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Abstract. In this paper, we describe a new cube searching method
called conditional searching. The main idea of this new searching method
is to reduce the searching space and contains two main steps: finding
complementary variables and searching conditional cubes. At the first
step, we introduce a concept of complementary variables corresponding
to cube variables to ensure that cube variables are not multiplied with
each other in the first few propagations. According to the taps in the
feedback functions, two main strategies are given to find complementary
variables. At the second step, we first give a simple algorithm to estimate
the maximal size of conditional cubes that don’t contain any comple-
mentary variable. Then another algorithm is given to search conditional
cubes. We can confirm the maximum numbers of initialization rounds of
some NFSR-based cryptosystems such that the generated keystream bit
does not achieve the maximum algebraic degree with our cube searching
method and the algebraic degree estimated method numeric mapping.
We apply our method to Trivium to verify the validity and our searching
space is about 212.5 much smaller than that of existing results. We also
introduce two Trivium-variants named Par-Trivium and Loc-Trivium,
and apply the method to them. We can get an upper bound of the maxi-
mum initialization rounds when we change the parameters or the key and
IV loading locations in Trivium. The applications provide some insights
into the taps used in the feedback functions of such stream ciphers. We
believe that our method is useful in both cryptanalysis and design of
NFSR-based cryptosystems.

Keywords: Cryptanalysis · Numeric mapping · Stream cipher
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1 Introduction

A nonlinear feedback shift register (NFSR) is widely used in modern crypto-
graphic primitives, especially in radio-frequency identification devices (RFID)
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and wireless sensor networks applications. Most NFSR-based cryptosystems can
be described as tweakable Boolean functions with respect to both secret vari-
ables (e.g., key bits) and public variables (e.g., plaintext bits or initial value
(IV) bits). The algebraic degrees of these Boolean functions are of great impor-
tance in the security of the corresponding primitives. For a cryptographic prim-
itive with low algebraic degree, it is vulnerable to many known attacks, such as
cube attacks [1–4] and higher order differential attacks [5,6] which are the most
powerful cryptanalytic tools against NFSR-based cryptosystems. Cube attack is
introduced by Dinur and Shamir [1], which is a chosen plaintext key-recovery
attack. Since then, cube attack has attracted much attention in recent public
cryptographic literatures. At Eurocrypt 2015, Dinur et al. [2] publish a key-
recovery attack on Keccak keyed modes, where the cube variables are selected
not to multiply with each other after the first round, then the output degree
of the polynomials is reduced. Later Huang et al. [7] propose a new conditional
cube attack on Keccak keyed modes and present an 8-round attack on Keyak.
Recently, conditional cube attack is applied to round-reduced ASCON [8] and
River Keyak [9]. Also, algebraic attacks [10,11] and integral attacks [12] are easy
to perform on a cryptographic primitive with low algebraic degree.

For modern cryptographic primitives, it is difficult to compute the exact val-
ues of the algebraic degrees. But, there are several theoretical tools can be used
to estimate the upper bounds on the algebraic degrees of iterated permutations,
and concurrently exploited to attack iterated ciphers [1,13–15]. Yet for NFSR,
there are few tools for estimating its algebraic degree, besides symbolic compu-
tation and statistical analysis. Some techniques highly depend on computational
capabilities which restrict the cryptanalytic results. A variant of cube attacks
called dynamic cube attacks can reach much higher attack complexity, but they
are still limited by the size of the cubes [1,4]. Based on this point, in either
cube attacks or cube testers, the cubes with size larger than 54 have never been
utilized in cryptanalysis of NFSR-based cryptosystems. Recently, at CRYPTO
2017, two works on cube attacks use the cubes with size larger than 50. The one
by Todo et al. [16] presents possible key recovery attacks against Trivium [17],
Grain-128a [18] and ACORN [19] using the cubes of sizes 72, 92 and 64. They
mainly make use of the propagation of the bit-based division property of stream
ciphers. The other by Liu [20] gives a tool called numeric mapping to iteratively
obtain the upper bounds on the algebraic degrees of NFSR-based cryptosystems.

Our Contributions. In this paper, we propose a new cube searching method
named conditional searching. The main idea of this new searching method is to
reduce the searching space through controlling the propagation of the IV bits
and contains two main steps: finding complementary variables and searching
conditional cubes. At the finding complementary variables step, we introduce a
concept of complementary variables corresponding to cube variables. To ensure
that cube variables are not multiplied with each other in the first few propa-
gations, we give two main strategies to find complementary variables according
to the taps used in the feedback functions and the size of cubes needed. At the
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second step, we first give a simple algorithm to estimate the maximal size of
conditional cubes which means that there is not any corresponding complemen-
tary variable. Then another algorithm is given to search conditional cubes. With
our cube searching method and the algebraic degree estimated method numeric
mapping introduced by Liu [20], we can confirm the maximum numbers of ini-
tialization rounds of some NFSR-based cryptosystems such that the generated
keystream bit does not achieve the maximum algebraic degree.

We apply our method to Trivium to verify the validity with the searching
space of size about 212.5. While in [20], the searching space is 225. Our searching
space is smaller than that of the existing results. We also apply the method
to Trivium-variants containing Par-Trivium and Loc-Trivium. For Par-Trivium,
where the parameters in Trivium are changed, we estimate the algebraic degrees
and can get an upper bound of the maximum initialization rounds such that
the generated keystream bit does not achieve the maximum algebraic degree.
The experiments show that the maximum round of Par-Trivium is 863 which is
the worst case. So, parameters in Par-Trivium can be as big as possible on the
premise of the security against other attacks. And for Loc-Trivium, where the
key and IV loading locations are changed in Trivium, we can get similar results.
The experiments show that the maximum initialization round of all considered
Trivium-variants is 910, which is the worst case and should be avoided to be
resistant to cube attacks or cube tests when new ciphers are designed. The
applications provide some insights into the taps used in the feedback functions
and the key and IV loading locations of such stream ciphers, which are useful in
both cryptanalysis and design of NFSR-based cryptosystems.

Organization of the Paper. The rest of this paper is structured as follows. In
Sect. 2, basic definitions and notations are provided. Section 3 shows the general
framework of our conditional searching method, while its applications on Trivium
and Trivium-variants are given in Sects. 4 and 5. Section 6 concludes the paper.

2 Preliminaries

Boolean Functions and Algebraic Degree. Let F2 be the binary field and
F

n
2 the n-dimensional vector space over F2. An n-variable Boolean function is

a mapping from F
n
2 into F2. An n-variable Boolean function f can be uniquely

represented as a multivariate polynomial over F2,

f(x1, x2, · · · xn) = ⊕
c=(c1,c2,···cn)∈F2

ac

n∏

i=1

xci
i , ac ∈ F2,

called the algebraic normal form (ANF). The algebraic degree of f , denoted by
deg(f), is defined as max{wt(c)|ac �= 0}, where wt(c) is the Hamming weight
of c.
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Numeric Mapping. Let f(x1, x2, · · · xn) = ⊕
c=(c1,c2,···cn)∈F2

ac

n∏
i=1

xci
i (ac ∈ F2)

be a Boolean function. Denote by Bn the set of all n-variable Boolean functions.
The numeric mapping [20], denoted by DEG is defined as

DEG : Bn × Zn → Z,

(f,D) �→ max
ac �=0

{
n∑

i=1

cidi},
(1)

where D = (d1, d2, · · ·, dn) and ac’s are coefficients of the ANF of f . Let
gi(1 ≤ i ≤ n) be Boolean functions on m variables, and denote deg(G) =
(deg(g1),deg(g2), · · ·,deg(gn)) for G = (g1, g2, · · ·, gn). The numeric degree of the
composite function h = f ◦ G is defined as DEG(f,deg(G)), denoted by DEG(h)
for short. The algebraic degree of h is always less than or equal to the numeric
degree of h. The algebraic degrees of the output bits with respect to the inter-
nal states can be estimated iteratively for NFSR-based cryptosystems by using
numeric mapping.

Cube Testers. Given a Boolean function f and a term tI containing vari-
ables from an index subset I that are multiplied together, the function can be
written as

f(x1, x2, · · ·, xn) = fS(I) · tI ⊕ q(x1, x2, · · ·, xn),

where the terms in q(x1, x2, · · ·, xn) miss at least one variable from I and fS(I)
is called the superpoly of I in f . The basic idea of cube testers is that

∑

x′∈CI

f = fS(I),

where CI are all possible values of the subset of variables in the term tI . The tar-
get of cube testers work by evaluating superpolys of carefully selected terms tI ’s
which are products of public variables (e.g., IV bits), and trying to distinguish
them from a random function. A cube tester can detect the nonrandomness in
cryptographic primitives by extracting the testable properties of the superpoly,
such as unbalance, constantness and low degree, with the help of property testers.
Especially, the superpoly fS(I) is equal to a zero constant, if the algebraic degree
of f in the variables from I is smaller than the size of I.

3 A New Method for Searching Cube

In this section, we propose a new model for searching cube, called conditional
searching. The new searching method consists of two phases, finding complemen-
tary variables and searching conditional cubes. First, we will give a generalized
model of the initialization phases of NFSR-based cryptosystems.
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3.1 Generalized Model

For NFSR-based cryptosystems, especially NFSR-based stream ciphers, the ini-
tialization phase is used to initialize the internal state using secret variables (e.g.,
key bits) and public variables (e.g., plaintext bits or IV bits). Then the encryp-
tion phase just consists of an exclusive or (XOR) with the continuously updated
keystream. The generalized model of initialization phases of some NFSR-based
cryptosystems can be depicted as Fig. 1, which is helpful in the sense that we
could study some special properties/choices more clearly in a unified framework.

Fig. 1. Generalized initialization phase of NFSR-based cryptosystem

FSR1 and FSR2 are two registers. Here we stress that FSR1 in the model can
be further decomposed into a series of cascaded smaller NFSRs or LFSRs, which
could also be treated by our cryptanalysis. There are two Boolean functions
involved in the model: a (either linear or non-linear) Boolean function g and a
non-linear Boolean function f . FSR2 is initialized by the padded IV. It is obvious
that our generalized model could cover initialization processes of Grain v1 [21],
Trivium and so on. Denote by St and Bt the initial states of FSR1 and FSR2 at
time t with size of m1 and m2. At each step, FSR2 is updated by f , sometimes
without any taps from FSR1, and FSR1 is updated by g as follows:

– FSR1 is updated recursively by g as St+1 = (st+1, st+2, · · ·, st+m1) with
st+m1 = g(St, Bt).

– FSR2 is updated recursively by f as Bt+1 = (bt+1, bt+2, · · ·, bt+m2) with
bt+m2 = f(Bt, St) or bt+m2 = f(Bt).

– We assume these processes are invertible, and the inverse processes are
St−1 = (st−1, st, · · ·, st+m1−2) with st−1 = g−1(St, Bt) and Bt−1 = (bt−1, bt,
· · ·, bt+m2−2) with bt−1 = f−1(Bt, St) or bt−1 = f−1(Bt).

3.2 Conditional Searching Method

Huang et al. [7] propose a new conditional cube attack on Keccak keyed modes
and present an 8-round attack on Keyak. By restraining some bit conditions of
the key, they obtain a new set of cube variables which not only do not multiply
with each other after the first round, but also contains one cube variable that does
not multiply with other cube variables after the second round, and then the out-
put degree over cube variables is further reduced. Based on this method, we give
our conditional searching method which is a searching tool with some conditions
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to reduce the searching space. The conditional cubes used in our paper is differ-
ent, which means that the cubes do not contain any complementary variables.
Before the method is given, we will give a definition of complementary variables.
In the cube attack or cube test against stream cipher, cube variables are chosen
from the IV bits with length l, where IV = (iv1, iv2, · · ·, ivl). When ivi is chosen
as a cube variable, the variables that must not be chosen are called complemen-
tary variables corresponding to the cube variable ivi. Our conditional searching
method contains two steps: finding complementary variables and searching con-
ditional cubes. We call the cubes that do not contain any corresponding comple-
mentary variables, conditional cubes for simplicity. The conditional cubes and
the maximum numbers of initialization rounds (maximum rounds for simplic-
ity) are corresponding to the situation that the generated keystream bit does
not achieve the maximum algebraic degree.

Finding Complementary Variables. The main way to find complementary
variables is to control the propagation of cube variables. As shown in the gener-
alized model, the IV bits are loaded in FSR2 and cube variables are chosen from
them. This way, the propagation paths of the IV bits are of importance to choose
cube variables and determine the corresponding complementary variables. In the
beginning, the IV bits only appear in FSR2 and take part in the update of FSR2
(or FSR1) through the feedback function f (or g). Several steps later, they will
appear in both FSR2 and FSR1.

It is intuitive that if the cube variables are not multiplied with each other
in the first few propagations, the maximum initialization round, such that the
generated keystream bit does not achieve the maximum algebraic degree, will
be larger. The complementary variables are determined by these variables that
would be multiplied with each other. For the multiplied variables, if one of them
is chosen to be cube variable, the others are defined as complementary vari-
ables. This way, the taps in the feedback functions play a leading role in finding
complementary variables. It is easy to see that the more propagations are con-
trolled, the less conditional cubes are satisfied. Two main strategies to choose
cube variables are used here.

– In the beginning, where the IV bits take part in the first iteration, cube
variables should not be multiplied with each other.

– When the IV bits as a part of the feedback value take part in the update
function, cube variables must not be multiplied with each other.

By an iteration we mean two or more rounds which depends on the maximal
tap in the feedback function, more details, one can see the following example.

Example 1. Let m1 = m2 = 8 and

st+8 = st+6st+1 + st + bt+2,

bt+8 = bt+4bt+3 + bt + st+3,

S1 = (s1, s2, · · ·, s8) = (iv1, iv2, · · ·, iv8),
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where t ≥ 1. For FSR2, the maximal tap in the feedback function is st+6 and an
iteration means two rounds, where

the first iteration
{

s9 = s7s2 + s1 + b3
s10 = s8s3 + s2 + b4

the second iteration
{

s11 = s9s4 + s3 + b5
s12 = s10s5 + s4 + b6

the third iteration
{

s13 = s11s6 + s5 + b7
· · ·

What we need to control is the first two iterations, that is t ≤ 4. In the first
iteration, s7, s2 and s8, s3 are multiplied with each other. In the second iter-
ation, s9 is multiplied with s4 and s10 is multiplied with s5, where s9 and s10
are feedback values. Take the IV bits into account, the multiplied pairs are
(iv2, iv7), (iv3, iv8), (iv1, iv4) and (iv2, iv5), during the first two iterations. We
can predict that if ivi is a cube variable, ivi+3 and ivi+5 will be multiplied
with ivi at some point. So, the complementary variables are ivi+3 and ivi+5

corresponding to the cube variable ivi. Similarly, for FSR1, when t = 9, the
number of the iterations with respect to S1 is larger than two. The multiplied
pairs are (iv4, iv5), (iv5, iv6) and (iv6, iv7), during the first two iterations and
the complementary cube variable is ivi+1 corresponding to the cube variable ivi.
In summary, if ivi is chosen to be a cube variable, the set of complementary
variables is {ivi+1, ivi+3, ivi+5}.

Searching Conditional Cube. Once the complementary variables are
obtained, we need to search the conditional cubes that do not contain any com-
plementary variables. But before that, we have to determine the maximal size
of conditional cubes and then to search this kind of cubes. If the number of
variables that can be used as cube variables is small, the problem is very easy.
As shown in Example 1, the maximal size of conditional cubes is four, which
are {iv1, iv3, iv5, iv7} and {iv2, iv4, iv6, iv8}. We can verify that among condi-
tional cubes, cube variables will not be multiplied with each other in the first
few rounds and there is not any complementary variables {ivi+1, ivi+3, ivi+5}
corresponding to ivi.

In the NFSR-based stream ciphers, the length of the IV bits is so large that
we can’t easily estimate the maximal size and search the cubes. Two algorithms
are given to solve these two problems. Let the set of the complementary variables
corresponding to ivi be C

′
= {ivi+j1 , ivi+j2 , · · ·, ivi+jm

}. Algorithm 1 is used to
estimate the maximal size of conditional cubes. The main idea is to choose one
special cube according to the indexes of the IV bits from small to large. It is
obvious that the size dim of this special cube is the maximal size and all the
conditional cubes are of size less than dim.

Algorithm 2 is given to search conditional cubes with the maximal size dim.
First, we evenly divide the IV bits into several parts. For the first part, search all
sub-conditional cubes with possible sizes. For other parts, we can get the corre-
sponding sub-conditional cubes by changing the subscripts, as show in line 7 of
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Algorithm 1. Estimation of maximal size

Require: the complementary variables set C
′
, the set C = φ , and the length l of the

IV bits
Ensure: the maximal size of conditional cubes
1: for i from 1 to l do
2: if ivi /∈ C

′
then

3: Add ivi to C.
4: Add ivi+j1 , ivi+j2 , · · ·, ivi+jm to C′.
5: end if
6: end for
7: Let dim = |C|, where |C| is the size of set C.
8: return dim is the maximal size of conditional cubes.

Algorithm 2. Searching conditional cubes

Require: the maximal size dim, the complementary variables set C
′
, l , m

Ensure: the maximal round of conditional cubes
1: for i from 1 to m do
2: In the set {iv1, iv2, · · ·, ivm}, search all possible sub-conditional cubes with size

i and denoted by Ci. Denote the size of Ci by SCi.
3: end for
4: for all combinations of sub-conditional cubes with size subdimj , such that

subdim1 + subdim2 + · · · + subdiml/m = dim do
5: for j from 1 to l/m do
6: Choose one sub-conditional cube in Csubdimj

7: Add (j − 1) · m to the subscripts of the sub-conditional cube.
8: end for
9: Put the sub-conditional cubes with size subdimj together to obtain a cube with

size dim
10: Test whether the cube with size dim is a conditional cube.
11: if the cube is an conditional cube then
12: Estimate the maximum round with numeric mapping method.
13: end if
14: end for
15: return the maximal round of conditional cubes

Algorithm 2. Second, examine the combinations of all possible sub-conditional
cubes to obtain the conditional cubes. Denote the length of the IV bits and
the evenly divided factor by l and m. Evenly divide the IV bits into l/m parts,
denoted by part j, where 1 ≤ j ≤ l/m. Denoted by subdimj the sub-size of
sub-conditional cubes chosen from part j. The criteria of testing whether the
cube with size dim is a conditional cube is to verify that if ivi is a cube variable,
whether the complementary variables in C

′
are cube variables. For example, if

the length of the IV bits is 80, we can evenly divide them into 4 parts, iv1 to
iv20, iv21 to iv40, iv41 to iv60, and iv61 to iv80. The first part is iv1 to iv20
and all sub-conditional cubes with possible sizes can be obtained by the sim-
ple exhaustive search method. For other parts, add 20, 40, 60 to the subscripts
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of the sub-conditional cubes. If the size of conditional cubes is 38, we need to
consider all possible combinations of sub-conditional cubes, where the sum of
the sub-sizes is 38. Then for each cube variable ivi, verify whether the cor-
responding complementary variables are cube variables. If not, this cube is a
conditional cube.

The main time complexity of Algorithm 2 is to test the combinations of sub-
conditional cube with size of subdimj , where 1 ≤ j ≤ l/m. According to the
length of the IV bits and the maximum size of conditional cubes, m need to be
chosen carefully, which plays an important role in the time complexity. Whether
the IV bits need to be divided depends on the complementary variables. For
Trivium, two complementary variables are ivi+1 and ivi−1 and we can exhaust
search all the cubes containing no adjacent indexes. Then the criteria is used to
test whether the cubes are conditional cubes.

4 Applications to Trivium

Trivium is a stream cipher designed in 2005 and has been selected as one of
the portfolio for hardware ciphers (Profile 2) by the eSTREAM project. Though
Trivium is designed to provide a flexible trade-off between speed and gate count
in hardware, it also provides extremely efficient software implementation. Triv-
ium has attracted much attention in recent public cryptographic literatures for
its simplicity and very good performance, such as [26,27].

In this section, we apply our conditional searching method to Trivium to
verify the validity of our method.

4.1 A brief description of Trivium

Trivium generates up to 264 bits of keystream from an 80-bit secret key and
an 80-bit IV. For the sake of simplicity, we give an alternative description of
the algorithm different from the already existed ones. Let A, B and C be three
registers of sizes 93, 84 and 111. Denoted by At, Bt and Ct the corresponding
states at time t (t ≥ 0),

At = (xt
1, x

t
2, · · ·, xt

93),
Bt = (yt

1, y
t
2, · · ·, yt

84),
Ct = (zt

1, z
t
2, · · ·, zt

111),

and the three quadratic update functions are

xt
93 = zt−1

1 + zt−1
2 · zt−1

3 + zt−1
46 + xt−1

25 ,

yt
84 = xt−1

1 + xt−1
2 · xt−1

3 + xt−1
28 + yt−1

7 ,

zt
111 = yt−1

1 + yt−1
2 · yt−1

3 + yt−1
16 + zt−1

25 .
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The algorithm is initialized by loading an 80-bit secret key and an 80-bit IV into
the 288-bit initial state, and setting all remaining bits to 0, except for z1, z2
and z3,

(x0
1, x

0
2, · · ·, x0

93) ← (0, · · ·, 0, k0, · · ·, k79),
(y0

1 , y
0
2 , · · ·, y0

84) ← (0, · · ·, 0, iv0, · · ·, iv79),
(z01 , z

0
2 , · · ·, z0111) ← (1, 1, 1, 0, · · ·, 0).

Let h be the output function. After an initialization of N rounds, in which the
internal state is updated for N times, the cipher generates a keystream bit by
h(At, Bt, Ct) for each t ≥ N .

4.2 Conditional Searching for Trivium

The 80-bit IV is loaded into the shift register B and the propagation paths are
shown in Fig. 2. To find the complementary variables, we just need to control
the paths 1© and 2© in the first few rounds. For path 1©, we guarantee that
the cubes are not multiplied with each other in the first iteration. According to
the taps in the feedback functions, the complementary variables are ivi−1 and
ivi+1 corresponding to cube variable ivi. When the IV bits in the register C
begin to be transmitted to the register A, we need to control the path 2©. The
complementary variables are ivi+14 and ivi+16 corresponding to cube variable
ivi. In summary, if ivi is chosen to be a cube variable, the set of complementary
variables is {ivi−1, ivi+1, ivi+14, ivi+16}.

Fig. 2. Propagation paths of IV

With Algorithm 1, we know that the sizes of conditional cubes are less than
38. Then, with Algorithm 2, we can obtain all conditional cubes of size 37 and
38 in a dozen seconds on a common PC. The result, see Table 1, shows that
the output of 837-round Trivium has degree strictly less than 37 over a subset
of the IV bits with size 37, which agrees with [20]. The corresponding cubes

Table 1. Results of Trivium

Maximum round/cube size Searching space

[20] 837/37 225

Our method 837/37 212.5
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are the same and the amount of the conditional cubes is 5945 ≈ 212.5. Before
this paper, the amount of cubes need to be searched is about 225 [20]. We can
conclude that our conditional searching method is valid for Trivium and it has
better performance.

5 Applications to Trivium-Variant Ciphers

The analysis of Trivum-like ciphers is to find a variant that will remove one
of the biggest deficiencies in the Trivium design: the huge number of initial
1152 rounds, which makes the original Trivium stream cipher to have very high
initial latencies when used in IoT devices. The parameters used in Trivium are
subtle that a little change will affect the security a lot. Although there are some
Trivium-based cryptosystems, such as Kreyvium [22], TriviA-SC [23] Bivium
[24], Trivium-N [25] and so on, how do the parameters work is still a problem to
be solved. In this section, we introduce two Trivium-variants named Par-Trivium
and Loc-Trivium, and apply the conditional searching method to them to give
some guidelines for choosing parameters according to the algebraic degree.

5.1 Applications to Par-Trivium

Par-Trivium is a variant of Trivium, where the parameters in the feedback func-
tions of Trivium are changed. Determined by propagation paths of the IV bits,
the algebraic degrees of conditional cubes are mainly associated with the taps
from the register where the IV bits are loaded, and distances between the indexes
of multiplied variables. In order to keep the elegant structure, the feedback func-
tions of Par-Trivium at time t can be write as

xt
93 = zt−1

1 + zt−1
α · zt−1

α+δ + zt−1
46 + xt−1

25 ,

yt
84 = xt−1

1 + xt−1
α · xt−1

α+δ + xt−1
28 + yt−1

γ ,

zt
111 = yt−1

1 + yt−1
α · yt−1

α+δ + yt−1
β + zt−1

25 .

For Trivium, α = 2, β = 16, γ = 7, δ = 1. For simplicity, we denote by Rα,β,γ,δ

the maximum round that the conditional cubes of size 37 ≤ n ≤ 40 have reached
maximum degrees. Sometimes a part of the subscripts would be omitted and the
symbol becomes Rβ,γ , Rα and so on.

The impacts of parameters α, β, γ and δ on the algebraic degrees are sum-
marized in the following three properties.

Property 1. When β, γ and δ are fixed, the maximum round that the condi-
tional cubes have reached maximum degrees decreases with the growth of α.

It is obvious that the larger α is, the earlier the feedback values take part in
the iterations and the smaller the maximum round is. For β = 16, γ = 7, δ = 1,
the result is listed in Table 2. We can see that the maximum rounds Rα is
decreased with the growth of α.
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Table 2. The maximum rounds Rα, when β = 16, γ = 7, δ = 1

α 2 7 12 17 22 27 32 37 42 47 52 57 62 67 72 77 82

Rα 837 741 708 704 640 601 575 524 487 449 407 364 315 272 226 189 156

For Par-Trivium with parameters (α, β, γ, δ), the complementary variables
are ivi−δ, ivi+δ, ivi+β−δ−1 and ivi+β+δ−1 corresponding to cube variable ivi.
When i + β + δ − 1 > 79, ivi+β+δ−86+γ will be multiplied with ivi+δ−86+γ

according to the propagation paths of the IV bits. Also, when i+β − δ −1 > 79,
ivi+β−δ−86+γ will be multiplied with ivi−δ−86+γ . For example, when α = 2, β =
16, γ = 7 and δ = 2, we can know that

z1111 = y0
16 + · · · = iv11 + · · · ,

· · ·
z4111 = y3

16 + y3
2 · y3

4 + · · · = iv14 + iv0 · iv2 + · · · ,

z5111 = y4
16 + y4

1 + y4
2 · y4

4 + · · · = iv15 + iv0 + iv1 · iv3 + · · · ,
· · ·
z88111 = y87

16 + y87
1 + y87

2 · y87
4 + · · · = iv78 + iv63 + iv64 · iv66 + · · · ,

z89111 = y88
16 + y88

1 + y88
2 · y88

4 + · · · = iv79 + iv64 + iv65 · iv67 + · · · ,

z90111 = y89
16 + y89

1 + y89
2 · y89

4 + · · · = iv2 + iv65 + iv66 · iv68 + · · · ,
· · ·
z103111 = y102

16 + y102
1 + · · · = iv15 + iv78 + · · · ,

z104111 = y103
16 + y103

1 + · · · = iv16 + iv79 + · · · ,

z105111 = y104
16 + y104

1 + · · · = iv17 + iv2 + · · ·

according to the feedback functions. When t = 198, z88111 and z90111 will take part
in the feedback of x198

93 and iv2 will be multiplied with iv63. Also, at time t = 213,
z103111 and z105111 will take part in the feedback of x213

93 and iv2 will be multiplied
with iv15. Take these into consideration, we can use our conditional searching
method to estimate the maximum round Rα,β,γ,δ with respect to the conditional
cubes of size 37 ≤ n ≤ 40 and we get the following result.

Property 2. For parameters α, β, γ and δ, let q = 79 − δ mod 2δ and

β∗ = β/(2δ)� · 2δ + 1,

γ∗=
{

δ+1+2kδ, 0 ≤ q ≤ δ − 2
q − δ+2kδ, δ − 1 ≤ q ≤ 2δ − 1,

where k is the maximum integer satisfying γ ≥ γ∗. When α and δ are fixed,
the maximum round Rβ,γ that the conditional cubes of size 37 ≤ n ≤ 40 have
reached maximum degrees, satisfies that

Rβ,γ ≤ Rβ∗,γ∗

and Rβ∗,γ∗ decreases with the growth of β∗ or γ∗.



Conditional Cube Searching and Applications on Trivium-Variant Ciphers 163

When α and δ are fixed, for any β and γ, we can obtain an upper bound of
the number of initialization rounds such that the generated keystream bit does
not achieve the maximum algebraic degree. For example, when α = 2 and δ = 2,
we can get q = 1 and list a part of the maximum rounds for different β and γ
in Table 3. We can see that in each square, the upper bound of the maximum
rounds appears at the lower left. For 21 ≤ β ≤ 24 and 9 ≤ γ ≤ 12, it shows that
Rβ,γ ≤ Rβ∗,γ∗ = R21,9, where β∗ = 21 and γ∗ = 9, which is indicated by the
gray part. Also, Rβ∗,γ∗ is inversely proportional to β∗ or γ∗, see the numbers
in bold in Table 3. Parameters β and γ for the maximum rounds in bold are
the corresponding β∗ and γ∗. So, in design of Trivium-Like stream cipher, it is
needed to choose β and γ as big as possible, and β∗ and γ∗ should be avoided.
While the location of the lower bound is indeterminate in spite of the fact in
Table 3. It’s a coincidence that the maximum round in the first column and
second row is the smallest number.

Table 3. The maximum rounds Rβ,γ , where α = 2 and δ = 2

Property 3. Let α = 2. When β and γ run through all possible combinations,
the maximum round that the conditional cubes have reached maximum degree
decreases with the growth of δ.

It may be more persuasive to consider the relationship between the maximum
round and δ if β and γ are also fixed. But when β and γ are also fixed, different



164 X. Zhang et al.

δ would lead to the sizes of the corresponding conditional cubes smaller than 37,
which makes the comparison meaningless. For α = 1, β = 16, γ = 7, the size
of the conditional cubes is 38 corresponding to δ = 1, but if δ = 6, the size of
the conditional cubes is smaller than 33. So we run through all possible β and
γ to compare the maximum rounds. When 1 ≤ δ ≤ 5, the results are listed in
Table 4. Here α = 2 and three taps from register B, which are y1, y2 and y2+δ,
are fixed. yγ takes part in the feedback of register B separately and yβ takes
part in the feedback of register C with y1, y2 and y2+δ together, as

yt
84 = xt−1

1 + xt−1
2 · xt−1

2+δ + xt−1
28 + yt−1

γ ,

zt
111 = yt−1

1 + yt−1
2 · yt−1

2+δ + yt−1
β + zt−1

25 .

So the range of values for γ is 1 to 84 and for β is 2 to 84. When δ is given, the
minimum values of β∗ and γ∗, and the maximum value of rounds are determined
by Property 2. But some pairs of (β, γ) aren’t in consideration. For example,
when δ = 3, β∗

min = 7, γ∗
min = 1 and R7,1 = 851. But for 2 ≤ β ≤ 6, we need to

estimate the corresponding maximum rounds separately.

Table 4. The maximum rounds Rβ,γ,δ, where α = 2 and k is a positive integer

δ Taps in B β∗ γ∗ Rβ,γ

1 {y1, y2, y3, yβ , yγ} 1 + 2k 1 + 2k max{Rβ,γ |2 ≤ β ≤ 3, γ = 1}= R3,1 = 863

2 {y1, y2, y4, yβ , yγ} 1 + 4k 1 + 4k max{Rβ,γ |2 ≤ β ≤ 5, γ = 1}= R5,1 = 861

3 {y1, y2, y5, yβ , yγ} 1 + 6k 1 + 6k max{Rβ,γ |2 ≤ β ≤ 7, γ = 1}= R3,1 = 854

4 {y1, y2, y6, yβ , yγ} 1 + 8k 5 + 8k max{Rβ,γ |2 ≤ β ≤ 9, 1 ≤ γ ≤ 5}= R9,1 = 847

5 {y1, y2, y7, yβ , yγ} 1 + 10k 5 + 10k max{Rβ,γ |2 ≤ β ≤ 11, 1 ≤ γ ≤ 5}= R3,1 = 842

The results give us some design principles for designing Trivium-Like ciphers.
Ideally, the smaller the maximum rounds of NFSR-based cryptosystems such
that the generated keystream bit does not achieve the maximum algebraic degree
the better. So the parameters in Par-Trivium should be as big as possible on the
premise of the security against other attacks. From the experiment results, we
can know that the maximum round of Par-Trivium is 863 which is the worst
case.

5.2 Applications to Loc-Trivium

Loc-Trivium is a variant of Trivium, where the key and the IV loading locations
are changed in Trivium. In Trivium, the key bits are loaded into the register
A and the IV bits are loaded into the register B. The maximum round that
conditional cubes reach maximum degree is influenced mainly by propagation
paths of the IV bits. So, if we change the key and IV loading locations, the
maximum round will be changed. The experiments show that the maximum
round is influenced mainly by the IV loading location and the corresponding
taps. Here, an example is given to illustrate our findings.
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Example 2. For Loc-Trivium, if we load the IV bits into the register A and the
key bits into the register C, and other parameters remain unchanged, the loading
procedure becomes

(x0
1, x

0
2, · · ·, x0

93) ← (0, · · ·, 0, iv0, · · ·, iv79),
(y0

1 , y
0
2 , · · ·, y0

84) ← (1, 1, 1, 0, · · ·, 0),

(z01 , z
0
2 , · · ·, z0111) ← (0, · · ·, 0, k0, · · ·, k79).

With the tool numeric mapping, we can estimate the maximum round R of Loc-
Trivium. The results are listed in the second column of Table 5. We can see that
the key bits loaded into the register A and the IV bits loaded into the register
B are not the best choice in view of the algebraic degree. The best choice is to
load the key bits into register A and the IV bits into the register C and the
maximum round is 814 smaller than 837.

Table 5. R with different key and IV loading locations

Key, IV location R (taps unchanged) R (taps changed)

(A, B) ← (Key, IV ) 837 863

(C, B) ← (Key, IV ) 828 864

(A, C) ← (Key, IV ) 814 904

(B, C) ← (Key, IV ) 825 910

(B, A) ← (Key, IV ) 825 876

(C, A) ← (Key, IV ) 825 853

If we also change the taps from the register loaded with the IV bits as shown
in Sect. 5.1, we can get similar results, except the complementary variables. The
feedback functions at time t turn into

xt
93 = zt−1

1 + zt−1
α · zt−1

α+δ + zt−1
46 + xt−1

γ ,

yt
84 = xt−1

1 + xt−1
α · xt−1

α+δ + xt−1
β + yt−1

7 ,

zt
111 = yt−1

1 + yt−1
α · yt−1

α+δ + yt−1
16 + zt−1

25 .

The complementary variables are ivi−δ, ivi+δ, ivi+β−δ−1 and ivi+β+δ−1 corre-
sponding to the cube variable ivi. When i+β+δ−1 > 79, ivi+β+δ−113+γ will be
multiplied with ivi+δ−113+γ according to the propagation paths of the IV bits.
Also, when i+β−δ−1 > 79, ivi+β−δ−113+γ will be multiplied with ivi−δ−113+γ .

In the third column of Table 5, we list the maximum rounds R when the cor-
responding parameters are also changed. The result shows that Loc-Trivium
with the key loaded in the register B and IV loaded in the register C has
the maximum rounds 910, which is the worst case. The corresponding feedback
functions are
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xt
93 = zt−1

1 + zt−1
2 · zt−1

3 + zt−1
3 + xt−1

25 ,

yt
84 = xt−1

1 + xt−1
2 · xt−1

3 + xt−1
28 + yt−1

7 ,

zt
111 = yt−1

1 + yt−1
2 · yt−1

3 + yt−1
16 + zt−1

1 .

Here some tap positions are the same. Ensure that all tap positions are distinct,
we obtain that the maximum rounds is 906 and the corresponding feedback
functions are

xt
93 = zt−1

1 + zt−1
2 · zt−1

3 + zt−1
5 + xt−1

25 ,

yt
84 = xt−1

1 + xt−1
2 · xt−1

3 + xt−1
28 + yt−1

7 ,

zt
111 = yt−1

1 + yt−1
2 · yt−1

3 + yt−1
16 + zt−1

4 .

The results show that the key and IV loading locations play important roles
in the algebraic degree of NFSR-based cryptosystems. When a new cipher with
the similar structure is designed, both the parameters and the key and IV loading
locations should be taken into account. The worst case that the maximum rounds
is 910 or 906, which should be avoided to be resistant to cube attacks or cube
tests when new ciphers are designed.

6 Conclusions

In this paper, we have shown a new cube searching method. The main idea
is to reduce the searching space through controlling the propagation of the
IV bits. With our cube searching method and the algebraic degree estimated
method numeric mapping, we can confirm the maximum numbers of initialization
rounds of some NFSR-based cryptosystems such that the generated keystream
bit does not achieve the maximum algebraic degree. As illustrations, we applied
our method to Trivium to verify the validity, our searching space is much smaller
than that of the existing results. We also applied our method to two Trivium-
variants, named Par-Trivium and Loc-Trivium, and we can get an upper bound
of the maximum initialization rounds.

We believe that our method is useful in both cryptanalysis and design of
NFSR-based cryptosystems. In design of Trivium-Like stream cipher, it is needed
to choose α, β, γ and δ as big as possible on the premise of the security against
other attacks, and β∗ and γ∗ should be avoided. The experiments show that the
maximum round of Par-Trivium is 863 which is the worst case. For the key and
IV loading locations, if other parameters are not changed, the loading locations
used in Trivium are the worst case, but it doesn’t threaten the security. If other
parameters are also changed, the worst and best choices are also given. For Loc-
Trivium, the maximum initialization round of all considered Trivium-variants is
910 which is the worst case and should be avoided to be resistant to cube attacks
or cube tests.
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