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Abstract. In this paper, we revisit the relationship between the prob-
ability of differential trails and the input difference of each round for
SIMON-like block ciphers. The key observation is that not only the Ham-
ming weight but also the positions of active bits of the input difference
have effect on the probability. Based on this, our contributions are mainly
twofold. Firstly, we rebuild the MILP model for SIMON-like block ciphers
without quadratic constraints. Accordingly, we give the accurate objec-
tive function and reduce its degree to one by adding auxiliary variants to
make the model easy to solve. Secondly, we search for optimal differential
trails for SIMON and SIMECK based on this model. To the best of our
knowledge, this is the first time that related-key differential trails have
been obtained. Besides, we not only recover the single-key results in [11],
but also obtain impossible differentials through this method.

Keywords: SIMON · SIMECK · Related-key differential trails
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1 Introduction

Devices of small size, such as smart cards and sensor networks, are increasingly
involved in our life. Despite of the convenience, a major concern is that these
highly constrained devices cannot afford the computational cost of traditional
block ciphers such as DES and AES. To this end, the notion of lightweight block
cipher was raised, and has seen a flourish of research works in recent years.

Specifically, SIMON and SPECK families of block ciphers [4] proposed by
the NSA are amongst the most promising candidates. The distinguishing fea-
ture of SIMON (SPECK) is that AND operations (modular additions) serve as
non-linear components instead of S-boxes, and this directly yields an implemen-
tation advantage on both hardware and software platforms. Later on, Yang et
al. proposed a variant of SIMON, namely SIMECK [22] which adopts the rota-
tional constants and key schedules of SPECK within the framework of SIMON.
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We refer to both SIMON and SIMECK as SIMON-like block ciphers, as intro-
duced in [11].

Related Work. For SIMON, no designing rationale or security analysis was
explicitly given in the original paper [4]. Lots of subsequent researches have been
done for evaluating its security, and a majority of these works are also applicable
to the SIMECK case due to their great similarities [22].

There have been many results for SIMON by differential cryptanalysis [2,3,6–
11,20] and linear cryptanalysis [1,12,14]. To our interest, Kölbl et al. [9] gave an
exact closed form expression for the differential probability, and obtained single-
key differential characteristics through SAT/SMT solvers; in 2017, Liu et al. [11]
further investigated the relationship between Hamming weight of input difference
and differential probability, and proposed an automatic searching algorithm by
adapting Matsui’s algorithm [13], and obtained optimal single-key differential
trails for SIMON-like block ciphers.

On the other hand, Todo introduced the notion of division property, and
used it in finding integral distinguishers for SIMON [18]; later on, Todo and
Morii proposed a fine-grained variant called bit-based division property [19], and
thus gave integral distinguisher for SIMON32 with one more round.

Besides, the method of Mixed-Integer Linear Programming (MILP) is widely
used in automatic searching recently [15,17]. Specifically for SIMON, Sun et al.
modified the original model [15,17] into an MIP (Mixed-Integer Programming)
one by adding quadratic constraints [16], to remove invalid characteristics out
of the feasible region. Although they made it theoretically solvable by adding
auxiliary variants, it still seems rather sophisticated to make practical use of this
model. It is worth noting that based on division property, Xiang et al. [21] applied
MILP to automatically searching integral distinguishers for six lightweight block
ciphers including SIMON and SIMECK.

Throughout, no cryptanalysis work has been done for SIMON-like block
ciphers in related-key setting, and this issue is also mentioned by the designers
of SIMON [5] and SIMECK [22] independently. In fact, the behavior of certain
block cipher under related-key differential cryptanalysis is an important criterion
for its security, since the secret keys are often updated in security protocols or
differences can be incorporated using fault attacks. Meanwhile, avoiding high-
probability related-key differential characteristics is one of the goal of the key
schedule.

Our Contributions. In this paper, we make a fine-grained analysis of the
ROTATION-AND operations and construct proper MILP models for SIMON-
like block ciphers. As a result, we give related-key differential trails for SIMON-
like block ciphers for the first time.

Specifically, we revisit the relationship between the input difference and the
probability of differential trails, and reveal that the active bits’ positions of the
input difference will not only determine which bits of the output difference are
likely to be active, but also affect the probability of differential characteristics.
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From this we can get all possible output differences of the ROTATION-AND
operation and their accurate probabilities directly from input difference, rather
than using a DDTA (Difference Distribution Table of AND) accompanied with
some checking conditions as done in [6,9,11]. As a result, we can construct proper
MILP models with linear objective function while without quadratic constraints,
and search related-key differential trails for SIMON and SIMECK automatically,
as well as impossible differentials.

Our main results are listed in the following:

1. We find 10, 9, 9 rounds optimal related-key differential trails for SIMON32/64,
SIMON48/96 and SIMON64/128 with probability 2−16, 2−18 and 2−18

respectively, costing about 15 days, 6 days and 7 days respectively.1 More-
over, we find that there is an 8-round period trail with probability 2−n

for SIMON2n/4n, and thus all trails can be extended to 19 rounds with
probability 2−2n.

2. We find two 11 rounds optimal related-key differential trails for SIMON48/72
and SIMON64/96 with probability 2−22 and 2−22 respectively, costing about
7 days and 7 days respectively. The extension for SIMON48 reaches 16 rounds
with probability 2−50, and the extension for SIMON64 reaches 18 rounds with
probability 2−64.

3. We find 15, 16, 16 rounds optimal related-key differential trails for
SIMECK32/64, SIMECK48/96, and SIMECK64/128 with probability 2−34,
2−40, and 2−40 respectively, costing about 9.6 h, 3.8 days and 4 days respec-
tively. The extension of SIMECK48/96 reaches 19 rounds with probabil-
ity 2−48, and the extension for SIMECK64/128 reaches 23 rounds with
probability 2−66.

For searching single-key differential trails, without of generality, we assume
that there must exist certain round with input difference of Hamming weight
one when considering the diffusion of block ciphers. Then by our method, we
can recover the results in [11]. In addition, we also get 11, 12 and 13 rounds
impossible differentials for SIMON32, SIMON48 and SIMON64 respectively, and
get 11, 15 and 17 rounds impossible differentials for SIMECK32, SIMECK48 and
SIMECK64 respectively, all in the single-key setting.

Organization of the Paper. We introduce notations and recall the construc-
tions of SIMON-like block ciphers in Sect. 2. In Sect. 3, we present the main
theorem on relationship between the input difference and the differential prob-
ability, and construct proper MILP models for SIMON-like block ciphers. Our
results are presented in Sect. 4. Section 5 is a conclusion of this paper.

1 All experiments are performed on a PC with 2.5 GHz Intel Core i7 and 16GB 1600
MHz DDR3.
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2 Preliminaries

2.1 Notations

We say a bit is active if it is one. For the left half input difference in SIMON2n,
each bit has a subscript denoting its position, with that of the most significant
bit being 0; all subscripts are in the sense modulo n. We list main notations in
Table 1.

Table 1. Notations.

Notation Description

�, & AND operation

⊕ XOR operation

Si left circular shift by i bits

S−i right circular shift by i bits

Δxr
i the i-th bit of left half input difference of the r-th round

Δdr
i the i-th bit of output difference of AND operation of the r-th round

(a, b, c) the rotation parameters for SIMON-like block ciphers

2.2 A Brief Description of SIMON and SIMECK

The round function of SIMON-like block ciphers is shown in Fig. 1, with the value
of (a, b, c) being (8, 1, 2) and (0, 5, 1) for SIMON and SIMECK respectively.

Fig. 1. The round function of
SIMON-like block ciphers.

Fig. 2. The key expansion of SIMECK.



120 X. Wang et al.

The key schedules of SIMON and SIMECK are totally different. The constant
C = 2n−4 = 0xff ···fc, and the generation of constant sequence {zj} is referred
to [4] (for SIMON) and [22] (for SIMECK). The key of the i-th round is denoted
by ki, and the identical permutation is denoted by I. For SIMON2n/mn, round
keys are generated by

ki+m =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C ⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)S−3ki+1, if m = 2,

C ⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)S−3ki+2, if m = 3,

C ⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)(S−3ki+3 ⊕ ki+1), if m = 4.

For SIMECK2n/4n, the key schedules are shown in Fig. 2. The updating
function is expressed as

⎧
⎨

⎩

ki+1 = ti,

ti+3 = ki ⊕ f(ti) ⊕ C ⊕ (zj)i.

where f(x) = x � S5(x) ⊕ S1(x) is part of the round function.

3 Constructing MILP Models for SIMON-like Block
Ciphers

In this section, we make a fine-grained analysis of the relationship between input
and output difference of the ROTATION-AND operations. We prove that not
only the Hamming weight but also the active bits’ positions of the input differ-
ence can affect the probability of differential characteristics. The former has been
proved by Liu et al. [11], and we highlight the latter’s importance in construct-
ing proper MILP models for SIMON-like block ciphers. Specifically, we give the
following theorem:

Theorem 1. Let f(x) = Sa(x) � Sb(x) be a Boolean function from F
n
2 to itself,

and gcd(n, a − b) = 1. Let Δx, Δd ∈ F
n
2 be the input and output difference of f

respectively, with wt(Δx) = m, m < n, and R = {Δxi0 ,Δxi1 , . . . ,Δxim−1} be
the set of all active bits in Δx. If there exist

1. p1 pairs of {ij, ik} such that |ij − ik|≡ |a − b| mod n; and
2. p2 pairs of {ij, ik} such that |ij − ik|≡ 2|a − b| mod n and there exists some

h such that |h − ij |≡ |a − b| mod n, |h − ik|≡ |a − b| mod n, Δxh /∈ R;

then there will be 22m−p1−p2 possible values for Δd, and each has the same
probability 2−2m+p1+p2 .

To prove this theorem, we use the following lemma, which can be regarded as
a generalization of Observation 2 in [8]. All proofs can be found in the Appendix.
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Lemma 1. Let f(x) = Sa(x) � Sb(x) be a Boolean function from F
n
2 to itself.

Let Δx, Δd ∈ F
n
2 be the input and output difference of f respectively, and x ∈ F

n
2

be an input of f . Then,

1. In Δx, only two bits, namely Δxi+a and Δxi+b can affect the value of Δdi,
which is an arbitrary bit in Δd;

2. An arbitrary bit Δxi in Δx, can affect only two bits Δdi−a and Δdi−b in Δd;
3. An arbitrary bit xi in x can affect at most two bits Δdi−a and Δdi−b in Δd.

Specifically, Δdi−a is affected by xi, iff. Δxi−a+b = 1; Δdi−b is affected by
xi, iff. Δxi−b+a = 1.

Based on Theorem 1, we can construct proper MILP models for SIMON-like
block ciphers in the following.

Constraints Imposed by XOR Operations. There are lots of XOR oper-
ations in either round functions or key schedules of SIMON-like block ciphers.
This turns out be a bottleneck in constructing efficient models if we follow the
XOR constraints given in [15,17], since there will be too many auxiliary variants.
However, we note that all possible points can be figured out easily and linear
constraints without auxiliary variants can then be obtained using the SageMath
code in [17]. We demonstrate this by the following example.

Let x ⊕ y ⊕ z = w, where x, y, z, w ∈ F2. All possible points for (x, y, z, w)
are (0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1,
1, 0, 0) and (1, 1, 1, 1). We can easily get the linear constraints as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + y − z + w ≥ 0
x + y + z − w ≥ 0
−x + y + z + w ≥ 0
x − y + z + w ≥ 0
−x − y + z − w ≥ −2
x − y − z − w ≥ −2
−x + y − z − w ≥ −2
−x − y − z + w ≥ −2

Constraints Imposed by ROTATION-AND Operations. Based on
Theorem 1, we divide the n bits input difference and n bits output difference of
ROTATION-AND operations into n groups. Specifically, group i (0 ≤ i ≤ n−1)
consists of three input difference bits at positions (i, i+ t, i+2t) and two output
difference bits at positions (i − b, i + t − b), where t = |a − b|.

Taking SIMON32 as an example, we list all 16 groups in Table 2, and all
possible points with respect to each group in Table 3. Then we can get the
following linear constraints by running the SageMath code [17] on input of all
possible points, where there is no auxiliary variants and the feasible region of
which contains no invalid characteristics.



122 X. Wang et al.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δxr
i+t − Δxr

i+2t − Δdr
i−b + Δdr

i+t−b ≥ −1

Δxr
i + Δxr

i+t − Δdr
i−b ≥ 0

−Δxr
i + Δxr

i+t + Δdr
i−b − Δdr

i+t−b ≥ −1

Δxr
i+t + Δxr

i+2t − Δdr
i+t−b ≥ 0

Table 2. The 16 groups for SIMON32.

Input Bits 0,7,14 7,14,5 14,5,12 5,12,3 12,3,10 3,10,1 10,1,8 1,8,15

Output Bits 15,6 6,13 13,4 4,11 11,2 2,9 9,0 0,7

Input Bits 8,15,6 15,6,13 6,13,4 13,4,11 4,11,2 11,2,9 2,9,0 9,0,7

Output Bits 7,14 14,5 5,12 12,3 3,10 10,1 1,8 8,15

Objective Functions. Let the probability of the differential characteristic be
2−w. Then we have the following objective function from Theorem1:

w =
R∑

r=0

(2
n−1∑

i=0

Δxr
i −

n−1∑

i=0

Δxr
i Δxr

i+t −
n−1∑

i=0

Δxr
i Δxr

i+2t +
n−1∑

i=0

Δxr
i Δxr

i+tΔxr
i+2t).

(1)
However, this objective function of degree three makes it hard to solve the

model. To solve this issue, we form n groups with group i consisting of three
bits input difference (Δxr

i , Δxr
i+t, Δxr

i+2t) as well as an auxiliary variants pr
i , in

order to reduce the degree of the objective function to one.

w = 2
R∑

r=0

n−1∑

i=0

Δxr
i −

R∑

r=0

n−1∑

i=0

pr
i . (2)

Then we can obtain the following linear constraints, taking the relationships
between (Δxr

i , Δxr
i+t, Δxr

i+2t) and pr
i as shown in Table 4.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δxr
i+2t − pr

i ≥ 0

−Δxr
i − Δxr

i+2t + pr
i ≥ −1

−Δxr
i+t − Δxr

i+2t + pr
i ≥ −1

Δxr
i + Δxr

i+t − pr
i ≥ 0

Since the non-linear key schedules of SIMECK essentially reuse its round
function, the objective function of SIMECK turns out to

w = 2
R∑

r=0

n−1∑

i=0

Δxr
i −

R∑

r=0

n−1∑

i=0

pr
i + 2

R−3∑

r=1

n−1∑

i=0

Δkr
i −

R−3∑

r=1

n−1∑

i=0

pr
ki. (3)
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4 (Related-Key) Differential Trails for SIMON and
SIMECK

In this section, we show the (related-key) differential trails for SIMON and
SIMECK, which are automatically searched by solving the MILP models in
Sect. 3 using Gurobi. Our results are twofold: first and foremost, we give (long)
related-key differential trails for SIMON-like block ciphers for the first time;
second, using the same method, we give impossible differentials for SIMON-like
block ciphers and recover the trails given by Liu et al. [11], both in the single-key
setting.

Table 3. All possible points for each group.

(Δxr
i , Δxr

i+t, Δxr
i+2t ) (Δdr

i−b, Δdr
i+t−b)

(0, 0, 0) (0, 0)

(0, 0, 1) (0, 0), (0,1)

(0, 1, 0) (0, 0), (0,1), (1,0), (1,1)

(0, 1, 1) (0, 0), (0,1), (1,0), (1,1)

(1, 0, 0) (0, 0), (1,0)

(1, 0, 1) (0, 0), (1,1)

(1, 1, 0) (0, 0), (0,1), (1,0), (1,1)

(1, 1, 1) (0, 0), (0,1), (1,0), (1,1)

Table 4. The value of auxiliary variant pr
i .

(Δxr
i , Δxr

i+t, Δxr
i+2t ) pr

i

(0, 0, 0) 0

(0, 0, 1) 0

(0, 1, 0) 0

(0, 1, 1) 1

(1, 0, 0) 0

(1, 0, 1) 1

(1, 1, 0) 0

(1, 1, 1) 1

4.1 Related-Key Differential Trails

We present optimal related-key differential trails for SIMON32/64 in Table 6,
SIMON48/72 and SIMON48/96 in Table 7, SIMECK32/64 and SIMECK48/96
in Table 8. The optimal trails for SIMON64 and SIMECK64 are identical to
those for SIMON48 and SIMECK48 respectively.
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Except for SIMECK32/64, constrained by the limited computational
resources, it is still difficult to obtain longer optimal related-key differential trails
for other parameters, whose probabilities may hopefully reach the security mar-
gin. To solve this issue, putting some optimal trail in the middle, we search both
forwards and backwards until it reaches the security margin. In addition, we
observe that there exists an 8-round period for SIMON32/64 in the related-key
setting, which yields a 19-round related-key differential trail with probability
2−32. These results are summarized in Table 5.

4.2 Single-Key Differential Trails

For obtaining single-key trails, it indeed costs more time by directly solving
the MILP models in Sect. 3 than using the method in [11]. However, a key
observation is that in optimal single-key differential trails, there is always some
round’s input difference with Hamming weight one. This can explained from the
following two perspectives: on the one hand, the upper-bound of probability of
each round is negatively related to the Hamming weight of its input difference,
as proved in [11]; on the other hand, considering the diffusion property, an active
input difference bit of some round can make many forward and backward bits
active; thus, it is intuitive to require the hamming weight of some round’s input
difference to be the least (namely one), for obtaining long trails.

Keeping these in mind, we can recover the results in [11] (R-round optimal
single-key differential trails) using much less time, by solving the MILP models
with the precondition that there exists some r ∈ {0, · · · , R − 1} such that the
Hamming weight of the r-th round’s input difference is one.

Table 5. The probabilities of optimal and best related-key differential trails for variants
of SIMON and SIMECK. To distinguish from optimal trails, best trails are labeled with
*. For simplicity, all probabilities p are given as (− log2 p) in the table.

Rounds 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

SIMON32/64 0 2 4 8 11 16 16* 24* 24* 24* 24* 32* 32* 32* 32* - - - -

SIMON48/72 2 4 6 12 14 18 22 30* 33* 40* 42* 50* - - - - - - -

SIMON48/96 0 2 4 8 12 18 24* 35* 36* 36* 36* 48* 48* 48* 48* - - - -

SIMON64/96 2 4 6 12 14 18 22 30* 34* 42* 46* 54* 55* 64* 70* - - - -

SIMON64/128 0 2 4 8 12 18 26* 36* 41* 48* 48* 64* 64* 64* 64* - - - -

SIMECK32/64 0 2 4 8 10 14 18 22 26 30 34 - - - - - - - -

SIMECK48/96 0 2 4 8 10 14 18 22 26 30 34 40 42* 46* 48* - - - -

SIMECK64/128 0 2 4 8 10 14 18 22 26 30 34 40 42* 46* 48* 54* 56* 62* 66*

4.3 Impossible Differentials

Considering the miss-in-the-middle approach and the diffusion property, we
search impossible differentials for SIMON-like block ciphers in single-key set-
ting, under that there is only one active bit in either the input difference or the
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Table 6. 10 rounds optimal related-key differential trails for SIMON32/64, where the
numbers represent the positions of active bits of input difference of each round while
‘-’ represents that there is no active bits.

R SIMON32/64

Δxl Δxr Δk

0 - 1,3,5,7,9,11,13,15 1,3,5,7,9,11,13,15

1 - - -

2 - - 0,2,4,6,8,10,12,14

3 0,2,4,6,8,10,12,14 - 1,3,5,7,9,11,13,15

4 - 0,2,4,6,8,10,12,14 0,2,4,6,8,10,12,14

5 - - -

6 - - 1,3,5,7,9,11,13,15

7 1,3,5,7,9,11,13,15 - 1,3,5,7,9,11,13,15

8 - 1,3,5,7,9,11,13,15 1,3,5,7,9,11,13,15

9 - - -

10 - - 0,2,4,6,8,10,12,14

11 0,2,4,6,8,10,12,14 - 1,3,5,7,9,11,13,15

Table 7. Optimal related-key differential trails for SIMON48.

R SIMON48/72 SIMON48/96

Δxl Δxr Δk Δxl Δxr Δk

0 - 7,8,9,10,22 4,6,7,8,9,10,22 - 9,11,12,13,16,17,19 9,11,12,13,16,17,19

1 4,6 - 2,4,22 - - 11,12,14,15

2 22 4,6 1,2,4,6,20 11,12,14,15 - 9,12,14

3 1,2 22 0,22,23 11 11,12,14,15 9,10,14,15

4 - 1,2 1,2,22 11,12 11 9

5 22 - 20 11 11,12 9,10,11,12

6 - 22 22 - 11 11

7 - - 22 - - -

8 22 - 1,2,20 - - 13

9 1,2 22 0,4,6,22,23 13 - 9,10,16,17

10 4,6 1,2 1,4,7,8,9,10,22 9,10,11,16,17 -

11 7,8,9,10,22 4,6

output difference. Then if the MILP models are infeasible under this condition,
we get impossible differentials.

Taking the rotational invariance property of SIMON-like block ciphers [20],
for each variant of SIMON2n and SIMECK2n, an impossible differential addi-
tionally yields (n − 1) impossible differentials by rotation. Our main results are
listed in Table 9.
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Table 8. Optimal related-key differential trails for SIMECK32 and SIMECK48.

R SIMECK32/64 SIMECK48/96

Δxl Δxr Δk Δxl Δxr Δk

0 - 4,8,9,10 4,8,9 - 18 18

1 10 - 9 - - -

2 - 10 10 - - 20

3 - - - 20 - -

4 - - - 19 20 18

5 - - - 20 19 19

6 - - 10 19 20 20

7 10 - - 18,19 19 17

8 9 10 - - 18,19 -

9 4,8,9,10 9 9 18,19 - -

10 5,7 4,8,9,10 10 17,19 18,19 16,20

11 6,8,9 5,7 - 20 17,19 17

12 - 6,8,9 8,9 - 20 -

13 6 - 5 20 - 19

14 - 6 10 - 20 20

15 6,10 - - - 17

16 17 -

Table 9. Impossible differentials for SIMON and SIMECK in single-key.

ROUNDS Trails

SIMON32 11 (0,4000)�(80,0);
(0,4000)�(20,0)

SIMON48 12 (0,400000)�(800000,0);
(0,400000)�(200000,0)

SIMON64 13 (0,40000000)�(8000000,0);
(0,40000000)�(800000,0);
(0,40000000)�(200000,0);
(0,40000000)�(80,0);
(0,40000000)�(20,0);
(0,40000000)�(2,0)

SIMECK32 11 (0,4000)�(200,0);
(0,4000)�(8,0)

SIMECK48 15 (0,400000)�(800000,0);
(0,400000)�(200000,0);
(0,400000)�(20000,0);
(0,400000)�(8,0)

SIMECK64 17 (0,40000000)�(8000000,0);
(0,40000000)�(2,0)

5 Summary

In this paper, we mainly studied the security of SIMON-like block ciphers in the
related-key setting, by a fine-grained analysis of the ROTATION-AND oper-
ations. We hope our work helpful in designing key schedules for SIMON-like
block ciphers. For future works, it is desirable to obtain longer optimal differ-
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ential trails in related-key setting, maybe by combining our work with other
automatic searching algorithm, e.g., SAT/SMT solver.
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A Proof of Lemma 1

Proof. Let x and (x ⊕ Δx) be two inputs of the function f . We have

Δd = f(x) ⊕ f(x ⊕ Δx)

= (Sa(x) � Sb(x)) ⊕ (Sa(x ⊕ Δx) � Sb(x ⊕ Δx))

= Sa(x) � Sb(Δx) ⊕ Sa(Δx) � Sb(x) ⊕ Sa(Δx) � Sb(Δx)

(4)

Then for any bit Δdi in Δd (i = 0, · · · , n − 1), we have

Δdi = xi+a � Δxi+b ⊕ Δxi+a � xi+b ⊕ Δxi+a � Δxi+b (5)

Obviously, only two bits in Δx, namely Δxi+a and Δxi+b can affect the value
of Δdi.

Fix an arbitrary i, assume that Δdk is affected by Δxi. First, we have

Δdk = xk+a � Δxk+b ⊕ Δxk+a � xk+b ⊕ Δxk+a � Δxk+b, (6)

from Eq. (5). If Δdk is affected by Δxi, then we have

i ≡ k + a mod n (7)

or
i ≡ k + b mod n (8)

Put it in another form, we have

k ≡ i − a mod n (9)

or
k ≡ i − b mod n (10)

So proved that an arbitrary bit Δxi can affect only two bits Δdi−a and
Δdi−b.

From Eq. (5), we have that

(1) if Δxi+a = 0,Δxi+b = 0, then Δdi = 0;
(2) if Δxi+a = 1,Δxi+b = 1, then Δdi = (xi+a ⊕ xi+b) � 1 ⊕ 1;
(3) if Δxi+a = 1, Δxi+b = 0, then Δdi = Δxi+a � xi+b = xi+b;
(4) if Δxi+a = 0, Δxi+b = 1, then Δdi = xi+a � Δxi+b = xi+a.

Let xi denote an arbitrary bit in x. Δdk is affected by xi, iff. k ≡ i−a mod n
and Δxk+b = Δxi−a+b = 1, or k ≡ i − b mod n and Δxk+a = Δxi−b+a = 1. �	
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B Proof of Theorem 1

Proof. Let Rd be the collection of bits in Δd which are affected by bits in R.
From Lemma 1,

Rd = {Δdi0−a,Δdi0−b,Δdi1−a,Δdi1−b, . . . ,Δdim−1−a,Δdim−1−b}
There may be duplicate elements in the collection Rd.

1. Since a 
= b, then i� − a 
≡ i� − b mod n, for � = 0, · · · ,m − 1;
2. For 0 ≤ j 
= k ≤ m − 1, ij − a 
≡ ik − a mod n, since ij 
= ik;
3. For 0 ≤ j 
= k ≤ m−1, if ij −a ≡ ik − b mod n, then ij − ik ≡ a− b mod n;
4. For 0 ≤ j 
= k ≤ m−1, if ij − b ≡ ik −a mod n, then ij − ik ≡ b−a mod n;

If there exist p1 pairs of {ij , ik} such that |ij − ik|≡ |a − b| mod n, we have

ij − ik ≡ a − b mod n (11)

or
ij − ik ≡ b − a mod n (12)

we claim that Eqs. (11) and (12) cannot hold true simultaneously, otherwise it
contradicts with gcd(n, a − b) = 1. Let R′

d denote the set obtained by removing
duplicate elements from the collection Rd. Then if there exist p1 pairs of {ij , ik}
such that |ij − ik|≡ |a − b| mod n, |Rd|−|R′

d|= p1.
Now we turn to discuss the relationships amongst bits in Δd. First, for Δdk /∈

R′
d, we have Δxk+a = 0 and Δxk+b = 0 from Lemma 1; specifically, Δdk = 0

holds with probability 1, regardless of the values of xk+a and xk+b. Thus, we
need only to discuss the relationships amongst bits in R′

d. For Δdk ∈ R′
d, it

has been proved by Lemma 1 that at least one of Δxk+a and Δxk+b is active.
Specifically,

1. Δxk+a = 1, Δxk+b = 0. In this case, Δdk = xk+b. If there exists some other
bit Δd′

k ∈ R′
d such that Δd′

k is dependent of Δdk, then k′ ≡ k+b−a mod n,
since Δdk+b−a is the only bit which may be affected by xk+b except for Δdk

from Lemma 1.

Δdk+b−a =Δxk+b � xk+2b−a ⊕ xk+b � Δxk+2b−a

⊕ Δxk+b � Δxk+2b−a

(13)

If Δxk+2b−a ∈ R, then Δdk+b−a = xk+b = Δdk; otherwise, Δdk+b−a = 0
holds with probability 1 (independent of Δdk).

2. Δxk+a = 0, Δxk+b = 1. In this case, Δdk = xk+a. If there exists some other
bit Δd′

k ∈ R′
d such that Δd′

k is dependent of Δdk, then k′ ≡ k+a−b mod n,
since Δdk+a−b is the only bit which may be affected by xk+a except for Δdk

from Lemma 1.

Δdk+a−b =Δxk+a � xk+2a−b ⊕ xk+a � Δxk+2a−b

⊕ Δxk+a � Δxk+2a−b

(14)

If Δxk+2a−b ∈ R, then Δdk+a−b = xk+a = Δdk; otherwise, Δdk+a−b = 0
holds with probability 1 (independent of Δdk).
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3. Δxk+a = 1, Δxk+b = 1. In this case, Δdk = (xk+a ⊕ xk+b) � 1 ⊕ 1. From
Lemma 1, the only other bit which may be affected by xk+a is Δdk+a−b.
Specifically, the following equation holds if Δxk+2a−b ∈ R.

Δdk+a−b = (xk+2a−b ⊕ xk+a) � 1 ⊕ 1 (15)

From Lemma 1, the only other bit which may be affected by xk+b is Δdk+b−a.
Specifically, the following equation holds if Δxk+2b−a ∈ R.

Δdk+b−a = (xk+b ⊕ xk+2b−a) � 1 ⊕ 1 (16)

It is obvious that Δdk can be dependent of other bit(s) in R′
d, only in the case

that Δxk+2a−b,Δxk+2b−a ∈ R. However, since Δdk+b−a and Δdk+a−b intro-
duce the new bits (variants) of xk+2a−b and xk+2b−a respectively, we should
involve more elements in R′

d to reduce the effects of xk+2a−b and xk+2b−a.
Again from Lemma 1, the only other bit affected by xk+2a−b (xk+2b−a)
is Δdk+2a−2b = (xk+3a−2b ⊕ xk+2a−b) � 1 ⊕ 1 (Δdk+2b−2a = (xk+2b−a ⊕
xk+3b−2a) � 1 ⊕ 1) on condition that Δxk+3a−2b ∈ R (Δxk+3b−2a ∈ R).
Thus, in order to eliminate the effects of xk+2a−b and xk+2b−a, the only choice
(from Lemma 1) is involving the new bits of Δdk+2a−2b and Δdk+2b−2a, which
can indeed eliminate xk+2a−b and xk+2b−a however introduce two new vari-
ants of xk+3a−2b and xk+3b−2a. Under the condition gcd(n, a − b) = 1, this
eliminating-while-introducing process will succeed iff. |R|= n, and the proba-
bility of each possible value of Δd is 2−(n−1) which coincides with the result
in [11]. On the other hand, Δdk = (xk+a ⊕ xk+b) � 1 ⊕ 1 is independent of
other bits in R′

d when |R|< n.

�	
For a better understanding, we give an example with (n, a, b)=(8, 0, 3) as

shown in Fig. 3. Assume that Δx0 = 1, Δx3 = 1. Only in the case where all
input difference bits are active, can Δd0 be dependent of other bits in Δd,
namely Δd0 = Δd1 ⊕ · · · ⊕ Δd7.

1. Δd0 = (x0 ⊕ x3) � 1 ⊕ 1
2. Δd5 = (x0 ⊕ x5) � 1 ⊕ 1, when Δx5 = 1; Δd3 = (x6 ⊕ x3) � 1 ⊕ 1, when

Δx6 = 1
3. Δd2 = (x2 ⊕ x5) � 1 ⊕ 1, when Δx2 = 1; Δd6 = (x6 ⊕ x1) � 1 ⊕ 1, when

Δx1 = 1
4. Δd7 = (x2 ⊕ x7) � 1 ⊕ 1, when Δx7 = 1; Δd1 = (x1 ⊕ x4) � 1 ⊕ 1, when

Δx4 = 1
5. Δd4 = (x4 ⊕ x7) � 1 ⊕ 1

Essentially, given gcd(n, a−b) = 1, there is only one cycle (
(

3 6 1 4 7 2 5 0
6 1 4 7 2 5 0 3

)

in this example). More generally, when gcd(n, a−b) = t, there will be t cycles, and
this in some way explains the rationalities of such requirement gcd(n, a− b) = 1.
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Fig. 3. The affected relationship between input and output difference bits of
ROTATION-AND.
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