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Abstract. Being the first generic algorithm for finding the best dif-
ferential and linear characteristics, Matsui’s branch and bound search
algorithm (EUROCRYPT 1994) and its variants have played an impor-
tant role in the security analysis of symmetric-key primitives. However,
Matsui’s algorithm is difficult to implement, optimize, and be applied to
different ciphers with reusable code. Another approach getting popular
in recent years is to encode the search problem as a Mixed Integer Linear
Programming (MILP) model which can be solved by open-source or com-
mercially available optimizers. In this work, we show how to tweak the
objective functions of the MILP models for finding differential character-
istics such that a set of constraints derived from the bounding condition
of Matsui’s algorithm can be incorporated into the models. We apply the
new modeling strategy to PRESENT (S-box based SPN design), SIMON
(Feistel structure), and SPECK (ARX construction). For PRESENT,
the resolution time is significantly reduced. For example, the time to
prove that the exact lower bound of the probabilities of the differential
characteristics for 7-round PRESENT is reduced from 48638 s to 656 s.
For SIMON, obvious acceleration is also observed, and for the ARX
cipher SPECK, the new model is unable to speed up the resolution. In
the future, it is interesting to investigate how to integrate other search
heuristics proposed in the literature of symmetric-key cryptanalysis into
the MILP models, and how to accelerate the resolution of MILP models
for finding characteristics of ARX ciphers.
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1 Introduction

Differential and linear attacks are two of the most fundamental methods for ana-
lyzing symmetric-key primitives, which many advanced cryptanalytic techniques
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are derived from or partly rely on. Performing differential and linear analysis is a
tedious routine work for the designers and cryptanalysts of symmetric-key algo-
rithms. Matsui’s branch and bound search algorithm [21] is a classical approach
for finding the best differential and linear characteristics, and it is extremely effi-
cient for some specific ciphers. But, implementing Matsui’s algorithm properly
demands for sophisticated programming skills when cipher-specific optimizations
are taken into account [5,6,12]. Moreover, there seems to be no obvious way to
create highly reusable code for Matsui’s algorithm targeting different ciphers.

However, the diversity of cryptographic algorithms is an unstoppable trend.
In the case of block ciphers, to have a single algorithm work as a security solution
for all scenarios is doomed to fail due to the ever-increasing complexity and diver-
sity of today’s communication systems. Over recent years, we have witnessed
many new block ciphers designed for lightweight devices or dedicated use cases.
These include, to just name a few of them, the ISO standard PRESENT [11],
SIMON and SPECK [7] designed by the NSA, the SKINNY family presented in
CRYPTO 2016 [8], and Rasta with minimizing AND-related metrics as its main
design objective [15]. We refer the reader to [9] for a more comprehensive sur-
vey. To meet the requirements of the target applications, these newly designed
block ciphers typically use lightweight components with relatively weak local
cryptographic properties, consume less resources when implemented and exe-
cuted, and reserve limited security margins aggressively. This approach makes
the design and evaluation more difficult, where the security bounds cannot be
derived theoretically.

In such situation, the security evaluation against differential and linear
attacks have to be performed with the help of search tools. Matsui’s algorithm
is obviously not a satisfactory choice not only because of its inconvenience but
also that it is unable to get useful results in some cases. Another option getting
more and more popular in recent years is the Mixed Integer Linear Program-
ming (MILP) based method, where the problem of searching for characteristics is
transformed into an MILP model that can be solved with generic MILP solvers.

Similar to SAT/SMT and CP based methods [4,19,22,26], in the MILP based
approach [23,28,29], the cryptanalysts only need to specify the problem in stan-
dard modeling languages without mixing in the actual search algorithms. This
decoupling of formulation and resolution is the key that makes the MILP based
approach more attractive than Matsui’s algorithm. Unlike Matsui’s algorithm,
searching heuristics and optimizations can be issued externally without touch-
ing the sophisticated code powering the search. In addition, cryptanalysts benefit
directly from the advancement of MILP resolution techniques. So far, the MILP
based approach covers many cryptanalytic techniques, including differential/lin-
ear [18,28], impossible differential [25], zero-correlation linear [14], and integral
cryptanalysis [30].

Despite all these advantages, there are situations where Matsui’s algorithm
performs far more better than the MILP based approach (e.g., search for the
best characteristics of DES and PRESENT in the single-key model). Moreover,
both MILP and Matsui’s algorithm rarely work for non-lightweight designs under
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today’s computational power. Therefore, it is of great importance to improve the
efficiency of the MILP based approach, and a natural question to ask is whether
it is possible to strengthen the MILP based search with Matsui’s algorithm. In
this work, we make a first step towards this direction. Finally, before we present
our work, we emphasis that all of our analysis are based on the Markov assump-
tion [20], where we assume that each round of an iterative cipher is independent.

Motivation and Contribution. One obvious difference between Matsui’s algo-
rithm and the MILP based approach is worth to highlight. When we search
for the best characteristic of an R-round iterative block cipher, Matsui’s algo-
rithm requires the probabilities of the optimal characteristics of the same cipher
reduced to r rounds for 1 ≤ r < R. That is, to get the result of R rounds, we
must first run Matsui’s algorithm for rounds 1, 2, · · · , and R − 1. These prob-
abilities are employed to prune the search tree according to certain bounding
conditions. In contrast, in the MILP based approach, we always set up an R-
round model directly, and do not exploit the solutions for lower rounds explic-
itly. This fact motivates us to enhance the R-round MILP models by taking
into account some information of the solutions of lower rounds. We achieve this
by adapting the objective function of an R-round model such that constraints
encoding Matsui’s bounding conditions can be incorporated into the model. In
practice, this new modeling strategy leaves many choices for the cryptanalysts,
since one can choose to include only a subset of the constraints generated from
Matsui’s bounding conditions. We perform experiments on PRESENT, SIMON,
and SPECK, which shows that the inclusion of the constraints derived from
Matsui’s algorithm leads to significantly improved resolution performance for
PRESENT. For SIMON, obvious improvement is also observed, and for the
ARX cipher SPECK, the new model is unable to accelerate the resolution per-
formance. Our work suggests that trying to combine the power of dedicated
search algorithms implemented in general purpose programming language and
MILP is a valuable endeavor. In the future, it is interesting to see how to inte-
grate other search heuristics [16,17] to speed up the resolution of the MILP
models for finding characteristics of ARX ciphers.

Organization. In Sects. 2 and 3, we give a brief introduction of Matsui’s algo-
rithm and the MILP based differential and linear analysis. A method for enhanc-
ing the MILP models with constraints generated from Matsui’s bounding con-
dition is presented in Sect. 4. We then show applications of the enhanced MILP
models in Sect. 5. Section 6 concludes the paper and suggests future work.

2 Matsui’s Algorithm

At Eurocypt 1994, Matsui presented a branch and bound search algorithm that
can be used to identify the maximum probability characteristic of a target block
cipher [21]. Matsui’s algorithm, together with its variations, has been an impor-
tant tool in the practice of security evaluation of symmetric-key primitives. It
is improved in subsequent work [3,6,13,24] and adapted to ARX constructions
in [10,31].
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A general description of Matsui’s algorithm for an iterative block cipher
depicted in Fig. 1 is given in Algorithm 1. Our presentation largely follows the
work of Bannier et al. [5]. Also note that Algorithm 1 is an over simplifica-
tion of Matsui’s algorithm, which does not exhibit the necessary details (e.g.,
the technique for controlling the number of initial branches, the order in which
candidates are enumerated) in actual implementations.
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α2 . . . αr−1
r
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r+1

αr+1 . . . αR−2
R−1

αR−1
R

αR

Fig. 1. An R-round iterative cipher, where T = (α0, · · · , αR) is an R-round differential
characteristic with probability P(T ), and the probability of the differential αr−1 → αr

is denoted by PRd(r).

With the knowledge of the best probabilities PBest(i) of i-round character-
istics for i ∈ {1, · · · , R − 1}, Matsui’s algorithm explores the search space of
all possible characteristics in a depth-first approach, and output the optimal R-
round characteristic. The search space conceptually forms a tree structure, and
at the rth level of the tree, T[1,r] = (α0, · · · , αr) is assigned to actual values by
Matsui’s algorithm, and all possible values of (αr+1, · · · , αR+1) form a subtree
to be explored. We call T[1,r] with r < R instantiated with actual values a partial
solution (corresponding to intermediate node of the search tree), and T = T[1,R]

instantiated with actual values a full solution (corresponding to a leaf node of
the search tree). Thus, when Matsui’s algorithm goes one level deeper into the
search tree, it extends the current partial solution towards a full solution.

The efficiency of Matsui’s algorithm comes from the fact that it will not try to
extend every partial solution. Before trying to extend the current partial solution,
the so-called bounding condition specified in line 24 of Algorithm 1 is tested,
which essentially states that if this condition is violated, a better characteristic
will never be found by extending the current partial solution, and therefore we
should give up the current branch, backtrack to the upper level of the search
tree, and try another branch.

The variable PEstim in Matsui’s algorithm keeps track of the best character-
istic known so far. Only when a strictly better characteristic is encounter during
the search, it will be updated (see line 42 of Algorithm 1).

Moreover, in Matsui’s algorithm, The first and last rounds receive special
treatment (see functions FirstRound() and LastRound() in Algorithm 1), where
the input and output difference is determined directly by the output differences
of the round 1 and round R − 1, without the effort of searching through a set of
candidates.
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Algorithm 1. Matsui’s Algorithm
Input: R ∈ Z

∗, R ≥ 2; q > 0; PBest(1), PBest(2), . . . , PBest(R − 1)

Output: differential characteristic T = (α0, α1, . . . , αR−1) ∈ F
n
2 where probability

P(T ) = PEstim

1 Algorithm OptimalTrail(R, q, PBest(1), . . . , PBest(R − 1)) // Entry Point

2 for each non-zero α1 do

3 T = (), PEstim ← q

4 Call FirstRound()

5 end

6 if T �= () then

7 return T , PEstim = P(T )

8 end

9 end

10

11 Function FirstRound() // Subroutine

12 PRd(1) ← maxαP(α → α1)

13 α0 ← α, s.t P(α → α1) = PRd(1)

14 if R > 2 then

15 Call Round(2)

16 else

17 Call LastRound()

18 end

19 end

20

21 Function Round(r)(2 ≤ r ≤ R − 1) // Subroutine

22 for each candidate α for αr−1 do

23 PRd(r) ← P(αr−1 → α)

24 if
r∏

i=1
PRd(i) · PBest(R − r) ≥ PEstim then

25 // Matsui’s bounding condition

26 αr ← α

27 if r + 1 < R then

28 Call Round(r+1)

29 else

30 Call LastRound()

31 end

32

33 end

34 end

35 end

36

37 Function LastRound() // Subroutine

38 for each candidate α for αr−1 do

39 PRd(R) ← maxαP(αR−1 → α)

40 αR ← α, s.t P(αR−1 → α) = PRd(R)

41 end

42 if
R∏

i=1
PRd(i) > PEstim then // A strictly better trail is found

43 T ← (α0, α1, . . . , αR−1)

44 PEstim ←
R∏

i=1
PRd(i)

45 end

46 end
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3 MILP Aided Characteristic Search

At first, MILP was used to determine the minimum number of differentially or
linearly active S-boxes of word-oriented ciphers [23,29]. In [28], Sun et al. intro-
duced the convex hull computation method which can encode any subset of 0–1
vectors as the solution set of a system of linear inequalities. Thanks to this
technique, actual differential and linear characteristics can be found with MILP
based method. Subsequently, the MILP aided approach is applied in impossi-
ble differential analysis [25], zero-correlation linear analysis [14], and Integral
cryptanalysis [30]. It is also extended and adapted to analyze ARX based con-
structions [18]. In what follows, we give a brief introduction of the MILP mod-
eling technique for finding differential characteristics, which is employed in the
following sections.

The key to transfer the problem of searching for differential characteristics
into an MILP model is to express the propagation rules of the characteristics as a
set of linear inequalities, and encode the overall probability as a linear function.

Objective Function. Since the goal is to find the optimal characteristic, we set
the objective function to minimize the probability of the underlying differential
characteristic. However, we must be able to express the probability as a linear
function at the first place to make it valid in MILP. Such representations are
available for SIMON, SPECK, and PRESENT [18,28]. For the sake of simplicity
and without loss of generality, we assume the probability (or its equivalence) can
be represented by

R∑

i=1

k∑

j=1

Ai,j ,

and we call Ai,j ’s are probability weight variables, where Ai,j for j ∈ {1, · · · , k}
is the probability weight variables of round i of an iterative cipher. Under this
notation, the probability weight contributed by round i is

∑k
j=1 Ai,j .

Modeling XOR. Let a ⊕ b = c, where a, b, c ∈ F2 are the bit-level input
and output differences of the XOR operation. Then (a, b, c) is a valid differential
characteristic of XOR if and only if a+b+c−2d⊕ = 0, where a, b, and c ∈ {0, 1},
and d⊕ is a 0–1 dummy variable.

Modeling S-box. The exact differential property of an ω × ν S-box S can
be modeled by a set of linear inequalities with the convex hull computation
method [28]. Let D = {(a,b) ∈ {0, 1}ω+ν : P (a → b) > 0} be the set of all
possible input-output differential patterns of S, where a = (a0, a1, . . . , aω−1) and
b = (b0, b1, . . . , bν−1). Then, we can compute the H-representation of D ⊆ R

ω+ν .
With the help of the greedy algorithm proposed in [28], we can extract a system
of inequalities whose 0–1 solution set is exactly D. Sometimes, it is possible to
encode the differential probabilities of a → b into D, and we refer the reader to
[18,27,28] for concrete examples.

Modeling Modular Addition [18]. Suppose a = (a0, a1, . . . , an−1), b =
(b0, b1, . . . , bn−1) and c = (c0, c1, . . . , cn−1) are the input and output bit-level
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XOR-difference of addition module 2n. The constraints are as follows, where d⊕
is 0–1 dummy variable, si(i = 1, . . . , n − 2) are 0–1 active markers and

∑n−2
i=1 si

is negative logarithm of the probability P [(a,b) → c].
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

an−1 + bn−1 + cn−1 ≤ 2
an−1 + bn−1 + cn−1 − 2d⊕ ≥ 0
d⊕ − an−1 ≥ 0
d⊕ − bn−1 ≥ 0
d⊕ − cn−1 ≥ 0
−ai + bi + si ≥ 0
−bi + ci + si ≥ 0
ai − ci + si ≥ 0
ai + bi + ci − si ≥ 0
−ai − bi − ci − si ≥ −3
ci + ai−1 + bi−1 − ci−1 + si ≥ 0
−ai − bi − ci + 3ai−1 + 3bi−1 + 3ci−1 + 2si ≥ 0
ai + bi + ci − 3ai−1 − 3bi−1 − 3ci−1 + 2si ≥ −6
−bi + ai−1 − bi−1 − ci−1 + si ≥ −2
ci + ai−1 − bi−1 + ci−1 + si ≥ 0
−ai − bi − ci − 3ai−1 + 3bi−1 − 3ci−1 + 2si ≥ −6
−ai − ai−1 − bi−1 + ci−1 + si ≥ −2
ai + bi + ci − 3ai−1 + 3bi−1 + 3ci−1 + 2si ≥ 0
(i = 1, . . . , n − 2)

(1)

4 Enhancing MILP Based Search with Matsui’s
Bounding Condition

Firstly, let us recall the bounding condition of Matsui’s algorithm (see
Algorithm 1):

r∏

i=1

PRd(i) · PBest(R − r) ≥ PEstim. (2)

When we run Matsui’s algorithm against an R-round cipher, the variable PEstim

keeps track of the probability of the best characteristic known by the algorithm
so far, and it will be updated dynamically if a strictly better characteristic is
encountered during the search. Whenever the algorithm needs to go one level
deeper into the search tree, condition (2) is tested. A violation of (2) implies that
any extension of the partial solution leads to inferior characteristics with prob-
ability less than PEstim (the probability of a known characteristic). Therefore,
the entire subtree is pruned.

To integrate Matsui’s bounding condition into the MILP models, we intro-
duce a variable named xobj acting as the variable PEstim in Matsui’s algorithm,
and let

Minimize xobj

be the objective function of the new model. Note that this is a very natural
choice since the variable xobj always keeps track of the currently known best
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solution during the resolution of the MILP model. To make the xobj correspond
to the probability of the identified characteristic, we put an equation

xobj =
R∑

i=1

k∑

j=1

Ai,j

into the constraints section of the model. At this point, the new model is com-
pletely equivalent to the original model. What we do is essentially renaming the
objective function of the original model.

Assuming we know the probabilities PBest(1), PBest(2), · · · , PBest(R−1), we
are now ready to express the bounding condition (2) as

i∑

t=1

k∑

j=1

At,j + wt(PBest(R − i)) ≤ xobj, i = 1, . . . , R − 1 (3)

R∑

t=i+1

k∑

j=1

At,j + wt(PBest(i)) ≤ xobj, i = 1, . . . , R − 1 (4)

Therefore, for an R-round model, we can generate 2R−2 more constraints, where
wt(·) make Pbest(i) compatible with the probability weight variables. The most
different part of the new model is that it takes into account the solutions of the
models of lower rounds. In the following, we present three different modeling
strategies, which will be compared in the next section.

• MI : The original model without any modification.
• MII : The model with modified objective function, and R − 1 additional con-

straints of (4) generated from Matsui’s bounding condition for round 1 to
round R − 1 respectively.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min xobj∑
i,j

Ai,j − xobj = 0

R∑
t=i+1

k∑
j=1

At,j + wt(PBest(i)) ≤ xobj, i = 1, . . . , R − 1

(5)

• MIII : The model with modified objective function, and all 2R−2 additional
constraints.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min xobj∑
i,j

Ai,j − xobj = 0

R∑
t=i+1

k∑
j=1

At,j + wt(PBest(i)) ≤ xobj, i = 1, . . . , R − 1

i∑
t=1

k∑
j=1

At,j + wt(PBest(R − i)) ≤ xobj, i = 1, . . . , R − 1

(6)
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5 Applications

In this section, we apply the modeling strategy presented in Sect. 4 to PRESENT,
SIMON, and SPECK. The reasons that these ciphers are selected as the experi-
mental targets are twofold. Firstly, the probabilities (or their equivalences) of the
differential characteristics of these ciphers can be expressed as linear functions.
Secondly, they represent the most common structures for modern block ciphers,
where PRESENT is a SPN network, SIMON is a Feistel cipher with pure bitwise
operations, and SPECK is an ARX construction.

However, we admit that in our experiments only lightweight primitives are
involved. This is because generally MILP based approach (and actually all cur-
rently available automatic search tools) is too inefficient to search for character-
istics of non-lightweight ciphers directly, and it is sometimes difficult to modeling
the components of non-lightweight ciphers at the first place. For example, only
recently, Abdelkhalek et al. show how to model the differential property of an
8×8 S-box with MILP [2], and even that, the search procedure has to be divided
into two steps for a cipher involving 8 × 8 S-boxes, where only truncated differ-
entials are identified in the first step.

In addition, since the focus of this paper is to improve the MILP based
method, we will not give a comparison between Matsui’s algorithm and the
MILP based approach. Nevertheless, we would like to mention that Matsui’s
algorithm is much more better than MILP in the case of PRESENT, while for
SIMON and SPECK, it is inferior to MILP. Finally, all of the models presented
in this paper are solved by the MILP optimizer Gurobi (version 7.0.2) [1] running
at 16 threads on a server with Intel� Xeon� E5-2637V3 CPU 3.50 GHz.

5.1 Application to PRESENT

The PRESENT, designed by Bogdanov et al., is an ISO standardized lightweight
block cipher [11]. The round function of PRESENT is shown in Fig. 2, and we
refer the reader to [11] for more information.

S S S S S S S S S S S S S S S S

Fig. 2. The round function of PRESENT

We construct three models MI , MII , and MIII according to the strategies
presented in Sect. 4. The resolution time for these models are recorded in Table 1.
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Note that what we measure is the time cost for the solver to prove that the
solution it identified is optimal. This timing information is of most importance
since in the design process what we care is the bound, and the tighter the bound
is, the more accurate the security evaluation.

Table 1. Experimental results of PRESENT

R p MI MII MIII

1 2−2 0.01s 0.09s 0.13s

2 2−4 0.95s 0.95s 0.06s

3 2−8 3.70s 2.82s 2.43s

4 2−12 15.78s 10.08s 8.82s

5 2−20 629.83s 114.13s 448.61s

6 2−24 1740.55s 200.03s 74.56s

7 2−28 48638.29s 714.03s 655.36s

8 2−32 >10h 2124.51s 1074.45s

From Table 1 we can see that the resolution time can be significantly improved
by using the new modeling strategies. For instance, we can prove that the prob-
ability of the optimal characteristic of 8-round PRESENT is 2−32 in 1074.45 s
by using MIII , while for MI we can not get this result in less 10 h. Moreover,
by using the new models, some interesting phenomenons are observed that we
cannot explain. For example, the resolution time of MIII for 6-round PRESENT
is faster than that of the 5-round model.

5.2 Application to SIMON

SIMON (depicted in Fig. 3) is a family of lightweight block ciphers with Feistel
structure involving only bitwise operations: XOR, AND, and Rotation, which is
designed by the National Security Agency of USA. The parameters of different
SIMON instances involved in our experiments are summarized in Table 2.

Table 2. Parameters for SIMON32 and SIMON48

Variant 2n/mn Block Size 2n Key Size mn Round r

32/64 32 64 32

48/72 48 72 36

48/96 48 96 36

We construct three models MI , MII , and MIII according to the strategies
presented in Sect. 4. The resolution time for these models are recorded in Table 3.
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Fig. 3. The round function of SIMON

Table 3. Experimental results of SIMON

Block size 2n R p MI MII MIII

32 11 2−30 75.05s 79.22s 67.92s

12 2−34 657.37s 559.83s 209.09s

48 13 2−38 309.58s 376.33s 109.85s

14 2−44 4627.26s 3577.05s 2942.85s

15 2−46 31979.80s 3351.41s 2444.28s

16 2−50 >20h >15h 26589.96s

From Table 3 we can see that, for larger number of rounds, the improvement
is obvious. For example, using MIII we can prove that the probability of the
optimal characteristic of 15-round SIMON48 is 2−46 in 2444.28 s, while for MI ,
the resolution time is 31979.80 s.

5.3 Application to SPECK

The SPECK is a family of ARX Feistel block ciphers (depicted in Fig. 4) designed
by the National Security Agency of USA. The parameters of different SPECK
instances involved in our experiments are summarized in Table 4.

We construct three models MI , MII , and MIII according to the strate-
gies presented in Sect. 4. The resolution time for these models are recorded in
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≫ α
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Fig. 4. The round function of SPECK

Table 4. Parameters for SPECK32 and SPECK48

Variant 2n/mn Block Size 2n Key Size mn Round r α β

32/64 32 64 22 7 2

48/72 48 72 22 8 3

48/96 48 96 23 8 3

Table 5. Experimental results of SPECK

Block size 2n R p MI MII MIII

32 5 2−9 9.78s 17.15s 26.08s

6 2−13 173.67s 820.82s 390.33s

7 2−18 7175.87s >10000s >10000s

48 5 2−10 32.90s 358.11s 273.98s

6 2−14 1482.66s 2626.50s 2287.21s

7 2−19 40860.38s >100000s >100000s

Table 5. However, the results show that the new modeling strategies are infe-
rior to the original method. This may somehow implies that adding Matsui’s
bounding conditions for MILP models of ARX ciphers is not a good choice.
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6 Conclusion

Borrowing the ideas from Matsui’s algorithm, we tweak the MILP models for
differential cryptanalysis by altering the objective functions and introducing in
special constraints derived from Matsui’s bounding condition. We apply this new
modeling strategy to PRESENT, SPECK, and SIMON, which demonstrates that
the fusion of Matsui’s bounding condition and the MILP approach leads to faster
resolution in some cases. Therefore, the new modeling approach is expected to
reduce the time cost of differential and linear analysis. In particular, during the
design process of symmetric-key schemes, a larger design space may be explored
within limited time. Our work shows that it is beneficial to include Matsui’s
bounding condition in the MILP models for differential analysis. More generally,
it is interesting to see how to integrate other search heuristics [16,17] from the
literature of symmetric-key cryptanalysis into the MILP models.
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