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Abstract In this note, we review some open problems and challenges concerning
optimization theory and the algorithms.
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1 Introduction

Optimization is an important subject with a wide field of applications in decision-
making problems that arise in economics, engineering, logistics and transportation,
traffic planning, location and layout of facilities, telecommunications, social and
biological networks, machine learning, and other fields (see, e.g., [12]). According
to Werner [25], Cantor [9] observed that the first formal optimization problem in
history was formally stated, ca. 300 BC, in Euclid’s Elements of Geometry (see, e.g.,
[11]), Book VI, and is concerned with the identification of a point on a triangle’s
side such that the resulting parallelogram, obtained by drawing the parallel lines
to the other two triangle sides from this point, has maximal area. Werner cites
also another ancient Greek mathematician, Heron (ca. 100 BC), who solved another
optimization problem in geometry, that of finding a point on a given line such that
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the sum of the distances from two other given points is minimal. Thus, it seems that
historically, optimization has its roots in geometry, and actually, optimization still
plays an important role in geometry (see, e.g., [5]) and particularly in computational
geometry (see, e.g., [4, 8]).

While some solution algorithms have been developed for most interesting
optimization problems, and although several different solution approaches have
been proposed for the same optimization problems, their performance may not
always be satisfactory in practice and/or in theory. Thus, while every NP-hard
problem can be solved in exponential time by exhaustive search, the question
whether we can do better than a trivial enumeration is naturally raised. Could it
ever be possible to solve NP-hard problems in quasi-polynomial time?

Modern heuristic and meta-heuristic approaches (from the Greek “Heuriskein”—

ε
‘
υρ

′
ισκειν—to find, to discover) have become so popular that a new optimization

branch has been born that devises algorithms inspired from physics or nature,
with such names as simulated annealing, ant colony, or particle swarm opti-
mization. However, their mathematical properties and convergence remain largely
unaddressed, and many open problems need attention (see, e.g., [29]). Moreover,
the “No Free Lunch Theorem” shows that all non-resampling algorithms perform
equally, averaged over all problems, that is, no such algorithm can outperform any
other under any metric over all problems (see, e.g., [18]). Similar practical and
theoretical considerations have led to the development of algorithm portfolios for
certain optimization problems (see, e.g., [13]) whose theoretical and computational
properties remain, however, largely unexplored.

Under suitable convexity assumptions in nonlinear optimization, “exact” opti-
mization algorithms find the global optimal solution if one exists. However, such
“exact” algorithms are of limited use for global optimization problems, although
they may be adopted as heuristics in “local” search techniques (see, e.g., [10]).
Moreover, there are several issues here: One is the fact that there are optimization
problems for which only global optimization matters [16]. Another is the complex-
ity of determining the convexity of the problem [2, 23]. Black-box optimization,
where the objective function is known only by observing different sets of input–
output pairs from a computational simulation or experiment is the reign of heuristics
and meta-heuristics. So, questions can be raised both with respect to problem
convexity and to the “No Free Lunch Theorem” in continuous domain [3, 24].

Computing power is essential for all optimization algorithms. But, what are the
limits of what the humans can compute and what are the limits of the machines?
How far can emerging technologies, including quantum computers, stretch these
limits, and what will be their impact on optimization algorithms? Such issues are
discussed in, e.g., [7, 20] and [21].
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2 Some Open and Challenging Problems

Nonlinear optimization is a great source of challenges and open problems. It is
well known in this context that a global optimum can be provably attained by
optimization algorithms based on local properties only under suitable convexity
assumptions. But, how easy is it to prove convexity? One of the seven open problems
in complexity theory for numerical optimization listed by Pardalos and Vavasis
in [23] is the following:

Given a degree 4 polynomial in n variables, what is the complexity of determin-
ing whether this polynomial describes a convex function?

It was shown by Ahmadi et al. [2] that unless P=NP, there exists no polynomial
time, not even pseudo-polynomial time, algorithm that can decide whether a
multivariate polynomial of degree four or higher even degree is globally convex.
They even show that deciding strict, strong, quasi- and pseudo-convexity of
polynomials of degree four or higher even degree is strongly NP-hard, while quasi-
and pseudo-convexity of odd degree polynomials can be decided in polynomial
time. So, the question whether determining convexity of a general function is a
“decidable problem” is open. Another important open problem related to convexity
is whether in the case of d.c. optimization it is possible to characterize the “best”
d.c. decomposition of a function into the difference of two convex functions.

The problem of minimizing a convex function f over a convex set X ⊆ R
n,

where the only access to f is via a stochastic gradient oracle, which given a point
x ∈ X returns a random vector g(x) such that E[g(x)] = ∇f (x), is known as
the “stochastic exp-concave optimization problem” and is of great importance as it
captures several fundamental problems in machine learning [1, 19]. Optimization
algorithms, such as the stochastic gradient descent algorithm, are used in order to
obtain a point x̂ for which f (x̂) − minx∈X f (x) ≤ ε, for given target accuracy
ε, either in expectation or with high probability. Despite the importance of this
problem, current algorithms scale poorly with the dimension n of the problem.
Therefore, algorithms with fast rate and which scale better with the dimension are
sought. Attempts are discussed in, e.g., [1, 19].

There are several challenging problems in continuous global optimization, both
theoretical and algorithmic ones, such as whether it is possible to derive general
optimization conditions, whether it is possible to decide upon the feasibility in
the case of large constrained problems, and how to utilize sparsity and other
inherent structures in order to attack large-scale problems. However, even certain
fundamental questions regarding optimality of global optimization problems may
be indeed very hard to answer. Consider, for instance, the quadratic problem:

min f (x) = cT x + 1

2
xT Qx

s.t. x ≥ 0,

where Q is an arbitrary n × n symmetric matrix, and x ∈ R
n.
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The Karush–Kuhn–Tucker optimality conditions for this problem become a so-
called linear complementarity problem, LCP(Q, c), which is formulated as follows:

Find x ∈ R
n, or prove that none such exists, that satisfies the system:

Qx + c ≥ 0, x ≥ 0,

xT (Qx + c) = 0

In 1994, it was shown by Horst et al. that the LCP(Q, c) is an NP-hard problem
(see, e.g., [17]). In fact, the problem of checking local optimality for a feasible point
is not that easy either. Indeed, consider the linearly constrained problem:

min f (x)

s.t. Ax ≥ b

x ≥ 0,

where f (x) is indefinite quadratic function. The same researchers have shown that
the problem of checking the strict local optimality of a feasible point x for the above
problem is also NP-hard. However, even if local optimality can be proven, it may
be pointless, since as Hiriart-Urruty [16] has shown, there exist problems for which
every feasible point is also a local optimizer. Two such problems are:

The problem of minimizing the rank of a matrix,

min f (A) = rank(A)

s.t. A ∈ C,

where C ⊂ Mm,m(R), the vector space of m × n real matrices, and the related
problem of minimizing the so-called counting function of nonzero components,

min c(x)

s.t. x ∈ S,

where S ⊂ R
n and c(x) =number of xi 	= 0 in x, have been shown in [16] to possess

the property that “every feasible point is a local minimizer.” Clearly, “only global
optimization matters” for such problems [16].

Meta-heuristics provide the means to decide which part of the search space
should be explored next. The local exploration is typically performed by some local
minimization algorithms or some other heuristic approaches. Meta-heuristics have
shown to be successful in practice for a large number of important combinatorial
and global optimization problems. Of particular, fruitful importance for meta-
heuristic application have been the so-called black-box optimization problems. Such
a problem can be stated as follows:
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min f (x)

s.t. x ∈ X,

where X ⊂ R
n, and f : X → R is function which is known only through a set of

pairs of input and output values obtained through an experiment or simulation, that
is, it is only known as a set D = {

(x1, f (x1), (x2, f (x2), . . . , (xn, f (xn)
}
. There

are quite a few challenges and open questions in relation to these very important
problems in engineering design. One important issue is with respect to the “no
free lunch theorem,” which in the case of combinatorial optimization roughly states
that all non-resampling optimization algorithms perform equally, averaged over all
problems, and therefore no optimization algorithm can outperform any other under
any metric over all problems. In [18], Joyce and Herrmann summarize the following
results from the literature which emphasize different aspects of the theorem:

1. The average performance of any pair of algorithms across all possible problems
is identical.

2. For all possible metrics, no search algorithm is better than another when its
performance is averaged over all possible discrete functions.

3. On average, no algorithm is better than random enumeration in locating the
global optimum.

4. The histogram of values seen, and thus any measures or performance based on
it, is independent of the algorithm if all functions are considered equally likely.

5. No algorithm performs better than any other when their performance is averaged
over all possible problems of a particular type.

6. With no prior knowledge about the function f , in a situation where any functional
form is uniformly admissible, the information provided by the value of the
function in some points in the domain will not say anything about the value of
the function in other regions of its domain.

The last statement (6) was proved by Serafino [24] for exactly the case of black-box
optimization. Hence, the prior knowledge about the objective function landscape
is the key for success. Since all meta-heuristics assume such a priori model, their
success largely depends upon the fitness of the model geometry to the geometry of
the problem under consideration [24]. Thus, although new meta-heuristics are often
introduced as a panacea, the “no free lunch theorem” says otherwise and emphasizes
the need of obtaining prior knowledge of the problems geometry. Understanding
this type of Bayesian prior and its relation to the “no free lunch theorem” seems
as important for the development of successful optimization algorithm as is prior
knowledge important for successful learning in machine learning [18]. Indeed, the
importance of prior information on the objective function that would permit to
choose algorithms that perform better than pure blind search is emphasized in the
case of continuous search domain where the necessary conditions for the “no free
lunch theorem” are shown to be even stronger and far more restrictive [3].
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Evaluation of heuristic and meta-heuristic algorithms raises some interesting
challenging computational problems with respect to experimental testing, supply
of good lower- and upper-bound techniques, supply of benchmark instances with
known optimal solution, and also derivation of techniques for automatic identi-
fication of parameter values. Concerning theory, the mathematical properties of
almost all meta-heuristic algorithms remain largely unaddressed or unsatisfactorily
investigated and therefore constitute challenging issues [29]. Population-based
meta-heuristics can be addressed by studying the interaction of multiple Markov
chains corresponding to the search formations. Theoretical development along
these lines has already been initiated but it is in early stages. The mathematical
analysis concerning the rate of convergence of population-based continues to
constitute a challenging issue. Obtaining strategies and techniques that lead to a
balanced trade-off between local intensification and global diversification is another
important issue. Deriving combination of algorithms into algorithm portfolios that
adaptively fit the assumed model geometry to the real geometry of the optimized
problem is of interest. Studying the approach in relation to the “no free lunch
theorem” is of theoretical importance. Conditions under which algorithm portfolios
can provide computational advantages over other approaches are also of interest.
In [13], it is shown that a “risk-seeking” strategy can be advantageous in a portfolio
setting. What other strategies could be proven advantageous and for which kind of
problems?

3 Concluding Remarks

We have indicated above a few directions along which interesting challenges and
open problems can be identified for further research. There are a lot more such
challenges and open questions in several other sub-subject areas. In [15], several
conjectures and open problems, including nonlinear optimization, are presented.
Concerning open problems about exact algorithms and their worst time bounds
and worst case bounds for NP-hard problems, the reader should consult [28].
Open problems concerning the theory of approximation algorithms for NP-hard
discrete optimization problems are discussed in [27]. West [26] has gathered 38
open problems concerning both theory and optimization in the context of graph
theory and combinatorics. A lengthy and well-structured list of open combinatorial
optimization problems on graphs, including important problems of broadcasting
and gossiping, as well as open problems concerning complexity is provided by
Hedetniemi [14]. Computational challenges of cliques and related problems are the
subjection in [22]. Finally, a source of open problems with respect to current and
future algorithmic development for the solution of complex optimization problems
is the book by Battiti et al. [6]
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