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Abstract. Dynamic analysis of Android malware suffers from tech-
niques that identify the analysis environment and prevent the malicious
behavior from being observed. While there are many analysis solutions
that can thwart evasive malware on Windows, the application of similar
techniques for Android has not been studied in-depth. In this paper, we
present Lumus, a novel technique to uncover evasive malware on Android.
Lumus compares the execution traces of malware on bare metal and emu-
lated environments. We used Lumus to analyze 1,470 Android malware
samples and were able to uncover 192 evasive samples. Comparing our
approach with other solutions yields better results in terms of accuracy
and false positives. We discuss which information are typically used by
evasive malware for detecting emulated environments, and conclude on
how analysis sandboxes can be strengthened in the future.

1 Introduction

Malicious applications are a major threat to Android users, as they may steal
sensitive data, send SMS messages to premium numbers, and manipulate mobile
banking transactions [8]. The analysis of an apps behavior is crucial for protect-
ing mobile devices, e.g., to analyze applications before they are published in app
stores. Several approaches have been proposed for Android app analysis [6,7,16,
24,27], including the classification into malicious or benign [1,5,25,28,30,31,33].

Analysis techniques are typically divided into static and dynamic approaches.
Static approaches become less effective when dealing with highly obfuscated
samples [3,10,20], or with samples that obtain and execute code at runtime [17,
23]. Dynamic approaches are able to run obfuscated samples and samples that
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fetch code dynamically, but can be evaded by malware that employs anti-analysis
techniques. Anti-analysis techniques are used to identify emulated environments,
and eventually to change an apps behavior to evade detection.

Researchers have identified several anti-analysis techniques that are used by
Android apps to distinguish real from analysis environments [9,18,22,26,29].
Emulation is used by most analysis systems due to scalability. Hence, an alterna-
tive for analyzing apps without being evaded by common anti-analysis techniques
is using real devices, as, for example, done by BareDroid [21] and Bolt [7]. How-
ever, by studying evasive malware samples in-depth, researchers can also identify
ways to make emulated systems resilient to evasive malware.

In this paper, we present Lumus, a technique to identify Android malware
that exhibits evasive behavior. We analyze the behavior of malware samples by
comparing their execution traces on actual devices and emulators. While systems
proposed in the literature also identify evasive malware on Windows [12,15],
those techniques cannot directly be applied to Android given the differences
between the two operating systems. To demonstrate this, we created detectors
based on the Windows techniques proposed in Disarm [15] and Barecloud [12],
and compared their results with Lumus, which obtained better results.

We analyzed 1,470 Android malware samples selected from different families
and identified 192 samples that exhibit evasive behavior. We manually inspected
a subset of the detected malware to identify how they evade dynamic analysis.
To compare our technique with other solutions, we randomly selected 50 samples
from different families and manually analyzed them to validate our results.

2 Approach

To identify evasive malware, systems proposed in non-mobile literature [12,15]
usually compare behavior profiles using distance equations or hierarchically struc-
turing them to compute their similarity—they use system call traces as input
data and focus on Windows malware. However, Android malware in general
executes far fewer actions than Windows malware and many of the proposed
approaches for detecting evasive malware require a minimum number of actions
from malware for the detection process (e.g., Disarm [15] requires at least 150
actions). Furthermore, many Android malware are repackaged apps that also
perform benign behavior. Therefore, depending on the malware family, infec-
tious actions that make use of anti-analysis features in Android malware can be
a very small subset of all possible behaviors, but might just as well comprise
most of the app’s behavior.

Our approach to identify actual differences of behaviors in Android mal-
ware running in bare metal and emulated environments that are not related
to idiosyncrasies between these two environments is as follows. First we try to
identify the cause of each observed different action through information that is
easily obtained in Android, but not for Windows programs. More precisely, we
track: (i) executed methods of the app under analysis; (ii) methods from the
framework called by the methods identified in (i); (iii) system calls invoked by
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the app; (iv) interaction of the apps with functionalities that create threads or
indirectly change their execution flow; (v) information provided by the system
regarding events that stop the execution of apps; and (vi) information about
external stimuli. With all this information, we can trace back the call sequence
that led to the behavior observed only in bare metal, identifying the entry point
that originated this sequence and possibly the external stimulus that caused it.
By comparing the sequence obtained from the bare metal system to the behav-
ior observed in the emulator we can identify the reason for the divergence (e.g.,
some event not being generated, a difference in some method’s execution, the
analysis time ending in one of the environments, or the system stopping the app
for some reason).

Lumus’ work flow is detailed in Fig. 1 in form of a process diagram. The events
from (i)–(vi) are collected in form of log files for the bare metal and emulator
executions. While the bare metal device is brought back to a consistent state
the comparison engine uses the collected information to create the divergence
report by comparing the information in (i)–(vi) for the emulator and bare metal
executions.

Fig. 1. Abstract process diagram of our approach. For simplicity reasons the snapshot
reconstruction subsystem for the bare metal device has been left out of the loop.

3 Behavior Representation

We represent the behavior of an app in a given analysis environment as a set
of actions observed during its execution. Each action is a tuple a represented as
a = (action type, operation, argument), where action type is one of {Network,
File, Intent, Exec, Phone, Dex, Billing, Multimedia}. Details about the action
types and its operations and arguments are presented in the Appendix.
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3.1 Behavior Normalization

Filenames written by apps may be randomly generated, which makes multiple
executions of the same application produce different behavior profiles. To over-
come this problem we adopt Disarm’s approach [15]: for each sandbox—emulated
or bare metal—we identify files that were written in only one instance of this
sandbox and consider these as possibly random files. Possibly random files in
multiple instances of a sandbox that have the same directory and extension
are considered as random. We keep the directory name and extension of these
actions but replace the file name by <RANDOM>. We also normalize file paths
related to the SD card, as it can be accessed in different ways. Malware may
also randomly select contacts registered in the system as destinations of SMS
messages.

Therefore, we inspect actions related to sending SMS messages and, if some
destination is a contact registered in the system, we replace it by <CONTACT>.
Additionally, we filter simple actions that are common to most apps, such as
writing to the shared memory device or to the logging device. Another group of
actions we filter are related to Androids’ Webview, an in-app solution to display-
ing web pages. Since it relies on libraries only available on bare metal devices
the behavior will differ in the emulator, leading to false positives in applications
using WebViews. Another challenge of the behavioral analysis problem, espe-
cially when the app needs to be executed multiple times, is that certain network
behavior might only be observed in some of the runs. To address this challenge,
during our analysis when some host is accessed in bare metal and the same DNS
name is requested in the emulated context, but this request fails, we add the
same failed request to the emulated analysis.

4 Evasive Behavior Identification

To identify whether an app is evasive or not, Lumus analyzes its execution in
a bare metal environment and in an emulated environment, and then compares
the monitored behavior for differences. If the behavior in the two environments
is different, Lumus identifies the root cause for the divergence, which can be:
(i) a variation in the code path executed or (ii) some event that prevented the
app from continuing executing in the emulated environment. To increase the
app code coverage during dynamic analysis, Lumus generates stimuli in the
form of GUI interactions and Intents, which can be used to start activities or
receivers. Lumus provides the same stimuli for both bare metal and emulated
environments. Moreover, Lumus takes into account non-determinism during app
execution, Lumus executes each sample three times in each environment.

Let Bi and Ej be the set of actions monitored in the bare metal environment
for the ith run and in the emulated environment for the jth run, respectively,

with 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3. Also, let B =
3⋃

i=1

Bi and E =
3⋃

j=1

Ej be the set of

all actions executed in bare metal and in emulated environments, respectively.
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Since we are interested in finding apps that hide their actions during analysis
in the emulated environment, Lumus first selects the set A of actions that were
only executed in a real device. Thus, A = B − B ∩ E.

For each action ak in A, Lumus constructs Rk, a set with the Android mal-
ware traces obtained from bare metal analysis that contain this action. Lumus
compares each Bl in Rk to every Ej to identify why ak was not executed in
the emulated analyses. Since Lumus tracks when methods begin and end, it can
identify the app’s method that executed the action we are interested in. At this
point, Lumus knows the main entry point for the execution of an app obtained
through bare metal analysis (Bl), which will be called from now on Mk. This
entry point Mk led to the execution of action ak, and possibly the external stim-
ulus that caused this action. Lumus finds the occurrences of Mk in Ej and, if it
knows the stimulus that originated it, Lumus compares each Mk in Ej with the
Bl call sequence that led to ak. With this comparison, Lumus identifies where
is the point of divergence of the execution path, i.e., when the emulated system
should also execute the action, but instead chose to follow another path. More
precisely, Lumus identifies which of the following is the cause of the divergence:
(i) difference in execution path; (ii) app not responding; (iii) end of analysis; (iv)
fatal exception; or (v) entry point not reached. If the reason for the divergence
is a different code path executed, Lumus considers the app evasive, otherwise,
an execution problem.

4.1 Call Sequence Reconstruction

Lumus records when each thread of the analyzed app enters and leaves its meth-
ods, identifying what method performed a given action. It also logs the methods
called, so that the analysis trace can be looked back, starting from the method
that executed the action, and sequence of method calls that led to this action
is identified. This allows the tracking of actions to an entry point interfacing
the Android framework, where the capability to observe direct calls to meth-
ods no longer exists. Android classes may have several entry points, which may
be executed because of commonly creating activities (e.g., onCreate), starting
services (e.g., onStart), starting receivers (e.g., onReceive), running tasks (e.g.,
run), and handling of received messages (e.g., handleMessage). One possibility
would be to compare all executions of the entry point method in the bare metal
and emulated systems, but this could lead to wrong results, because of uncer-
tainty. The phenomenon of uncertainty can happen, for instance, if an activity
handles different functionalities, all executed through the same entry point. In
that case, our approach is to try to identify the source methods from which the
execution changed to the entry points, to perform a more precise comparison of
the executions. To accomplish this, Lumus investigates Intents sent by the app,
the use of several methods that cause indirect changes in the execution flow and
the use of external stimuli.

To identify Intents that may have resulted in a specific entry point method
being executed, we look for Intents sent by the app that match that method.
For example, if the method we are analyzing is ClassA.onStartCommand(Intent,
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int, int), we assume ClassA is a service, since onStartCommand(Intent, int, int)
is one of the entry points of the class Service that can be overwritten. As the
Android documentation states, this method is called by the system when a client
explicitly starts the service by calling startService(Intent). Thus, to find the
source that directed the execution to this method we look for actions that start
services using ClassA as an argument. Finding sources of entry points to activ-
ities is similar to finding services. To find the sources that led to the execution
of receivers, however, we need to inspect the intent filters used by the class and
find out which Intents sent match these filters (see Sect. 5).

Another source of control flow changes performed by Lumus is the use of the
following groups of methods: (i) methods that schedule a class to be invoked
after some delay or periodically (e.g., Timer.schedule and ScheduledThread-
PoolExecutor.schedule), which result in the execution of the methods run() or
call() of the destination class, (ii) methods that send messages to its UI thread
(e.g., Handler.sendMessageDelayed), which result in the execution of handleMes-
sage(Message), and (iii) methods that start a new thread, e.g., Thread.start(),
which result in the execution of run() and AsyncTask.execute(Params...), which
in turn may result in the execution of different methods (e.g., doInBackground
(Params...)). To track these control flow changes, Lumus employs instrumenta-
tion of the Android framework to assign labels to the messages/tasks sent or to
the threads created. To do so, we log the control flow changes when the source
method is executed and also when the destination methods are executed. With
this information, Lumus can track the source call of any of these methods.

The last type of interaction that can cause the execution of entry points is
external stimuli. Lumus also employs instrumentation of the tools used to create
the stimuli, identifying when Intents are sent, keys are pressed, and GUI inter-
actions are performed. These Intents are identified as the source of some entry
point, similarly to the approach adopted for Intents sent by the app, explained
above. Examples of entry points executed by key strokes are onKey and onKey-
Down. For GUI interactions, examples of common entry points executed are
onClick, onTouchEvent and onItemClick.

When tracing the sequence of calls that led to some action, a list of subse-
quences is created. Along with each subsequence the time of the call that created
the next subsequence or that executed the action is kept.

4.2 Comparing Sequences

After identifying the list of subsequences of method calls that led to the execution
of an action in the bare metal environment, Lumus needs to compare this list
with the list obtained from the analysis within the emulated system to identify
the cause of divergence. We hereafter refer to this list of subsequences as BareSeq
and to the resulting list of subsequences obtained from the emulated environment
as ResEmu. Lumus iterates over each subsequence SubBarei of BareSeq, com-
paring it to its counterpart in ResEmu. For each iteration, action time is the
time when the call that created the next subsequence was executed or the time
when the action was performed. Also, let EPi be the entry point of SubBarei.
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[78] BARE: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ −> %’com.adobe.flashplayer .
AdobeFlashCore.writeConfig(java.lang.String, java.lang.String)’
EMU: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ −> %’com.adobe.flashplayer .

AdobeFlashCore.writeConfig(java.lang.String, java.lang.String)’
...
[85] BARE: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ −> ’java.lang.String.indexOf(

java.lang.String)’
EMU: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ −> ’java.lang.String.indexOf(

java.lang.String)’
[86] BARE: ’None’

EMU: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ −> ’java.lang.System.exit(int)’

[87] BARE: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ −> ’com.adobe.flashplayer .
AdobeFlashCore.isOnline()’
EMU: ’None’

...
[102] BARE: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ −> ’com.adobe.flashplayer .

FlashVars.<init>()’
EMU: ’None’

Listing 1.1. Excerpt of the alignment of an evasive sample. The comparison extends to
methods and method values to mitigate the downsides of signature only comparisons.

Lumus finds all occurrences of EPi in ResEmu that have the same origin as in
BareSeq. Lumus then proceeds to compare EPi from BareSeq with each instance
of EPi identified in the emulated results.

Given two entry point methods, Lumus finds where they begin and end,
obtaining the call sequence in this interval. Lumus aligns these two sequences,
one from BareSeq and other from ResEmu, using a global alignment algorithm.
If SubBarei is the last subsequence of BareSeq, Lumus compares the aligned
sequences to determine the divergence that prevented ResEmu from reaching the
call at action time. Otherwise, let CallNext be the method call in SubBarei
that created the next subsequence of BareSeq. If the app did not reach CallNext
in ResEmu, Lumus compares the aligned sequences to determine the divergence
that prevented ResEmu from reaching CallNext. However, if the app reached
CallNext in ResEmu, Lumus obtains the next subsequence of BareSeq, with
entry point EPi+1, and finds this entry point in ResEmu by checking for possible
destinations of CallNext. If Lumus is not able to find an equivalent of EPi+1 in
ResEmu, it is likely that the execution was interrupted before the call performed
at CallNext could take effect, so Lumus does not consider it an evasion.

When comparing two aligned sequences, we want to identify the reason for
their divergence regarding some action executed at time ti (either a behavior
only observed in BareSeq or some call that created the next subsequence of
BareSeq and that was not executed in ResEmu). To do so, Lumus iterates over
the calls in the aligned sequences and when ti passes, considering the time of the
bare metal calls, Lumus checks what was the last call in the emulated sequence.
There are three possibilities for this last call: (i) a tag indicating the end of the
analysis, (ii) a tag indicating that the system killed the app for not responding
or for some other error, (iii) a call to some app’s or Lumus method.
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If Lumus identifies case (iii), we assume a divergence in code path taken—an
indication of evasive behavior. Lumus prints the aligned sequences to help an
analyst who needs to manually identify what caused the executions to follow
different code paths. Conversely, if the last identified call matches cases (i) or
(ii), we assume that an execution error occurred, not an evasion. For illustration,
we present an excerpt of the output generated for one sample that is evasive
in Listing 1.1. To perform sequence alignment, Lumus uses the global alignment
algorithm provided by the swalign library. We chose a global alignment algorithm
because we need to have a global understanding of the sequences, as our analysis
depends on the alignment reaching the point in the bare metal sequence where
the target action happened. If the aligned sequence does not reach this point,
Lumus is unable to identify the cause of divergence.

Arguments selection is an important step when using alignment algorithms.
The arguments Lumus needs to define to calculate the similarity score between
two sequences are: (i) m for matches, with m > 0; (ii) mi for mismatches, with
mi < 0; (iii) go for opening gaps, with go < 0; (iv) ge for extending gaps, with
ge < 0. To prevent mismatches during the analysis, we used a high value for
|mismatch| in Lumus. We also believe that beginnings and endings of methods
of the analyzed app are more important in the alignment than other types of
calls, so we assign 2∗m for matches of this type. Furthermore, since Lumus aims
at investigating evasive behavior, we want to prioritize gap extensions over gap
openings, so |go| > |ge|. In the end, the inequality |mismatch| > m > |go| > |ge|
guides the definition of arguments.

5 Monitoring System

To track the behavior of the analyzed apps, Lumus monitors which apps’ meth-
ods were executed, which methods were called from them, and which system
calls were executed. To monitor system calls, Lumus uses a kernel driver that
intercepts them. When a system call is executed, the driver registers its argu-
ments and calls the original system call. To obtain information related to the
use of Intents, the driver inspects ioctl calls that target the binder device. If the
operation performed is a binder transaction (BC TRANSACTION), Lumus logs
the destination class, method id and arguments passed. To identify which actual
method is represented by the method id, Lumus examines the corresponding
AIDL file in the Android source code.

To monitor the executed methods, Lumus leverages the “method trace” func-
tionality of the Android runtime (ART) and instrument libart. Every time the
execution goes in and out of a method, Lumus registers it. Also, when some
method is called, Lumus logs the source and destination of such action. This
allows Lumus to also identify Java methods called from native code. To avoid
registering too much information, Lumus focuses on new UIDs, so it does not
track apps that are already installed in the system when it is in a clean state.

When trying to identify the method call that resulted in the execution of some
receiver, Lumus needs to identify which intent filters are used by this receiver



Lumus: Dynamically Uncovering Evasive Android Applications 55

and look for broadcasts sent that match them. Parsing the app’s manifest is
not enough to obtain all intent filters that were used, since the app can register
others at runtime. To overcome this limitation, Lumus also tracks all calls to
Context.registerReceiver.

The use of threads, tasks and message passing between them introduces a
level of indirection that prevents us from tracking the execution flow just by look-
ing at method invocations (Sect. 4). To be able to reconstruct the call sequence
in these cases, Lumus needs to track the use of threads, tasks, and messages. To
do so, Lumus generates a random number that is assigned to a thread (when
it is created), to a task (when it is scheduled), and to a message (when it is
sent). Lumus also logs this identifier when they are actually used or executed,
allowing a parser to match each use or execution of these types to their cre-
ation. This matching allows us to track the call sequence in these cases. So, for
instance, when the method Timer.schedule, which schedules a task for repeated
fixed-delay execution, is executed, the system generates a random number, logs
it and assigns it to the task. Every time this task is executed, the identification
number is logged. To correlate the external stimuli with the app behavior (e.g.,
clicks and broadcasts), Lumus needs to know the time at which each stimulus
was provided. To achieve this, Lumus employs the instrumentation of the am and
input tools used to create these actions.

Analysis Environments. When analyzing malware, it is important to make
sure that the environment is not infected before the start of the analysis. Per-
forming an analysis in an infected system may result in wrong results, as one
piece of malware can influence the behavior of others. To analyze samples in the
emulator, we take advantage of the snapshot functionality, which allows us to
restore the system to a clean state after every analysis without incurring any
boot time. Analyzing malware in real devices is more challenging as we cannot
take advantage of snapshots. One possible way to overcome this problem is to
restore the state of the device’s partitions after every analysis, as performed by
Baredroid [21]. However, this approach is time consuming because the system
needs to reboot every time it is restored.

The approach adopted in Lumus is to maintain the system clean after each
analysis as follows. In Android, apps can only write to a very limited set of direc-
tories, which includes mainly the app’s dir (/data/data/<PACKAGE-NAME>/)
and the SD card. When the app is uninstalled after analysis, its directory is
deleted by Lumus. Files written to the SD card can affect the behavior of other
apps that might interact with these files. Thus, all files belonging to the SD card
are deleted after every analysis.

Many malware target vulnerabilities in the kernel or privileged processes to
operate with root privileges. As the /system partition, corresponding to kernel
code, is mounted as read-only by default, even apps that are able to obtain
root privilege first need to remount this partition. To prevent it, our kernel
driver blocks all system calls that attempt to remount the /system partition
in writing mode. This protection can be bypassed if the malware manages to
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access the original mount system call. However, we only used the system to test
our proposed technique to identify evasive malware. If one wants to use a similar
system to receive submissions or analyze apps that could potentially target the
system, a better restoration process would be necessary. Furthermore, during
our experiments our driver did not actually have to block any calls to mount, so
we believe that bypass through remount was not a problem.

To increase code coverage during dynamic analysis, it is important to pro-
vide GUI interactions and to cause activities, services and receivers to execute.
However, as we are comparing multiple executions, it is also important that we
provide exactly the same interactions, so that the same code paths are exercised,
at least until evasive code is reached or some problem stops the app execution.
To accomplish this, we use the Droidbot [14] tool to interact with apps. Droid-
bot generates random events, including GUI interactions, broadcasts and specific
activities. It also registers the exact events generated and is able to replay them
from a file instead of randomly generating them. Thus, in our first bare metal
execution of each malware, we randomly generate events and save them into a
file. In the following bare metal executions and in the emulated analyses, we
make Droidbot read the events from the saved file and replay them.

One way that malware can identify analysis environments is by checking
which apps are installed in the system. The lack of the Google Play app, for
instance, is a strong indication that the device is not used by an actual user.
Hence, we installed in the bare metal environment Open GAPPS, a set of basic
apps present in all Android systems. Further, we also installed a few very popular
apps and created fake contact information. These apps and contact information
make the bare metal and emulated systems different, which could, therefore,
cause some apps to behave differently, but not because they intend to evade
analysis systems. On the one hand, this could possibly lead our technique to
identify such samples as evasive, increasing the number of false-positives. On the
other hand, preventing such false-positives may result in false-negatives since the
bare metal system could also be detected as an analysis system. We chose to use
these techniques and risk increasing false-positives instead of risking increasing
false-negatives.

6 Evaluation

For our experiments we used Google’s QEMU-based Android emulator, the
SDKs’ Android Virtual Device (AVD) and an LG G2Mini device. Both the bare
metal and the emulated Android systems had our modified version of Android
5.1. Each analysis was executed for at most three minutes in the bare metal
environment and at most 10 min in the emulated environment—our experiments
showed that the emulator environment incurred a 3X performance penalty on
the analysis. Since we can identify when a divergence in behavior is caused by
one analysis system finishing before the other, this difference in execution time
has no negative effects on our technique.

To evaluate Lumus, we dynamically analyzed a subset of the samples in our
malware dataset obtained from VirusShare, Malgenome [32], contagio mobile,
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AndroMalShare and Drebin [1]. To select this subset we first obtained their
detection label by antivirus software, using Virustotal. We separated them by
families, using the results of the ESET-NOD32 anti-virus, and selected at most
five samples from each family, resulting in a set of 1,470 samples. We analyzed
these samples to obtain their behavior and used Lumus to identify which ones
have evasive behavior. Since we did not have a ground truth with information
about all these samples, we randomly selected 50 samples, all from different
families, and manually inspected their results to identify possible false-negatives
and false-positives. This manually analyzed samples became the ground-truth
for our subsequent analysis.

Our technique detected 7 out of 50 samples (14%) in the subset as evasive. In
the following, we provide a detailed analysis of each of the 7 cases. We consider
as false-negatives the samples that did evade analysis but Lumus did not iden-
tify as evasive, and we consider as false-positives those whose behavior exhibited
in the bare metal was different from the emulated without trying to identify if
the execution was inside an analysis system. Note that Lumus considers evasive
those samples that execute some action only in the bare metal system, without
executing some similar action in the emulated system, even if this divergence
is not caused by a clear identification of the analysis system. For instance, if a
sample tries to send SMS messages to contacts stored in the phone and it only
shows this behavior in the bare metal because there is no contact registered in
the emulated environment, Lumus considers it as evasive. We do this because,
despite not being a clear sign of anti-analysis behavior, it is successful in prevent-
ing some action from being observed in the emulator and so could be employed as
an anti-analysis technique. To test our intuition that the existing techniques to
identify evasive Windows malware would not present as good results if applied
to Android malware, we implemented detectors based on the techniques pro-
posed by Disarm [15] and Barecloud [12]. Since the behavior of Android and
Windows malware are different in various aspects, we used our behavior model
when implementing these techniques. To make the comparison fairer, we used the
threshold that would yield the best results to each of these techniques, instead
of the threshold they found for Windows malware. Table 1 presents this compar-
isons’ results, showing that our technique is far more suitable to the Android
environment.

Table 1. Lumus vs. other Windows-based approaches to uncover evasive malware
reimplemented for Android.

Approach TP TN FP FN A

Lumus 100% 93.5% 6.5% 0.0% 96.7%

Disarm (t = 0.12) 100% 78.3% 21.7% 0.0% 89.1%

Barecloud (t = 0.36) 100% 67.4% 32.6% 0.0% 83.7%
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6.1 Discussion

We discuss below the samples that Lumus identified as evasive, explaining why
we consider them as a true-positive (TP) or false-positive (FP). For the TP,
we discuss which extra behavior was observed due to the divergence and what
difference between the environments was the cause of divergence.

Sample 1: It changes its behavior if /system/xbin/busybox, /system/bin/busy-
box or /bin/busybox is present in the system. This deviation resulted in the
malware writing to the file shared prefs/config.xml and many files in the dir
/SD card/LuckyPatcher/. This may not have been intended as an anti-analysis
technique, since most user systems do not have these files. However, because it
does prevent some of the malware behavior from being observed in the emulated
environment, we considered the behavior as TP;

Sample 2: It identifies if the phone number starts with “15555”, whether the
IMEI starts with “00000000” or if the IMSI starts with “31026”. Upon detection,
it calls System.exit(0). This is a clear case of evasive malware and a TP. The
behavior resulting from the divergence is composed of starting a service and
starting two alarms that send Intents;

Sample 3: It copies the icons of the apps installed in the system to the direc-
tory /data/data/com.pintudog/files/icons/. Since the list of apps installed in the
emulator and in the bare metal environments is not the same, the monitored
actions ended up being different. However, at a higher level it is still the same
behavior, so we consider this as FP;

Sample 4: It verifies if the IMEI contains the string “000000000000000”. If so,
the malware calls System.exit(0). Similarly to Sample 2, this is a clear example
of anti-analysis and a TP. The actions resulting from the divergence are the fol-
lowing: starting a service, creating a wake lock and connecting to the dnsproxyd
device to make a DNS request;

Sample 5: The different actions in this sample’s behavior are related to a file
associated with the graphical interface, as the graphical libraries used in the bare
metal and emulated systems are different. Since this is not actually related to
the behavior of the malware, we considered this sample as a FP;

Sample 6: During its execution it verified which Wifi networks are available. In
the emulated system it does not identify any Wifi network, so it takes a different
execution path. The behavior that is executed only in bare metal, as a result
of this difference, is writing a file in the SD card. Since this behavior is related
to the malware execution and cannot be observed in the emulator unless some
update is made to it, we considered this sample as a TP;

Sample 7: This sample randomly chose the domain name to access from a list
of predefined names. This resulted in one domain used in bare metal not being
used in the emulated analysis. Except for the domain difference, their behavior
is the same, so we considered this as FP.
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6.2 Employed Emulator Detection Techniques

Out of the complete dataset of 1,470 samples, our technique identified 192 as
evasive. A manual inspection of these evasive samples yielded several techniques
that were used to discern emulators from bare metal devices. Most of these
techniques use static or dynamic artifacts to detect differences from a bare metal.

Static artifacts usually constitute environmental values and configurations
that differ between emulators and bare metal devices, and do not change between
many complex states. Most of these values in fact remain constant at runtime
and do not react much or not at all to environmental stimuli. Dynamic arti-
facts on the other hand usually result from the emulated interfaces that either
show insufficient behavior compared to a bare metal device or are not emulated
at all and can thus a variety of states can occur at runtime. This results in
inconsistencies that shouldn’t occur during normal bare metal execution [21].

We manually inspected the results of some of these samples to understand
how they evade analysis. Bellow we describe the anti-analysis techniques we
identified that are different from the ones explained before:

Static artifacts often can be queried through simple value lookup mech-
anisms. This allows for an easy to implement branching control flow, where
depending on the lookups’ result the behavior can be benign or invasive. The
previously introduced Sample 2 and Sample 4 also exhibited this behavior. Specif-
ically, they leverage telephony related values to detect an emulated environment.
Androids’ TelephonyManager class allows to query specific information about
the phones’ identifiers, such as the IMEI and the IMSI, and the phones’ line1
number. Vidas et al. pointed out that the AVD has the hard coded values of
155552155** (wildcards in the line1 number are replaced by the system at boot
time with the last two digits of the Android debug bridge (ADB) port) as its
line1 number, a zeroed IMEI and an IMSI of 310260000000000. Hence, check-
ing for these values enables an application to detect the AVD as several samples
in our dataset did. The downside of using telephony related values is necessary
Phone permission group, specifically the READ PHONE STATE permission. Request-
ing this permission as an application that does not necessarily need it, e.g., a
flashlight app, might raise some red flags and speed up discovery by malware
analysts.

A permissionless technique is given through Androids’ build properties. Appli-
cations can user the android.os.Build class or query the properties through
one of the API methods ProcessBuilder.start and Runtime.exec. The tell-
tale build properties of an emulator the malware probed for were the presence
of the string “google sdk” in the PRODUCT or MODEL properties, “generic” in the
BRAND or DEVICE properties and “goldfish” (“Goldfish” is the previous canonical
name for the QEMU-based AVD; the current canonical name is “Ranchu”) in
the HARDWARE property. If the device FINGERPRINT contained any of the strings
“qemu”, “sdk” or “generic” an emulator was detected as well. These build prop-
erties tests have in common that a value from a bare metal device is compared
to its changed but present equivalent on an emulator. Another possibility is
the examination of values that are only present on one of the two, e.g., the
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QEMU properties which are only present in Google’s QEMU-based emulator. A
query for “qemu” being present in the properties is enough to detect an anal-
ysis environment in this case, e.g., “qemu.sf.fake camera”, “ro.kernel.qemu” or
“ro.kernel.android.qemud”. Similar is to the build properties the existence of spe-
cific files can be queried. Exemplary the existence of QEMUD, Androids’ QEMU
Multiplexing Daemon can be assumed if the file /system/bin/qemud exists or as
with sample 1 the existence of /system/bin/busybox helps detect specific envi-
ronments.

Lastly, the presence of specific installed packages can be leveraged to make
assumptions about the runtime environment. The absence of the Google Service
Framework (com.google.android.gsf) constitutes an exception to the rule on
a bare metal device. However, the AVD does not have its own version preinstalled
making the query for this framework a valid choice. In addition the overall num-
ber of installed packages is revealing as well. An application can query installed
packages through the PackageManager. Finding only packages from the domains
com.android and com.google on a device reveals a bogus environment as a nor-
mal user would install packages from several other domains.

The Dynamic artifacts we encountered often leveraged the reactions to cer-
tain stimuli given by the application at runtime to ascertain whether the under-
lying device is an emulator. Although this sometimes can be handled through
a value lookup mechanism a more stable solution to test dynamic artifacts at
runtime is given through error handling. To hide malicious logic through error
handling an application could either try to access interfaces or runtime resources
unavailable in an emulator or try to trigger an exception only on bare metal
devices. Accessing resources unavailable inside an AVD will trigger an excep-
tion preventing code after the access request from being executed. Exceptions
created only on bare metal devices allow malware authors to place exploitation
logic inside the exception handling routine, leading to the same result as above.
This blurs the line between regular and evasion logic and is harder to detect,
especially through static analysis techniques.

Amongst the analyzed samples the connectivity interfaces WifiManager and
BluetoothManager were frequented to detect a bogus environment dynamically.
By default the emulator does not emulate the connectivity interfaces, meaning
no other Wifi networks can be encountered around the device and the number
of saved Wifi networks is zero. Samples used this to detect emulation if no saved
Wifi networks were present and a scan request for Wifi networks came back
empty or raised an exception. The BluetoothManager was used to retrieve the
Handle for a bluetooth adapter used to interact with other bluetooth devices.
Google’s AVD does not emulate a bluetooth interface, hence the bluetooth
adapter returned is a null Object and raises a NullPointerException if used.
Applications can also abuse the emulated network connection itself. Specifically
the emulators inability to forward ICMP packets can easily be used for detection.

The dynamic counterpart to the static query whether certain packages are
installed is the interaction with those packages. Specifically the interaction with
Googles’ own PlayStore allows the detection of an emulator since by default
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only the bare minimum of applications are installed, excluding Google Play and
as previously mentioned even the Google Services Framework. Interaction with
unavailable services and applications, such as an intent trying to start the Play-
Store, causes an exception which some of the analyzed samples used to display
a benign behavior should an exception occur. Additionally, any action requir-
ing a fully set up Google Account will fail as emulators are not set up with
an account by default. Google Cloud Messaging is an exemplary service that
requires a registered Google account to set up a Cloud Messaging id, also failing
with an exception if no account has been set up. Root usage can prove helpful as
well in distinguishing emulators from real devices. Specifically the “su” binary
was used by some samples to try and gain superuser privileges. If no additional
privileges were acquired by the application the execution path did not change
and the additional malicious actions were not executed.

The last category we will present are sensor-related evasion techniques. The
average Android device comes outfitted with several sensor types fitting the
broad categories “Motion Sensors”, “Environmental Sensors” and “Position Sen-
sors”. Similar to the connectivity interfaces the AVD does not emulate all sen-
sors. We compared a LG Nexus 5X emulator to its bare metal counterpart and
found 16 sensors emulated on the AVD while the actual model posses 25 sensors,
excluding location sensors. A query about the sensor name reveals “Goldfish-*”
(the wildcard represents the sensor name, e.g., Goldfish-Accelerometer for an
accelerometer) as opposed to real devices that offer the vendors canonic name,
e.g., “BMI160 accelerometer”. Another conspicuous detail is that the emulators’
sensors all have one of two values as the sensors’ vendor, either “The Android
Open Source Project” or “AOSP” while bare metal devices feature an existing
company, for example “Bosch”. Trying to interact with sensors that are not
available will lead to exceptions as well as using services that depend on the
existence of certain sensors. We discovered malware in our dataset that uses the
LocationManager for this purpose. A request to register a LocationListener
results in an Exception on emulators leading to benign behavior.

Current Android Virtual Device Development. The different techniques
we discussed were used by our malware samples to display a benign behavior
in case an emulated environment was detected. These techniques rely on either
differences in the execution environment or differences in the system behavior
during execution. To increase the resilience of emulators against detection these
differences can be addressed by closing the gap between bare metal devices and
emulators. This would work to our advantage by reducing the false positive rate
for our approach.

Most static artifacts can be addressed through changes in the installation
images for the AVD. For example, the hard coded telephony values can be ran-
domized and the build properties can be modeled to simulate a real device
either by changing them directly or hooking the methods used to query them [4].
Progress in bridging the gap between emulators and bare metal devices is also
made by the Android Studio developers in order to improve the testing con-
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ditions for application authors. Versions of Android Studio newer than 2.3.2
started to feature AVD images including the GSF, GAPPS and Google Play,
complementary to the system images without GSF. Dynamic artifacts can also
be emulated but would require more effort in specific cases. A subset of device
sensors is already emulated by the AVD and allows for event input, e.g., fake
location providers would allow location spoofing and recoded series of events can
simulate a moving device.

6.3 Limitations

Our detection approach relies on identifying differences between the execution
of samples in bare metal and an emulator. Therefore, if execution does not reach
the code with anti-analysis features, divergences cannot be observed. Insuffi-
cient code coverage is a common problem for dynamic analysis systems, as only
executed behavior is usually analyzed. To exploit this, malware can delay the
execution of anti-analysis code, or can only execute anti-analysis code after a
series of complex GUI interactions that automatic interaction tools are unlikely
to reach.

Some malware may be able to detect both environments as analysis sys-
tems, because despite the bare metal environment being more similar to a real
device, there are still differences that can be exploited, such as information
about the user’s behavior (e.g., browsing history and SMS history) and user
data. Miramirkhani et al. analyzed these so-called wear-and-tear artifacts for
Windows-based operating systems and their viability for analysis environment
detection is considered very high because emulators and sandboxes are too “spot-
less”, meaning virtually no user data and signs of usage can be detected [19].

When tracing back the origin of some behavior executed in bare metal, we
may find some entry point whose source we cannot identify. In these cases we
compare this untraced entry point with all instances of the same entry point in
the emulated environment. In some cases, this may lead to wrong conclusions.
Furthermore, differences in the systems may lead to the execution of different
actions that are not related to evading analysis or to the execution of equivalent
actions in both systems, but that are considered different in our behavior model.
This is the general problem that introduces false positives, e.g., Lumus flagging
Sample 3 and Sample 5 as evasive. Also, sources of non-determinism that we do
not currently handle may lead to the execution of the same high-level behavior,
but different actions according to our model. This is the problem that resulted in
Lumus flagging Sample 7 as evasive. This malware randomly selects the domain
name to access from a predefined list, so the domain accessed in bare metal and
emulator were different, but the same code path was executed in both cases.

Lastly, the introduction of Google’s SafetyNet Attestation API poses a threat
to most dynamic analysis systems. The SafetyNet Attestation API allows an
application to assess the security and compatibility of the Android environments
in which the application is executed. The attestation is handled off-device by
Google’s servers after specific environmental data from the device is collected
and the result is sent to any server specified by the malware’s author. This allows
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malware to implement easy to use server-side runtime environment checks and
even application tamper detection.

7 Related Work

Researchers have presented several techniques [9,18,22,29] that Android mal-
ware may use to evade detection by making static analysis harder or by cir-
cumventing dynamic analysis. Matenaar and Schulz [18] present a method for
an app to identify if it is executing inside QEMU, the basis of the Android
emulator. Vidas and Christin [29] present anti-analysis techniques based on
Android APIs, system properties, network information, QEMU characteristics,
performance, hardware and software components. Petsas et al. [22] demonstrate
anti-analysis techniques based on Android APIs, system properties, sensors and
QEMU characteristics. Instead of manually identifying differences between real
and emulated devices, Jing et al. [9] developed Morpheus, a framework that auto-
matically generates heuristics that can identify, based on files, system properties
and Android APIs.

Systems that automatically identify malware equipped with anti-analysis
techniques have been developed for Windows [2,11–13,15]. Balzarotti et al. [2]
propose recording the system calls executed by a sample in a reference envi-
ronment and replaying the monitored system calls in an emulator to identify
if the observed behavior is different. Lindorfer et al. [15] analyze malware sam-
ples in different environments and identify differences in the observed actions.
Barecloud [12] is a system that dynamically analyzes malware in four different
environments and detects evasive malware by comparing the reports provided
by these systems in a hierarchical approach. Kolbitsch et al. [13] detect and
mitigate malicious programs that stall before executing their malicious behavior.
Malgene [11] combines sequence alignment of system call traces, obtained from a
bare metal and an emulated environment, with taint tracking to identify evasion
signatures of evasive malware.

8 Conclusions

In this paper, we presented Lumus, a novel approach to identify evasive Android
malware by comparing its execution on a bare metal analysis system and on an
emulated analysis system. For each action executed only in bare metal, Lumus
identified the basic cause why it was not successfully performed in the emu-
lated environment, differentiating the cases in which there was evasion from the
cases in which there was some analysis problem. Our experiments showed that
our approach is much more effective for detecting Android malware with anti-
analysis features compared to attempting to directly apply existing Windows-
based approaches used to detect evasive malware. We analyzed 1,470 malware
samples, from which our technique identified 192 as evasive. We presented
detected evasion techniques after manually analyzing the samples.



64 V. Afonso et al.

Appendix - Action Types and Its Operations
and Arguments

Behavior is represented by actions, where each action is a tuple a = (action type,
operation, argument), and action type is one of {Network, File, Intent, Exec,
Phone, Dex, Billing, Multimedia}. Action types, as well as its operations and
arguments are described below.

Network. For network related actions, operation is one of {INET, UNIX,
NETLINK, BLUETOOTH}. INET operations represent TCP and UDP con-
nections and argument is the destination. Since multiple resolutions of the same
DNS name may result in different IP addresses, we consider two actions the
same if they use the same IP address or the same DNS name as destination.
UNIX operations represent connections to UNIX sockets and the argument is
the filesystem path used. BLUETOOTH operations represent the use of the
Bluetooth device and the argument is the operation performed with this device.
Lastly, NETLINK operations represent connections using NETLINK sockets and
the argument used is the protocol parameter passed to the socket.

File. The monitored operations on files are WRITE and DELETE, and the
argument of both is the file path.

Intent. Intent-related operations include ACTIVITY, SERVICE, BROAD-
CAST and ALARM. The argument for all these operations is the “action” argu-
ment of the Intent or the destination class of the Intent. ALARM operations
refer to the use of AlarmManager to send Intents.

Exec. This action type represents the launch of the execve system call, which is
used by the API methods ProcessBuilder.start and Runtime.exec. The argument
used is the name of the executable file being invoked.

Phone. This action represents the use of phone capabilities. We currently con-
sider only one operation of this type (sending SMS messages); the argument is
the destination number of the message.

Dex. This action type represents the use of dynamic code loading and its argu-
ment is the path of the file being loaded.

Billing. This action represents the use of the billing functionality; the argument
is the type of action performed.

Multimedia. The operations included in this action type are CAMERA,
AUDIO and WAKELOCK. The argument in these cases is the type of action
being performed, which includes taking pictures, recording videos, recording
audio, or acquiring wake locks.
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