agents such as humans. Examples of such par-
tially controlled multi-agent systems [1] include self-driving cars [2], autonomous
trading agents in the stock market [3], and service robots in presence of
humans [4]. Physical interaction with humans makes them safety-critical.

Dependability requirements in safety-critical autonomous systems call for
guarantees beyond confidence intervals with soft bounds, such as statistically
obtained by simulations or experiments. For example, a self-driving car has to
safely operate among pedestrians and human-operated cars. Repeatedly running
physical experiments is costly and may put humans at risk.
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To address the need for certified bounds on safety requirements in
autonomous systems, we synthesise strategies to move a controllable agent
towards a goal while limiting the probability of crashing into other dynamic (and
uncontrollable) agents, such as humans. We exemplify the synthesis by means of
a case study in which a human moves along a board walk, see Fig. 1. We extract
a Markov Decision Process (MDP) [5] from an existing behavioural model, for
instance of humans, obtained by reinforcement learning (RL) [6]. We refer to
such a model for uncontrollable agents as an RL model. Roughly, states in the
MDP are a Cartesian product of the state of the environment and the location of
the agent. The stochastic transitions are based on observed experimental data,
as computed by RL. Due to lack of observations in corner cases and abstrac-
tion of complicated scenarios, accurate stochastic descriptions of the behaviour
are not always available, that is, the agent behaviour is under-specified. Instead
of guessing, we explicitly model the agents’ behaviour as non-deterministic in
such situations. MDPs are a suitable modelling formalism, as they allow the
co-existence of the stochastic and non-deterministic elements in the RL model.

Fig. 1. A multi-task sidewalk environment in simulation. The objective is split into
three modular tasks (i) approach targets (purple), (ii) avoid obstacles (blue), and (iii)
follow walkway (grey). (Color figure online)

Two key tasks are to (1) analyse the learned behaviour of uncontrollable
agents and to (2) synthesise a strategy for the controllable agents that prov-
ably adheres to safety and/or performance specifications. We propose to use
probabilistic model checking (PMC) for these tasks. PMC is a formal verifica-
tion technique tailored to systems exhibiting randomness and uncertainty [7],
and fully automated tools—e.g., PRISM [8] or Storm [9]—are readily available to
provide an off-the-shelf solution. Figure 2 shows an overview of our approach.

First, given an RL behaviour model and an arbitrary fixed concrete scenario,
we generate an MDP automatically. To address task (1), we phrase measures that
assess the behaviour of the uncontrollable agent in PCTL, a probabilistic tem-
poral logic [10]. For instance, we consider the minimum/maximum probability—
depending on how the non-determinism is resolved—to not bump into obstacles,
or the expected number of steps to reach a region in the environment. As a side
product, PMC computes strategies which resolve non-determinism that obtain
extremal probabilities. These strategies yield insights where the underspecifica-
tion is critical. PMC is thus provides quantifiable feedback about the behaviour of
the uncontrollable agent, as modelled by the MDP for an RL model.

To address task (2), we add a controllable agent which moves in the pres-
ence of the aforementioned uncontrollable agents. We describe the actions of the
controllable agent, together with probabilities for possible uncertain outcomes
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Fig. 2. The conceptual framework of our approach for the partially controlled multi-
agent problem.

of these actions, as an MDP. Composing such an MDP with the MDP for the
RL models, yields a two-player stochastic game (SG) [11]. One player takes the
actions of the controllable agent, and one player resolves the (non-deterministic)
uncertainty in the behaviour of the uncontrollable agents.

PMC [12] automatically synthesises strategies for the controllable agent in
the SG that, if possible, provably adhere to temporal logic constraints, for any
resolution of the non-determinism in the uncontrollable agents. Such constraints
may enforce the controllable agent to reach, with high probability, a certain area
without a collision, or impose a bound on the expected number of steps. PMC
supports such automatic strategy synthesis. In addition, PMC yields Pareto-
curves to analyse the trade-off between several, potentially conflicting, measures.

A practical challenge is that the resulting MDPs and SGs are necessarily
large in the context of real-world applications. Moreover, the data obtained from
observations may induce models that do not exhibit the common features (e.g.,
structural symmetries) that usually help suppress the size of the MDPs and SGs.
They also contain a large number of different probabilities. Consequently, off-
the-shelf abstraction techniques employed in PMC tools [13] barely reduce the
state space of such models. We alleviate this challenge by several optimisations
in the encoding of the models, and adequately invoking available tools.

Contributions. This paper presents a framework to employ PMC for partially
controlled multi-agent systems where a behaviour model for the uncontrollable
agents is present and obtained by RL. The main technical contributions are:
(1) a general recipe to cast behaviour models from RL into MDPs, (2) the use of
PMC to obtain dependable quantitative insights of such models, (3) a technique
to combine MDP models from controllable and uncontrollable agents into an
SG, and (4) the synthesis of strategies by applying PMC on SGs. Either the
resulting strategies are guaranteed to be safe and/or efficient, or the approach
reports on the impossibility to synthesise such strategies.

Case Study. We apply the proposed approach to an existing case study in
human-robot interaction, a visiomotor multi-task model from [14,15]. Here, RL
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describes quantitative aspects of human behaviour such as the likelihood to take
an action in a certain situation. To account for the limitation in human cog-
nition, global tasks are decomposed into modular sub-tasks. This modelling of
multi-task behaviour is called modular (inverse) RL [15–18]. Behaviour in such
a setting may be observed in mixed-reality environments and cast into a gen-
eral behaviour model. The goal is to synthesise a strategy for a robot navigating
safely, i. e., without interfering with the human, through the same environment.

Related Work. PMC has been applied to autonomous robot systems, see e.g.
[19–23]. Trade-off analysis has been advocated in [22,24]. These applications
all consider MDP models of robots. This paper instead considers MDP model
checking of behaviour models obtained from RL. SGs have been used to model
multi-agent learning problems [25,26]. Finally, [27] uses statistical model check-
ing to evaluate self-assembly strategies of autonomous systems. We reflect on
the usage of statistical model checking for our setting in Sect. 6.

2 Preliminaries

Definition 1 (Probabilistic models). A stochastic game (SG) is a tuple M =
(S, sI ,Act ,P) with a finite set S of states with S = S◦ �S� where players ◦ and
� control the corresponding states, an initial state sI ∈ S, a finite set Act of
actions, and a transition function P : S×Act×S → [0, 1] with

∑
s′∈S P(s, α, s′) ∈

{0, 1} ∀s ∈ S, a ∈ Act. For each state s ∈ S, the set of enabled actions is
Act(s) = {α ∈ Act | ∃s′ ∈ S.P(s, α, s′) �= 0}.
– M is a Markov decision process (MDP) if S◦ = ∅ or S� = ∅.
– MDP M is a Markov chain (MC) if |Act(s)| = 1 for all s ∈ S.

Players nondeterministically choose an action at their state; successor states
are determined probabilistically according to transition probabilities. MDPs and
MCs are one- and zero-player SGs, respectively. Probabilistic models are com-
monly specified in a guarded command language developed for PRISM [8].

Nondeterministic choices of actions in SGs are resolved by so-called strategies;
resolving all nondeterminism yields induced MCs. In general, strategies (for each
player) are functions σ : S∗ → Distr(Act), such that finite paths of probabilistic
models are mapped to distributions over actions. For many properties, however,
simpler strategies suffice [28].

3 Partially Controlled Multi-agent Setting

The considered setting consists of an environment with a set of (controllable
or uncontrollable) agents. Here, we define an environment to be a 2D-grid with
features of different types from a set of types Tp which influence the agents’
behaviour. One example for such a feature type is a (potentially moving) obstacle.
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Definition 2 (Environment). An environment Env = (Loc,Feat) consists of
a finite set of locations Loc ∈ [0,Gridx] × [0,Gridy] with Gridx,Gridy ∈ N, and
a set of features Feat ⊆ Tp × Loc. A feature f = (tpf , �f ) ∈ Feat consists of a
type and a (feature-)location.

An agent h is represented by its position posh = (�h, αh), with location �h

and an orientation αh ∈ R, e.g., north (0) or south (π). The set of all positions
is denoted Pos. Two agents crash, if they have the same location. Agent h starts
in position inith, and has an associated set Mh of movements1. A movement
m ∈ Mh deterministically updates the position of agent h as described by a
partial function postm : Pos ⇀ Pos; m is defined in posh only if postm(posh)
describes a valid position, i.e., a position on the grid. While moving, an agent
can perceive knowledge (as described by a set of atomic propositions) about the
features or other agents. The state s of agent h consists of its position and the
perceived knowledge, s = (posh, knowh). The set of all states is denoted Sh. Let
effm : Sh ⇀ Sh computes the successor state of taking movement m in a state
by updating the position and the perceived knowledge, exemplified later.

Reinforcement Learning. Intuitively, RL lets a controllable agent explore its
environment by sequential decision-making [6]. The objective is to (approxima-
tively) optimize the expected reward for the agent in the underlying MDP or
SG [25]. During the exploration, a strategy may be unsafe in the sense that it
harms the agent or the environment. This shortcoming restricts the application
of RL mainly to application areas where safety is not a concern and has triggered
the particular direction of safe RL [29]. Most approaches rely on “tweaking” the
reward functions such that a learning agent behaves in a desired, potentially
safe, manner. As rewards are often specialized for particular environments, such
reward engineering runs the risk of triggering negative side effects or hiding
potential bugs [30]. Therefore, we separate the concerns by first using RL to
obtain a general behaviour model which may then be analysed with respect to
both expected rewards and safety in concrete scenarios.

Behaviour of Uncontrollable Agents. We assume an estimation of the
behaviour of uncontrollable agents, derived from an existing RL model in two
steps.

The first step determines a set V (s) of movement-value-vectors for each state
s. Each movement-value-vector q ∈ V (s) contains a score for every movement,
i. e., q : Mh → R∞. Roughly, scores correspond to likelihoods for the movements,
obtained from the RL model. Sometimes |V (s)| > 1, as either:

– A specific situation may have never been accounted for. Because of this lack
of data, the learned model is short of dependable estimations of specific move-
ments scores. Or,

1 We use the term movements to clarify the distinction from actions in MDPs.
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– the learned behaviour model is based on relative information regarding the
features of the setting. For instance, the distance to an obstacle may influence
the score of a movement. As the closest obstacle is not necessarily unique,
several different scores for a state are possible.

The second step defines the stochastic behaviour of the agent by translating
any movement-value-vector q �= −∞ to a distribution over movements. For the
translation, we use a softmax -function R|Mh|∞ → [0, 1]|Mh|, which attributes
most, but not all probability to the maximum [6]. The distribution is defined
as:

softmaxτ (q)i = e
q i/τ

/
∑

i≤|q | e
q i/τ (with e−∞ := 0, and τ > 0).

Invalid movements (qi) have zero probability due to the numerator. The param-
eter τ is called the temperature. For a temperature close to zero, the function
yields a (hard) maximum; for a high temperature it yields an almost uniform
distribution over the valid movements.

MDP for One Uncontrollable Agent. The behaviour can be captured in an
MDP by using the position and the perceived knowledge as a state. The obtained
distributions over movements yield the transition function. In particular, each
movement-value-vector q corresponds to an action in the MDP. The successor
states of a an action corresponding to q is determined by applying the associated
movements, and the distribution is given by softmaxτ (q) as described above. Due
to the nondeterminism, the behaviour MDP can be seen as a partial strategy for
uncontrollable agents provided by the behaviour model.

MDP for Multiple (Uncontrollable) Agents. We assume that all
agents move in alternating fashion. This abstraction yields a pessimistic
over-approximation of the non-determinism over synchronous movements, and
allows a straightforward mapping from movement-vectors to actions. The over-
approximation compared to synchronous movements diminishes to less non-
determinism the model exhibits. A state of the joint MDP is given by the Carte-
sian product, together with an entry which agent is moving. The actions and
their effects are determined by the transition function of the MDP of the current
agent, as in, e.g., [31].

SG for Controllable and Uncontrollable Agents. We assume descriptions
of the controllable agent are available, either via RL or directly modelled. The
joint SG is similar to the joint MDP. States where a controllable agent is moving
correspond to Player ◦, the uncontrollable non-determinism to �, respectively.
The controllable agents move first, to prevent them from taking the upcoming
move by � into account. A strategy for the controllable agent adhering to a
given property is robust against both stochastic and nondeterministic actions
of the uncontrollable agents. If the MDP for the uncontrollable agents does not
contain any non-determinism, the joint SG collapses: all choices belong to the
controllable player, therefore, the joint agent SG iss an MDP.
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Analysis. PMC supports a wide range of properties for MDPs and SGs to
analyse [28]. We focus on determining strategies that induce maximal or minimal
probabilities to safely reach target states and the expected cost until the target is
reached. Richer specifications such as probabilistic temporal logic constraints or
ω-regular properties are commonly reduced to such reachability objectives [28].

To analyse the MDP, we compute the minimal and maximal values for a prop-
erty, depending on how non-determinism is resolved. A large difference between
these values indicates that the uncertainty (underspecification) in the data is sig-
nificantly affecting results. For the SG, we consider the best-case behaviour of the
controllable agent. Often, the best-case behaviour for one property induces sub-
optimal behaviour with respect to another property. To illustrate these trade-offs,
we compute Pareto-curves via multi-objective PMC [32]. The model, however,
can be checked for other properties without adaptions.

4 Case Study

The specific example we study is a visiomotor multi-task model from [14,15].
We describe the concrete adaption of this model towards a behaviour MDP and
the inclusion of a controllable agent in line with the concepts of Sect. 3.

Scenario. We consider a scenario involving an uncontrollable human agent
going along a sidewalk encountering obstacles and litter, see Fig. 1. The human
is given three modular objectives: while FOLLOW a sidewalk (represented as a set
of waypoints) to get to the other end, she should AVOID walking into obstacles
and aim to COLLECT litter. Waypoints, obstacles and litter are the features.
Features are initially present, but disappear when visited, run over, or collected.
We mark regions of the environment as target areas. A toy scenario is given in
Fig. 3(a). The scenario is abstracted to a discrete-state model to characterise
human behaviour in the model. Recall that the behaviour is determined by
movement-values, which are translated into distributions over movements.

We specify both the environment and the human behaviour. Throughout the
section, Env = (Loc,Feat) is an environment with an arbitrarily sized grid and a
finite set of features. Features have a type in Tp = {Obst,Litt,Wpt}.

Fig. 3. Grid worlds, orientations, and human movement.
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Example 1. Consider Fig. 3(a). The environment is Env = (Loc,Feat) with Loc =
{(x, y) | x ∈ [0, 4] y ∈ [0, 4]}, and

Feat = {fi = (Wpt, (2, i)) | i ∈ {1 . . . 4} }
∪ {f5 = (Obst, (3, 3)), f6 = (Obst, (0, 2)), f7 = (Obst, (0, 4))}
∪ {f8 = (Litt, (1, 3)), f9 = (Litt, (4, 3))}

The human’s orientation has 8 possible values, αh ∈ Orient = {i · 1
4π | i ∈

[0, 7]}, and is associated with a direction Dir : Orient → {−1, 0, 1}2 \ {(0, 0)}, see
Fig. 3(c). The possible movements are Mh = {LEFT,STRAIGHT,RIGHT}, we
depict the associated position updates in Fig. 3(d). Formally, we have

postm(posh) = (�h + Dir(αh + βm), (αh + βm) mod 2π)

for posh = (�h, αh) and movement m with angle βm, where βm ∈ {− 1
4π, 0, 1

4π}.
Thus, for some movement, we first update the position based on the current
orientation, and then the orientation.

The perceived knowledge knowh concerns the presence of features, i. e., if they
have not been collected or run over. Here, the set knowh = PFeat ⊆ 2Feat contains
the present features. Consequently, a state for a human is a tuple (posh,PFeat).
Features that coincide with the updated human location disappear and are
removed from the set of present features:

fum(s) = PFeat \ {(tp, postm(posh))} ⊆ Feat.

Updating the position and the perceived knowledge yields the successor state.

Definition 3 (Successor state for human). The successor state of movement
m in state s =

(
posh,PFeat

)
is effm(s) =

(
postm(posh), fum(s)

)
.

Human Behaviour. We discuss how to obtain a distribution over different
movements within a modular RL framework, where the weights are obtained
via inverse RL. From [15], we obtain Q-tables and weights describing human
behaviour, cf. Fig. 4(a). Figure 4(b) outlines how to obtain values for the possi-
ble movements for each objective. Figure 4(c) describes how to combine values
for different objectives and their translation into distributions. The estimation
depends on the relative location with respect to some features. Details of the
steps are below.

Distance and Angle. The distance dh(f) between the human at location �h and
a feature f at location � is the Euclidean norm of their locations. θh(f) denotes
the signed angle between the human orientation and �h − �.

Relevant Features. For each objective, only a subset of the features are rele-
vant for the human behaviour in a state. First, for each objective o, we have
exactly one corresponding feature-type F (o) ∈ Tp; Waypoints, obstacles and
litter correspond to FOLLOW, AVOID and COLLECT, respectively. The set
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Fig. 4. How to construct sets of distributions.

RelFeato(s) = {(F (o), �) ∈ PFeat} contains the relevant features for objective
o in state s = (posh,PFeat). Second, we adopt the assumption from [15] stating
that for each objective o, only the closest feature of type f(o) is relevant for the
behaviour with respect to o.

Remark. This rather strong assumption reduces the number of hidden parameters
a learning method has to estimate. The closest relevant features Close(s, o) for
objective o in state s are:

Close(s, o) ={f ∈ RelFeato(s) | ∀f ′ ∈ RelFeato(s). dh(f) ≤ dh(f ′)}.

Example 2. Recall state s in Fig. 3(b). The closest relevant features are, e.g.,
Close(s,AVOID) = {f5, f6}, and Close(s,FOLLOW) = {f2}.

As we observe from the example, the human behaviour model is under-
specified: It is not clear which feature is relevant, i. e., the set Close(s, o) is
not necessarily a singleton, as several nearby objects may be located at similar
distances. Any feature in the set may be the one that is being considered.

Movement-Values. For each movement m and each objective o, we assume we
are given a Q-table Qm

o : R×R+ → R which maps the angle θh(f) and distance
dh(f) between a human and relevant feature f to an objective-movement-value,
constructed via [15]. We map the closest relevant features into a set of objective-
movement-vectors V o(s) by a lookup in the Q-table, and store the feature:

V o(s) ={(f, q = [ql, qs, qr]) | f ∈ Close(s, o), ql = QLEFT
o (θh(f), dh(f)),

qs = QSTRAIGHT
o (θh(f), dh(f)), qr = QRIGHT

o (θh(f), dh(f)) } .

Vector entries collect movement-values for a fixed feature.
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Combining Movement Values. A probability distribution over objectives is given
as a objective-weight vector w = [wAVOID, wCOLLECT, wFOLLOW], e.g. obtained by
modular IRL as in [15]. The objective-movement-vectors are translated into a
set V (s) of movement vectors q annotated with sets of relevant features F by
calculating a weighted sum over all combinations and annotating them with the
union of the features. For invalid movements, we set −∞ as movement-value. If
no movement is possible, we remove the vector from the movement values.

Distribution. The last step (cf. Fig. 4(c)) is to transfer movement values into a
distribution over the movements.

4.1 Operational Model

Behaviour MDP. We automatically generate an MDP for the human
behaviour. The human starts in its initial position and all features are present.
Recall that the nondeterminism is caused by underspecification of the model,
resulting in multiple movement vectors, and that each vector is reflected by an
action.

Definition 4. The MDP M = (S, sI ,Act ,P) reflecting the human behaviour
starting in inith on an environment Env = (Loc,Feat) with temperature τ is S =
{(posh, P ) ∈ (Loc×Orient)×2Feat} with sI = (inith,Feat), Act = Feat×Feat×Feat
and

P(s, a, s′) =

{
softmaxτ (q)i if (a, q) ∈ V (s), s′ = eff(Mh)i

(s) for an i

0 otherwise.

Joint Human-Robot SG. As controllable agent, we consider a robot either
turning 90◦ (left or right) in place, or moving forward. The human-robot SG is
the parallel composition of the MDP for the human and the MDP for the robot.
We consider two cases for the human behaviour in the presence of a robot. First,
we assume the behaviour is not influenced by the robot, which yields a strategy
for the robot not counting on the human to actively evade the robot. Second,
we model the robot as an obstacle-feature: The human avoids the robot, and
the robot strategy takes the human ‘aversion’ of the robot into account. For the
latter case, we assume that the human treats the robot as a static obstacle.

Joint Human-Robot MDP. The SG collapses to an MDP if there is no
non-determinism in the description of the uncontrollable agents. One way of
eliminating underspecification is to create unique closest relevant features by
selecting the one with the smallest absolute angle, and if tied, left-of-the-human
over right. This abstraction allows to treat larger benchmarks on a less precise
model.

Example 3. Eliminated underspecification yields for state s from Fig. 3(b),
Close(s, AVOID) = { f5 }, as |θh(f5)| ≈ 26◦ < |θh(f6)| ≈ 63◦.
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4.2 Experimental Setup

Our prototype realises the framework as in Fig. 2 using PRISM-Games [12] for
evaluation of the human and synthesising strategies, and storm for trade-off
analysis of multiple specifications. Results are obtained on a HP BL685C G7,
using 48 cores, 2.0 GHz each, and 192 GB of RAM.

State and Transition Encoding. We encode the models using the PRISM-language,
where parallel composition of modules yields concrete MDP or SG models2. We
define MDPs describing human and robot behaviour in form of such modules;
parallel composition yields the SG describing joint behaviour. Roughly, the two
MDP modules are encoded as follows. A global flag indicates whether the human
or the robot moves next; preconditions in both modules ensure a turn-based
movement. The module for the human consists of 3 integers to represent the
human position and flags bf indicating the presence of feature f . The transition
relation for each human position is listed explicitly. Although the number of
reachable states is exponential in the number of features, the encoding is cubic
as the behaviour depends on the nearest features only. The robot module defines
any given model over the same environment as for the human. The SG state space
is the product of the two modules, the size of the encoding equals their sum.

Optimizations. The encoding in the PRISM language enables using a variety of
tools, but the size of the encoding grows rapidly with the size of the environment.
In fact, the model cannot be represented as succinctly (up to 100K lines) as
typical examples (up to 1K lines); therefore parsing and model building take
significant time. We employed some performance improvements, among them:
(1) Only the Q-table for obstacle avoidance shows equal values for the far-away
columns—indicating that human behaviour does not consider far-away obstacles.
It is not necessary to distinguish which obstacle is nearest if all induce the same
score. (2) As every location in a concrete scenario occurs in a large number of
commands, a symbolic substitution of similar positions reduces the overhead of
specifying locations repeatedly. These improvements reduce the parsing time by
40%. It is important to choose the right tool configuration, in particular the
engine and preprocessing.

5 Results

To give an indication on the sizes of the MDPs and SGs we handle, con-
sider Fig. 5(e–f) presenting the grid size, the number of features (obsta-
cles/litter/waypoints), the number of states, and global actions of the models
using τ = 0.075.

Evaluating the Behaviour Model. For the behaviour MDP, we compute mini-
mum and maximum probabilities for reaching a target area. These probabilities
depend on how the nondeterminism concerning underspecification is resolved.

2 Available at https://github.com/moves-rwth/human factor models.

https://github.com/moves-rwth/human_factor_models
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The gap between these probabilities indicates the actual relevance of underspec-
ification. Moreover, we analyse the number of steps a human needs to reach the
target area to get an indication if the behaviour is realistic. We discuss results
for an MDP induced by a 20× 20 grid with 2 pieces of litter, 2 obstacles, and 7
waypoints (2/2/7), see Fig. 5(a). The human is only told to follow the waypoints.

Fig. 5. MDP analysis using PMC.

Relevance of Underspecification. Figure 5(b) plots the min/max probability to
reach the target area against the temperature (controlling the variability in the
softmax function). It shows that, with low variability, the fragment of executions
indeed reaching the other side without leaving the grid is high. With higher
variability (where features are mostly ignored), this number quickly drops.

Performance of the Human. Figure 5(c) indicates a similar behaviour for step-
bounded reachability for different number of steps (x-axis) and temperatures 0.05
and 0.5. Most executions take more than 30 steps to reach the goal, indicating
that, based on the given data, humans very unlikely walk in straight lines. This
phenomenon occurs due to the lack of a notion of progress in visiting waypoints—
it does not penalize walking in circles, as only positive reward is earned on
visiting waypoints. The gap due to underspecification is significant as long as
the variability is not too high. With low variability, most executions reach the
goal within 60 steps. Detailed analyses considering the obtained strategies show
where in the model underspecification has the largest effect.

Robot Strategy Synthesis. For robot strategies, we use PMC to maximise mea-
sures regarding safety, where the robot never occupies the same cell as the
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human, and performance, where a target area is reached within a certain number
of steps. However, these objectives may conflict with each other: If the goal has
to be reached in a few steps, there is not much time for precautions, and the
probability of safety is affected negatively. In contrast, safer strategies reduce
the performance. To obtain insights, we perform a trade-off analysis.

Analysing Joint Human-Robot MDPs. On a 8× 8 grid with 2/2/3 features, we
considered two objectives: To reach the other side within 10 steps without crash-
ing and to reach the other side within 30 steps without crashing. The first gives
only few opportunities to evade the human, while the latter gives plenty opportu-
nities. The two objectives thus may conflict with each other. Figure 5(d) has been
automatically generated with PMC. It shows in green combinations of objectives
which can be achieved by some strategy. We see that optimising the first con-
dition yields a strategy with 92% chance to satisfy the former condition and a
93% chance to satisfy the latter, while another strategy yields a 99% chance to
satisfy the latter and a 90% chance to satisfy the former condition.

Scalability of Analysing SGs. Using our aforementioned optimisations, we are
able to analyse all SGs in Fig. 5(f). The symbolic engine of PRISM-Games finishes
(model) building within 30 s for all these models, but (model) checking to find
a good strategy takes significantly more time: between 270 and 4800 s for the
8× 8 grids, respectively, and 70 h for the smaller 11× 11 grid. Using an explicit
engine, checking is faster, but building suffers from the large size of the encoding:
For the 8× 8 grids, checking requires between 300 and 2100 s, but building takes
between 40 min and 20 h, respectively. The smaller 11× 11 grid takes up to 200 h
of building. Once a model is built, multiple properties can be checked on this
model efficiently. Currently, only the explicit engine allows to actually extract an
optimal strategy. Therefore, we only obtain the strategies for the 8× 8 grids and
the smaller 11× 11 grid. For MDPs, the performance is superior on the sparse
engine, which does model-building via the symbolic engine and checking via an
explicit representation.

6 Discussion

The Model. Based on the PMC results, we obtained five lessons about the
weighted Q-table model. (1) According to the provided model, humans most
likely walk in wavy lines. Following a line and giving a penalty for any diverg-
ing move (as in [15]) would provide a notion of progress. (2) As the Q-tables
do not take into account the border of the environment, they are not avoid-
ing a deadlock (or unspecified behaviour): The probability for leaving the grid is
substantial in many cases. (3) For the discretised model we use, there is a poten-
tially significant difference in behaviour based on how the underspecification is
resolved; any analysis on the learned model has to take this underspecification
into account. (4) Modelling variability over human behaviour by a single softmax
and using a memoryless model are rough estimates. Therefore it is quite likely
that the human model contains behaviours which contradict statements about
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the observed behaviour from e.g. [14]. (5) Finally, the Q-tables contain some
unexpected outliers which in some configurations lead to unexpected behaviour.

The Method. The description for the human behaviour including variability can
be translated into a formal model; allowing a variety of properties to be easily
analysed—in particular, it allows for analysing underspecifications and ill-defined
data. The generalization to a robot planning scenario (and to a SG) is straight-
forward, and enables to compute plans fulfilling specific properties. Probabilistic
verification of this model raised five challenges: (1) The large number of different
probabilities in learned data blows up the encoding and the symbolic state-space
representation, and prevents successful application reduction techniques such
as bisimulation. It would be interesting to regularise the model on the learning
side. (2) The softmax function serves the only purpose of introducing variability;
its differentiability is not utilised here. Sensitivity analysis over Q-table values
would be of interest. (3) Despite the lack of typical symmetries in the scenar-
ios, its encoding is significantly smaller than enumerating all states, as (here) the
behaviour only depends on the nearest obstacles. Even for three features of every
kind, a reduction of a factor over 50 is possible. (4) While the approach yields
promising results for MDPs, the SG suffers from a state space explosion. The
regularity of the turn-based game is exploited by a symbolic engine, but suffers
from the large symbolic description, see (1). (5) Finally, strategies are computed
for the full state space, whereas we are often only interested in a fragment of the
full state space; for many states we can take any action.

Using simulation-based alternatives to PMC such as statistical model check-
ing [33] bears the problem that it is unclear how to resolve two levels of non-
determinism. Moreover, the model we investigate in our case study contains
probabilities which are rather small. Therefore, rare-event simulation has to be
used, and will increase the simulation effort.

7 Conclusion

We have laid the framework for translating a (learned) behaviour model to a
formal setting, and used it to compute control strategies for agents moving among
uncontrollable agents handling complex tasks. We discussed a concrete model
as well as several (open) challenges. For future work, we propose to investigate
abstraction techniques such as [34] and restrict exploration of the model via [35].
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Abstract. We present automatic verification techniques for concurrent
stochastic multi-player games (CSGs) with rewards. To express proper-
ties of such models, we adapt the temporal logic rPATL (probabilistic
alternating-time temporal logic with rewards), originally introduced for
the simpler model of turn-based games, which enables quantitative rea-
soning about the ability of coalitions of players to achieve goals related to
the probability of an event or reward measures. We propose and imple-
ment a modelling approach and model checking algorithms for property
verification and strategy synthesis of CSGs, as an extension of PRISM-
games. We evaluate the performance, scalability and applicability of our
techniques on case studies from domains such as security, networks and
finance, showing that we can analyse systems with probabilistic, coopera-
tive and competitive behaviour between concurrent components, includ-
ing many scenarios that cannot be analysed with turn-based models.

1 Introduction

Stochastic multi-player games are a versatile modelling framework for systems
that exhibit cooperative and competitive behaviour in the presence of adversarial
or uncertain environments. They can be viewed as a collection of players (agents)
with strategies for determining their actions based on the execution so far. These
models combine nondeterminism, representing the adversarial, cooperative and
competitive choices, stochasticity, modelling uncertainty due to noise, failures or
randomness, and concurrency, representing simultaneous execution of interacting
agents. Examples of such systems appear in many domains, from robotics and
autonomous transport, to security and computer networks.

Formal verification for stochastic games provide a means of producing quan-
titative guarantees on the correctness of a system (e.g. “the control software
can always safely stop the vehicle with probability at least 0.99, regardless of
the actions of other road users”), where the required behavioural properties
are specified precisely in quantitative extensions of temporal logic. The closely
related problem of strategy synthesis constructs an optimal strategy for a player,
or coalition of players, that guarantees a property is satisfied.
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Automatic verification and strategy synthesis for models exhibiting nonde-
terminism and stochasticity are well established and implemented, e.g., in tools
such as PRISM [14] and STORM [11]. Recently, these techniques have also been
formulated and implemented in PRISM-games [16], an extension of PRISM,
for turn-based stochastic multi-player games (TSGs), which can be viewed as
Markov decision processes whose states are partitioned among a set of players,
with exactly one player taking control of each state. Properties are specified in
the logic rPATL (probabilistic alternating-time temporal logic with rewards) [9],
a quantitative extension of the game logic ATL [4]. This allows us to specify
that a coalition of players achieve a high-level objective, regarding the probabil-
ity of an event’s occurrence or the expectation of a cumulative reward measure,
irrespective of the strategies of the other players.

Concurrent stochastic multi-player games (CSGs) generalise TSGs by per-
mitting players to choose their actions concurrently in each state of the model.
This can provide a more realistic model of interactive agents operating concur-
rently, and making action choices without already knowing the actions that are
being taken by other agents. However, although algorithms for verification and
strategy synthesis of CSGs have been known for some time (e.g., [2,3,6]), their
implementation and application to real-world examples is lacking.

This paper develops the first approach for the modelling, verification and
strategy synthesis of CSGs that is implemented in software and applied to a
selection of in-depth case studies. We first adapt the logic rPATL to CSGs and
provide a formal semantics. Then, we propose a model checking algorithm, build-
ing upon the existing techniques for TSGs and adapting to CSGs by integrating
techniques for solving matrix games. Next, we develop an approach to modelling
CSGs as an extension of the PRISM-games model checking tool and implement
algorithms for construction, verification and strategy synthesis.

Finally, we investigate the performance, scalability and applicability of our
implementation using a selection of real-life case studies. We demonstrate that
our CSG modelling and verification techniques facilitate insightful analysis of
quantitative aspects of systems taken from diverse set of application domains:
finance, computer security, computer networks and communication systems.
These illustrate examples of systems whose modelling and analysis requires
stochasticity and competitive or adversarial behaviour between concurrent com-
ponents or agents, as provided by CSGs; in several cases, we explicitly highlight
the differences between our use of CSGs and existing models verified using TSGs.

Related Work. Various verification algorithms have been proposed for CSGs,
e.g. [2,3,6], but without implementations, tool support or case studies. PRISM-
games [16], upon which we build in this work, provides modelling and verification
for a wide range of properties of stochastic multi-player games, including those
in the logic rPATL, and multi-objective extensions of it, but focuses purely on
the turn-based variant of the model (TSGs). GIST [8] allows the analysis of ω-
regular properties on probabilistic games, but again focuses on turn-based, not
concurrent, games. GAVS+ [10] is a general-purpose tool for algorithmic game
solving, supporting TSGs and (non-stochastic) concurrent games, but not CSGs.
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Two further tools, PRALINE [5] and EAGLE [25], allow the computation of Nash
equilibria [20] for the restricted class of (non-stochastic) concurrent games.

2 Preliminaries

We begin with some basic background from game theory, and then describe
concurrent stochastic games. For any finite set X, we will write Dist(X) for the
set of probability distributions over X. We first introduce normal form games,
which are simple one-shot games where players make their choices concurrently.

Definition 1 (Normal form game). A (finite, n-person) normal form game
(also known as strategic form) is a tuple N = (N,A, u) where:

– N = {1, . . . , n} is a finite set of players;
– A = A1 × · · · × An and Ai is a finite set of actions available to player i ∈ N ;
– u = (u1, . . . , un) and ui : A → R is a utility function for player i ∈ N .

In a game N, players select actions simultaneously, with player i ∈ N choosing
from the action set Ai. If each player i selects action ai, then player j receives
the utility uj(a1, . . . , an). A (mixed) strategy σi for player i is a distribution over
its actions, i.e. σi ∈ Dist(Ai). Let Σi

N denote the set of strategies for player i. A
strategy profile is a tuple of strategies for each player. Under a strategy profile
σ = (σ1, . . . , σn), the expected utility of player j is defined as follows:

uj(σ) def=
∑

(a1,...,an)∈A uj(a1, . . . , an) · (
∏n

i=1 σi(ai)) .

A two-player normal form game N = ({1, 2}, A, u) is zero-sum if for each action
tuple α ∈ A we have u1(α) + u2(α) = 0. Such a game is often called a matrix
game as it can be represented by a matrix Z ∈ R

l×m where A1 = {a1, . . . , al},
A2 = {b1, . . . , bm} and zij = u1(ai, bj) = −u2(ai, bj).

We require the following classical result concerning matrix games.

Theorem 1 (Minimax theorem [21,22]). For any matrix game Z ∈ R
l×m,

there exists v� ∈ R, called the value of the game and denoted val(Z), such that:

– there is a strategy σ�
1 for player 1, called an optimal strategy of player 1, such

that under this strategy the player’s expected utility is at least v� regardless of
the strategy of player 2, i.e. infσ2∈Σ2

N
u1(σ�

1 , σ2) � v�;
– there is a strategy σ�

2 for player 2, called an optimal strategy of player 2, such
that under this strategy the player’s expected utility is at least −v� regardless
of the strategy of player 1, i.e. infσ1∈Σ1

N
u2(σ1, σ

�
2) � −v�.

The value of a matrix game Z ∈ R
l×m can be found by solving the following

linear programming (LP) problem [21,22]. Maximise v subject to the constraints:

v � p1·z1j + · · · + pl·zlj for 1 � j � m
pi � 0 for 1 � i � l and p1 + · · · + pl = 1
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In addition, the solution for (p1, . . . , pl) yields an optimal strategy for player 1.
The value of the game can also be calculated as the solution of the following
dual LP problem. Minimise v subject to the constraints:

v � q1·zi1 + · · · + qm·zim for 1 � i � l
qj � 0 for 1 � j � m and q1 + · · · + qm = 1

and the solution (q1, . . . , qm) yields an optimal strategy for player 2.
We next introduce concurrent stochastic games, in which players repeatedly

make choices simultaneously to determine the next state of the game.

Definition 2 (Concurrent stochastic game). A concurrent stochastic multi-
player game (CSG) is a tuple G = (N,S, s̄, A,Δ, δ,AP ,L) where:

– N = {1, . . . , n} is a finite set of players;
– S is a finite set of states and s̄ ∈ S is an initial state;
– A = (A1 ∪{⊥})× · · · ×(An ∪{⊥}) where Ai is a finite set of actions available

to player i ∈ N and ⊥ is an idle action disjoint from the set ∪n
i=1Ai;

– Δ : S → 2∪n
i=1Ai is an action assignment function;

– δ : S×A → Dist(S) is a probabilistic transition function;
– AP is a set of atomic propositions and L : S → 2AP is a labelling function.

In any state s of a CSG G, each player i ∈ N chooses an action from the set Ai(s)
which equals Δ(s)∩Ai if this set is non-empty and equals {⊥} otherwise. If each
player i selects action ai, then the next state of the game is chosen according
to the probability distribution δ(s, (a1, . . . , an)). TSGs are a restricted class of
CSGs for which in any state s there is a unique player i such that Ai(s) �= {⊥}.

A path π of a CSG G is a sequence π = s0
α0−→ s1

α1−→ · · · where si ∈ S,
αi = (ai

1, . . . , a
i
n) ∈ A, ai

j ∈ Aj(si) for j ∈ N and δ(si, αi)(si+1) > 0 for all
i � 0. We denote by π(i) the (i+1)th state of π, π[i] the action associated with
the (i+1)th transition and, if π is finite, last(π) the final state. The length of
a path π, denoted |π|, is the number of transitions appearing in the path. Let
FPathsG and IPathsG (FPathsG,s and IPathsG,s) be the sets of finite and infinite
paths (starting in state s). A strategy σi for player i of G is a way of resolving
the choices of player i based on the execution so far. Formally, a strategy for
player i is a function σi : FPathsG → Dist(Ai) such that if σi(π)(ai)>0, then
ai ∈ Ai(last(π)). The set of all strategies of player i is denoted Σi

G. A strategy
for player i is deterministic if it always selects actions with probability 1 and
memoryless if it makes the same choice for paths that end in the same state.

A strategy profile for CSG G is a tuple σ = (σ1, . . . , σn) ∈ Σ1
G× · · · ×Σn

G

yielding a strategy for each player of the game. We use FPathsσ
G,s and IPathsσ

G,s

for the sets of finite and infinite paths corresponding to the choices made by the
strategy profile σ when starting in state s. For a given strategy profile σ and
starting state s, the behaviour of G is fully probabilistic and we can define a
probability measure Probσ

G,s over the set of infinite paths IPathsσ
G,s [13]. Given a

random variable X : IPathsG → R, the expected value of X with respect to pro-
file σ when starting in state s is given by E

σ
G,s(X) def=

∫
π∈IPathsσ

G,s
X(π) dProbσ

G,s.
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We augment CSGs with reward structures of the form r = (rA, rS) where
rA : S×A → R is an action reward function (which maps each state and action
tuple pair to a real value that is accumulated when the action tuple is selected
in the state) and rS : S → R is a state reward function (which maps each state
to a real value that is accumulated when the state is reached). We allow both
positive and negative rewards; however, we will later require certain restrictions
to ensure the correctness of the presented model checking algorithm.

Example 1. Consider the CSG shown in Fig. 1(a) corresponding to two players
repeatedly playing the rock-paper-scissors game. Transitions are labelled with
action-pairs where A1 = A2 = {r, p, s, t}, with r, p and s representing play-
ing rock, paper and scissors, respectively, and t restarting the game. The CSG
starts in state s0 and states s1, s2 and s3 are labelled with atomic propositions
corresponding to when a player wins or there is a draw in a round of the rock-
paper-scissors game. The matrix game representation of the rock-paper-scissors
game is presented in Fig. 1(b). The optimal value for the matrix game is the
solution to the following LP problem. Maximise v subject to the constraints:

v � p2 − p3, v � p3 − p1, v � p1 − p2, p1 + p2 + p3 = 1, p1, p2, p3 � 0

which yields the solution v� = 0 with corresponding optimal strategy
σ�
1 = (1/3, 1/3, 1/3) for player 1 (the optimal strategy for player 2 is the same).

s0

s1{win1} s2 {win2}

s3{draw}
(r, r), (p, p), (s, s) (t, t)

(r, s), (p, r), (s, p) (s, r), (p, s), (r, p)

(t, t)

(a)

⎛
⎝

r p s

r 0 −1 1
p 1 0 −1
s −1 1 0

⎞
⎠

(b)

Fig. 1. (a) Rock-paper-scissors CSG. (b) Rock-paper-scissors matrix game.

3 rPATL for Concurrent Stochastic Games

In this section, we discuss the temporal logic rPATL, previously proposed for
specifying properties of TSGs [9], and adapt it to CSGs.

Definition 3 (rPATL syntax). The syntax of rPATL is given by the grammar:

φ := true | a | ¬φ | φ ∧ φ | 〈〈C〉〉P∼q[ψ ] | 〈〈C〉〉Rr
∼x[ ρ ]

ψ := Xφ | φ U�k φ | φ U φ

ρ := I=k | C�k | C | Fc φ

where a ∈ AP is an atomic proposition, C ⊆ N is a coalition of players, ∼ ∈ {<,
�,�, >}, q ∈ [0, 1], x ∈ R, r is a reward structure and k ∈ N.
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The rPATL syntax distinguishes between state (φ), path (ψ) and reward (ρ) for-
mulae. State formulae are evaluated over states of a CSG, while path and reward
formulae are both evaluated over paths. A state satisfies a formula 〈〈C〉〉P∼q[ψ ] if
the coalition of players C can ensure the probability of the path formula ψ being
satisfied is ∼ q, and satisfies a formula 〈〈C〉〉Rr

∼x[ ρ ] if the players in C can ensure
the expected value of the reward formula ρ for rewards structure r is ∼ x. For
path formulae, we allow next (Xφ), time-bounded until (φ U�k φ) and unbounded
until (φ U φ). For reward formulae, we allow instantaneous (state) reward at the
kth step (I=k), reward accumulated over k steps (C�k), total cumulative reward
(C) and reward accumulated until a formula is satisfied (Fc φ).

There are two differences from the rPATL syntax of [9]. First, we add several
reward operators (I=k, C�k and C), adapted from the property specification
language of PRISM [14]. These proved to be useful for the case studies we present
later in Sect. 6. On the other hand, for simplicity, we restricted our attention to
a single variant (c) of the reward operator F� φ: two other variants are included
in [9], labelled 0 and ∞, which define the accumulated reward to be 0 or infinity,
respectively, if no state satisfying φ is reached along a path. We intend to add
these variants to our CSG verification implementation at a later date.

To introduce the semantics of rPATL, for any CSG G and coalition of players
C ⊆ N , we require the following definition of a two-player coalition game. With-
out loss of generality, we assume the coalition is of the form C = {1, . . . , n′}.

Definition 4 (Coalition game). For CSG G = (N,S, s̄, A,Δ, δ,AP ,L) and
coalition C = {1, . . . , n′} ⊆ N , the coalition game induced by C of G is the
two-player game GC = ({1, 2}, S, s̄, AC ,Δ, δC ,AP ,L) where:

– AC = AC
1 ×AC

2 , AC
1 = (A1 ∪ {⊥})× · · · ×(An′ ∪ {⊥}) and AC

2 = (An′+1 ∪
{⊥})× · · · ×(An ∪ {⊥});

– for any s ∈ S, aC
1 = (a1, . . . , an′) ∈ AC

1 and aC
2 = (an′+1, . . . , an) ∈ AC

2 we
have δC(s, (aC

1 , aC
2 )) = δ(s, (a1, . . . , an)).

Furthermore, for any reward structure r = (rA, rS) of G, the corresponding
reward structure rC = (rC

A , rC
S ) of GC is constructed in a similar manner.

Definition 5 (rPATL semantics). For CSG G the satisfaction relation |=
for rPATL is defined inductively on the structure of the formula. The cases of
true, atomic propositions, negations and conjunction of formulae are defined in
the usual way. For temporal operators and s ∈ S we have:

s |= 〈〈C〉〉P∼q[ψ ] ⇔ ∃σ1 ∈ Σ1
GC . ∀σ2 ∈ Σ2

GC . Pσ1,σ2
GC ,s

(ψ) ∼ q

s |= 〈〈C〉〉Rr
∼x[ ρ ] ⇔ ∃σ1 ∈ Σ1

GC . ∀σ2 ∈ Σ2
GC . Eσ1,σ2

GC ,s
[rew(rC , ρ)] ∼ x
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where P
σ1,σ2
GC ,s

(ψ) = Probσ1,σ2
GC ,s

{
π ∈ IPathsσ1,σ2

GC ,s
| π |=ψ

}
and for π ∈ IPathsσ1,σ2

GC ,s
:

π |= Xφ ⇔ π(1) |= φ

π |= φ1 U�k φ2 ⇔ ∃i � k. (π(i) |= φ2 ∧ ∀j < i. π(j) |= φ1)
π |=φ1 U φ2 ⇔ ∃i ∈ N. (π(i) |= φ2 ∧ ∀j < i. π(j) |= φ1)

rew(rC , I=k)(π) = rS(π(k))

rew(rC , C�k)(π) =
∑k−1

i=0

(
rA(π(i), π[i]) + rS(π(i))

)

rew(rC , C)(π) =
∑∞

i=0

(
rA(π(i), π[i]) + rS(π(i))

)

rew(rC , Fc φ)(π) =
{∑∞

i=0

(
rA(π(i), π[i]) + rS(π(i))

)
if ∀j ∈ N. π(j) �|= φ

∑kφ

i=0

(
rA(π(i), π[i]) + rS(π(i))

)
otherwise

and kφ = min{k−1 | π(k) |= φ}.
For CSG G, coalition C, state s, path formula ψ, reward structure r and reward
formula ρ, we define the following optimal values of GC :

P
C
G,s(ψ) def= supσ1∈Σ1

GC
infσ2∈Σ2

GC
P

σ1,σ2
GC ,s

(ψ)

E
C
G,s(r, ρ) def= supσ1∈Σ1

GC
infσ2∈Σ2

GC
E

σ1,σ2
GC ,s

(r, ρ) .
(1)

As in the case of TSGs [9], negated path formulae can be represented by
inverting the probability threshold, e.g.: 〈〈C〉〉P�q[¬ψ ] ≡ 〈〈C〉〉P�1−q[ψ ], notably
allowing the ‘globally’ operator to be specified: G φ ≡ ¬(F ¬φ).

As for other probabilistic temporal logics, it is useful to consider numerical
state formulae of the form 〈〈C〉〉Pmin=?[ψ ], 〈〈C〉〉Pmax=?[ψ ], 〈〈C〉〉Rr

min=?[ ρ ] and
〈〈C〉〉Rr

max=?[ ρ ]. For example, for state s we have:

〈〈C〉〉Pmin=?[ψ ] def= infσ1∈Σ1
GC

supσ2∈Σ2
GC

P
σ1,σ2
GC ,s

(ψ)

〈〈C〉〉Pmax=?[ψ ] def= supσ1∈Σ1
GC

infσ2∈Σ2
GC

P
σ1,σ2
GC ,s

(ψ) .

As CSGs are determined with respect to the properties we consider [18], i.e. the
maximum value coalition C can ensure equals the minimum value coalition N\C
can ensure, the above values are the optimal values for the respective properties
in G. The determinacy result also yields the following equivalences:

〈〈C〉〉Pmax=?[ψ ] ≡ 〈〈N\C〉〉Pmin=?[ψ ] and 〈〈C〉〉Rr
max=?[ ρ ] ≡ 〈〈N\C〉〉Rr

min=?[ ρ ] .

Example 2. Returning to Example 1, we can use rPATL to specify the following
properties of the rock-paper-scissors CSG:

– 〈〈{1}〉〉P�1[ F win1 ] player 1 can ensure it eventually wins a round of the game
with probability 1;

– 〈〈{2}〉〉Pmax=?[¬win1 U win2 ] the maximum probability with which player 2
can ensure it wins a round of the game before player 1;

– 〈〈{2}〉〉Rutility2max=? [ C�2·K ] the maximum expected utility player 2 can ensure over
K rounds (utility2 is the reward structure that assigns rewards −1, 0 and 1
to the states labelled win1, draw and win2, respectively).



230 M. Kwiatkowska et al.

4 Model Checking CSGs Against rPATL

Next, we present an algorithm for model checking an rPATL formula φ against a
CSG G. The overall approach is the standard one for branching-time logics, i.e.,
determining the set Sat(φ) recursively. The computation of this set for atomic
propositions and logical connectives is straightforward, and therefore we concen-
trate on state formulae of the form 〈〈C〉〉P∼q[ψ ] and 〈〈C〉〉Rr

∼x[ ρ ]. For these, the
problem reduces to computing optimal values for the coalition game GC , see (1).
In particular, for ∼ ∈ {�, >} and s ∈ S we have:

s |= 〈〈C〉〉P∼q[ψ ] ⇔ P
C
G,s(ψ) ∼ q and s |= 〈〈C〉〉Rr

∼x[ ρ ] ⇔ E
C
G,s(ρ) ∼ x .

and, since CSGs are determined for rPATL properties, for ∼ ∈ {<,�} we have:

s |= 〈〈C〉〉P∼q[ψ ] ⇔ P
N\C
G,s (ψ) ∼ q and s |= 〈〈C〉〉Rr

∼x[ ρ ] ⇔ E
N\C
G,s (ρ) ∼ x .

Therefore, we focus on computing P
C
G,s(ψ) and E

C
G,s(ρ) for a fixed CSG G, coali-

tion C and state s. We assume that the available actions of players 1 and 2 of the
(two-player) CSG GC in state s are {a1, . . . , al} and {b1, . . . , bm}, respectively.

Matrix Games. The computation of optimal probabilities and expected reward
values requires finding values of matrix games. These values can be found through
the solution to an LP problem as presented in Sect. 2. Solution methods for such
problems include Simplex, branch-and-bound and interior point.

Probabilistic Formulae. We now show how to compute the optimal probabil-
ity P

C
G,s(ψ) for each state s and path formula ψ. If ψ = Xφ, then for any state s

we have that P
C
G,s(Xφ) = val(Z) where Z ∈ R

l×m is the matrix game with:

zi,j =
∑

s′∈Sat(φ) δ(s, (ai, bj))(s′) .

If ψ = φ1 U�k φ2, the values can be computed recursively as follows.

– P
C
G,s(φ1 U�0 φ2) = 1 if s ∈ Sat(φ2) and 0 otherwise;

– P
C
G,s(φ1 U�k+1 φ2) equals 1 if s ∈ Sat(φ2), else equals 0 if s �∈ Sat(φ1) and

otherwise equals val(Z) where Z ∈ R
l×m is the matrix game with:

zi,j =
∑

s′∈S δ(s, (ai, bj))(s′) · PC
G,s′(φ1 U�k φ2) .

If ψ = φ1 U φ2, the probability values can be computed through value iter-
ation [23], i.e. using the fact that 〈PC

G,s(φ1 U�k φ2)〉k∈N is a non-decreasing
sequence converging to P

C
G,s(φ1 U φ2) and computing P

C
G,s(φ1 U�k φ2) for suf-

ficiently large k, i.e. terminating the computation when the difference between
the values for k and k+1 are less than some threshold ε. Alternatively, policy
iteration could be used, e.g., see [6]. In both cases, the qualitative algorithms of
[1] can be used to precompute states for which the probability is either 0 or 1.

Reward Formulae. We next show how to compute the expected reward values
E

C
G,s(r, ρ) for each state s and path formula ρ. If ρ = I=k, the values can be

computed recursively as follows.
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– E
C
G,s(r, I

=0) = rS(s);
– E

C
G,s(r, I

=k+1) equals val(Z) where Z ∈ R
l×m is the matrix game with:

zi,j =
∑

s′∈S δ(s, (ai, bj))(s′) · EC
G,s′(r, I=k) .

If ρ = C�k, then the values can be computed recursively as follows.

– E
C
G,s(r, C

�0) = 0;
– E

C
G,s(r, C

�k+1) equals val(Z) where Z ∈ R
l×m is the matrix game with:

zi,j = rA(s, (ai, bj)) + rS(s) +
∑

s′∈S δ(s, (ai, bj))(s′) · EC
G,s′(r, C�k) .

For the remaining reward formulae we restrict the use of negative rewards to
ensure correctness. For total rewards (ρ = C) we require that all negative rewards
are associated with state-action pairs that reach an absorbing state (a state
where all rewards are zero and which cannot be left) with probability 1. For
reachability rewards (ρ = Fc φ) we require all negative rewards are associated
with state-action pairs that reach a target or absorbing state with probability 1.

If ρ = C, we first find the states for which the optimal expected reward values are
infinite. Similarly to [9], we can use the qualitative algorithms of [1] to find these
states as they can also be defined as those states for which the coalition C can
ensure the probability of reaching states with positive reward infinitely often is
greater than 0. After removing these states from GC , the remaining values can be
computed as the limit of the (non-decreasing sequence of) bounded cumulative
reward values:

E
C
G,s(r, C) = limk→∞ E

C
G,s(r, C

�k) .

Finally, if ρ = Fc φ, then we first make all states of GC satisfying φ absorbing.
Next, as in the case above, we find the states of GC for which the optimal
expected reward values are infinite and remove them from the game. The values
for the remaining states can then be computed through value iteration where
E

C
G,s(F

c φ) = limk→∞ E
C
G,s(F

c φ)k, EC
G,s(F

c φ)0 = 1 if s ∈ Sat(φ) and 0 otherwise
and E

C
G,s(F

c φ)k+1 equals 1 if s ∈ Sat(φ2) and otherwise equals val(Z), and
Z ∈ R

l×m is the matrix game with:

zi,j = rA(s, (ai, bj)) + rS(s) +
∑

s′∈S δ(s, (ai, bj))(s′) · EC
G,s′(Fc φ)k .

Strategy Synthesis. In addition to verifying rPATL formulae, it is typically
also very useful to perform strategy synthesis, i.e., to construct a witness to the
satisfaction of a property. For example, in the case of the probabilistic property
〈〈C〉〉P∼q[ψ ], this means finding a strategy σ�

1 for the coalition C such that:

P
σ�
1 ,σ′

2
GC ,s

(ψ) ∼ q for all σ′
2 ∈ Σ2

GC

and, in the case of a numerical state formula 〈〈C〉〉Pmax=?[ψ ], means finding an
optimal strategy σ�

1 for the coalition C, i.e. a strategy such that:

P
σ�
1 ,σ′

2
GC ,s

(ψ) � P
C
G,s(ψ) = supσ1∈Σ1

GC
infσ2∈Σ2

GC
P

σ1,σ2
GC ,s

(ψ) for all σ′
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For unbounded properties, we can synthesise a strategy which is memoryless,
but needs randomisation; bounded properties require both finite-memory and
randomisation. This differs from TSGs where deterministic strategies are suffi-
cient in both cases. We can synthesise such strategies using the approach above
for computing optimal values and keeping track of the optimal strategy of player
1 for the matrix game solved in each state. Since we use value iteration, only
ε-optimal strategies can by synthesised for unbounded properties, where ε is the
convergence criterion used when performing value iteration [24].

Correctness and Complexity. We conclude this section with a discussion of
correctness and complexity. The overall (recursive) approach and the reduction
to solution of a two-player game is essentially the same as for TSGs [9], and
therefore the same correctness arguments apply. The correctness of value itera-
tion for unbounded properties follows from [23] and for bounded properties from
Definition 5 and the solution of matrix games (see Sect. 2). Regarding complex-
ity, due to the recursive nature of the algorithm, it is linear in the size of the
formula φ, while in the worst case finding the optimal values of a 2-player CSG is
PSPACE [7]. In practice, we use value iteration, which solves an LP problem of
size |A| for each state at each iteration, with the number of iterations depending
on the convergence criterion. The efficiency in practice is reported in Sect. 6.

5 Implementation and Tool Support

We have implemented support for modelling and automated verification of CSGs
as an extension of PRISM-games [16], which only handled TSGs. The tool, and
the files for the case studies described in the next section, are available from [28].

Modelling. CSGs are specified using the same language as for TSGs, itself an
extension of the original PRISM modelling language (Fig. 2 shows an example).
It allows multiple parallel components, called modules, operating both asyn-
chronously and synchronously. Each module’s state is defined by a number of
finite-valued variables, and its behaviour by a set of probabilistic guarded com-
mands [a] g → u, comprising an action label a, guard g and probabilistic update
u. If the guard (a predicate over the variables of all modules) is satisfied, then
the module can (probabilistically) update its variables according to u. Modules
interact by either reading the values of each other’s variables, or synchronising
(moving simultaneously) on commands labelled with the same action.

To specify a CSG, the model description must also define a list of players and
the (disjoint) sets of actions each controls. We adopt the syntax from PRISM-
games, but the semantics differs from TSGs. In a state of a CSG, each player
chooses to perform one of the commands that is enabled (the guard is true) and is
labelled by an action under its control (if no command is enabled, the player idles,
i.e. chooses ⊥). Unlike standard PRISM models, the chosen commands for all
players then execute synchronously, despite being labelled with distinct actions.
To remain consistent with PRISM’s conventions, we require that each variable
is updated by at most one player and each player’s updates are independent of
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the other players’ choices. This has not proven restrictive (see, e.g., the range of
examples modelled in Sect. 6), but we plan to relax these constraints.

Example 3. Figure 2 shows a model description for the rock-paper-scissors
CSG of Example 1. Player 1 is represented by module player1 , with variable
m1 , and its commands are labelled with the actions r1 , p1 , s1 , t1 (correspond-
ing to r, p, s, t in Fig. 1(a)). In this example, the updates are all non-probabilistic.
Player 2 is identical in structure to player 1 and is defined using PRISM’s mod-
ule renaming feature. Labels (defining the atomic propositions from Fig. 1(a))
and reward structures are also defined in the standard way for PRISM models.

csg

player player1 [r1 ], [p1 ], [s1 ], [t1 ] endplayer
player player2 [r2 ], [p2 ], [s2 ], [t2 ] endplayer

module player1
m1 : [0..3];
[r1 ] m1=0 → (m1 ′=1); // rock
[p1 ] m1=0 → (m1 ′=2); // paper
[s1 ] m1=0 → (m1 ′=3); // scissors
[t1 ] m1>0 → (m1 ′=0); // restart

endmodule

// second player constructed through renaming
module player2 = player1 [m1=m2 , r1=r2 , p1=p2 , s1=s2 , t1=t2 ] endmodule

label “win1”= (m1=1&m2=3) | (m1=2&m2=1) | (m1=3&m2=2); // player 1 wins round
label “win2”= (m2=1&m1=3) | (m2=2&m1=1) | (m2=3&m1=2); // player 2 wins round
label “draw”= (m2=1&m1=1) | (m2=2&m1=2) | (m2=3&m1=3); // draw

rewards “utility2” // utility for player 2
[t1 ] (m1=1&m2=3) | (m1=2&m2=1) | (m1=3&m2=2) : −1; // player 1 wins
[t1 ] (m1=1&m2=2) | (m1=2&m2=3) | (m1=3&m2=1) : 1; // player 2 wins

endrewards

Fig. 2. PRISM language specification of the CSG from Example 1.

Implementation. Our tool constructs a CSG from a given model specification
and implements the rPATL model checking and strategy synthesis algorithms
from Sect. 4. We adapt the existing modelling and property language parsers and
various other pieces of basic model checking functionality from PRISM-games.
We store and verify CSGs using an extension of PRISM’s explicit-state (sparse
matrix based) model checking engine, which is implemented in Java. A notable
addition to this is the solution of values of matrix games, which is performed via
linear programming (see Sect. 2) using the LPsolve library [17].

6 Case Studies and Experimental Results

To demonstrate the applicability of our techniques and tool, and to evaluate
their performance, we now present results from a variety of case studies. This
also illustrates the utility of CSGs over TSGs. As mentioned earlier, the tool and
examples (models and properties) are available from [28].
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Efficiency and Scalability. We begin by presenting a selection of results
regarding the performance of our implementation. The models on which these
are based are described in more detail in subsequent sections. Table 1 shows
results for a representative selection of models and rPATL properties, verified
using a 2.8 GHz Intel X5660 with 32 GB RAM. We give model statistics (number
of players, states and transitions) and the times for model construction, qualita-
tive and quantitative verification (i.e. value iteration). Our tool is able to analyse
models with up to approximately 3 million states. Models with 10,000 states can
be built and verified in a few seconds; the largest takes little over an hour. The
most significant cost in terms of time is the need to (repeatedly) solve a matrix
game in each state, but verification times are not quite linear in the model size
due to variations in the number of iterations needed.

Table 1. Statistics for a representative set of CSG verification instances.

Case study & rPATL property

[parameters]

Param.

values

CSG statistics Const. time (s) Verif. time (s)

Players States Transitions Qual. Quant.

Future markets investors

〈〈i1〉〉Rprofit1max=?[ F
c cashed in1 ]

[months]

3 5 3,664 13,482 0.4 0.2 0.8

5 5 18,671 82,494 1.1 1.1 5.1

7 5 53,799 247,807 2.3 6.6 20.3

9 5 116,838 561,538 4.7 25.9 59.2

User-centric networks

〈〈user〉〉Runpaidmax=?[ F
c services=K ]

[td, K]

1,1 7 1,029 2,386 0.4 0.1 0.6

1,3 7 18,218 50,181 1.9 0.3 8.9

1,5 7 145,561 458,169 11.0 3.3 110.5

1,7 7 755,531 2,651,829 61.6 12.4 814.6

1,9 7 2,993,308 11,461,723 269.0 57.1 4,205.3

Intrusion detection system

〈〈policy〉〉Rdamage
min=?[ C ]

[rounds]

25 4 581 1,616 0.2 0.1 1.6

50 4 1,181 3,316 0.3 0.1 4.2

100 4 2,381 6,716 0.3 0.4 15.3

200 4 4,781 13,516 0.4 0.5 71.3

Jamming radio systems

〈〈user〉〉Pmax=?[ F sent�slots/2 ]

[slots]

10 3 7,921 1,038,384 3.8 6.6 2.8

15 3 17,281 2,421,504 9.9 22.3 9.1

20 3 30,241 4,380,624 13.3 60.1 22.5

25 3 46,801 6,915,744 22.8 144.5 43.3

Futures Market Investors. The first of our case studies is a futures market
investor model [19], which represents the interactions between investors and a
stock market. For the TSG model of [19], in successive months, a single investor
chooses whether to invest, next the market decides whether to bar the investor,
and then the values of shares and a cap on values are updated probabilistically.
We have built and analysed several CSGs variants of the model, analysing opti-
mal strategies for investors under adversarial conditions. First, we made the
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investor and market take their decisions concurrently, and verified that this
yielded no additional gain for the investor (see [28]). This is because the market
and investor have the same information, and so the market knows when it is
optimal for the investor to invest without needing to see its decision.

We next modelled two competing investors who simultaneously decide
whether to invest (and, as above, the market simultaneously decides whether to
bar each of them). If the two investors cash in their shares in the same month,
then their profits are reduced. We also consider several distinct profit models:
‘normal market’, ‘later cash-ins’ and ‘later cash-ins with fluctuation’. The first
is from [19] and the latter two reward postponing cashing in shares (see [28]
for details). The CSG has 5 players: one for each investor, one deciding on the
barring of investors, one controlling share values and one updating the month.
We study both the maximum profit of one investor and the maximum combined
profit of both investors. For comparison, we also build a TSG model in which the
investors first take turns to decide whether to invest (the ordering decided by
the market) and then the market decides on whether to bar any of the investors.

Figure 3 shows the maximum expected value over a fixed number of months
under the ‘normal market’ for both the profit of first investor and the combined
profit of the two investors. For the former, we show results for the first investor
acting alone (〈〈i1〉〉) and when in a coalition with the second investor (〈〈i1, i2〉〉).
We plot the corresponding results from the TSG model for comparison. Figure 4
shows the maximum expected combined profit for the other two profit models.
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Fig. 3. Futures market investors: normal market.
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When investors cooperate to maximise the profit of the first, results for the
CSG and TSG models coincide. This follows from the discussion above since all
the second investor can do is make sure it does not invest at the same time as
the first. For the remaining cases and given sufficient months, there is always a
strategy in the concurrent setting that outperforms all turn-based strategies. The
increase in profit for a single investor in the CSG model is due to the fact that, as
the investors decisions are concurrent, the second cannot ensure it invests at the
same time as the first, and hence decrease the profit of the first. In the case of
combined profit, the difference arises because, although the market knows when
it is optimal for one investor to invest, in the CSG model the market does not
know which one will, and therefore may choose the wrong investor to bar.

We performed strategy synthesis to study the optimal actions of investors.
By way of example, consider 〈〈i1 〉〉Rprofit1max=?[ F

c cashed in1 ] over three months and
for a normal market (see Fig. 3 left). The optimal TSG strategy for the first
investor is to invest in the first month (which the market cannot bar) ensuring
an expected profit of 3.75. The optimal (randomised) CSG strategy is to invest:

– in the first month with probability 0.494949;
– in the second month with probability 1, if the second investor has cashed in;
– in the second month with probability 0.964912, if the second investor did not

cash in at the end of the first month and the shares went up;
– in the second month with probability 0.954023, if the second investor did not

cash in at the end of the first month and the shares went down;
– in the third month with probability 1 (this is the last month to invest).

Following this strategy, the first investor ensures an expected profit of ∼4.33.

Trust Models for User-Centric Networks. Trust models for user-centric
networks were analysed previously using TSGs in [15]. The analysis considered
the impact of different parameters on the effectiveness of cooperation mecha-
nisms between service providers. The providers share information on the mea-
sure of trust for users in a reputation-based setting. Each measure of trust is
based on the service’s previous interactions with the user (which services they
paid for). In the original TSG model, a single user can either make a request to
one of three service providers or buy the service directly by paying maximum
price. If the user makes a request to a service provider, then the provider decides
to accept or deny the request based on the user’s trust measure. If the request
was accepted, the provider would next decide on the price again based on the
trust measure, and the user would then decide whether to pay for the service
and finally the provider would update its trust measure based on whether there
was a payment. This sequence of steps would have to take place before any other
interactions occurred between the user and other providers.

Here we consider CSG models allowing the user to make requests and pay
different service providers simultaneously and for the different providers to exe-
cute requests concurrently. There are 7 players: one for the user’s interaction
with each service provider, one for the user buying services directly and one
for each of the 3 service providers. Three trust models were considered. In the
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Fig. 5. User-centric network results (CSG/TSG values as solid/dashed lines).

first, the trust level was decremented by 1 (td = 1) when the user does not pay,
decremented by 2 in the second (td = 2) and reset to 0 in the third (td = inf ).

Figure 5 presents results for the maximum fraction and number of unpaid
services the user can ensure for each trust model. The results for the original
TSG model are included as dashed lines. The results demonstrate that the user
can take advantage of the fact that in the CSG model it can request multiple
services at the same time, and obtain more services without paying before the
different providers get a chance to inform each other about non-payment. In
addition, the results show that having a more severe penalty on the trust measure
for non-payment decreases the unpaid services the user can obtain.

Intrusion Detection Policies. In [26], CSGs are used to model the interaction
between an intrusion detection policy and attacker. The policy has a number of
libraries it can use to detect attacks and the attacker has a number of different
attacks which can incur different levels of damage if not detected. Furthermore,
each library can only detect certain attacks. In the model, in each round the
policy chooses a library to deploy and the attacker chooses an attack. A reward
structure is specified representing the level of damage when an attack is not
detected. The goal is to find optimal intrusion detection policies which corre-
spond to finding a strategy for the policy that minimises damage. We have con-
structed CSG models with 4 players (representing the policy, attacker, system
and time) for the two scenarios outlined in [26]. We have synthesised optimal
policies which ensure the minimum cumulative damage over a fixed number of
rounds and damage in a specific round. Here concurrency is required for the
game to be meaningful, otherwise it is easy for the player whose turn follows the
other player’s to ‘win’. For example, if the attacker knows what library is being
deployed, then it can simply choose an attack the library cannot detect.

Jamming Multi-channel Radio Systems. A CSG model for jamming multi-
channel cognitive radio systems is presented in [27]. The system consists of a
number of channels which can be an occupied or idle state. The state of each
channel remains fixed within a time slot and between slots is Markovian (i.e. the
state changes randomly based only on the state of the channel in the previous
slot). A secondary user has a subset of available channels and at each time-slot
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must decide which to use. There is a single attacker which again has a subset of
available channels and at each time slot decides to send a jamming signal over one
of them. The CSG has 3 players representing the secondary user, attacker and
environment. We synthesise strategies for the secondary user which maximise
the probability of ensuring at least half the messages are sent correctly. Again
concurrency is required as otherwise, e.g., the attacker can observe the user and
then jam the chosen channel.

7 Conclusion

We have designed and implemented an approach for the automatic verification of
CSGs. We have extended the semantics of the temporal logic rPATL to CSGs and
presented a new modelling approach based on the PRISM language to specify
such games. We have proposed and implemented algorithms for verification and
strategy synthesis as an extension of the PRISM-games model checker. Finally,
we have evaluated the approach on a range of case studies.

There are a number of directions for future work. First, we plan to consider
additional properties (e.g. Nash equilibria and multi-objective queries). We are
also working on extending the implementation to consider alternative solution
methods (e.g. policy iteration and using CPLEX [12] to solve matrix games)
and a symbolic (binary decision diagram based) implementation. Lastly, we are
considering extending the approach to partially observable strategies.
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programme.
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Abstract. In this paper, we consider the problem of bounded reachabil-
ity analysis of probabilistic hybrid systems which model discrete, continu-
ous and probabilistic behaviors. The discrete and probabilistic dynamics
are modeled using a finite state Markov decision process (MDP), and
the continuous dynamics is incorporated by annotating the states of
the MDP with differential equations/inclusions. We focus on polyhedral
dynamical systems to model continuous dynamics. Our broad approach
for computing probabilistic bounds on reachability consists of the compu-
tation of the exact minimum/maximum probability of reachability within
k discrete steps in a polyhedral probabilistic hybrid system by reducing
it to solving an optimization problem with satisfiability modulo theory
(SMT) constraints.

We have implemented analysis algorithms in a Python toolbox, and
use the Z3opt optimization solver at the backend. We report the results of
experimentation on a case study involving the analysis of the probability
of the depletion of the charge in a battery used in the nano-satellite.

1 Introduction

Cyber-physical systems consist of software that control safety critical physi-
cal systems as in driverless cars, unmanned aerial vehicles and smart grids. In
these systems, software exhibits discrete behaviors and interacts with physi-
cal processes, such as, the vehicle dynamics, which evolve continuously. Hybrid
automata [16] have been traditionally used to model the mixed discrete-
continuous behaviors in cyber-physical systems, with the aim of rigorous anal-
ysis. Another important feature of cyber-physical systems is uncertainty, which
manifests due to the complex environment with which these systems interact.
For instance, driverless cars need to navigate safely in an uncertain environment
involving pedestrians. Hence, it is important to incorporate uncertainty into the
model for the analysis of safety critical cyber-physical systems. However, ana-
lyzing for worst case uncertainty is often too conservative to obtain practically
useful insights about the behaviors of the systems. On the other hand, often, it is
possible to obtain distributions on the sources of uncertainty, which can in turn
be used to provide probabilistic guarantees about the behaviors of the system.

In this paper, we consider probabilistic hybrid systems [25] (PHS) to cap-
ture discrete, continuous, and probabilistic behaviors. A PHS consists of a finite
c© Springer Nature Switzerland AG 2018
A. McIver and A. Horvath (Eds.): QEST 2018, LNCS 11024, pp. 240–256, 2018.
https://doi.org/10.1007/978-3-319-99154-2_15
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number of modes and a finite number of continuous variables. Each mode is
associated with a continuous dynamics that specifies the evolution of the contin-
uous variables using differential equations or inclusions. This is similar to that
of a hybrid automaton. In addition, a PHS consists of transitions that are non-
deterministic as well as probabilistic. Hence, our underlying model is a Markov
Decision Process (MDP), which is then extended with continuous dynamics in
each mode. We are interested in analyzing the probability of reaching a target
set of states F within a given amount of time T and a bound on the number of
discrete/probabilistic transitions k. Note that since our model encompasses both
non-deterministic as well as probabilistic transitions, depending on how a sched-
uler resolves the non-determinism, there are different probabilities associated
with reaching the target set F. Hence, we consider the problem of computing
the maximum and minimum probability of reaching the target set among all
schedulers. The bounded verification problem, in general, captures the behavior
of an under-approximation of the system where the number of transitions and
the time of execution is constrained. However, it provides conservative bounds
on the actual probabilities of an actual system. Also, in many cases, there is
a practical upper bound on the total time, and a lower bound on the dwell
time (how fast the system can switch), which justifies the problem of bounded
verification as a complete method for verification of the full system.

In this paper, we restrict ourselves to polyhedral dynamics that are an impor-
tant and widely prevalent class of dynamics for modeling physical processes. The
main challenge towards the probabilistic analysis of reachability is the compu-
tation of maximum and minimum probability of reachability involves solving a
complex optimization problem. To address the problem, we consider an encoding
into a problem that involves optimization over SMT formulas with linear con-
straints, that can be solved efficiently using recent tools such as Z3opt [5] and
SYMBA [20]. More precisely, our broad approach consists of computing exact
bounds on the probability of reachability in the system. Next, we encode the
computation trees of polyhedral PHS using SMT formulae. We use Z3opt and
SYMBA solvers to find the maximum and minimum probabilities of reachabil-
ity by optimizing the probability over constraints encoded in SMT. We have
implemented our approach in a Python toolbox, and conducted experimental
evaluation on a case study involving the depletion of charge in a kinetic battery
used in a nano-satellite. The experimental results demonstrate the feasibility of
the proposed approach. The main challenge towards scaling the approach will
be the exponential growth of the variables and the size of the encoding with
the number of discrete transitions. In many cases, certain timing constraints can
enforce a practical bound on the number of transitions. However, this bound
could be large and the SMT solver might fail to return. Our future work will
focus on efficient encodings and heuristics for reducing/pruning the computation
tree.

Related work. Stochastic hybrid systems [9] and their reachability problem [8]
captures uncertain systems and safety properties. In general, probabilistic reach-
ability analysis of stochastic hybrid systems is undecidable, however, it is
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decidable for certain subclass of the systems [17,19,23]. Probabilistic reachabil-
ity analysis of the following systems Markov decision processes [7,10,15,21,28],
discrete time stochastic hybrid systems [1–4,26], continuous time stochastic
hybrid systems [6,24,27] and probabilistic hybrid systems [11,29,30] have been
explored. Probabilistic reachability problem for the general class of probabilistic
hybrid system has been solved using abstraction techniques such as [12,22] have
been applied in papers [29,30], that give the bound on the maximum/minimum
probability of reachability. Although the paper [11] has discovered to solve the
bounded probabilistic reachability problem using bounded reachability of non-
probabilistic hybrid systems [13,14], it is only applicable for deterministic prob-
abilistic choices. However, we study polyhedral probabilistic hybrid systems,
where non-deterministic probabilistic choices have been considered. Although
abstraction based methods overapproximate the maximum and minimum prob-
ability, we are interested in computing exact maximum/minimum probability of
reachability.

2 Preliminaries

Notations. We use R, R≥0 and N to denote the real, non-negative real and
natural numbers, respectively. We use [n] to denote the set {1, 2, . . . , n}. We use
Id to represent the identity function, namely, Id : X → X such that Id(x) = x.
Symbol ◦ represents concatenation of two sequences, that is, given two sequences
σ1 = s0, s1, . . . , sn and σ2 = s′

1, s
′
2, . . . , s

′
m, σ1 ◦σ2 = s0, s1, . . . , sn, s′

1, s
′
2, . . . , s

′
m.

Given a countable set S of real numbers,
∑

S denotes the sum of all elements
in the set, that is,

∑
S =

∑

s∈S
s.

Probability Distributions. A probability distribution over a set S is a function
ρ : S → [0, 1] such that

∑

s∈S
ρ(s) = 1. We will assume that ρ has finite support,

that is, ρ(s) �= 0 for only finitely many elements, hence, the summation over S
for the probability distribution ρ is valid. We use Dist(S) to denote the set of
all probability distributions over the set S.

Polyhedra. A set X ⊆ R
n is called an n-dimensional polyhedron if there exist

matrices A,B such that X = {x | Ax ≤ B}. Poly(n) denotes the set of all
polyhedra which are subsets of Rn.

3 Markov Decision Processes

In this section, we define the class of timed Markov decision processes and a
special subclass of the same called the timed Markov chains. The timed Markov
decision processes are a rich class of Markov decision processes, where non-
deterministic transitions appear not only from probabilistic distributions but
also from the time variable.
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Definition 1 (Timed Markov Decision Process (TMDP)). A TMDP is a
structure T = (S,−→), where

– S is a set of states;
– −→⊆ S × R≥0 × Dist(S) is a transition relation capturing a set of timed

probabilistic edges.

We denote a timed probabilistic edge (s, t, ρ) ∈−→ by s
t−→ ρ. Note that

a state may have multiple timed probabilistic edges associated with it, that is,
distinct edges (s, t1, ρ1), (s, t2, ρ2) ∈−→, where t1 �= t2 or ρ1 �= ρ2. Thus, the
transition relation allows non-determinism.

Next, a path of TMDP T = (S,−→) is a finite sequence of states and times
σ = s0t1s1t2s2 . . . tnsn such that there exists a sequence of probability distribu-
tions ρ1ρ2ρ3 . . . ρn which satisfy si

ti+1−→ ρi+1 and ρi+1(si+1) > 0 for 0 ≤ i ≤ n−1.
σ[i] denotes the ith state of the path σ, that is, σ[i] = si; len(σ) represents length
of the path σ, that is, len(σ) = n, and L(σ) represents the last state of the path
σ, that is, L(σ) = σ[len(σ)]. Also, Δ(σ) denotes the set containing all prefixes of
the path σ, that is, Δ(σ) = {σ′ | ∃ σ′′, σ = σ′ ◦ σ′′}. D(σ) denotes the duration

of the path σ, that is, D(σ) =
len(σ)∑

i=1

ti. Paths(T) denotes the set of all paths of

T, and Pathsk(T, s,F) = {σ ∈ Paths(T) | len(σ) = k, σ[0] = s, σ[k] ∈ F, for 0 ≤
i < k, σ[i] /∈ F}. Paths(T, s,F) represents the set of all paths that start at state
s and end at some state t in F and no states in between s and t are in F, that
is, Paths(T, s,F) =

⋃

k

Pathsk(T, s,F).

Furthermore, we define a special subclass of TMDP, where there will be a
unique probability distribution associated with each state.

Definition 2 (Timed Markov Chain (TMC)). A TMC is a TMDP T =
(S,−→) where the following condition holds:

– For each state s ∈ S if there exist s
t1−→ ρ1, s

t2−→ ρ2, then t1 = t2 and
ρ1 = ρ2.

Since TMC allows only one timed probabilistic edge for each state, we can
define a probabilistic transition function Pr : S × S → [0, 1], where Pr(s, s′) =
ρ(s′) if there exists s

t−→ ρ.
Next, we explain how to resolve the non-determinism in a TMDP T = (S,−→)

and obtain a TMC. First, we define a scheduling function to be a partial function
γ : Paths(T) → R≥0 × Dist(S) such that if γ(σ) = (t, π), then L(σ) t−→ π. Let
Γ (T) denotes the set of all scheduling functions for a TMDP T.

Definition 3. Given a TMDP T = (S,−→) and a scheduling function γ,
we obtain a TMC Tγ = (Sγ ,−→γ), where Sγ = Paths(T); for each path
sγ ∈ Paths(T), sγ

t−→γ πγ if ∃ π such that L(sγ) t−→ π and for all s ∈ S,
πγ(sγts) = π(s).



244 R. Lal and P. Prabhakar

Let us consider a TMC T = (S,−→). Let PT(σ) denote the probability asso-
ciated with a path σ in T; we will drop the subscript T when it is clear from the
context. We define P(σ) inductively as follows. If len(σ) = 0, then P(σ) = 1.

P(σ) =
len(σ)∏

i=1

Pr(σ[i − 1], σ[i]).

The probability of reaching a target set F from a state s with path length exactly
k and at most k within time T, respectively, are defined as,

P(T,=k,F)(T, s) =
∑

{P(σ) | σ ∈ Pathsk(T, s,F), D(σ) ≤ T},

P(T,≤k,F)(T, s) =
k∑

i=0

P(T,=i,F)(T, s).

For TMDP T = (S,−→), we define the maximum and minimum probability of
reaching a target set F from a state s with path length at most k within time T,
respectively, to be

Psup
(T,≤k,F)(T, s) = sup

γ∈Γ (T)
P(T,≤k,F)(Tγ , s),

P inf
(T,≤k,F)(T, s) = inf

γ∈Γ (T)
P(T,≤k,F)(Tγ , s).

3.1 Inductive Definition of Probabilistic Reachability

In this section, we provide an alternate inductive definition for both
P inf
(T,≤k,F)(T, s) and Psup

(T,≤k,F)(T, s).

– Base case:

P inf
(T,≤0,F)(T, s) = Psup

(T,≤0,F)(T, s) =

{
1, if s ∈ F

0, otherwise

– Induction step:
If s ∈ F, then

P inf
(T,≤k,F)(T, s) = Psup

(T,≤k,F)(T, s) = 1.

Otherwise,

P inf
(T,≤k,F)(T, s) = inf

s
t−→ρ

(
∑

s′∈S
ρ(s′)P inf

(T,≤k−1,F)(T, s′)

)

;

Psup
(T,≤k,F)(T, s) = sup

s
t−→ρ

(
∑

s′∈S
ρ(s′)Psup

(T,≤k−1,F)(T, s′)

)

.
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4 Probabilistic Hybrid Systems

In this section, we introduce the class of probabilistic hybrid systems and provide
their formal definition and semantics. In addition, we introduce a certain subclass
of probabilistic hybrid systems that we study in this paper.

4.1 Syntax

Probabilistic hybrid systems capture the discrete, continuous and probabilistic
behaviors. The continuous behaviors are captured using differential equations,
while the discrete and probabilistic behaviors are captured using probabilistic
edges, guards, and resets. Next, we introduce the syntax of probabilistic hybrid
systems.

Definition 4 (Probabilistic Hybrid Systems). A probabilistic hybrid
system (PHS) is a tuple H = (Q,X ,Q0,X0, Inv,Flow, Edges,Guard,Reset, Init),
where

– Q is a set of locations;
– X ⊆ R

n is a continuous state space;
– Q0 ⊆ Q is a set of initial locations;
– X0 ⊆ X is a countable set of initial continuous states;
– Inv : Q → 2X is an invariant function;
– Flow : Q × X → 2X is a flow function which assigns a vector to each state

(q, x) ∈ Q × X ;
– Edges ⊆ Q × Dist(Q) is a finite set of probabilistic edges;
– Guard : Edges → 2X is a guard function;
– Reset : Edges × Q × X → X is a reset function;
– Init : Q0 × X0 → [0, 1] is an initial probability distribution over Q0, X0,∑

q0∈Q0

∑

x0∈X0

Init(q0, x0) = 1.

Notation: Given a PHS H, we will represent its elements using H as a subscript.
For instance, the invariant and flow functions of H, are represented as InvH and
FlowH, respectively.

4.2 Semantics

Next, we describe the semantics of PHS in terms of an infinite state timed
markov decision process. A state of the PHS is a pair (q, x), where q ∈ Q is a
discrete location, and x ∈ X is a continuous state. A timed probabilistic edge
associated with a state (q, x) consists of a time T elapse in which the state
x evolves according to the dynamics to some state x′ and then x′ transitions
instantaneously to other states governed by guards and resets. More precisely,
a continuous transition from a state (q, x) to a state (q, x′) is possible in time
T if there exists a function φ : [0, T ] → X such that φ(0) = x, φ(T ) = x′,
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dφ(t)
dt ∈ Flow((q, φ(t))) and φ(t) ∈ Inv(q) for 0 ≤ t ≤ T. A probabilistic transition

from a state (q, x) to a state (q′, x′) with probability p is possible if there exists
an edge (q, ρ) ∈ Edges such that x ∈ Guard((q, ρ)), x′ = Reset(((q, ρ), q′, x)) and
ρ(q′) = p.

Definition 5. Given PHS H = (Q,X ,Q0,X0, Inv,Flow, Edges,Guard,Reset,
Init), the semantics of H is defined as TMDP [[H]] = (S,−→[[H]]), where

1. S = Q × X ;
2. ((q, x), T, π) ∈−→[[H]] if ∃ (q, ρ) ∈ Edges and ∃ φ : [0, T ] → X such that

(a) φ(0) = x and φ(T ) ∈ Guard((q, ρ));
(b) φ(t) ∈ Inv(q) and dφ(t)

dt ∈ Flow((q, φ(t))) for all t ∈ [0, T ];
(c) For each (q′, x′) ∈ Q × X , π((q′, x′)) = ρ(q′) if x′ =

Reset(((q, ρ), q′, φ(T ))) else π((q′, x′)) = 0.

The TMDP has an infinite number of states because each state is a pair
of discrete location and a continuous value, where the number of values of the
continuous variables is infinite. Note that although we have an infinite number
of states, for every timed probabilistic edge (q, x) T−→[[H]] π, π has finite support.

4.3 Subclasses of Probabilistic Hybrid Systems

Next, we define a subclass of probabilistic hybrid systems, called polyhedral
probabilistic hybrid systems. In this subclass, invariant, guard and reset func-
tions are provided by certain linear constraints. More precisely, we have

C1 Inv : Q → Poly(n);
C2 Guard : Edges → Poly(n);
C3 Reset(e, (q, x)) = Aex + Be for some square matrix Ae and constant vector

Be;

Definition 6 (Polyhedral Probabilistic Hybrid Systems). A polyhedral
probabilistic hybrid system is a PHS H, where the invariant, gurad and
reset function are as in [C1-C3] and the flow function FlowH is given by
FlowH((q, x)) = Pq, where Pq is a polyhedron in Poly(n), that depends only
on q.

Example 1. Consider the PHS with four discrete locations corresponding to
the kinetic battery model in a nano satellite given in the paper [18], which
is shown in Fig. 1. It has two continuous variables represented by a and b.
Formally, it can be modeled as a polyhedral PHS H = (Q,X ,Q0,X0, Inv,
Flow,Edges,Guard,Reset, Init), where

– Q = {Low,Medium,High,Transfer};
– X = [−100, 2500] × [−100, 2500]; Q0 = {Low};
– X0 = {(2500, 2500)}; Inv(q) = X for all q;



Bounded Verification of Reachability of Probabilistic Hybrid Systems 247

– The flow function which is given by Flow(q, x) = Pq, where: PLow = {(ȧ, ḃ) | −
93 ≤ ȧ ≤ −87, ḃ = −9 − ȧ}; PMedium = {(ȧ, ḃ) | − 193 ≤ ȧ ≤ −187, ḃ =
−190 − ȧ}; PHigh = {(ȧ, ḃ) | − 253 ≤ ȧ ≤ −247, ḃ = −250 − ȧ}; PTransfer =
{(ȧ, ḃ) | − 403 ≤ ȧ ≤ −397, ḃ = −400 − ȧ}.

– Edges = {Low, ρ1), (Medium, ρ2), (High, ρ1), (Transfer, ρ1)}, where ρ1, ρ2, ρ3,
ρ4 ∈ Dist(Q), and ρ1(Low) = ρ2(Medium) = ρ3(High) = 2

5 ; ρ1(Transfer) =
ρ2(Transfer) = ρ3(Transfer) = 3

5 ; ρ4(Low) = ρ4(Medium) = 1
8 , ρ4(High) = 1

4 ;
ρ4(Transfer) = 1

2 ;
– Guard(e) = R

2 for all e ∈ Edges;
– All resets are identity functions, that is, Reset(ρ, q) = Id for all ρ and q;
– Init((Low, (2500, 2500))) = 1.

Next, we construct a formula that computes the exact maximum and mini-
mum probability of reachability in a polyhedral PHS.

Id

Id

Id

Transfer
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Id
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Id

start
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1
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Id

Id
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Id

Id

Id
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ρ4 :

ρ4 :
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ρ4 : 14
3
5

ρ3 :

ḃ(t) = −400 − ȧ(t)

ȧ(t) ≥ −403, ȧ(t) ≤ −397

ḃ(t) = −90 − ȧ(t)

ȧ(t) ≥ −93, ȧ(t) ≤ −87

ḃ(t) = −250 − ȧ(t)

ȧ(t) ≥ −253, ȧ(t) ≤ −247

ḃ(t) = −190 − ȧ(t)

ȧ(t) ≥ −193, ȧ(t) ≤ −187

Fig. 1. Discharging of Kinetic Battery in Satellite GOMX-1

5 Computing Probability of Reachability

Our main problem is to compute the probability of reaching a target set F

within k discrete transitions and time T in a polyhedral probabilistic hybrid
system. Our broad approach consists of reducing the problem of computing the
minimum and maximum probability of reachability in a polyhedral PHS into
two optimization problems with constraints expressed using a satisfiability mod-
ulo theory formula, which encodes the computation trees of the polyhedral PHS.
From the inductive definition of the probability of reachability, we are required to
unroll the polyhedral PHS for k steps to construct a tree with k levels (height k).
The minimum/maximum probability of reachability at each node is expressed
iteratively as a solution of an optimization problem over constraints which them-
selves recursively contain other optimization problems. Note that all the entities
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of a polyhedral PHS such as invariants, dynamics, guards, and resets, can be
expressed as linear constraints. However, we have non-deterministic probabilis-
tic edges, hence, each recursive call to the optimization problems are in the form
of a linear optimization problem subject to constraints consisting of conjunc-
tions and disjunctions of linear constraints. Though theoretically this problem
can be solved by encoding it in first-order logic, we do not know of any tool
that efficiently solves optimization problems of this kind. Our broad idea is to
lift the recursive optimization problem at each node of the computation tree
up to the root level, that is, develop an encoding that solves a single optimiza-
tion problem at the root of the computation tree. Linear optimization problems
over conjunctions and disjunctions of linear constraints can be efficiently solved
using the tools Z3opt SMT- solver [5] and SYMBA [20], which add optimization
capabilities to SMT solving.

1

2

q1, x1, t1, p1

q1.1, x1.1, t1.1, p1.1 q1.2, x1.2, t1.2, p1.2 q1.3, x1.3, t1.3, p1.3

31

1 32

q1.2.1, x1.2.1, t1.2.1, p1.2.1 q1.2.2, x1.2.2, t1.2.2, p1.2.2 q1.2.3, x1.2.3, t1.2.3, p1.2.3

Fig. 2. Illustration of computation tree for k = 2

Next, we explain the construction of the encoding of the computation, which
will be the important part of the optimization problem we formulate. We fix the
following ordering on the locations of H, namely, q1, . . . , qn and we assume that
q1 is the initial state we are interested. Let us fix a polyhedral PHS H. Let n
be the number of locations in H. A computation tree of level k is essentially an
n-ary tree of height k as shown in Fig. 2. We define the names of the node in the
tree as follows. The name of the root node is 1. Inductively, the names of the i-th
child of a node named α are α.i, where i ranges over 1 to n. Hence, the node 1.2.1
refers to the first child of the second child of the root node. We annotate the tree
with states reached along an unrolling of k steps of [[H]]. We annotate the root
with an initial state of [[H]]. The children of a node α are annotated by the states
reached by taking a timed probabilistic edge of [[H]]. Note that in each timed
probabilistic edge ((q, x), t, π) of [[H]], π has finite support; more importantly,
for each q′, π(q′, x′) �= 0 for at most one x′. Hence, we will fix an ordering of
the locations QH and assume that the i-th child is annotated by a state whose
location is the i-location in the ordering, and the i-th continuous state is given by
the reset function corresponding to the edge taken and the i-th location (target).
(Recall Reset : Edges×Q×X → X , where Q captures the target location.) Next,
we describe the SMT formula that encodes the computation tree.

First, we fix some notations that will be used in the rest of the section.
Let Iq(x) be a predicate corresponding to Inv(q), that is, Iq(x) evaluates to
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true if and only if x ∈ Inv(q). Similarly, Fq(x, r),G(q,ρ)(x), and R(q,ρ,q′)(x, x′)
be the predicates that capture r ∈ Flow(q, x), x ∈ Guard(q, ρ), and x′ =
Reset((q, ρ), q′, x′), respectively. Also, let Fq(x) be a predicate for (q, x) ∈ F.
First, we explain how to capture the discrete, continuous and timed probabilis-
tic edges of [[H]] using first-order formulas with only existential quantification,
conjunctions and disjunctions, that is, as a satisfiability modulo theory (SMT)
formula.

Continuous transitions. We construct a formula Contq(x, t, x′) that encodes
whether there exists an execution that starts from the state (q, x) and reaches
the state (q, x′) at time t.

Contq(x, t, x′) = ∃ r,Fq(x, r) ∧ x′ = x + rt ∧ Iq(x) ∧ Iq(x′)

Note that if H is a polyhedral PHS, then all the constraints in Contq(x, t, x′)
will be linear expressions except for the multiplication of rate and time, that is,
rt. We can eliminate the nonlinear expression rt by converting it into an equiv-
alent linear expression. From the definition of polyhedral PHS, the predicates
Fq(x, r) and Iq(x) can be expressed as the conjunctions of linear constraints of
the form a · r ≤ b, where a is a constant n dimensional vector and b is a constant
number. We introduce a new variable (vector) y = rt (note r is a vector and t
is a scalar), and then replace all linear constraints a · r ≤ b in Fq(x, r) by the
linear constraints a · y ≤ b.t, and the constraint x′ = x + rt by x′ = x + y. The
two constraints are equivalent, since we will have assumed that the domain of t
is the non-negative real numbers.

Discrete probabilistic transitions. We construct a formula Discq(x, x, p) that
encodes the distribution over the states reached by taking some probabilistic
edge ρ from the state (q, x). If no such edge exists, we allow a dummy transition
with 0 as the probabilities. The (q, ρ)’s range over Edges.

Discq(x, x, p) =
[( ∧

(q,ρ)

¬G(q,ρ)(x)∧
n∧

j=1

pj = 0
)
∨

∨

(q,ρ)

[G(q,ρ)(x)∧
n∧

j=1

(
R(q,ρ,qj)(x, xj) ∧ pj = ρ(qj)

)
]

Transition relation. The formula Transq(x, t, x′, x, p) encodes a timed probabilis-
tic edge, that is, a combination of a continuous transition followed by a discrete
probabilistic transition.

Transq(x, t, x, p) = [∃ x′,Contq(x, t, x′) ∧ Discq(x′, x, p)]

We will use Trans as a primitive to encode computation tree of H. We need
variables to capture different entities at each of the nodes of the computation
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tree. Hence, we introduce some notation. Let Ik = {α | α = 1.i1.i2. . . . .im, 0 ≤
m ≤ k, ij ∈ [n] for 1 ≤ j ≤ m} denote the set of all paths starting from
root node in the computation tree. Note that the location at node α is L(α).
Given a variable z, Vk

z will denote a set of variables for each node in the tree
corresponding to z, that is, Vk

z = {zα | α ∈ Ik}. The free variables of our
formula will include Vk

x , Vk
t , and Vk

p , where xα denotes the continuous state in
the computation tree at α; similarly, tα denotes the time spent at location qL(α),
and pα.i denotes the probability of the transition from (qL(α), xα) to (qi, xα.i) in
the computation tree. We will assume that p1 = Init(q1, x1).

We need to ensure that the total time spent on the executions is bounded
by some value T . Hence, we track the total time spent along any path from the
root in the computation tree using the variables in VT . Our goal is to optimize
the probability of reaching a final state. Hence, we use the variables in VP to
capture the probabilities along the paths of the computation tree, that is, Pα

captures the probability associated with execution corresponding to α. Finally,
we need to add the probabilities of all those paths that end in a final state and
don’t reach a final state before that. Hence, we have boolean variable sets VF

and VB , where Fα is a boolean variable that is true when α corresponds to an
execution that ends in a final state without having visited a final state before,
and Bα is a boolean variable that is true if a final state has been visited along
α.

Next, we construct a formula Exec≤k,T,F that captures the sum of the proba-
bilities of the executions of computation tree with level k that reaches the target
set F (for the first time) within time T.

Validation of tree edges. The formula Tree validates all the edges in the com-
putation tree for given values of Vx,Vt,Vp. It also checks that the initial state
and probability (at the root) are valid. Here Iq(x, p) is a predicate such that
Init(q, x) = p. We use zᾱ to denote (zα.1, . . . , zα.n).

Tree(Vx,Vt,Vp) = Iq1(x1, p1) ∧
∧

α∈Ik−1

[TransqL(α)(xα, tα, xα)]

Timing constraints. The formula TimeT checks the relation between global times
in VT and local times in Vt, and ensures that the total times are less than T
along any executions.

TimeT (VT ,Vt) = [(T1 = 0) ∧
∧

α∈Ik−1

( n∧

j=1

Tα.j = Tα + tα
)

∧
∧

α∈Ik

(0 ≤ Tα ≤ T )]

Probability checking. The formula Prob checks the relation between the total
probability along a path captured using VP and the local probabilities along the
individual transitions captured using Vp.

Prob(VP ,Vp) = [P1 = p1 ∧
∧

α∈Ik−1

( n∧

j=1

Pα.j = Pα ∗ pα.j

)
]
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Checking if final state has been reached. The formula Before captures using VB

whether a state from the target set has been seen at any previous node in the
path from root node to that node in the execution of computation tree using the
values in Vx.

Before(VB ,Vx) = [(B1 = Fq1(x1)) ∧
∧

α∈Ik−1

( n∧

j=1

Bα.j = (Bα ∨ FqL(α)(xα))
)
]

Final target state checking. The formula Final captures using VF whether a
target set is visited for the first time at a node in a path from the root node to
that node in the execution of the computation tree using the values in VB .

Final(VF ,VB) = [(F1 = B1) ∧
∧

α∈Ik−1

( n∧

j=1

(
Fα.j = (¬Bα ∧ Bα.j)

))
]

Sum of probabilities. The formula Sum checks whether given VP ,VF and ps, if
ps is the sum of all the probabilities associated with nodes in the computation
tree which correspond to executions that reach the final state only in the last
state.

Sum(VP ,VF , ps) = [ps = (
∑

α∈Ik

FαPα)]

Finally, we can put all the formulas defined above to construct the formula
Exec≤k,T,F(Vx,Vt,Vp,VT ,VP ,VB ,VF , ps) that captures the values of the variable
Vx, Vt, Vp, VT , VP , VB and VF for a computation tree, along with the total
probability of reaching the target set F for this computation tree in ps.

Exec≤k,T,F(Vx,Vt,Vp,VT ,VP ,VB ,VF , ps) = Tree(Vx,Vt,Vp) ∧ Time(VT ,Vt)∧
Prob(VP ,Vp) ∧ Before(VB ,Vx) ∧ Final(VF ,VB) ∧ Sum(VP ,VF , ps)

Note that the formula Exec≤k,T,F does not check for the minimum/maximum
probabilistic reachability. Therefore, we need to solve an optimization problem
with ps as the objective function over Exec≤k,T,F as the constraints. Note that
the formula Exec≤k,T,F has conjunctions and disjunctions of linear expressions
which can be solved by existing SMT optimization tools Z3opt SMT-solver [5]
and SYMBA [20].

6 Experiments

In this section, we present an implementation details of the SMT based approach
for computing the bound on the minimum/maximum probability of reachability
in a polyhedral probabilistic hybrid system. Our implementation has probabilis-
tic reachability analysis module that takes as input a polyhedral PHS, number
of discrete transitions k, total time T , and a target set F, and outputs an SMT
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formula that captures all the computation trees corresponding to the polyhedral
PHS. The latter module calls either Z3opt or SYMBA to solve the optimization
problems over the SMT formula that returns the minimum/maximum probabil-
ity of reachability. Next, We present the analysis of a kinetic battery in a nano
satellite introduced in [18]. All the computation times are measured in seconds,
Unknown shows that either Z3opt or SYMBA do not terminate in 5 min. The
evaluation of the experiment has been conducted on Ubuntu 14.04 OS, Intel R©
Pentium(R) CPU B960 2.20 GHz × 2 Processor, 4 GB RAM.

Next, we show the results of the analysis of the case study using our approach.
We compute the maximum probability of reachability for different values of
T, k,F. The results are summarized in Tables 1, 2 and 3. In Tables 1 and 2, we
do not restrict the time spend at a location, however, in Table 3, we restrict
the time that should be spent at a location. In the tables, Prob denotes the
maximum probability of reachability, and ZT , and ST denote the time to solve
the optimization problem over SMT formulas by the tools Z3opt and SYMBA,
respectively. First, we consider the maximum probability of reaching the location
Transfer starting from the location Low within time T = 7 for different number
of discrete transitions k. The results are tabulated in Table 1.

Table 1. T = 7, Initial state = (Low, (2500,2500))

Row k Prob ZT (sec.) ST (sec.)

1 1 3/5 0.0104 0.0846

2 2 21/25 0.0192 0.2395

3 3 117/125 0.0446 2.9072

4 4 609/625 0.1731 34.725

5 5 3093/3125 0.7303 Unknown

Note that the maximum probability of reachability increases as we increase
the number of discrete transitions, as expected. Next, Z3opt solves the optimiza-
tion on the SMT formula in much less time than SYMBA on all the examples.
For instance, Z3opt solves the SMT formula in 0.7303 s for k = 5, however,
SYMBA does not terminate within 5 min for the same SMT formula. Hence, we
use Z3opt for further experiments.

In Table 2, we observe that the maximum probability of reaching a state
where the charge is depleted is 0 within time T = 5 and discrete transitions
k = 2, 3, 4. Even in the location Transfer, which has a large discharge rate,
namely, between 397 and 403, 5 units of time is not enough to drive the available
charge to less than 0. Hence, the amount of charge never becomes less than 0
in any location within 5 units of time. However, 7 units of time are enough to
deplete the available charge with different probabilities at different locations.
In addition, the maximum probability increases as we increase the number of
discrete transitions k. In rows 10, 11, 12, we get the same probability values as in
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Table 2. Initial state = (Low, (2500, 2500))

Row k Prob (T = 5) ZT Prob (T = 7) ZT

1 2 0 0.0142 21/25 0.0157

2 3 0 0.0758 117/125 0.1035

3 4 0 0.2302 609/625 0.6223

F = {(Transfer, (a, b)) | a < 0}
4 2 0 0.0160 3/20 0.0209

5 3 0 0.0904 57/200 0.1011

6 4 0 0.3508 399/1000 0.3735

F = {(High, (a, b)) | a < 0}
7 2 0 0.0298 3/40 0.0153

8 3 0 0.0859 57/400 0.1008

9 4 0 0.3547 1641/8000 0.3493

F = {(Medium, (a, b)) | a < 0}
10 2 0 0.0371 21/25 0.0415

11 3 0 0.1426 117/125 0.1479

12 4 0 0.9703 609/625 49.243

F = {(loc, (a, b)) | a < 0, loc ∈ {Low, Medium, Transfer, High}}

rows 1, 2, 3 because the maximum probability of depletion of the charge occurs
at the location Transfer. Note that the experiments suggest that Z3opt efficiently
solves the SMT formula constructed for the experiments.

Finally, in Table 3, the maximum probability increases as we increase time
T because larger number of discrete transitions are enabled as we increase time
T . Note that Z3opt solves the optimization over the SMT formula in this model
with time constraint on the locations, faster than SMT formula constructed for
the same value of k and target set in a model where we do not restrict the
duration for which the system should be in a location.

Table 3. k = 4, Initial state = (Low, (25000,25000)), F = {(loc, (a, b)) | a < 0, loc ∈
{Low, Medium, Transfer, High}}

Row T Prob ZT

1 100 0 10.432

3 300 117/125 7.8198

4 400 609/625 6.2379
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7 Conclusions

In this paper, we have developed a method for computing the bound on the min-
imum/maximum probability of reachability in a polyhedral probabilistic hybrid
system, where non-deterministic probabilistic transitions are allowed. This is not
only a probabilistic reachability problem, but also an optimization problem. Our
method exploits the recent advances of existing tool Z3opt to solve the bounded
reachability problem. We have experimented with the method for the analysis of
the depletion of the charge of a kinetic battery in a nano-satellite. The experimen-
tal results show that the method is efficient for solving the bounded reachability
problem. Our future work will consist of extending the bounded reachability
analysis to systems with complex non-linear dynamics, wherein in addition to
non-determinism, we consider constraints involving rewards and gains.

Acknowledgements. Pavithra Prabhakar was partially supported by NSF CAREER
Award No. 1552668 and ONR YIP Award No. N000141712577.
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Abstract. In this paper, we study a system where the speed of a proces-
sor depends on the current number of jobs. We propose a queueing model
in which jobs consist of a variable number of tasks, and priority is given
to the job with the fewest remaining tasks. The number of processor fre-
quency levels determines the dimensionality of the queueing process. The
objective is to evaluate the trade-offs between holding cost and energy
cost when setting the processor frequency. We obtain exact results for
two and three frequency levels, and accurate approximations that can
be further generalized. Numerical and simulation results show the high
accuracy of the approximate solutions that we propose. Our experiments
suggest that a parsimonius model with only two frequency levels is suffi-
cient, since more elaborate models provide negligible improvements when
optimizing the system.

1 Introduction

In dynamic speed scaling systems, the speed at which the processor executes
jobs is adjusted dynamically based on the workload experienced by the system.
Modern processors typically support over a dozen discrete operating speeds,
often with a factor of two (or more) between the slowest and the fastest speeds
available.

Multiple tradeoffs exist in such speed scaling systems. The most obvious is the
tradeoff between response time and energy consumption (see. e.g., [4,13,17]). To
minimize response time, one would use the highest system speed available, while
to minimize energy consumption, one would use the lowest system speed. For this
reason, most speed scaling research uses a cost function that combines response
time (i.e., job delay, or holding cost) and energy consumption when doing system
optimization as in [16]. Another interesting tradeoff arises from the interaction
between the job scheduling policy and the speed scaling function. In job-count-
based speed scaling, for instance, the CPU speed is set dynamically based on the
current number of jobs in the system. As a result, different scheduling policies
produce different costs, since the average number of jobs in the system varies.
c© Springer Nature Switzerland AG 2018
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For example, Shortest Remaining Processing Time (SRPT) minimizes system
occupancy, and thus tends to run at lower speeds and for longer times than
other scheduling policies, such as Processor Sharing (PS) [1].

Another consequence of SRPT-based scheduling is extreme unfairness to
large jobs. There are two underlying reasons for this unfairness. First, large jobs
tend to wait much longer to receive service, because of SRPT’s bias toward short
jobs. Second, even when they do receive service, large jobs tend to be served at
low(er) speeds, since there are usually very few jobs (perhaps only one) in the
system at that point [14].

Size based scheduling disciplines have been considered of primary impor-
tance in queueing theory (see, e.g., [9, Chap. 3]) and for practical applications
in computer networking (see, e.g., [11] and the references therein). Despite the
problems concerning the fairness [1,3], the optimality of SRPT makes it prac-
tically appealing for the situations where job sizes can be predicted accurately.
This is the case, for example, of TCP flows whose size is known in advance, e.g.,
in transferring static resources from a web server as shown in [8].

In this paper, we further investigate performance tradeoffs in dynamic speed
scaling systems. One basic dilemma in these systems is what speed to use when
there is only a single job in the system. Should it run at the highest speed,
to minimize delay, or at the lowest speed, to conserve energy? To answer this
question, we investigate a model in which we can determine the optimal speeds
to use within a finite set of available speeds.

The main contributions in this paper are the following:

1. we propose a novel analytical model for dynamic speed scaling systems that
use the SRPT scheduling policy, with K available speeds;

2. we derive exact analytic results for K = 2 to optimize the system speeds and
minimize the system cost function. The approach can be extended to deal
with the case K = 3;

3. we derive approximate analytic results for K = 2 that can be generalized for
larger K;

4. we conduct numerical and simulation experiments to verify the accuracy of
our analytical models and we provide new insights on the importance of the
available speeds in dynamic speed scaling systems with SRPT scheduling.

The rest of this paper is organized as follows. Section 2 provides a brief sum-
mary of prior related work on dynamic speed scaling systems. Section 3 presents
our system model. Section 4 derives our exact and approximate models for K = 2
which may be extended to more general cases. Section 5 presents numerical
results to evaluate the models and to quantify the benefits of frequency scal-
ing. Finally, Sect. 6 concludes the paper.

2 Related Work

SRPT is a preemptive policy that always selects for service the pending job in the
system with the least remaining work. In single-speed systems, SRPT is optimal
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for mean response time [12]. Although SRPT minimizes the mean response time,
it is rarely used in practice, since it can be unfair. In particular, large jobs may
starve if small jobs have precedence.

Prior literature on speed scaling systems appears in both the theory and
systems communities. The theoretical work typically focuses on formal math-
ematical proofs of the properties of speed scaling systems, such as optimality
and fairness. Systems research typically focuses on robust solutions, rather than
optimal ones. In this literature review, we focus primarily on the theoretical
work, as relevant background context for our paper.

In speed scaling systems, there are many tradeoffs between service rate,
response time, energy consumption, and fairness. Yao et al. [17] conducted one
of the first analytical studies of dynamic speed scaling systems in which jobs
have explicit deadlines, and the service rate is unbounded. Bansal et al. [4] con-
sidered an alternative approach that minimizes system response time, within a
fixed energy budget. Other work has focused on finding the optimal fixed rate
at which to serve jobs in a system with dynamically-settable speeds [7,15,16].

Energy-proportional speed scaling is a prevalent approach, which is nearly
optimal [1,2]. In this model, the power consumption P (s) of the system depends
on the speed s, which in turn depends on the number of jobs in the system.
Bansal, Chan, and Pruhs [2] showed that SRPT with the speed scaling function
P−1(n+1) is 3-competitive for an arbitrary power function P . Andrew et al. [1]
showed that the optimal policy is SRPT with a job-count-based speed scaling
function of the form s = P−1(nβ).

Fairness in dynamic speed scaling systems is also an important consideration.
In particular, speed scaling systems face inherent tradeoffs between fairness,
robustness, and optimality [1]. Processor Sharing (PS) is always fair, even under
speed scaling. However, the unfairness of SRPT is magnified under speed scaling,
since large jobs tend to run at lower speeds (i.e., when the system is mostly
empty). Although PS is fair, it is suboptimal for response time and energy [1].

In this paper, we focus on SRPT scheduling with job-count-based speed scal-
ing. Our model builds upon ideas from Andrew et al. [1], as well as recent work
by Elahi et al. on the autoscaling properties of dynamic speed scaling systems [6].
We derive exact and approximate models to facilitate optimization of the system
cost, by determining the optimal service rates to use.

3 Description of the Model

In this section we introduce the queueing model that we consider in this paper
together with the associated notation (a summary is given in Table 1). Jobs
arrive into the system in a Poisson stream with rate λ, and are served by a
single server. Each job consists of a random non-empty batch of i.i.d. service
phases which will be referred to as tasks. The duration of each task, if served at
speed 1 instruction per second, is distributed exponentially with mean 1. The
number of tasks in a job’s batch will be referred to as the size of the job. Those
sizes are i.i.d. random variables with an arbitrary distribution: a job has size
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Table 1. Summary of the notation used in the paper.

λ Intensity of the arrival process

qi Prob. distribution of the number of tasks in a job

Q Finite average job size

K Number of frequency levels

μk Service rate at frequency level k

uk Stationary probability that frequency level k is operating

L Expected number of tasks in the system

n = (n1, . . . , nK) State of the system

pk(n) Stationary probability of observing n tasks at level (queue) k

wk(z) Generating function of pk(n)

a(z) Generating function of qi

ri Probability of a job size strictly larger than i

b(z) Generating function of ri

πk(n) Marginal stationary probability of observing n tasks in queue k

π(n1, . . . , nK) Stationary probability of state (n1, . . . , nK)

i with probability qi (i = 1, 2, . . .). The average job size, Q, is assumed to be
finite.

This job composition means that the possible distributions of job lengths (i.e.
the sums of their constituent tasks), belong to a large sub-class of the Coxian
distributions (see [5]), which are known to be quite general for practical purposes.

The job scheduling policy is a version of SRPT based on remaining sizes,
rather than lengths. That is, at any moment, the job with the smallest number
of remaining tasks is served. That policy is combined with a control mechanism
whereby the frequency of the processor, i.e. the speed at which it works, is scaled
according to the current load. There are K possible frequency levels. If there is
only 1 job present, it is served at rate μ1 tasks per unit time; if there are 2
jobs, then the one with fewer remaining tasks is served at rate μ2 tasks per
unit time, with μ2 > μ1; . . .; if there are K or more jobs present, then the one
with the fewest remaining tasks is served at rate μK tasks per unit time, with
μK > μK−1.

One is faced with the question of how best to choose the frequency levels.
Clearly there are trade-offs between the costs of increasing the processor speed
and the costs of holding tasks in the system. We address that question by intro-
ducing a cost function which has two components: a cost proportional to the
average number of tasks remaining across jobs present, L, and a cost propor-
tional to the average square (see, e.g., [16]) of the service rate:

C = c1L + c2

K∑

k=1

ukμ
2
k, (1)
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where c1 and c2 are given coefficients, and uk is the probability that frequency
level k is in operation. We assume that when the system is empty, its power
consumption is that corresponding to the lowest operating speed μ1.

The purpose of the subsequent analysis is to provide algorithms for comput-
ing L and uk, and hence evaluate the cost function for a given set of parameters.
The optimal values of μk can then be found by applying an appropriate numer-
ical search.

The operation of the scheduling policy can be modeled by using K task
queues, numbered 1, 2, . . ., K. Sort the jobs present in the system in decreasing
order of the numbers of their remaining tasks. Then queue 1 contains the remain-
ing tasks of job 1 (the largest in the system), queue 2 contains the remaining
tasks of job 2, if any, . . ., queue K −1 contains the remaining tasks of job K −1,
if any, and queue K contains the remaining tasks of all other jobs, if any, whose
sizes are smaller than that in queue K −1. Queue K is the only one where there
may be tasks from more than one job. Moreover, the number of tasks in queue
i is always larger or equal to those in queue j if i < j and 1 ≤ i, j ≤ K − 1,
while queue K can contain an arbitrary number of tasks. At any epoch, only the
tasks from the non-empty queue with the largest index are served with the speed
associated with that queue. Therefore, the operating frequency of the processor
depends on the number of jobs in the system and corresponds to speed μi when
there are i jobs in the system, for i = 1, . . . ,K − 1 and is μK if there are K or
more jobs, as required.

The state of the system at a given moment in time is a vector (n1, n2, . . .,
nK), specifying the contents of the K queues. That vector satisfies (n1 ≥ n2 ≥
· · · ≥ nK−1), but it is possible that nK > nK−1. The server always serves the
non-empty queue with the largest index, and if that index is i, it works at the
rate of μi tasks per unit time.

An incoming job of size s tasks which finds the system in state (n1, n2,
. . ., nK) may cause a reassignment of tasks to queues in order to preserve the
shortest-remaining order. If s ≤ nK−1, then no such reassignment is necessary
and the resulting state is (n1, . . . , nK−1, nK + s). Otherwise, the incoming s
tasks replace the content of queue i, where i is the lowest index such that s >
ni. Queue K receives the tasks from queue (K − 1), so that the new state
is (n1, . . . , ni−1, s, ni, . . . , nK + nK−1). If s > n1, then the part of the vector
preceding s is empty.

Consider now the steady-state probability, pk(n), that the total number
of tasks in queues 1, 2, . . ., k is n, while queues k + 1, . . . , K are empty
(k = 1, 2, . . . ,K). For every k, pk(0) is the probability of an empty sys-
tem, so we may sometimes omit the index and just write p(0). The difference
pk(n) − pk−1(n), for k = 1, 2, . . . ,K and n > 0, with p0(n) = 0 by definition, is
the probability that there are n tasks present and the non-empty queue with the
highest index is queue k. In other words, that is the probability that there are n
tasks present and the service rate is μk. These probabilities are 0 when n < k.
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Let wk(z) be the generating function of pk(n):

wk(z) =
∞∑

n=0

znpk(n); k = 1, . . . , K .

The last of these functions, wK(z), corresponds to the distribution of the total
number of tasks in the system. It satisfies the normalizing condition wK(1) = 1.

The marginal probabilities, uk, that the server works at rate μk (they appear
in the cost function (1)), are given by

u1 = w1(1); uk = wk(1) − wk−1(1); k = 2, . . . , K.

Let a(z) be the generating function of the job size distribution:

a(z) =
∞∑

n=1

znqn.

We shall also need the excess probabilities, rn, that the size of a job is strictly
greater than n, for n = 0, 1, . . . (r0 = 1). The generating function of rn, b(z), is
given by

b(z) =
∞∑

n=0

znrn = 1 +
∞∑

n=1

zn[1 −
n∑

j=1

qj ].

The following relation exists between b(z) and a(z):

b(z) =
1 − a(z)
1 − z

. (2)

This is established by expanding b(z)−zb(z) and performing cancellations. Note
that the value of b(z) at z = 1 is the average job size: b(1) = a′(1) = Q.

We have the following result.

Lemma 1. The generating functions w1(z), w2(z), . . ., wK(z) satisfy the
relation

wK(z)[μK − λzb(z)] = μ1p(0) +
K−1∑

k=1

(μk+1 − μk)wk(z) . (3)

Setting z = 1 in (3) yields the normalization condition:

wK(1) =
μ1p(0) +

∑K−1
i=1 (μi+1 − μi)wi(1)
μK − λQ

= 1. (4)

The following proposition gives the necessary and sufficient conditions for the
stability of the system.

Proposition 1. The queueing system is stable if and only if

λQ < μK . (5)
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The proof uses the Pakes’ lemma [10] which gives sufficient conditions for
stability of Markov chains.

The steady-state average number of tasks in the system, L, is given by w′
K(1).

First, by differentiating (2) and applying De L’Hôpital’s rule at z = 1, we find
that b′(1) = −a′′(1)/2. Now, taking the derivative of (3) at z = 1 and rearranging
terms, we obtain

L =
∑K−1

i=1 (μi+1 − μi)w′
i(1) + λ(Q + 1

2a′′(1))
μK − λQ

. (6)

Thus the quantities that are needed in order to evaluate the cost function (1)
are expressed in terms of the functions wi(z) for i = 1, 2, . . . ,K −1, i.e. in terms
of the probabilities of all states in which queue K is empty. In the following
sections we provide exact and approximate solutions for those probabilities, in
the cases K = 2 and K = 3. The methodology employed can be extended to
deal with higher values of K, at the price of increased complexity.

The following general result will be useful. Denote by π1(i) the marginal
probability that there are i tasks in queue 1 (and any numbers in the other
queues). Then

λrn

n∑

i=0

π1(i) = μ1π(n + 1, 0, . . . , 0), (7)

where π(n + 1, 0, . . . , 0) is the probability that queue 1 contains n + 1 tasks and
all other queues are empty. This equation is obtained by balancing the flows
across a cut that separates the set of states with no more than n tasks in queue
1, from all other states.

The probabilities π1(i) can also provide an expression for the expected resi-
dence time, T1, of a job in queue 1. Indeed, if the system is in state (i, ·), then
jobs arrive into queue 1 at rate λri. On the other hand, the average number of
jobs in queue 1 (not tasks!) is equal to the probability that queue 1 is not empty,
i.e., 1 − p(0). Therefore, according to Little’s result:

T1 =
1 − p(0)

λ
∑∞

i=0 riπ1(i)
. (8)

4 The Model with K = 2 Frequency Levels

In this section we consider our model with two frequency levels, i.e., the server
works at speed μ1 when there is only one job in the system, and μ2 when there are
at least two jobs, with μ1 < μ2. In Sect. 4.1 we provide the exact solution of the
model, whereas in Sect. 4.2 we give an approximate, yet a more efficient approach
to the computation of the stationary performance indices. The accuracy of the
approximation will be assessed in Sect. 5 and will be shown to be very high.
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4.1 Exact Analysis

The detailed system state is now a pair (i, j), where i is the number of tasks in
queue 1 and j is the number of tasks in queue 2. A service completion causes a
transition from state (i, 0) to state (i − 1, 0) at rate μ1 (i > 0), and from state
(i, j) to state (i, j − 1) at rate μ2 (j > 0). An arrival of a job of size k causes
a transition from state (i, j) to state (i, j + k) if k ≤ i, and to state (k, j + i) if
k > i. The states (0, j), for j > 0, are unreachable and their probabilities are 0.

Denote the probability of state (i, j) by π(i, j). These probabilities satisfy
the following global balance equations:

λπ(0, 0) = μ1π(1, 0) . (9)
(λ + μ1)π(i, 0) = λqiπ(0, 0) + μ1π(i + 1, 0) + μ2π(i, 1) . (10)

(λ + μ2)π(i, j) = λ

m∑

k=1

qkπ(i, j − k) + λqi

m1∑

k=1

π(k, j − k) + μ2π(i, j + 1), (11)

where m = min(i, j) and m1 = min(i − 1, j).
Since all solutions of these equations are proportional to each other, it is

enough to find one solution. The values π(i, j) can then be normalized by dividing
each of them by their sum.

Start by setting π(0, 0) = 1. Equation (9) then gives π(1, 0) = ρ1, where
ρ1 = λ/μ1. Note that this quantity does not represent offered load, since λ is
the arrival rate of jobs, while μ1 is a service rate of tasks.

Consider the probabilities π(1, j), for j = 0, 1, . . ., and define the generating
function

g1(z) =
∞∑

j=0

π(1, j)zj . (12)

When i = 1 and j = 0, Eq. (10) can be rewritten as

(λ + μ2)π(1, 0) = λq1π(0, 0) + (μ2 − μ1)π(1, 0) + μ1π(2, 0) + μ2π(1, 1).

For i = 1 and j ≥ 1, Eq. (11) are

(λ + μ2)π(1, j) = λq1π(1, j − 1) + μ2π(1, j + 1).

Multiplying the above by zj and summing, we get after a little manipulation
(and remembering that π(0, 0) = 1),

d1(z)g1(z) = λq1z − [μ1z + μ2(1 − z)]π(1, 0) + μ1zπ(2, 0), (13)

where
d1(z) = λz(1 − q1z) + μ2(z − 1).

This expression for g1(z) contains an unknown constant, π(2, 0). However, note
that the coefficient d1(z) is negative for z = 0 and positive for z = 1. Therefore,



Control and Optimization of the SRPT Service Policy by Frequency Scaling 265

there is a value, z1, such that d1(z1) = 0. Since g1(z) is finite on the whole
interval z ∈ [0, 1], the right-hand side of (13) must vanish at z = z1. This gives

μ1z1π(2, 0) = [μ1z1 + μ2(1 − z1)]π(1, 0) − λq1z1π(0, 0).

The next step is to consider the probabilities π2,j , for j ≥ 0, and their corre-
sponding generating function

g2(z) =
∞∑

j=0

π(2, j)zj .

Repeating the manipulations that led to (13), we obtain

d2(z)g2(z) = λq2z − [μ1z + μ2(1 − z)]π(2, 0) + μ1zπ(3, 0) + λq2z
2g1(z), (14)

where
d2(z) = λz(1 − q1z − q2z

2) + μ2(z − 1).

Again, the coefficient of g2(z) is negative at z = 0 and positive at z = 1.
Therefore, there is a value z2 in the interval (0, 1), such that d2(z2) = 0. Equating
the right-hand side of (14) to 0 at z = z2, determines the single unknown constant
in that equation, π(3, 0):

μ1z2π(3, 0) = [μ1z2 + μ2(1 − z2)]π(2, 0) − λq2z2π(0, 0) − λq2z
2
2g1(z2) .

The i’th step in this process evaluates the generating function of the probabilities
π(i, j), gi(z), in terms of the already known functions g1(z), g2(z), . . ., gi−1(z),
and constants π(1, 0), π(2, 0), . . ., π(i, 0):

di(z)gi(z) = λqiz−[μ1z+μ2(1−z)]π(i, 0)+μ1zπ(i+1, 0)+λqiz

i−1∑

k=1

zkgk(z), (15)

where

di(z) = λz(1 −
i∑

k=1

qkz
k) + μ2(z − 1)

The coefficient of di(z) has a zero, zi, in the interval (0, 1), which determines
the new unknown constant π(i + 1, 0).

These iterations continue until gi(1) < ε, for some sufficiently small ε, or until
the largest possible value of i, if the job sizes are bounded. Eventual termination
is guaranteed if the queuing process is stable. At that point, all (unnormalized)
probabilities π(i, 0), and hence the function w1(z), have been determined.

The normalization constant, G, is given by (4):

G =
μ1π(0, 0) + (μ2 − μ1)w1(1)

μ2 − λQ
. (16)

Dividing all π(i, j) values, and hence w1(1), by G, completes the computation
of the joint probability distribution of the states (i, j). Lemma 1 now provides
w2(z).
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The total average number of tasks in the system, L, is given by (6), which
now has the form

L =
(μ2 − μ1)w′

1(1) + λ[Q + 1
2a′′(1)]

μ2 − λQ
.

The probabilities that the processor speed is μ1, and μ2, are w1(1) and 1−w1(1),
respectively.

4.2 Approximate Solution

In order to derive the approximation, consider the marginal probabilities,
π(i, ·) = gi(1), that there are i tasks in queue 1, with π(0, ·) = π(0, 0). These
probabilities appear in the left-hand side of (7).

The fraction of time that the system spends in state (i, ·), such that queue 2
is not empty, consists of the services of all tasks that join queue 2 when queue
1 reaches size i. This can happen when (a) the system is in state (k, ·), for
1 ≤ k < i, and a job of size i arrives (in which case k tasks are transferred to
queue 2), or (b) the system is in state (i, ·) and a job of size k arrives, for k ≤ i;
all of its tasks join queue 2. Hence we can write

π(i, ·) − π(i, 0) = λ

[
qi

i−1∑

k=1

kπ(k, ·) + π(i, ·)
i∑

k=1

kqk

]
1
μ2

; i = 1, 2, . . . . (17)

The first sum in the right-hand side is absent when i = 1.
Introducing the notation

si =
i∑

k=1

kπ(k, ·); ai =
i∑

k=1

kqk, (18)

we can rewrite (17) as

π(i, ·) =
π(i, 0) + qiρ2si−1

1 − ρ2ai
; i = 1, 2, . . . , (19)

where ρ2 = λ/μ2 and s0 = 0 by definition.
Start with π(0, 0) = 1 and π(1, 0) = ρ1. Compute π(1, ·) from (19), then

π(2, 0) from (7), π(2, ·) from (19), π(3, 0) from (7) and so on, up to the desired
accuracy. Normalize, using (16).

This procedure is more economical and more stable than the exact solution.
It is worth of notice that both the exact and the approximate approach can

be extended to handle K = 3 levels of frequency. However, the complexity of the
analysis and its computational cost increase. The approximate approach, instead,
can easily be further generalized to models with more than three queues.

The accuracy of the approximation will be examined in Sect. 5.
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5 Numerical and Simulation Results

In this section we describe several experiments aimed at evaluating the accuracy
of the approximate solutions that have been proposed, and also observing the
behaviour of the cost function (1). Systems with two and three frequency levels
are examined. A remarkable observation emerging from these experiments is
that, for the purposes of optimization, the models with K > 2 may be neglected.

K = 2 Frequency Levels. We consider the model studied in Sect. 4. In Fig. 1,
the cost function C is computed exactly and approximately, as described in
Sect. 4, and is plotted against the queue 1 service rate, μ1. The two cost coeffi-
cients are c1 = 1 and c2 = 2. The job arrival rate and the queue 2 service rate are
fixed at λ = 1 and μ2 = 7. A geometric distribution of job sizes is assumed, with
mean 5, truncated at a maximum job size of 50. Thus the offered load, λQ/μ2

represents about 71% utilization. The value of μ1 is varied between 1 and 6, in
increments of 1. The cost function is convex in μ1. We have no formal proof of
this, but it is invariably observed to be the case. Intuitively, at low values of μ1

the holding costs dominate, while at large values the service rate costs dominate.
Moreover, if a point is reached such that an increase in μ1 leads to an increase
in C, then clearly any further increase in μ1 would make matters worse. The
two plots are very close. The approximate solution underestimates C slightly,
but the relative errors never exceed 1%. In particular, both solutions agree that
the optimal value of μ1 is 3 (subject to the granularity of the increments). We
next examine the effect of increasing the variance of the job size distribution.
Consider a rather extreme case where jobs have size 1, with probability 3/4, or
size 17, with probability 1/4. The average job size is the same as in Fig. 1, Q = 5,
but the variance has gone up from 20 to 337. All other parameters are the same,
and again the cost function is plotted against the service rate μ1. Figure 2 shows
that the increase in variance has led to an increase in costs of between 7% and
10%. The approximate solution is still within less than 1% of the exact one.
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Fig. 1. K = 2: cost against μ1
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Fig. 2. K = 2: Large variance of job sizes

Fig. 3. K = 2: Impact of the workload intensity on the optimal frequency

The optimal value of μ1 has not changed. The effect of the offered load on the
shape of the cost function is illustrated in Fig. 3. Three loading regimes are con-
sidered, light, moderate and heavy. These are represented by the arrival rates
λ = 0.3, λ = 0.8 and λ = 1.3; they correspond to utilizations of about 21%, 57%
and 93%, respectively. The other parameters are the same as in Fig. 1. Costs
are evaluated exactly and are plotted against the queue 1 service rate, μ1. The
figure suggests the following observations, all of which are quite intuitive. As the
offered load increases, (a) costs increase; (b) the relative difference between the
optimal and the pessimal costs decreases; (c) the optimal value of μ1 increases.

K = 3 Frequency Levels. The next example evaluates the accuracy of the
approximation for a system with three frequency levels. This time μ2 and μ3

are fixed at 6 and 7 tasks per second respectively, while μ1 is varied between
1 and 6, at increments of 1. The job size distribution is geometric with mean
5, and the other parameters are the same as before. Rather than implementing
the exact solution, Fig. 4 compares the approximated costs with simulated ones.
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Fig. 4. K = 3: cost against μ1

Each simulated point represents a run where 500, 000 jobs arrive into the system
(i.e., an average of 2.5 million tasks are served). The approximation is again very
accurate, with relative errors not exceeding 1%. Moreover, the two plots agree
on the optimal point of μ1 = 3 (subject to the granularity of the increments).
However, the difference in costs between μ1 = 3 μ1 = 4 is very slight.

The Benefits of Optimization. The last experiment attempts to quantify
the benefits of optimization, in the context of a 3-queue system under different
loading conditions. Three policies are compared. The ‘default’ policy, or policy
0, does not optimize; it serves all three queues at rate μ3. Under policy 0, the
system is equivalent to a single queue with batch arrivals. Policy 1 serves queues
2 and 3 at rate μ3, but uses the optimal value for μ1 (found by a one-dimensional
search). This amounts to an optimized K = 2 system. Policy 2 serves queue 3 at
rate μ3, but uses the optimal values for μ1 and μ2 (found by a two-dimensional
search).

For consistency, all costs in this experiment were evaluated by applying the
3-queue approximation. We have relied on the established accuracy of that
approximation. A feasible alternative would have been to evaluate policy 0 and
policy 1 exactly (using the exact solutions for the cases K = 1 and K = 2), and
resort to approximation only for policy 2.

In Fig. 5, the costs incurred by the above three policies are plotted against
the job arrival rate λ. It varies between 0.2 and 1.2, while the top service rate
remains fixed at μ3 = 7. Job sizes are distributed geometrically with mean 5,
which means that the system loading varies between 14% and 86%. The cost
coefficients are c1 = 1 and c2 = 2. When searching for the best μ1 and μ2 values,
the latter were incremented in steps of 0.5.

The results displayed in Fig. 5 are quite instructive. First, we observe that there
is less to be gained by optimizing a heavily loaded system, than a lightly loaded
one. Of course this was to be expected, since the holding costs become dominant
under heavy loads, and minimizing those costs requires large service rates.
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Fig. 5. The benefits of optimization for c1 = 1 and c2 = 2

The second observation is not so predictable: it seems that the big gains
are obtained by optimizing just with respect to μ1 (policy 1). The additional
improvement achieved by optimizing with respect to μ2 as well (policy 2), is
quite minor. It is even debatable whether the expense of searching for policy 2
is justified by the benefits that it brings.

This last observation has practical importance. It suggests that the 2-queue
model, rather than being just the simplest special case, is in fact a really signifi-
cant model from the point of view of control and optimization. One may restrict
the search for an optimal policy to the case K = 2, and be reasonably confident
that the resulting policy would not be bettered by much.

To check whether the above conclusion remains valid under different cost
structures, we have repeated the last experiment with several pairs of coefficients
c1 and c2. Figure 6 shows one such example, where c1 = 2 and c2 = 1 (i.e.,
holding tasks in the system incurs higher penalties than speeding up the server).
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Fig. 6. The benefits of optimization for c1 = 2 and c2 = 1
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The other parameters remain unchanged, and the costs of policies 0, 1 and 2
are plotted against the arrival rate, λ. The conclusion that the most important
model is K = 2, is confirmed.

6 Conclusion

In this paper we studied systems employing the Shortest Remaining Processing
Time scheduling discipline with frequency scaling. We have devised a model in
which jobs consist of tasks whose service time are exponentially distributed. The
distribution of the number of tasks in a job is arbitrary and this allows for a
great flexibility in modelling the jobs’ service time distribution and the accuracy
of its estimation done by the system. The operating frequency is decided on
the basis of the number of jobs in the system. The model characteristics allow
us to study some important performance indices such as the expected number
of tasks in the system, the probability of observing the system operating at a
certain frequency level, the expected time that a job remains the largest job in
the system and its expected size. We have introduced a cost function that takes
into account the system’s power consumption and the expected number of tasks
in the system (and hence the expected response time). We focused the attention
on the systems with 2 and 3 frequency levels and showed that the gain in the
cost function of the latter with respect to the former is very small, whereas it
is high between the system with 2 frequency levels and the one that does not
apply any frequency scaling. This suggests that a simple system with 2 frequency
levels, opportunely parametrised, can approximately give the benefits in terms
of energy saving and quality of service of more complex systems.
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Abstract. We consider a fork-join system in which a fixed amount of
computational resources has to be distributed among the K tasks form-
ing the jobs. The queueing disciplines of the fork- and join- queues are
First Come First Served. At each epoch, at most K tasks are in service
while the others wait in the fork-queues. We propose an algorithm with
a very simple implementation that allocates the computational resources
in a way that aims at minimizing the join-queue lengths, and hence at
reducing the expected job service time. We study its performance in sat-
uration and under exponential service time and provide a methodology
to derive the relevant performance indices. Explicit closed-form expres-
sions for the expected response time and join-queue length are given for
the cases of jobs consisting of two, three and four tasks.

1 Introduction

In the literature, processor sharing (PS) queues have been widely studied since
they are valid approximations of time sharing systems such as the round robin
scheduling discipline for operating systems [10]. Moreover, PS queues have
important theoretical properties that allow for analytical tractability of queueing
networks (see, e.g., [4] and the references therein). In contrast with PS queues,
where the jobs in the system receive the same amount of computational power,
in biased PS (BPS) queues the computational power is distributed according to
some policy that favours some classes of customers with respect to others [11,
Chap. 11]. In [9], Kleinrock first introduces a form of BPS queue in which mul-
tiple classes of customers are statically associated with a certain weight and
each job receives a computational power which is proportional to the weight
of its class. This idea has been widely exploited to achieve fairness or for the
optimisation of the systems’ response time [1].

In this paper, we revisit the idea of BPS in the context of fork-join systems:
jobs arrive at the system and are forked in K tasks that are enqueued in K
fork-queues. Fork-join systems have a wide practical interest because they can
be used to study parallel/distributed systems with synchronization constraints,
similarly to what happens in the MapReduce computations.

In our model, since all the jobs are split into the same amount of tasks, we
label the class of the task with the number of the fork- and join-queue associated
c© Springer Nature Switzerland AG 2018
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with it. The tasks in service are those at the front of the fork-queues. At the
service completion, the task is stored in the corresponding join-queue. The join
operation takes place once all or J out of K of the sibling tasks of a job are
stored in the heads of the join-queues. Clearly, all the queues follow a First-
Come-First-Served (FCFS) policy and the BPS has to share the total processing
capacity among the K tasks in service.

The easiest way to address the problem is to note that there is no benefit
in terms of the minimization of the expected occupancy of the join-queues in
starting the service of a task belonging to a new job, if there are still older
ones to be completed. An example of such a discipline is a round robin among
the forked tasks. However, this policy has some practical drawbacks. First of
all, there is a problem of reliability. If one of the task computations does not
terminate due to an error, this would halt the whole system. Second, if the
BPS queue is a model of a distributed system, it is not so simple to move the
whole computational power from a computational unit to another: in general we
have some fixed computational resources and some others are available for re-
allocation. In that case the round-robin policy of the relocatable resources is not
effective any more. Still, we may devise a policy that assigns all the relocatable
resources to the classes that have served the smallest amount of tasks: in this
case, in the event of errors the policy becomes very inefficient and, in general,
it may be difficult to implement especially in a distributed environment since
we need to keep track of the length of the join-queues and for each completion
fairly allocate the resources to the shortest ones. We will call this discipline feed
the shortest join-queue (FJQ) that differs from the well-know join the shortest
queue because we do not move the tasks but the computational units.

In order to overcome these problems, we introduce a BPS discipline inspired
by our previous work [13]. We define the neighbour of each class k as the class
k + 1 (we use the symbol k+ which takes into account the modularity). The
weight of a class k is μ if the system has served less tasks of class k than tasks
of class k+, η otherwise. Therefore, differently from previous works, our strategy
dynamically changes the class weight at each task completion event. We show
that the queueing model has an elegant expression for the steady-state distri-
bution of the join-queue lengths under the following assumptions: (1) the task
service times are i.i.d. exponential random variables, (2) the model works in satu-
ration, i.e., there is always a task to be fetched from the fork-queue. In the case of
complete immediate join, i.e., the job is served when all its tasks are completed
and the join takes place instantaneously, we give a methodology to compute
the expected join-queue length, throughput and expected waiting time for arbi-
trary K and apply it for K = 2, 3, 4. More servers can be considered with the
cost of an increased complexity in the derivation of the closed-form expressions.
Finally, we compare this strategy with the round robin and the FJQ discipline.
The numerical analysis shows that for low K, our discipline shows similar perfor-
mance indices than the others in the ideal situation where the resources can be
arbitrary moved across the system, no faults occur, and complete joins are per-
formed. On the other hand, in the case of limitations on the minimum/maximum
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amount of computational resources that can be assigned to each task class, our
strategy performs much better than the round robin, and shows the benefits of
FJQ with a limited overhead in the scheduling design.

The paper is structured as follows. Section 2 discusses the state of the art and
related work. In Sect. 3 we introduce the three policies for BPS that we consider
in this paper: RR, FJQ and DBS. The analytical solution of DBS is presented
in Sect. 4 and we describe the method for deriving the expected performance
indices. The method is applied to obtain the solutions for K = 2, 3, 4. In Sect. 5
we perform the comparison of the three scheduling disciplines and, finally, Sect. 6
concludes the paper.

2 Related Work

Biased processor sharing queues have been firstly introduced by Kleinrock [9] in
order to model systems in which a set of computational resources are assigned
to the customers in the system proportionally to their class priority. Since then,
the idea of BPS have been widely adopted for several purposes including the
implementation of size-based scheduling algorithms with partial knowledge of
the job sizes [1] or the maximization of profits in the cloud [5]. In this paper
we adopt this idea to solve the problems of resource allocation in a fork-join
system. In contrast with the approach in [20], we do not collect statistics on the
job execution times and base our policy merely on the state of the join-queues.

In [7,21] the authors introduce the so called Flatto-Han-Wright (FHW) model
consisting of only two exponential servers. In [16] Nelson and Tantawi derive the
expression of the mean response time for the FHW model, when K = 2 and the
service times are i.i.d. exponential random variables. In [2,3] queueing networks
with fork-join nodes are studied, and a set of stability conditions are proposed.
In [6], the authors use some results on order statistics to solve a class of fork-join
queues. Among the approximate analysis, we mention also [18] where the authors
derive numerical bounds for fork-join systems that can be computed efficiently.
The same authors, in [19] derive stochastic bounds for fork-join systems and
study some scalability laws of the system under renewal and no-renewal arrival
of jobs.

The problem of balancing fork-join systems has been addressed also in [15].
However, in contrast with the scheduling proposed in this paper, the goal of the
algorithm defined in [15] is that of balancing the join-queues in the case of servers
with independent computational resources. Therefore, although we inherit the
idea of defining the working speed of a server of class k based on the difference
between the join-queue length of k and that of its neighbour, the definition of the
problem and the resulting model is quite different. In fact, our contribution aims
at allocating a fixed amount of resources, rather than devising an algorithm for
the control of a processor speed. As consequence, the main focus of [15] was that
of evaluating the throughput reduction caused by the speed control algorithm
while in this work the throughput is not reduced. Indeed, here, we focus our
attention on the computation of the expected number of tasks in the join-queues
and hence on the expected waiting time of a served task.
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3 Policies for Biased Processor Sharing in Fork-Join
Queues

In this section we introduce three policies for assigning weights to the task classes
and hence to address the problem of the resource allocation in the BPS system
applied to fork-join queues.

We consider a system in which jobs are forked into K tasks that we consider
statistically identical. Tasks are enqueued in the fork-queues which are numbered
from 1 to K and all the tasks in the head of the fork-queues can be served. The
service rate ranges between γmin and γmax and when all the fork-queues are non-
empty, the sum of all the service rates is constant γ. Henceforth, without loss of
generality, we consider γ = 1. Each task is labelled with a class that corresponds
to the number of the fork-queue that it entered. When a task of class k has
been served, it enters join-queue k and waits for the join. In this section, we
are not interested in the details of the join policy, and the only condition that
we ask is that once a job is considered served, the other tasks that it consisted
of that may still be present in the fork-queues are not cancelled. The task will
be discarded once it reaches the join queue. This clarification is necessary if the
system uses J out of K tasks to serve the job for reliability purposes. Basically,
this corresponds to the idea that the only information that is exchanged between
the processing unit and the join unit are the served tasks, while the cancelling
of the pending tasks would require a more complicated control system and an
overhead in the message exchange.

One way of obtaining the BPS scheduling discipline is that of assigning a
weight wk(n) to each task class k, for k = 1, . . . , K given state n = (n1, . . . , nK)
of the join-queues, where nk is the number of tasks waiting in join queue k. Notice
that the weight of the classes dynamically changes during the computation. The
speed of service of class k given n is:

γk(n) =
wk(n)

∑K
i=1 wi(n)

γ , (1)

where in the case of wk(n) = 0 for all k, we take γk(n) = γ/K. Weight function
γk must satisfy the following conditions for all k:

min
n

{γk(n)} ≥ γmin and max
n

{γk(n)} ≤ γmax . (2)

In the following paragraphs, we introduce the three queueing disciplines that
we consider. In order to ease their presentation we provide their description
under the saturation assumption (i.e., the fork-queues are never empty) that is
required by our analytical results. This will also be the scenario under which
the disciplines are compared in the following sections and represents a good
approximation of the heavy-load case.

Round Robin (RR). In the round robin queueing discipline the weights are
assigned in such a way that only one class has speed γmax while all the others
work at speed γmin, therefore γ = (K−1)γmin+γmax. Let k be the class working
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at γmax, then at its task completion event the service speed will change to γmin

and that of class k+ will change to γmax. Recall that k+ = (k mod K) + 1. A
special case is that of γmin = 0 and γmax = γ, for which we can easily describe
the discipline with the weight functions (1).

Feed the Shortest Join-Queue (FJQ). Let n be the vector of the join-queue
lengths, and let nmin = mini{ni}, then FJQ assigns the weights as follows:

wk(n) =

{
μ if nk = nmin

η otherwise ,

where η < μ. Notice that, in the case of immediate join, nmin = 0 and hence
the implementation of the discipline is rather simplified. FJQ gives the highest
weights to the shortest queues. Weights μ and γ must satisfy:

μ

μ + (K − 1)η
γ ≤ γmax and

η

η + (K − 1)μ
γ ≥ γmin (3)

A special case is when γmin = 0 and γmax = γ with immediate join, where we
can set η = 0 and μ = 1 to model a discipline that only serves the task classes
which are needed to complete a job and hence vector n contains only 0 and 1.

Notice that, according to the definition we have given of FJQ, the weight
associated with queue k depends only on the local state nk in case of immedi-
ate join. Other definitions could be proposed that take into account the global
state of the queues, but they would introduce a higher overhead and a their
implementation would be more complicated.

Difference Based Scheduling (DBS). In DBS each class k is associated with a
counter mk that is increased at each task completion of class k and is decreased
when there is task completion at class k+. In other words, we have that mk =
nk − nk+ , i.e., it is the difference in the number of completed class k and class
k+ tasks. The weight is assigned as follows:

wk(n) = w(mk) =

{
μ if mk < 0
η otherwise ,

(4)

where η, μ must satisfy Constraints (3). Notice that with respect to policy FJQ,
DBS needs only local information to assign the weights and hence its implemen-
tation results very simple and with low overhead. Moreover, DBS is robust with
respect to faults. Assume that class k computation is blocked due to a hardware
failure or a software error. Clearly, its state variable mk cannot be increased
and will be decremented by 1 at each neighbour k+ task completion. Never-
theless, DBS will assign to class k only part of the relocatable computational
power in contrast with FJQ that, in the long run, will assign all the relocatable
computational power to the failed class.

4 The Model for the DBS

In this section we propose a model for DBS queueing discipline that works under
the following assumptions:
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A1 The model is saturated, i.e., the fork queues have always at least one task
to serve;

A2 The join is immediate and complete;
A3 The service time distribution is exponential.

Since the purpose of this work is comparing DBS, FJQ and RR, assumptions A1
and A2 simply give a reasonable testing scenario. The assumption of saturation
is designed to stress the scheduling policies and it should be noticed that it is
possible to have join-queues with expected finite length (in the long run) even
in case of saturation thanks to the assumption of immediate join. Assumption
A3 is the most restrictive, but allows us to define an analytical model for the
system as in [7,16].

State Space and Markov Chain. We consider a system consisting of K ≥ 2 task
classes. For any k ∈ {1 . . . ,K}, we use nk(t) to denote the stochastic process
associated with the number of tasks in the join-queue k at time t ∈ R. Clearly,
we have that nk(t) ∈ N for all t ≥ 0. We are interested in studying the stochastic
process XK(t) = (n1(t), . . . , nK(t)) on the state space

S = {n = (n1, . . . , nK) | nk ∈ N ∧ ∃ k : nk = 0} .

where k ∈ {1 . . . ,K}. Notice that the fact that there always exists at least one
k such that nk = 0 follows from A2. XK(t) is a continuous time Markov chain
(CTMC) defined as follows: for h → 0+ and t > 0,

Pr{XK(t + h) = n + ek | XK(t) = n ∧ nk �= 0} = γk(n)h + o(h) (5)

Pr{XK(t + h) = n + ek | XK(t) = n ∧ nk = 0 ∧ ∑K
i=1 δni=0 > 1}

= γk(n)h + o(h) (6)

Pr{XK(t + h) = n − ∑K
i=1,i �=k ei | XK(t) = n ∧ nk = 0 ∧ ∑K

i=1 δni=0 = 1}
= γk(n)h + o(h) (7)

Pr{XK(t + h) = n | XK(t) = n} = 1 −
(∑K

k=1 γk(n)
)

h + o(h) (8)

where ek is a K-dimensional vector with all zeros with the exception of com-
ponent k which is 1, δP is 1 if proposition P is true otherwise it is equal
to 0, and γk(n) is defined as in Eq. (1), where wk(n) = w(nk − nk+) and
w̄(n) =

∑K
i=1 wi(n).

4.1 Stationary Analysis of XK (t) for K = 2

In this section, we show that X2(t) is stationary if and only if it is reversible.
Indeed, the stochastic process corresponds to a random walk on the line. The
transition graph of X2(t) is depicted in Fig. 1. Notice that if the chain is ergodic,
i.e., all the states are positive recurrent, then the CTMC is trivially reversible
[8] and vice versa. We also observe that if we use Eq. (4) to define γk(n) then
the model is stationary if and only if η < μ.
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· · · (2, 0) (1, 0) (0, 0) (0, 1) · · ·

γ2(3,0) γ2(2,0)
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γ1(1,0)

γ2(0,0)

γ1(0,0)

γ2(0,1)

γ1(0,1) γ1(0,2)

Fig. 1. Transition graph of X2(t).

4.2 Stationary Analysis of XK (t) for K > 2

Now, we consider the case K > 2. Notice that XK(t), K > 2, is trivially not
reversible, since we can find at least one state n which has a transition to n′

but not the other way around. Theorem1 gives the expression of the invariant
measure of XK(t). For the sake of brevity, we sketch the proof based on the
verification of the global balance equations although a constructive approach
based on the notion of ρ-reversibility can be efficiently applied [12,14].

Theorem 1. XK(t) has a product-form invariant measure given by:

πK(n) =
1

GK
w̄(n)

(
K∏

i=1

∏ni−ni+−1
m=0 w(m)

∏−1
m=ni−ni+

w(m)

)

(9)

which can be normalized on GK to give the equilibrium distribution whenever
XK(t) is ergodic. In Eq. (9) we assume that empty products are equal to 1.

Proof. Recall that, we are considering γ = 1, without loss of generality. Assume
that we have only one 0 in n and that it occurs in the first position so we have
that n = {0, n2, n3, . . . , nK} with ni > 0 for i = 2, 3, . . . , K and n1 = 0. Then,
we can write:

πK(n)
w̄(n)
w̄(n)

=
K∑

j=2

πK(n − ej)
w(nj − 1 − nj+)

w̄(n)
+ πK(n +

K∑

j=2

ej)
w(−n2 − 1)

w̄(n)
.

Let k− = (k mod K) + K − 1, by replacing Expression (9) in this equation, we
have:

πK(n) =
K∑

j=2

πK(n)
1

w(nj − 1 − nj+)
w(nj − 1 − nj+)

w̄(n)
w(nj− − nj)

+πK(n)
w(nK)

w(−n2 − 1)
w(−n2 − 1)

w̄(n)
,

that can be simplified as follows:

πK(n) =
K∑

j=2

πK(n)
w(nj− − nj)

w̄(n)
+ πK(n)

w(nK)
w̄(n)

,

πK(n) = πK(n)
K∑

j=1

w(nj− − nj)
w̄(n)

,
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w̄(n) =
K∑

j=1

w(nj− − nj) =
K∑

j=1

w(nj − nj+) =
K∑

j=1

wj(n) .

The same identity can be verified for an arbitrary number of 0s in the state. 	

Let us define wk(n) as in Eq. (4) to implement the DBS scheduler, then

Theorem 2 gives us necessary and sufficient conditions for the ergodicity of XK(t)
as well as the expression for the normalising constant.

Theorem 2. Let XK(t) be the CTMC defined according to Eqs. (5)–(8) with
γk(n) defined according to the weights of Eq. (4). Then, the following properties
hold:

– XK(t) is ergodic for all finite K ≥ 2 if and only if η < μ;
– If η < μ, the normalising constant of Eq. (9) that gives the unique stationary

distribution is:

GK,η,μ = Kη+

K−1∑

j=1

(jη+(K−j)μ)

(
K

j

)(
K − 1

j − 1

)
(K−j)β(η/μ, K−j, 1−K) , (10)

where β denotes the incomplete Euler’s Beta-function:

β(z, a, b) =
∫ z

0

ua−1(1 − u)b−1du .

Proof. The proof is similar to that shown in [13, Theorem 2]. 	

The evaluation of the incomplete β function is efficient and for small values

of K can be performed symbolically as stated by the following corollary whose
proof follows by the properties of hypergeometric functions [17]:

Corollary 1. Given a finite K ∈ N, K ≥ 2, the expression of GK,η,μ is a
rational function which can be computed as:

GK,η,μ = Kη +
K−1∑

j=1

(jη + (K − j)μ)
(

K

j

)(
K − 1
j − 1

)

(K − j)
(

η/μ

1 − η/μ

)k−j

·
j−1∑

v=0

(−1)v

(
j − 1

v

)
1

K − j + v

(
η/μ

η/μ − 1

)v

The stationary probabilities of the model can be expressed as follows. First
observe that for each state n = (n1, . . . , nK) of our model,

∑K
i=1(ni − ni+) = 0.

Let us denote by mk the difference nk − nk+ for k ∈ {1, . . . , K}.
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Corollary 2. Let XK(t) be the CTMC defined according to Eqs. (5)–(8) with
γk(n) defined according to the weights defined by Eq. (4) and η < μ. Then, we
have:

– let 0 be the state (n1, . . . , nK) where each nk = 0 for k ∈ {1, . . . , K}, then

πK,η,μ(0) =
1

GK,η,μ
Kη

– let n = (n1, . . . , nK) be a state of XK(t), let j be the number of non-negative
differences mk in n and m be the sum of the positive mk in n, then

πK,η,μ(n) =
1

GK,η,μ
(jη + (K − j)μ)

( η

μ

)m

.

The proof easily follows from Theorem 2.

4.3 Marginal Probabilities and Expected Performance Indices

Clearly, one desires to obtain the marginal stationary probability of finding n
tasks in a join-queue and, consequently, the expected stationary number of tasks
in a join-queue. Henceforth, we assume η < μ or, equivalently, the model to be
stable.

The marginal probabilities π∗
K,η,μ are defined as follows: for all n ∈ N,

π∗
K,η,μ(n) =

∑

n=(n,n2...,nK)∈S
πK,η,μ(n) , (11)

and the expected number of tasks that are present in an arbitrary join-queue:

NK,η,μ =
∞∑

n=1

n π∗
K,η,μ(n) . (12)

In order to obtain these important indices of the model, we fix K and describe
a procedure that can be applied to derive them. Then, we show the expressions
of the marginal probabilities and the expected join-queue lengths for K = 2, 3, 4.

For what concerns the throughput, observe that each class of tasks receives
in the average a computational power of γ/K. Since the model is stable, this
means that the throughput is exactly γ/K. Finally, we can obtain the expected
waiting time of task in a join-queue by using Little’s law as KNK,η,μ/γ.

Computation of the Marginal Probabilities. We describe a procedure
to compute the marginal probabilities of finding n tasks in a join-queue. The
expected stationary number of tasks in a join-queue is computed in a similar
manner.

As stated above, the marginal probability for a specific n ∈ N is obtained by
Eq. (11), i.e., we have to sum the probabilities of all the configurations of the
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form n = (n, n2 . . . , nK). Our procedure, for n > 1, consists in the following
steps: (1) first we fix all the possible ways in which the join-queues have 0 tasks
waiting for the join; the output of this step is a set of configuration schemata of
the form:

(n, 0, n3 . . . , nK), (n, 0, 0, n4 . . . , nK), (n, 0, n3, 0 . . . , nK), . . . (n, 0, 0, 0 . . . , 0) ;

(2) for each configuration scheme computed in the previous step, we determine
all the possible ways in which a non-empty queue has a number of tasks waiting
for join which is greater or equal than the number of tasks of the corresponding
neighbour; the output of this step is a set of configuration schemata of the form:

(n, 0,+,− . . . ,+), (n, 0,−, 0 . . . ,−), (n,−,−,−, . . . ,−) . . . (n,+,+,+, . . . ,+) ;

(3) for each configuration scheme computed in the previous step we count the
number of configurations belonging to the given scheme and hence we can com-
pute the sum of their probabilities.

Below we show the application of this algorithm for the case K = 3. Notice
that the complexity of the algorithm grows quickly with K but once implemented
in a symbolic mathematical software, it provides the expression for the join-queue
length as function of the model parameters.

Marginal Probabilities and Average Performance indices for K = 2.
Let us analyse the behavior of XK(t) with K = 2.

Proposition 1. The marginal probabilities of X2(t) are defined as follows:

π∗
2,η,μ(n) =

⎧
⎨

⎩

3
4 − η

4μ if n = 0 ,

μ2−η2

4μ2

(
η
μ

)n−1

if n ≥ 1 .

The expected number of tasks in a join-queue is:

N2,η,μ =
η + μ

4(μ − η)
.

In this case the proof is rather simple and one can resort to the fact that X2(t)
is reversible. Notice that:

lim
η→μ−

π∗
2,η,μ(0) =

1
2

and lim
η→μ−

N2,η,μ = ∞ ,

where the first limit tells us that if we observe a random join-queue in the long
run we have 50% of probability to find it empty even if the system is unstable.
In fact, this follows from the immediate join assumption that enforces one of
the two join-queues to be empty. The second limit is coherent with Theorem 2
and states that when η → μ, the expected join-queue length is infinite. We
can also observe that ∂N2,ημ/∂η is strictly positive in [0, μ] showing that the
minimum join-queue length (and hence expected waiting time) corresponds to
η = 0. In other words, the minimal expected join-queue length is 0.25 for which
the probability of the empty queue is 3/4 and that of a single task is 1/4 (notice
that we took 00 = 1 in order to avoid the extra case of n = 1).
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Marginal Probabilities and Average Performance indices for K = 3.
We now consider X3(t) and obtain the following results.

Proposition 2. The marginal probabilities of X3(t) are defined as follows:

π∗
3,η,μ(n) =

⎧
⎨

⎩

2μ
3(η+μ) if n = 0 ,
(η−μ)(η2n−2ημ−nμ2)

3μ2(η+μ)

(
η
μ

)n−1

if n ≥ 1 .

The expected number of jobs is:

N3,η,μ = η

(
1

3(η + μ)
+

1
μ − η

)

+
1
3

.

Proof. In order to prove the proposition, we resort to the procedure described
above. Let us consider the case m > 1 and determine all the possible ways in
which the join-queues have 0 tasks waiting for the join. We obtain the following
set of configuration schemata: {(n, 0, 0), (n, y, 0), (n, 0, y)}. Then, we determine
all the possible ways in which a non-empty queue has a number of tasks waiting
for join which is greater or equal than the number of tasks of the corresponding
neighbour on its left and obtain the set {(n, 0, 0), (n, 0,+), (n,−, 0), (n,+, 0)}.

The probability of (n, 0, 0) is 1
G3,η,μ

(2η + μ)
(

η
μ

)n

.
Consider now the scheme (n, 0,+) representing all the configurations of the

form (n, 0, y) where either y < n or y ≥ n. The sum of the probabilities for

y < n is 1
G3,η,μ

∑n−1
y=1 (η+2μ)

(
η
μ

)n

, while for y ≥ n the sum is 1
G3,η,μ

∑∞
y=n(2η+

μ)
(

η
μ

)y

.
The scheme (n,−, 0) represents all the configurations (n, y, 0) where y ≤ n

and the sum of the probabilities associated with such configurations is 1
G3,η,μ

·
∑n

y=1(2η+μ)
(

η
μ

)n

. Finally, the scheme (n,+, 0) represents all the configurations
(n, y, 0) where y ≥ n and the sum of the probabilities of such configurations is

1
G3,η,μ

∑∞
y=n+1(η + 2μ)

(
η
μ

)y

.
Summing up, we obtain that

π∗
3,η,μ(n) =

1
G3,η,μ

(
(2η + μ)

(
η

μ

)n

+
n−1∑

y=1

(η + 2μ)
(

η

μ

)n

+
∞∑

y=n

(2η + μ)
(

η

μ

)y

+
n∑

y=1

(2η + μ)
(

η

μ

)n

+
∞∑

y=n+1

(η + 2μ)
(

η

μ

)y )
.

We can prove that all the above series are convergent and in particular:

π∗
3,η,μ(n) =

1
G3,η,μ

(
n(2η + μ)

(
η

μ

)n

+ (n − 1)(η + 2μ)
(

η

μ

)n

+(2η + μ)
(

η

μ

)n

−
μ(2η + μ)

(
η
μ

)n

η − μ
−

η(η + 2μ)
(

η
μ

)n

η − μ

)
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=
1

G3,η,μ

(3
(

η
μ

)n (
η2n − 2ημ − nμ2

)

η − μ

)

=
(η − μ)

(
η
μ

)n−1 (
η2n − 2ημ − nμ2

)

3μ2(η + μ)
.

The case n = 0 follows by:

π∗
3,η,μ(0) = 1 −

∞∑

n=1

π∗
3,η,μ(n)

= 1 −
∞∑

n=1

(η − μ)
(

η
μ

)n−1 (
η2n − 2ημ − nμ2

)

3μ2(η + μ)
=

2μ

3(η + μ)
.

The computation of the expected number of tasks in a join-queue is simply
obtained from the marginal probabilities as:

N3,η,μ =
∞∑

n=1

n π∗
3,η,μ(n) = η

(
1

3(η + μ)
+

1
μ − η

)

+
1
3

. 	


In this case, we have that for η → μ− π∗
3,η,μ → 1/3, as expected, and the

minimum average number of tasks in a join-queue is 1/3 when η = 0.

Marginal Probabilities and Average Performance indices for K = 4.
The last example that we propose is the solution of the model for X4(t).

Proposition 3. The marginal probabilities of X4(t) are defined as follows: for
every m ∈ N,

– if n = 0 then π∗
4,η,μ(0) =

5μ(η + μ)
8 (η2 + 3ημ + μ2)

– if n ≥ 1 then

π∗
4,η,μ(n) = (μ − η)

(
η

μ

)n−1

·
(η3n(2n − 1) − η2(n + 5)(2n − 1)μ + η((9 − 2n)n + 5)μ2 + n(2n + 1)μ3)

8μ2 (η2 + 3ημ + μ2)

The expected number of jobs is:

N4,η,μ =
(η + μ)

(
3η2 + 23ημ + 3μ2

)

8(μ − η) (η2 + 3ημ + μ2)
.

We observe that also in this case ∂N4,η,μ/∂η is positive for 0 ≤ η ≤ μ and hence
we have the shortest join-queue length when η = 0, where N4,0,μ = 3/8.
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5 Comparison of the Scheduling Disciplines

In this section, we compare the three disciplines (RR, FJQ, DBS) under the
assumptions A1–A3 described in Sect. 4. Let us consider the RR discipline. It
can be proved that RR is stable if and only if γmin = 0. Informally, one may see
the case in which γmin > 0 as the superposition of two processes: one that serves
all the classes with rate γmin independently of the state of the join-queues, and
the other which is RR with the minimum service rate set to 0 and the fastest is
γmax − γmin. Since the former of these two processes is not positive recurrent,
we have that the superposition cannot be positive recurrent. A formal proof can
be provided by using the Lyupanov’s conditions for the instability of Markov
chain. If we consider γmin = 0, we can derive the expected join-queue length of
class k. In fact, for each job, queue k remains empty for an expected duration
of k/γ units of time, and then it will contain one job for (K − k)/γ. Each join
occurs after the service of class K and can be seen as a renewal point. Hence,
the expected number of tasks in queue k is K − k. Thus, the expected number
of tasks per queue is 1/2 − 1/(2K).

Let us consider the FJQ discipline. If γmin = 0 we can resort again to the
renewal theory to easily derive the expected join-queue length. Let the renewal
point be the join. Immediately after the join, we serve all the K classes with
rate γ/K and the first task completion will occur after an exponential time
with mean 1/γ. For all this time, the join-queues are all empty. We can iterate
this argument for the remaining K − 1 tasks in service, and we clearly obtain
the same results we have for RR. Therefore, if γmin = 0, RR and FJQ are
equivalent in terms of expected number of tasks in the join-queues (and hence
also for what concerns the expected waiting time of a task). The analysis of FJQ
when γmin > 0 is outside the scope of this paper and in order to perform the
comparison we resort to stochastic simulations. All the simulations we show are
based on 15 independent experiments, with a confidence interval at 95% whose
relative error is below 2%. The warm up period has been determined by using
the Welch’s graphical method.

The first scenario we consider is when γmin = 0, i.e., we can relocate all
the computational resources. Figure 2a shows the plot of the average join-queue
lengths as function of the number of classes K. We observe that for small K the
performance of DBS is quite similar to that of the other two disciplines, but for
large K, RR and FJQ perform better. However, it is important to notice that for
large K the overhead and the complexity of the scheduling operations required
by FJQ is high, therefore we can conclude that RR is the best policy if we are
able to relocate the whole computational power.

The second scenario that we consider is when γmin > 0. We consider μ = 1
and change the value of η. Recall that in this case the process underlying RR is
not positive recurrent and hence we can compare only FJQ and DBS. Figures 2b–
e compare the two disciplines for increasing values of η. Recall that larger values
of η imply less relocatable resources and hence both the disciplines tend to
perform worse. However, the plots of Figs. 2d–e are quite instructive. In fact,
while one may think that FJQ is unconditionally better than DBS since it uses
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Fig. 2. Numerical analysis of DBS scheduling policy.

information about the global state of the system, our simulations show that this
is untrue, i.e., for values of η approaching 1 and large K, the expected join-queue
length in DBS is smaller than that of FJQ. At the moment, we can support this
statement only by resorting to the stochastic simulation of FJQ, since we have
analytical results only for DBS. In Fig. 2f we show the Welch’s plot of the two
disciplines on 6 · 106 events. Intuitively, this happens because on the one hand
DBS may assign less computational power to the empty join-queues than FJQ,
but it also assigns less computational power to the longest join-queues. In the
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case of stressed systems (when η is large), DBS’ strategy results more convenient
than the greedy approach of FJQ.

6 Conclusion

In this paper, we have presented a scheduling strategy, namely DBS, for biased
processor sharing working in fork-join systems. The goal of DBS is that of assign-
ing the computational resources to the tasks that are delaying the join opera-
tions. We have compared the performance of DBS with two other strategies: the
‘round robin’ (RR) and the ‘feed the shortest join-queue’ (FJQ). To this aim,
we developed an analytical model whose steady-state distribution has a closed-
form expression under some assumptions. Among these, the most relevant is the
saturation of the model which defines a comparison scenario in heavy-load. We
have shown that starting from the expression of the steady-state distribution we
can algorithmically derive important average performance indices such as the
expected number of tasks in a join-queue and the expected waiting time for a
task in a join-queue. In conclusion, we showed that if a job consists of a small
amount tasks K, then the performance of DBS and FJQ are very similar, while
RR is applicable only in the case we can move among the tasks the whole avail-
able computational power. For large values of K and few relocatable resources,
stochastic simulations show that DBS performs better than FJQ, while for sys-
tems with large amount of relocatable resources the opposite holds.
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Abstract. Probabilistic model checking for systems with large or
unbounded state space is a challenging computational problem in formal
modelling and its applications. Numerical algorithms require an explicit
representation of the state space, while statistical approaches require a
large number of samples to estimate the desired properties with high
confidence. Here, we show how model checking of time-bounded path
properties can be recast exactly as a Bayesian inference problem. In
this novel formulation the problem can be efficiently approximated using
techniques from machine learning. Our approach is inspired by a recent
result in statistical physics which derived closed-form differential equa-
tions for the first-passage time distribution of stochastic processes. We
show on a number of non-trivial case studies that our method achieves
both high accuracy and significant computational gains compared to sta-
tistical model checking.

Keywords: Bayesian inference · Model checking · Moment closure

1 Introduction

Probabilistic model checking of temporal logic formulae is a central problem in
formal modelling, both from a theoretical and an applicative perspective [1,2,4–
6,22]. Classical algorithms based on matrix exponentiation and uniformisation
are well-understood, and form the core routines of mature software tools such as
PRISM [28], MRMC [26] and UPPAAL [7]. Nevertheless, the need to explicitly
represent the state space makes their application to large systems problematic,
or, indeed, theoretically impossible in the case of systems with unbounded state
spaces, which appear frequently in biological applications.

Statistical model checking (SMC) approaches [37,38] have emerged in recent
years as a powerful alternative to exact techniques. Such methods provide a
c© Springer Nature Switzerland AG 2018
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Monte Carlo estimate of the desired probability by repeatedly sampling trajec-
tories from the model. SMC can also provide probabilistic guarantees on the
estimated probabilities, and, by choosing the number of simulations to be suit-
ably large, one can reduce the uncertainty over the estimates arbitrarily.

While SMC offers a practical and flexible solution in many scenarios, its
reliance on repeated simulation of the system makes it naturally computation-
ally intensive. Although SMC can be trivially parallelized, the approach can
still be computationally onerous for systems which are intrinsically expensive to
simulate, such as systems with large agent counts or exhibiting stiff dynamics.

In this paper, we propose an alternative approach to solving the probabilis-
tic model checking problem which draws on a recently proposed technique from
statistical physics [33]. We show that the model checking problem is equivalent
to a sequential Bayesian computation of the marginal likelihood of an auxiliary
observation process. This marginal likelihood yields the desired time-bounded
reachability probability, which is closely related to the eventually and globally
temporal operators. We also expand the methodology to the case of the time-
bounded until operator, thus covering a wide range of properties for temporal
logics such as CSL [1,2,4–6]. The formulation of the model checking problem as
a Bayesian inference method allows us to utilise efficient and accurate approx-
imation methodologies from the machine learning community. In particular,
we combine Assumed Density Filtering (ADF) [29,31] with a moment-closure
approximation scheme, which enables us to approximate the entire cumulative
distribution function (CDF) of the first time that a time-bounded until property
is satisfied by solving a small set of closed ordinary differential equations (ODEs)
and low-dimensional integrals.

The rest of the paper is organised as follows. We discuss the related work in
Sect. 2 and we provide some background material in Sect. 3. We then describe
our new approach, highlighting both the links and differences to the recently
proposed statistical physics method of [33] in Sect. 4. We consider four non-linear
example systems of varying size and stiffness in Sect. 5.

2 Related Work

In recent years, the computational challenges of probabilistic model checking
have motivated the development of approaches that rely on stochastic approx-
imations as an alternative to both classical methods and SMC. In one of the
earliest attempts, passage-time distributions were approximated by means of
fluid analysis [24]. This framework was later extended to more general proper-
ties expressed as stochastic probes [15]. Fluid approximation has also been used
to verify CSL properties for individual agents for large population models [9,10].
In [11], a Linear Noise Approximation (LNA) was employed to verify not only
local properties of individuals, but also global ones, which are given as the frac-
tion of agents that satisfy a certain local specification. The verification of such
local and global properties has been recently generalised for a wider class of
stochastic approximations, including moment closure [13].



Probabilistic Model Checking for CTMCs via Sequential Bayesian Inference 291

Regarding our work, one key difference with respect to these earlier
approaches is that we consider global time-bounded until properties that char-
acterise the behaviour of the system at the population level. In that sense, our
approach is mostly related to [8,12], which rely on the LNA to approximate the
probability of global reachability properties. In particular, the LNA is used to
obtain a Gaussian approximation for the distribution of the hitting time to the
absorbing set [12]. The methodology is different in [8], where it is shown that
the LNA can be abstracted as a time-inhomogeneous discrete-time Markov chain
which can be used to estimate time-bounded reachability properties. However,
this method approximates the unconstrained process, and needs to subsequently
resort to space and time discretisation to approximate the desired probability.

3 Background

A Continuous-Time Markov Chain (CTMC) is a Markovian (i.e. memoryless)
stochastic process that takes values on a countable state space S and evolves in
continuous time [18]. More formally:

Definition 1. A stochastic process {X(t) : t ≥ 0} is a Continuous-Time
Markov Chain if it satisfies the Markov property, i.e. for any h ≥ 0:

p(Xt+h = j | Xt = i, {Xτ : 0 ≤ τ ≤ t}) = p(Xt+h = j | Xt = i) (1)

A CTMC is fully characterised by its generator matrix Q, whose entries Qij

denote the transition rate from state i to state j, for any i, j ∈ S [32]. The
dynamics of a CTMC are defined by the master equation, which is a system of
coupled ODEs that describe how the probability mass changes over time for all
states. For a CTMC with generator matrix Q, the master equation will be:

dP (t)
dt

= P (t)Q (2)

where P (t) is the transition probability matrix at time t; the quantity Pij(t) =
p(Xt = j | Xt0 = i) denotes the probability to transition from state i at time t0 to
state j at time t ≥ t0. The master equation is solved subject to initial conditions
P (0). Throughout this work, we shall consider CTMCs that admit a population
structure, so that we can represent the state of a CTMC as a vector of non-
negative integer-valued variables x = {X1, . . . , XN}, that represent population
counts for N different interacting entities.

3.1 Moment Closure Approximation

For most systems, no analytic solutions to the master equation in (2) are known.
If the state space S is finite, (2) constitutes a finite system of ordinary differential
equations and can be solved by matrix exponentiation. For many systems of
practical interest however, S is either infinite, or so large that the computational
costs of matrix exponentiation become prohibitive.



292 D. Milios et al.

Moment closure methods constitute an efficient class of approximation meth-
ods for certain types of master equations, namely if the elements Qij of the
generator matrix are polynomials in the state x. This is for example the case
for population CTMC of mass action type which are frequently used to model
chemical reaction networks [20]. In this case, one can derive ordinary differential
equations for the moments of the distribution of the process. Unless the Qij

are all polynomials in x of order one or smaller, the equation for a moment of
a certain order will depend on higher order moments, which means one has to
deal with an infinite system of coupled equations. Moment closure methods close
this infinite hierarchy of equations by truncating to a certain order. A popular
class of moment closure methods does so by assuming P (t) to have a certain
parametric form [36]. This then allows to express all moments above a certain
order in terms of lower order moments and thus to close the equations for these
lower order moments.

In this paper, we utilise the so-called normal moment closure which approxi-
mates the solution of the master equation by a multi-variate normal distribution
by setting all cumulants of order greater than two to zero [21,34,35]. This class
of approximations was recently used within a formal modelling context in [19].

3.2 Probabilistic Model Checking

The problem of probabilistic model checking of CTMCs is defined in the litera-
ture as the verification of a CTMC against Continuous Stochastic Logic (CSL)
[1,2,4–6]. A CSL expression is evaluated over the states of a CTMC. In the orig-
inal specification [1], the syntax of a CSL formula is described by the grammar:

φ ::= tt | α | ¬φ | φ1 ∧ φ2 | P��p(Φ)

where φ is a state-formula, and Φ is a path-formula, i.e. it is evaluated over a
random trajectory of the Markov chain. An atomic proposition α identifies a
subset of the state space; in this paper, we consider atomic propositions to be
linear inequalities on population variables. The probabilistic operator P��p(Φ)
allows reasoning about the probabilities of a path-formula Φ:

Φ ::= Xφ | φ1 Uφ2 | φ1 U[t1,t2]φ2

P��p(Φ) asserts whether the probability that Φ is satisfied meets a certain bound
expressed as �� p, where ��∈ {≤,≥} and p ∈ [0, 1]. In order to evaluate the prob-
abilistic operator, we need to calculate the satisfaction probability for a path-
formula Φ, which involves one of three temporal operators: next X, unbounded
until U , and time-bounded until U[t1,t2].

For a finite CTMC, it is well-known that evaluating the probability of Xφ is
reduced to matrix/vector multiplication, while evaluating the unbounded until
φ1 Uφ2 requires solving a system of linear equations [4]. The time-bounded until
operator can also be evaluated numerically via an iterative method that relies
on uniformisation [4]. This process may have a prohibitive computational cost if
the size of the state space is too large. For systems with unbounded state space,
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the only option to estimate the time-bounded until probabilities is by the means
of stochastic simulation [37,38], which also has a high computational cost.

Other temporal operators can be expressed as special cases of the until oper-
ator. For the time-bounded eventually operator we have: F[t1,t2]φ = ttU[t1,t2]φ,
while for the globally operator we have: G[t1,t2]φ = ¬F[t1,t2]¬φ. The latter two
operators formally describe the problem of time-bounded reachability.

4 Methodology

Given a property of the form Φ = φ1 U[0,t]φ2, our goal is to approximate the
cumulative probability of reaching φ2 at τ ≤ t, while satisfying φ1 until then.

4.1 Time-Bounded Reachability as Bayesian Inference

We first consider the problem of reachability, which is closely related to the
eventually temporal operator F[0,t]φ. If Sφ denotes the set of states that satisfy
the formula φ, then we are interested in the probability that Sφ is reached for
the first time; this quantity is also known in the literature as first-passage time.

Building upon [16,17] Schnoerr et al. [33] have recently formulated time-
bounded reachability as a Bayesian inference problem. Using this formulation,
they proposed a method where the entire distribution of first-passage times can
be approximated by taking advantage of some well-established methodologies in
the Bayesian inference and statistical physics literature. In the current section,
we revise the approach of Schnoerr et al. [33] for reachability, while in Sect. 4.2
we expand the method to the more general case of time-bounded until.

In the Markov chain literature [32], the states in the set Sφ are often called
the absorbing states. Let C = S \Sφ denote the set of non-absorbing states. The
cumulative probability for the system to reach an absorbing state at or before
time t is equal to 1 minus the probability of the system having remained in C
until t. Schnoerr et al’s insight was to formulate this probability in terms of a
Bayesian computation problem. Consider an auxiliary binary observation c(t)
process which evaluates to 1 whenever the system is in the non-absorbing set C
and 0 otherwise. The pair {c(t),xt} constitutes a hidden Markov model (HMM)
in continuous time; the required cumulative probability would then correspond
to the marginal likelihood of observing a string of all 1s as output of the HMM.
Computing this marginal likelihood is a central and well studied problem in
machine learning and statistics.

Even in this novel formulation, the problem is generally still intractable.
To make progress, we first discretise the time interval [0, t] into time points
T = {t0 = 0, . . . , tN = t} with spacing t/N . For the process xti

at time ti
being in C we thus have the observation model p(Cti

|xti
) = 1 if xti

∈ C and
zero otherwise. Note that p(Cti

|xti
) is the distribution of the observation process

c(t), i.e. c(ti) ∼ p(Cti
|xti

). The marginal likelihood Z[0,t] of having remained in
C for all ti ∈ T factorises as
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Z[0,t] = p(Ct0)
N∏

i=1

p(Cti
|C<ti

) (3)

where we introduced the notation C<ti
≡ Cti−1,...,t0 . The factors of the rhs in

(3) can be computed iteratively as follows. Let x0 be the initial condition of the
process. Suppose that the system did not transition into the absorbing set until
time ti−1 (that is, the process remained in C), and that the state distribution
conditioned on this observations is p(xti−1 |C<ti

,x0). We can solve the system
forward in time up to time ti to obtain the predictive distribution p(xti

|C<ti
,x0),

which will serve as a prior, and combine it with the likelihood term p(Cti
|xti

)
that the process has remained in C at time ti.

We can then define a posterior over the state space by applying the Bayes
rule as follows:

p(xti
|C≤ti

,x0) =
p(Cti

|xti
) p(xti

|C<ti
,x0)

p(Cti
|C<ti

,x0)
(4)

The likelihood p(Cti
|xti

) represents the probability that the process does not
leave C at time ti. The prior denotes the state space probability considering
that the process had remained in C for time < ti. The posterior then will be the
state space distribution after observing that the Markov process has remained
in C at the current step.

The evidence p(Cti
|C<ti

,x0) in (4) is a factor in the rhs of (3). It can be
obtained by marginalising the joint probability p(Cti

,xti
|C<ti

,x0) over xti
:

p(Cti
|C<ti

,x0) =
∫

S
p(Cti

|xti
)p(xti

|C<ti
,x0)dxti

(5)

The process described above is a Bayesian formulation for the introduction
of absorbing states. By multiplying by the likelihood, we essentially remove the
probability mass of transitioning to a state in Sφ; the remaining probability
mass (the evidence) is simply the probability of remaining in C. Therefore, the
probability of transitioning to Sφ for the first time at time ti is the complement
of the evidence:

p(Sφ
ti

|C<ti
,x0) = 1 − p(Cti

|C<ti
,x0) (6)

Thus, Eq. (6) calculates the first-passage time probability for any ti ∈ T . Note
that this approach neglects the possibility of the process leaving from and return-
ing to region C within on time step. The time spacing thus needs to be chosen
small enough for this to be a good approximation.

Schnoerr et al. [33] further approximated the binary observation likelihood
p(Cti

|xti
) by a soft, continuous loss function. This allowed them to take the

continuum limit of vanishing time steps which in turn allows to approximate
the evidence p(Cti

|C<ti
,x0) by solving a set of ODEs. In this work, we keep the

binary, discontinuous observation process and keep time discrete, which allows
us to extend the framework from [33] to the time-bounded until operator.
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4.2 The Time-Bounded Until Operator

Consider the time-bounded property φ1 U[0,t]φ2 which will be satisfied if a state
in Sφ2 is reached up to time t and the stochastic process has remained in Sφ1

until then. Assuming that φ1 is satisfied up to some ti ≤ t, there are three
distinct possibilities regarding the satisfaction of the until property:

– it evaluated as false if we have xti
/∈ Sφ1 and xti

/∈ Sφ2 simultaneously,
– the property is evaluated as true if xti

∈ Sφ2 ,
– otherwise the satisfaction of the property is undetermined up to time ti.

These possibilities correspond to three non-overlapping sets of states:
S¬φ1∧¬φ2 , Sφ2 and Sφ1 \ Sφ2 accordingly, as seen in Fig. 1.

Sφ1

Sφ2

S¬φ1∧¬φ2

Fig. 1. The until formula φ1 U
[0,t]φ2 is trivially satisfied for states in Sφ2 , while it is

not satisfied for any state in S¬φ1∧¬φ2 . For the rest of the states C = Sφ1 \Sφ2 (i.e. the
grey area above) the property satisfaction is not determined. Assuming that the CTMC
state has remained in C, we define a reachability problem to the union Sφ2 ∪S¬φ1∧¬φ2 .
In contrast with the standard reachability problem, the probability of Sφ2 is of interest
only, which is a subset of the absorbing states.

In order to calculate the satisfaction probabilities for any time ti ≤ t, we
assume that the property has not been determined before ti. That means that
the Markov process has remained in the set C = Sφ1 \Sφ2 , which is marked as the
grey area in Fig. 1. The Bayesian formulation of reachability discussed in Sect. 4.1
can be naturally applied to the problem of reaching the union Sφ2 ∪ S¬φ1∧¬φ2 .
The prior term p(xti

|C<ti
,x0) denotes the state distribution given that the prop-

erty remained undetermined before ti. The likelihood term p(Cti
|xti

) indicates
whether the Markov process has remained in the non-absorbing set C = Sφ1 \Sφ2

at ti. Finally, the posterior given by (4) will be the state space distribution after
observing that the property has remained undetermined at the last step.

In contrast with the reachability problem however, once the absorbing set
is reached, we only know that the formula has been determined, but we do
not know whether it has been evaluated as true or false. More specifically, the
evidence p(Cti

|C<ti
,x0) as given by Eq. (5) represents the probability that the

satisfaction has remained undetermined at time ti. Although the negation of
the evidence was sufficient to resolve the reachability probability as in Eq. (6),
we are now interested only in a subset of the absorbing states. At a particular
time ti we have to calculate the probability of reaching Sφ2 explicitly. This is
given by the overlap mass of the prior process p(xti

|C<ti
,x0) and probability of
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transitioning into Sφ2 . Given that p(Sφ2
ti

|xti
) = 1, if xti

∈ Sφ2 at time ti and
zero otherwise, we have:

p(Sφ2
ti

|C<ti
,x0) =

∫

S
p(Sφ2

ti
|xti

)p(xti
|C<ti

,x0)dxti
(7)

which is the probability of transitioning to Sφ2 at time ti, while remaining in C

until then. The effect of p(Sφ2
ti

|xti
) is essentially a truncation of the state space;

the first-passage probability at ti is simplified as follows:

p(Sφ2
ti

|C<ti
,x0) =

∫

xti
∈Sφ2

p(xti
|C<ti

,x0)dxti
(8)

Considering a Gaussian approximation for p(xti
|C<ti

,x0), as we discuss in the
next section, and given that the state formula φ2 is a conjunction of linear
inequalities, Eq. (8) can be easily calculated by numerical routines.

The Bayesian formulation that we introduce has essentially the same effect
as the traditional probabilistic model checking methods [5]. The probability of
the until operator is usually evaluated by first introducing the set of absorbing
states Sφ2 ∪ S¬φ1∧¬φ2 , and then calculating the probability of reaching the set
Sφ2 , which is a subset of the absorbing states. The advantage of the formulation
presented here is that it allows us to leverage well-established machine learning
methodologies, as we see in the section that follows.

4.3 Gaussian Approximation via Assumed Density Filtering

The Bayesian formulation as described so far does not involve any approxima-
tions apart from time discretisation. In fact for a discrete-state system, both the
prior and the likelihood terms (i.e. p(xti

|C<ti
,x0) and p(Cti

|xti
) equivalently)

will be discrete distributions in (4). Therefore, quantities such as the evidence in
(5) and the probability of reaching Sφ2 in Eq. (8) can be calculated exactly, as
the integrals reduce to summations. However, if the size of the state space is too
large or unbounded, this process can be computationally prohibitive. The for-
mulation presented above allows us to derive an efficient approximation method
that relies on approximating the discrete process by a continuous one.

We adopt a moment closure approximation scheme where all cumulants of
order three or larger are set to zero, which corresponds to approximating the
single-time distribution of the process by a Gaussian distribution. As described in
Sect. 3.1, the moment closure method results in a system of ODEs that describe
the evolution of the expected values and the covariances of the population vari-
ables in a given CTMC. At any time ti, the state distribution is approximated
by a Gaussian with mean μti

and covariance Σti
:

p(xti
|C<ti

,x0) = N (xti
;μti

, Σti
)

The evidence is the probability mass of non-absorbing states; i.e. it is observed
that the process has remained within C. Since C is identified by linear inequali-
ties on the population variables, both the evidence in Eq. (5) and the probability
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mass in the target set in (8) can be estimated by numerically solving the inte-
grals. There are many software routines readily available to calculate the CDF
of multivariate Gaussian distributions by numerical means.

Nevertheless, the posterior in Eq. (4) is not Gaussian and we introduce a
Gaussian approximation. It is proven that ADF minimises the KL divergence
between the true posterior and the approximating distribution, subject to the
constraint that the approximating distribution is Gaussian [29,31]. Considering
the prior N (xti

;μti
, Σti

), the ADF updates [17] will be:

μ̃ti
= μti

+ Σti
∂μti

log Zti
(9)

Σ̃ti
= Σti

+ Σti
∂2

μ2
ti

log Zti
Σti

(10)

where the evidence Zti
= p(Cti

|C<ti
,x0) is equal to the mass of the truncated

Gaussian that corresponds to the non-absorbing states C at time ti. The dimen-
sionality of the Gaussians is equal to the number of distinct populations in the
system; this is generally small, meaning that computations of truncated Gaus-
sian integrals can be carried out efficiently. A detailed exposition can be found
in the archive version of the paper [30].

4.4 Algorithm

Algorithm 1 is an instantiation of model checking via sequential Bayesian infer-
ence (MC-SBI). The algorithm evaluates the probability that a property Φ =
φ1 U[0,t]φ2 is satisfied for a sequence of time points T = {t0 = 0, t1, . . . , tN = t},
thus approximating the CDF of the first time that Φ is satisfied.

In the beginning of each iteration at line 5, we calculate the probability πi

that Φ is satisfied at ti. In lines 6–8, we calculate the posterior state distribu-
tion, assuming that Φ has not been determined at the current step. Finally, the
state distribution is propagated by the moment closure ODEs; the new state
probabilities p(xti+1 |C<ti+1 ,x0) will serve as the prior in the next iteration.

It is useful at this stage to pause and consider the differences from the first-
passage time algorithm proposed in [33]: both papers share the same insight
that reachability properties can be computed via Bayesian inference. However,
the resulting algorithms are quite different. The crucial technical difficulty when
considering formulae involving an until operator is the need to evaluate the
probability of transitioning into the region identified by the second formula Sφ2 .
It is unclear how to incorporate such a computation within the continuous-time
differential equations approach of [33], which dictates the choice of pursuing a
time discretisation approach here. The time discretisation however brings the
additional benefit that we can evaluate exactly the moments of the Bayesian
update in step 8 of Algorithm1, thus removing one of the sources of error in
[33] (at a modest computational cost, as the solution of ODEs is generally faster
than the iterative approach proposed here).
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Algorithm 1. Model Checking via Sequential Bayesian Inference
Require: CTMC with initial state x0, property Φ = φ1 U[0,t]φ2, time sequence T = {0, t1, . . . , t}
Ensure: Probabilities {π0, . . . , πN } that approximate the CDF of the time that Φ is satisfied

1: Define C = Sφ1 \ Sφ2 , where the satisfaction of Φ is not determined

2: Set the initial prior: p(xt0 |C<t0 ,x0) ← N (xt0 ;μt0 , Σt0 )

3: Initialise the probability that Φ is not determined: p(C<t0 ,x0) ← 1

4: for i ← 0 to N do
5: Calculate the probability that Φ is satisfied for first time at ti:

πi ← p(C<ti
,x0) ×

∫
xti

∈Sφ2

p(xti
|C<ti

,x0)dxti

6: Calculate the evidence p(Cti
|C<ti

,x0) according to Equation (5)

7: Calculate the probability that Φ is not determined in the next step:

p(C<ti+1 ,x0) ← p(C<ti+1 ,x0) × p(Cti
|C<ti

,x0)

8: Calculate the posterior mean μ̃ti
and covariance Σ̃ti

according to (9) and (10) respectively

9: Considering μ̃ti
and Σ̃ti

as initial conditions,
use moment closure ODEs to obtain: μti+1 and Σti+1

10: Set the prior of the next step:

p(xti+1 |C<ti+1 ,x0) ← N (xti+1 ;μti+1 , Σti+1 )

11: end for

5 Examples

In this section, we demonstrate the potential of our approach on a number of
examples. More specifically, we report for each example the calculated CDF for
the time that a formula Φ = φ1 U[0,t]φ2 is first satisfied. Additionally for each
until property, we also report the CDF of the first-passage time to the absorbing
set; this corresponds to the eventually formula F[0,t](φ2 ∨ ¬φ1 ∧ ¬φ2), following
the discussion of Sect. 4.2.

As a baseline reference, we use the PRISM Model Checker [28], which is
a well-established tool in the literature. For a time-bounded until property Φ,
PRISM is capable of estimating its satisfaction probability by considering the
following variation of the probabilistic operator P=?(Φ). The result of P=?(Φ)
denotes the probability that Φ has been satisfied at any τ ≤ t, thus it can
be directly compared to our approach. In particular, PRISM offers numerical
verification of time-bounded until properties that relies on the uniformisation
method [4]. We make use of numerical verification when possible, but for more
complex models we resort to SMC.

5.1 An Epidemiology Model

We consider a SIR model, whose state is described by three variables that repre-
sent the number of susceptible (XS), infected (XI), and recovered (XR) individ-
uals in a population of fixed size. The dynamics are described by the reactions:
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(a) (b) (c) (d)

Fig. 2. First-passage time results for the SIR model: (a) the CDF of first-passage times
into the absorbing states for ϕ1, (b) CDFs of first-passage times for the until formula
ϕ1, (c) the CDF of first-passage times into the absorbing states for ϕ2, (d) CDFs of
first-passage times for the until formula ϕ2.

S + I
ki−→ I + I, with rate function kiXSXI ;

I
kr−→ R, with rate function krXI ;

Considering initial state [XS = 40,XI = 10,XR = 0], the reachable state space
as reported by PRISM involves 1271 states and 2451 transitions, which is a
number small enough to allow the use of numerical verification.

We consider two properties: the first property states whether the infected
population remains under a certain threshold until the extinction of the epidemic:

ϕ1 = XI < 30U[0,t1]XI = 0 (11)

where t1 = 10. Also, we consider a property that involves more than one species:

ϕ2 = XS > 1U[0,t2]XI < XR (12)

where t2 = 4. The random variables [XS ,XI ,XR,XI − XR] follow a joint Gaus-
sian distribution, which is compatible with the assumptions of our approach.

We have used Algorithm 1 to approximate the CDF of the time that ϕ1 and
ϕ2 are first satisfied on a sequence T of 200 time-points. We have also used the
hybrid engine of PRISM in order to produce accurate estimates of the satisfaction
probabilities of ϕ1 and ϕ2, for t1 ∈ [0, 10] an t2 ∈ [0, 4] respectively.

The calculated CDFs for ϕ1 are summarised in Fig. 2b, while in Fig. 2a we
report the CDFs of the first-passage time into its absorbing set. Similarly, the
CDFs for ϕ2 are reported in 2d, and the CDFs of the corresponding absorbing
set can be found in Fig. 2c. In both cases the CDFs calculated by our approach
(MC-SBI) are close to the numerical solutions of PRISM.

5.2 LacZ - A Model of Prokaryotic Gene Expression

We consider the model of LacZ protein synthesis in E. coli that first appeared in
[27] and has been used as a model checking benchmark [14]. The model consists
of 12 species and 11 reactions; its full specification can be found in [30]. We
are interested in three variables: XRibosome for the population of ribosomes,
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(a) (b) (c)

Fig. 3. First-passage time results for the LacZ model: (a) sample trajectory, (b) the
CDF of first-passage times into the absorbing states for the property ϕ3, (c) CDFs of
first-passage times for the until formula ϕ3.

XTrRbsLacZ which represents the population of translated sequences, and XLacZ

representing the molecules of protein produced. The following property:

ϕ3 = (XRibosome > 0 ∧ XTrRbsLacZ < 200)U[0,500]XLacZ > 150 (13)

monitors whether both XRibosome and XTrRbsLacZ satisfy certain conditions until
the LacZ protein produced reaches a specified threshold (i.e. XLacZ > 150). A
randomly sampled trajectory can be seen in Fig. 3a.

We have attempted to explore the reachable state space of the model using
the hybrid engine of PRISM; that involved more than 26 trillions of states and
217 trillions of transitions. It is fair to state that numerical methodologies can
be ruled out for this example. Thus we compare our approach with SMC as
implemented in PRISM, where 1000 samples were used; the confidence interval
for the results that follow is ±0.039, based on 99.0% confidence level.

Figure 3 summarises the calculated first-passage time CDFs evaluated on a
sequence of 200 time-points. In Fig. 3b we see that the moment closure method
resulted in a particularly accurate approximation of the first-passage time dis-
tribution for the absorbing states. Regarding the distribution of ϕ3, the results
of MC-SBI and PRISM’s SMC seem to be in agreement (Fig. 3c); however that
our method overestimates the final probability of satisfying ϕ3.

5.3 A Stiff Viral Model

Stiffness is a computational issue in many chemical reaction systems which arises
when some reactions occur much more frequently than others. This group of
fast reactions dominates the computational time, and thus renders simulation
particularly expensive. As an example of a stiff system, we consider the model
of viral infection in [23]. The model state is described by four variables: the
population of the viral template XT , the viral genome XG, the viral structural
protein XS , and XV that captures the number of viruses produced. For the
initial state we set XT = 10, and the rest of the variables to zero. The reactions
that determine the dynamics can be found in [30]. The model state space is
unbounded, therefore we resort to the SMC capabilities of PRISM to evaluate our
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(a) (b) (c)

Fig. 4. First-passage time results for the Viral model: (a) sample trajectory, (b) the
CDF of first-passage times into the absorbing states for the property ϕ4, (c) CDFs of
first-passage times for the until formula ϕ4.

approach. The SMC used 1000 samples, resulting in confidence interval ±0.038,
based on 99.0% confidence level.

Figure 4a depicts a random trajectory that shows the evolution of the viral
genome XG and the virus population XV over time. We see that XG slowly
increases until it apparently reaches a steady-state and fluctuates around the
value 200, while XV continues to increase at a non-constant rate. In this example,
we shall monitor whether the viral genome remains under the value of 200 until
the virus population reaches a certain threshold:

ϕ4 = XG < 200U[0,200]XV > 500 (14)

The results of Fig. 4 show that our method did not capture the CDFs as well
as in the previous two examples. However, considering that our method is four
orders of magnitude faster than SMC (cf. Table 1), it still gives a reasonably
good approximation, particularly in the case of the eventually value. Again, we
have considered a sequence of length 200.

5.4 A Genetic Oscillator

Finally, we consider the model of a genetic oscillator in [3] consisting of 9 species
and 16 reactions. The original model is defined in terms of concentrations; in
order to convert the specification in terms of molecular populations, we consider
a volume V = 1/6.022 × 10−22. The full model description can be found in
[30]. We consider an initial state where X1 = 10, X3 = 10 and the rest of the
variables are equal to 1. As we can see in the random trajectory in Fig. 5a, we
have a system too large to apply traditional model checking methods.

We focus on variables X7 and X9; the following property monitors whether
X7 remains under 19000 until X9 exceeds the value of 24000:

ϕ5 = X7 < 19000U[0,50]X9 > 24000 (15)

In this example, we evaluated the CDF on a sequence T of length 2000. We com-
pare against the SMC algorithm in PRISM using 1000 samples, which resulted
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(a) (b) (c)

Fig. 5. First-passage time results for the genetic oscillator model: (a) sample trajectory,
(b) the CDF of first-passage times into the absorbing states for the property ϕ5, (c)
CDFs of first-passage times for the until formula ϕ5.

in confidence interval ±0.030, based on 99.0% confidence level. Figure 5 shows a
good approximation of the rather unusual first-passage time CDFs for both the
absorbing states (Fig. 5b) and the ϕ5 property (Fig. 5c).

5.5 A Note on the Execution Times

Table 1 summarises the execution times for our method (MC-SBI) and statisti-
cal model checking (SMC). We have used numerical verification as implemented
in PRISM for the SIR model only. For the other examples, the state space is
too large to use an explicit representation, and we report the simulation run-
ning times only. The numerical approach is much faster when this is applicable.
However, the computational savings for MC-SBI are obvious for the more com-
plicated examples, in particular the viral model and the genetic oscillator.

We have used StochDynTools [25] to derive the moment closure approxima-
tions automatically. The CDFs have been evaluated on a sequence of 200 points
for all models except for the genetic oscillator, where 2000 points were used.

Table 1. Execution times in seconds for model checking via sequential Bayesian infer-
ence (MC-SBI) and model checking in PRISM (104 samples were used for SMC).

Model MC-SBI PRISM (Numerical) PRISM (SMC)

SIR 8 s ∼1 s ∼1 s

LacZ 38 s N/A 46 s

Viral 8 s N/A 24875 s

Genetic oscillator 87 s N/A 20707 s

6 Conclusions

We have presented a novel approach to the classical model checking problem
based on a reformulation as a sequential Bayesian inference problem. This refor-
mulation is exact up to time-discretisation errors; it was originally suggested in
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[33] for reachability problems, and was extended in the present work to general
CSL formulae including time-bounded Until operators. Apart from its concep-
tual appeal, this reformulation is important because it enables us to obtain
an approximate solution using efficient and highly accurate tools from machine
learning. Our method leverages a class of analytical approximations to CTMCs
known as moment closures, which enable an efficient computation of the process
marginal statistics.

We have shown on a number of diverse case studies that our method achieves
excellent accuracy with significantly reduced computational costs compared to
SMC. Nevertheless, our algorithm requires some approximations to the under-
lying stochastic process. The first approximation is the adoption of a time dis-
cretisation; this is a controllable approximation and can be rendered arbitrarily
precise by reducing the time step (at a computational cost that grows linearly
with the number of steps). The second approximation consists in propagating
forward the first two moments of the process via moment closure and ADF.
Approximation quality in this case is system dependent. Several studies have
examined the problem of convergence of moment closure approximations [34,35],
however, to the best of our knowledge, error bounds for such approximations
are an open problem in the mathematics of stochastic processes. Despite such
issues, we believe that the reformulation of model checking problems in terms of
Bayesian inference has the potential to open the door to a new class of approx-
imate algorithms to attack this classic problem in computer science.
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Abstract. Industries with safety-critical systems increasingly collect
data on events occurring at the level of system components, thus cap-
turing instances of system failure or malfunction. With data availability,
it becomes possible to automatically learn a model describing the fail-
ure modes of the system, i.e., how the states of individual components
combine to cause a system failure. We present LIFT, a machine learning
method for static fault trees directly out of observational datasets. The
fault trees model probabilistic causal chains of events ending in a global
system failure. Our method makes use of the Mantel-Haenszel statis-
tical test to narrow down possible causal relationships between events.
We evaluate LIFT with synthetic case studies, show how its performance
varies with the quality of the data, and discuss practical variants of LIFT.

1 Introduction

Fault tree (FT) analysis [1] is a widely applied method to analyse the safety
of high-tech systems, such as self-driving cars, drones and robots. FTs model
how system failures occur as a result of component failures: the leaves of the
tree model different failure modes, while the fault tree gates model how failure
modes propagate through the system and lead to system failures. A wide number
of metrics, such as the system reliability and availability, can then be computed
to evaluate whether a system meets its dependability and safety requirements.

A key bottleneck is the construction of the FT. This requires domain knowl-
edge, and the number of potential failure causes and contributing factors can be
overwhelming: age, system loads, usage patterns and environmental conditions
can all influence the failure mechanisms. It is thus appealing to learn FTs auto-
matically from data, to assist reliability engineers in tackling the complexity of
today’s systems. This paper is a first step in this direction: we learn static FTs
from observational records.

The Fault-Tree Formalism. The nodes in an FT are either events or logical
gates. Figure 1 shows an example FT and the graphical notation. A part of
the system is modelled by an intermediate event ; a special intermediate event
is the root node of the tree, called the top event or outcome, which models the
global system failure. A set of basic events, distinct from the intermediate events,
marks the most elementary faults in system components, may be annotated
c© Springer Nature Switzerland AG 2018
A. McIver and A. Horvath (Eds.): QEST 2018, LNCS 11024, pp. 306–322, 2018.
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Fig. 1. Example fault tree with annotations

with a probability of occurrence, and form the leaves of the FT. Intermediate
events form the inputs and the output of any gate, and are the output of any
basic event. The basic gates, AND and OR, denoted by the standard logic-gate
symbols, model their standard logic meaning, in terms of causal relationships
between the events in the input and the event in the output of any gate.

Summary of Contribution. We learn static FTs with Boolean event variables
(where an event variable has value True or 1 if that fault occurs in the system), n-
ary AND/OR gates, and annotated with event failure probabilities. The input to
the algorithm consists of raw, untimed observational data over the system under
study, i.e., a dataset where each row is a single observation over the entire system,
and each column variable records the value of a system event. All intermediate
events to be included in the FT must be present in the dataset, but not all of
those events in the dataset may be needed in the FT. We do not know what the
basic events will be, nor which gates form the FT, nor which intermediate events
are attached to the gates. We know the top event: the system failure of interest.
Our main result is an algorithm that learns a statistically significant FT; we
allow for a user-specified amount of noise, assumed uniformly distributed in the
data. We evaluate the algorithm on synthetic data: given a “ground truth” FT,
we synthesise a random dataset, apply the learning algorithm, and then compare
the machine-learnt FT to the ground truth.

An example dataset is shown in Fig. 2a, in compact form: each row is a count
(e.g., 20) of identical records, where each record is an untimed list of Boolean
observations of events (denoted A,B,C and T , with T the global system failure,
or outcome). The order of the records in a dataset is not significant.

A tree formalism commonly machine-learnt from such observational data is
the Binary Decision Tree (BDT), a practical tool for the description, classifica-
tion and generalisation of data [2]. The BDT learning algorithm appears to be a
natural starting point for the design of an FT learning algorithm; however, we
argue below why the BDT learning logic is unsatisfactory.

Detecting Causality from Data. The construction of a BDT is a greedy
algorithm: a series of local optimum decisions determines subsequent branching
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A B C T count
0 0 0 0 20
0 1 1 1 5
0 0 1 1 5
1 1 1 1 30
1 1 0 1 20
0 1 0 1 20

(a) Dataset

A

T = 1

1

B

T = 1

1

C

T = 1

1

T = 0

0

0

0

(b) Decision Tree

C

T = 1

1

B

T = 1

1

T = 0

0

0

(c) Causal Decision
Tree

T

B C

(d) Fault Tree

Fig. 2. An example showing that a BDT does not encode causal relationships.

nodes. Each decision uses a variable test condition (e.g., a classification error)
to find the best split in the data records [3]. For example, when creating a BDT
for the dataset in Fig. 2a to classify variable T , a naive approach is to first split
the dataset on variable A, and obtain the BDT in Fig. 2b. However, decision
trees model correlations (which are symmetric) and not the causal relationships
(which are asymmetric) required for an FT. As a correlation between variables
does not imply a causation, the knowledge represented in a decision tree does
not provide root causes for faults, and thus cannot support decision making.

To overcome this problem, the Causal Decision Tree (CDT) [4] was recently
introduced. A CDT differs from a BDT in that each of its non-leaf nodes has a
causal interpretation with respect to the outcome T . CDTs find causal relation-
ships automatically by using the Mantel-Haenszel statistical test [5]. A causal
relationship between a variable and the outcome exists if the causal effect is
statistically significant (i.e., is above random chance). A CDT for the dataset in
Fig. 2a is in Fig. 2c; it shows that C has a causal relationship with T and that B
has a causal relationship with T under the “context” (i.e., fixed variable assign-
ment) C = 0. A is not included in this CDT. The path (A = 1) → (T = 1) in the
BDT with probability P (T = 1|A = 1) = 1 correctly classifies half of the records
in the dataset. However, the path does not code a causal relationship between A
and T since, for example, given C = 1, P (T = 1|A = 1) − P (T = 1|A = 0) = 0.
When fixing the value of C, a change in A does not result in a change in T . In
fact, C causes T , and B causes T under the context C = 0.

CDTs on average achieve similar classification accuracy as decision trees, even
though this is not a CDT objective; also, the size of CDTs is on average half that
of decision trees [4], simplifying their analysis. Some aspects of CDT learning are
useful in the automatic construction of an FT. However, while a CDT can only
model the causal relationship between a variable and the outcome, the strength
of an FT is the additional modelling of (a) multiple independent variables that
may cause a failure, and (b) if-then Boolean logic. As shown in Fig. 2d, the CDT
of Fig. 2c can be redrawn as an FT with a single OR gate.

In the following, Sect. 2 gives the related work on the automated synthesis
of fault trees. Section 3 formally introduces FTs. Section 4 presents the LIFT
algorithm and examples. Section 5 evaluates LIFT on datasets with noise or
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superfluous variables. Section 6 discusses possible LIFT variants. The conclu-
sions, including future work, are presented in Sect. 7.

2 Related Work

System dependability evaluation via fault tree analysis is largely a manual pro-
cess, performed over informal fault-tree models which will not accurately describe
an evolving system [6]. Due to this, the automatic synthesis of fault trees has
been of recent interest. However, we stress the fact that most of the existing con-
tributions generate the necessary dependability information from existing, for-
mal system models, and are thus Model-Based Dependability Analysis (MBDA)
techniques [6–8]. In contrast, there is little research aiming to synthesise causal
dependability information for black-box systems, for which formal models do not
exist, or for which the quantity and quality of the available sensed data surpasses
the quality and completeness of existing system models.

Learning Fault Trees from Data. Observational data was used for machine-
learning fault trees in the Induction of Fault Trees (IFT) algorithm [9], based on
decision-tree learning. As in our method, all that is needed are observations of
measurable quantities taking certain values. However, IFT completely disregards
the matter of causality between events, and essentially learns a syntactically
correct FT which encodes exactly the same information as a decision tree – so
the FT is essentially a classifier, rather than a means of modelling causal effect.

Generating Fault Trees from Formal System Models. A diverse body of
techniques is available for this; we refer to recent reviews on MBDA for a com-
plete picture [6–8] and give here a brief overview of the most relevant generation
methods. While these approaches cannot directly synthesise FTs from observa-
tional data (as in our work), other techniques able to learn the required system
models from observational data could (indirectly) bridge this gap.

In the Hierarchically Performed Hazard Origin & Propagation Studies (HiP-
HOPS) framework [10], any system model formalising the transactions among
the system components, annotated with failure information for components (as
Boolean expressions), may be used to synthesise an FT. Using these annota-
tions, the synthesis is straightforward: it proceeds top-down from the top event
and creates local FTs based on the component failure annotations; these are
then merged into a global FT showing all combinations leading to system fail-
ure. If formal models in the AltaRica high-level system description language are
available, they include explicit transitions modelling causal relations between
state variables and events, which can similarly be used to synthesise classic
FTs [11]. The Formal Safety Analysis Platform (FSAP/NuSMV-SA) generates,
from NuSMV system models, FTs which show only the relation between top
events and basic events, and not how faults propagate among the system compo-
nents [12]. The Architecture Analysis and Design Language (AADL) includes an
Error Model for the specification of fault information, and a number of techniques
exist to translate an AADL model into static or dynamic FTs (recently, in [13]).
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AADL models have also been translated into models compatible with the
HiP-HOPS and AltaRica frameworks, enabling cross-framework FT synthesis [6].

A process of FT generation with explicit reasoning about causality is
described in [14]; however, this approach still requires a formal system model to
exist. Given such a probabilistic system model, a set of probabilistic counterex-
amples (i.e., system execution paths of temporally ordered, interleaved events
leading to a system fault) is obtained from the process of model-checking. As
the system is concurrent, the counterexamples potentially, but not necessarily,
model causality. Logical combinations of events are determined as causes of other
events using a set of test conditions; the time complexity is cubic in the size of
the set of counterexamples.

Other Approaches. Causal Bayesian Networks (CBNs) [15] can also be learnt
from observational data, as well as Boolean formulas (BFs) [16]; both models
may be translated into FTs, and both learning problems are NP-hard or require
exponential time [16,17]. As our algorithm will also be shown to have a worst-
case exponential complexity, both CBNs and BFs remain feasible alternatives to
FT learning.

3 Background: Fault Trees

We define the basic components of an FT formally in Definitions 1–4.

Definition 1. A gate G is a tuple 〈t, I, O〉, where:

– t is the type of G, with t ∈ {And ,Or}.
– I is a set of n ≥ 2 intermediate events {i1, ..., in} that are inputs to G.
– O is the intermediate event that is output for G.

We denote by I(G) the set of intermediate events in the input of G, and by O(G)
the intermediate event in the output of G.

Definition 2. An AND gate is a gate 〈And , I, O〉 where output O occurs (i.e.
O is True) if and only if every i ∈ I occurs.

Definition 3. An OR gate is a gate 〈Or , I, O〉 where output O occurs (i.e. O
is True) if and only if at least one i ∈ I occurs.

Definition 4. A basic event B is an event with no input and one intermediate
event as output. We denote by O(B) the intermediate event in the output of B.

Intuitively, a basic event B models an elementary system fault in the real
world; its output O(B) is True when this elementary system fault occurs. Then,
all system components modelled by the events in the input of an AND gate must
fail in order for the system modelled by the event in the output to fail.

We then formalise the fault tree in Definition 5.
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Definition 5. A fault tree F is a tuple 〈BE, IE, T,G〉, where:

– BE is the set of basic events; ∀B ∈ BE, O(B) ∈ IE. A basic event may be
annotated with a probability of occurrence p.

– IE is the set of intermediate events, where IE ∩ BE = ∅.
– T is the top event, T ∈ IE.
– G is the set of gates; ∀G ∈ G, I(G) ⊂ IE, O(G) ∈ IE.
– The graph formed by G should be connected and acyclic, with the top event

T as unique root.

Given fault tree F, we denote by IE (F) the set of intermediate events in F.

The basic LIFT algorithm (Sect. 4) will learn trees rather than directed
acyclic graphs (DAGs), i.e. an intermediate event can be the input of only one
gate. Section 6 will then discuss a DAG variant of the LIFT algorithm.

Comparison FT-CDT. Unlike FTs, CDTs can be learnt from data, and also
encode causal relationships between variables; an example CDT was given in
Fig. 2c. However, there are major syntactic differences between the two for-
malisms. An FT can be n-ary, while a CDT can only be binary: every branching
decision is based on a Boolean variable. Also, an FT is more concise: it models
only the positive (failure) outcome, while the CDT must model both outcomes
of any variable. Finally, the position of the outcome differs: while in FTs the top
event models the system outcome, in a CDT this is modelled by leaf nodes.

4 Machine Learning Fault Trees

The dataset from which an FT can be learnt contains untimed, Boolean obser-
vations of system events; an FT event corresponds to a column variable in the
dataset. A record and a dataset are formally defined in Definitions 6–7.

Definition 6. A record R over the set of variables V is a list of length |V|
containing tuples [〈Vi, vi〉], 1 ≤ i ≤ |V|, where:

– Vi is a variable name, Vi ∈ V.
– vi is a Boolean value of Vi.

Definition 7. A dataset D is a set of r records, all over the same set of variables
V. Each variable name in V forms a column in D and each record forms a row.
When k identical records are present in D, a single such record is shown, with a
new count column for the value k.

A synthetic dataset (of 185 records in total, but only 11 unique records) is
shown in Table 1. We assume the sufficiency of any dataset (i.e., all shared causes
are measured [18]) and also its faithfulness (i.e., the data accurately represents
the real-world dependencies [18]). However, because of either sensor glitches or
human error, there may be some noise in the dataset (i.e., flipped bits).
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Table 1. Example dataset

A B C D E F G T Count

0 0 0 0 0 0 0 0 30

1 0 1 1 0 1 0 0 20

0 1 0 1 1 0 0 0 20

0 1 0 1 1 1 0 0 20

1 0 0 1 0 0 0 0 15

0 0 1 0 0 1 0 0 15

0 0 0 0 1 0 0 0 15

0 0 1 0 1 1 0 0 15

1 1 1 1 1 0 1 0 20

0 1 1 1 1 1 1 1 10

1 0 1 1 1 1 1 1 5

From a dataset, causal relationships between (groups of) variables can be
discovered to form an FT. For this, one can use the standard Mantel-Haenszel
Partial Association test (PAMH) [5], a test used for the analysis of data that
is stratified. When stratifying the dataset, the effect of other variables on the
outcome variable T is eliminated, and hence the difference reflects the causal
effect of one variable (say, E) on the outcome T . By this test, a causal rela-
tionship between two given variables is statistically significant if and only if the
PAMH-score ≥ χ̃2

α,1, where χ̃2
α,1 is the standard critical value of the chi-square

distribution with 1 degree of freedom [19]. A significance level of α = 0.05 or
α = 0.01 is often used in practice.

A stratum is formally defined in Definition 8 (and is a classic concept, as
per [19]). A concrete example is given later in this section, in Example 1.

Definition 8. Given a dataset D over the set of variables V, a stratum SE,T

(where E and T are variables from V) is a contingency table which shows the
distribution of the values of variables E and T in the dataset, as counts, in the
following format:

T = 1 T = 0 Total

E = 1 n11 n12 n1.

E = 0 n21 n22 n2.

Total n.1 n.2 n..

where n denotes the number
of records that satisfy a given
valuation of E and T .
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The PAMH-score can be calculated over multiple strata (as done in CDTs [4]
and first formalised in [19]); here we have a single stratum, as follows:

PAMH(E, T ) =
(∣∣∣∣n11n22 − n21n12

n..

∣∣∣∣ − 1
2

)2 /
n1.n2.n.1n.2

n2
..(n.. − 1)

Using these concepts of strata and the PAMH-score, the LIFT algorithm1,
shown in Algorithm 1, synthesises an FT from a dataset D. A variable in D
corresponds to an intermediate event. All intermediate events to be included in
the FT must be present in the dataset, but not all of those events in the dataset
may be needed in the FT. We do not know what the basic events will be, nor
which gates form the FT, nor which intermediate events are attached to the
gates.

Checking a Proposed Gate. To create a fault tree F, the LIFT algorithm iter-
atively adds a level to F, starting with just the top event (line 28–31 in Algo-
rithm1). Each time CreateLevel is called, the depth of the FT increases with
one level. For each intermediate event E at the lowest level of F, sets (of size
≥2) containing intermediate events not yet in F are proposed as input of a new
(AND or OR) gate whose output is E. This is done by checking the gate for cor-
rectness according to the properties of Definitions 2–3. If both gates are correct,
any design choice can be made, as discussed later in Sect. 6.

Example 1. Using the data set shown in Table 2a, a significance level α, the
outcome variable T and the set of variables I = {A,B}, one can check if gate
G of the form 〈And, I, T 〉 meets the property specified in Definition 2 and is
statistically significant using function CheckANDgate.

A temporary new variable v is added to the dataset (Table 2b). v encodes an
AND relation between A and B; v occurs (is 1) only when both A and B occur.
This variable v can then be compared with top event T to measure if there is
a causal relationship between T and A AND B. The stratum Sv,T is computed
by counting the corresponding records in Table 2b, as shown in Table 2c.

The user can specify the ratio of noise allowed by LIFT per stratum. (If the
user can assume that the flipped bits are uniformly distributed in the dataset, the
expected per-stratum noise ratio is equal to the global noise ratio). For simplicity,
we set this noise “allowance” equal to the significance level α; the algorithm is
easily modified for any other level. In the dataset shown in Table 2a, one can see
that one record may be noise. In this example, we will set α = 0.05, so we allow
5% noise in a stratum. It then follows that the proposed AND gate G of the form
〈And, {A,B}, T 〉 meets the property of Definition 2 because in stratum Sv,T we
have n12 = 0, n21 = 1, meaning one record where the values of v and T differ.
We do allow a ratio α out of n.. = 91 to differ, but 1 < 0.05 · 91 holds. However,
if we would have selected a significance level α = 0.01, since 1 < 0.01 · 91 does
not hold, the FT couldn’t include this gate.

1 Code can be found at https://github.com/M-Nauta/LIFT.

https://github.com/M-Nauta/LIFT


314 M. Nauta et al.

Algorithm 1. LIFT: Learning a Fault Tree from a dataset
Input: D, a data set containing r records over V;

T , the intended top event with T ∈ V;
α, the significance level for the Mantel-Haenszel test

Result: Fault Tree F

1 Function CheckANDGate(E, I):
2 result = False, pamh = 0.0
3 v = [v1, ..., vr] in which vj is 1 if every i ∈ I in record j of D is 1
4 if n12 of Sv,E < αn.. && n21 of Sv,E < αn.. then
5 pamh = PAMH(v, T )
6 if pamh ≥ χ̃2

α,1 then
7 result = True

8 return result, pamh

9 Function CheckORGate(E, I):
10 Similar to lines 2-8

11 Function CreateLevel(F, Leaves):
12 for l ∈ Leaves do
13 k = 2, gate = False
14 while not gate and k ≤ |V \ IE(F)| do
15 for a in generator of combinations of size k from V \ IE(F) do
16 compute isGate, pamh = CheckANDGate(l, a)
17 compute isGate, pamh = CheckORGate(l, a)

18 if at least one a exists where isGate was True then
19 select that a and gate type t where pamh was maximum
20 add gate 〈t,a, l〉 to F
21 gate = True

22 else
23 k++

24 if not gate then
25 p = ratio of records in D where l = 1
26 create basic event B as input for l in F, and annotate B with p

27 return F

28 let F = Fault Tree 〈∅, {T}, T, ∅〉
29 while at least one new event is added to F do
30 let Leaves = set of all intermediate events at the lowest level of F
31 F = CreateLevel(F, Leaves)

If the proposed gate has less noise than allowed (which is in this case true for
α = 0.05), we can determine if the causal relation between T and v is significant,
by calculating the PAMH-score:

PAMH(v, T ) =
(

15 · 75 − 1 · 0
91

− 1
2

)2 /
15 · 76 · 16 · 75
912(91 − 1)

= 76.66 .
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Table 2. Dataset for Example 1, over variables A, B and outcome variable T ; stratum
and fault tree learnt.

A B T count
0 0 0 30
1 0 0 25
0 1 0 20
0 1 1 1
1 1 1 15

(a) Dataset

A B v T count
0 0 0 0 30
1 0 0 0 25
0 1 0 0 20
0 1 0 1 1
1 1 1 1 15

(b) Dataset incl.
var. v (AND gate)

T=1 T=0 Total

v = 1 15 0 15
v = 0 1 75 76
Total 16 75 91

(c) Stratum Sv,T

T

A B

(d) FT learnt

For α = 0.05, the critical value χ̃2
α,1 = 3.84. Since the PAMH-score is higher

than χ̃2
α,1, v and T can be concluded to have a significant causal relationship.

Similarly, a proposed OR gate is checked. By creating a temporary new vari-
able v for the OR gate, one can create a stratum to calculate the noise and the
PAMH-score in a similar way. This OR gate will have too much noise and is
therefore not correct. So, 〈And, I, T 〉 is added to F. Table 2d shows the final FT
learnt from the original dataset in Table 2 for α = 0.05.

An FT may have a path containing two subsequent gates of the same type;
in this case, the FT solution is not unique, and one may optimise for either
minimal gate sizes, or minimal tree depth. We choose here the former, i.e., select
the smallest input sets for all gates. LIFT is easily modified for another aim.
Example 2 below clarifies this situation.

Example 2. Take the dataset in Table 1 at the beginning of this section. The
LIFT algorithm starts with an FT containing only the top event T (line 28
in Algorithm 1). For this top event, the algorithm generates all combinations
(sets) of intermediate events, in order of increasing size (line 15). For each set a
containing intermediate events, LIFT tests whether a gate 〈Or/And,a, T 〉 (either
AND or OR) meets the property in Definitions 2–3 and does not exceed the noise
allowance (line 4). If true, LIFT checks if the PAMH score is higher than the
threshold for the Mantel-Haenszel test.

For this dataset, there is no correct OR gate 〈Or,a, T 〉. However, there are
9 sets of intermediate events that can act as input for a correct and significant
AND gate 〈And,a, T 〉: a = {F,G}, a = {E,F,G}, a = {D,F,G}, a = {C,F,G},
a = {D,E, F,G}, a = {C,E, F,G}, a = {C,D,F,G}, a = {C,D,E, F} and
a = {C,D,E, F,G}. In other words, there are multiple structural solutions for
the FT, when the FT has a path with two subsequent gates of the same type. In
such cases, LIFT learns the solution with minimum-sized gates. The input sets
are generated in increasing size, and LIFT will stop proposing input sets when
the minimum correct input set is found. In this example, the smallest set has size
two, namely {F,G}. Therefore, gate 〈And, {F,G}, T 〉 is added to F (as shown
in Fig. 3). In case of multiple correct sets of the same size (which can arise when
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there are more variables in the dataset than needed in the FT) the set with the
highest PAMH-score is selected (line 19 in Algorithm 1). The algorithm can be
easily modified for another design decision, as argued later in Sect. 6.

T T

F G

T

F G

C D E

T

F G

C D

A B

E

T

F G

C D

A B

E

p=0.32 p=0.38

p=0.46

p=0.46

p=0.57

Fig. 3. Applying LIFT in Example 2 on the dataset shown in Table 1.

In the next iteration, for both F and G again sets of intermediate events are
tried. The search space is now 25 − 5 − 1 = 26, because |V \ IE(F)| = 5. There
is no correct gate 〈Or/And,a, F 〉 for intermediate event F . Therefore, a basic
event is added as input for F (line 26). For intermediate event G, one correct
and significant AND gate 〈And, {C,D,E}, G〉 is found and added to F. Similar
iterations are done for C, D and E followed by A and B, as shown in Fig. 3.

When the dataset contains information on system states which are always
measured in a fixed time horizon (i.e. discrete time), one can easily derive
stochastic measures such as failure probabilities using standard probability laws.
The statistical probability that an event E ∈ D occurs is simply P (E = 1) =
#records where E=1

total# records ; all basic events are annotated with these probabilities.

5 Evaluation

The algorithm is evaluated following the approach shown in Fig. 4. A number of
fault trees Fgt are generated as ground truth; from each of these FTs, a dataset
is synthesised randomly, including adding noise and superfluous variables (both
of these processes of synthesis are described below). LIFT takes this dataset and
a given significance value α as input, and learns another FT F, which can then
be compared to the ground truth. We say that a learnt FT is “correct” if it is
structurally equivalent to the ground-truth FT, i.e., syntactically (and not only
semantically) equivalent, where only the order of the inputs to any gate may
differ. We require that the learnt FT recovers the exact gates as in the ground
truth, since these gates may model concrete system components, for which the
correct causes of failure should be learnt. Our evaluation is thus stronger than
an isomorphism check for the FTs.

Furthermore, we assess how noise and superfluous variables in the dataset
influence the ratio of correctly learnt FTs.
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LIFTDataset DGround Truth Fgt Learnt F
Data Synthesis

Evaluation

Fig. 4. Evaluation approach: Randomly generate a dataset from an FT, apply LIFT
to that dataset and compare the learnt FT with the ground truth.

Generating all FTs of a Certain Size. As ground truth, we generate all possible
FTs over a fixed number (here, 8) of intermediate events, with no probabilities
annotated on basic events. We only generate trees and leave DAGs (with shared
variables) as future work. To mimic a manually constructed FT where readability
is important, we set a minimum of 2 intermediate events and a maximum of 5
intermediate events as input to a gate, and thus obtain 76 different FTs.

Generating a Synthetic Dataset from an FT. Based on a generated FT, we
mimic a real-life situation by randomly synthesising 1000-record datasets where
basic events happen with a certain probability (and are not rare events). The
generation process starts with valuating all basic events to either 0 or 1, with a
randomly chosen probability between 20% and 50% that each basic event is 1.
These values are propagated through the gates in the FT up to the top event;
dependent on the type of each gate, the gate’s output event is assigned 0 or 1.
Each iteration of this procedure results in one data record.

To assure that gates are correctly recognised and that every gate is at least
once true, every combination of inputs for a gate occurs in at least c% of the
rows in the dataset (i.e. in the case of 1000 rows and c = 2, every combination
occurs at least 20 times). We created datasets for both c = 0.5% and c = 2%. We
leave the task of discriminating between rare events and noise for future work.

Adding Noise to the Dataset. In a real-life situation, having perfectly clean data
is rare because of wrong measurements, sensor glitches or manual errors for
example. To mimic noise, a number up to 5% of the rows in the dataset are
added, each with 1–2 wrong (flipped) values.

Adding Superfluous Variables to the Dataset. Our algorithm should also create
a correct fault tree when there are variables in the dataset which have no causal
effect and should not be included in the learnt FT. We thus experiment with
adding up to 4 non-causal system variables. The case of a causal superfluous
variable is discussed in Sect. 6.

5.1 Results

An analysis is done on the influence of noise or superfluous variables in the
dataset on the number of correct fault trees obtained by LIFT.
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Fig. 5. Percentage of correctly learnt
fault trees relative to the percentage
of rows with noise in the dataset. All
76 different FTs with 8 intermediate
events are generated. The dataset for
each FT contains no non-causal vari-
ables, and 1000 records plus an extra
percentage of noisy records.

Fig. 6. Percentage of correctly learnt
FTs relative to the number of non-
causal variables in the dataset. All
76 different FTs with 8 intermediate
events are generated. The dataset for
each FT contains 1000 records, no
noisy records, but up to 4 non-causal
variables.

As we generated all ground-truth FTs with exactly 8 intermediate events,
and 2–5 inputs for each gate (76 FTs in total), the basic datasets contain 8
columns (one for each intermediate event), and 1000 rows. Noisy rows are then
added to the dataset, depending on the level of noise desired.

Figure 5 shows the percentage of correctly learnt fault trees relative to the
percentage of rows with noise in the dataset. All learnt FTs are correct in the
absence of noise and with the significance level α = 0.001. However, this α is
by nature incapable of correctly dealing with noise, since LIFT may not find a
significant gate due to the noise. A higher α is less sensitive for noise, but does
result in a lower number of correct FTs. A learnt FT may be incorrect when
LIFT finds a significant gate with a smaller number of inputs than what should
actually be the case. Therefore, the significance level should be chosen based on
the amount of noise in the dataset. Furthermore, one can see that c naturally
influences the number of correctly learnt FTs: the less rare the events are in the
dataset, the more likely is LIFT to learn the correct FT.

Figure 6 shows the percentage of correctly learnt FTs relative to the number
of non-causal random variables present in the dataset; one can see that these
variables have little effect on the accuracy, showing that LIFT indeed finds only
causal relationships.

5.2 Complexity

Time Complexity. LIFT exhaustively checks all input event combinations in
order of their size, so in worst case there is one gate with all variables (except
the top event) as input. This means that for all input sets, a stratum is created
that loops over all r records and over k variables that are in that set. The number
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of different combinations of size k is
(
n
k

)
where n = |V| − 1. Therefore, the time

complexity of these operations is r ·∑n
k=2 k ·(n

k

)
. The PAMH-score of each stratum

is calculated and compared with the significance level, which has a constant time
complexity. This results in a time complexity of O(nr2n).

Learning boolean formulae, closely related to learning static fault trees, from
examples obtained by querying an oracle is exponential in the size of the vocab-
ulary in the general case as well as for many restrictions [16]. More precisely, a
static fault tree with only AND and OR gates can be seen as a monotone boolean
function for which the Vapnik-Chervonenkis (VC) dimension is exponential in
n [20]. So, a general exact FT learning algorithm cannot be more efficient than
the VC dimension. Reaching better complexity, which could be useful for large
datasets, is then only possible when an approximated FT is learnt, instead of an
exact solution. Such a variant of Algorithm1 may apply a greedy search-and-score
approach rather than our constraint-based approach with exhaustive search, as
inspired by structure-learning algorithms for Bayesian networks. However, those
algorithms may suffer from getting stuck in a local maximum, resulting in a lower
reconstruction accuracy. Furthermore, the highest-scoring network structure is
not necessarily the only viable hypothesis [21].

Space Complexity. The input for Algorithm 1 consists of dataset D with
r records and n columns, top event T and significance level α. Therefore, the
input space complexity is Θ(rn). If the generator of combinations is on-the-fly,
its auxiliary memory complexity is O(n2).

6 Discussion

Interpretation of Causality. Currently, all intermediate events that should
be in the fault tree have to be included in the dataset. However, obtaining a
dataset containing all relevant variables may be impractical. One problem is the
presence of hidden variables that influence measured variables but are not in the
dataset themselves [18]. The other one is the selection bias: values of unmeasured
variables may influence whether a unit is included in the dataset [21]. This can
result in a learnt causal relationship between observed variables that does not
correspond to the real causal relations. Drawing valid causal inferences using
observational data is therefore not just a mechanistic procedure, but always
depends on assumptions and justification that require domain knowledge [22].
We are aware of the critical assessment of causal claims based on observational
data, but we think the learnt fault tree will still be valuable to give insights which
possibly were unknown beforehand and facilitates further causal inference.

Algorithm Variants. We made certain design decisions for the basic LIFT
algorithm in Algorithm1. Below, we present some of the many possible variants.
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Multiple Gate Types. In the case of multiple significant correct gates with the
same number of inputs, the LIFT algorithm chooses the one with the highest
PAMH-score. However, there may be cases where both an OR gate and an AND
gate are correct. For example, in case of the dataset as shown in Table 3, an OR
gate will be created when a very high significance level is chosen. However, two
of these records may be noise, so with a lower significance level an AND gate
will result in a correct gate as well. Selecting the gate type is then a matter of
choice: one can argue to choose the OR gate as this matches exactly the dataset,
or choose the AND gate since the interpretation of this gate is stricter than
the OR gate. One can also argue that the algorithm need not make a decision
at all and that it outputs multiple FTs. LIFT is easily modified for any design
decision.

Table 3. Dataset where both an OR gate and an AND gate may be correct.

A B T Count

0 0 0 1

1 0 1 1

0 1 1 1

1 1 1 10,000

Multiple Significant FTs. When there are causal superfluous variables in the
dataset, there may be cases of multiple correct sets of intermediate events of the
same size, that can all serve as input to a statistically significant gate. While the
basic LIFT algorithm chooses the input set with the highest PAMH-score, it is
easily modified for a different design choice, such as returning all correct FTs.

The FT as a Directed Acyclic Graph (DAG). The basic LIFT algorithm learns
trees, so the examples and evaluation presented in this paper all learn tree struc-
tures. However, in general FTs may share subtrees, meaning that an intermediate
event can be the input of multiple gates, and therefore have a directed acyclic
structure [1]. The LIFT algorithm can be modified to create DAGs by gener-
ating broader combinations a of intermediate events, outside the while loop at
line 14 of Algorithm1: instead of a generator of all combinations of size ≥ 2 from
V\ IE (F), one can instead have a generator of all combinations from V\T , with
an extra check that the created graph F remains acyclic.

More Efficient Exploration of Variable Combinations. Other features of the
dataset (e.g., the graph of dependencies between variables), or even domain
knowledge, may be used to reduce the number of combinations of variables to
be tried by LIFT as inputs to gates.
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7 Conclusion

In this paper, we presented an algorithm to automatically learn a statistically
significant fault tree from Boolean observational data, inspired by the construc-
tion algorithm for Causal Decision Trees. In absence of noise, all learnt FTs were
found to be structurally equivalent to the ground truth when the significance
level is 0.001. With up to 3% noise in the data, a significance level of 0.01 results
in around 65% correct FTs. As a downside, the basic LIFT algorithm does an
exhaustive search, and thus has exponential time complexity. It also cannot deal
with hidden variables.

In future work, the algorithm can be extended to learn other elements of a
fault tree, such as the XOR gate (true if and only if exactly one of its input
events is true). Note that elements that need sequence information (such as
the Priority-AND gate or the SPARE gate) cannot be implemented, since the
required dataset format doesn’t contain timing information. Learning fault trees
from timed observational data is also a direction for future work. For this, learn-
ing Bayesian networks, closely related to FTs, may also be a competitive direc-
tion to take. Moreover, one may allow continuous data instead of only binary
values, similar to the C4.5 algorithm for decision trees [23] that creates a binary
expression for continuous values. This expression encodes the conditions under
which a measurement results in a failure.
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Abstract. We consider the problem of mining signal temporal logical
requirements from a dataset of regular (good) and anomalous (bad) tra-
jectories of a dynamical system. We assume the training set to be labeled
by human experts and that we have access only to a limited amount of
data, typically noisy. We provide a systematic approach to synthesize
both the syntactical structure and the parameters of the temporal logic
formula using a two-steps procedure: first, we leverage a novel evolu-
tionary algorithm for learning the structure of the formula; second, we
perform the parameter synthesis operating on the statistical emulation of
the average robustness for a candidate formula w.r.t. its parameters. We
compare our results with our previous work [9] and with a recently pro-
posed decision-tree [8] based method. We present experimental results on
two case studies: an anomalous trajectory detection problem of a naval
surveillance system and the characterization of an Ineffective Respiratory
effort, showing the usefulness of our work.

1 Introduction

Learning temporal logic requirements from data is an emergent research field
gaining momentum in the rigorous engineering of cyber-physical systems. Clas-
sical machine learning methods typically generate very powerful black-box
(statistical) models. However, these models often do not help in the comprehen-
sion of the phenomenon they capture. Temporal logic provides a precise formal
specification language that can easily be interpreted by humans. The possibility
to describe datasets in a concise way using temporal logic formulas can thus
help to better clarify and comprehend which are the emergent patterns for the
system at hand. A clearcut example is the problem of anomaly detection, where
the input is a set of trajectories describing regular or anomalous behaviors, and
the goal is to learn a classifier that not only can be used to detect anomalous
behaviors at runtime, but also gives insights on what characterizes an anoma-
lous behavior. Learning temporal properties is also relevant in combination with
state of the art techniques for search-based falsification of complex closed-loop
c© Springer Nature Switzerland AG 2018
A. McIver and A. Horvath (Eds.): QEST 2018, LNCS 11024, pp. 323–338, 2018.
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systems [6,22,23,28], as it can provide an automatic way to describe desired (or
unwanted behaviors) that the system needs to satisfy.

In this paper, we consider the problem of learning a temporal logic speci-
fication from a set of trajectories which are labeled by human experts (or by
any other method which is not usable for real-time monitoring) as “good” for
the normal expected behaviors and “bad” for the anomalous ones. The goal is to
automatically synthesize both the structure of the formula and its parameters
providing a temporal logic classifier that can discriminate as much as possible
the bad and the good behaviors. This specification can be turned into a monitor
that output a positive verdict for good behaviors and a negative verdict for bad
ones.

Related Work. Mining temporal logic requirements is an emerging field of
research in the analysis of cyber-physical systems (CPS) [2,5,7–9,14,16,17,20,
26,27]. This approach is orthogonal to active automata learning (AAL) such as
L∗ Angluin’s algorithm [3] and its recent variants [15,25]. AAL is suitable to
capture the behaviours of black-box reactive systems and it has been success-
fully employed in the field of CPS to learn how to interact with the surround-
ing environments [10,13]. Mining temporal logic requirements has the following
advantages with respect to AAL. The first is that it does not require to inter-
act with a reactive system. AAL needs to query the system in order to learn
a Mealy machine representing the relation between the input provided and the
output observed. Mining temporal logic requirements can be applied directly to
a set of observed signals without the necessity to provide an input. The second
is the possibility to use temporal logic requirements within popular tools (such
as Breach [12] and S-TaLiRo [4]) for monitoring and falsification analysis of CPS
models.

Most of the literature related to temporal logic inference from data focuses
in particular on the problem of learning the optimal parameters given a specific
template formula [5,7,14,16,20,26,27]. In [5], Asarin et al. extend the Signal
Temporal Logic (STL) [18] with the possibility to express the time bounds of the
temporal operators and the constants of the inequalities as parameters. They also
provide a geometric approach to identify the subset of the parameter space that
makes a particular signal to satisfy an STL specification. Xu et al. have recently
proposed in [26] a temporal logic framework called CensusSTL for multi-agent
systems that consists of an outer logic STL formula with a variable in the pred-
icate representing the number of agents satisfying an inner logic STL formula.
In the same paper the authors propose also a new inference algorithm similar
to [5] that given the templates for both the inner and outer formulas, searches
for the optimal parameter values that make the two formulas capturing the tra-
jectory data of a group of agents. In [14] the authors use the same parametric
STL extension in combination with the quantitative semantics of STL to per-
form a counter-example guided inductive parameter synthesis. This approach
consists in iteratively generating a counterexample by executing a falsification
tool for a template formula. The counterexample found at each step is then used
to further refine the parameter set and the procedure terminates when no other
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counterexamples are found. In general, all these methods, when working directly
with raw data, are potentially vulnerable to the noise of the measurements and
they are limited by the amount of data available.

Learning both the structure and the parameters of a formula from a dataset
poses even more challenges [7–9,17]. This problem is usually addressed in two
steps, learning the structure of the formula and synthesizing its parameters. In
particular, in [17] the structure of the formula is learned by exploring a directed
acyclic graph and the method exploits Support Vector Machine (SVM) for the
parameter optimization. In [8] the authors use instead a decision tree based app-
roach for learning the formula, while the optimality is evaluated using heuristic
impurity measures.

In our previous works [7,9] we have also addressed the problem of learn-
ing both the structure and the parameters of a temporal logic specification
from data. In [7] the structure of the formula is learned using a heuristics algo-
rithm, while in [9] using a genetic algorithm. The synthesis of the parameters is
instead performed in both cases exploiting the Gaussian Process Upper Confi-
dence Bound (GP-UCB) [24] algorithm, statistically emulating the satisfaction
probability of a formula for a given set of parameters. In both these method-
ologies, it is required to learn first a statistical model from the training set of
trajectories. However, the statistical learning of this model can be a very difficult
task and this is one of the main reason for proposing our new approach.

Our Contribution. In this work, we consider the problem of mining the formula
directly from a data set without requiring to learn a generative model from
data. To achieve this goal, we introduce a number of techniques to improve the
potentials of the genetic algorithm and to deal with the noise in the data in the
absence of an underlying model.

First, instead of using the probability satisfaction as evaluator for the best
formula, we design a discrimination function based on the quantitative semantics
(or robustness) of STL and in particular the average robustness introduced in [6].
The average robustness enables us to differentiate among STL classifiers that
have similar discriminating performance with respect to the data by choosing the
most robust one. This gives us more information than just having the probability
of satisfaction: for each trajectory, we can evaluate how much is it closed to the
“boundary” of the classifier, instead of only checking whether it satisfies or not a
formula. We then modify the discrimination function and the GP-UCB algorithm
used in [7,9] to better deal with noisy data and to use the quantitative semantics
to emulate the average robustness distribution with respect to the parameter
space of the formula.

Second, we reduce the computational cost of the Evolutionary Algorithm
(EA) by using a lightweight configuration (i.e., a low threshold of max number
of iterations) of the GP-UCB optimization algorithm to estimate the parameters
of the formulas at each generation. The EA algorithm generates, as a final result,
an STL formula tailored for classification purpose.

We compare our framework with our previous methodology [9] and with
the decision-tree based approach presented in [8] on an anomalous trajectory
detection problem of a naval surveillance and on an Assisted Ventilation in
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Intensive Care Patients. Our experiments indicate that the proposed approach
outperforms our previous work with respect to accuracy and show that it pro-
duces in general more compact, and easy to read, temporal logic specifications
with respect to the decision-tree based approach with a comparable speed and
accuracy.

Paper Structure. The rest of the paper is organized as follows: in the next
section we present the Signal Temporal Logic and its robust semantics. We then
introduce the problem considered in Section 3. In Sect. 4, we describe our app-
roach. The results are presented in Sect. 5. Finally, we conclude the paper in
Sect. 6, by discussing the implications of our contribution, both from the prac-
tical and the methodological aspect and some directions of improvement.

2 Signal Temporal Logic

STL. Signal Temporal Logic (STL) [18] is a formal specification language to
express temporal properties over real-values trajectories with dense-time inter-
val. For the rest of the paper, let be x : T → R

n a trace/trajectory, where
T = R≥0 is the time domain, xi(t) is the value at time t of the projection on the
ith coordinate, and x = (x1, . . . , xn), as an abuse on the notation, is used also
to indicate the set of variables of the trace considered in the formulae.

Definition 1 (STL syntax). The syntax of STL is given by

ϕ := � | μ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2

where � is the Boolean true constant, μ is an atomic proposition, inequality of
the form y(x) > 0 (y : Rn → R), negation ¬ and conjunction ∧ are the standard
Boolean connectives, and UI is the Until temporal modality, where I is a real
positive interval. As customary, we can derive the disjunction operator ∨ and
the future eventually FI and always GI operators from the until temporal modality
(ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2), FIϕ = �UIϕ, GIϕ = ¬FI¬ϕ).

STL can be interpreted over a trajectory x using a qualitative (yes/no) or a
quantitative (real-value) semantics [11,18]. We report here only the quantitative
semantics and we refer the reader to [11,18,19] for more details.
Definition 2 (STL Quantitative Semantics). The quantitative satisfaction
function ρ returns a value ρ(ϕ,x, t) ∈ R̄,1 quantifying the robustness degree (or
satisfaction degree) of the property ϕ by the trajectory x at time t. It is defined
recursively as follows:

ρ(�,x, t) = +∞
ρ(μ,x, t) = y(x(t)) where μ ≡ y(x(t)) ≥ 0

ρ(¬ϕ,x, t) = − ρ(ϕ,x, t)

ρ(ϕ1 ∧ ϕ2,x, t) = min(ρ(ϕ1,x, t), ρ(ϕ2,x, t))

ρ(ϕ1 U[a,b]ϕ2,x, t) = sup
t′∈t+[a,b]

(min(ρ(ϕ2,x, t′), inf
t′′∈[t,t′)

(ρ(ϕ1,x, t′′))))

Moreover, we let ρ(ϕ,x) := ρ(ϕ,x, 0).
1
R̄ = R ∪ {−∞,+∞}..
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The sign of ρ(ϕ,x) provides the link with the standard Boolean semantics of [18]:
ρ(ϕ,x) > 0 only if x |= ϕ, while ρ(ϕ,x) < 0 only if x �|= ϕ2. The absolute value
of ρ(ϕ,x), instead, can be interpreted as a measure of the robustness of the
satisfaction with respect to noise in signal x, measured in terms of the maximal
perturbation in the secondary signal y(x(t)), preserving truth value. This means
that if ρ(ϕ,x, t) = r then for every signal x′ for which every secondary signal
satisfies maxt |yj(t)−y′

j(t)| < r, we have that x(t) |= ϕ if and only if x′(t) |= ϕ
(correctness property).

PSTL. Parametric Signal Temporal Logic [5] is an extension of STL that
parametrizes the formulas. There are two types of formula parameters: temporal
parameters, corresponding to the time bounds in the time intervals associated
with temporal operators (e.g. a, b ∈ R≥0, with a < b, s.t. F[a,b]μ), and the thresh-
old parameters, corresponding to the constants in the inequality predicates (e.g.,
k ∈ R, μ = xi > k, where xi is a variable of the trajectory). In this paper, we
allow only atomic propositions of the form μ = xi �� k with ��∈ {>,≤}. Given
an STL formula ϕ, let K = (T × C) be the parameter space, where T ⊆ R

nt

≥0 is
the temporal parameter space (nt being the number of temporal parameters),
and C ⊆ R

nk is the threshold parameter space (nk being the number of threshold
parameters). A θ ∈ K is a parameter configuration that induces a corresponding
STL formula; e.g., ϕ = F[a,b](xi > k),θ = (0, 2, 3.5) then ϕθ = F[0,2](xi > 3.5).

Stochastic Robustness. Let us consider an unknown stochastic process
(X(t))t∈T = (X1(t), . . . , Xn(t))t∈T , where each vector X(t) corresponds to the
state of the system at time t. For simplicity, we indicate the stochastic model
with X(t). X(t) is a measurable also as a random variable X on the space
D-valued cadlag functions D([0,∞),D), here denoted by D, assuming the
domain D to be fixed. It means that the set of trajectories x of the stochastic
process X is the set D. Let us consider now an STL formula ϕ, with predicates
interpreted over state variables of X. Given a trajectory x(t) of a stochastic
system, its robustness ρ(ϕ,x, 0) is a measurable functional Rϕ [6] from the tra-
jectories in D to R which defines the real-valued random variable Rϕ = Rϕ(X)
with probability distribution:

P (Rϕ(X) ∈ [a, b]) = P (X ∈ {x ∈ D | ρ(ϕ,x, 0) ∈ [a, b]}) .

Such distribution of robustness degrees can be summarized by the average
robustness degree. Fixing the stochastic process X, E(Rϕ|X), it gives a mea-
sure of how strongly a formula is satisfied. The satisfaction is more robust when
this value is higher. In this paper, we will approximate this expectation by Monte
Carlo sampling.

3 Problem Formulation

In this paper, we focus our attention on learning the best property (or set of prop-
erties) that discriminates trajectories belonging to two different classes, say good
2 The case ρ(ϕ,x) = 0, instead, is a borderline case, and the truth of ϕ cannot be

assessed from the robustness degree alone.



328 L. Nenzi et al.

and bad, starting from a labeled dataset of observed trajectories. Essentially, we
want to tackle a supervised two-class classification problem over trajectories, by
learning a temporal logic discriminant, describing the temporal patterns that
better separate two sets of observed trajectories.

The idea behind this approach is that there exists an unknown procedure
that, given a temporal trajectory, is able to decide if the signal is good or bad.
This procedure can correspond to many different things, e.g., to the reason of
the failure of a sensor that breaks when it receives certain inputs. In general,
as there may not be an STL specification that perfectly explains/mimics the
unknown procedure, our task is to approximate it with the most effective one.

Our approach works directly with observed data, and avoids the reconstruc-
tion of an intermediate generative model p(x|z) of trajectories x conditioned on
their class z, as in [7,9]. The reason is that such models can be hard to construct,
even if they provide a powerful regularization, as they enable the generation of
an arbitrary number of samples to train the logic classifier.

In a purely data-driven setting, to build an effective classifier, we need to
consider that training data is available in limited amounts and it is typically
noisy. This reflects in the necessity of finding methods that guarantee good
generalization performance and avoid overfitting. In our context, overfitting can
result in overly complex formulae, de facto encoding the training set itself rather
than guessing the underlying patterns that separate the trajectories. This can
be faced by using a score function based on robustness of temporal properties,
combined with suitably designed regularizing terms.

We want to stress that the approach we present here, due to the use of the
average robustness of STL properties, can be easily tailored to different problems,
like finding the property that best characterise a single set of observations.

4 Methodology

Learning an STL formula can be separated in two optimization problems: the
learning of the formula structure and the synthesis of the formula parameters.
The structural learning is treated as a discrete optimization problem using an
Genetic Algorithm (GA); the parameter synthesis, instead, considers a continu-
ous parameter space and exploits an active learning algorithm, called Gaussian
Process Upper Confidence Bound (GP-UCB). The two techniques are not used
separately but combined together in a bi-level optimization. The GA acts exter-
nally by defining a set of template formulae. Then, the GP-UCB algorithm,
which acts at the inner level, finds the best parameter configuration such that
each template formula better discriminates between the two datasets. For both
optimizations, we need to define a score function to optimize, encoding the cri-
terion to discriminate between the two datasets.

Our implementation, called RObustness GEnetic (ROGE) algorithm is
described in Algorithm 1. First, we give an overview of it and then we described
each specific function in the next subsections. The algorithm requires as input
the dataset Dp(good) and Dn(bad), the parameter space K, with the bound of
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Algorithm 1. ROGE – RObustness GEnetic
Require: Dp, Dn,K, Ne, Ng, α, s
1: gen ← generateInitialFormulae(Ne, s)
2: genΘ ← learningParameters(gen, G,K)
3: for i = 1 . . . Ng do
4: subgΘ ← sample(genΘ, F )
5: newg ← evolve(subgΘ, α)
6: newgΘ ← learningParameters(newg, G,K)
7: genΘ ← sample(newgΘ ∪ genΘ, F )
8: end for
9: return genΘ

each considered variable, the size of the initial set of formulae Ne, the num-
ber of maximum iterations Ng, the mutation probability α and the maximum
initial formula size s. The algorithm starts generating (line 1) an initial set of
PSTL formulae, called gen. For each of these formulae (line 2), the algorithm
learns the best parameters accordingly to a discrimination function G. We call
genΘ the generation for which we know the best parameters of each formula.
During each iteration, the algorithm (line 4), guided by a fitness function F,
extracts a subset subgΘ composed by the best Ne/2 formulae, from the initial
set genΘ. From this subset (line 5), a new set newg composed of Ne formulae is
created by employing the Evolve routine, which implements two genetic oper-
ators. Then (line 6), as in line 2, the algorithm identifies the best parameters of
each formula belonging to newg. The new generation newgΘ and the old gener-
ation genΘ are then merged together (line 7). From this set of 2Ne formulae the
algorithm extracts, with respect to the fitness function F , the new generation
genΘ of Ne formulae. At the end of the iterations or when the stop criterion
is true (lines 8–12), the algorithm returns the last generated formulae. The best
formula is the one with the highest value of the discrimination function, i.e.,
ϕbest = argmaxϕθ ∈genΘ

(G(ϕθ )). We describe below in order: the discrimination
function algorithm, the learning of the parameters of a formula template and
the learning of the formula structure.

4.1 Discrimination Function G(ϕ)

We have two datasets Dp and Dn and we search for the formula ϕ that better
separates these two classes. We define a function able to discriminate between
this two datasets, such that maximising this discrimination function corresponds
to finding the best formula classifier. In this paper, we decide to use, as evaluation
of satisfaction of each formula, the quantitative semantics of STL. As described
in Sect. 2, this semantics computes a real-value (robustness degree) instead of
only a yes/no answer.

Given a dataset Di, we assume that the data comes from an unknown stochas-
tic process Xi. The process in this case is like a black-box for which we observe
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only a subset of trajectories, the dataset Di. We can then estimate the averages
robustness E(Rϕ|Xi) and its variance σ2(Rϕ|Xi), averaging over Di.

To discriminate between the two dataset Dp and Dn, we search the formula ϕ
that maximizes the difference between the average robustness of Xp, E(Rϕ|Xp),
and the average robustness of Xn, E(Rϕ|Xn) divided by the sum of the respective
standard deviation:

G(ϕ) =
E(Rϕ|Xp) − E(Rϕ|Xn)
σ(Rϕ|Xp) + σ(Rϕ|Xn)

. (1)

This formula is proportional to the probability that a new point sampled from
the distribution generating Xp or Xn, will belong to one set and not to the
other. In fact, an higher value of G(ϕ) implies that the two average robustness
will be sufficiently distant relative to their length-scale, given by the standard
deviation σ.

As said above, we can evaluate only a statistical approximation of G(ϕ)
because we have a limited number of samples belonging to Xp and Xn. We will
see in the next paragraph how we tackle this problem.

4.2 GB-UCP: Learning the Parameters of the Formula

Given a formula ϕ and a parameter space K, we want to find the parameter con-
figuration θ ∈ K that maximises the score function g(θ) := G(ϕθ ), considering
that the evaluations of this function are noisy. So, the question is how to best
estimate (and optimize) an unknown function from observations of its value at
a finite set of input points. This is a classic non-linear non-convex optimization
problem that we tackle by means of the GP-UCB algorithm [24]. This algorithm
interpolates the noisy observations using a stochastic process (a procedure called
emulation in statistics) and optimize the emulated function using the uncertainty
of the fit to determine regions where the true maximum can lie. More specifi-
cally, the GP-UCB bases its emulation phase on Gaussian Processes, a Bayesian
non-parametric regression approach [21], adding candidate maximum points to
the training set of the GP in an iterative fashion, and terminating when no
improvement is possible (see [24] for more details).

After this optimization, we have found a formula that separates the two
datasets, not from the point of view of the satisfaction (yes/no) of the formula
but from the point of view of the robustness value. In other words, there is a
threshold value α such that E(Rϕ|Xp) > α and E(Rϕ|Xn) ≤ α. Now, we consider
the new STL formula ϕ′ obtained translating the atomic predicates of ϕ by α
(e.g., y(x) > 0 becomes y(x)−α > 0). Taking into account that the quantitative
robustness is achieved by combination of min, max, inf and sup, which are
linear algebraic operators with respect to translations (e.g., min(x, y) ± c =
min(x ± c, y ± c)), we easily obtain that E(Rϕ′ |Xp) > 0 and E(Rϕ′ |Xb) < 0.
Therefore, ϕ′ will divide the two datasets also from the point of view of the
satisfaction.
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4.3 Genetic Algorithm: Learning the Structure of the Formula

To learn the formula structure, we exploit a modified version of the Genetic
Algorithm (GA) presented in [9]. GAs belongs to the larger class of evolution-
ary algorithms (EA). They are used for search and optimization problems. The
strategy takes inspiration from the genetic area, in particular in the selection
strategy of species. Let us see now in detail the genetic routines of the ROGE
algorithm.

gen = generateInitialFormulae(Ne, s). This routine generates the ini-
tial set of Ne formulae. A fraction nl < Ne of this initial set is constructed
by a subset of the temporal properties: FIμ, GIμ, μ1UIμ2, where the atomic
predicates are of the form μ = (xi > k) or μ = (xi ≤ k) or simple boolean
combinations of them (e.g. μ = (xi > ki)∧ (xj > kj)). The size of this initial set
is exponential accordingly to the number of considered variables xi. If we have
few variables we can keep all the generated formulae, whereas if the number of
variables is large we consider only a random subset. The remain nr = Ne − nl

formulae are chosen randomly from the set of formulae with a maximum size
defined by the input parameter s. This size can be adapted to have a wider
range of initial formulae.

subgΘ = sample(genΘ, F ). This procedure extracts from genΘ a subset subgΘ

of Ne/2 formulae, according to a fitness function F (ϕ) = G(ϕ) − S(ϕ). The
first factor G(ϕ) is the discrimination function previously defined and S(ϕ) is
a size penalty, i.e. a function penalizes formulae with large sizes. In this paper,
we consider S(ϕ) = g · psize(ϕ), where p is heuristically set such that p5 = 0.5,
i.e. formulae of size 5 get a 50% penalty, and g is adaptively computed as the
average discrimination in the current generation. An alternative choice of p can
be done by cross-validation.

newg = evolve(subgΘ, α). This routine defines a new set of formulae (newg)
starting from subgΘ, exploiting two genetic operators: the recombination and
the mutation operator. The recombination operator takes as input two formulae
ϕ1, ϕ2 (the parents), it randomly chooses a subtree from each formula and it
swaps them, i.e. it assigns the subtree of ϕ1 to ϕ2 and viceversa. As a result,
the two generated formulae (the children) share different subtrees of the parents’
formulae. The mutation operator takes as input one formula and induce a change
on a randomly selected node of its tree-structure. Specifically, it substitutes the
node with a random formula (atomic predicates μ or temporal properties of the
form FIμ, GIμ, μ1UIμ2). The purpose of the genetic operators is to introduce
innovation in the offspring population which leads to the optimization of a target
function (G in this case). In particular, recombination is related to exploitation,
whereas mutation to exploration. The evolve routine implements an iterative
loop that at each iteration selects which genetic operators to apply. A number
p ∈ [0, 1] is randomly sampled. If its value is lower than the mutation probability,
i.e., p ≤ α, then the mutation is selected, otherwise a recombination is performed.
At this point the input formulae of the selected genetic operator are chosen
randomly between the formulas composing subgΘ and the genetic operators are
applied. In our implementation, we give more importance to the exploitation;
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therefore the mutation acts less frequently than the recombination (i.e., α ≤ 0.1).
The iteration loops will stop when the number of generated formula is equal to
Ne, i.e. twice the cardinality of subgΘ.

5 Case Studies and Experimental Results

5.1 Maritime Surveillance

As first case study, We consider the maritime surveillance problem presented
in [8] to compare our framework with their Decision Tree (DTL4STL) approach.
The experiments with the DTL4STL approach were implemented in MATLAB, the
code is available at [1]. We also test our previous implementation presented in [9]
with the same benchmark. Both the new an the previous learning procedure were
implemented in Java (JDK 1.8_0) and run on a Dell XPS, Windows 10 Pro,
Intel Core i7-7700HQ 2.8GHz, 8GB 1600MHz memory.

The synthetic dataset of naval surveillance reported in [8] consists of
2-dimensional coordinates traces of vessels behaviours. It considers two kind
of anomalous trajectories and regular trajectories, as illustrated in Fig. 1. The
dataset contains 2000 total trajectories (1000 normal and 1000 anomalous) with
61 sample points per trace. We run the experiments using a 10-fold cross-
validation in order to collect the mean and variance of the misclassified tra-
jectories of the validation set. Results are summarized in Table 1, where we
report also the average execution time. We test also our previous implemen-
tation [9] without a generative model from data. It performs so poorly on the
chosen benchmark that is not meaningful to report it: the misclassification rate
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Fig. 1. The regular trajectories are represented in green. The anomalous trajectories
which are of two kinds, are represented respectively in blue and red. (Color figure
online)
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Table 1. The comparison of the computational time (in sec), the mean misclassification
rate and its standard deviation between the learning procedure using the RObust
GEnetic algorithm, the Decision-Tree (DTL4STL) MATLAB code provided by the authors
and the results reported in [8] (DTL4STLp).

ROGE DTL4STL DTL4STLp

Mis. Rate 0 0.01 ± 0.013 0.007 ± 0.008

Comp. Time 73 ± 18 144 ± 24 -

on the validation set is around 50%. In Table 1, we also report DTL4STLp the
DTL4STL performance declared in [8], but we were not be able to reproduce
them in our setting.

In terms of accuracy our approach is comparable with respect to the per-
formance of the DTL4STL. In terms of computational cost, the decision tree
approach is slightly slower but it is implemented in MATLAB rather than Java.

An example of formula that we learn with ROGE is

ϕ = ((x2 > 22.46)U[49,287] (x1 ≤ 31.65)) (2)

The formula (2) identifies all the regular trajectories, remarkably resulting in a
misclassification error equal to zero, as reported in Table 1. The red anomalous
trajectories falsify the predicate x2 > 22.46 before verifying x1 ≤ 31.65, on the
contrary the blue anomalous trajectories globally satisfy x2 > 22.46 but never
verify x1 ≤ 31.65 (consider that all the vessels start from the top right part of
the graphic in Fig. 1). Both these conditions result in the falsification of Formula
(2), which on the contrary is satisfied by all the regular trajectories. In Fig. 1,
we have reported the threshold x2 = 22.46 and x1 = 31.65.

An example instead of formula found by the DTL4STL tool using the same
dataset is the following:

ψ = (((G[187,196)x1 < 19.8) ∧ (F[55.3,298)x1 > 40.8)) ∨ ((F[187,196)x1 > 19.8)
∧((G[94.9,296)x2 < 32.2) ∨ ((F[94.9,296)x2 > 32.2) ∧ (((G[50.2,274)x2 > 29.6)
∧(G[125,222)x1 < 47)) ∨ ((F[50.2,274)x2 < 29.6) ∧ (G[206,233)x1 < 16.7)))))

The specific formula generated using ROGE is simpler than the formula
generated using DTL4STL and indeed it is easier to understand it. Furthermore
DTL4STL does not consider the until operator in the set of primitives (see [8]
for more details).

5.2 Ineffective Inspiratory Effort (IIE)

The Ineffective Inspiratory Effort (IIE) is one of the major problems concerning
the mechanical ventilation of patients in intensive care suffering from respiratory
failure. The mechanical ventilation uses a pump to help the patient in the process
of ispiration and expiration, controlling the flow of air into the lugs and the
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Fig. 2. Example of regular (blue regions) and ineffective (red region) breaths. (Color
figure online)

airway pressure, called paw. Inspiration is characterised by growth of pressure
up to the selected paw value and positive flow , while expiration has a negative
flow and a drop paw. The exact dynamics of these respiratory curves stricly
depends on patient and on ventilatory modes. We can see an example in Fig. 2 of
two regular (blue regions) and one ineffective (red region) breaths. An IIE occurs
when the patients tries to inspire, but its effort is not sufficient to trigger the
appropriate reaction of the ventilator. This results in a longer expiration phase.
Persistence of IIE may cause permanent damages of the respiratory system.

An early detection of anomalies using low-cost methods is a key challenge to
prevent IIE conditions and still an open problem. In [9], starting with a dataset
of discrete time series and sampled flow values (labeled good and bad) from
a single patient, the authors statically designed generative models of flow and
of its derivative flow ′, for regular and ineffective signals. Then they used the
simulations of such models to identify the best formula/formulae discriminating
between them. In that contribution trajectories with different lengths are con-
sidered, treating as false trajectories that are too short to verify a given formula,
and use this to detect the length of trajectories and separate anomalous breaths
which last longer than regular ones. However, using the information about the
duration of a breath is not advisable if the goal is to monitor the signals at
runtime and detect the IEE at their onset. For this reason, in our approach we
consider a new dataset, cutting the original trajectories used to generate the
stochastic model in Bufo et al. [9] to a maximum common length of the order of
2 s. We also apply a moving average filter to reduce the noise in the computation
of flow ′.

Specifically, the new dataset consists of 2-dimensional traces of flow and
its derivative, flow ′, containing a total of 288 trajectories (144 normal and 144
anomalous) with 134 sample points per trace. The time scale is in hundredths
of a second. We run the experiments using a 6-fold cross-validation and report
our results and comparison on the new dataset with DTL4STL [8] in Table 2.

An example of formula that we learn with ROGE is:

ϕ = F[31,130]((flow ≥ −670) ∨ (flow ′ ≤ −94)) (3)

Formula ϕ identifies the anomalous trajectories, stating that at a time
between 31 s and 130 s either flow is higher than −670 or flow ′ is below −94.
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Table 2. The comparison of the computational time (in sec), the mean misclassification
rate and its standard deviation between the learning procedure using the RObust
GEnetic algorithm.

ROGE DTL4STL

Mis. Rate 0.17 ± 0.01 0.23 ± 0.07

False. Pos 0.20 ± 0.02 0.23 ± 0.07

False. Neg 0.14 ± 0.02 0.20 ± 0.15

Comp. Time 65 ± 7 201 ± 7

Fig. 3. 100 regular (green) and 100 ineffective (red) flow and flow ′ trajectories during
the expiration phase. The light blue rectangles correspond to the satisfaction area
of formula (3). One regular (green) and one ineffective (red) trajectories are showed
thicker. (Color figure online)

This is in accordance with the informal description of an IIE, principally caused
by an unexpected increment of the flow during the expiration phase followed by
a rapid decrease. Indeed, one of the main characteristic of an IIE is the presence
of a small hump in the flow curve during this phase. In Fig. 3 we report some of
the trajectories of the dataset, showing the areas where the property is satisfied.

On average, formulae found by the DTL4STL tool on the new dataset are
disjunctions or conjunctions of 10 eventually or always subformulae, which are
not readily interpretable.

Our approach on the new dataset is better in term of accuracy and compu-
tation time with an improvement of 22% and 67%, respectively.

Similarly to the previous test case, we compare our approach with [9], per-
formed directly on the dataset, and not on the generative model. That approach
performs so poorly also in this benchmark, obtaining a misclassification rate of
0.47, which is comparable with a random classifier. The problem here is that
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the methods proposed in [9], differently from the one presented here, relies on
a large number of model simulations, and it is not suited to work directly with
observed data.

If we give up to online monitoring and consider only full breaths, we can
improve classification by rescaling their duration into [0, 1], so that each breath
lasts the same amount of time. In this case, we learn a formula with misclassi-
fication rate of 0.05 ± 0.01, while DTL4STL reaches a misclassification rate of
0.07 ± 0.02. This suggests that the high variability of durations of ineffective
breaths has to be treated more carefully.

6 Conclusion

We present a framework to learn from a labeled dataset of normal and anomalous
trajectories a Signal Temporal Logic (STL) specification that better discriminates
among them. In particular, we design a Robust Genetic algorithm (ROGE) that
combines an Evolutionary Algorithm (EA) for learning the structure of the for-
mula and the Gaussian Process Upper Confidence Bound algorithm (GP-UCB)
for synthesizing the formula parameters. We compare ROGE with our previous
work [9] and with the Decision Tree approach presented in [8] on an anoma-
lous trajectory detection problem of a maritime surveillance system and on an
Ineffective Inspiratory Effort example.

A significant difference concerning our previous approach [7,9] is that we
avoid reconstructing a generative statistical model from the dataset. Further-
more, we modified both the structure and parameter optimization procedure of
the genetic algorithm, which now relays on the robustness semantics of STL.
This structural improvement was necessary considering that a naive application
of our previous approach [9] directly on datasets performs very poorly.

We compare our method also with the Decision Tree (DTL4STL) approach
of [8] obtaining a low misclassification rate and producing smaller and more
interpretable STL specifications. Furthermore, we do not restrict the class of
the temporal formula to only eventually and globally and we allow arbitrary
temporal nesting.

Our genetic algorithm can get wrong results if the formulae of the initial
generation are chosen entirely randomly. We avoid this behavior by considering
simpler formulae from the beginning as a result of the generateInitialFormu-
lae routine. This approach is a form of regularization and resembles the choice
of the set of primitive of DTL4STL.

As future work, we plan to develop an iterative method which uses the pro-
posed genetic algorithm and the robustness of STL to reduce the misclassification
rate of the generated formula. The idea is to use the robustness value of a learned
formula ϕ to identify the region of the trajectory space D where the generated
formula ϕ has a high accuracy, i.e. trajectories whose robustness is greater than a
positive threshold h+ or smaller than a negative threshold h−. These thresholds
can be identified by reducing the number of false positives or false negatives. We
can then train a new STL classifier ϕ′ on the remaining trajectories, having small
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robustness for ϕ. This will create a hierarchical classifier, that first tests on ϕ, if
robustness is too low it tests on ϕ′, and so on. The depth of such classification
is limited only by the remaining data at each step. The method can be further
strengthen by relying on bagging to generate an ensemble of classifiers at each
level, averaging their predictions or choosing the best answer, i.e. the one with
larger robustness.
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Abstract. Semi-Markov decision processes (SMDPs) are continuous-
time Markov decision processes where the residence-time on states is
governed by generic distributions on the positive real line.

In this paper we consider the problem of comparing two SMDPs with
respect to their time-dependent behaviour. We propose a hemimetric
between processes, which we call simulation distance, measuring the least
acceleration factor by which a process needs to speed up its actions in
order to behave at least as fast as another process. We show that this
distance can be computed in time O(n2(f(l) + k) + mn7), where n is
the number of states, m the number of actions, k the number of atomic
propositions, and f(l) the complexity of comparing the residence-time
between states. The theoretical relevance and applicability of this dis-
tance is further argued by showing that (i) it is suitable for compositional
reasoning with respect to CSP-like parallel composition and (ii) has a
logical characterisation in terms of a simple Markovian logic.

1 Introduction

Semi-Markov decision processes (SMDPs) are Markovian stochastic decision pro-
cesses modelling the firing time of transitions via real-valued random variables
describing the residence-time on states. Semi-Markov decision processes pro-
vide a more permissive model than continuous-time Markov decision processes,
since they allow as residence-time distributions any generic distribution on the
positive real line, rather than only exponential ones. The generality offered by
SMDPs has been found useful in modelling several real-case scenarios. Successful
examples include power plants [19] and power supply units [20], to name a few.

When considering such real-time stochastic processes, non-functional require-
ments are important, particularly requirements like response time and through-
put, which depend on the timing behaviour of the process. We therefore wish to
understand and be able to compare the timing behaviour of different processes.

To cope with the need for comparing the timing behaviour of different sys-
tems, in this paper we propose and study a quantitative extension of the simula-
tion relation by Baier et al. [2], called ε-simulation, which puts the focus on the
timing aspect of processes. The intuition is that a process s2 ε-simulates another
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process s1 if after accelerating the actions of s2 by a factor ε > 0 it reacts to the
inputs from the external environment as s1 with at least the same speed.

This type of quantitative reasoning is not new in the literature, and it dates
back to the seminal work of Jou and Smolka [9,14], who proposed the concept of
probabilistic ε-bisimulation. This line of work has lead to much work on prob-
abilistic bisimulation distances [5,7,8]. While our work is conceptually similar
to the bisimulation distances, it is technically very different. This is because
bisimulation distances are constructed from a coalgebraic view as fixed points of
operators. However, for the kind of timed systems that we are investigating, the
coalgebraic perspective is much less understood. Moreover, since our distance
generalises a preorder relation and not a congruence as the other distances do,
it is not symmetric, which brings in new technical challenges.

Following the work of Jou and Smolka, our notion of ε-simulation naturally
induces a distance between processes: For any pair of states s1 and s2, we define
their simulation distance as the least acceleration factor needed by s2 to speed
up its actions in order to behave at least as fast as s1. This definition does not
provide a distance in the usual sense, but rather a multiplicative hemimetric,
i.e. an asymmetric notion of distance satisfying a multiplicative version of the
triangle inequality. Such a notion is not new, as it is extensively applied in the
context of differential privacy to measure information leakage of systems (see
e.g. [1,4]).

The theoretical relevance and applicability of the simulation distance is
argued by means of the following results, which are the main technical con-
tributions of the paper:

1. We provide an algorithm for computing the simulation distance between arbi-
trary states of an SMDP running in time O(n2(f(l) + k) + mn7), where n is
the number of states, m the number of actions, k the number of atomic propo-
sitions, and f(l) the complexity of comparing the residence time distributions
on states.

2. We show that under some mild conditions on how residence-time distribu-
tions are combined in the parallel composition of two states, CSP-like parallel
composition of SMDPs is non-expansive with respect to our hemimetric. This
shows that the simulation distance is suitable for compositional reasoning.

3. We provide a logical characterisation of the distance in terms of a simple
Markovian logic, stating that the distance from s1 to s2 is less than or equal
to ε if and only if s2 satisfies the ε-perturbation of any logical property that s1
satisfies. Moreover, we prove that ε-simulation preserves the ε-perturbation
of time-bounded reachability properties.

A full version of the paper containing all the technical proofs can be found at [18].

Notation and Preliminaries. Let IN denote the natural numbers, Q≥0 the
non-negative rational numbers, IR≥0 the non-negative real numbers, and IR>0

the strictly positive ones. Given a set X, we will denote by D(X) the set of all
probability measures on X. If μ ∈ D(IR≥0), then the cumulative distribution
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function (CDF) will be denoted by Fμ and is given by Fμ(t) = μ([0, t]). For
x ∈ IR≥0, we will write δx for the Dirac measure at x, which is defined by
δx(E) = 1 if x ∈ E and δx(E) = 0 otherwise. For any θ ∈ IR>0, we will write
Exp[θ] for the CDF of an exponential distribution with rate θ, and for a, b ∈ IR≥0

such that a < b, we will write Unif [a, b] for the CDF of a uniform distribution.
We will use the convention that ∞ + x = ∞ for x ∈ IR≥0 and ∞ · y = ∞

for y ∈ IR>0. A function d : X × X → IR≥0 ∪ {∞} is called a hemimetric if it
satisfies d(x, x) = 0 and the triangle inequality d(x, z) ≤ d(x, y) + d(y, z). It is
called a pseudometric if it is also symmetric, i.e. d(x, y) = d(y, x), and it is called
a metric if it is symmetric and furthermore d(x, y) = 0 if and only if x = y.

2 Semi-Markov Decision Processes

In this section, we introduce semi-Markov decision processes, which are continu-
ous-time reactive probabilistic systems. A semi-Markov decision process has res-
idence time on states governed by generic distributions on the positive real line
and reacts to inputs from an external environment by making a probabilistic
transition to a next state.

Hereafter, we consider a non-empty finite set of input actions A, and a non-
empty, finite set of atomic propositions AP .

Definition 1. A semi-Markov decision process (SMDP) is given by a tuple
M = (S, τ, ρ, L) where

– S is a non-empty, countable set of states,
– τ : S × A → D(S) is the transition function,
– ρ : S → D(IR≥0) is the residence-time function, and
– L : S → 2AP is the labelling function.

The operational behaviour of an SMDP is as follows. The SMDP at a given
state s ∈ S, after receiving an input a ∈ A, goes to state s′ ∈ S within time
t with probability τ(s, a)(s′) · ρ(s)([0, t]). An SMDP is said to be finite if it
has a finite set of states. For s ∈ S, we will write Fs for the CDF of ρ(s), i.e.
Fs(t) = ρ(s)([0, t]).

Continuous-time Markov decision processes are a special case of SMDPs in
which all residence-time functions are exponentially distributed, and discrete-
time Markov decision processes are a special case of SMDPs where the residence-
time distribution in each state is the Dirac measure at 0, representing the fact
that transitions are taken instantaneously.

In defining simulation and bisimulation for SMDPs, we will use ingredients
from the definition of simulation and bisimulation for Markov decision processes
[21] and simulation and bisimulation for continuous-time Markov chains [3]. How-
ever, since we are also generalising to arbitrary distributions on time rather than
just exponential distributions, the condition on rates for exponential distribu-
tions must be replaced with a more general condition on the distributions. There
is a rich literature on so-called stochastic orders [22], which impose an ordering
on random variables. We will consider here the most commonly used of these,
known as the usual stochastic order.
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Definition 2. For an SMDP M = (S, τ, ρ, L), a relation R ⊆ S × S is a simu-
lation (resp. bisimulation) on M if for all (s1, s2) ∈ R we have

1. L(s1) = L(s2),
2. Fs2(t) ≥ Fs1(t) (resp. Fs2(t) = Fs1(t)) for all t ∈ IR≥0, and
3. for all a ∈ A there exists a weight function or coupling Δa : S × S → [0, 1]

between τ(s1, a) and τ(s2, a) such that
(a) Δa(s, s′) > 0 implies (s, s′) ∈ R,
(b) τ(s1, a)(s) =

∑
s′∈S Δa(s, s′) for all s ∈ S, and

(c) τ(s2, a)(s′) =
∑

s∈S Δa(s, s′) for all s′ ∈ S.

We say that s2 simulates (resp. is bisimilar to) s1, written s1 	 s2 (resp.
s1 ∼ s2), if there is a simulation (resp. bisimulation) relation containing (s1, s2).

It is easy to show that the similarity relation 	 is the largest simulation rela-
tion, and analogously that the bisimilarity relation ∼ is the largest bisimulation
relation. The coupling ensures that the simulation relation is preserved by suc-
cessor states. Intuitively, s1 simulates s2 if the CDF of ρ(s2) is pointwise greater
than or equal to the CDF of ρ(s1), and the transition probability distribution
of s1 can be matched by the transition probability function s2 by means of a
coupling, in such a way that if two successor states s′

1 and s′
2 have a non-zero

coupling, then s′
1 again simulates s′

2. For bisimulation, we instead require that
the CDFs behave exactly the same in each step.

Given a set C ⊆ S and a relation R ⊆ S × S, let

R(C) = {s′ ∈ S | (s, s′) ∈ R for some s ∈ C}
be the R-closure of C. If R is a preorder, R(C) is the upward closure of C.

The following result, which is a trivial generalisation of [25, Lemma 4.2.4],
gives a different but equivalent definition of simulation which is sometimes useful.

Proposition 1. For finite S, R ⊆ S × S is a simulation relation if and only if
for any (s1, s2) ∈ R the first two conditions for simulation are satisfied and

τ(s1, a)(C) ≤ τ(s2, a)(R(C)) , for all C ⊆ S.

The following generalises [3, Proposition 25(3)] to the case of SMDPs.

Proposition 2. 	 ∩ 	−1 = ∼.

The above is analogous to a result stating that bisimulation and simulation
equivalence coincide for deterministic labelled transition systems [2]. In our case,
Proposition 2 holds because reactive systems are inherently deterministic.

3 Comparing the Speed of Residence-Time Distributions

For comparing the random variables describing the residence time on states,
the similarity relation uses the usual stochastic order: if s1 	 s2 then, for all
t ∈ IR≥0, Fs1(t) ≤ Fs2(t). In words, if s2 simulates s1, it is more likely that
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s2 will take a transition before s1, that is, s2 is stochastically faster than s1 in
reacting to an input.

In this section, we propose a different way of comparing residence-time dis-
tributions. The idea is to get quantitative information about how much a distri-
bution should be accelerated to become at least as fast as another distribution.

Definition 3. Let F and G be CDFs and ε ∈ IR>0. We say that F is ε-faster
than G, written F �ε G, if for all t we have F (ε · t) ≥ G(t).

Consider two states s1 and s2, having residence time governed by the distribu-
tions Fs1 and Fs2 , respectively, and assume that Fs1 �ε Fs2 holds. If 0 < ε ≤ 1,
then this means that s1 is stochastically faster than s2, even if the residence
time in s1 is slowed down by a factor ε. If instead we have ε > 1, then s1 is
stochastically slower than s2, but if we accelerate its residence-time distribution
by a factor ε, then it becomes stochastically faster than s2.

In the rest of the section we will argue that �ε is a good notion for gather-
ing quantitative information about the speed of residence-time distributions on
states. We will do this by comparing the most common distributions used in the
literature for modelling residence time on states on stochastic systems: Dirac
distributions, exponential distributions, and uniform distributions.

The Dirac measure at zero is the fastest measure, in the following sense.

Proposition 3. Let F be any CDF. The following holds for any ε ∈ IR>0.

1. Dirac[0] �ε F .
2. If F = Dirac[0], then F �ε Dirac[0].

For comparing exponential distributions, it is simple to show that it is enough
to accelerate by the ratio between the two rates. The same is true for uniform
distributions, except we also need to consider whether the uniform distributions
start at 0, since if a uniform distribution starts at 0, then we can only hope to
make another uniform distribution faster than it if this other uniform distribution
also starts at 0.

Proposition 4

1. Exp[θ1] �ε Exp[θ2], where ε = θ2
θ1

.
2. If c = 0 and a > 0, then Unif [a, b] �ε Unif [c, d] for any ε ∈ IR>0.
3. If c = 0 and a = 0, then Unif [a, b] �ε Unif [c, d], where ε = b

d .
4. If c > 0, then Unif [a, b] �ε Unif [c, d], where ε = max

{
a
c , b

d

}
.

In all cases, the given ε is the least such that the ε-faster than relation holds.

Moreover, an exponential distribution can never be made faster than a uni-
form distribution, since uniform distributions become 1 eventually, whereas expo-
nential distributions tend asymptotically to 1 but never reach it. Furthermore,
whether or not a uniform distribution can be made faster than an exponential
distribution depends on its value at 0.
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Proposition 5

1. Exp[θ] �ε Unif [a, b] for all ε ∈ IR>0.
2. If a > 0, then Unif [a, b] �ε Exp[θ] for all ε ∈ IR>0.
3. If a = 0, then Unif [a, b] �ε Exp[θ], where ε = θ · b. Furthermore, this is the

least ε such that the ε-faster-than relation holds.

The ε-faster-than relation enjoys a kind of monotonicity property, which is
simply a consequence of the fact that CDFs are increasing.

Lemma 1. Let ε ≤ ε′ and assume that F �ε G. Then F �ε′ G.

The probability distribution of the sum of two independent random variables
is the convolution of their individual distributions. The general formula for the
convolution of two measures μ and ν on the real line is given by

(μ ∗ ν)(E) =
∫ ∞

0

ν(E − x) μ(dx).

Notably, the ε-faster-than relation is a congruence with respect to convolution
of measures.

Proposition 6. If Fμ1 �ε Fμ2 and Fν1 �ε Fν2 , then F(μ1∗ν1) �ε F(μ2∗ν2).

In Sect. 7.1 we will see that the above property is essential for the preservation
of reachability properties. Intuitively, this is because convolution corresponds to
sequential composition of the residence-time behaviour.

There are other possible ways to compare the relative speed of residence-
time distributions quantitatively. In the following we explore some alternative
definitions of the notion of the ε-faster-than relation, and argue that none of
them are preferable to the one given in Definition 3. Given two CDFs F and G,
we consider the following three alternative definitions of F �ε G:

1. for all t, F (t) · ε ≥ G(t),
2. for all t, F (t) + ε ≥ G(t), and
3. for all t, F (ε + t) ≥ G(t).

If �ε is defined as in (3), then we see that Unif [a, b] �ε Unif [c, d], for any
ε ∈ IR>0 whenever c < a. This is because Unif [a, b] (a) · ε = 0 < Unif [c, d] (a).
Hence we lose the properties of Proposition 4.

If �ε is defined as in (3), we trivially get that whenever ε ≥ 1, F �ε G, for
any two CDFs F and G. Hence (2) is only interesting for 0 ≤ ε < 1. However,
even in this case we would still lose the properties of Proposition 4. Indeed,
whenever a ≥ d, Unif [a, b] �ε Unif [c, d], for any 0 ≤ ε < 1. This follows because
Unif [a, b] (a) + ε = ε < 1 = Unif [c, d] (a).

Lastly, if �ε is defined as in (3), then it would not be a congruence with
respect to convolution of distributions, i.e., Proposition 6 would not hold. For a
counterexample, take Fμ1 = Unif [2, 4], Fμ2 = Unif [1, 3], Fν1 = Unif [3, 4], and
Fν2 = Unif [2, 4]. Then Fμ1 �1 Fμ2 and Fν1 �1 Fν2 , but F(μ1∗μ2) �1 F(ν1∗ν2).
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4 A Hemimetric for Semi-Markov Decision Processes

In this section, we are going to extend the definition of simulation relation
between SMDPs to the quantitative setting. We will see that this relation natu-
rally induces a notion of distance between SMDPs, describing the least accelera-
tion factor required globally on the residence-time distributions to make a given
SMDP as fast as another one.

Definition 4. Let ε ∈ IR>0. For an SMDP M = (S, τ, ρ, L), a relation R ⊆
S ×S is a ε-simulation relation on M if for all (s1, s2) ∈ R we have that the first
and third condition for simulation are satisfied, and Fs2 �ε Fs1 . We say that s2
ε-simulates s1, written s1 	ε s2, if there is a ε-simulation relation R such that
(s1, s2) ∈ R.

Example 1. Let A = {a} and consider the SMDP M = (S, τ, ρ, L) given by
S = {s1, s2}, τ(s1, a)(s1) = 1 = τ(s2, a)(s2), Fs1 = Exp[4], Fs2 = Exp[2], and
L(s1) = L(s2). By Proposition 4 we see that s1 	2 s2 and s2 	 1

2
s1.

It is easy to show that the ε-similarity relation 	ε is the largest simulation
relation, and with the previous section in mind, one immediately sees that 	1

coincides with 	. Moreover, the following holds.

Proposition 7. For any ε ≤ 1, if s1 	ε s2, then s1 	 s2.

If ε > 1, the above implication does not hold. For an easy counterexample
consider s1 and s2 from Example 1 where s1 	2 s2 but s1 	 s2.

For ε > 1, we can obtain a result similar to Proposition 7 only if we “accel-
erate” the overall behaviour of s2. Formally, for a given SMDP M = (S, τ, ρ, L),
we define the SMDP Mε = (Sε, τε, ρε, Lε) as follows:

Sε = S ∪ {(s)ε | s ∈ S},

Lε(s) = L(s),
Lε((s)ε) = L(s),

ρε(s)([0, t]) = ρ(s)([0, t]),
ρε((s)ε)([0, t]) = ρ(s)([0, ε · t]),

τε(s, a)(s′) = τ(s, a)(s′),
τε(s, a)((s′)ε) = 0,
τε((s)ε, a)(s′) = 0,

τε((s)ε, a)((s′)ε) = τ(s, a)(s′).

Intuitively, the states s ∈ S in Mε are identical copies of those in M , whereas
the states (s)ε react to each input a ∈ A functionally identically to s but faster,
since the residence-time on the states are all equally accelerated by a factor ε,
thus (s)ε 	ε s. For this reason (s)ε is called the ε-acceleration of s.

Given the definition of accelerated state, Proposition 7 can be generalised to
arbitrary values of ε ∈ IR>0 in the following way.

Proposition 8. For any ε ∈ IR>0, s1 	ε s2 if and only if s1 	 (s2)ε.

The relevance of the above statement is twofold: it clarifies the relation
between 	ε and 	, and also provides a way to modify the behaviour of a state
s2 of an SMDP in order to simulate a state s1 whenever s1 	ε s2 holds.
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Having this characterisation of similarity in terms of acceleration of processes
one can think about the following problem: given two states, s1 and s2 such that
s1 	 s2, what is the least ε ≥ 1 (if it exists) such that s1 	 (s2)ε holds? We can
answer this question by means of the following distance.

Definition 5. The simulation distance d : S ×S → [1,∞] between two states s1
and s2 is given by

d(s1, s2) = inf{ε ≥ 1 | s1 	ε s2}.

As usual, if there is no ε ≥ 1 such that s1 	ε s2, then d(s1, s2) = ∞, because
inf ∅ = ∞. It is clear from the definition that s1 	 s2 if and only if d(s1, s2) = 1.

Note that the definition above does not give a distance in the usual sense, for
two reasons: d is not symmetric and it does not satisfy the triangle inequality.
One can show instead that d satisfies a multiplicative version of the triangle
inequality, namely, that for all s1, s2, s3 ∈ S, d(s1, s3) ≤ d(s1, s2) ·d(s2, s3). This
is a direct consequence of the following properties of 	ε. The first property states
that 	ε is monotonic with respect to increasing values of ε.

Lemma 2. If s1 	ε s2 and ε ≤ ε′, then s1 	ε′ s2.

The second property is a quantitative generalisation of transitivity from
which the multiplicative inequality discussed above follows.

Lemma 3. If s1 	ε s2 and s2 	ε′ s3, then s1 	ε·ε′ s3.

Typically, one still uses the term distance for such multiplicative distances,
because by applying the logarithm one does obtain a hemimetric.

Theorem 1. log d(s1, s2) is a hemimetric.

Example 2. Consider again the SMDP from Example 1. We can now see that
d(s1, s2) = 2 and d(s2, s1) = 1

2 . This also shows that our distance is not sym-
metric, and hence not a pseudometric.

5 Computing the Simulation Distance

In this section we provide an algorithm to compute the simulation distance given
in Definition 5 for finite SMDPs. The algorithm is shown to run in polynomial
time for the distributions we have considered so far.

The following technical lemma will provide a sound basis for the correctness
of the algorithm. Given two CDFs F and G, let

c(F,G) = inf{ε ≥ 1 | F �ε G}

denote the least acceleration factor needed by F to be faster than G.

Lemma 4. For an SMDP M , define the set C(M) = {c(Fs′ , Fs) | s, s′ ∈ S}. If
d(s1, s2) = ∞, then
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– s1 	c s2, for some c ∈ C(M) and
– d(s1, s2) = min{c ∈ C(M) | s1 	c s2}.

Lemma 4 provides a strategy for computing the simulation distance between
any two states s1 and s2 of a given SMDP M as follows. First, one constructs
the set C(M). If s1 	c s2 does not hold for any c ∈ C(M), then the distance
must be infinite; otherwise, it is the smallest c ∈ C(M) for which s1 	c s2 holds.

In order for this strategy to work, we need two ingredients: first, we should
be able to compute the set C(M) and second, for any c ∈ C(M), we need an
algorithm for checking whether s1 	c s2.

Recall that SMDPs allow for arbitrary residence-time distributions on states.
Therefore, it is not guaranteed that for any SMDP M the set C(M) can be
computed. With the following definition we identify the class of SMDPs for
which this can be done.

Definition 6. A class C of CDFs is effective if for any F,G ∈ C, c(F,G) is
computable. An SMDP M is effective if {Fs | s ∈ S} is an effective class.

In particular, for any pair of states s, s′ of an effective SMDP M , we can
decide whether Fs′ �ε Fs by simply checking whether ε ≥ c(Fs′ , Fs). We will
denote by f(l) the complexity of computing c(Fs′ , Fs) for two arbitrary s, s′ ∈ S
as a function of the length l of the representation of the residence-time distribu-
tions of M .

Let CΛ denote the class consisting of the Dirac distribution at 0 as well as uni-
form and exponential distributions with rational parameters. By Propositions 3–5
we immediately see that CΛ is an effective class, and in fact it can be computed
using only simple operations such as multiplication, division, and taking maxi-
mum. Hence f(l) has constant complexity1 whenever M takes residence-time dis-
tributions from CΛ.

Next we consider how to decide s1 	ε s2 for a given rational ε ≥ 1. A
decision procedure can be obtained by adapting to our setting the algorithm by
Baier et al. [2] for deciding the simulation preorder between probabilistic labelled
transition systems. The algorithm from [2] uses a partition refinement approach
to compute the largest simulation relation and runs in time O(mn7/ log n) for
reactive systems, where m = |A| is the number of actions, and n = |S| is the
number of states. Given ε ≥ 1, we can proceed correspondingly to compute ε-
similarity: we start from the relation R = S × S and update it by removing
all the pairs (s, s′) of states not satisfying the conditions of Definition 4. This
process is repeated on the resulting updated relation until no more pairs of states
are removed. The resulting relation is the largest ε-simulation. Hence, checking
s1 	ε s2 corresponds to determining whether the pair (s1, s2) is contained in the
relation returned by the above algorithm.

Theorem 2. Let M be a finite and effective SMDP. Given s1, s2 ∈ S and ε ≥ 1,
deciding whether s1 	ε s2 can be done in time O(n2(f(l) + k) + (mn7)/ log n),
where k = |AP | is the number of atomic propositions.
1 As is standard, we consider numbers to be represented as floating points of bounded

size in their binary representation.
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1 Order the elements of C(M) \ {∞} such that c1 < c2 < · · · < cn;
2 if s1 �c1 s2 then return c1 ;
3 else if s1 ��cn s2 then return ∞ ;
4 else
5 i ← 1, j ← n;
6 while i < j do

7 h ← ⌈
j−i
2

⌉
;

8 if s1 �cj−h s2 then j ← j − h ;

9 else i ← i + h ;

10 end
11 return cj ;

12 end

Algorithm 1: Computing the simulation distance between s1 and s2.

The algorithm for computing the simulation distance is given in Algorithm1.
The algorithm starts by ordering the elements of C(M) as c1, . . . , cn while remov-
ing ∞ from the list. Then it searches for the smallest ci such that s1 	ci

s2 holds.
This is done by means of a bisection method. If s1 	c1 s2 holds, then c1 is the
smallest element such that this holds, so we return it. If s1 	cn

s2 does not hold,
then, by Lemma 2, s1 	ci

s2 does not hold for any 1 ≤ i ≤ n, so we return ∞.
If none of the above apply, at this point of the algorithm (line 4) we have that
s1 	c1 s2 and s1 	cn

s2.
We use the variables i and j, respectively, as the left and right endpoints of

the bisection interval. The bisection interval keeps track of those elements cn

for which we still do not know whether s1 	cn
s2. At the beginning, i = 1 and

j = n. At line 7, h =
⌈

j−i
2

⌉
is used as the decrement factor for the length of the

bisection interval at each step. Since h > 0, the bisection interval decreases in
size for each iteration. If s1 	cj−h

s2 holds, then j − h is the current smallest
element in C(M) for which this holds, hence j − h will become the new right
endpoint of the interval; otherwise i + h is the new left endpoint. The bisection
method stops when the endpoints meet or cross each other, at which point we
know that s1 	cn

s2 for all n < j and s1 	cn
s2 for all n ≥ j, and hence we

return cj .
Computing the set C(M) at line 1 has complexity n2f(l), and sorting it can

be done in time O(n log n) using mergesort. By Theorem 2, and since we have
already computed C(M), each of the ε-simulation checks in lines 2, 3, and 8 can
be done in time O(n2k +(mn7)/ log n), but the complexity n2k from comparing
labels only needs to computed once. Since the bisection interval is halved each
time, the while-loop is taken at most log n times. We therefore get an overall
time complexity of O(n2(f(l) + k) + mn7).

Theorem 3. Let M be a finite and effective SMDP. The simulation distance
between any two states can be computed in time O(n2(f(l) + k) + mn7).
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6 Compositional Properties of the Simulation Distance

In this section we will prove that some natural notions of parallel composition
on SMDPs are non-expansive with respect to the simulation distance.

First we define what it means to compose two SMDPs in parallel. As argued
in [23], the style of synchronous CSP is the one that is most suitable for SMDPs,
so this is the one we will adopt here.

Definition 7. A function 	 : D(IR≥0)×D(IR≥0) → D(IR≥0) is a residence-time
composition function if it is commutative.

Definition 8. Let 	 be a residence-time composition function. Then the 	-com-
position of M1 = (S1, τ1, ρ1, L1) and M2 = (S2, τ2, ρ2, L2), denoted M1 ‖� M2 =
(S, τ, ρ, L), is given as follows, for arbitrary s1, s

′
1 ∈ S1, s2, s

′
2 ∈ S2, and a ∈ A.

1. S = S1 × S2,
2. τ((s1, s2), a)((s′

1, s
′
2)) = τ1(s1, a)(s′

1) · τ2(s2, a)(s′
2),

3. ρ((s1, s2)) = 	(ρ1(s1), ρ2(s2)), and
4. L(s1 ‖� s2) = L(s1) ∪ L(s2).

Given a composite system M1 ‖� M2 = (S, τ, ρ, L), we write s1 ‖� s2 to mean
(s1, s2) ∈ S. The residence-time composition function 	 allows us to accommo-
date many different ways of combining timing behaviour, including those found
in the literature on process algebras. We recall here some of these.

Maximum composition: F�(μ,ν)(t) = max(Fμ(t), Fν(t)).

For exponential distributions, Fμ = Exp[θ] and Fν = Exp[θ′], the following
alternatives can be found.

Product rate composition: F�(μ,ν) = Exp[θ · θ′].
Minimum rate composition: F�(μ,ν) = Exp[min{θ, θ′}].
Maximum rate composition: F�(μ,ν) = Exp[max{θ, θ′}].

Maximum composition is used for interactive Markov chains [11], product
rate composition is used in SPA [12], minimum rate composition is used in
PEPA [13], and maximum rate composition is used in TIPP [10].

In order to have non-expansiveness for 	-composition of SMDPs, we will need
to restrict to residence-time composition functions 	 that are monotonic.

Definition 9. A residence-time composition function 	 is monotonic if for all
ε ≥ 1 and μ, ν, η ∈ D(IR≥0), it holds that Fμ �ε Fν implies F�(μ,η) �ε F�(ν,η).

Requiring monotonicity is not a significant restriction, as many of the com-
position functions that are found in the literature are indeed monotonic.

Lemma 5. Maximum composition as well as product, minimum, and maximum
rate composition are all monotonic.
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Now we can prove that the 	-composition of finite SMDPs is non-expansive
with respect to the simulation distance, provided that 	 is monotonic.

Theorem 4. For finite SMDPs and monotonic 	,

d(s1, s2) ≤ ε implies d(s1 ‖� s3, s2 ‖� s3) ≤ ε.

We conclude this section by exploring the computational aspects of compo-
sition of SMDPs. In particular, we would like to be able to also compute the
distance between composite systems.

By Lemma 4, we know that computing the simulation distance amounts to
being able to compute the constants c(Fs, Fs′), for each pair of states s, s′ of the
SMDP. Hence we would like that, whenever two distributions μ and ν have effec-
tive CDFs then also their composition 	(μ, ν) has an effective CDF. By Propo-
sition 4, it is easy to see that this holds for product, minimum, and maximum
rate composition, since these compositions are still exponential distributions.

For maximum composition, the class CΛ is unfortunately not closed under
composition. However, the following result holds.

Proposition 9. Let 	 be maximum composition. For any μ, ν, η ∈ CΛ, the con-
stants c(Fμ, F�(ν,η)) and c(F�(μ,η), Fν) are computable.

The above results tells us that if we are interested in computing the distance
d(s1, s2 ‖� s3) or d(s1 ‖� s2, s3), when 	 is maximum composition, then we can
indeed compute the constants c that are needed for Algorithm 1 to work.

7 Logical Properties of the Simulation Distance

If the distance between two processes is small, then we would also expect that
they satisfy almost the same properties. In order to make this idea precise, in
this section we introduce and study a slight extension of Markovian logic [15],
which we will call timed Markovian logic (TML). The syntax of TML is given
by the following grammar, where α ∈ AP , p ∈ Q≥0 ∩ [0, 1], t ∈ Q≥0, and a ∈ A.

TML : ϕ:: = α | ¬α | pt | mpt | La
pϕ | Ma

p ϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′

The semantics of TML is given by

s |= α iff α ∈ L(s) s |= pt iff Fs(t) ≥ p
s |= ¬α iff α /∈ L(s) s |= mpt iff Fs(t) ≤ p
s |= ϕ ∧ ϕ′ iff s |= ϕ and s |= ϕ′ s |= La

pϕ iff τ(s, a)(�ϕ�) ≥ p
s |= ϕ ∨ ϕ′ iff s |= ϕ or s |= ϕ′ s |= Ma

p ϕ iff τ(s, a)(�ϕ�) ≤ p

where �ϕ� = {s ∈ S | s |= ϕ} is the set of states satisfying ϕ.
We also isolate the following two fragments of TML.

TML≥ : ϕ:: = α | ¬α | pt | La
pϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′



A Hemimetric Extension of Simulation for Semi-Markov Decision Processes 351

TML≤ : ϕ:: = α | ¬α | mpt | Ma
p ϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′

Intuitively, the formula La
pϕ says that the probability of taking an a-transition

to where ϕ holds is at least p, and Ma
p ϕ says the probability is at most p. pt

and mpt are similar in spirit, but talk about the probability of firing a transition
instead. Thus, pt says that the probability of firing a transition before time t is
at least p, whereas mpt says that the probability is at most p.

For any ϕ ∈ TML and ε ≥ 1 we denote the ε-perturbation of ϕ by (ϕ)ε and
define it inductively as

(α)ε = α (pt)ε = pε · t (La
pϕ)ε = La

p(ϕ)ε (ϕ ∧ ϕ′)ε = (ϕ)ε ∧ (ϕ′)ε

(¬α)ε = ¬α (mpt)ε = mpε · t (Ma
p ϕ)ε = Ma

p (ϕ)ε (ϕ ∨ ϕ′)ε = (ϕ)ε ∨ (ϕ′)ε.

By making use of the alternative characterisation for simulation given in Propo-
sition 1 and drawing upon ideas from [6], we can now prove the following logical
characterisation of the ε-simulation relation.

Theorem 5. Let ε ∈ Q≥0 with ε ≥ 1. For any finite SMDP, the following holds.

– s1 	ε s2 if and only if ∀ϕ ∈ TML≥.s1 |= ϕ =⇒ s2 |= (ϕ)ε.
– s1 	ε s2 if and only if ∀ϕ ∈ TML≤.s2 |= ϕ =⇒ s1 |= (ϕ)ε.

As a special case of Theorem 5, we have also shown that TML≥ and TML≤

characterise simulation for SMDPs. Conceptually, Theorem5 says that if s1 ε-
simulates s2, then s2 satisfies the ε-perturbation of any property that s2 satisfies
for the TML≥ fragment of TML, and vice versa for the TML≤ fragment.

By Lemma 4 and Theorem 5, we get the following corollary, connecting our
simulation distance with the properties expressible in the logic TML.

Corollary 1. Let ε ∈ Q≥0 with ε ≥ 1. For finite SMDPs the following holds.

– d(s1, s2) ≤ ε if and only if ∀ϕ ∈ TML≥.s1 |= ϕ =⇒ s2 |= (ϕ)ε.
– d(s1, s2) ≤ ε if and only if ∀ϕ ∈ TML≤.s2 |= ϕ =⇒ s1 |= (ϕ)ε.

By Proposition 2, we also get a logical characterisation of bisimulation for
SMDPs in terms of TML, which is simpler than the one given in [17,24].

Theorem 6. For any finite SMDP, it holds that

s1 ∼ s2 if and only if ∀ϕ ∈ TML. s1 |= ϕ ⇐⇒ s2 |= ϕ.

7.1 Reachability Properties

We will now argue that the simulation distance behaves nicely also with respect
to linear-time properties, by proving preservation of reachability properties up to
perturbations.

The probability of reaching a given set of states in an SMDP depends on
the choice of actions in each state. The non-determinism introduced by this
choice is typically resolved by means of schedulers. Here we consider probabilistic
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schedulers σ of type S∗ → D(A), telling us what the probability is of selecting
an action a ∈ A depending on the history of the states visited so far. Given
a scheduler σ, we denote by P

σ
s (♦tX) the probability, under the scheduler σ,

that starting from the state s the SMDP will eventually reach a state in X ⊆ S
within time t ≥ 0 (for a rigorous definition of this probability see e.g. [17]).

Given our notion of ε-simulation, we can prove the following result.

Theorem 7. Let β be a Boolean combination of atomic propositions. If we have
s1 	ε s2, then for any scheduler σ there exists a scheduler σ′ such that

P
σ
s1

(♦t�β�) ≤ P
σ′
s2

(♦ε·t�β�) (or equivalently, Pσ
s1

(¬♦t�β�) ≥ P
σ′
s2

(¬♦ε·t�β�)).

Note that the above result might find useful applications for speeding up the
computation time required by model checking tools to disprove certain types
of reachability properties. For example, consider the atomic proposition bad,
identifying all the states considered “not safe” in the SMDP. Usually, given a
process s, one wants to verify that, under all possible schedulers σ, the probability
P

σ
s (¬♦t�bad�) is above a certain threshold value δ ≤ 1, meaning that the SMDP

is unlikely to end up in an unsafe configuration within a time horizon bounded
by t. Then, to disprove this property one only needs to provide a scheduler σ′

and a process s′ such that s′ 	ε s and P
σ′
s′ (¬♦ t

ε �bad�) < δ. Indeed, given that
s′ 	ε s, by Theorem 7

P
σ′
s′

(
¬♦ t

ε �bad�
)

< δ
Th.7=⇒ ∃σ. Pσ

s (¬♦t�bad�) < δ.

Since s simulates s′, s′ can be thought of as a simplified abstraction of s, which
is usually a smaller process. Hence, finding a scheduler σ′ for s′ which gives
a counterexample may be much simpler than finding one for s. Moreover, the
above technique is robust to perturbations of ε.

8 Conclusions and Open Problems

We have proposed a quantitative extension of the notion of simulation relation
on SMDPs, called ε-simulation, comparing the relative speed of different pro-
cesses. This quantitative notion of simulation relation induces a multiplicative
hemimetric, which we call simulation distance, measuring the least acceleration
factor needed by a process to speed up its actions in order to behave at least as
fast as another process.

We have given an efficient algorithm to compute the simulation distance and
identified a class of distributions for which the algorithm works on finite SMDPs.
Furthermore, we have shown that, under mild conditions on the composition of
residence-time distributions on states, a generalised version of CSP-like parallel
composition on SMDPs is non-expansive with respect to this distance, showing
that our distance is suitable for compositional reasoning. Lastly, we have shown
the connection between our distance and properties expressible in a timed exten-
sion of Markovian logic. Namely, we have shown that if the simulation distance
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between s1 and s2 is at most ε, then s1 satisfies the ε-perturbation of any prop-
erty that s2 satisfies. This result also gives a novel logical characterisation of
simulation and bisimulation for semi-Markov decision processes.

Instead of using the usual stochastic order to relate the timing behaviour of
states as we have done, one could also consider many other kinds of stochas-
tic orders, for example ones that compare the expected value of the distribu-
tions. This may be more natural for applications where one wants to consider
an exponential distribution with a high enough rate to be faster than a uniform
distribution.

We have shown that the timing distributions that are obtained when compos-
ing systems are compatible with the algorithm for computing the distance only
in the case when composing systems either on the left or on the right. A more
general result showing that this also happens when composing on both sides an
arbitrary number of components seems difficult. Nonetheless, we are confident
that such a result can be obtained for any concrete case involving common types
of distributions used in the literature.

Since we have both a distance and a logical characterisation, it makes sense
to ask whether the set of states satisfying a formula is a closed or an open set in
the topology induced by the distance. If such a set is indeed closed, this means
that the approximate reasoning at the limit is sound: if every state in a sequence
satisfies a formula, then the limit of that sequence also satisfies the formula.
Such an investigation has already been done for Markovian logic [16], and some
of the ideas from there may carry over to our setting.
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Abstract. In this paper we consider the problem of policy synthesis for
systems of large numbers of simple interacting agents where dynamics of
the system change through information spread via broadcast communi-
cation. By modifying the existing modelling language Carma and giving
it a semantics in terms of continuous time Markov decision processes we
introduce a natural way of formulating policy synthesis problems for such
systems. However, solving policy synthesis problems is difficult since all
non-trivial models result in very large state spaces. To combat this we
propose an approach exploiting the results on fluid approximations of
continuous time Markov chains to obtain estimates of optimal policies.

1 Introduction

The study of collective dynamics has a wealth of interesting applications in col-
lective adaptive systems (CAS) where examples range from swarming behaviour
of insects to patterns of epidemic spread in humans. Such systems are highly
distributed and robust in nature and for that reason are an interesting paradigm
for the design of highly-distributed computer-based systems.

The study of such systems concentrates on the emergent behaviour aris-
ing from simple behaviour and communication rules at the level of individuals.
However, due to CAS exhibiting non-linear dynamics it is difficult to verify or
predict the emergent behaviour. It is harder still to know a priori how to design
the behaviour and capabilities of individual agents in order to achieve a system
level goal. Moreover, the individual agents in such systems are often unreliable
and prone to failure making it natural to express objectives at the collective level
in terms of a proportion of the population achieving a goal within a time bound.

We seek to develop a framework in which the flexibility afforded by having
a homogeneous population of agents can be leveraged in planning decisions and
explore how communication can alter the likelihood of satisfying the collective
goals. The basis of the framework is a process algebra supporting formal expres-
sion of basic behaviour of population members, including patterns of communi-
cation in the collective. Based on the formal specification the policy synthesis
problems are framed in terms of continuous time Markov decision processes (CT-
MDP) which give a versatile framework for a variety of stochastic control and
planning problems.

Policy synthesis for CT-MDP models is a computationally complex problem
in general. Consequently, there have been a number of recent works on policy
c© Springer Nature Switzerland AG 2018
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synthesis and closely related model checking of CT-MDPs e.g., [1,2]. Our prob-
lem domain, the collective dynamics of homogeneous agents, offers a way to
approximate system dynamics through fluid approximation describing the state
of the system in terms of continuous variables. In many cases this alleviates
the problem of state space explosion. We study leveraging fluid approximation
results, inspired by similar results for discrete time Markov decision processes [3],
in the context of policy synthesis for collective dynamics. We note that broad-
cast communication is a natural way to model information spread in collective
systems. However, this makes it impossible to directly apply the existing results
like [4]. Thus, we propose an approximations for a class of systems involving
broadcast communication.

The paper makes the following contributions. Firstly, we propose a class of
systems arising from collective systems involving broadcast communication. Sec-
ondly, we present a process algebra based on the existing language Carma [5]
which together with specification of goals from [6] provides a high level frame-
work for formulating policy synthesis problems. Next, we propose an efficient
policy synthesis approach, exploiting the structure suggested by the language
level description, to find configurations that can satisfy the defined collective
goals. We concentrate on applications of fluid approximation results in cases
involving broadcast communication where standard results do not apply. Finally,
we frame a simplified foraging example, inspired by the design of a robot swarm,
in the presented framework and consider the policy synthesis.

The paper is structured as follows: in Sect. 2 we detail the formal specification
of policy synthesis for collective dynamics. Particularly, in Sect. 2.1 we introduces
a class of systems arising from broadcast communication in collectives being
treated as a switch in the dynamics. The Sect. 2.2 outlines a process algebraic
language with its semantics for specifying models in the CT-MDP framework. In
Sect. 3 we discuss ideas arising from fluid approximations and adapting them for
policy synthesis for collective dynamics. In particular, we suggest an approxima-
tion, based on, fluid results for dealing with broadcast communication. In Sect. 4
we present a simplified case-study inspired by swarm robotics to motivate the
developed framework. Finally, we end with concluding remarks and discussion
of further work in Sect. 5.

2 System Specification

Carma Process Algebra. Carma [5] is a stochastic process algebra designed
to support specification and analysis of CAS. A Carma system consists of a
collective operating in an environment. The collective describes a set of interact-
ing agents and models the behaviour of a system. The description of an agent
consist of a process, that describes the agent’s behaviour, and of a store, that
models its knowledge. Here knowledge is limited to the values of key attributes.

The processes described within components interact via a rich set of com-
munication primitives. In particular, the language supports both broadcast and
unicast communication. Both are attribute-based so that a component can only
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receive a message when its store satisfies the sender’s target predicate and
receivers use a predicate to identify acceptable message sources.

The environment is responsible for setting the rates and probabilities gov-
erning action execution and message exchange. Thus the environment models all
aspects intrinsic to the context the system operates in, e.g., the rate at which a
component moves may depend on the terrain at the given location.

The formal semantics give rise to a continuous time Markov chain (CTMC) –
the state space of the system is represented as a finite, discrete set of states and
the times of transitions are governed by the rates given in the model description
where each rate is taken to be the parameter of an exponential distribution.

Continuous-Time Markov Decision Processes. Our target mathemati-
cal object for policy synthesis is a continuous-time Markov decision process
(CT-MDPs) rather than a CTMC. CT-MDPs are a common framework in
stochastic control theory and operations research providing a natural formalisa-
tion of policy optimisation problems. Here we give relevant standard definitions
for CT-MDPs.

Definition 1. Continuous-time Markov decision process is defined by the tuple
{S,A, {A(i), i ∈ S}, q(j | i, a)} where S is the countable set of states, A is the
Borel measurable set of actions, {A(i), i ∈ S} is the set of feasible actions in
state i and q(j | i, a) gives the transition rates i → j given the control action a.

The evolution of CT-MDPs is described by the following: after the process
reaches some state and an action is chosen the process performs a transition
to the next state depending only on the current state and the chosen action.
The time it takes for state transitions to happen is governed by exponential
distributions with rates given by the function q in Definition 1. The actions at
every such step are chosen according to some policy as defined below.

Definition 2. A policy is a measurable function π : R≥0 ×S ×A → [0, 1] which
for every time t ∈ R≥0, state s ∈ S and action a ∈ A(s) assigns a probability
π(t, s, a) that the action a is chosen in s at time t. We call a policy where for
every t ∈ R≥0 and s ∈ S we have that π(t, s, a) ∈ {0, 1} a deterministic policy.
A policy π independent of t is a stationary policy.

For the purpose of leveraging fluid approximations we introduce the concept
of population CT-MDPs which result from models where components are only
distinguished through their state. Thus the state of the system is represented as
a vector of counting variables detailing the number of components in each state.

Definition 3. A population CT-MDP is a tuple (X, T ,A, β) defined by: X =
(X1, · · · ,Xn) ∈ S = Z

n
≥0 where each Xi takes values in a finite domain Di ⊂

Z≥0; β is a function such that β(a,X) returns a boolean value indicating whether
action a ∈ A is available from state X; T is a set of transitions of the form
τ = (a,vτ , rτ (X)) such that β(a,X) = 1, vτ is an update vector specifying that
the state after execution of transition τ is s + vτ and rτ (X) is a rate function.
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A population CT-MDP is associated with a CT-MDP in the following way:
the state and action space of the corresponding CT-MDP is the same as for the
population CT-MDP; the set of feasible actions for state i ∈ S, denoted A(i), is
defined by A(i) = {a ∈ A | β(a, i) = 1}; the rate function q is defined as

q(i | j, a) =
∑

{rτ (j) ∈ T | τ = (a,vτ , rτ (j)) ∧ i = j + vτ}

2.1 Broadcast Communication

Broadcast is a natural communication pattern to consider in CAS. However, in
general it makes it impossible to apply the fluid approximation results which
informally rely on the effect of actions being bounded as more components are
introduced to the system. This limits the usefulness of fluid approximation meth-
ods when analysing collective systems.

We propose a class of population systems for which the problems arising
from broadcast communication can be mitigated. In particular, we consider cases
where broadcast can be thought of as a switch between dynamic modes of the
population. More generally, we consider population processes in the CT-MDP
framework with the mode switching dynamics as described in the following. Let
M = (X, T ,A, β) be a population CT-MDP with X = (X1, · · · ,X2n). The
model M exhibits mode switching dynamics if, up to reordering of variables,
there exist X1 = (X1, · · · ,Xn) and X2 = (Xn+1, · · · ,X2n) (X is the concatena-
tion of X1 and X2) such that

– X1 �= 0 if and only if X2 = 0 – the system can be in one mode or the other.
– there is a transition (a,vτ , rτ (X)) ∈ T with an update vector

(−s1, . . . ,−sn, s1, . . . , sn) that happens with a non-zero rate from state
(s1, . . . , sn, 0, · · · , 0). This ensures there exists at least one transition between
the modes.

– There is no state (0, · · · , 0, sn+1, · · · , sn) for which there exists a transition
with an update vector (sn+1, · · · , sn,−sn+1, · · · ,−sn) happening at a non-
zero rate – we consider models where the mode switching is unidirectional.

– (X1, T ,A, β) and (X2, T ,A, β) define a population CT-MDP.

Although the definition is given for two dynamic modes we can easily extend
it. As mentioned, such population models can arise from considering broadcast
communication. In particular, we study situations where broadcast is used to
propagate knowledge acquired by a component in the system to the rest of the
components leading to a change in component behaviour. Such knowledge, once
acquired, is not lost or forgotten leading to unidirectional mode changes. In the
following section we introduce a process algebra based language for constructing
such models and set up our running example of mode switching.

2.2 Language and Configuration

We propose a process algebra based language, Carma-C, which uses a sub-
set of syntactic constructs of Carma to simplify the creation of the described
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population models. We focus on models of collectives involving broadcast com-
munication and thus retain the constructs of Carma for broadcast communica-
tion, knowledge stores and the environment. For specification of policy synthesis
problems, we introduce non-determinism in transitions interpreted as possible
control actions. The control actions are encoded in terms of attributes in knowl-
edge stores where the values of such attributes are left partially specified—
instead of particular values we define the value domains for the attributes.

As unicast and attribute based communication are not the focus of this paper
we do not carry over the syntactic constructs for these from Carma. However,
note that the material in this section can easily be extended to specify systems
making use of unicast and attribute based communication.

2.3 Syntax

As in Carma, we say a system consists of a collective N operating in an envi-
ronment E . We let Sys be the set of systems S, and Col be the set of collectives
N where a collective is either a component C in the set of components Comp or
the parallel composition of collectives. A component C can either be the inactive
component, denoted 0, or a term of the form (P, γ) where P is a process and γ
is a store. In particular, systems, collectives and components are generated by
the following grammar:

S ::= N inE N ::= C | N1 ‖ N2 C ::= 0 | (P, γ)

The grammar for the processes is given by the following:

P,Q ::= nil | act.P | P + Q | P | Q | [π]P | A (A
�
= P )

act ::= α∗〈 #»e 〉σ | α∗ ( #»e ) σ

The processes are defined using standard constructs—action prefix, choice,
and parallel composition—from process algebras literature. In addition we allow
the definition of the inactive process nil and guards on processes. The action
primitives are defined for broadcast output in the form α∗〈 #»e 〉σ and broadcast
input in the form α∗ ( #»e ) σ. The broadcast output action is defined as non-
blocking and an output action with no corresponding input is interpreted as
a spontaneous action of a component.

The following notation is used: α is an action type used to distinguish between
different actions; #»e is an expression specifying the message sent over broadcast
communication; π is a boolean expression such that a process guarded by π is
only activated when π evaluates to true; σ is an update specifying a probability
distribution over the possible store configurations following the given action.

Example 1. For the running example we consider a scenario where robots need
to locate a source by sensing their local environment and move to the location
of the source. Components in the system correspond to the robots with the
following behaviour: robots can move on a grid, take measurements from their



Policy Synthesis for Collective Dynamics 361

Move | ListenNil | Listen

[πr]random∗〈〉
+ [πd]directed∗〈〉

[πf ]fail∗〈〉
[πs]sense∗〈〉

aux∗〈L〉

Fig. 1. Behaviour of individual Robot components.

location and broadcast this information to the rest of the swarm. The model we
use to describe the behaviour of the robots is illustrated in Fig. 1. The action
random∗ corresponds to the robot exploring the environment through a random
walk while directed∗ corresponds to moving towards a found source location. The
action sense∗ models the robot taking measurements of its locale. If a source
is detected then the auxiliary action aux∗ immediately broadcasts the set of
source locations L. The action fail∗, resulting in the robot not performing further
actions, models failure. Finally, the process Listen receives the corresponding
broadcast input action aux∗(L).

2.4 Semantics

The novelty of relating a Carma-C model to a CT-MDP lies in defining the
set of admissible controls via the stores. In particular, instead of fully specifying
store variables, as done in Carma, we allow them to take values in a general
Borel measurable set defined in the model. The set of feasible actions (as in
Definition 1) then corresponds to possible refinements of stores to particular
values.

Store. In Carma a store is a function that maps attribute names to particular
values which are then used in the semantics for the transition rate calculations.
In Carma-C, we instead define the store as a function that maps attribute names
to permitted value domains. That is, a store γ maps a set of attribute names
a0, · · · , an in its domain to the value domains of the attributes. This introduces
non-determinism in the choice of particular store values. Such non-determinism
for system specification has previously been considered in the case of interval
Markov chains (IMC) [7], constraint Markov chains (CMC) [8] and probabilistic
constraint Markov chains (PCMC) [9]. The non-determinism in these cases is
treated as arising from a transition probability or a rate for which the true value
is not known or that the probability can take any value in the given region. In
our approach the non-determinism will be resolved by a policy maker.

Example 2. For the running example we define the local store of each robot con-
sisting of attributes location giving the location of the robot, and source holding
the set of locations identified as source. Figure 2 illustrates the effects of actions
on the local stores. In particular, random∗ and directed∗ change the location of
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γ = {location = (x, y)

source = L}
γ = {location = R(x, y)

source = L}

γ = {location = (x, y)

source = L ∪ L′}
γ = {location = (x, y)

source = L ∪ M(x, y)}
γ = {location = D((x, y), L)

source = L}

random∗〈〉

directed∗〈〉

aux∗(L′) sense∗〈〉

Fig. 2. Local component store changes induced by actions.

the robot. The former picks with uniform probability a target location reach-
able from location (x, y) – the corresponding update is denoted by R(x, y). The
latter picks a location that takes the robot closer to the source L – update
denoted by D((x, y), L). If the robot’s location corresponds to a source location
the action sense∗ includes the location in the set of sources with some probability
thus modelling the possibility of false negatives resulting from noisy measure-
ments. In particular, we define M such that if the location (x, y) is a source then
M returns (x, y) with probability p and the empty set with probability 1 − p.
The input action aux∗(L′) adds the locations L′ in the message to the set of
sources.

We use guards to achieve the desired behaviours of components. Specifically,
the guard πr for random∗ is true when the attribute source corresponds to the
empty set – source location has not yet been found. For simplicity, we also allow
the action sense∗ only if the source has not been discovered. Conversely, the
guard for directed∗ is true when the attribute source defines a non-empty set of
locations. The guard πf for fail∗ evaluates to true everywhere except when the
robot is at the source location.

Environment. Like in Carma, the environment in Carma-C models aspects
intrinsic to the context where the agents under consideration are operating – it
sets the rates of actions and mediates the interactions between components.

For a system S ∈ Sys we say that the environment E is defined by the global
store γg and an evolution rule ρ. The evolution rule ρ is a function which given a
global store γg and the current state of the collective N ∈ Col returns a tuple of
functions ε = 〈μp, μr, μu〉 called the evaluation context. The functions given by
the evaluation context are interpreted as follows: μp expresses the probability of
receiving a broadcast; μr specifies the execution rates of actions; μu determines
the updates on the environment store.

Example 3. For the running example we define the following environment: the
global store γg defines a store attribute failr ∈ [0, 1); the probability of receiving
the broadcast for the aux∗ action is set to 1; the constant rate of spontaneous
actions random∗ and directed∗ is given by rm and the rate of sense∗ is given
by rs; the action aux∗ emulates an instantaneous action with its rate set very
high; the rate rf of fail∗ is set equal to the store attribute failr introducing non-
determinism in the behaviour of the system; we set μu such that the global store
remains unchanged through the evolution.
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Resolving Non-determinism. The semantics for the construction of a CT-
MDP model from a syntactic description of a Carma-C model is done in two
stages. The first part of the semantics resolves the non-determinism in the model.
In particular, we consider a system S defined by (P1, γ1) | · · · | (Pn, γn) in (γg, ρ).

The set of control actions A(S) available from S is defined by the following:
let A(S) be a set of functions such that for all γ ∈ {γ1, · · · , γn, γg}, f ∈ A(S)
maps all attributes a in the domain of γ to particular value in γ(a). That is, a
set of feasible control actions from a system S corresponds to the set of possi-
ble functions that fix the store values. In the formal semantics we introduce a
refinement step labelled by a chosen control action f that transforms S into

Sf
def= (P1, f(γ1)) | · · · | (Pn, f(γn)) in (f(γg), ρ)

Let us define the sets Sysf , Colf and Compf as sets of systems, collectives
and components after application of f . We assume that elements of Sysf , Colf

and Compf are derived only from elements in Sys, Col and Comp for which f
is sufficient to fully resolve the non-determinism in the behaviour. We call such
sets resolved systems, collectives and components, respectively.

Example 4. For the running example the set of control actions corresponds to
the possible assignments of failr. Lower values of failr correspond to lower failure
rate and thus more robust components.

Interleaving Semantics. The second stage of the semantics determines the
rates at which a system changes state given a control action. This is achieved
through construction of functions Cf , Nε,f and Sf parametrised by a chosen
control action f . In particular, the function Cf takes a resolved component in
Compf and an action label and returns a probability distribution over com-
ponents in Comp. Components assigned a non-zero probability are reachable
from the resolved component. The function, Nε,f builds on Cf to describe the
behaviour of collectives. Based on a resolved collective in Colf and an action
label and it returns a probability distribution over Col. As before non-zero
probabilities are assigned to reachable collectives. Finally, function Sf takes a
resolved system in Sysf and an action label and returns a function over systems
Sys that specifies the rate at which the transitions happen. As for Carma, these
function are constructed via FuTS-style [10] operational semantics. The seman-
tic rules for the second step resulting in the transition rates between systems
closely match the semantics given for Carma in [5] and are not detailed here.

Population Model. The population CT-MDP model M = (X, T ,A, β) for a
system S ∈ Sys can be derived iteratively based on the assumption that com-
ponents with the same configuration (same process state and store) are indis-
tinguishable. We start with S consisting of a collective C1 ‖ · · · ‖ CN operating
in an environment E . The function Cf can be used to determine all possible
future configurations of each of the components Ci. If the union of all possible
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component configurations is finite we can define the finite state space S of M as
the space of counting vectors specifying all possible future configurations of S.

For each state s ∈ S we have a set Syss ⊂ Sys of corresponding Carma-C
systems. For each system S ∈ Syss the set of feasible actions will be the same
by construction. For the derivation of the population model we add a restriction
that any control action acts in the same way on the set of indistinguishable
components. The rates corresponding to chosen actions and the reachable states
are found using the function Sf . In particular, given a control action f denote
the system S resolved by f by Sf . The rate of transition from s ∈ S to s′ ∈ S
given control action f is then given by

∑

S∈Syss

∑

S′∈Syss′

∑

�∈LabS

Sf [Sf , 
](S′)

3 Policy Synthesis

The main contribution in this paper is a method leveraging fluid approxima-
tion results for CTMCs to policy synthesis in the context of collective dynam-
ics involving broadcast communication. Here we state the relevant optimisation
problem and discuss how fluid approximation results can be exploited.

Fluid Approximations of CTMCs. The aim of fluid approximation of
CTMCs, as introduced by Kurtz in [4], is to derive a set of ordinary differ-
ential equations (ODEs) for which the sample paths of the CTMC lie, with high
probability, close to the solution of the chosen set of ODEs.

Consider a system of N components each evolving in a finite state space SS =
{1, · · · ,K} and where components are only distinguishable through their state.
Let the state of the object n at time t be denoted by Y

(N)
n (t). Let the variable

X(N)(t) ∈ R
K be a counting vector giving the state of the system at time t. In

particular, the i-th entry of X(N)(t) is given by X
(N)
i (t) =

∑
n 1{Y

(N)
n (t) = i}.

Next consider the set of transitions, denoted T (N), consisting of elements τ =
(Rτ , r

(N)
τ ) where Rτ is a multi-set of update rules of the form i → j specifying

that an agent in state i goes to state j if the transition τ fires. The r
(N)
τ denotes a

rate function r
(N)
τ : RK → R≥0 depending on the state of the system. We assume

that Rτ is independent of the population size N—all transitions involve a finite
and fixed number of individuals. The update vector vτ is constructed from Rτ

so that the transition τ changes the state of X(N) to X(N) + vτ . We define the
Markov population model by a tuple X (N) = (X(N), T (N),X(N)

0 ) where X(N)
0

denotes the initial state of the system. Given X (N) it is trivial to construct the
underlying CTMC X(N)(t) describing the time-evolution of the model.

The fluid approximation is achieved by first considering the normalised pop-
ulation counts obtained by dividing each variable by the total population N—

X̂(N) = X(N)

N . The initial conditions are scaled similarly—X̂(N)
0 = X

(N)
0
N . The

transitions are scaled as follows: for each (Rτ , r
(N)
τ ) ∈ T (N), let r̂(N)

τ (X̂) be the
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rate function expressed in terms of normalised variables. The corresponding tran-
sition in the normalised model is (Rτ , r̂(N)

τ (X̂)) with update vector 1
N vτ . Suppose

that for all transitions τ ∈ T (N) there exists a bounded and Lipschitz continuous
function fτ : RK → R≥0 such that 1

N r̂(N)
τ (X̂) → fτ (X̂) uniformly as N −→ ∞.

To define the limit ODEs, we introduce the drift F(X̂) =
∑

τ∈T̂ (N) vτfτ (X̂).

Theorem 1 (Deterministic approximation theorem [4]). With X̂(N)(t) we
assume there exists a point x0 such that X̂(N)(0) → x0 in probability. Let x(t)
be a solution to dx

dt = F(x) with x(0) = x0. Then, for any finite time horizon
0 ≤ t ≤ T , ε ∈ R≥0 we have

P

(
sup

0≤t≤T
‖X̂N (t) − x(t)‖ ≥ ε

)
N→∞−−−−→ 0

Policy Optimisation. Consider a population model MN = (X(N), T ,A, β)
derived from a Carma-C model with N components. We can easily extend the
normalisation of CTMC described previously to consider the corresponding nor-
malised population CT-MDP denoted M̂N . We deal with the following problem:
find a policy π in the space of stationary deterministic policies of M̂N that max-
imises some reward function over a finite time horizon. In particular, consider
the functional QN : Π → R, where Π is the set of stationary deterministic
policies. The optimisation problem is thus defined as maximising some defined
functional QN , i.e., finding a policy π∗ that satisfies

QN [π∗] = sup
π∈Π

QN [π]

Suppose we fix a policy π and consider the resulting normalised population
CTMC model denoted X̂ (N)

π . As before, let X̂(N)
π (t) denote the stochastic process

describing the time-evolution of the population CTMC. Let V : DS → R be a
reward function on the space of trajectories of the stochastic process X̂(N)

π (t).
Corresponding reward functional on the space of policies is then given by

QN [π] def= V (X̂(N)
π (t))

Example 5. Take a state reward function r : S → R≥0 mapping the states of
the CT-MDP to positive real values. Define a value function corresponding to
reward function r and policy π as the expected finite time-horizon (0 ≤ t ≤ T )
cumulated reward:

QN [π] def= V (X̂(N)
π (t)) def= E

∫ T

0

r(X̂(N)
π (t))dt

3.1 Policy Synthesis via Fluid Approximation

Evaluating a given functional Q usually reduces to considering the transient
evolution or steady state of X̂ (N)

π which, especially for large population sizes N ,
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is computationally expensive. One way to alleviate this problem is to consider
Monte Carlo estimates of the functionals based on simulated trajectories of X̂ (N)

π ,
e.g., using the Gillespie algorithm. This is done in the context of statistical model
checking [11] and has recently been applied to learning effective time-dependent
policies for CT-MDPs [12]. Here, we argue that in the case of some reward
functionals a good estimate can be achieved via fluid approximation. Indeed,
suppose that X̂(N)

π converges to xπ in the sense of Theorem 1. Then as a simple
consequence of the Portmanteau lemma [13] we can say that for any bounded
and continuous reward function V we get

QN [π] = E(V (X̂N
π (t))) N→∞−−−−→ E(V (xπ(t))) = q[π]

Example 6. For the running example consider the system of N robots and the
global goal: at least 80% of the robots reach the source location in time T . We
translate this goal into a value function by considering a logistic function I(x) =
1/(1 + e−2k(x−0.8)) which for large k approximates a step function. We define a
reward function corresponding to the goal by V (X̂(N)

π (t)) = I(X(N)
π,s (T )) where

X
(N)
π,s (t) denotes the evolution of the population at the source location. Thus if

xπ approximates X̂(N)
π , in the sense of Theorem 1, then as I is both continuous

and bounded then E(V (xπ(t))) approximates E(V (X̂(N)
π (t))).

3.2 Approximation for Mode Switching

In this section we present a method for approximating the behaviour of popu-
lation systems exhibiting switching behaviour described in Sect. 2.1. Again the
discussion here concentrates on systems with two such dynamic modes where
mode changes are unidirectional but the idea can be extended to more modes.
The method we propose is based on the observation that the behaviour of the
system within a single dynamic mode can be given a fluid approximation as
described in Sect. 3. Note that this has similarities to hybrid limit behaviour
of Markov population processes considered in [14]. However, for mode switches
arising form broadcast communication the rate of switching can depend on the
population size which restricts the applicability of results provided in [14].

In detail, consider a normalised population model M̂N with two modes
described by (X1, T ,A, β) and (X2, T ,A, β). Fix a policy π of M̂N and con-
sider the resulting stochastic processes X̂(N)

π,1 and X̂(N)
π,2 corresponding to the

two modes for which we can give a fluid approximation. Denote the resulting
approximations by xπ,1 and xπ,2. The difficulty now is related to combining the
two approximations into an approximation for the mean behaviour of the full
process. We propose the following method: identity a variable and a threshold
in the fluid approximation of the first mode which serves as an indicator for the
mode switch – when the variable reaches the given threshold we expect the mode
switch to take place; use this to estimate the switching time t∗; approximate the
behaviour of the full process by xπ(t) = 1{t ≤ t∗}xπ,1 + 1{t > t∗}xπ,2. In the
following section we evaluate the accuracy of such approximation for the running
example and use it to obtain estimates for policy synthesis tasks.
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4 Analysis: Running Example

In this section we make use of the presented ideas to analyse the running example
of a foraging robot swarm. In particular, we consider the system consisting of
N robots and restrict the robots to a 2 × 2 grid with paths (0, 0) ↔ (1, 0),
(0, 0) ↔ (0, 1) and (1, 0) ↔ (1, 1) to keep the constructions manageable by
hand. All robots start by following the behaviour illustrated in Fig. 3a where
the location (1, 1) is designated as the source location. At location (1, 1), with a
probability p = 0.1, the sense action results in a broadcast. A robot sending out
such broadcast at location (1, 1) causes the rest of the collective to follow the
behaviour given in Fig. 3b giving rise to two dynamic modes for the system.

Fig. 3. Behaviour of individual robots.

We construct an approximation for the system dynamics by considering vari-
ables x00, x10, x01, x11 giving the proportion of robots in locations (0, 0), (1, 0),
(0, 1) and (1, 1) respectively. Additionally, let s11 be the proportion of robots
that have sensed the source resulting in a broadcast being sent out and let f
denote the proportion of robots that have broken down. We construct x1 and x2

as below and claim that these give a fluid approximation for the system dynamics
before and after the broadcast respectively.

x1(t) = x2(t) = [x00 x01 x10 x11 s11 f ]

dx1

dt
= [−x00(rm + rf ) + rm(x10 + 1

2x01) 1
2rmx00 − x01(rm + rf )

1
2rmx00 + rmx11 − x10(rm + rf ) 1

2rmx10 − x11(psrs − rm)

prsx11 rf (x00 + x10 + x01)]

dx2

dt
= [−x00(rm + rf ) + rmx01 −x01(rm + rf ) rmx00 − x10(rm + rf )

x01rm 0 rf (x00 + x10 + x01)]

Suppose all robots start from the location (0, 0), i.e. the initial condition for
the approximation is x1(0) = [ 1 0 0 0 0 0 0 ]. To combine the two modes we use
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Fig. 4. Comparison of expected trajectories for failr = 0.05 = rf with rate of move and
sense actions set to 1 (mean and variance of 100 simulated trajectories: solid lines and
fluid approximations: dashed).

the estimate proposed in Sect. 3.2 by considering the time evolution of variable
s11 and taking the expected time till the first broadcast to be the time t∗ such
that s11(t∗) = 1. Thus, we approximate the mean behaviour of the system by

x̂(t) = 1{t ≤ t∗}x1(t) + 1{t > t∗}x2(t)

where x2 is such that x2(t∗) = x1(t∗). The trajectories are compared with
the stochastic simulation in Fig. 4 and Table 1 for different parameters giving
an empirical justification for the approximation. Figure 4 suggests that a good
approximation is achieved for times away from the mode switching. For Table 1,
we consider the mean of relative errors between the stochastic and approximate
trajectories for location (1, 1) at time points t = 2.0, 4.0, 6.0, 8.0, 10.0. For each
parametrisation, the table gives a mean figure over 10 comparisons and shows
that as expected the approximation is better for larger population sizes.

4.1 Policy Synthesis

In the context of the running example we consider the synthesis of failr param-
eter as a special case of policy synthesis. In particular, how robust should the
behaviour of the robots be for the collective to satisfy its goal. We provide a
simple application for the presented fluid approximation ideas by studying the
action (or parameter) space of the running example through logistic regression
and via direct optimisation of a more complex reward functional.

Logistic Regression. We consider the logistic reward function defined in
Example 6 and note that the reward function is defined so that the specified
goal (at least 80% of the collective reaches (1, 1)) is satisfied for rewards greater
or equal to 0.5. As a first example we consider the following question: what is
the region of failr values for which we are expecting the policy to be satisfied. We
treat failr as an indication of robustness of individual components and classify
the different possible values based on goal satisfaction. Throughout the rest of
this section we set rm = rs = 1.
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Table 1. Mean approximation error.

(rm, rs, failr) Pop. size Mean error

(1, 1, 0.05) 100 10.8%

(0.8, 1, 0.01) 100 11%

(2.0, 1, 0.1) 100 4.3%

(1, 1, 0.05) 500 1.6%

(1, 1, 0.02) 500 2.0%

(2.0, 1, 0.1) 100 0.6%

Table 2. Logistic regression. Fit-
ting based on 100 trajetories.

Decision boundaries

Fluid 0.0566, 0.0553

0.0579, 0.0560

Stochastic 0.0594, 0.0624

0.0616, 0.0610

The set-up for this is standard: consider a linear function y = w0 + w1r of
single explanatory variable (in this case value of failr, denoted r) and a logistic
function σ(r) = 1/(1 + e−w0−w1r) where σ(r) is interpreted as the probability
of success given failr value r. We are going to expect the goal to be satisfied if
σ(r) > 0.5. The weights for the regression model are going to be fitted based
on trajectories sampled using stochastic simulation and the constructed approx-
imation for 100 random failr values. Table 2 gives the comparison of decision
boundaries obtained by the two methods. Results suggest that for the considered
parameters we slightly under-approximate the proportion of robots at t = 10.0.

Direct Optimisation of a Reward Functional. Alternatively, we can con-
sider direct optimisation of a reward functional. For example, consider the fol-
lowing functional to find maximal value for failr that results in the goal being
satisfied

QN [π] =

{
I(X(N)

π,s (T )) + log(π) + c0 for I(X(N)
π,s (T )) ≥ 0.5

I(X(N)
π,s (T )) − log(π) otherwise

where c0 is some chosen constant and π ∈ [0,∞) corresponds to the chosen
policy. The first part of the reward functional corresponds to the satisfaction of
the goal as defined previously. The constraint of failr being non-negative is taken
into account by adding a logarithmic barrier function. The term − log(π) is used
to penalise failr values that are further away from satisfying the goal. Figures 5a

Fig. 5. Sampled reward functional.
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and b show the reward functional sampled uniformly from π ∈ [0.0, 0.1]. Note
that due to stochastic variance we are going to have values of π for which we are
uncertain about whether the goal is going to be satisfied or not.

To optimise for this, currently discontinuous, reward functional we consider
the method of policy gradient presented, for example, in [15] with parametrised
policies π ∼ N (μ, σ2)—in a control scenario this would correspond to looking
at a stochastic controller. Figure 6 shows the expected reward functional for
π ∼ N (μ, 0.05) with 100 samples of μ taken uniformly from (0.0, 0.1].

Fig. 6. Sampled reward functional for Gaussian policies and the gradient ascent ini-
tialised at π ∼ N (0.02, 0.005). Reward estimates based on 10 samples of π.

Considering such Gaussian policies together with the approximation to mean
behaviour allows us to implement a fast policy gradient algorithm for synthesis-
ing approximations to optimal policies for the system. In particular, the gradient
of the functional at π is going to be estimated based on the ideas in Sect. 3 by
∇QN [π] ∼ (q[π + ε] − q[π])/ε where q is the functional corresponding to the
expected reward of the fluid approximation. The evolution of policy parameter
values for a simple gradient ascent algorithm is given in Fig. 6.

Performance. Multiple stochastic trajectories are needed to get a good esti-
mate of the mean behaviour—for the model of 100 robots we used 100 trajecto-
ries, which took about 3 s of computing on a single thread. The approximation
took about 0.04 s translating into a non-trivial speed-up in cases where trajecto-
ries for lots of parametrisations have to be considered. In particular, when gen-
erating 100 samples for considered reward functional this translates into roughly
5 min via stochastic simulation and 4 s via the approximation.

5 Conclusion

In this paper we presented a framework for exploiting fluid approximation results
in the context of policy synthesis for collective dynamics involving broadcast
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communication. To that end we proposed a class of population CT-MDPs aris-
ing from systems with broadcast communication where the communication can
be thought to separate the dynamics of the system into modes. To aid the con-
struction of such models we introduced a language Carma-C, based on Carma,
and outlined the semantics which gives a natural way for specifying policy syn-
thesis problems in a high-level language. We discussed the application of fluid
approximation in policy synthesis and suggested an approximation for the popu-
lation models with mode switching for which the classic results cannot be applied
directly. We used the proposed approximation to analyse the running example
of a robot swarm.

For further work we plan to give a more formal treatment for the approx-
imations for mode switching. In particular, the current method gives a good
approximation to mean behaviour for times sufficiently far from where the mode
change is expected to happen. However, this presents a limitation when we are
interested in the behaviour of the system around the time of mode change or in
the case of multiple modes where two mode changes can happen close to each
other. To address this we aim to devise a more sophisticated approximation for
switching time. For that we plan to consider the linear noise approximation [16],
as done for example in [17], to help recover information about stochasticity and
estimate the distribution of switching times.

Acknowledgement. This work was supported by EPSRC grant EP/L01503X/1
(CDT in Pervasive Parallelism).
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Abstract. Careful planning is needed to design cyber infrastructures
that can achieve mission objectives in the presence of deliberate attacks,
including availability and reliability of service and confidentiality of data.
Planning should be done with the aid of rigorous and sound security mod-
els. A security modeling formalism should be easy to learn and use, flex-
ible enough to be used in different contexts, and should explicitly model
the most significant parts of the system of interest. In particular, the
research community is increasingly realizing the importance of human
behavior in cyber security. However, security modeling formalisms often
explicitly model only the adversary, or simplistic interactions between
adversaries and defenders, or are tailored to specific use cases, or are dif-
ficult to use. We propose and define a novel security modeling formalism
that explicitly models adversary, defender, and user behavior in an easy
and general way, and illustrate its use with an example.

Keywords: Human modeling · Quantitative cyber security modeling
GAMES formalism · Cost benefit analysis · Risk analysis

1 Introduction

Institutions and enterprises rely on properly functioning cyber infrastructures
to fulfill their intended missions. Impairments to proper operation can come
from both accidental and malicious sources. While a sound engineering app-
roach exists for designing and assessing systems that must tolerate accidental
faults, there is no such corresponding methodology for systems that must be
resilient to malicious attacks. Given the increasing likelihood of such attacks in
the modern world, the lack of such a methodology will lead to increased uncer-
tainty regarding the resilience of systems, and may result in designs that are
susceptible to catastrophic failure when attacked.

Unfortunately, as society comes to rely more on cyber infrastructure, it is
becoming an increasingly attractive target. The cyber infrastructure must be
protected from the increased threat of attacks to ensure that it remains func-
tional. Successful cyber attacks against such infrastructures can be very impact-
ful. A few prominent examples include the cyber-attack on Ukraine’s power
grid in 2015, which deprived 230,000 residents of power [12]; the Stuxnet worm,
which delayed Iran’s nuclear program [11]; and data exfiltration attacks on U.S.
c© Springer Nature Switzerland AG 2018
A. McIver and A. Horvath (Eds.): QEST 2018, LNCS 11024, pp. 373–388, 2018.
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Democratic National Committee emails [2]. Those historical examples show how
influential such attacks may be.

Cyber defenses must be carefully planned from the earliest stages of design to
mitigate threats and ensure that systems will achieve availability, integrity, and
confidentiality objectives, even in the face of attack. Practitioners and academics
alike have long known the importance of accurate risk assessment [3,21], as
it is key to designing effective security architectures. Risk assessment, while
important, is difficult to perform correctly.

Formal computer security models help security experts overcome limitations,
gain additional insight into a system, and confirm conjectures. Assumptions are
made explicit in models, and the assumptions, input parameters, methodology,
and results of a model may be audited by an outside party. The modeling for-
malism could also serve as a common language that would allow security experts
and experts from other domains to more easily collaborate on a security model.
Finally, the models would add additional mathematical and scientific rigor to
risk analysis. All of these benefits speak to the need for security models.

We believe that, when constructing security models, it is necessary to consider
not only the system to be defended, but also the humans that interact with
that system: adversaries, defenders, and users. If the model does not consider
these human entities, it is much less likely to be accurate. Unfortunately, many
security modeling formalisms in use today fail to explicitly model all of the
human entities in the system, or do so in an overly simplistic way. Models that
ignore or improperly model human users are significantly less likely to be helpful
to system architects.

To address this issue, we propose a new security modeling formalism, the
General Agent Model for the Evaluation of Security (GAMES), which allows a
system engineer to explicitly model and study the adversaries, defenders, and
users of a system, in addition to the system itself. These models are executed
to generate security-relevant metrics to support design decisions. The formalism
is used to easily build realistic models of a cyber system and the humans who
interact with it. We define an agent to be a human who may perform some action
in the cyber system: an adversary, a defender, or a user. The formalism enables
the modular construction of individual state-based agent models of the three
types. The formalism also allows the modeler to compose these individual agent
models into one model so the interaction among the adversaries, defenders, and
users may be studied. Once constructed, this composed model can be executed.
During the execution, each individual adversary, defender, or user utilizes an
algorithm or policy to decide on what action the agent will take to attempt to
move the system to a state that is advantageous for that agent. The outcome of
the action is then probabilistically determined, and the state updated. Modelers
using GAMES have the flexibility to determine how the agents will behave:
either optimally, or according to a modeler-defined policy. The model execution
generates metrics that aid in risk assessment, and helps the security analyst
suggest appropriate defensive strategies. The formalism helps security architects
make cost-effective, risk-aware decisions as they design new cyber systems.
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2 Related Work

Many academics and practitioners have recognized the need for models for com-
puter security. Many examples may be found in surveys, e.g., surveys of papers
on game-theoretic security modeling approaches [14,17], a survey of attack tree
and attack-defense tree models [9], and a survey that includes a useful taxonomy
of security models [22].

Such modeling approaches are a step in the right direction, but pose their
own sets of limitations, especially in the ways they model the humans who inter-
act with the cyber portion of the system. Some modeling approaches explicitly
model only the adversary, e.g., the well-known attack tree formalism [18]. Other
formalisms model the adversary and defender, but neglect the role and impact
of users. For example, the attack-defense tree formalism [8] and related attack-
defense graph formalism [10] extend the attack tree formalism to include one
attacker/defender pair, but do not model multiple adversaries or multiple defend-
ers, or any users, which limits the effectiveness of the models. There exist some
approaches and tools for modeling multiple adversaries, defenders, and users in
a system, e.g., Haruspex [1], and some agent-based simulation approaches [4,23].
However, these approaches and tools are not in common use, for a number of
reasons. Often, the models lack realism because of model oversimplification, are
tailored to narrow use cases, produce results that are difficult to interpret, or
are difficult to use, among other problems. Finally, security modeling formalisms,
particularly those that take a game-theoretic approach, often assume that attack-
ers and defenders are rational. Some examples include [5,7,24]. However, this
assumption may not produce useful security models [22].

The GAMES approach is inspired, in part, by the ADVISE formalism [13].
In particular, we extend and generalize the ADVISE formalism’s Attack Exe-
cution Graph. However, there are important differences between the two for-
malisms. Models constructed using the ADVISE formalism can explicitly model
only an adversary. Defenders, users, and the interactions between actors can-
not be explicitly modeled with ADVISE. The GAMES formalism recognizes
the importance of considering defender and user actions when designing secure
systems, and explicitly incorporates defenders and users as first class model
elements.

3 A General Agent Model for Evaluation of Security

In this section, we give a comprehensive overview of the General Agent Model for
the Evaluation of Security (GAMES) formalism. We will first explain in detail
how the individual agent models are defined and composed together. Next, we
will describe how the models are executed, including the algorithms or policies
that the various adversaries, defenders, or users of the system may utilize to
decide upon the best course of action. Finally, we will describe the kind of results
these models will produce, how they may be interpreted, and how the models
may be used. One or more agent models may be joined in a composed model.
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The composed model may then be combined with a reward model to create a
model that may be executed to obtain security-relevant metrics, which a security
analyst may use to gain additional insight into the system being modeled.

3.1 Model Formalism Definition

A model defined using the GAMES formalism will consist of one or more agent
submodels and a model composed of the agent submodels, that describes how
the submodels relate to one another. An agent model represents one acting entity
in the cyber system: an adversary, a defender, or a user. The framework allows
a modeler to define many different kinds of agents. For example, a modeler may
define a malicious insider adversary, a nation-state adversary, a network operator
defender, and a customer user of the system. Once the individual agent models
have been composed into a model that defines their relationships, the modeler
can study, for example, (1) how two adversaries may cooperate to achieve a
goal on the network, (2) the effectiveness of the network operator’s defensive
actions, and (3) how the actions of the adversaries and defender impact the
user’s experience and behavior. We shall first describe the agent models, and
then how they may be composed together.

Agent Model: An agent model describes the state an agent may read or write,
how this state is initialized, the set of actions the agent may utilize to change the
state of the model, the payoff the agent receives given a particular state, and the
agent decision algorithm that determines the action the agent will take given the
state of the system. The agent model is composed of an Action Execution Graph
(AEG) and an agent profile. The AEG may be thought of as an extension of
the attack-tree formalism [18]. Unlike attack trees, an AEG contains state, and
therefore shares some similarities with generalized stochastic Petri nets (GSPNs)
[15] and stochastic activity networks (SANs) [16]. However, it is most similar to
the Attack Execution Graphs of ADversary VIew Security Evaluation (ADVISE)
models [13]. Action Execution Graphs are more general than Attack Execution
Graphs, since they can be used to model any agent type, whereas Attack Exe-
cution Graphs are used only to model adversaries. The agent profile defines how
the state is initially defined; the payoff function, which assigns the payoff the
agent achieves given a particular model state; and the agent decision algorithm
the agent uses to decide what actions to take to change the state of the system.

An Action Execution Graph (AEG) is a labeled transition system defined by

<S,A,C>,

where S is some finite set of state variables that an agent may read or write, A
is some finite set of actions an agent may take, and the relation C defines a set
of directed connecting arcs from p ∈ S to a ∈ A, and from a ∈ A to e ∈ S, where
p is a prerequisite state variable whose value directly affects the behavior of the
action a (e.g., whether the action may be attempted, how much it will cost, and
how long it will take), and e is a state variable that may be changed when action
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a is performed. The states and actions together, S ∪ A, are the vertices of the
AEG, while the connecting arcs, C, are the edges.

Each state variable in S may have a single value or a finite sequence of values.
Each value can be drawn from any countable subset of the real numbers. The
state variables may be further subdivided, at the discretion of the modeler, into
different classes. For example, state variables relating to an adversary agent may
be divided into those that relate to access (like physical access to the system,
network access, or administrator access to individual machines), knowledge (of
the routing protocols used, company policies, encryption schemes, etc.), or skill
(in decryption, social engineering, privilege escalation, and the like), as proposed
by LeMay [13]. This subdivision of state variables is superficial, but may serve
as a conceptual aid to the modeler.

An action, a ∈ A, may be used by an agent to attempt to change the state
of the system. It is defined by the tuple

<B,T,C,O>.

First, let Q be the countable set of model states, where a model state (also
known as a marking) is given by a mapping µ : S → R.

B : Q → {True, False} is a Boolean precondition that indicates whether the
action is currently enabled. An agent may not take an action that is not enabled.

T : Q → R
≥0 is the length of time needed to complete the action, and is a

random variable.
C : Q → R

≥0 is the cost to the agent for attempting the action.
O is the finite set of outcomes of the action (such as success or failure). Each

outcome o ∈ O is defined by the tuple

<Pr,E>

where
Pr : Q → [0, 1] is the probability that outcome o ∈ O will occur.
E : Q → Q is the effect of the outcome, i.e., the function that transitions the

system to a new state upon the selection of o ∈ O.
An agent profile is composed of three distinct components. The first specifies

the initial value for each state variable in the Action Execution Graph. The
second is a function that accepts as input the state of the model and outputs
the payoff the agent accrues given that the model is in that particular state.

The third and final component of the agent profile is the agent decision
algorithm. The agent decision algorithm will take as input the state of the model,
and output an action. In general, the agent decision algorithm will attempt to
select an action that will maximize the agent’s payoff. The modeler may choose to
assign to the agent one of several predefined agent decision functions, or specify a
custom decision function. The various predefined decision functions may be based
on well-studied techniques drawn from game theory and artificial intelligence,
or novel algorithms that may be developed in the future. If, in the opinion of
the modeler, none of the predefined decision functions realistically describe an
agent’s real behavior, the modeler may define a custom agent decision algorithm.
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We will explain the various adversary decision functions in greater detail in the
section on model execution.

Model Composition: Agent models should be composed together to exploit
the full power of the GAMES approach. Agent models are modular and inde-
pendently functional, so one agent model could be executed by itself if the
application warrants. For example, if the modeler is only interested in study-
ing the adversary’s behavior and is not interested in the defender’s response or
the impact on the user’s behavior, he or she could build a standalone adversary
agent model similar to an ADVISE model [13]. However, the chief aim of the
GAMES formalism is to give those in charge of making security decisions the
ability to easily model the interaction among adversaries, defenders, and users
in cyber systems. The composed model will define how the agent models will be
allowed to interact with one another. We utilize the state-sharing approach of
the Replicate/Join formalism [19] to enable agents to interact with one another.
This state-sharing approach allows an agent to read and write state in another
agent model. Agents can pass messages to one another through shared state
variables that serve as communication channels. Defenders can collaborate and
adversaries can collude using the channels.

3.2 Model Execution

Overview: Model execution is accomplished via discrete-event simulation paired
with the agent decision algorithms, as seen in Algorithm1.

Algorithm 1. Model Execution
1: procedure Execute Model
2: Time ← 0
3: State ← s0
4: Agents ← {agent1, agent2, ... agentn}
5: while Time < EndTime do
6: for all agent ∈ Agents do
7: agentaction ← AgentDecisionAlgorithm(State)

8: Time ← time to complete earliest completed agent action
9: Outcome ← o, where o is the randomly chosen outcome of the action

10: State ← Effect(State, Outcome)

Decisions: The formalism allows the modeler to specify adversary, defender,
and user behavior as realistically as possible to produce high-quality results that
will support design and defense decisions. Today, security modeling formalisms
are commonly built around one agent behavior specification approach. The agent
behavior specification is driven by the agent decision algorithm, which the agent
uses to choose actions to perform. Often this agent behavior specification is
inspired by and draws from some particular technique in game theory, artificial
intelligence, or psychology. The GAMES formalism may be used to test and
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compare a wide variety of agent decision algorithms. The modeled entities may
act cooperatively or competitively with others to achieve a goal, using well-
established techniques from artificial intelligence research.

3.3 Metrics

The primary intended use of the GAMES formalism is to provide insight to
support those charged with making decisions that affect system security. That
insight comes in the form of quantitative metrics, which are results of the exe-
cuted model. We leverage the theory of reward-model-based performance vari-
ables [20] to construct metrics for GAMES models. It provides a simple formu-
lation that is very flexible, and thereby allows us a great deal of freedom and
creativity in the variety of metrics we may specify. For a demonstration, see
Sect. 4. We believe that the estimated payoffs, costs, and probabilities of success
for the various actors will be among the most interesting metrics that GAMES
models can calculate, particularly for modelers that are interested in cost-benefit
analysis.

3.4 Limitations

We argue that quantitative model results can produce useful insights into the
security of the system being considered, but we do not claim that the metrics pro-
duced by executing a GAMES model are infallible, or that they should be treated
as such. The metrics may not accurately reflect reality; they may give misleading
results if the model is constructed incorrectly or if the model input parameters
are inaccurate. Security analysts must work closely with system architects and
other experts to verify that the model is a good representation of the actual
system. In addition, whenever possible, the results given by the model should be
validated by experiments performed on the system itself. Experiments performed
on the system can also be used to improve the model. The adversary, defender,
and user behavior in the model may be checked against data from intrusion
detection systems, analytics data, academic studies, and surveys results. The
issue of inaccurate input parameters may be mitigated with a well-executed
design exploration, which may be achieved by a sensitivity analysis.

Some are concerned that models that produce quantitative security metrics
may be misused, to the detriment of the security of systems, in part because
people may have more confidence in the model results than they should [22].
We believe, however, that the alternative of having no formal security model is
much worse. Security analysts almost always carry informal mental models of
their systems in their heads, and those models suffer from many of the same lim-
itations as formal security models, while also suffering from their own additional
limitations. The GAMES formalism gives an analyst the ability to turn a mental
model into a formal, concrete, rigorous, auditable model. Indeed, the quantita-
tive metrics produced by these models represent an important step towards the
development of a science of security [6].
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4 Example

We present an example model to illustrate how security practitioners could use
the GAMES formalism to make security decisions. The goal of the model is to
help an operator make an informed choice among several strategies that could be
used to defend user accounts from being compromised by an adversary. We limit
the size of the model for ease of explanation; we could obtain a more realistic
model by expanding the size to include more details. We solved the example
model using an implementation of the GAMES framework written in Python.

In the model, there are four agent types: adversary, operator/defender, user,
and media. The operator’s goal is to provide a service to the users in exchange
for a fee. The operator must maintain a Web-accessible account for every user
using the system. Each user has the goal of using the service (and consequently
the account) with minimal effort; if the effort of using the service becomes too
great, the user will switch to a different service. The adversary wants to obtain
unauthorized access to as many accounts as possible. The last agent type, the
media, will publicize a successful hack if it learns about it. The model contains
one adversary instance, one defender instance, one media instance, and two hun-
dred user instances. We model the two hundred users as two hundred copies of
the user submodel with different state initializations.

The model can be used to help a security practitioner choose among different
defensive strategies by comparing their effectiveness across a variety of metrics.
Specifically, we show how it may be used to compare three different operator
defensive policies (passive, aggressive, and balanced) with respect to net defender
profit, the time to discover the initial breach in security, and the number of
accounts compromised in the attack. The metrics calculated by the model would
help the defender choose a policy to follow in an implemented system.

4.1 Composed Model

The composed model consists of submodel instances of four submodel types, one
for each of the four agent types in the model. There are two hundred instances
of the user submodel type, and one instance of each other submodel type. Each
submodel instance shows a particular agent’s view of the environment (expressed
in the Action Execution Graph) and the decision algorithm the agent uses to
choose an action at each stage of the simulation.

There are twelve state variables in this model, as follows.

– Account Access: The status of a user’s account.
– Noisiness: The cumulated evidence the attacker left (observable by the

defender) as a result of the actions the attacker took.
– Password Complexity: A user’s password strength.
– Password Reset Requested: This Boolean-valued state variable indicates

whether the defender has requested that a user change an account password.
In effect, it serves as a communication channel that the defender utilizes to
convey a request for a particular action.
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Fig. 1. A graphical representation of the
adversary’s Action Execution Graph.

Fig. 2. A graphical representation of the
defender’s Action Execution Graph.

Fig. 3. A graphical representation of a
user’s Action Execution Graph.

Fig. 4. A graphical representation of the
media’s Action Execution Graph.

– Social Engineering Skill: The adversary’s level of skill in this attack.
– Service Fee for Defender: Payment made by the user for account access.
– Threat Discovered: Defender’s knowledge of an attempted attack.
– Time to Discovery: Days until the media learn of a successful attack.
– User Alarm: User’s fear of loss due to an account compromise.
– User Benefit: The value of the benefit the user accrues.
– User Fatigue: The user’s level of fatigue from using the defender’s service.
– User Gullibility: Susceptibility of a user to social engineering.

In the model, the Noisiness, Password Reset Requested, Social Engineering
Skill, Service Fee for Defender, Threat Discovered, and Time to Discovery state
variables each have a single value. The Account Access, Password Complexity,
User Alarm, User Benefit, User Fatigue, and User Gullibility state variables
have a sequence (or array) of values, with one value for each of the two hundred
users in the model. The user submodels form an ordered list, such that the ith

user can only read from or write to the ith value of those state variables that
have a sequence of values. (Note that each of those state variables is included in
the users’ Action Execution Graphs.) That allows us to use one state variable,
for example, to hold account status information for every individual user in the
system, rather than two hundred individual copies of a state variable.
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Every value of every state variable is initialized to zero, with three exceptions.
The first exception, Social Engineering Skill, is initialized to 7/10 at the begin-
ning of the simulation. This indicates that the adversary has above-average skill
in social engineering. The second and third exceptions are Password Complex-
ity and User Gullibility. Some users have more cybersecurity knowledge, and
motivation to act on that knowledge, than others; in this model, we have 80
sophisticated users and 120 average users, and these user types are reflected in
the values assigned to these two state variables. We randomly selected 80 indices
from 200 users to represent sophisticated users, and for each index in this set of
80 the corresponding values of Password Complexity and User Gullibility are set
to 8/10 and 2/10, respectively. That indicates that the sophisticated users have
strong passwords and are relatively unlikely to be susceptible to social engi-
neering attacks. The remaining 120 values of Password Complexity and User
Gullibility are initialized to 4/10 and 8/10, respectively.

4.2 Adversary Submodel

This submodel contains the attacker’s Action Execution Graph (visually repre-
sented in Fig. 1), and the agent decision algorithm.

Action Execution Graph: The attacker may choose either (1) to perform a
dictionary attack on the database in an attempt to discover passwords via the
Dictionary Attack action, or (2) to conduct a social engineering attack to trick
users into revealing their passwords via the Social Engineering Attack action.
These actions, along with their precondition and postcondition state variables,
form the adversary’s Action Execution Graph. The probability of a successful
social engineering attack depends on the user’s gullibility, the adversary’s skill
in social engineering, and whether or not the defender discovers the attack. If
the attack is attempted, there is some probability that it will generate a small
amount of noise. If successful, the attack will give the adversary access to the
account. The probability of a successful dictionary attack depends directly on
the complexity of the user’s password.

Decision Algorithm: The attacker has two actions to choose from: (1) starting
a dictionary-based brute-force attack to obtain the password, or (2) attempting
a social engineering attack to trick users into giving the attacker access to their
passwords. The adversary will attempt a dictionary attack on a password if (1)
the minimum value in Password Complexity is less than 5, (2) Social Engineering
Skill is less than 5, and (3) User Gullibility is greater than 5. If these conditions
have not been satisfied, the adversary will choose to perform a social engineering
attack.

4.3 Defender Submodel

This submodel contains the defender/operator’s view of the overall model’s state
and the actions that the agent could take to change the state. For a visual
depiction of the defender’s Action Execution Graph, see Fig. 2.
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Defender Action Execution Graph: The defender can choose from four
actions. The defender has the option of attempting to discover the adversary’s
activities (the Discover Threat action), sending an email to inform users of rele-
vant threats or educate them about cybersecurity best practices (the Email User
Info action), requesting that the user perform a password reset (the Request
Password Reset action, or working on core business activities (the Perform Core
Work action).

First, if a threat has not already been discovered, the defender can try to
discover the adversary’s attack. The probability of successfully uncovering the
attack depends on the noisiness of the attack (the value of the Noisiness state
variable). If the defender is successful, the attack is discovered (as indicated by
Threat Discovered). Second, the defender can choose to send an email to the
users with the Email User Info action to reduce their susceptibility to social
engineering attacks. The email’s effectiveness increases if the threat has been
discovered. If Threat Discovered indicates that the threat has been discovered,
the action will greatly reduce the user’s gullibility; otherwise, the action will
reduce it only slightly. Sending the email also slightly increases every user’s
fatigue, and, if the threat has been discovered, alarm. Third, the defender can
also use the Request Password Reset, which sets the Password Reset Requested
state variable to true. It also greatly increases the users’ fatigue (because they
have to create and memorize new passwords) and slightly increases the users’
alarm (as tracked by the User Fatigue and User Alarm state variables, respec-
tively). Fourth, and finally, at any time, the defender can attempt the Perform
Core Work action. This action represents work that the operator can do that
isn’t directly related to cybersecurity. It exists as a sort of placeholder, because
in reality, the operator is likely to spend most of his or her time on tasks that
are unrelated to cybersecurity.

Decision Algorithm: We evaluate three different policies that a defender could
choose to employ: aggressive, passive, and balanced.

First, the aggressive policy calls for defenders to take actions frequently to
defend their networks and keep their users educated. Specifically, a defender
will (1) email the users every ninety days to educate them about cyber security
and how to avoid social engineering attacks, (2) request that the users reset the
account password every ninety days (and whenever an ongoing attack has been
detected), (3) attempt to discover threats by thoroughly analyzing security logs
(from tools such as intrusion detection systems) every seven days, and (4) do
work unrelated to cybersecurity (such as maintaining infrastructure, providing
services to account users, etc.) on the remaining days.

If the defender employs the passive policy, he or she will take defensive actions
infrequently. Specifically, the defender will send out a password reset request and
an email educating users once every year and do work unrelated to cybersecurity
on the remaining days.

Finally, the balanced policy can be used by a defender to strike a balance
between the aggressive and passive approaches. The policy calls for the defender
(1) to send an email educating users every ninety days about how to avoid falling
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for social engineering attacks, (2) to request a password reset every year (and
whenever a threat has been discovered), and (3) to attempt to discover threats
by examining security logs every two weeks.

4.4 User Submodel

As loyal customers, the users wish to keep using the defender’s service, because
it meets their needs more effectively than competitor services do. As a result,
the customers are cooperative and will reset their passwords if the defender
asks them to. However, the defender can take actions that annoy the user (e.g.,
sending out emails too often), or the media could alarm the users if a compromise
is publicized. Either case could drive the users away from the defender’s service.

Action Execution Graph: Each user’s Action Execution Graph consists of
three actions and seven state variables. A graphical representation can be found
in Fig. 3. The three actions that the user could choose are Use Service, Use Alter-
native Service, and Change Password. First, the Use Service action is essentially
the default action for this agent. It is enabled as long as Account Access does
not indicate that the user has abandoned the account. Service Fee for Defender
and User Benefit are incremented (by values of one and three, respectively)
when Use Service is attempted. Second, the Use Alternative Service action can
be taken by a user who is frustrated with the defender’s service. The action is
always enabled. It has only one postcondition state variable, User Benefit, which
is incremented by two when the action is attempted. Third, the main effect of the
Change Password action is to remove the adversary’s access to the account (if
it had previously been gained) by changing the password. The action is enabled
as long as the user hasn’t abandoned his or her account. The Password Reset
Request state variable may signal to the user that the defender believes it would
be beneficial to change the password. User Alarm is incremented by a small
amount when the user changes the password, but User Fatigue is incremented
by a much larger amount, to model the difficulty of creating and remembering
a new password.

User Decision Algorithm: The user’s policy is expressed in the following
list: (1) If the defender requests that the user reset the password and the user
has not abandoned the account, reset the password. (2) Otherwise, if the User
Alarm and User Fatigue state variables both have values of less than 9, and the
account has not been abandoned, use the defender’s service. (3) Otherwise, if
the user’s fatigue is greater than or equal to 9, but the user’s alarm is less than
9, and the account has not been abandoned, with some low probability switch
to a competitor’s service, otherwise continue to use the defender’s service. (4)
Otherwise, if the user’s alarm is greater than or equal to 9, and the account
has not been abandoned, with some high probability switch to a competitor’s
service, otherwise, continue using the defender’s service. (5) Otherwise, use a
competitor’s service.
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4.5 Media Submodel

The media submodel is the simplest agent in the model. Its one goal is to pub-
licize a successful widespread attack against the defender’s service. A graphical
representation of the media’s Action Execution Graph is given in Fig. 4. The
media’s Action Execution Graph consists of only a single action, the Publicize
Hack action, along with the state variables Time to Discovery, Account Access,
and User Alarm. If at least 10% of user accounts have been compromised, the
action will become enabled. Once the action is taken, it will complete at the
end of the time indicated by Time to Discovery. If at least 10% of user accounts
remain compromised at the end of that time, the actions will set the value
of every user’s User Alarm state variable to the maximum value, which could
trigger abandonment of accounts by users. The media agent has a straightfor-
ward decision algorithm since the media have only one choice of action. The
media will publicize the attack, increasing the users’ alarm, six months after the
first account has been compromised, if the defender doesn’t quickly contain the
problem.

4.6 Reward Model: Defining Metrics

The model gains its usefulness by supplying relevant metrics that will help the
system architects and policy designers make good security choices. The model
calculates seven metrics that give insight into the modeled system.

To begin, we track the defender’s profit. The defender gains revenue from
every user each day that he or she uses the service. The total revenue gained
at the end of a 2-year period can be found by merely observing the value of
the Service Fee for Defender state variable at the end of a 2-year simulation.
The defender incurs costs by performing defensive actions. Every time a user
takes action during a simulation, the cost to perform that action is calculated
and stored in a running counter. At the end of the simulation, the value of that
counter can be observed to determine the total direct cost of a particular policy.
The profit is revenue minus costs.

Also, three metrics track the state of the 200 accounts in the defender’s
care at the end of the simulation: the mean number of uncompromised active
accounts, the mean number of compromised accounts, and the mean number of
abandoned but uncompromised accounts. The first of the three metrics gives the
number of actively used, secure accounts (accounts that the adversary cannot
access and have not been abandoned). The second of the three metrics tracks
the number of accounts that are compromised by the adversary at the end of the
simulation (whether or not the account has been abandoned by its user). The
last of the three metrics gives the number of uncompromised accounts that have
been abandoned by their users (because of alarm or fatigue) at the end of the
simulation. All three of these metrics are calculated by observing the value held
by each of the 200 instances of the Account Access state variable.

The final metric gives the time from the first successful account compromise
to the time the defender discovers the threat. The first time the adversary com-
promises an account, the current simulation time is recorded. Similarly, the first
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time the Discover Attack action successfully completes, the current simulation
time is noted. The metric is the difference between the two times.

4.7 Model Execution and Results

The complete model may be executed to calculate the defined metrics, as
described in Sects. 3.2 and 3.3. Every action in this particular model takes one
day to complete (except the Publicize Hack action, which takes 180 days to
complete). For that reason, the simulation step size is one day. We simulate
the agents’ behaviors over two years of simulation time to obtain the relevant
metrics. All results are simulated with a 95% confidence interval.

Table 1. Simulation results

Passive Balanced Aggressive

Defender stats

Revenue 93770 ± 540 145800 ± 0 144029 ± 111

Costs 2200 ± 0 28300 ± 0 59610 ± 20

Profit 91570 ± 536 117500 ± 0 84418 ± 122

Days to detect Never detected 17 ± 2 12 ± 1

Account info

# Uncompromised 19 ± 1 200 ± 0 182 ± 1

# Compromised 120 ± 0 0 ± 0 0 ± 0

# Abandoned 61 ± 1 0 ± 0 18 ± 1

The results are presented in Table 1. They show that the balanced policy has
a clear advantage over the other two policies. The defender will earn the highest
average net profit and have the most uncompromised accounts at the end of the
two-year period if the balanced policy is used. When compared to the balanced
policy, the aggressive policy brings in a similar amount of revenue, but incurs
much higher costs (due to the frequency of defensive actions taken with this
policy), so the defender earns a significantly lower profit. The defender, using an
aggressive policy, successfully thwarts the adversary’s attempts to compromise
accounts, but the defender’s frequent actions annoy some users, driving them
to abandon the service. The aggressive policy leads to slightly earlier threat
detection than the balanced policy. The passive policy costs the defender much
less than the aggressive or balanced policies. However, revenue is not as high,
so average net profit is also low. The abandonment of so many user accounts
explains the low revenue. We investigated why so many more users abandoned
their accounts here than for the other two policies. We found that the media
never publicize the hack if the defender uses the aggressive or balanced policies
(because not enough accounts are compromised for a long enough time to be
newsworthy). However, because the passive defender does so little to counter the
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attacker, many accounts are compromised, which triggers the media publication
of the hack, which alarms users and drives them to abandon their accounts.

5 Conclusion

In this paper we argue that cyber security models must explicitly incorporate all
relevant agents to provide an accurate view of the overall system behavior, and
that the agents must be modeled in a realistic manner. Formalisms that only
model adversary behavior or simple adversary-defender conflict behavior do not
accurately reflect the reality found in cyber systems that are manipulated and
used by many different human entities. To solve this problem, we propose a new,
easy-to-use modeling framework, the General Agent Model for the Evaluation
of Security. This framework allows the modeler to construct different agent sub-
models, which may be composed together and executed to calculate metrics that
give insight into system behavior. Each submodel consists of the agent’s view of
the state, the actions available to the agent, and the agent’s customizable deci-
sion algorithm. We demonstrated the richness of the formalism with an example,
which incorporated a number of different agents with different goals and policies.
The GAMES formalism is a significant step forward in the quest to give analysts
the ability to create realistic security models of cyber systems.
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Abstract. Time bounded reachability is a fundamental problem in
model checking continuous-time Markov chains (CTMCs) and Markov
decision processes (CTMDPs) for specifications in continuous stochastic
logics. It can be computed by numerically solving a characteristic lin-
ear dynamical system, which is computationally expensive. We take a
control-theoretic approach and propose a reduction technique that finds
another dynamical system of lower dimension (number of variables),
such that numerically solving the reduced dynamical system provides
an approximation to the solution of the original system with guaran-
teed error bounds. Our technique generalises lumpability (or probabilis-
tic bisimulation) to a quantitative setting. Our main result is a Lya-
punov function characterisation of the difference in the trajectories of
the two dynamics that depends on the initial mismatch and exponen-
tially decreases over time. In particular, the Lyapunov function enables
us to compute an error bound between the two dynamics as well as
a convergence rate. Finally, we show that the search for the reduced
dynamics can be computed in polynomial time using a Schur decompo-
sition of the transition matrix. This enables us to efficiently solve the
reduced dynamical system using exponential of upper-triangular matri-
ces. For CTMDPs, we generalise the approach to computing a piecewise
quadratic Lyapunov functions for a switched affine dynamical system.
We synthesise a policy for the CTMDP via its reduced-order switched
system in order to have time bounded reachability probability above a
threshold. We provide error bounds that depend on the minimum dwell
time of the policy. We show the efficiency of the technique on examples
from queueing networks, for which lumpability does not produce any
state space reduction and which cannot be solved without reduction.

1 Introduction

Continuous-time Markov chains (CTMCs) and Markov decision processes
(CTMDPs) play a central role in the modelling and analysis of performance and
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A. McIver and A. Horvath (Eds.): QEST 2018, LNCS 11024, pp. 389–406, 2018.
https://doi.org/10.1007/978-3-319-99154-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99154-2_24&domain=pdf


390 M. Salamati et al.

dependability analysis of probabilistic systems evolving in real time. A CTMC
combines probabilistic behaviour with real time: it defines a transition system
on a set of states, where the transition between two states is delayed according
to an exponential distribution. A CTMDP extends a CTMC by introducing non-
deterministic choice among a set of possible actions. Both CTMCs and CTMDPs
have been used in a large variety of applications — from biology to finance.

A fundamental problem in the analysis of CTMCs and CTMDPs is time
bounded reachability : given a CTMC, a set of states, a time bound T , and a
number θ ∈ [0, 1], it asks whether the probability of reaching the set of states
within time T is at least θ. In CTMDPs we are interested in finding a policy that
resolves non-determinism for satisfying this requirement. Time bounded reacha-
bility is the core technical problem for model checking stochastic temporal logics
such as Continuous Stochastic Logic [1,3], and having efficient implementations
of time bounded reachability is crucial to scaling formal analysis of CTMCs and
CTMDPs.

Existing approaches to the time bounded reachability problem are based on
discretisation or uniformisation, and in practice, are expensive computational
procedures, especially as the time bound increases. The standard state-space
reduction technique is probabilistic bisimulation [14]: a probabilistic bisimula-
tion is an equivalence relation on the states that allows “lumping” together
the equivalence classes without changing the value of time bounded reachabil-
ity properties, or indeed of any CSL property [3]. Unfortunately, probabilistic
bisimulation is a strong notion and small perturbations to the transition rates
can change the relation drastically. Thus, in practice, it is often of limited use.

In this paper, we take a control-theoretic view to state space reductions
of CTMCs and CTMDPs. Our starting point is that the forward Chapman-
Kolmogorov equations characterising time bounded reachability define a lin-
ear dynamical system for CTMCs and a switched affine dynamical system for
CTMDPs; moreover, one can transform the problem so that the dynamics is
stable. Our first observation is a generalisation of probabilistic bisimulation to a
quantitative setting. We show that probabilistic bisimulation can be viewed as
a projection matrix that relates the original dynamical system with its bisim-
ulation reduction. We then relax bisimulation to a quantitative notion, using a
generalised projection operation between two linear systems.

CTMCs. The generalised projection does not maintain a linear relationship
between the original and the reduced linear systems. However, our second result
shows how the difference between the states of the two linear dynamical systems
can be bounded as an exponentially decreasing function of time. The key to this
result is finding an appropriate Lyapunov function on the difference between the
twodynamics, which demonstrates an exponential convergence over time.We show
that the search for a suitable Lyapunov function can be reduced to a system of
matrix inequalities, which have a simple solution, and which leads to an error
bound of the form L0e

−κt, where L0 depends on the matrices defining the dynam-
ics, and κ is related to the eigenvalues of the dynamics. Clearly, the error goes to
zero exponentially as t → ∞. Hence, by solving the reduced linear system, one can
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approximate the timebounded reachability probability in the original system,with
a bound on the error that converges to zero as a function of reachability horizon.
For reducible CTMCs, we show that the same approach is applicable by prepro-
cessing the structure of CTMC and eliminating those bottom strongly connected
components that do not influence the reachability probability.

The Lyapunov approach suggests a systematic procedure to reduce the state
space of a CTMC. If the original dynamical system has dimension n, we show,
using Schur decomposition, that we can compute an m-dimensional linear sys-
tem for each m ≤ n as well as a Lyapunov-based bound on the error between
the dynamics. Thus, for a given tolerance ε, one can iterate this procedure to
find an appropriate m. This m-dimensional system can be solved using existing
techniques, e.g., using exponential of upper-triangular matrices. The results in
the literature (e.g. in [9]) rely on computing solutions of matrix inequalities,
which is not scalable for dynamical systems of large dimension. In our paper,
we characterized the required nonlinear matrix (in)equalities and provided a
solution based on Schur decomposition of the generator matrices, which can be
computed in polynomial-time.

CTMDPs. For CTMDPs, we generalise the approach for CTMCs using Lya-
punov stability theorems for switched systems. Once again, the objective is to
use multiple Lyapunov functions as a way to demonstrate stability, and derive
an error bound from the multiple Lyapunov functions. For this we construct a
piecewise quadratic Lyapunov function for a switched affine dynamical system.
Then we synthesise a policy for the CTMDP via its reduced-order switched sys-
tem in order to have time bounded reachability probability above a threshold.
We provide error bounds that depend on the minimum dwell time of the policy.

The notion of behavioral pseudometrics on stochastic systems as a quantita-
tive measure of dissimilarity between states have been studied extensively [2,6],
but mainly for discrete time Markov models and mostly for providing an upper
bound on the difference between all formulas in a logic; by necessity, this makes
the distance too pessimistic for a single property. In contrast, our approach con-
siders a notion of distance for a specific time-bounded reachability property, and
provides a time-varying error bound.

We have implemented our state space reduction approach and evaluated its
performance on a queueing system benchmark. Fixing time horizon and error
bound, our reduction algorithm computes a reduced order system, which takes
less time to run. We show that, as the time horizon increases, we get significant
reductions in the dimension of the linear system while providing strong bounds
on the quality of the approximation.

2 Continuous-Time Markov Chains

Definition 1. A continuous-time Markov chain (CTMC) M = (SM, R, α) con-
sists of a finite set SM = {1, 2, · · · , |SM|} of states, a rate matrix R : SM ×
SM → R≥0, and an initial probability distribution α : SM → [0, 1] satisfying∑

s∈SM α(s) = 1.
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Intuitively, R(s, s′) > 0 indicates that a transition from s to s′ is possible and
that the timing of the transition is exponentially distributed with rate R(s, s′).
If there are several states s′ such that R(s, s′) > 0, the chain can transition
to any one of them in the following way. A state s ∈ SM is called absorbing
if and only if R(s, s′) = 0 for all s′ ∈ SM. Denote the total rate of taking an
outgoing transition from state s by E(s) =

∑
s′∈SM R(s, s′). A transition from

a non-absorbing state s into s′ happens within time t with probability

P(s, s′, t) =
R(s, s′)
E(s)

.(1 − e−E(s)t).

Intuitively, 1 − e−E(s)t is the probability of taking an outgoing transition at s
within time t (exponentially distributed with rate E(s)) and R(s, s′)/E(s) is the
probability of taking transition to s′ among possible next states at s. Thus, the
probability of moving from s to s′ in one transition, written P(s, s′) is R(s,s′)

E(s) .
For an absorbing state, we have E(s) = 0 and no transitions are enabled.

A right continuous step function ρ : R≥0 → SM is called an infinite path. For
a given infinite path ρ and i ∈ N, we denote by ρS [i] the state before the (i+1)-
th step, and by ρT [i] the time spent at ρS [i], i.e., the length of the step segment
starting with ρS [i]. Let ΠM denote the set of all infinite paths, and ΠM(s)
denote the subset of those paths starting from s ∈ SM. Let I0, . . . , Ik−1 be
nonempty intervals in R≥0. The cylinder set Cyl(s0, I0, s1, I1, . . . , sk−1, Ik−1, sk)
is defined by:

{ρ ∈ ΠM | ∀0 ≤ i ≤ k . ρS [i] = si ∧ ∀0 ≤ i < k . ρT [i] ∈ Ii}.

Let F(ΠM) denote the smallest σ-algebra on ΠM containing all cylinder sets.
The probability measure Probα on F(ΠM) is the unique measure defined by
induction on k with Probα(Cyl(s0)) := α(s0) and

Probα(Cyl(s0, I0, . . . , sk, [a, b], s′)) :=

Probα(Cyl(s0, I0, . . . , sk)) · P(sk, s′)(e−E(sk)a − e−E(sk)b).

The transient state probability, written π̄M
α (t), is defined as a row vector with ele-

ments Probα{ρ | ρ(t) = s′}, s′ ∈ SM. The transient probabilities of M are char-
acterised by the forward Chapman-Kolmogorov differential equation [4], which
is the system of linear differential equations

d

dt
π̄M

α (t) = π̄M
α (t)Q̄, π̄M

α (0) = α. (1)

where Q̄ is the infinitesimal generator matrix of M defined as Q̄ = R −
diags(E(s)). Note that

∑
s′ Q̄(s, s′) = 0 for any s ∈ SM. πM

s (t)(s′) indicates
the probability that M starts at initial state s and is at state s′ at time t.
Therefore,

d

dt
π̄M

s (t) = π̄M
s (t)Q̄, π̄M

s (0) = 1(s) (2)
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where π̄M
s (t) ∈ R

SM is a row vector containing transient state probabilities
ranging over all states in SM. We equate the row vector with n co-ordinates
with a function from S to reals. The initial value of differential equation (2)
is a vector indicating the initial probability distribution that assigns the entire
probability mass to the state s, that is, M: π̄M(s, 0) = 1(s), a vector whose
element associated to s is one, and zero otherwise.

Let M = (S � {good,bad}, R, α) be a CTMC with two absorbing states
good and bad, where, |S| = n and let T ∈ R≥0 be a time bound. We write
ProbM(1(s), T ) = π̄M

s (T )(good). The time-bounded reachability problem asks
to compute this probability. Note that, for all T , ProbM(1(good), T ) = 1 and
ProbM(1(bad), T ) = 0. In general, we are interested in finding the probability
for a given subset S0 ⊆ S of states. We denote solution to this problem as a
n0 × 1 vector ProbM(C, T ), where C is a n0 × (n + 2) matrix with n0 = |S0|
ones on its main diagonal, corresponding to the states in S0. If S0 = SM, then
C is the (n + 2) × (n + 2) identity matrix.

3 Time-Bounded Reachability on CTMCs

3.1 From Reachability to Linear Dynamical Systems

Let M = (S � {good,bad}, R, α) be a CTMC, with |S| = n, and absorbing
states good and bad. The solution to the time-bounded reachability problem
for a projection matrix C can be obtained by rewriting (2) as:

{
d
dtZ(t) = QZ(t), Z(0) = 1(good),
ProbM(C, t) = CZ(t)

(3)

where Z(t) ∈ R
n+2 is a column vector with elements Zi(t) = ProbM(1(si), t).

Notice that in this formulation, we have let time “run backward”: we start with
an initial vector which is zero except for corresponding element to the state good
and compute “backward” up to the time T . By reordering states, if necessary,
the generator matrix Q in (3) can be written as:

Q =

⎡

⎢
⎢
⎣

A
... χ

... β
. . . . . . . . . . . . . . .

0
... 0

... 0

⎤

⎥
⎥
⎦ (4)

with A ∈ R
n×n, χ ∈ R

n×1, and β ∈ R
n×1. Vectors χ and β contain the rates

of jumping to the states bad and good, respectively. With this reordering of
the states, it is obvious that in (3), Z(t)(bad) = 0 and Z(t)(good) = 1, thus
we assume states good and bad are not included in C. We write ZS(t) for the
vector (in R

n) restricting Z to states in S. These variables should satisfy
{

d
dtZS(t) = AZS(t) + β, ZS(0) = 0
ProbM(CS , t) = CSZS(t),

(5)
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where CS ∈ R
n0×n is the matrix obtained by omitting the last two columns of C.

Equation (5) can be seen as model of a linear dynamical system with unit
input. Our aim here is to find solution of (5) using reduction techniques from
control theory while providing guarantees on the accuracy of the computation
and to interpret the solution as the probability for time bounded reachability.

Let γ := maxi=1:n|aii|, the maximal diagonal element of A, and define matrix
H as H = A

γ + In, where In is the n × n identity matrix. We fix the following
assumption.

Assumption 1. H is an irreducible matrix, i.e., its associated directed graph
is strongly connected. Moreover, β + α 
= 0. That is, either good or bad is
reachable from some state in S.

Remark 1. The above assumption is “WLOG.” First, if there is no edge from
S to good or bad, the problem is trivial. Second, the general case, when H is
not irreducible can be reduced to the assumption in polynomial time. Thus, the
assumption restricts attention to the core technical problem.

Recall that a matrix A is stable if every eigenvalue of A has negative real part.
The spectral radius of a matrix is the largest absolute value of its eigenvalues.
Assumption 1 will imply the following proposition.

Proposition 1. Assumption 1 implies that matrix A is invertible and stable.

Since the input to (5) is fixed, we try to transform it to a set of differential
equations without input but with initial value. Let us take a transformation that
translates ZS(t) by the offset vector A−1β:

X(t) := ZS(t) + A−1β. (6)

The evolution of X(·) is:
{

d
dtX(t) = AX(t), X(0) = A−1β

ProbM(CS , t) = CSX(t) + d.
(7)

where d = −CSA−1β. The dimension (number of variables) of dynamical system
(7) is n, the size of the state space S.

Remark 2. Under Assumption 1, the solution of infinite horizon reachability
problem is −A−1β, which can be computed efficiently as the solution of a system
of linear equations. Elements of X(t) defined in (6) contains the values of finite-
horizon reachability in compare with the infinite-horizon values.

In the following, we show how the solution of this dynamical system can be
approximated by a dynamical system of lower dimension. Our approach relies
on stability property of matrix A, and gives an upper bound on the approxima-
tion error that converges exponentially to zero as a function of time. Thus our
approach is beneficial for long time horizons when previous techniques fail to
provide tight bounds.
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3.2 Bisimulation and Projections

Probabilistic bisimulation or lumpability is a classical technique to reduce the
size of the state space of a CTMC. For CTMC M = (SM, R, α) with space
SM = S � {good,bad}, a bisimulation on M is an equivalence relation ∼= on
SM such that good and bad are singleton equivalence classes and for any two
states s1, s2 ∈ S, s1∼=s2 implies R(s1, Θ) = R(s2, Θ) for every equivalence class
Θ of ∼=, where R(s,Θ) :=

∑
s′∈Θ R(s, s′). Given a bisimulation relation ∼= on M,

we can construct a CTMC M̄ = (SM̄, R̄, ᾱ) of smaller size such that probabilities
are preserved over paths of M and M̄. In particular, s1∼=s2, implies that

ProbM(1(s1), t) = ProbM̄(1(s2), t), ∀t ∈ R≥0.

The CTMC M̄ has the quotient state space {[s]∼= | s ∈ S}�{good,bad}, where
[s]∼= is the equivalence class of s ∈ S, rate function R̄([s]∼=, Θ) = R(s,Θ) for any
Θ ∈ SM̄, and initial distribution ᾱ([s]∼=) =

∑
s′∈[s]∼=

α(s′).
We now show how the differential equation (7) for M and M̄ relate. Assume

that the state space of M̄ is S̄ ∪ {good,bad}, where |S̄| = m. We have
{

d
dtX̄(t) = ĀX̄(t), X̄(0) = Ā−1β̄,

P robM̄(C̄S , t) = d̄ + C̄SX̄(t).
(8)

where Ā and β̄ are computed similarly to that of M according to the generator
matrix of M̄. Note that Ā is an m × m matrix. Matrix C̄S is n0 × m con-
structed according to S0, with |S0| ones corresponding to the quotient states
{[s]∼= | s ∈ S0}. We now define a projection matrix P∼= ∈ R

n×m as P∼=(i, j) = 1 if
si ∈ [j], i.e., si belongs to the equivalence class [j] ∈ S̄, and zero otherwise. This
projection satisfies CSP∼= = C̄S , and together with the definition of ∼= implies
the following proposition.

Proposition 2. For every bisimulation ∼=, The projection matrix P∼= satisfies
the following

AP∼= = P∼=Ā, β = P∼=β̄. (9)

Conversely, every projection matrix satisfying (9) defines a bisimulation relation.
In particular,

X(t) = P∼=X̄(t), ∀t ∈ R≥0. (10)

Example 1. As an example, consider the CTMC in Fig. 1 and assume first that
all εij = 0. We have omitted state bad which is unreachable. We are interested
in measuring probability of reaching state good, which is made absorbing by
removing its outgoing links. It is easy to see that the bisimulation classes are
{s1, s2}, {s3, s4}, and {good}. The bisimulation reduction and the correspond-
ing projection matrix P∼= are shown on the right-hand side. The differential
equation for the reduced CTMC has dimension 2.

Unfortunately, as is well known, bisimulation is a strong condition, and small
perturbations in the rates can cause two states to not be bisimilar. Consider a
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perturbed version of the CTMC with Q as generator matrix, given below. Here,
ε 
= 0 for some links, and the CTMC on the right-hand side of Fig. 1 is not a
bisimulation reduction. Let us also consider a perturbed version of the CTMC
on the right-hand side of Fig. 1 with the following generator matrix and updated
projection matrix:

Q=

⎡

⎢
⎢
⎢
⎢
⎣

−2.95 0 0.95 0 2
0 −3.05 1.05 0 2
0 1.5 −1.5 0 0
0 1.5 0 −1.5 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

, Qr =

⎡

⎣
−3.05 1.05 2
1.5 −1.5 0
0 0 0

⎤

⎦, P =

⎡

⎢
⎢
⎢
⎢
⎣

.8285 .0552 .1162
1 0 0
0 1 0
0 1 0
0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

.

Clearly these two perturbed CTMCs are not bisimilar according to the usual
definition of bisimulation relation, but the above choices satisfies the equality
QP = PQr. Note that P is no longer a projection matrix, but has entries in
[0, 1], which sum up to 1 for each row. This particular P satisfies AP = PĀ
but not β = P β̄ (see (9)). Thus the original dynamics of X(t) and their lower-
dimensional version X̄(t), reduced with P , do not satisfy the equality (10).

However, since A is a stable matrix, we expect the trajectories of the original
and the reduced dynamics to converge, that is, the error between the trajectories
to go to zero as time goes to infinity. In the next section, we generalise projection
matrices as above, and formalise this intuition.

S1

S2

S3

S4

good S′
1 S′

2good

1+ε13

2+ε15

1+ε232+ε25

1+ε32

1+ε42

1

2

1

P∼= =

⎡
⎢⎢⎣
1 0
1 0
0 1
0 1

⎤
⎥⎥⎦

Fig. 1. Full state ε perturbed CTMC (left), reduced order CTMC (right), and projec-
tion matrix (right, below) computed for the perturbation free case.

3.3 Generalised Projections and Reduction

Suppose we are given CTMCs M and M̄, with corresponding dynamical systems
(7) and (8), and a matrix P with entries in [0, 1] whose rows add up to 1, such that
AP = PĀ. We call such a P a generalised projection. Define vector C̄S = CSP .
In general, the equality β = P β̄ does not hold for generalised projections. In the
following we provide a method based on Lyapunov stability theory to quantify
an upper bound ε(t) such that

∣
∣
∣ProbM(CS , t) − ProbM̄(C̄S , t)

∣
∣
∣ ≤ ε(t), (11)
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for all t ≥ 0, where ε(t) depends linearly on the mismatch β − P β̄ and decays
exponentially with t.

First, we recall some basic results for linear dynamical systems (see, e.g., [7])

d

dt
Y (t) = AY (t), Y (t) ∈ R

n, Y (0) = Y0. (12)

We call the system stable if A is a stable matrix.1 A continuous scalar function
V : Rn → R is called a Lyapunov function for dynamical system (12) if V (0) = 0;
V (y) > 0 for all y ∈ R

n\{0}; and dV (Y (t))/dt < 0 along trajectories of the
dynamical system Y (t) 
= 0.

A matrix M ∈ R
n×n is symmetric if MT = M . A symmetric matrix M

satisfying the condition Y T MY > 0 for all Y ∈ R
n\{0} is called positive definite,

and written M � 0. Any symmetric matrix M satisfying Y T MY ≥ 0 for all
Y ∈ R

n is called positive semi-definite, written M � 0. Similarly, we can define
negative definite matrices M ≺ 0 and negative semi-definite matrices M � 0.
The following is standard.

Theorem 1. [13] Linear dynamical system (12) is stable iff there exists a
quadratic Lyapunov function V (Y ) = Y T MY such that M � 0 and AT M +
MA ≺ 0. Moreover, for any constant κ > 0 such that AT M + MA + 2κM � 0,
we have

‖Y (t)‖2 ≤ Le−κt‖Y0‖2, ∀Y0 ∈ R
n,∀t ∈ R≥0,

for some constant L ≥ 0, where ‖ · ‖2 indicates the two-norm of a vector.

Note that in our setting, we are not interested in the study of asymptotic
stability of systems, but we are given two dynamical systems (7) and (8), and we
would like to know how close their trajectories are as a function of time. In this
way we can use one of them as an approximation of the other one with guaranteed
error bounds. For this reason, we define Lyapunov function V : Rn × R

m → R

of the form
V (X, X̄) = (X − PX̄)T M(X − PX̄), (13)

where M � 0 is a positive definite matrix. The value of V (X(t), X̄(t)) at t = 0
can be calculated as

V (X(0), X̄(0)) = (A−1β − PĀ−1β̄)T M(A−1β − PĀ−1β̄)

= (β − P β̄)T A−1T
MA−1(β − P β̄). (14)

Using Lyapunov function (13) we can establish the following theorem.

Theorem 2. Consider dynamical systems (7) and (8) with invertible matrix A,
and let P be a generalised projection satisfying AP = PĀ. If there exist matrix
M and constant κ > 0 satisfying the following set of matrix inequalities:

⎧
⎨

⎩

M � 0
CT

S CS � M
MA + AT M + 2κM � 0,

(15)

1 In this case, it is known that limt→∞ Y (t) = 0 for any initial state Y0 ∈ R
n.
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then we have |ProbM(CS , t) − ProbM̄(C̄S , t)| ≤ ε(t), for all t ≥ 0, with

ε(t) = ξ‖Γ‖e−κt, (16)

where Γ := β − P β̄ is the mismatch induced by the generalised membership
functions and ξ2 = λmax(A−1T

MA−1).

The error in (16) is exponentially decaying with decay factor κ and increases
linearly with mismatch Γ . Matrix inequalities (15) in Theorem 2 are bilinear
in terms of unknowns (entries of M and constant κ) due to the multiplication
between κ and M , thus difficult to solve. In the following we show how to obtain
a solution efficiently.

Theorem 3. Under the conditions of Theorem 2, suppose additionally that A
is stable. Then there exists M and κ such that (15) is satisfied. Further, for
each r ≤ n, there is an n × r matrix P and an r × r matrix Ā, computable in
polynomial time in n, such that AP = PĀ.

Once κ is fixed, constraints (15) become matrix inequalities that are linear
in terms of entries of M and can be solved using convex optimisation [8] and
developed tools for linear matrix inequalities [11,15]. In particular, M = In is a
valid solution to the LMI. However, when CS is not full rank, which is the case
when S0 
= S, solving the LMI for M can result in better error bounds.

Notice that V (0) = (X(0) − PX̄(0))T M(X(0) − PX̄(0)) and using (7), we
have X(0) = A−1β. Therefore, it is important to find X̄(0) that results in the
least V (0). We can compute X̄(0) taking M into account:

X̄(0) = (PT MP )−1PT M(A−1β), (17)

which provides a tighter initial error bound. Knowing Ā and X̄(0), one can find
β̄ = ĀX̄(0).

Theorem 3 gives an algorithm to find lower dimensional approximations to
the dynamical system (7) and Theorem 2 provides a quantitative error bound
for the approximation. Given a time-bounded reachability problem and an error
bound ε, we iteratively compute reduced order dynamical systems of dimension
r = 1, . . . , n−1 using Theorem 3. Then, we check if the error bound in Theorem 3
is at most ε. If so, we solve the dynamical system of dimension m (using, e.g.,
exponential of an upper-triangular matrix) to compute an ε-approximation to
the time bounded reachability problem. If not, we increase r and search again.

4 Time-Bounded Reachability on CTMDPs

First, we define continuous-time Markov decision processes (CTMDPs) that
include non-deterministic choice of actions on top of probabilistic jumps.

Definition 2. A continuous-time Markov decision process (CTMDP) N =
(SN ,D, Rd) consists of a finite set SN = {1, 2, . . . , |S|N } of states, a finite set of
possible actions D, and action-dependent rate matrices Rd, where d ∈ D|SN | is a
decision vector containing actions taken at different states, d := {d(s) | s ∈ SN }.
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Note that some of the actions may not be available at all states. Denote the set of
possible decision vectors by D ⊆ D|SN |. Similar to CTMCs, we assign an initial
distribution α to the CTMDP N . For any fixed d ∈ D, Nd = (SN , Rd, α) forms a
CTMC, for which we can define infinitesimal generator Q̄d := Rd −diags(Ed(s))
with total exit rates at state s, Ed(s) :=

∑
s′∈SN Rd(s, s′).

Path ω of a CTMDP N is a (possibly infinite) sequence including transitions

of the form si
di,ti−−−→ si+1, for i = 0, 1, 2, . . ., where ti ∈ R≥0 is the sojourn time in

si and di ∈ D is a possible action taken at si. A policy provides a mapping from
the paths to actions of the model, in order to resolve the nondeterminism that
occurs in the states of a CTMDP for which more than one action is possible.

Let N = (S � {good,bad},D, Rd) be a CTMDP with two absorbing states
good and bad, where, |S| = n and let T ∈ R≥0 be a time bound and θ ∈ (0, 1)
a probability threshold. We are interested in synthesising a policy π such that
probability of reaching state good and avoiding state bad within time interval
[0, T ] is at least θ:

ProbN (π)(1(s), T ) = π̄N (π)
s (T )(good) ≥ θ, (18)

where ProbN (π) is the probability measure induced on paths of N by resolv-
ing non-determinism via policy π. Synthesising such a policy can be done by
maximising the left-hand side of (18) on the set of policies and then compare
the optimal value with θ. Such an optimal policy is shown to be in the class
of time-dependent Markov policies and can be characterised as follows [5]. We
partition any generator matrix Qd corresponding to decision vector d ∈ D, as

Qd =

⎡

⎢
⎢
⎣

Ad

... χd

... βd

. . . . . . . . . . . . . . .

0
... 0

... 0

⎤

⎥
⎥
⎦ (19)

with Ad ∈ R
n×n, χd ∈ R

n×1, and βd ∈ R
n×1. Then for a CTMDP N with

matrix C indicating a subset of initial states S0 ⊆ S for which we would like to
satisfy (18), maxπ ProbN (π)(C, T ) can be characterised backward in time as the
solution of the following set of nonlinear differential equations

{
d
dtW (t) = maxd(t)∈D Qd(t)W (t), W (0) = 1(good),
maxπ ProbN (π)(C, T ) = CW (t),

(20)

where W (t) is a column vector containing probabilities maxπ ProbN (π)(1(s), T )
as a function of initial state s.

With respect to the partitioning (19), it is obvious that in (20), W (t)(bad) =
0 and W (t)(good) = 1 for all t ∈ R≥0. The remaining state variables WS(t)
should satisfy

{
d
dtWS(t) = maxd(t)∈D(Ad(t)WS(t) + βd(t)), WS(0) = 0,
maxπ ProbN (π)(CS , t) = CSWS(t).

(21)
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The optimal policy is the one maximising the right-hand side of differential
equation in (21), π∗ = {d(t) ∈ D | t ∈ R≥0}, thus it is time-dependent and is
only a function of state of the CTMDP at time t. Finding the optimal policy is
computationally expensive particularly for CTMDPs with large number of states.
For instance [16] has proposed an approach based on breaking time interval [0, T ]
into smaller intervals of length δ, and then computing (approximate) optimal
decisions in each interval of length T

δ sequentially. Thus, a set of linear differential
equations must be solved in each interval, which is computationally expensive.

In the following, we will develop a new way of synthesising a policy that
satisfies (18) by approximating the solution of (21) via generalised projections
and reductions. We treat (21) as a switched affine system [10]. We are given a
collection of |D| affine dynamical systems, characterised by the pairs (Ad,βd),
and the role of any policy π = {d(t) ∈ D, t ≥ 0} is to switch from one dynam-
ical system to another by picking a different pair. The main underlying idea of
our approximate computation is to consider the reduced order version of these
dynamical systems and find a switching policy π. We provide guarantees on the
closeness to the exact reachability probability when this policy is applied to the
original CTMDP. For this we require the following assumption.

Assumption 2. Matrices {Ad, d ∈ D} are all stable.

Note that this assumption is satisfied if for each setting of actions, the resulting
CTMC is irreducible (Proposition 1) and the time-bounded reachability problem
does not have a trivial solution.

Under Assumption 2, we can find matrix Md and constant κd > 0, for any
d ∈ D, such that the following matrix inequalities hold:

⎧
⎨

⎩

Md � 0
CT

S CS � Md

MdAd + AT
d Md + 2κdMd � 0,

(22)

We need the following lemma that gives us a bound on the solution of reduced
order systems.

Lemma 1. Suppose generalised projections Pd and matrices Ād satisfy AdPd =
PdĀd for any d ∈ D. Then V (X̄d) = X̄T

d M̄dX̄d with M̄d = PT
d MdPd and Md

satisfying (22), is a Lyapunov function for dX̄d(t)/dt = ĀdX̄d(t). Moreover,

‖X̄d(t1)‖M̄d
≤ ‖X̄d(t0)‖M̄d

e−κd(t1−t0), ∀t1 ≥ t0, (23)

where ‖Y ‖G :=
√

Y T GY is the weighted two-norm of a vector Y .

Consider an arbitrary time-dependent Markov policy π = {d(t) ∈ D, t ≥ 0}.
Then there is a sequence of decision vectors (d0, d1, d2, . . .) with switching times
(t0, t1, t2, . . .) such that actions in di are selected over time interval [ti−1, ti)
depending on the state of N , for any i = 0, 1, 2, . . . with t−1 = 0. We first study
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time-bounded reachability for N under policy π, which can be characterised as
the switched system:

d

dt
WS(t) = Adi

WS(t) + βdi
, ∀t ∈ [ti−1, ti), i = 0, 1, . . . (24)

Similar to our discussion on CTMC, we prefer to move constant inputs βdi
in

(24) into initial states. Therefore, we define the following piecewise translation

X(t) := WS(t) + A−1
di

βdi
, ∀t ∈ [ti−1, ti), i = 0, 1, 2, . . . (25)

that depends also on π. Thus the evolution of X(t) becomes

d

dt
X(t) = Adi

X(t), ∀t ∈ [ti−1, ti), i = 0, 1, 2, . . . , (26)

with jumps happening at switching times

ΔX(ti) := X(ti) − X(t−i ) = A−1
di+1

βdi+1
− A−1

di
βdi

. (27)

This quantity is exactly the difference between unbounded reachability probabil-
ity if one of decision vectors di and di+1 is taken independent of time. Similarly,
we define

Δij := A−1
dj

βdj
− A−1

di
βdi

, (28)

which will be used later in Theorem 4. Now we construct the reduced order
switched system

d

dt
X̄(t) = Ādi

X̄(t), ∀t ∈ [ti−1, ti), i = 0, 1, 2, . . . , (29)

with Ād satisfying AdPd = PdĀd for all d ∈ D. We choose the values of jumps
ΔX̄(ti) := X̄(ti) − X̄(t−i ) so that the behaviour of (29) is as close as possible to
(26). For this, we have

X̄(ti) := arg min
X̄

∥
∥ΔX(ti) − Pdi+1X̄ + Pdi

X̄(t−i )
∥
∥

Mdi+1
, (30)

which can be computed for any value of X̄(t−i ).
Define the dwell time of a policy π by τ = mini(ti − ti−1), i.e., the minimum

time between two consecutive switches of decision vectors in π. Next theorem
quantifies the error between the two switched system using dwell time.

Theorem 4. Given a CTMDP N , a policy π, and bounded-time reachability
over [0, T ] characterised via (26). Suppose there exist Md, κd satisfying (22),
constant μ satisfies Md � μMd′ for all d, d′ ∈ D, and matrices Ād, Pd are
computed such that AdPd = PdĀd. Then it holds that

‖X(T ) − Pdn+1X̄(T )‖Mdn+1
≤

[
η(1 − gn)

1 − g
+ gnε0

]

e−κ(T−tn), (31)
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where g := μe−κτ with κ = mind κd being the minimum decay rate and τ dwell
time of π. Constant η = max ηij with

ηij := min
X̄j

max
X̄i

∥
∥Δij + Pdi

X̄i − Pdj
X̄j

∥
∥

Mdj

, (32)

and Δij defined in (28). Finally, ε0 := ‖A−1
d0

βd0
− Pd0X̄(0)‖Md0

, X̄(0) is com-
puted using weighted least square method similar to (17), and tn is the last switch-
ing time before time bound T .

Note that ηij ’s in Theorem 4 are well-defined due to the fact that X̄i, X̄j are
states of the reduced order systems and are bounded as stated in Lemma 1.

Remark 3. (1) The precision of the bound in (31) can be increased in two ways.
First, the bound will be lower (smaller g) for policies with larger dwell time
τ . Second, if we increase the order of reduced system, η and ε0 will become
smaller.

(2) The gain g solely depends on the CTMDP N and dwell time of policy π. In
order to have a meaningful error bound, dwell time should satisfy τ > log μ

κ .
This condition is already true if we find a common Lyapunov function for the
CTMDP N , i.e., if there is one matrix M independent of the decision vector
d satisfying (22). In that case, μ = 1 and dwell time can be freely selected.
As we saw for CTMCs, we can always select M as the identity matrix (and
thus, the square of the L2-norm as the common Lyapunov function) and
ensure this property. However, this choice of M may have a larger initial
error.

So far we discussed reduction and error computation for a given policy π. Notice
that the statement of Theorem 4 holds for any policy as long as it has a dwell
time at least τ . Therefore, we can find a policy using reduced system and apply
it to the original CTMDP N with the goal of increasing reachability probability.
For a given CTMDP N , time horizon T , probability threshold θ, and error
bound ε, we select a dwell time τ and order of the reduced system such that
εn ≤ ε with n = T/τ . Then we construct a policy π using the reduced order
system (29) by setting d0 = arg maxd AdX(0). The next selection of policies are
done by respecting dwell time and di+1 = arg maxd PdĀdX̄(t) for t ≥ ti + τ with
ti being the previous switching time. If the computed interval for reachability
probability is not above θ, we go back and improve the results by increasing the
order of the reduced system.

5 Simulation Results

In this section, we use our results for reachability analysis of tandem network
[12], which is a queuing network shown in Fig. 2 and consists of a M/Cox2/1
queue composed with a M/M/1 queue.

Both queuing stations have a capacity of cap. The first queuing station has
two phases for processing jobs while the second queuing station has only one
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Fig. 2. A typical tandem network.

phase. Processing phases are indicated by circles in Fig. 2. Jobs arrive at the
first queuing station with rate λ̄ and are processed in the first phase with rate
μ1. After this phase, jobs are passed through the second phase with probability
a, which are then processed with rate μ2. Alternatively, jobs will be sent directly
to the second queuing station with probability b, a percent of which will have to
undergo a repair phase and will go back to the first station with rate Δλ to be
processed again. Processing in the second station has rate μ3.

The tandem network can be modelled as a CTMC with a state space of size
determined by cap. We find the probability of reaching to the configurations
in which both stations are at their full capacity (blocked state) starting from a
configuration in which both stations are empty (empty state). We consider cap =
5 which results in a CTMC with 65 states. We have chosen values μ1 = μ2 = 2,
μ3 = λ = 4, a = 0.1, b = 0.9 and Δλ = 0. Matrix inequalities (15) are satisfied
with M being identity and κ = 0.001. Using the reduction technique of Sect. 3,
we can find approximate solution of reachability with only 3 state variables.
Figure 3 gives the error bound as a function of time horizon of reachability and
order of the reduced system. As discussed, the error goes to zero exponentially
as a function of time horizon. It also converges to zero by increasing the order of
reduced system. Figure 5 (left) shows reachability probability computed over the
tandem network and the reduced order system together with the error bound as
a function of time horizon. The error has the initial value 0.36, computed via
the choice of initial reduced state in (17), and converges to zero exponentially
with rate 0.001. Our experiments show that for a fixed error bound 0.2 and time
horizon 100 s, we get reductions of 43% in dimension and 53% in computation
time.

Now consider a scenario that the network can operate in fast or safe modes.
In fast mode, less jobs are sent through the second phase (corresponding to a

Fig. 3. Error bound as a function of time horizon and order of the reduced system.
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Fig. 4. State diagram of a CTMDP with 16 states and 16 decision vectors correspond-
ing to a tandem network with capacity 2. States S1, S2, S3, S4 have two modes with
rates a ∈ {0.6, 0.7}.

smaller value of a); this, in turn, increases the probability that jobs which did not
pass second phase, need to be processed again. We model influence of returned
jobs as an increase in Δλ.

We consider the case that there are two possible rates a ∈ {0.6, 0.7} corre-
sponding respectively to fast and safe modes. If fast mode is chosen, 10% of jobs
will be returned (p = 0.1) with rate Δλ = 0.05. In the safe mode, only 5% of
jobs (p = 0.05) will be returned with the same rate Δλ. We set λ = 6 and other
rates are kept the same as defined above.

A tandem network with capacity cap = 2 and these two modes can be mod-
eled as a CTMDP with 16 states and 16 decision vectors. Figure 4 depicts state
diagram of this CTMDP with states S1, S2, S3, S4 having two modes with the
corresponding value of rate a. We assume the tandem network is initially at
blocked state and consider synthesising a strategy with respect to the proba-
bility of having both queuing stations being empty. We have implemented the
approach of Sect. 4 and obtained a reduced system of order 6 with ε0 = 0.06 for
given time bound T = 200 s and dwell time τ = 40 s. Figure 5 (right) demon-
strates reachability probabilities as a function of time for both tandem network
and its reduced counterpart together with the error bound and the optimal
trajectory. Intuitively, choosing fast mode in the beginning will result in faster
progress of the tasks, especially when queues are more loaded; however, con-
tinue of such a selection will result in high number of returned jobs which is not
desired. This behaviour is observed depending on the state and three switches
happens in states S2, S3, S4. Jumps in the error bound are in the order of 10−4

thus not noticeable in Fig. 5 (right).
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Fig. 5. Left: approximate reachability probability for tandem network as a function of
time horizon with guaranteed error bounds; Right: approximate reachability probability
for tandem network with 16 decision vectors including guaranteed error bounds.

6 Discussions

We have taken a control-theoretic view on the time bounded reachability prob-
lem for CTMCs and CTMDPs. We show the dynamics associated with the prob-
lems are stable, and use this as the basis for state space reduction. We define
reductions as generalised projections between state spaces and find a Lyapunov
characterisation of the error between the original and the reduced dynamics.
This provides a formal error bound on the solution which decreases exponen-
tially over time. Our experiments on queueing systems demonstrate that, as the
time horizon grows, we can get significant reductions in state (and thus, model
checking complexity).
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Abstract. In coupled speed scaling systems, the speed of the CPU is
adjusted dynamically based on the number of jobs present in the system.
In this paper, we use Markov chain analysis to study the autoscaling
properties of an M/GI/1/PS system. In particular, we study the satu-
ration behaviour of the system under heavy load. Our analytical results
show that the mean and variance of system occupancy are not only finite,
but tightly bounded by polynomial functions of the system load and the
speed scaling exponent. We build upon these results to study the speed,
utilization, and mean busy period of the M/GI/1/PS. Discrete-event
simulation results confirm the accuracy of our analytical models.

1 Introduction

Coupled speed scaling systems adjust the CPU speed dynamically based on the
number of jobs in the system. These dynamic speed scaling systems provide
tradeoffs between response time and energy consumption [1,2]. Specifically, run-
ning the CPU faster improves the response time, but consumes more energy.

Within a speed scaling system, the two most important considerations are
the scheduler and the speed scaling function. The scheduler determines which job
is executed next, and the speed scaling function determines the speed at which
that job is executed. A popular approach for the latter is job-count-based speed
scaling, in which the service rate is a function of the current system occupancy [3,
8,22]. We refer to this as coupled speed scaling, since the service rate is coupled
to the system occupancy.

In this paper, we focus on the autoscaling properties of coupled speed scaling
systems under heavy load. In particular, we consider sustained offered loads that
drive the system toward saturation, in which the utilization becomes arbitrarily
close to unity (i.e., U → 1). Note that if there is no limit to the maximum service
rate, then the system will automatically adjust (i.e., autoscale) its service rate
to accommodate whatever load is presented to it.

Our current paper is motivated by some of our own prior work on the
autoscaling properties of coupled speed scaling systems [10]. In particular, our
prior work used discrete-event simulation to show that the mean system occu-
pancy remained finite in coupled speed scaling systems under heavy load (see
Fig. 1). Furthermore, the mean occupancy was estimated as E[N ] ≈ ρα [10].
c© Springer Nature Switzerland AG 2018
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Fig. 1. Distribution of system occupancy (based on Fig. 2b in [10])

In our current paper, we present analytical results that bound the mean
and variance of occupancy under heavy load. Specifically, we use Markov chain
analysis to study the dynamics of a Processor Sharing (PS) speed scaling system,
and derive tight bounds on system performance. We then extend our model
to analyze the mean busy period for PS under coupled speed scaling. Finally,
we use discrete-event simulation to verify the accuracy of our analytic model,
and to extend our observations to Shortest Remaining Processing Time (SRPT)
systems.

The main insights from our work are the following. First, we show that the
mean and variance of the system speed are bounded, even under heavy (but
finite) offered load. Second, we show that the mean and variance of system
occupancy are tightly bounded, and are polynomial functions of ρ and α. Third,
we show that the mean busy period in a PS-based coupled speed scaling system
grows at least exponentially with offered load. Finally, we show that the mean
busy period for an SRPT-based system grows much faster than that for the
corresponding PS-based system.

The rest of this paper is organized as follows. Section 2 reviews prior litera-
ture on speed scaling systems. Section 3 presents our system model. Section 4
presents our analytical and numerical results. Section 5 presents simulation
results. Finally, Sect. 6 concludes the paper.

2 Background and Related Work

Prior research on speed scaling systems appears in two different research commu-
nities: theory and systems. Theoretical work typically focuses on the optimality
of speed scaling systems under some simplifying assumptions (e.g., unbounded
service rates, known job sizes). Systems work typically focuses on “good” solu-
tions, rather than optimal ones [7,8], and especially those that are robust to
unknown job sizes, scheduling overheads, as well as finite and discrete system
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speeds. In this literature review, we focus primarily on the theoretical work as
relevant background context for our paper.

In speed scaling systems, there are many tradeoffs between service rate,
response time, and energy consumption. Yao et al. [24] analyzed dynamic speed
scaling systems in which jobs have explicit deadlines, and the service rate is
unbounded. Bansal et al. [5] considered an alternative approach that minimizes
system response time, within a fixed energy budget. Others have focused on find-
ing the optimal fixed rate at which to serve jobs in a system with dynamically-
settable speeds [11,22,23].

Several studies indicate that energy-proportional speed scaling is nearly opti-
mal [3,6]. In this model, the power consumption P (s) of the system depends only
on the speed s, which itself depends on the number of jobs in the system. Bansal
et al. [6] showed that SRPT with the speed scaling function P−1(n + 1) is 3-
competitive for an arbitrary power function P . Andrew et al. [3] showed that
the optimal policy is SRPT with a job-count-based speed scaling function of the
form s = P−1(nβ).

Fairness in dynamic speed scaling systems is also an important consideration.
In particular, speed scaling systems induce tradeoffs between fairness, robust-
ness, and optimality [3]. PS is always fair, providing the same expected slowdown
for all jobs, even under speed scaling. However, the unfairness of SRPT is mag-
nified under speed scaling, since large jobs tend to run only when the system
is nearly empty, and hence at lower speeds. While PS is good for fairness, it is
suboptimal for both response time and energy [3].

3 System Model

3.1 Model Overview and Assumptions

We consider a single-server system with dynamically adjustable service rates.
Service rates are changed only when the system occupancy changes (i.e., at job
arrival and departure points). There is no cost incurred for changing the service
rate, and no limit on the maximum possible service rate. (Prior work by others
has considered bounded service rates [11].)

The workload presented to the server is a sequence of jobs with random
arrival times and sizes. We assume that the arrival process is Poisson, with
mean arrival rate λ. The size (work) of a job represents the time it takes to
complete the job when the service rate is μ = 1. We assume that job sizes are
exponentially distributed and independent. Unless stated otherwise, we assume
that the mean job size is E[X] = 1. Table 1 summarizes our model notation.

In this paper, we consider two specific work-conserving scheduling policies,
namely PS and SRPT. PS shares the CPU service rate equally amongst all
jobs present in the system, while SRPT works exclusively on the job with the
least remaining work. We assume that the schedulers know all job sizes upon
arrival, or can at least estimate them dynamically [8]. A job in execution may
be preempted and later resumed without any context-switching overhead.
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Table 1. Model notation

Symbol Description

λ Mean job arrival rate

μ Service rate

μn Service rate in state n

E[X] Average size (work) for each job

ρ Offered load ρ = λ/μ = λE[X]

pn Steady-state probability of n jobs in the system (a.k.a. π(n))

U System utilization U = 1 − p0

n Number of jobs

φ(n) CPU speed as a function of number of jobs

t Time in seconds

n(t) Number of jobs in system at time t

s(t) CPU speed at time t

P (s) Power consumption when running at speed s

α Exponent in power consumption function P (s) = sα

A speed scaling function, s(t), specifies the speed of the system at time t.
For coupled speed scaling, the speed at time t depends on the number of jobs
in the system, denoted by n(t), and thus is influenced by the scheduling policy.
The best known policy uses the speed function s(t) = P−1(n(t)β) [3]. In this
paper, we assume β = 1. We also consider P (s) = sα, which is commonly used
in the literature to model the power consumption of the CPU. Therefore, in the
coupled speed scaling model, we use s(t) = α

√
n(t) = n(t)1/α, where α ≥ 1.

When time t is not relevant, we use φ(n) to denote the CPU speed for n jobs.
In our work, we focus on the PS scheduling policy, which is an example of

a symmetric scheduling policy [12]. Such policies do not prioritize based on job
size, or any other job trait, but merely treat all arrivals equivalently. Symmetric
policies have the important property that their departure process is stochasti-
cally identical to their arrival process when time is reversed. Therefore, in the
M/GI/1 model, where arrivals are Poisson, the queue occupancy states form a
birth-death process regardless of the form of the job size distribution. This result
is formalized in the following theorem, the proof of which is given in [12]. A proof
for the special case of PS scheduling appears in [16].

Theorem 1 [12]. In an M/GI/1 queue with a symmetric scheduling policy, the
limiting probability that the queue contains n jobs is:

π(n) =
ρn

∏∞
i=0 φ(n)

π(0), for n > 0,



On Saturation Effects in Coupled Speed Scaling 411

where the probability π(0) of the system being empty is given by:

π(0) =
1

1 +
∑∞

n=1
ρn

∏n
i=1 φ(i)

.

Theorem 1 indicates that all symmetric polices have the same occupancy dis-
tribution for the same φ(n) function. Furthermore, this occupancy distribution
is insensitive to the job size distribution, and depends only on the mean job size.

Although FCFS is not a symmetric policy, it is interesting to note that the
occupancy distribution for M/M/1 FCFS is equivalent to the occupancy distri-
bution for M/GI/1 symmetric policies with φ(n) = 1. In fact, the occupancy dis-
tribution under all non-size-based policies is equivalent for a general φ(n) [12,23].
Therefore, in a single-server with some φ(n) speed-scaling discipline, in order to
study the occupancy distribution under M/GI/1 PS, it suffices to study the occu-
pancy distribution under M/M/1 FCFS. In our work, we consider the special
case of φ(n) = n1/α, and derive results for the average speed, occupancy, and
expected busy period length.

3.2 Markov Chain Model

We consider the dynamics of a system with sub-linear speed scaling. Specifically,
we consider running the system at speed s = n1/α when the system occupancy
is n jobs. We consider 1 ≤ α ≤ 3, which is the relevant range of interest for
Dynamic Voltage and Frequency Scaling (DVFS) on modern processors [20,23].
Note that α need not be an integer, but is treated as such in the discussion.

The parameter α determines the set of distinct speeds available in our speed
scaling system. For the special case α = 1, the speeds scale linearly with occu-
pancy, much like the M/M/∞ queue, which provides a natural validation point
for our model. For α = 2, speeds scale less than linearly with system occupancy,
following the “square root speed scaling” approach recommended in the litera-
ture (i.e., the system speed when there are n jobs in the system is

√
n = n1/2).

For α = 3, speeds scale even more slowly with growing system occupancy: the
system speed when there are n jobs in the system is 3

√
n = n1/3. In the limiting

case of α = ∞, the speeds scale so slowly that they are effectively constant (i.e.,
single-speed system). This provides another validation point for our model.

Figure 2 shows the Markov chain for our speed scaling system. The key dif-
ference from Kleinrock’s classic M/M/∞ model is the change in the service rates
μn = n1/αμ. Analysis of this chain produces steady-state probabilities pn that
are analogous to those for the M/M/∞ chain, except for the effect of the 1/α
exponent on all of the service rates.

4 Analytical and Numerical Results

In this section, we consider the M/M/1 queue with FCFS scheduling and φ(n)-
coupled speed scaling, where φ(n) = n1/α for α ≥ 1.
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Fig. 2. Markov chain for coupled speed scaling system model

In the context of the “dynamic service rate” control problem, the M/M/1
FCFS queue with adjustable service rates has been studied in the litera-
ture [4,11,14,23], and elegant results for state-dependent speeds that optimize
the linear combination of average occupancy and average energy consumption
are presented in [11,23]. However, the proof for the formulation of the occupancy
distribution is not provided explicitly. For the sake of completeness, we briefly
discuss here the special case of n1/α-coupled speed-scaling systems.

Consider an n1/α-coupled speed-scaling system for some α > 0, and with
non-preemptive, non-size-based scheduling. Assume inter-arrival times are expo-
nentially distributed with rate λ, and job sizes are exponentially distributed with
rate μ. Let ρ = λ/μ.

In this system, the queue occupancy evolves as a birth-death process since the
time between transitions is exponentially distributed. The CTMC for this model
is similar to the single-speed M/M/∞ in that transitions between states occur
upon state-independent arrivals with rate λ, and state-dependent departures
with rates μn. Unlike the M/M/∞, however, this is a single server model, with
at most one job in service at any point in time. When in state n > 0, provided
that no arrival occurs, the time to the next departure is the remaining work of the
job in service divided by the service rate n1/α. Since the service requirements
are exponentially distributed with rate μ, and the exponential distribution is
closed under scaling by a positive factor, the time until the next departure is also
exponentially distributed with rate μn = μn1/α. Therefore, the queue occupancy
forms a birth-death process, and the limiting probabilities (if they exist) are:

π(n) = π(0)
n−1∏

i=0

λi

μi+1
= π(0)

n−1∏

i=0

λ/μ

(i + 1)1/α
= π(0)

ρn

(n!)1/α
, for n > 0,

where:
π(0) =

1
∑∞

i=0
λ0λ1...λi−1
μ1μ2...μi

=
1

∑∞
i=0

ρi

(i!)1/α

.

To show that the limiting probabilities exist, and that the chain is ergodic,
it suffices to show that the infinite sums converge. Based on the ratio test for
convergence of an infinite series, the series

∑∞
i=0 an converges if limn→∞ |an+1

an
| <

1. This condition holds in our case, since α > 0 and μ > 0. Specifically,

lim
n→∞

ρn+1/(n + 1)!1/α

ρn/(n!)1/α
= lim

n→∞
ρ

(n + 1)1/α
< 1.

Note that our speed scaling system is just a special case of Theorem 1 with
φ(n) = n1/α. Therefore, M/GI/1 queues with n1/α-coupled speed-scaling and
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with symmetric scheduling policies, including PS, have the same occupancy dis-
tribution as M/M/1 FCFS with n1/α-coupled speed-scaling.

Unfortunately, we do not have closed form expressions for the foregoing
steady-state probabilities. However, it is possible to numerically evaluate the
mean and higher moments of the occupancy distribution. In fact, we can derive
bounds for the mean and variance of the occupancy distribution (see Sect. 4.2).
In the remainder of this section, we make a few observations about the shape of
the occupancy distribution.

The steady-state probability distribution in our system is a function of the
average load ρ and the speed-scaling parameter α. Recall that ρ is a function
of the arrival rate λ, and the job size based on rate μ. Note that increasing
or decreasing the arrival rate, while adjusting the average job size to keep the
average load constant, results in the same occupancy distribution. The parameter
α determines the set of distinct speeds available in the coupled speed-scaling
system. For the special case α = 1, the speeds scale linearly with occupancy,
similar to the M/M/∞ queue. For α > 1, speeds scale sub-linearly with system
occupancy. For very large α, the speeds scale so slowly that the system effectively
behaves like a single-speed system.

The parameter α has three main impacts on the occupancy distribution,
as illustrated in prior work [10]. The first effect of increasing α is to shift the
occupancy distribution to the right (see Fig. 1). This is intuitively expected, since
the slower service rates lead to a larger queue of jobs in the system. However,
as the backlog of jobs grows, the service rate is also increased, which eventually
stabilizes the system. This pendulum effect keeps the mode of the occupancy
distribution close to ρα, which determines the average speed (ρ) required to
serve the load arriving to the system. The second effect of α > 1 is the distortion
of the Poisson distribution observed for system occupancy when α = 1. While
the structure of the distribution is similar to Poisson, the state probabilities
degenerate, and the Coefficient of Variation (CoV) is greater than that for a
Poisson distribution. The particular relationship observed is V ar[N ] ≈ αE[N ]
(see Fig. 4(b) for graphical evidence of this observation). In the limiting case
of α → ∞, this distribution degenerates to an equal but negligible probability
for all states, indicating an unstable (infinite) queue. The third effect that we
observe when increasing α is the decline in π(0), which is the probability of
having an idle system. We call this the saturation effect, which is our main focus
in this paper. We explore the effect of α on the utilization, and the expected
busy period length, in Sects. 4.3 and 4.4, respectively.

4.1 Mean and Variance of Speed

We first establish some fundamental results regarding the mean and variance of
the system speed for coupled speed scaling systems. Let random variables S and
N denote the speed of the server and the system occupancy, respectively. In the
n1/α-coupled speed-scaling system, S = N1/α.

Theorem 2. In an M/M/1 queue with n1/α-coupled speed-scaling, E[S] = ρ.
Furthermore, V ar[S] < 1 for any α ≥ 2.
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The proof of the first half of Theorem 2 is fairly straightforward, based on
the definition of E[S]. Intuitively, we expect the steady-state average speed to
be equal to the incoming load for any stable system (assuming the speed is 0
when there are no jobs in the system). In [23], the general lower bound for the
time average speed in all stable speed-scaling systems is argued to be S̄ ≥ ρ.
Furthermore, S̄ = ρ for systems that run at speed 0 when the system is empty.
Our result involves a stochastic proof for the special case of M/M/1 with n1/α-
coupled speed-scaling [9].

The proof for the second part of Theorem 2 is a bit more involved, but we
sketch it here. The essence is to use the fact that V ar[S] = E[S2]−E[S]2, and to
derive a bound on E[S2], since E[S]2 = ρ2. The algebraic derivation culminates
in V ar[S] ≤ 1 − π(0) < 1 (see Chap. 4 of [9] for details).

Figure 3 shows the effects of α and ρ on the system speed. Figure 3(a) shows
the mean speed, which scales linearly with ρ, regardless of the value of α.
Figure 3(b) shows the variance of speed. When α = 1, V ar[S] = ρ, since the
speeds follow the Poisson distribution with rate ρ (analagous to occupancy). For
α ≥ 2, the variance is always less than unity. The theoretical bound (indicated
by the horizontal line) is not especially tight, but it is a provable bound [9].

For α ≥ 2, the variance of speed initially increases with ρ up to a point,
before decreasing and seemingly converging to a value well below 1. The intuition
behind this result is that for larger α, the speed changes are quite gradual,
especially when the occupancy is high. Thus the variance of the speed remains
low even when the occupancy fluctuates a lot.
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Fig. 3. Analytical results for system speed in coupled speed scaling systems

4.2 Mean and Variance of Occupancy

We next establish results concerning the mean and the variance of system occu-
pancy. The following Theorem 3 shows that the upper bound for occupancy
exceeds the lower bound by at most a polynomial function of α, which we spec-
ify in Definition 1 below. Furthermore, Theorem 3 provides an upper bound on
the variance of system occupancy.
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Definition 1. Let f : N → N be f(α) = α − 1 for α ∈ {1, 2, 3} and f(α) =
α(α − 1) for α ≥ 4.

Theorem 3. Consider an M/M/1 system with n1/α-coupled speed-scaling,
where α ∈ N. For f(α) as defined above, the mean system occupancy E[N ]
satisfies:

ρα ≤ E[N ] ≤ ρα + f(α).

Furthermore, for α ≥ 2, V ar[N ] ≤ E[N ](f(α) + 2α − 1).

Proof. See Chap. 4 of [9] for details.
Figure 4 shows the effects of α and ρ on the mean and variance of occu-

pancy. For mean occupancy, the bounds are quite tight, as shown in Fig. 4(a).
Furthermore, these E[N ] values can be used in conjunction with Little’s Law to
determine the mean time T in the system. For α = 1, the occupancy distribution
is Poisson, so the mean and variance are both equal to ρ. Unlike the variance of
speed, which is less than 1 for α ≥ 2, the variance of occupancy is an increasing
function of the average load (since E[N ] increases with load). Numerical and
simulation results show that, under heavy load, V ar[N ] ≈ αE[N ], which is even
less than the given bound. Figure 4(b) illustrates this phenomenon, by plotting
the variance-to-mean ratio for system occupancy as load is increased.
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4.3 System Saturation

We next explore the saturation effect, in which system utilization U approaches
unity. Conversely, the probability π(0) of an empty system approaches zero.

Figure 5 shows π(0) as a function of load, both on a linear scale (Fig. 5(a)) and
a logarithmic scale (Fig. 5(b)). We see that with an increase in α, the probability
of the idle state decreases quickly. Recall that U = 1 − π(0) is the utilization of
the system. For ρ > 1.6, systems with α ≥ 2 are utilized more than 90% of the
time, and for ρ ≥ 4, the utilization exceeds 99.99% in these systems.
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For an arbitrary small threshold ε > 0, one can define a “saturation load”
ρ at which π(0) ≤ ε. For example, when ε = 10−4, the saturation loads would
be near 9.2 for α = 1, 3.9 for α = 2, and 2.75 for α = 3. For ε = 10−6, the
saturation loads would be 13.5 (α = 1), 4.9 (α = 2), and 3.2 (α = 3).
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Fig. 5. Analytical results for saturation in coupled speed scaling systems

Recall that in single-speed systems, the mean occupancy under M/M/1
(FCFS or PS) is ρ

1−ρ . Furthermore, the average load ρ is equal to the utiliza-
tion U . Therefore, when utilization approaches 1, the mean occupancy under
FCFS (equivalently under PS) grows very quickly. In coupled speed-scaling sys-
tems, however, M/M/1 FCFS (equivalently PS) with n1/α-coupled speed-scaling
maintains robust performance even when the utilization is close to 1. That is,
the mean occupancy is always polynomial in ρ with degree α (see Theorem 3).

4.4 Mean Busy Period

In this section, we analyze the expected busy period length under M/M/1 with
n1/α-coupled speed-scaling. Recall that the length of a busy period, denoted by
B, is defined to be the time from when the system becomes busy until the next
time that all jobs have left the system, and the system becomes idle. The length
of an idle period is denoted by I.

Our main result is that the mean busy period grows at least exponentially
with ρ. We achieve this result by first establishing the following Theorem 4, and
then focusing on Corollary 1.

Theorem 4. Consider M/M/1 with n1/α-coupled speed-scaling with load ρ =
λ/μ, where λ is the arrival rate and μ is the rate of the (exponential) job size
distribution. Then, the expected busy period length exists, and it satisfies:

E[B] =
1
λ

∞∑

i=1

ρi

(i!)1/α
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Proof. In a birth-death process, it is known that B and I form an alternating
renewal process, for which the following equality holds [16]:

U =
E[B]

E[B] + E[I]

where U is the limiting probability of the system being busy (i.e., utilization).
Therefore, the expected busy period length can be derived as a function of the
expected idle period length and the utilization as follows:

E[B] =
UE[I]
1 − U

Note that the length of the idle period is the time until the next arrival.
Since the arrival process is Poisson with rate λ, E[I] = 1/λ. By definition, U =
1−π(0). Based on Theorem 1, the system is ergodic, and π(0) = 1

∑∞
i=0

ρi

(i!)1/α

> 0.

Therefore,

E[B] =
1 − π(0)
π(0)λ

=
1
λ

(
1

π(0)
− 1

)
=

1
λ

( ∞∑

i=0

ρi

(i!)1/α
− 1

)

=
1
λ

∞∑

i=1

ρi

(i!)1/α
. 	


Corollary 1. In an M/M/1 with n1/α-coupled speed-scaling, for any α ≥ 1,
E[B] satisfies:

E[B] ≥ 1
λ

(eρ − 1)

Proof. It is known that
∑∞

i=0
ρi

i! = eρ. The result then follows directly. 	

This corollary shows that the mean busy period grows at least exponentially

with load ρ, as stated earlier. Note, however, that the busy period duration is
sensitive to both the arrival rate and the average load, while U is only a function
of the average load.

Figure 6 illustrates the effects of α and ρ on the expected busy period length.
There are three pairs of lines in this graph, corresponding to α = 3 (highest
pair), α = 2 (middle pair), and α = 1 (lowest pair), respectively. Within each
pair of lines, the flatter one shows the expected busy period length when the load
is changed via the arrival rate (i.e., ρ = λ, since μ = 1), while the steeper line
shows the expected busy period length when the load is changed via the mean
of the job size distribution (i.e. ρ = E[X] = 1/μ, since λ = 1). As expected,
the trend is similar in both cases, with the lines differing by a factor of λ (note
the logarithmic vertical scale on the graph). The lines also differ at the leftmost
edge of the graph, since E[B] ≈ E[X] when the load is very light (i.e., ρ � 1).

The lower bound given by Corollary 1 is for the general case of α ≥ 1. It is
tight for α = 1 (see LB points in Fig. 6), but very loose for α ≥ 2, for which
E[B] grows much faster than eρ, since the system saturates sooner, and much
more dramatically. (It is more like eρα/α, but we have no proof for this yet).
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Fig. 6. Analytical results for busy period in coupled speed scaling systems

5 Simulation Results

In this section, we use discrete-event simulation to explore saturation effects in
coupled speed scaling systems. Our simulator supports different schedulers (e.g.,
FCFS, PS, SRPT) and speed scaling functions (e.g., coupled, decoupled), and
reports results for speeds, response times, energy, and busy period structure [19].
We use this simulator to study the autoscaling dynamics of PS and SRPT.

In our first experiment, we use our simulator to explore the busy period
structure of PS-based speed scaling systems. As the load offered to a speed
scaling system is increased, the number of busy periods diminishes until there is
a single massive busy period that includes all jobs. We refer to this phenomenon
as saturation, since U → 1.

Figure 7(a) illustrates the saturation effect, based on simulation of a PS-
based system with linear speed scaling (i.e., α = 1). The horizontal axis shows
the offered load based on the arrival rate λ, assuming that the mean job size
E[X] = 1, while the vertical axis shows the value of different busy period metrics,
on a logarithmic scale.

The downward-sloping diagonal line on the graph shows the number of busy
periods observed, in a simulation run with a total of 10,000 jobs. Furthermore,
the dashed line just beneath it shows the number of busy periods that have only
a single job. At light load, there are thousands of busy periods, and most have
just a single job. As the load increases, the number of busy periods decreases, as
does the number of singleton busy periods. The straight-line behaviour on this
log-linear plot indicates exponential decline, consistent with the mathematical
model.

In Fig. 7(a), the upward-sloping dotted line shows the average number of
jobs per busy period, while the line above it shows the maximum number of
jobs observed in any of the busy periods seen. Both of these lines increase with
load, and asymptotically approach a limit that reflects a single massive busy
period containing all of the jobs. For α = 1, this limit is near λ = 9, though the
simulation results are somewhat noisy near this point.
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Fig. 7. Busy period characteristics for PS and SRPT scheduling (simulation)

Analytically, from the Poisson distribution, we know that p0 = e−λ when
α = 1. For some suitably chosen small ε > 0, this formula can be used to
determine the load λ at which p0 ≤ ε. For example, for ε = 0.0001, solving
λ = −ln(ε) yields λ = 9.2, which closely matches the simulation results.
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The solid line in Fig. 7(a) shows the mean busy period duration calculated
using our analytical result from Theorem 4, while the black squares show the
simulation results. The close agreement provides validation for our model.

Figures 7(b) and (c) show the results for PS when α = 2 and α = 3,
respectively. Note that the horizontal scales of these graphs differ from those
in Fig. 7(a). The busy period dynamics in these graphs are structurally similar
to Fig. 7(a), wherein light load has many very small busy periods, while heavier
loads have fewer and larger busy periods. The primary differences from Fig. 7(a)
are the distinct downward curvature for the lines showing the number of busy
periods, implying a decrease that is faster than exponential as load is increased.
Furthermore, the point at which saturation occurs, as load is increased, arises
sooner when α is larger. For example, the load levels at which saturation occurs
in the simulation are λ = 5 for α = 2, and λ = 3 for α = 3. These closely match
the predictions from our saturation analysis.

Despite the saturation of the utilization U , the speed scaling system still
remains stable, even if the load is further increased. The probability of the system
returning to the empty state becomes very small, but the system is still recurrent.

 1

 10

 100

 1000

 10000

 0  1  2  3  4  5  6  7  8

N
um

be
r 

of
 B

us
y 

P
er

io
ds

Offered Load ρ (λ, E[X]=1)

Busy Period Results for PS and SRPT (simulation)

PS α=1
PS α=2
PS α=3
PS α=4
PS α=8

SRPT α=1
SRPT α=2
SRPT α=3
SRPT α=4
SRPT α=8

 1

 10

 100

 1000

 10000

 0  1  2  3  4  5  6  7  8

M
ea

n 
B

us
y 

P
er

io
d 

D
ur

at
io

n

Offered Load ρ (λ, E[X]=1)

Mean Busy Period for PS and SRPT (simulation)

SRPT α=8
SRPT α=4
SRPT α=3
SRPT α=2
SRPT α=1

PS α=8
PS α=4
PS α=3
PS α=2
PS α=1

(a) Number of Busy Periods (b) Mean Busy Period

Fig. 8. Busy period comparison for PS and SRPT scheduling (simulation)

The right-hand side of Fig. 7 shows the busy period results from our second
set of simulation experiments, for an SRPT-based speed scaling system. Note
that on each row of graphs, the horizontal scales for PS and SRPT plots differ.

The main observation here is that the saturation load for SRPT is different
than under PS scheduling. In particular, the SRPT system saturates sooner. One
implication of this observation is that there exist load levels at which SRPT
is beyond saturation, while PS is not. In such scenarios, there will be signifi-
cant unfairness for large jobs under SRPT (i.e., starvation). That is, while the
average number of jobs in the system is the same for both PS and SRPT, the
SRPT system tends to retain the largest jobs, causing anomalously high response
times [10].

Another anecdotal observation from the simulation results is that the busy
period structure for an SRPT system with speed scaling exponent α is qualita-
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tively similar to that for a PS system with speed scaling exponent 2α (at least
over the range of parameters considered here). Figure 8 illustrates this result,
both for the number of busy periods in Fig. 8(a), and the busy period dura-
tion in Fig. 8(b). Furthermore, the saturation point in Fig. 8(a) asymptotically
approaches 1 (as expected) when α is increased from 1 to 8.

6 Conclusions

In this paper, we have used mathematical analysis and simulation to explore
the autoscaling properties of dynamic speed scaling systems. We have assumed
coupled (i.e., job-count-based) speed scaling, with PS as a representative sym-
metric scheduler. We focus particularly on heavy loads that cause the system to
approach saturation (i.e., U → 1).

The main conclusions from our work are the following. First, the mean and
variance of the system speed are bounded, as long as the offered load is finite.
Second, the mean and variance of system occupancy are tightly bounded by
polynomial functions of ρ and α. Third, the mean busy period in a PS-based
coupled speed scaling system grows at least exponentially with offered load when
α = 1, and even faster than this when α > 1. Finally, we show that SRPT-based
systems saturate sooner than the corresponding PS-based system. While such
a system remains stable (in terms of job occupancy), it can manifest extreme
unfairness due to starvation of the largest jobs.

Our ongoing work is exploring tighter bounds for the mean busy period in
both PS and SRPT systems.
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