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Abstract. In many privacy-preserving protocols, protection of the
user’s identity, called anonymity, is a desirable feature. Another issue
is that, if a signed document is leaked then anyone can be convinced of
the authenticated data, which is strictly not allowed for sensitive data,
instead the authentication only by a designated receiver is recommended.
There are many scenarios in real life, for example e-auction, where both
the functionalities– anonymity and designated verification are required
simultaneously. For such an objective, in this paper we introduce a com-
pact scheme of identity-based strong designated verifier group signature
(ID-SDVGS) by combining the good features of strong designated verifier
signature and group signature in ID-based setting. This scheme provides
anonymity to the signer of a designated verifier signature with the fea-
ture of the revocation of signer’s identity in case of misuse or dispute.
Moreover, our scheme fulfils all the security properties of the individual
components. We have obtained an ID-based instantiation of the generic
group signature given by Bellare et al. in Eurocrypt 2003, and have pro-
posed our scheme on that framework. To the best of our knowledge, this
is the first construction of ID-SDVGS.

1 Introduction

There are numerous cryptographic protocols made up by combination of different
primitives to achieve desired features for required applications. But it is impor-
tant that a scheme designed for an optimal solution should not render additional
security breaches. This work attempts to construct a cryptographic solution for
a situation where authentication is desired only by the authorized receiver while
protecting identity of the sender. In cryptography, anonymous signatures offer
the anonymity of signer, while the designated verifier signatures (DVS) offer
authorised verification with the property of non-transferability of the verifica-
tion. Achieving signer’s anonymity in a DVS is crucial in many application.
Unfortunately, this issue has not been widely addressed and this functionality
(anonymity) has not been achieved yet for such a signature (DVS) on identity
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(ID)-based setting with achieving all the security properties. In this paper, we
come up with a secure cryptographic construction of ID-based strong designated
verifier signature which provides anonymity to the signer.

Designated verifier signatures [15] belong to special class of digital signature,
which enables the signer to sign a document for an authorised recipient. In such
signature, the verifier can validate the authenticity of the signature without
being able to transfer the conviction to a third party. Group signature [7] is a
candidate tool for construction of an anonymous signature with the property
of revocation of signer’s identity when required. In a group signature scheme
any member of the group can sign on behalf of the group and the signature can
be verified by a common public key of the group. There is a group manager
who holds an opening key by which he can open the identity of the signer,
for a given signature. However, there are situations where both the properties
i.e. authorised verification and signer’s anonymity are required together. In this
paper we present an ID-based strong designated verifier group signature (ID-
SDVGS) scheme, which fulfils both the above properties in a single compact
construction.

1.1 Related Work

Strong Designated Verifier Signature. The idea of designated verifier sig-
nature (DVS) was first introduced in 1996 by Jakobsson et al. [15]. In the DVS
schemes the property of strongness was first achieved by Saeednia et al. [23]. The
first ID-based strong designated verifier signatures (ID-SDVS) scheme is due to
Susilo et al. [24] which can be viewed as an ID-based variant of [23]. Lipmaa
et al. [19] discussed an issue of delegatablity towards the security of SDVS. To
address the issue, Zhang et al. [25] proposed a non-delegatable ID-SDVS scheme.
But Kang et al. [16] observed a security flaw in the strongness property of [25]
and proposed another scheme with security guarantees, however, it was observed
in [18] that the signature in [16] is universally forgeable. Another variant of ID-
SDVS [17] was presented to address the issue in the short ID-SDVS of [14], but
they did not address various security properties of an SDVS, moreover their
scheme has been examined to be universally forgeable in [10].

Group Signature. The idea of group signature is due to Chaum and van
Heyst [7]. In 1997, Park et al. [22] presented the first ID-based group signature
scheme. In 2000, Ateniese et al. [1] proposed first practical and provably secure
coalition-resistant construction for group signature scheme based on knowledge
proof signature. In 2003, Bellare et al. [2] analysed security properties of group
signature and proposed a generic construction of group signature. They captured
important properties including anonymity and traceability in their BMW model
of security in this paper. Bellare et al. [3] later addressed the securities also for the
dynamic group structure. Motivated by the BMW model [2] and its variant [5],
Boyen and Waters [6] proposed compact group signature in the standard model
in bilinear groups by combining provably secure hierarchical signature and the
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Non-Interactive Zero Knowledge (NIZK) proof [13]. In the existing literature, the
schemes [8,9,11] are similar in many contexts to the presented work. However, in
[8] the anonymity has been realised by the ring signature which has no provision
of identity revocation of the actual signer, also we have addressed more security
properties like strongness with compare to [8]. In contrast to the schemes [9,11],
ours is on the ID-based setting which meets all the requirements for an effective
enterprise key management system. Moreover our scheme qualifies more security
properties like unverifiability, non-transferability, strongness etc. Though the
property ‘non-transferability’ is defined in [11], we concretely show that our
scheme actually achieves it.

1.2 Contribution

Though there are signature schemes in isolation like ID-based signature, group
signature, strong designated verifier signature etc., yet for many applications,
there is need of a compact single signature which can address properties of all
these signatures in one algorithm. We provide a rigorous construction of ID-
based strong designated verifier group signature to achieve it. Security of our
construction relies on the standard assumptions, the decisional bilinear Diffie-
Hellman (DBDH) assumption and the decisional linear (DLIN) assumption. The
proposed scheme is suitable for the cloud-based electronic health record (EHR)
where patients require access to all their medical records in a fine-grained secure
way, as discussed in [9]. Our scheme also enjoys application in biometric authen-
tication and identity-management as mentioned in [11].

1.3 Outline of the Paper

In Sect. 2, we introduce some related mathematical definitions, problems and
assumptions. In Sect. 3, we present the formal definition of an ID-based strong
designated verifier group signature scheme and a formal security model for it.
Our proposed scheme is presented in Sect. 4. Lastly in Sect. 6 we briefly conclude
the outcomes of the paper presented in Sect. 4. In Sect. 5 we analyze the security
of the proposed scheme.

2 Preliminaries

In this section, we introduce the notations used in the paper, some relevant
definitions, computational problems and hardness assumptions.

A probabilistic polynomial time (PPT) algorithm is a probabilis-
tic/randomized algorithm that runs in time polynomial in the length of input.
We denote by y ← A(x) the operation of running a randomized or deterministic
algorithm A with input x and storing the output to the variable y. If X is a set,
then v

$← X denotes the operation of choosing an element v of X according to the
uniform random distribution on X. We say that a given function f : N → [0, 1]
is negligible in n if f(n) < 1/p(n) for any polynomial p for sufficiently large
n [20]. For a group G and g ∈ G, we write G = 〈g〉 if g is a generator of G.
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Definition 1 (Bilinear Map). Let G1 be an additive cyclic group with gen-
erator P and G2 be a multiplicative cyclic group. Let both the groups are of the
same prime order q. Then a map e : G1 × G1 → G2 is called a cryptographic
bilinear map if it satisfies the following properties.

Bilinearity: For all a, b ∈ Z
∗
q , e(aP, bP ) = e(P, P )ab, or equivalently, for all

Q,R, S ∈ G1, e(Q+R,S) = e(Q,S)e(R,S) and e(Q,R+S) = e(Q,R)e(Q,S).
Non-Degeneracy: There exists Q,R ∈ G1 such that e(Q,R) �= 1. Note that

since G1 and G2 are groups of prime order, this condition is equivalent to the
condition g := e(P, P ) �= 1, which again is equivalent to the condition that
g := e(P, P ) is a generator of G2.

Computability: There exists an efficient algorithm (viz. Miller’s algorithm [21])
to compute e(Q,R) ∈ G2 for all Q,R ∈ G1.

Definition 2 (Bilinear Diffie-Hellman Problem). Given a security param-
eter λ, let 〈q, e : G1 × G1 → G2, P, g〉 ← B(λ). Let BDH : G1 × G1 × G1 → G2

be a map defined by BDH(X,Y,Z) = ω where X = xP, Y = yP, Z = zP and
ω = e(P, P )xyz.

The bilinear Diffie-Hellman problem (BDHP) is to evaluate BDH(X,Y,Z)

given X,Y,Z
$← G1. (Without the knowledge of x, y, z ∈ Zq – obtaining x ∈ Zq,

given P,X ∈ G1 is solving the discrete logarithm problem (DLP)).

Definition 3 (Decisional Bilinear Diffie-Hellman Problem). Given a
security parameter λ, let 〈q, e : G1 × G1 → G2, P, g,X, Y, Z〉 ← C(λ). Let

ω
$← G2. The decisional bilinear Diffie-Hellman problem (DBDHP) is to decide if

ω = BDH(X,Y,Z).

That is, if X = xP, Y = yP, Z = zP , for some x, y, z ∈ Zq, then the DBDHP is
to decide if ω = e(P, P )xyz.

Definition 4 (Decisional Bilinear Diffie-Hellman Assumption). Given
the parameters mentioned in the above Definition 3 of DBDHP, the decisional
bilinear Diffie-Hellman assumption (DBDHA) states that, for any PPT algo-
rithm A which attempts to solve DBDHP, its advantage AdvD(A), defined as

|Pr[A(q, e : G1 × G1 → G2, P, g,X, Y, Z,BDH(X,Y,Z)) = 1]−
Pr[A(q, e : G1 × G1 → G2, P, g,X, Y, Z,ω) = 1]|

is negligible in λ.

Definition 5 (Decisional Linear Problem). Given a security parameter
λ, let the instance ρ = (q,G1, G2, P, aP, bP, arP, bsP, Yβ) ← DDLIN

β (λ). Where
a, b, r, s ∈ Fq. The decisional linear problem (DLINP) is to decide whether β = 0
or 1, where Y0 := (r + s)P , and Y1 ← G1. Thus the DLINP is to decide if

Yβ = Y0 or Yβ = Y1.
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Definition 6 (Decisional Linear Assumption). Given the parameters men-
tioned in the above Definition 5 of DLINP, the decisional linear assumption
(DLINA) states that, for any PPT algorithm A which attempts to solve DLINP,
its advantage AdvDLIN

A (λ), defined as

|Pr[A(Y0, ρ) = 1|ρ ← DDLIN
0 (λ)] − Pr[A(Y1, ρ) = 1|ρ ← DDLIN

1 (λ)]|

is negligible in λ.

2.1 Non-Interactive Zero-Knowledge Proof [12]

A Non-Interactive Zero-Knowledge (NIZK) proof [12] is a well studied system
in public key cryptography. Due to page constraint we omit the details here. In
the full version of this paper, a brief discussion on it has been mentioned.

3 Identity-Based Strong Designated Verifier Group
Signature (ID-SDVGS) Scheme

We present here the formal definition of an ID-Based Strong Designated Verifier
Group Signature (ID-SDVGS) scheme and formalise a security model for it. We
rely on the strong one-time signature (SOTS) scheme [12]. Our scheme achieves
the CMA-unforgeability i.e. secure against one-time chosen message attack, fol-
lowing the security notion of [12].

3.1 ID-SDVGS Scheme

In our ID-SDVGS scheme there is a group of n + 2 members, where i = 1, . . . , n
are the users with identity IDi who can generate signatures for a fixed designated
verifier V , there is a certificate issuing authority (CIA) who issues certificates
for the n users and assist them in joining the group. Additionally, there is a
group manager (GM) who holds a secret key and can revoke the identity of the
signer in case of dispute, without learning private keys of the users. Lastly, in
our ID-based setting there is a private key generator (PKG) who issues keys for
all the n+2 members of the group and for the designated verifier. The structure
of our ID-SDVGS scheme is as follows:

1. params ← DVGSetup(λ): On input security parameter λ, this algorithm gen-
erates the system’s public parameters params and a common reference string
(CRS) Σ. In all the algorithms from here onward, params will be considered
as an implicit input.

2. (QID, SID) ← DVGGen(ID): This is the Key Extraction algorithm run by the
PKG. On input user’s identity ID, the algorithm generates user’s (public key,
private key) pair (QID, SID).
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3. (Certi) ← DVGJoin((i, IDi),SIDK
): This algorithm is an interactive protocol

between the user, and the CIA. On input credentials (i, IDi) of the user i
and private key SIDK

of the CIA and SIDK
by SIDC

and also everywhere in
the paper, this algorithm generates user’s membership certificate Certi with
respect to its credentials.

4. σ̃ ← DVGSign(SOTS,SIDi , IDV , (i, IDi),Certi, IDGM,Σ,M): This is the Signa-
ture algorithm run by the signer. On input the SOTS [12], signer’s secret key
SIDi

, designated verifier’s identity IDV , signer’s credentials (i, IDi), signer’s
membership certificate Certi, group manager’s identity IDGM, CRS Σ and
the message M , this probabilistic algorithm finally generates an ID-SDVGS
σ̃ on message M .

5. b ← DVGVer(SOTS,SIDV ,QIDi ,M, σ̃): This is the Verification algorithm run
by the designated verifier. On input the SOTS [12], verifier’s secret key SIDV

the signer’s public key QIDi
, the message M and the ID-SDVGS σ̃, this deter-

ministic algorithm confirms whether the signature σ̃ is valid or invalid.
6. σ′ ← DVGTran(SOTS,SIDV ,QIDi ,M): This is the Transcript Simulation algo-

rithm run by the designated verifier. On input the SOTS [12], verifier’s secret
key SIDV , signer’s public keys QIDi and the message M this deterministic
algorithm outputs a valid ID-SDVGS σ̃′.

7. (i, IDi) ← DVGOpen(SOTS,SIDGM , σ̃): This is the Open algorithm run by
the group manager GM. On input SOTS, group manager’s secret key
gmsk = SIDGM , and signature σ̃ this deterministic algorithm outputs the
actual signer’s credential (i, IDi).

3.2 Security Model for ID-SDVGS Scheme

An ID-SDVGS scheme must satisfy the following security properties.

1. Correctness: The verification algorithm takes place properly for the cor-
rectly generated signature, i.e. if a signature on a message M is correctly
computed by a signer, then the designated verifier must be able to verify the
correctness of the signature, on the given message.

2. Unforgeability: It is computationally infeasible to construct a valid ID-
SDVGS signature without the knowledge of the private key of either the
signer or the designated verifier.

3. Unverifiability: It is computationally infeasible to verify the validity of an
ID-SDVGS signature without the knowledge of the private key of either the
signer or the designated verifier. We define below existential designated unver-
ifiability against an adaptive chosen message and adaptive chosen identities
attack.

Definition 7 (Unverifiability). An ID-SDVGS scheme is said to be exis-
tential designated unverifiable against adaptive chosen message and adaptive
chosen identities attack if for any security parameter λ, no PPT adversary
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A(qHi
, qJ , qE , qi, qV , εA(λ), t) which runs in time t has a non-negligible advan-

tage

AdvEDV-CID2-CMA2
ID-SDVGS,A (λ) := εA(λ) :=

|Pr[A(QID∗
i
, QID∗

V
,m∗,DVGSign(SID∗

i
,DID∗

i
,QID∗

V
,m∗)) = 1]

− Pr[A(QID∗
i
, QID∗

V
,m∗, σ∗) = 1] (1)

against the challenger B in the below security experiment:

1. Setup: B generates params for security parameter λ.
2. Oracle Queries: A may request: up to (a) qHi

, i ∈ N hash queries on its adap-
tively chosen identities and messages (b) qE key extraction queries on its
adaptively chosen identities (c) qJ join queries on its adaptively chosen identi-
ties (d) qi signature queries on its adaptively chosen messages and adaptively
chosen identities (e) qV verification queries on signatures on its adaptively
chosen messages m and adaptively chosen identities; and obtain responses for
each of its query from B who acts as a random oracle.

3. Challenge: At some point, A outputs a message m∗ and identities ID∗
i of the

signer and ID∗
V of the designated verifier on which it wishes to be challenged

such that A has never submitted ID∗
i or ID∗

V during the key extraction queries.
The challenger B responds with a “signature” σ∗ and challenges A to verify
if it is valid or not.

4. Query Phase 2 : A continues its queries as in Query Phase 1 with an additional
restriction that now it cannot submit a verification query on σ∗.

5. Output : Finally, A outputs a bit b∗ which is 1 if the signature is valid and 0
if invalid.

4. Non-transferability: Given a signature σ on message m, it is infeasible for
any PPT adversary A to decide whether σ was produced by the signer or by
the designated verifier, even if A is also given the private keys of the signer
and the designated verifier. In other words, it is impossible for the designated
verifier to prove (i.e. to convince) to an outsider that the signature is actually
generated by the signer.

Definition 8 (Non-transferability). An ID-SDVGS scheme is said to achieve
non-transferability if the signature generated by the signer is computationally
indistinguishable from that generated by the designated verifier, that is,

σ̃ ← DVGSign(SOTS,SIDi , IDV , (i, IDi),Certi, IDGM,Σ,M)
≈ σ′ ← DVGTran(SOTS,SIDV ,QIDi ,M).

5. Strongness: Let σ̃ ← DVGSign(SOTS,SIDi , IDV , (i, IDi),Certi, IDGM,Σ,M) be
a signature on a message M from a signer i to a designated verifier V . Strong-
ness requires that σ̃ could have been produced by any other third party i∗

for some designated verifier V ∗ other than V .
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Definition 9 (Strongness). An ID-SDVGS scheme is said to be strong desig-
nated if given σ̃ ← DVGSign(SOTS,SIDi , IDV , (i, IDi),Certi, IDGM,Σ,M), anyone,
say V ∗, other than the designated verifier V can produce identically distributed
transcripts that are indistinguishable from those of σ̃ from someone, say i∗,
except the signer i. That is,

σ̃ ← DVGSign(SOTS,SIDi , IDV , (i, IDi),Certi, IDGM,Σ,M)
≈ σ̃ ← DVGSign(SOTS,SID∗

i
, ID∗

V , (i∗, ID∗
i ),Cert∗i , IDGM,Σ,M).

6. Anonymity: By anonymity we mean that no one except the group man-
ager should be able to determine the identity of the original signer from the
dynamic group. The formal definition is provided as follows:

Definition 10 (Anonymity). Let Aano be an adversary against the anonymity
of our ID-based strong designated verifier group signature scheme (ID-SDVGS).
An ID-SDVGS scheme is said to be anonymous if for any security parameter λ,
no probabilistic polynomial time adversary Aano(qHi

, qJ , qE , qO, εA(λ), t) which
runs in time t has a non-negligible advantage

AdvANO
ID-SDVGS,Aano

(λ) = |Pr[ExptANO−1
ID-SDVGS,Aano

(λ) = 1]

− Pr[ExptANO−0
ID-SDVGS,Aano

(λ) = 1] (2)

in the security below security experiment:

1. Setup: On input security parameter λ, the challenger B generates the group
public key gpk, the issuing key ik and the opening key ok.

2. Oracle Queries: The adversary A may request up to (a) qHi
, i ∈ N hash

queries qE key extraction queries qJ join queries, as described in the security
experiment of the unverifiability property. Here, A is also allowed to pose
up to qChb

queries to the challenge oracle on input IDi0 , IDi1 of identities and
a message M to obtain a signature of the message under the signing key of
IDib for b ∈ {0, 1}, and up to qO open queries to the opening oracle on input
a message M and a signature σ̃ in order to obtain the output of the open
algorithm.

3. Output: At some point, A outputs a credential (i∗, ID∗
i ) of the signer.

4. Solution to DLINP : Challenger outputs a solution of DLINP.

7. Traceability: Traceability is an underlying property of group signature
schemes. The property requires that in case of malicious signature, signer’s
identity should be recoverable by the group manager. In other words, it means
that no subgroup of members, even the whole group should be able to gen-
erate a valid signature which cannot be opened by the manager in case of
misuse and cannot be traced back to the malicious signer or to a member of
the coalition.

8. Non-frameability: By Non-frameability we denote the property which
implies that an honest user cannot form a valid signature which can be opened
by the group manager and can be traced back to another user which has not
generated the signature.
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4 Proposed Scheme

In this section, we present our proposed ID-SDVGS. As described in Sect. 3, the
proposed scheme consists of the following seven algorithms: DVGSetup, DVGGen,
DVGJoin, DVGSign, DVGVer, DVGTran and DVGOpen.

DVGSetup: On input security parameter λ, this algorithm generates the sys-
tem’s public parameters params = (λ,G1, P,G2, q, e,H1,H2,H3,H4,H5,
H6,H7,H8) where G1 is an additive cyclic group of prime order q with genera-
tor P , G2 is a multiplicative cyclic group of prime order q, e : G1×G1 → G2 is
a bilinear map a defined in Sect. 2 and H1 : {0, 1}∗ → G1, H2 : {0, 1}∗×G1 →
Z

∗
q , H3 : G1 × G1 × G1 → Z

∗
q , H4 : {0, 1}∗ × G1 × G1 × G2 → Z

∗
q ,

H5 : G1×G1 → Z
∗
q , H6 : {0, 1}∗ ×G1×G1×G2 → {0, 1}λ, H7 : G2 → {0, 1}λ

and H8 : Z∗
q → {0, 1}λ are secure cryptographic hash functions. This algo-

rithm also generates a CRS following the NIZK construction [12] as:

– choose xe, ye
$← Z

∗
q ;

– compute fe = xeP, he = yeP ;
– choose rc, sc

$← Zq;
– compute c1 = Efe,he

(P ; rc, sc) = (rcfe, sche, (rc + sc)P );
– run the key generation algorithm of [12] and output commitment key

ck ← K(q,G1, G2, e, P ).

The CRS is Σ = (pk, fe, he, c1, ck). The simulated ciphertext is computed by
the simulator as c1 = Efe,he

(1; rc, sc). The simulator outputs (Σ, τ, ξ), where
τ = (sk, rc, sc) is a trapdoor key and ξ = (xe, ye) is extraction key.

DVGGen: Everyone – the group manager (GM), the CIA, the group members {i =
1, 2, . . . , n} and the designated verifier V submit their respective identities

IDGM, IDC , IDi and IDV to the PKG. The PKG chooses a random s
$← Zq, sets

Ppub = sP as system’s public value and keeps the master secret s confidential.
Further for a user with identity ID ∈ {0, 1}∗, the PKG computes

– public key as QID = H1(ID) ∈ G1 and
– corresponding private key as SID = sQID ∈ G1.

Finally, following the above extraction PKG shares the private keys to the cor-
responding users via a secure channel.

DVGJoin: To join the group, a user provide its credential (i, IDi) to the KIA.
The KIA outputs a certificate Certi, for the user i, by signing its credential
(i, IDi) as following:

– chooses t
$← Z

∗
q ; and computes

– T1 = tP ∈ G1; h2 = H2(i||IDi, T1); T2 = tPpub + h2SIDK
.

Finally, sends the Certi = (T1, T2) to the user i as its membership certificate of
the group. On receiving the certificate, the member can check its authenticity
by checking the equality e(T2, P ) = e(T1 + h2QIDK

, Ppub).
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DVGSign: Prior to sign any message for the designated verifier, the group mem-
ber runs the key generation algorithm of SOTS [12] to generate the ver-
ification and private key pair (vksots, sksots), namely ((fs, hs), (xs, ys)) ←
KeyGensots(q,G1, G2, e, P ) where vksots = (fs, hs) = (xsP, ysP ) and sksots =

(xs, ys), for xs, ys
$← Z

∗
q .

Further, using the secret key SIDi , the user with identity IDi generates a signature
on verification key vksots as follows:

– chooses x
$← Z

∗
q and computes

– V1 = xP ∈ G1;
– h(3,vksots) = H3(vksots, V1) = H3(fs, hs, V1);
– V2 = xPpub + h3,vksotsSIDi

∈ G1;
– V = e(V2, QIDV ) ∈ G2.

The signature on vksots is σ = (V1, V2, V ). The member encrypts the above
signed verification key σ along with its credential (i, IDi) and membership cer-
tificate certi = (T1, T2) motivated by the Boneh-Franklin CCA-secure encryption
scheme [4], using group manager’s public key QIDGM as follows:

– chooses γ
$← {0, 1}λ,

– computes r1 = H4(γ||i||IDi, σ) and r2 = H5(T1, T2), hσ = H6(i||IDi, σ).
– Computes the ciphertext Ct as the following tuple:

Ct = 〈A,B,C,D,E〉
=

〈
r1P, r2P, hσ ⊕ H7

(
gr1
IDGM

)
,H8(r2) ⊕ γ, γ ⊕ H7

(
gr2
IDGM

)〉

where gIDGM = e (QIDGM , Ppub) ∈ G2. Furthermore, the user provides a proof of
satisfiability of pairing product equations and the statement that (i||IDi, certi, σ)
is a plaintext of Ct corresponding to the technique in [12], such that

π ← P (Σ, Sgs(gpk, vksots, Ct),Wgs(gpk, vksots, pki, certi, σ,R))

where Sgs is a set of pairing equations which are used to verify the group signa-
ture (as used in the DVGVer below), Wgs is the witness of the NIZK proof and
R = (r1, r2) is randomness used in the encryption.

Finally the member forms a strong one-time signature (SOTS) σsots on mes-
sage M , ciphertext Ct, proof π and the key vksots using SOTS’ signing key sksots.
According to the signing algorithm of SOTS from [12], the signature is formed
as follows: Choose r ← Z

∗
q and compute

σsots = (r, s) = (r, (xs(rs − r) + ysss − H(M ||vksots||Ct||π))/ys).

where ‘H’ is some suitable hash function. The final signature is σ̃ =
(Ct,π, σsots, vksots).
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DVGVer: The verification proceeds in two steps.
1. Firstly, receiver of the signature σ̃ runs the verification algorithm of

SOTS-scheme from [12] such that

cs = H (M ||vksots||Ct||π) P + rfs + shs

2. Secondly, he runs the verification part of the NIZK proof

V (Σ, Sgs(gpk, vksots, Ct)) .

That is, he checks the satisfiability of the following bilinear equations:

e(T2, P ) = e(T1 + h2QIDK
, Ppub),

V = e(V1 + h(3,vksots)QIDi
, SIDV )

where the first equation satisfies the witness represented by the certificate and
the second equation validates the signature σ = (V1, V2, V ) of the i-th member of
the group on the verification key vksots, for designated verifier V . The correctness
of the equations are described in Sect. 5. Finally, satisfying all the above proofs
and equalities, the designated verifier validates truthfulness of the signature σ̃.

DVGTran: It can be evidenced that upon receiving a signature from the group
member i possessing identity IDi, the designated verifier V can simulate the
signature using its secret key by following the signature algorithm of the
scheme. It is sufficient here to show that a designated verifier can generate
an identical signature on vksots as follows:

– chooses x′ $← Z
∗
q and computes;

– V ′
1 = x′P ∈ G1;

– h′
(3,vksots)

= H3(vksots, V
′
1) = H3(fs, hs, V

′
1);

– V ′
2 = x′Ppub + h′

3,vksots
SIDV ∈ G1;

– V ′ = e(V ′
2 , QIDi

) ∈ G2;
– the signature tuple is (V ′

1 , V
′
2 , V

′).

It follows from the correctness of the scheme that the above simulation is identical
to the signature generated by the user i for the verifier V

V ′ = e(V ′
2 , QIDi

) = e(V ′
1 + h′

3,vksots
QIDV , SIDi

)

DVGOpen: On input group manager’s secret key gmsk, group public key gpk,
message M , signature σ̃ = (Ct,π, σsots, vksots), the group manager verifies
the signature and returns 0 if V (Σ, Sgs(gpk, vksots, Ct)) = 0. Otherwise it
decrypts Ct using his gmsk = SIDGM as follows:

– set

Ct = 〈A,B,C,D,E〉
=

〈
r1P, r2P, hσ ⊕ H7

(
gr1
IDGM

)
,H8(r2) ⊕ γ, γ ⊕ H7

(
gr2
IDGM

)〉
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– compute C ⊕ H7

(
e(SIDGM , A)

)
= hσ = H6(i||IDi||, σ),

– compute E ⊕ H7

(
e(SIDGM , B)

)
= γ,

– compute D ⊕ γ = H8(H5(T1, T2)),
– set r1 = H4(γ||i||IDi, σ), r2 = H5(T ∗

1 , T ∗
2 ),

– check A = r1P and B = r2P . If not, reject the ciphertext.

Note that, GM can compute r1 for those identities from the list of users, which
satisfy hσ = H6(i||IDi||, σ), and select (T ∗

1 , T ∗
2 ) from the list of certificates which

satisfies D ⊕ γ = H8(H5(T ∗
1 , T ∗

2 )). Further, the GM perform the decryption
and output (i||IDi, σ, certi, σsots). Finally, he runs the verification algorithm of
SOTS-scheme and output i hence the IDi.

5 Analysis of the Proposed Scheme

5.1 Correctness of the Proposed Scheme

The correctness of the scheme follows since: if (T1, T2) is a correctly generated
certificate on user’s public key, (V1, V2, V ) is a valid signature on the verification
key vksots of the underlying strong one-time signature scheme and σsots is a valid
signature on a message M from a signer with identity IDi for a designated verifier
with identity IDV , it follows from the following equalities and proof:

e(T2, P ) = e(tPpub + h2SIDK
, P ) = e(T1 + h2QIDK

, Ppub);
V = e(V2, QIDV ) = e(xPpub + h(3,vksots)SIDi

, QIDV )
= e(xP + h(3,vksots)QIDi , SIDV ) = e(V1 + h(3,vksots)QIDi , SIDV );

as by the definition of gID in the signature protocol.
Further, the correctness of the SOTS signature follows from [12]. Further-

more, to achieve perfect correctness we provide completeness of our NIZK proof
below, which together with the correctness of the signature scheme completes
the security property of perfect correctness of our ID-SDVGS scheme.

Theorem 1. The non-interactive protocol of the underlying signature schemes
is a perfectly complete non-interactive zero-knowledge proof of the statement that
a member certificate is a signature on user’s public key.

Proof. According to the proof in [12], perfect completeness of our NIZK proof
follows from the NIZK proof for commitment to zero. We remember the val-
ues defined in DVGSetup algorithm: for randomly chosen xe, ye ← Z

∗
q , set

fe = xeP, he = yeP . For random values rc, sc a relation describing commitments
to 1 is given by R1 := {c1, rc, sc|c1 = Com(1, rc, sc) = (rcfe, sche, (rc + sc)P =
(c11, c12, c13)}. The proof is given by π1 = rcP . The verification of the proof
follows on input a commitment c1 if and only if e(P, rcfe) = e(π1, fe) and
e(c12, P ) = e(he, c13 − π). The latter equation follows, since the left side of
the equation is equal to e(c12, P ) = e(sche, P ) = e(scyeP, P ) and the right side
of the equation is equal to

e(he, c13 − π) = e(yeP, (rc + sc)P − rcP ) = e(yeP, scP ) = e(scyeP, P ).
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5.2 Unforgeability

Unforgeability of our scheme relies on the one-time CMA security of the under-
lying SOTS scheme. Thus, in the following we provide security proof of the
remained security properties, namely - unverifiability, non-transferability, strong-
ness, anonymity, traceability and non-frameability.

5.3 Unverifiability

We now prove that the proposed ID-SDVGS is strongly designated. That is, any
third party other than the signer and the designated verifier, cannot verify the
validity of a signature from a signer for a designated verifier with non-negligible
probability. We show that if there exists a PPT adaptive chosen message and
adaptive chosen identity algorithm which can verify the proposed ID-SDVGS,
then there exists another PPT algorithm which can use the earlier algorithm to
solve the DBDHP. In particular, we prove the following theorem:

Theorem 2. Given a security parameter λ, if there exists a PPT adversary
A(qH1 , . . . , qH8 , qE , qJ , qi, qV , εA(λ), t) which breaks the designated unverifiability
of the proposed ID-SDVGS scheme in time t with success probability εA(λ), then
there exists a PPT adversary B(t′, εB(λ)) which solves DBDHP with success
probability at least

εB(λ) ≥
(
1 − 1

q2

)(
1 − 1

q4

)(
1 − 2

qH1

)
qE+qV+qi

(
1 − 2

qH2qH1qH3qH4qH5

)
qi

(
1 − 2

qH3

)
qi+qV

( 2
qH2qH3(1 − qH3qH2)

)( 2
qH1(qH1 − 1)

)
εA(λ)

in time at most

t′ ≤ (qH1 + qH2 + qH3 + qH4 + qH5 + qH6 + qH7 + qH8 + qE + qJ + 3qi + qV )SG1

+ (qi + qV )Pe + qiOG1 + SG1 + SG2 + Pe + t

where SG1 , SG2 , OG1 , OG2 is the time taken for one scalar multiplication in G1

(resp. G2) and OG1 (resp. OG2) is the time taken for one group operation in G1

(resp. G2), and Pe is the time taken for one pairing computation.

Proof. Let for a security parameter λ, B is challenged to solve the DBDHP for
〈q, e : G1 × G1 → G2, P, aP, bP, cP,ω〉 where G1 is an additive cyclic group of
prime order q with generator P , G2 is a multiplicative cyclic group of prime order
q with generator e(P, P ), and e : G1 × G1 → G2 is a cryptographic bilinear map

as described in Sect. 2 and ω
$← G2. a, b, c

$← Z
∗
q are unknown to B. The goal of

B is to solve DBDHP by verifying if e(P, P )abc = ω using A, the adversary who
claims to forge our proposed ID-SDVGS scheme. In order to simulate public
parameters of our ID-SDVGS scheme, B sets QIDj

= aP for j ∈ {i,V , GM}
denoting the identity either of the group member, verifier or group manager. B
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simulates the security game for unverifiability with A by running the Setup and
by responding all hash queries Hi (i = 1, 2, ..., 8), join queries, key extraction
queries, signature queries and verification queries appropriately.

Output : After A has made its queries, it finally outputs a message M∗, an
identity ID∗

S of a signer and an identity ID∗
V of a designated verifier on which it

wishes to be challenged.
If A did not make H1-query for the identities ID∗

S and ID∗
V , then the prob-

ability that verification equality holds is less than 1/q2. Thus, with probability
greater than 1 − 1/q2, both the public keys were computed using H1-oracle
and there exist indices i, j ∈ [1, qH1 ] such that ID∗

S = IDi and ID∗
V = IDj . If

{i, j} ∈ RegList of registered entities, then abort.

Solution to DBDHP : Otherwise, B chooses a random r
$← Z

∗
q and T

$← G1;
sets V1 = xP ; sets h(3,vksots) = H3(vksots, V1) = H3(fs, hs, V1); V2 = xPpub +
h(3,vksots)SIDi

∈ G1; sets V = e(V2, QIDV ) = e(bP, cP )rωh; where he sets V1 = cP
and s = b, such that SIDi

= abP and challenges A to verify the validity of
the signature (V1, V2, V ). Then, the verification holds if and only if each of the
following equations holds

e(T2, P ) = e(T1 + h(3,i)QIDK
, Ppub), V = e(V2, QIDi

) = e(V1 + h(3,vksots)QIDV
, SIDi

),

gr1
IDGM

= e(r1P, SIDGM), gr2
IDGM

= e(r2P, SIDGM).

where

σ = e(V1 + h(3,vksots)QIDV , SIDi
) = e(cP + h3,vksotsabP, bPpub)

= e(rP, bPpub)e(haP, bPpub) = e(P, bPpub)re(aP, bPpub)h

= e(bP, Ppub)re(aP, bPpub)h = e(bP, cP )re(aP, bcP )h

= e(bP, cP )r(e(P, P )abc)h = e(bP, cP )rωh

⇒ ωh = (e(P, P )abc)h ⇐⇒ ω = e(P, P )abc

Then, from the above equation, B solves the DBDHP by simply returning the
response of A to the strongness challenge.

Probability Calculation: If B does not abort during the simulation then A’s
view is identical to its view in the real attack. The responses to H1-, H2-, H3-
and H4-queries are as in the real attack, since each response is uniformly and
independently distributed in G1 or in G2 and Z

∗
q respectively. The key extraction,

signature and verification queries are answered as in the real attack.
The probability that B does not abort during the simulation is

(
1 − 2

qH1

)qE+qV+qi(
1 − 2

qH3

)qi+qV (
1 − 2

qH1qH2qH3qH4qH5

)qi
.

The probability that A did H1-query for the identities ID∗
S and ID∗

V is
(
1 − 1

q2

)

(
2

qH1 (qH1−1)

)
.
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The probability that A issued H2-query and H3-query for the identities
ID∗

i , ID
∗
K is (

1 − 1
q4

)( 2
qH2qH3(1 − qH3qH2)

)
.

Clearly B’s advantage εB(λ) for solving the BDHP, that is, the total proba-
bility that B succeeds to solve BDHP, is the product of A’s advantage εA(λ) of
forging the proposed ID-SDVGS and the above three probabilities. Hence

εB(λ) ≥
(
1 − 1

q2

)(
1 − 1

q4

)(
1 − 2

qH1

)
qE+qV+qi

(
1 − 2

qH2qH1qH3qH4qH5

)
qi

(
1 − 2

qH3

)
qi+qV

( 2
qH2qH3(1 − qH3qH2)

)( 2
qH1(qH1 − 1)

)
εA(λ)

Time Calculation: It can be observed that running time of the algorithm B is
same as that of A plus time taken to respond to the hash queries, key extraction
queries, join queries, signature queries and verification queries, qH1 +qH2 +qH3 +
qH4 + qH5 + qH6 + qH7 + qH8 + qE + qJ + qS + qV . Hence the maximum running
time required by B to solve the BDHP is

t′ ≤ (qH1 + qH2 + qH3 + qH4 + qH5 + qH6 + qH7 + qH8 + qE + qJ + 3qi + qV )SG1

+ (qi + qV )Pe + qiOG1 + OG2 + SG2 + t

as B requires to compute one scalar multiplication in G1 to respond to H1,
H2,H3 and H4 hash query, one scalar multiplication in G1 to respond to key
extraction query and join query, three scalar multiplications in G1 to respond to
signature query, one scalar multiplication in G1 to respond to verification query;
one pairing computation to respond to signature query, one pairing computa-
tion to respond to verification query, one group operation in G1 to respond to
signature query, and, one scalar multiplication in G1, one scalar multiplication
in G2 and one pairing computation to output a solution of DBDHP.

5.4 Non-transferability

As described in Sect. 3, the property of non-transferability implies that the signa-
tures simulated by the designated verifier are indistinguishable from those that
he receives from the signer. In DVGTran of Sect. 4 (proposed scheme) it has been
already shown that we achieve this property in our scheme.

5.5 Strongness

To prove this property, we will show that if the i-th signer, with identity IDi, of
the group outputs V = Sig(SIDi

, QIDV , vksots) using his private key SIDi
and the

public key QIDV of the designated verifier V with identity IDV as its signature
on the verification key vksots during the DVGSign(SOTS,QIDV ,SIDi ,m), then the
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same value V can be generated using the private key SID∗
i

of a signer with
identity ID∗

i (other than the i-th signer) and the public key QID∗
V

of a designated
verifier with identity ID∗

V (other than the verifier V ). That is, we show that
V = Sig(SID∗

i
, QID∗

V
, vksots) (where QID∗

V
and SID∗

i
are defined as in the following)

since

V = e(V2, QIDV )
= e(xPpub + h(3,vksots)SIDi , tQID∗

V
) where QIDV = tQID∗

V

= e(xtPpub + h(3,vksots)tSIDi
, QID∗

V
)

= e(xPpub + x(t−1)Ppub + h(3,vksots)tSIDi
, QID∗

V
)

= e(xPpub + x(t−1)h(3,vksots)P
′
pub + h(3,vksots)tSIDi

, QID∗
V
)

(where P ′
pub = h−1

(3,vksots)
Ppub)

= e(xPpub + h(3,vksots)(x(t−1)P ′
pub + tSIDi

), QID∗
V
)

= e(xPpub + h(3,vksots)SID∗
i
, QID∗

V
)

= e(xP + h(3,vksots)QID∗
i
, SID∗

V
)

= e(V1 + h(3,vksots)QID∗
i
, SID∗

V
).

where SID∗
i

= x(t−1)P ′
pub + tSIDi

5.6 Anonymity

Theorem 3 (Anonymity). Our ID-SDVGS described above is anonymous if
DLIN assumption holds for G1.

Proof. According to the anonymity experiment in Definition 10 an adversary
against anonymity of our ID-SDVGS scheme has access to the following oracles:
key extraction oracle, join oracle, challenge oracle and opening oracle. Further-
more, Aano can issue hash queries to the four hash oracles. According to [12] we
are applying a hybrid argument to our proof technique. The consequence of that
is that it is sufficient to consider only the challenge oracle queries in order to
prove anonymity of the scheme.

Let b ∈ {0, 1} be a bit and IDi0 , IDi1 ,M is the input for the challenge oracle
query which produces a challenge signature as σ∗ ← DVGSign(gpk, gsk[ib],M).
Furthermore, we assume that Aano has access to all the opening outputs except
the one on input (M,σ∗). It also knows all the secret keys of the group members
as well as the issuing key for the certificate generation.

We simulate first the challenge oracle on input IDi0 . Following the proof
technique from [12], we amend the oracle that we receive the simulation-extractor
which we run in the setup algorithm in order to receive the common reference
string Σ. The output by the simulation-extractor is Σ = (pk, fe, he, c1, σ) where
c1 = Efe,he

(1; rc, sc) is the ciphertext which encrypts 1. In the challenge phase,
we have to simulate the NIZK proof π for the CCA-ciphertext Ct which encrypts
(i0||IDi0 , certi0 , σi0).
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Furthermore we note that it is impossible to reuse the verification key vksots
of the strong one-time signature scheme in any of the issued opening queries,
since the signature can be used only once. This leads to the conclusion that
the tuple (gpk, vksots, σ̃), where σ̃ = (Ct,π, σsots) is different from the challenge
tuple during the challenge signature formation. Therefore for the extraction of
the plaintext (pki, certi, σ) we use the knowledge extractor of the NIZK proof
instead of the group master secret key gmsk. The extraction works as follows:
given a proof π, the extraction algorithm uses extraction key ξ = (xe, ye) to
decrypt ciphertext Ct. From the perfect soundness of the used NIZK proof we
know that Ct encrypts either a satisfying assignment (pki, certi, σ) or it encrypts
1. Since Ct does not encrypt 1 it follows that it encrypts (pki, certi, σ) which
implies that Sgs is a satisfiable set and we get opening possible with satisfying
probability.

Since we are using a CCA-secure encryption procedure motivated by the
scheme in [4], we note that adversary’s advantage in winning the anonymity
experiment in Definition 10 is the same as if the ciphertext Ct would be encrypt-
ing 1 instead of (pki, certi, σ).

The same argumentation as above we can apply to the scenario where Aano

has access to the challenge oracle on input IDi1 , where the challenge consists of
the ciphertext encrypting 1 and the corresponding simulated proof π.

5.7 Traceability

Let σ̃ = (Ct,π, σsots, vksots) be a valid group signature on a message M . From
the perfect-soundness of the NIZK proof we know that Ct encrypts either a satis-
fying assignment (pk∗, cert∗, σ∗

sots), where the designated verification algorithm
on input (cert∗, σ∗

sots) outputs 1, or it encrypts 1. After running the opening
algorithm the output i corresponds to the registered challenge verification key
vk∗, or it aborts if no registration of the key took place. Consequently, the non-
registered verification key means that no honest signature took place on that
key vk∗ and the existing signature σ∗ must be a forgery. However this is not
possible due to the CMA-security of the underlying signature scheme.

5.8 Non-frameability

Let An-fra be an adversary against non-frameability property of our ID-SDVGS
scheme. The adversary outputs a valid signature σ̃ = (C,π, σsots, vksots) on
a message M . Furthermore he succeeds in opening procedure and outputs
(i||IDi||σ, cert∗, σ∗

sots) which associates with the user i. Let σ̃′ be the signatures
generated by the group member with this revealed identity. It means that the
user formed a signature σ′

sots on the verification key vk′
sots using sk′

i. Assuming
the strong unforgeability of the underlying strong one-time signature scheme,
An-fra cannot reuse the key vk′

sots. That means An-fra needed a new vksots which
was never signed by the member with identity IDi. Consequently, σ∗

sots is a forged
signature on vksots, which contradicts to the CMA-unforgeability of the under-
lying one-time signature scheme [12].
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6 Conclusion

To realise a compact secure cryptographic construction for the situations where
signer’s anonymity is desired with the designated verification, in this paper
we have proposed an ID-based strong designated verifier group signature (ID-
SDVGS) scheme by combining the good features of ID-based strong designated
verifier signature and the group signature. The scheme is proved secure under
standard security notions. More particularly, we have considered all the security
properties of the ingredient signatures of the proposed compact signature. More
particularly, the unverifiability and the strongness are essential security proper-
ties of a SDVS, however they have not been addressed properly in the literature.
We have provided proofs for both the properties of our scheme along with other
security proofs. We have realized the proposed construction by obtaining an ID-
based instantiation of the generic group signature frame, given by Bellare et al.
in Eurocrypt 2003. To the best of our knowledge this is the first construction of
ID-based strong designated verifier group signature.
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