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Abstract. Software is usually built on top of shared libraries. Vulnera-
bilities that lie in those dependencies may have huge impact on multiple
software. ICU (International Components for Unicode) is one of the most
widely used common components in modern software, providing Unicode
and Globalization support. ICU is used in a wide range of software from
over 70 companies and organizations, including very popular software
such as Chrome, Android, macOS, iOS, Windows 10, Edge, Firefox.

In this paper, we proposed a fuzzing method to discover vulnerabili-
ties in ICU library that are reachable from upper layer application soft-
ware. We also built a prototype named ICUFuzzer to uncover triggerable
bugs in browsers’ JavaScript Engine, with which we have detected three
zero-day vulnerabilities affecting popular browsers like Chrome, Safari
and Firefox. According to our further analysis, one of the bugs can be
exploited to leak sensitive memory informations to bypass mitigations
like ASLR and PIE.
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1 Introduction

In recent years, security researchers have done some interesting vulnerability
research in compromising modern software by exploiting security flaws from third
party libraries. lokihardt successfully turned a buffer overflow bug in libANGLE
to get remote code execution in Chrome browser in Pwn2Own 2016. Richard Zhu
leveraged a bug in libvorbis to achieve code execution in Firefox in Pwn2Own
2018. Some researcher demonstrated how to use a one byte overflow in DNS
library to take remote control of Chrome OS. From the cases above, we can learn
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that those shared libraries have become huge attack surfaces in modern software.
Since third party libraries are shared code among multiple software, the bugs that
lie in those dependencies are also shared. Bugs in fundamental libraries may have
higher impact than bugs in code that is not shared. Designing new techniques
for automatically finding hidden flaws in those fundamental dependencies now
become important task, especially the bugs that are reachable in upper level
applications.

Our research focus on a mature, widely used libraries named ICU [10]. ICU is
short for International Components for Unicode, providing Unicode and Glob-
alization support for software applications. ICU is widely portable and gives
applications the same results on all platforms and between C/C++ and Java
software. ICU library is used everywhere, including document processing soft-
ware like OpenOffice and LibreOffice, browsers like Chrome, Safari and Firefox,
operating systems like Android, macOS, iOS, Windows and Linux. ICU is inte-
grated as a fundamental component through high level APIs in various software
stack. Only security flaws in ICU that is reachable from the input through API
calls could result in security impact. So our methodology is designed for finding
bugs in ICU that is triggerable from the entry point of application software.

Fuzzing is a widely used technique to detect vulnerabilities in software. We
designed a fuzzing based method to effectively find exploitable bugs in ICU
libraries. In our method, we will do a in-depth analysis on the connection between
target software and ICU library. Target software mostly use part of APIs from
ICU, and does some parameter filtering before invoking. So the analysis result
will help us infer the input generation rules for fuzzing, so that we can get rid
of useless mutations as many as possible while fuzzing. Moreover, we combine
coverage-guided fuzzing technique to improve the code coverage.

Evaluation. To evaluate the effectiveness of our design. We implemented a
prototype ICUFuzzer to detect vulnerabilities in ICU that can be triggered
from browsers’ JavaScript engine. We have studied how the browsers implement
ECMAScript Internationalization API with the underlying support of ICU and
figured out how parameters are passed from the ECMAScript API to low level
ICU functions, and how the browsers filter them for security concerns. With
our findings, we developed a dedicated input generation engine inside the fuzzer
which produces inputs that can bypass the filters. With our methodology, we
significantly improve the effectiveness of fuzzing and quickly find three zero-day
bugs, 2 of them can be triggered in Chrome and 1 can be triggered in Chrome,
Safari, and Firefox.

Contribution. This paper makes the following contributions:

– We are the first to conduct fuzzing research on ICU library.
– We designed a fuzzer for finding bugs in ICU that is reachable from applica-

tion software. By analyzing the data flow from the input in target application
to the arguments passed down to ICU, we turn fuzzing target applications
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into fuzzing ICU directly to achieve better performance and keep zero false
positive at the same time. Coverage guided fuzzing technique is also applied
here to further improve the code coverage.

– We implemented ICUFuzzer based on our fuzzer design and effectively find
three zero-day bugs that are exploitable in modern browsers.

Paper Organization. The paper is organized as follows. In Sect. 2, we give
brief introduction on ICU, including the attack surfaces of ICU. In Sect. 3, we
use V8 JavaScript engine as an example to describe how ICU is integrated into
other applications. In Sect. 4, we will introduce our system design, and how we
build the prototype ICUfuzzer. In Sect. 5, we show the results of finding bugs by
ICUFuzzer. In the last part of Sects. 6 and 7, we conclude our work and give a
summary on other related work.

2 Preliminaries

2.1 ICU Basics

International Components for Unicode (ICU) is an open source project of mature
C/C++ and Java libraries for Unicode support, software internationalization,
and software globalization. It is widely portable to many operating systems and
environments. It gives applications the same results on all platforms and between
C, C++, and Java software. The ICU project is sponsored, supported, and used
by IBM and many other companies.

Here are a few highlights of the services provided by ICU:

– Code Page Conversion: Convert text data to or from Unicode and nearly any
other character set or encoding.

– Collation: Compare strings according to the conventions and standards of a
particular language, region or country.

– Formatting: Format numbers, dates, times and currency amounts according
the conventions of a chosen locale.

– Time Calculations: Multiple types of calendars are provided beyond the tra-
ditional Gregorian.

– Unicode Support: ICU closely tracks the Unicode standard, providing easy
access to all of the many Unicode character properties.

2.2 Who Uses ICU?

ICU is used in almost every popular operation systems. In Apple macOS, ICU
library is going with the default install under the name libicucore.A.dylib. In
Microsoft Windows 10, ICU library is distributed in two dynamic link libraries,
icuin.dll and icuuc.dll. In Ubuntu, the package of ICU contains multiple shared
libraries named libicu*.so.

ICU is heavily used in document processing software like LibreOffice,
OpenOffice, PDF Box and products from Adobe. Document processing software
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have been large attack surfaces used in real world APT attacks for years. Docu-
ment exploits are usually malformed documents distributed by email phishing.
So exploitable bugs in ICU are possible to be abused in traditional document
attack scenario.

ICU is also used in trending application software like mobile operating sys-
tems, IoT devices, and smart cars. ICU can be found in Android and iOS, and
even in the automotive from venders like Alfa Romeo, Audi, Mercedes-Benz,
BMW.

ICU is used everywhere. The work for finding bugs in such a fundamental
library is critical.

2.3 Attack Surfaces in ICU

Core function of ICU that many software rely on is Unicode and internation-
alization support, which are encoding translation from or to Unicode, locale
conversion for numbers, datas, times and currency amounts, Unicode supported
regular expression, etc. All the operations above are related to encoding and
format translation, which are implemented with lots of memory manipulations.
The C/C++ code for handling of large amount of specifications, encodings and
locales could become large attack interfaces. In our research, we focus on memory
corruption bugs in ICU’s C/C++ library.

3 ICU in JavaScript Engine

3.1 ECMAScript Internationalization API

The ECMAScript Internationalization API [11] is a standard that helps handle
locales of dates, numbers, and currencies in JavaScript. There is a specification
that defines the application programming interface for ECMAScript objects.
Most of the modern browsers implement ECMAScript Internationalization API
based on ICU including Chrome, Safari and Firefox.

3.2 Architecture

To explain how ICU is integrated with JavaScript engine, we take Chrome’s
V8 engine as an example. Figure 1 shows the implementation architecture in
Chrome’s JavaScript engine V8. Every JavaScript Internationalization API call
will be first handled by some internal JavaScript code and runtime engine written
in C++, and then the execution goes down to the ICU library.

So JavaScript Internationalization API calls can be the surfaces of browser
attacks. If malformed arguments of Internationalization API calls are passed
down to ICU, bugs in ICU will be triggered. However, according to our analysis,
not arbitrary arguments can be passed directly to functions in ICU. There are
security checks or filters in V8, which prevents some ICU bugs to be triggered.
Our fuzzer will only focus on reachable bugs.
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Fig. 1. Internationalization API architecture in V8

3.3 JavaScript Internationalization API

The Intl object [12] is the namespace for the ECMAScript Internationalization
API, which provides language sensitive string comparison, number formatting,
and date and time formatting. The Intl object have 4 properties, which are
constructors for Collator, NumberFormat, DateTimeFormat and PluralRules
objects:

– The Intl.Collator object is a constructor for collators, objects that enable
language sensitive string comparison.

– The Intl.DateTimeFormat object is a constructor for objects that enable
language-sensitive date and time formatting.

– The Intl.NumberFormat object is a constructor for objects that enable lan-
guage sensitive number formatting.

– The Intl.PluralRules object is a constructor for objects that enable plural
sensitive formatting and plural language rules.

The objects above are core structures in Internationalization API. The code
snippet below demonstrates the character comparison between “ä” in German
and “a” in English by creating an Intl.Collator object and calling its method
compare.

var options = { sensitivity: 'base' };
new Intl.Collator('de',options).compare('ä', 'a');
// 0

The code snippet below illustrates the date and time formatting by creating
an Intl.DateTimeFormat object and calling its method format.

var date = new Date(Date.UTC(2012, 11, 20, 3, 0, 0));
// request a weekday along with a long date
var options = { weekday: 'long', year: 'numeric',

month: 'long', day: 'numeric' };
new Intl.DateTimeFormat('de-DE', options).format(date);
// "Donnerstag, 20. Dezember 2012"

The code snippet below illustrates the currency formatting by creating an
Intl.NumberFormat object and calling its method format.
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var number = 123456.789;
var options = {style:'currency',currency:'EUR' };
// request a currency format
new Intl.NumberFormat('de-DE', options).format(number);
// 123.456,79 e

Table 1 summarized all the constructors and methods in JavaScript Inter-
nationalization API. We can see all the constructors receive two optional argu-
ments: locales and options.

Table 1. Constructors and methods in JavaScript internationalization API

Objects/Constructors Methods

Intl.Collator(locales, options) Intl.Collator.prototype.resolvedOptions()

Intl.DateTimeFormat(locales, options) Intl.DateTimeFormat.prototype.format(date)

Intl.DateTimeFormat.prototype.formatToParts(date)

Intl.DateTimeFormat.prototype.resolvedOptions()

Intl.NumberFormat(locales, options) Intl.NumberFormat.prototype.format(number)

Intl.NumberFormat.prototype.formatToParts(number)

Intl.NumberFormat.prototype.resolvedOptions()

Intl.PluralRules(locales, options) Intl.PluralRules.prototype.resolvedOptions()

Intl.PluralRules.prototype.select(number)

Locales Argument. The locales argument must be either a string holding a
BCP 47 language tag [13], or an array of such language tags. A BCP 47 language
tag defines a language and minimally contains a primary language code. In its
most common form it can contain, in order: a language code, a script code,
and a country or region code, all separated by hyphens. The subtags identifying
languages, scripts, countries (regions), and (rarely used) variants in BCP 47
language tags can be found in the IANA Language Subtag Registry [10]. While
the tag is not case sensitive, it is recommended to use title case for script code,
upper case for country and region codes and lower case for everything else. The
following are examples of locales:

– “hi”: Hindi (primary language).
– “de-AT”: German as used in Austria (primary language with country code).
– “zh-Hans-CN”: Chinese written in simplified characters as used in China (pri-

mary language with script and country codes).

BCP 47 also allows for extensions. JavaScript internationalization functions
use the “u” (Unicode) extension, which can be used to request additional cus-
tomization of Collator, NumberFormat, or DateTimeFormat objects. The Uni-
code extension uses additional keys as subtags.

Let’s take the constructor Intl.Collator as an example. Collator supports
3 Unicode extension keys, co, kn, and kf. These keys can be used in the locales,
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and locales can be passed to the constructor to customize the Collator
object:

– co is for variant collations for certain locales. Possible values include: "big5-
han", "dict", "direct", "ducet", "gb2312", "phonebk", "phonetic", "pi-
nyin", etc.

– kn specifies whether numeric collation should be used, such that
“1”<“2”<“10”. Possible values are "true" and "false".

– kf specifies whether upper case or lower case should sort first. Possible values
are "upper", "lower", or "false" (use the locale’s default).

More details about Unicode extension keys for other objects can be found
in MDN web docs [12]. Table 2 summarizes extension keys and possible values.
Below are some example locales that use Unicode extension keys:

– "de-DE-u-co-phonebk": Use the phonebook variant of the German sort
order, which expands umlauted vowels to character pairs: ä → ae, ö → oe, ü
→ ue.

– "en-GB-u-ca-islamic": Use British English with the Islamic (Hijri) calen-
dar, where the Gregorian date 14 October, 2017 is the Hijri date 24 Muhar-
ram, 1439.

Table 2. Unicode extensions keys and values in Locales argument

Constructor Unicode extension key Possible values

Collator co “big5han”, “dict”, “direct”, “ducet”,
“gb2312”, “phonebk”, “phonetic”,
“pinyin”, etc.

kn “true”, “false”

kf “upper”, “lower”, “false”

DateTimeFormat nu “arab”, “arabext”, “bali”, “beng”,
“deva”, “fullwide”, “gujr”, “guru”,
“hanidec”, etc.

ca “buddhist”, “chinese”, “coptic”,
“ethioaa”, “ethiopic”, “gregory”,
“hebrew”, “indian”, “islamic”,
“islamicc”, etc.

hc “h11”, “h12”, “h23”, “h24”

NumberFormat nu “arab”, “arabext”, “bali”, “beng”,
“deva”, “fullwide”, “gujr”, “guru”,
“hanidec”, etc.

Options Argument. The options argument must be an object with proper-
ties that vary between constructors and functions. Properties in the options
argument are like optional configurations. Different constructors and functions
require different properties. For example, the constructor Intl.DateTimeFormat
supports some properties as below:
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– localeMatcher specifies the locale matching algorithm to use. Possible val-
ues are “lookup” and “best fit”; the default is “best fit”. This property is
supported by all language sensitive constructors and functions.

– timeZone specifies the time zone to use, such as "Asia/Shanghai", "Asia/K-
olkata", "America/New York".

– hour12 specifies Whether to use 12-h time (as opposed to 24-h time). Possible
values are true and false; the default is locale dependent.

Detailed information on properties and functions can be retrieved from MDN
web docs [12].

3.4 Data Flow from JavaScript to ICU

In previous section, we have gone through the entry level data structures and
methods in Javascript International API. In this part, we will dive deep into the
implementation of V8 engine to understand how input arguments are handled
and passed to ICU.

We will follow the execution of constructor and methods of Intl.DateTimeF-
ormat to understand the argument data flow. Figure 2 depicts the basic

Fig. 2. Date and Time related International API’s Input Filtering Process in V8
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procedure. The inputs for Intl.DateTimeFormat’ are locales, options
and Date. locales will be resolved in function resolveLocale() and fil-
tered. Then time zone information will be extracted from options and fil-
tered in canonicalizeTimeZoneID(). Both filters are implemented in internal
JavaScript code intl.js.

Locale Filtering. For locale filtering in resolveLocale(), the following steps
will be taken:

1. Canonicalize the language code in function canonicalizeLanguageTag()
(a) Call function isStructuallyValidLanguageTag(), to match the locale

by three regular expressions: LANGUAGE TAG RE, LANGUAGE VARIANT RE
and LANGUAGE SINGLETON RE

(b) check if locale conform to strict BCP47 rules by performing a pair of
invertible operations: calling uloc forLanguageTag() and uloc toLang-
uageTag()

2. Split the Unicode extensions from locale
3. Check extension keys extracted from locale by matching a pre-initialized

key list

Options Filtering. Just like locale, V8 will also filter the argument options
before passing it to ICU. In the constructor Intl.DateTimeFormat, the property
timeZone in argument options will be filtered in function canonicalizeTime-
ZoneID() by following steps:

1. Use regular expression to check if timeZone string matches the format of
Area/Location(/Location)*

2. Convert the location string to be titlecased by function toTitleCaseTime-
zoneLocation(). For example, convert “bueNos airES” to “Buenos Aires”.

4 System Design

4.1 Design Goals

In Sect. 3, we study how ICU is integrated inside V8 engine. Most of modern
application software like browsers are designed and implemented in a hierarchical
structure, which depends on a lot of fundamental libraries in the low level. ICU
is one of the critical components and has not received much attention on security
aspect.

In this paper, we aim at designing a fuzzing methodology to uncover the
bugs in ICU library. It is worth emphasizing that the ICU bugs that we are
fuzzing for should be reachable from target applications. Our fuzzer is designed
for hunting bugs that can affect specific application. The reason is that, if we
consider a library separately, the threat model may not be very clear. Libraries
are only responsible for exposing dozens of APIs, and library developers may
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know little on how these interfaces will be used in the applications. So if we
apply bug finding in ICU in the context of application software, the results will
bring more practical value.

Research on general fuzzing techniques has been lasted for long time and
already made very good progress. In our research, we are going to apply the
in-depth understanding on ICU into the fuzzer to achieve better performance
and results.

4.2 Design Challenges

Fuzzing ICU for exploitable bugs in target application could be carried out in two
different ways. One is fuzzing the application directly. By mutating and feeding
the input that is ICU related to the target software, the crashes you get are real
bugs that will surely affect the application. However, according to our analysis on
V8, there will be a middle layer between the input layer and ICU that is always
checking or filtering the test cases generated by the fuzzer. So the mutation will
be struggled in surviving the filters, large amount of computation resources in
fuzzing will be wasted in finding paths in the application that can reach ICU.
Meanwhile, compared with ICU library, application is more complex software
like browsers and pdf readers. Fuzzing ICU in the context of whole application
is slow. To conclude, this method has an advantage of 0 false negative, but has
low efficiency.

The other method is fuzzing ICU APIs directly. By figuring out which APIs
target application relies on, fuzzer can skim the target software and feed mutated
arguments directly to ICU APIs. The second method also has a drawback that
even if you find a test case that can crash ICU, the bug could not be reproduced
in the context of target application. The input will go into the application first
and be filtered before being passed to the low level’s library. This idea can help
improve the fuzzing throughput, but will have very high false positive.

In Fig. 3, it shows the different fuzzing points between two methods discussed
above. The challenge we are facing here is that we cannot have low false negative
and high fuzzing throughput at the same time.

Fig. 3. Different Fuzzing Point Between Two Methods
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4.3 System Architecture

To overcome the drawbacks in two fuzzing methods discussed above, and keep
the good parts for both, we can fuzz the ICU API directly while embedding the
filters in target application into the fuzzer to make sure there is no false positive.
By analyzing ICU and its depending software, we can obtain the filtering rules
like what we have done in Sect. 3 for browsers. Then by embedding the rules
inside our fuzzer, we could filter the invalid test cases before feeding them to
ICU. In the Fig. 4 below, it illustrates the basic idea of our fuzzer. We call this
kind of fuzzer context aware fuzzer, because by applying the filtering rules in the
application, the fuzzer is granted with the knowledge from the target software.
Every test case will be checked inside fuzzer before going to ICU, and there is
no need to run the entire application while fuzzing.

Fig. 4. Context aware ICU fuzzer

In our fuzzer, we can further improve the effectiveness of test cases generation
by applying grey-box fuzzing method. We introduced coverage guided fuzzing
technique here. In Fig. 5, we can see all of the internal modules for the ICU
fuzzer. The Executor always get new test case from the Mutator, then pass it

Fig. 5. Context aware ICU fuzzer combined with coverage guided fuzzing
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to the Embedded Filters extracted from target application. The filter will stop
the execution if the test case is not valid, other than the execution will go to
the ICU API for testing. Executor should be able to retrieve the code coverage
information and decide if this test case should be further mutated or abandoned.
Good test cases will be remained and the execution will be guided to discover
new branches in ICU library.

Executor and Embedded Filters. The argument filters in the applications
are usually implemented for filtering locale strings and various properties in
options. According to Sect. 3, we can see in the browser case, most of these
filters are regular expressions. So we can collect all the rules and program them
in the fuzzer as embedded filters. For the test inputs that can bypass the filters,
we pass them to native ICU calls.

Mutation. Different ICU APIs have different arguments. In order to design a
mutation method that is able to adapt to different number and types of argu-
ments. We use a popular mechanism supported in almost every programing
language to unify the input data for different ICU APIs—serialization and dese-
rialization. We take byte stream as a unifying input format in fuzzing. Mutation
is easy to be implemented on byte stream, e.g. bit flips, byte flips, bit rotations or
arithmetic operations. When a test case of byte stream is delivered to Executor,
the input stream will first be deserialized into corresponding arguments that is
compatible with ICU APIs to be tested. Figure 6 demonstrates the deserializa-
tion and mutation process.

Fig. 6. Context aware ICU fuzzer combined with coverage guided fuzzing

4.4 ICUFuzzer for JavaScript Engine

To evaluate our design, we implemented a prototype named ICUFuzzer to fuzz
for exploitable bugs in browsers. We use libFuzzer [19] as underlying support for
coverage-guided fuzzing. We focus on fuzzing International APIs—constructors
and methods of 4 core objects: Collator, DateTimeFormat, NumberFormat and
PluralRules, as listed in Table 1. Let’s take DateTimeFomat and NumberFormat
as two examples to show how we map the upper level APIs to low level ICU
APIs.



ICUFuzzer: Fuzzing ICU Library for Exploitable Bugs in Multiple Software 79

Fuzzing Intl.DateTimeFomat. In JavaScript, methods from the object Date-
TimeFomat are invoked in the following manner:

1. Create an object of Intl.DateTimeFormat by the constructor, specifying
locales and options.

2. Use the object initialized in the previous step to call Format(date) or
formatToParts(date) to format date into specified locales and options.

All the arguments specified in JavaScript will be filtered in V8 and passed
to APIs in ICU. After passing down to the ICU part, three methods will be
invoked:

1. icu::SimpleDateFormat() creates an object SimpleDateFormat in ICU
from locales and properties in options.

2. icu::TimeZone::createTimeZone() creates the TimeZone object informa-
tion in ICU from timeZone property in options.

3. icu::SimpleDateFormat::format() is responsible for arbitrary date format-
ting according to the configuration.

According to our design, ICUFuzzer will directly fuzz the ICU functions
(Figs. 7 and 8).

Fig. 7. Data flow in Intl.DateTimeFomat

Fig. 8. Data flow in Intl.NumberFormat
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Fuzzing Intl.NumberFormat. In JavaScript, methods from the object Date-
TimeFomat are invoked in the following procedure:

1. Create an object of Intl.NumberFormat by the constructor, specifying lo-
cales and options.

2. Use the object initialized in the previous step to call Format(date) or
formatToParts(date) to format number into specified locales and options.

All the arguments specified in JavaScript will be filtered in V8 and passed
to APIs in ICU. After passing down to the ICU part, three methods will be
invoked:

1. icu::SimpleNumberFormat() creates an object SimpleNumberFormat in ICU
from locales and properties in options.

2. icu::TimeZone::createTimeZone() creates the TimeZone object informa-
tion in ICU from timeZone property in options.

3. icu::SimpleNumberFormat::format() is responsible for arbitrary number
formatting according to the configuration.

Filters in V8. According to the analysis result in Sect. 2, there are locale filter
and options filter implemented in V8’s Intl.js. We extracted all the filtering rules
for locale as multiple regular expressions as below.

regex simple_re("^[a-z]{2,3}$", std::regex::ECMAScript);

regex singleton_re("^([0-9]|[A-WY-Za-wy-z])$", std::regex::ECMAScript |

std::regex::icase);

regex variant_re("^(([a-zA-Z]|[0-9]){5,8}|([0-9]([a-zA-Z]|[0-9]){3}))$",
std::regex::ECMAScript | std::regex::icase);

regex langtag_re("^(([a-zA-Z]{2,3}(-([a-zA-Z]{3}(-[a-zA-Z]{3}){0,2}))?|[a-

zA-Z]{4}|[a-zA-Z]{5,8})(-([a-zA-Z]{4}))?(-([a-zA-Z]{2}|[0-9]{3}))

?(-(([a-zA-Z]|[0-9]){5,8}|([0-9]([a-zA-Z]|[0-9]){3})))*(-(([0-9]|[A-WY

-Za-wy-z])(-([a-zA-Z]|[0-9]){2,8})+))*(-(x(-([a-zA-Z]|[0-9]){1,8})+))

?|(x(-([a-zA-Z]|[0-9]){1,8})+)|((en-GB-oed|i-ami|i-bnn|i-default|i-

enochian|i-hak|i-klingon|i-lux|i-mingo|i-navajo|i-pwn|i-tao|i-tay|i-

tsu|sgn-BE-FR|sgn-BE-NL|sgn-CH-DE)|(art-lojban|cel-gaulish|no-bok|no-

nyn|zh-guoyu|zh-hakka|zh-min|zh-min-nan|zh-xiang)))$", std::regex::

ECMAScript | std::regex::icase);

regex any_ext_re("-[a-z0-9]{1}-.*", std::regex::ECMAScript);

regex uni_ext_re("-u(-[a-z0-9]{2,8})+", std::regex::ECMAScript);

regex locale_re("^([a-z]{2,3})-([A-Z][a-z]{3})-([A-Z]{2})$", std::regex::

ECMAScript);

For options, we also listed the checking rules in V8 for different properties
in Table 3.
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Table 3. Part of extracted rules in V8’s options filter.

Property Type Filtering rules for value

Weekday string narrow: ‘EEEEE’, short: ‘EEE’, long: ‘EEEE’

Era string narrow: ‘GGGGG’, short: ‘GGG’, long: ‘GGGG’

Year string 2-digit: ‘yy’, numeric: ‘y’

Month string 2-digit: ‘MM’, numeric: ‘M’, narrow: ‘MMMMM’, short: ‘MMM’, long: ‘MMMM’

Day string 2-digit: ‘dd’, numeric: ‘d’

The filters above are embedded into ICUFuzzer to get rid of potential false
positive test cases, which could only crash ICU but not the browsers.

5 Evaluation

5.1 Experiment Design

To evaluate bug hunting capability of ICUFuzzer, we run it in a desktop PC
that equipped with Intel i7 processor with clock speed of 2.67 GHz, with 8 Gb
of RAM, and with Ubuntu 16.04. Within 10 min, we got dozens of crashes. We
manually analyzed and classified the crashes, then we realized we found 3 0 days
in latest ICU code base, and all of them can crash the latest Chrome browser
through loading a snippet of JavaScript where we invoke JavaScript International
APIs with malformed arguments. We reported to Chrome and have all the bugs
fixed. We will go through the 3 bugs in the next part.

5.2 Results

CVE-2017-15422: Persian Calendar Integer Overflow. This bug affects
Chrome, Safari and Firefox and exists in the code snippet below:

//i18n/persncal.cpp
void PersianCalendar::handleComputeFields(int32_t julianDay,

UErrorCode &/*status*/)
{
int32_t daysSinceEpoch = julianDay - PERSIAN_EPOCH;//
year = 1 + ClockMath::floorDivide(33 * daysSinceEpoch + 3,

12053);
.......
dayOfMonth = dayOfYear - kPersianNumDays[month] + 1; // Out

of bound memory read
}

Integer overflow can happen in the expression 33 * daysSinceEpoch, leading
to an unbounded month value. The unbounded month value will be used as an
index in array kPersianNumDays, which can be exploited to read out of bound
memory. We have successfully turn the bug into a working exploit targeting



82 K. Yang et al.

Chrome, Safari and Firefox to leak memory addresses, which means modern
mitigations ASLR and PIE are bypassed. According our survey, this bug has
been existed for more than 5 years.

Here is the proof of concept code that can trigger the bug in the browser.

var dateformatter = new Intl.DateTimeFormat("bs-Cyrl-u-ca-
persian");

date = null;
Date.prototype["valueOf"] = function (){};//date returns NaN
d = dateformatter.formatToParts(date);

CVE-2017-15396: NumberingSystem::createInstance Stack Overflow.
This bug only affects Chrome. Look at the code snippet below:

char buffer[ 96 ];
int32_t count = inLocale.getKeywordValue("numbers",buffer,

sizeof(buffer),status);
if ( count > 0 ) {

buffer[count] = '\0'; //count = 99

The integer variable count can exceed the size of buffer, leading to a stack
out of bound write.

Proof of concept code is as below:

var nf = new Intl.NumberFormat('bs-u-nu-bzcu-cab-cabs-
avnlubs-avnihu-zcu-cab-cbs-avnllubs-avnihq-zcu-cab-cbs-
ubs-avnihu-cabs-flus-xxd-vnluy');

CVE-2017-15406: CanonicalizeLanguageTag Stack Overflow. This bug
only affects Chrome. Look at the code snippet below:

char icu_result[ULOC_FULLNAME_CAPACITY];
uloc_forLanguageTag(*locale_id, icu_result,

ULOC_FULLNAME_CAPACITY, nullptr, &error);
// localeID is not terminated with null byte
...
if (uprv_strlen(localeID) > 0) { // overflowed

localeID doesn’t need to be null terminated, so the result of uprv str-
len(localeID) could be oversized, leading to a stack out of bound write.

Proof of concept code is as below:

var dateti1 = new Intl.DateTimeFormat("iw-up-a-caiaup-araup-
ai-pdu-sp-bs-up-arscna-zeieiaup-araup-arscia-rews-us-up-
arscna-zeieiaup-araup-arsciap-arscna-zeieiaup-araup-
arscie-u-sp-bs-uaup-arscia");



ICUFuzzer: Fuzzing ICU Library for Exploitable Bugs in Multiple Software 83

6 Related Work

Fuzzing was originally introduced as one of several tools to test UNIX utilities [1].
Since then, much work has been devoted to improving general fuzzing technique.
Guided fuzzing is proposed to direct fuzzers toward specific types of vulnerabil-
ities. One of the typical design for guided fuzzing is selectively choosing optimal
test cases [2,3]. Dowser [2] and BuzzFuzz [4] applies taint-tracking to analyze
the relations between test cases and code regions in target software. Flayer [5]
allows an auditor to skip complex checks in the target application to improve
the code coverage of fuzzing. Similarly, Taintscope [6] uses a checksum detection
algorithm to remove checksum code from applications. Symbolic execution is
also applied to fuzzing to gain maximal code coverage [7–9]. These approaches
reply on symbolic execution to generate inputs that will take new code paths.

There are many other research focus on applying fuzzing in some application
scenarios and making improvement by using unique characteristics in the sce-
narios, including our research in the paper. IntentFuzzer [15] applies dynamic
fuzzing method in Android IPC mechanism to find permission leak vulnerabil-
ities. jFuzz [16] uses a combination of concrete and symbolic execution to fuzz
Java program. MTF [17] proposed a guided fuzzing strategy instead of random
testing to fuzz Modbus/TCP protocol. IOTFUZZER [18] applies the knowl-
edge from mobile applications in the fuzzer to find memory corruptions in IoT
firmware.

7 Conclusion

In this paper, we proposed a fuzzing based method to discover bugs in ICU.
Our method is interested in the bugs that are exploitable in the context of
application software that use ICU. After we conducted a in-depth study on the
implementation details of JavaScript International API, we understand the data
flow from entry level input to low level ICU functions and the underlying input
filtering mechanism. By applying these knowledge to the fuzzer, we improve the
fuzzer to have high throughput and low false positive at the same time. We
implemented a prototype named ICUFuzzer to evaluate our design. ICUfuzzer
is dedicated for finding ICU bugs in browsers. By running the fuzzer, we have
found three zero-day bugs in modern browsers. One of them can be exploited
to leak memory information, the others can crash the browser and possibly get
remote code execution.
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