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Abstract. Cryptographic techniques are employed to ensure the secu-
rity of voting systems in order to increase its wide adoption. However, in
such electronic voting systems, the public bulletin board that is hosted by
the third party for publishing and auditing the voting results should be
trusted by all participants. Recently a number of blockchain-based solu-
tions have been proposed to address this issue. However, these systems
are impractical to use due to the limitations on the voter and candidate
numbers supported, and their security framework, which highly depends
on the underlying blockchain protocol and suffers from potential attacks
(e.g., force-abstention attacks). To deal with two aforementioned issues,
we propose a practical platform-independent secure and verifiable voting
system that can be deployed on any blockchain that supports an execu-
tion of a smart contract. Verifiability is inherently provided by the under-
lying blockchain platform, whereas cryptographic techniques like Paillier
encryption, proof-of-knowledge, and linkable ring signature are employed
to provide a framework for system security and user-privacy that are
independent from the security and privacy features of the blockchain
platform. We analyse the correctness and coercion-resistance of our pro-
posed voting system. We employ Hyperledger Fabric to deploy our voting
system and analyse the performance of our deployed scheme numerically.
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1 Introduction

Voting plays a significant role in a democratic society. Almost every local author-
ity allots a significant amount of budget on providing a more robust and trust-
worthy voting system. Cryptographic techniques like homomorphic encryption
and Mix-net [7] are usually applied in contemporary electronic voting systems
to achieve the voting result verifiability while preserving voters’ secrecy. How-
ever, incidents like a security flaw that has erased 197 votes from the computer
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database in the 2008 United States elections [34] and the compromise of 66,000
electronic votes in the 2015 New South Wales (NSW) state election in Aus-
tralia [30] raise the public concerns on the security of electronic voting systems.
For voting systems based on bulletin (e.g., [1,9]), one of the major concerns
is whether the voting result that is published on the bulletin can be trusted.
Blockchain with the growing popularity and remarkable success in cryptocur-
rency provides a new paradigm to achieve the public verifiability in such elec-
tronic voting systems.

Recently a number of blockchain-based electronic voting systems have been
developed by exploiting its inherent features. These systems can be classi-
fied into three broad categories. (1) Cryptocurrency based voting systems
(e.g., [21,33,43]). The ballots to a candidate are based on the payment he/she
receives from the voters; the problem with such systems are malicious voters may
refuse to “pay” the candidates to retain the money. Furthermore, a centralised
trusted party, who coordinates the payment between the candidates and voters
must exist. (2) Smart contract based voting system [28], which only supports
two candidates and the voting is restricted to limited number of participants.
Furthermore, it requires all voters to cast their ballots before reaching an agree-
ment on the voting result. (3) Using blockchain as a ballot box to maintain the
integrity of the ballots [11,35].

In summary, the security of these blockchain-based systems highly depends
on the specific cryptocurrency protocol they employed. Additionally, these voting
systems can only work with a specific blockchain platform, and support a lim-
ited number of candidates and voters. Based on our observations and studies, we
believe that any blockchain-based voting systems should have the following three
features: (1) Platform-independence — this means the changes in the underlying
blockchain protocols should not affect the voting schemes. (2) Security frame-
work — the voting system should be implemented with comprehensive security
features (the detail of security features are discussed in Sect. 5). The nature of
the blockchain allows everyone to obtain the data on it; thus, the comprehen-
sive security features have critical importance to ensure that the ballots are fully
secured on the blockchain. (3) Practical — it should be scalable, which means the
large amount of ballots casting and tallying can be finished in a reasonable time.

Our Contributions: In this paper, we propose an electronic voting (evoting)
system that supports the above identified three features as follows.

1. Our voting system does not depend on a centralised trusted party for bal-
lots tallying and result publishing. Compared with traditional voting systems,
which highly depend on a centralised trusted party to tally the ballots and
publish the result, our voting system takes the advantage of a blockchain pro-
tocol to eliminate the need for a centralised trusted party. The details of the
blockchain trustworthiness and voting system trust assumptions are discussed
in Sects. 4 and 5, respectively.

2. Our voting system is platform-independent and provides comprehensive secu-
rity assurances. Existing blockchain-based voting systems highly depend on
the underlying cryptocurrency protocols. Receipt-freeness [31] and correctness
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of the voting result are hard to achieve (we analyse the blockchain-based vot-
ing system explicitly in Sect. 2). The security of our voting system is achieved
by cryptographic techniques provided by our voting protocol itself, thus, our
voting system can be deployed on any blockchain that supports smart con-
tract. To achieve the goal of providing a comprehensive security, we employ
Paillier system to enable ballots to be counted without leaking candidature
information in the ballots. Proof-of-knowledge is employed to convince the
voting system that the ballot casted by a voter is valid without revealing the
content of the ballot. Linkable ring signature is employed to ensure that the
ballot is from one of the valid voters, while no one can trace the owner of
the ballot. The detail of security features that we achieved are discussed in
Sect. 5.

3. Our voting system is scalable and applicable. In order to support voting scal-
ability, we propose two optimised short linkable ring signature key accumula-
tion algorithms which are described in our full paper [41] to achieve a reason-
able latency in large scale voting. We evaluate our system performance with
1 million voters to show the feasibility of running a large scale voting with
the comprehensive security requirements.

The rest of the paper is organised as follows: we discuss the cryptographic
techniques applied in voting systems and analyse some typical voting systems
in Sect. 2. Cryptographic primitives and our voting protocol are presented in
Sects. 3 and 4, respectively. We analyse the correctness and security of our vot-
ing system in Sect. 5. In Sect. 6, we deploy our voting system and analyse its
performance.

2 Related Work

Secure evoting is considered as one of the most difficult problems in security
literature as it involves many security requirements. To satisfy these security
requirements, cryptographic techniques are mostly applied in constructing a
secure evoting system. In this section, we discuss the existing voting systems
based on traditional public bulletin and blockchain technology.

2.1 Public Bulletin Based Voting Systems:

In the following, we outline the key cryptographic techniques used in public
bulletin based voting systems and how such techniques address the corresponding
security requirements.

– Homomorphic encryption: Homomorphism feature allows one to oper-
ate on ciphertexts without decrypting them [13]. For a voting system, this
property allows the encrypted ballots to be counted by any third party
without leaking any information in the ballot [10,14,18]. Typical cryptosys-
tems applied in a voting system are Paillier encryption [32,40] and ElGamal
encryption [19,21].
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– Mix-net: Mix-net was proposed in 1981 by Chaum [7]. The main idea of
mix-net is to perform a re-encryption over a set of ciphertexts and shuffle the
order of those ciphertexts. Mix node only knows the node that it immediately
received the message from and the immediate destination to send the shuffled
messages to. The voting systems proposed in [1,17,20] apply mix-net to shuffle
the ballots from different voters, thus the authority cannot relate a ballot to
a voter. For the mix-net based voting systems, they need enough amount of
mix nodes and ballots to be mixed.

– Zero-knowledge proof: Zero-knowledge proof is often employed in a voting
system [9,29,39] to let the prover to prove that the statement is indeed what
it claimed without revealing any additional knowledge of the statement itself.
In a voting system, the voter should convince the authority that his ballot
is valid by proving that the ballot includes only one legitimate candidate
without revealing the candidate information.

– Blind signature and linkable ring signature: Voting systems like [12,16,
22] employ blind signature [12] to convince the tallying centre that the ballot is
from a valid voter while not revealing the owner of the ballot. Simultaneously,
the authority who signs the ballot learns nothing about the voter’s selections.
In blind signature, both voters and tallying centre must trust the signer. If the
signer is compromised, the signature scheme may stop working. Unlike blind
signature, linkable ring signature [3–5,8,23–27,36,42] is proposed to avoid the
untrusted signer. Instead, it needs a certain number of voters to participate in
the signing process. By comparing the linkability tag, the authority can easily
tell whether this voter has already voted. When the voter signs on the ballot,
he/she needs to include other voters’ public keys to make his/her signature
indistinguishable from other voters’ signatures.

2.2 Blockchain-Based Voting Systems

The blockchain-based voting systems can be discussed under three broad cate-
gories as follows.

– Voting systems using cryptocurrency: In [43], authors propose a voting
system based on Bitcoin. In their voting system, the ballot does not need
to be encrypted/decrypted as they employ the protocol for lottery. Random
numbers are used to hide the ballot that are distributed via zero-knowledge
proof. Making deposit before voting may keep the voters to comply with
the voting protocol while the malicious voters can still forfeit the voting by
refusing to vote. However, only supporting “yes/no” voting may restrict the
adoption of this voting system.

In [33], authors proposed a voting system on the Zcash payment protocol [15]
without altering the inner working of Zcash protocol. The voter’s anonymity
is ensured by the Zcash address schemes. The correctness of the voting is
guaranteed by the trusted third-party and the candidates. In this system,
the authority, who manages the Zcash and voter status database should be



Platform-Independent Secure Blockchain-Based Voting System 373

trusted. If the authority is compromised, double-voting or tracing the source
of the ballot is possible.

– Voting systems using smart contract: In [28], the authors claim that
their open voting network is the first implementation of a decentralised
and self-tallying Internet voting protocol with maximum voter privacy using
Blockchain. They employ smart contract as a public bulletin to achieve self-
tallying.1 However, their voting system can only work with two candidates
voting (yes/no voting) and the limitation of 50 voters makes it impractical
for a real large scale voting system.

– Voting systems using blockchain as a ballot box: Tivi and Fol-
lowmyvote [11,35] are commercial voting systems which employ the
blockchain as a ballot box2. They claim to achieve verifiability and accessibil-
ity anytime anywhere, while the voters’ privacy protection in these systems
is hard to evaluate.

To summarize, most traditional voting systems need a centralised trusted
party to coordinate the whole voting process. In these systems, the centralised
trusted party plays a critical role in storing the ballots, counting the ballots,
and publishing the voting result. Although the existing blockchain-based voting
systems take advantage of blockchain public verifiability, the system security and
user privacy of these systems depend on the features provided by the underlying
blockchain platform. Our proposed approach not only takes the benefits of a
decentralised trust offered by the blockchain technology to remove the need of a
centralised trusted party to do the ballots tallying, voting result decoding and
publishing, but also considers key security primitives proposed in the literature
including traditional evoting systems to build a practical platform independent
secure evoting protocol that can be deployed to any blockchain platforms that
support smart contract.

3 Cryptographic Primitives

In this section, we describe the cryptography primitives borrowed from tradi-
tional voting systems and apply in our evoting system. Note that the syntaxes,
correctness conditions, and security models of a linkable ring signature and a
public key encryption are given in Appendix A and Appendix B, respectively in
our full paper [41].

3.1 Message Encode and Decode

Before the voting starts, we must encode the candidate ID to make it suitable
for vote tallying. The encode/decode functions are defined as follows:

1 Self-tallying means that after the casting phase, voters can count the ballots
themselves.

2 The authors call the storage of the ballot as the ballot box.
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– Candidate encoding: We define ζ := Encode(m) ∈ Z as the candi-
date encoding function. For ρ candidates, each labeled with an ID from
P = {1, 2, . . . , ρ}, β = 2ρ+1 be the basis of encoding operation. We encode
the mth candidate as ζ = βm where m ∈ P. We choose 2 as the basis of
β as the division operation can be replaced by the CPU register right shift
instruction to achieve a better performance.

– Candidate decoding: Let k = ktβ
t + · · ·+knβn +kn−1β

n−1+ · · ·+k1β+k0
be the representation of k base β, k ∈ Z, then we define the right shift k
with n positions as rsh(k, n) = ktβ

t−n + kt−1β
t−n−1 + · · · + kn+1β + kn.

Let sum = sρβ
ρ−1 + sρ−1β

ρ−2 + · · · + s2β + s1 be the addition of all the
ballots where sj is the total number of ballots that the candidate jth acquires.
We define sj := Decode(sum, j) for 1 ≤ j ≤ ρ and is computed as sj =
rsh(sum, βj−1) mod β.

3.2 Paillier Encryption System [37]

Paillier Encryption system is employed to enable our voting system to tally the
encrypted ballots. In our voting system, we implement the following functions
in Paillier system and the detail of these functions are described in Appendix
B.1 in the full paper [41].

– Key Generation: (skPaillier, pkPaillier) := GenPaillier(Klen) is the function to
generate the secret key skPaillier and the corresponding public key pkPaillier with
the given key length Klen. The voting administrator invokes this function to
generate the key pair and uploads the public key pkPaillier to the blockchain.

– Encryption: CBallot ← EncPaillier(ζBallot, pkPaillier) where ζBallot ∈ Zn is the
plaintext ballot to be encrypted. Voters download the pkPaillier from the
blockchain and call this function to encrypt their ballots. This function gen-
erates the encrypted ballot CBallot.

– Decryption: ζRes := DecPaillier(CRes, skPaillier) where CRes ∈ Z
∗
n is the

encrypted voting result; the voting administrator invokes this function to
decrypt the voting result.

– Message Membership Proof of Knowledge [6]: {vj , ej , uj}j∈P :=
PoKmem(CBallot, Υ ) where CBallot is the encrypted ballot, Υ is the set of the
encoded candidates. When a voter publishes his/her ballot, he/she invokes
this function to generate the proof {vj , ej , uj}j∈P that demonstrates his/her
ballot encrypts only one of the encoded candidates in Υ .

– Decryption Correctness Proof of Knowledge: (ζRes, r) := PoK(CRes,
skPaillier), where ζRes is the plaintext and r is the random factor that generate
the encrypted voting result CRes. After publishing the voting result, the voting
administrator invokes this function to generate a unique value pair (ζRes, r)
that constructs the CRes to prove that he/she decrypts the voting result CRes

correctly.

3.3 Linkable Ring Signatures

Linkable ring signature (LRS) can be applied in our system to protect the privacy
of the voters. In practice, we apply the short linkable ring signature (SLRS) [2]
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which extends all the SLRS features to make the signature size constant with
the growth of voter numbers, it has the following features: (1) every ballot that
is accepted by the system is from one of the valid users, (2) the voter can check
whether his ballot is counted by the blockchain, (3) the size of the signature is
constant to support scalability and (4) double-voting is prevented. In our voting
system, we implement the function tuple (Setup,KeyGen,Sign,Verify, Link). The
details of these functions are explained in Appendix A.2 in the full paper [41].

– Setup: param ← Setup(λ) is a function that takes λ as the security parameter
and generates system-wide public parameters param such as the group of
quadratic residues modulo a safe prime product N (explained in Appendix
A.2 in the full paper [41]) denoted as QR(N), the length of the key, and a
random generator g̃ ∈ QR(N).

– Key Generation: (ski, pki) ← KeyGen(param) is a function to generate a
key pair for each voter i.

– Signature: σ ← Sign(Y, sk,msg) is a function to generate the signature σ
using all voters’ public keys Y = {y1, y2, . . . , yb}, the message msg to be
signed, and the voter’s secret key sk. Voters should invoke this function to
sign on his/her encrypted ballot.

– Verification: accept/reject ← Verify(σ,Y,msg); our voting system invokes
this function to test the validity of every ballot. Based on the input of the
encrypted ballot itself, the voter’s signature and all the voters’ public keys,
the blockchain accepts or rejects this ballot to be put on the chain.

– Linkability: Link(σ1, σ2) → linked/unlinked. When a voter casts his/her vote,
our voting system invokes this function to check whether this voter has already
casted his vote. If this function returns linked, our voting system rejects this
ballot; otherwise, the ballot is recorded on the chain.

4 The Voting Protocol

In this section, we first provide an overview of the whole voting protocol and
then discuss each step in details. The whole voting process can be divided into 11
steps as shown in Fig. 1(a). Except smart contract administrator, three entities
are involved: voters, smart contract, and voting administrator.

The voting system consists of one front-end smart contract and several val-
idation nodes as shown in Fig. 1(b). The role of a validation node is to repli-
cate the execution of the smart contract codes to ensure its correct execution.
For a practical voting, the validation nodes could be held by different enti-
ties/stakeholders, thus all ballots on the blockchain have been verified by differ-
ent entities/stakeholders. As all the entities/stakeholders have the agreement on
the data stored on the blockchain, the blockchain built on the servers owned by
different entities can be regarded as trustworthy.

4.1 Entities in the Voting Process

Four entities should be involved in our voting system shown in Fig. 1(a), and
details are explained as follows:
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Fig. 1. The general voting protocol and how entities are connected.

– smart contract administrator: he/she has the ability to access the smart
contract platform to deploy/terminate smart contract. In Hyperledger fabric,
this account is authorised by the membership service and a permission is
granted to deploy/terminate the Smart contract. In our voting system, we
need at least one smart contract administrator to deploy the voting smart
contract.

– voting administrator: The role of voting administrator is to organize the
vote by setting up the voting parameters and triggering the tallying and result
publishing phase. Although there are underlying mechanisms in hyperledger
to authenticate users, we use SLRS to prevent administrator from linking the
ballots with the users.

– smart contract: The role of smart contract include (1) store the encrypted
ballots. (2) verify the validity of the ballots. (3) count the encrypted ballot.
(4) verify the correctness of the voting result. (5) publish the voting result
and provide the platform for the voters to verify the voting process.

– voters: Voters are the people who have the rights to cast their vote. They
need to register into the voting system before they cast their vote.

4.2 Voting System Set Up

During the system set up, the voting administrator uploads the following three
parameters to the blockchain:

– The public key of the Paillier system pkPaillier.
– A set of encryptions of zero denoted as T , generated by the administrator’s

Paillier public key pkPaillier. For voting with 1 million voters, we suggest the set
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should contain enough elements to make the randomised pool large enough
and the detail of T is discussed in receipt-freeness analysis3.

– The SLRS scheme parameters, param.

4.3 Voter Registration

Bob must register this voting system with his identity. The registration infor-
mation could be: (1) email address with a desired password, or (2) the identity
number with a desired password, or (3) an invitation URL sent by the adminis-
trator with a desired password. After Bob passes the identity check conducted
by the smart contract, he can login with the desired password to download the
SLRS param and the administrator’s Paillier public key pkPaillier, then generates
the SLRS key pair (ski, pki) by calling KeyGen(param); Bob then uploads the
public key pki to the smart contract (Bob’s secret key is kept off-chain by him-
self). If the smart contract accepts his SLRS public key, the smart contract puts
his public key pki on the blockchain to complete his registration phase.

4.4 Vote Casting Phase

During this phase, Bob casts his vote as follows: (1) Bob chooses one of the
candidates m ∈ P and encodes it as ζ := Encode(m). (2) Bob invokes the Paillier
encryption function C ← EncPaillier(ζ, pkPaillier). (3) Bob needs to prove that C is
an encryption of an element in {ζ1, . . . , ζρ} (set of all encoded candidates) by
calling {vj , ej , uj}j∈P := PoKmem(C, Υ ); hence he sends π = {C, {vj , ej , uj}j∈P}
to the smart contract.4 (4) Upon receiving {vj , ej , uj}j∈P , the smart contract
verifies the validation of the encrypted ballot C. We denote φ as a mapping of
this transaction’s session id to T domain. If C is valid, the smart contract takes
an encryption of zero at φth position. Let ε be the addition of T [φ] and C. The
smart contract signs on ε denoted as s and sends (ε, s) back to Bob. (5) If Bob
accepts s, he invokes (v, ỹ, σ′) := Sign(ε, (pk, sk),Y) to generate the Signbob on ε
and sends (ε,Signbob) to the smart contract. (6) If the smart contract detects that
Signbob has already been recorded on the blockchain or cached in the memory,
it rejects Bob’s vote; otherwise, (ε,Signbob) is put on the blockchain.

4.5 Ballots Tallying and Result Publishing

Due to the Paillier system’s homomorphic feature, counting the vote is as simple
as fetching the encrypted ballots from the blockchain and adding them together.
The result publishing mechanism is described in the following steps: (1) Let Esum

3 To avoid requiring the administrator to upload the encryption of zero pool, coin
flipping protocol can be applied to generate the consistent encryption of zero on all
the validation nodes and this is our future work.

4 Bob can choose none of the actual candidates by casting his ballot to a dummy
candidate. When the smart contract publishes the voting result, it ignores all the
ballots that the dummy candidate gets.
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be the sum of all the encrypted votes and Signs be the signature signed by the
smart contract on Esum. The smart contract sends (Esum,Signs) to the adminis-
trator. (2) The administrator invokes sum := DecPaillier(Esum, skPaillier) to compute
plaintext sum, which encodes the ballots of each candidate. The administrator
also invokes (sum, r) := PoK(Esum, skPaillier) to calculate the random r that con-
structs this Esum, and sends (sum, r) to the smart contract. (3) The smart con-
tract verifies the correctness of (sum, r) by checking if Esum

?= gsumrn (g is one of
the elements of pkPaillier). (4) If the smart contract accepts the sum, it iteratively
invokes m := Decode(sum, i) to compute the ballots for each candidate i. Let Π
be the dictionary holding the voting result of all candidates. The smart contract
finally puts Π on the blockchain.

4.6 Ballot Verifying

After tallying ballots and before the voting administrator decrypts the tallying
result, the public can verify ballots on the blockchain to make sure the validity of
the voting process. We define two roles for people who can verify the voting. The
first one is those who have the right to access the data on the blockchain while
they do not have the right to vote. The second one is those who have both rights
to vote and access the data on the blockchain. The public verifiability to those
who have first role is as follows (1) Checking the number of ballots that were
counted and the number of people registered for this voting. (2) Checking the
correctness of the tallying result by downloading and adding all the encrypted
ballots to match with the tallying result published on the blockchain. Compared
to those who have the first role, people assigned to the second role can also
verify that his/her ballot is recorded on the blockchain by checking whether
there exists one ballot that is signed with his/her signature; This ensure his/her
vote is recorded and counted.

In practice, we suggest enhancing the trustworthiness of the blockchain by
allowing different political parties/stakeholders host their own validation nodes.
The data on the blockchain is verified by different entities/stakeholders, and it
is unlikely that these entities/stakeholders collude with each other to publish a
false voting result.

5 Correctness and Security Analysis

5.1 Correctness Analysis

The correctness of our voting system is guaranteed by the public verifiability
provided by the smart contract and the proof of knowledge provided by the cryp-
tographic schemes. More than that, the smart contract ensures the consistency
of a transaction execution. Any inconsistencies generate an error which results
in the rejection of the transaction. This means the voting participants can be
assured that every transaction on the blockchain is verified and accepted by all
participating nodes. This prevents compromised nodes from putting an invalid
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data on the blockchain unless the adversary can take control of a proportion of
the nodes in the whole blockchain network5.

5.2 Security Features of Our Voting System

– Privacy: The ballots on the public ledger are encrypted and only the voting
administrator who initiates the voting can decrypt the ballots. This ensures
that the tallying center can count the ballots without knowing the content of
the ballots.

– Anonymity: The voters, candidates, or smart contract cannot tell the public
key of the signer with a probability larger than 1/b, where b is the number of
the voters. This can be guaranteed by the anonymity property of the linkable
ring signature (LRS) scheme. Details are explained in Appendix A.2 in the
full paper [41].

– Double-voting-avoided: In our voting system, we take the advantage of
linkability provided by the short ring signature scheme. This means it is
infeasible for a voter to generate two signatures such that they are determined
to be unlinked. Our system can detect whether the signatures are from the
same voter. Hence, a voter can only sign on one ballot and cast his/her ballot
only once. This can be guaranteed by the linkable property of the LRS scheme.
Details are explained in Appendix A.2 in the full paper [41].

– Slanderability-avoided: A voter cannot generate a signature which is deter-
mined to be linked with another signature not generated by him/her. In other
words, an adversary cannot fake other voters’ signature. This can be guar-
anteed by the non-slanderability property of the LRS scheme. Details are
explained in Appendix A.2 in the full paper [41].

– Receipt-freeness: Even if an adversary obtains a voter’s secret key, the
adversary cannot prove that this voter voted for a specific candidate. This is
guaranteed by the addition of encryption of zero which provides additional
randomness to the ciphertext which is unknown to the voter. Thus, even if
the voter’s secret key is disclosed, no one can prove his casted ballot. For
our voting system, the security level of the receipt-freeness is affected by the
size of the encryption of zero pool, as the voters can collude with each other
to reconstruct the encryption of zero pool. One solution is increase the size
of zero pool thus more voters is required to reconstruct the pool. Another
solution is applying coin flipping protocol on all validation node to work out
a consistent randomness encryption of zero for each valid ballot. We have
taken the first approach in this paper with 4096 encryptions of zeros.

– Public verifiability: Anyone who has the relevant rights to access the
blockchain can verify that all the ballots are counted correctly; moreover,
voters can also verify whether their ballots have been recorded.

– Correctness: Proof-of-knowledge ensures the correctness of the voting pro-
cess. Voting participants need to prove the correctness of the interactions

5 The number of nodes to be compromised depends on the underlying consensus
protocol.
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with the blockchain. Even if some blockchain nodes are compromised, others
can still verify whether the proof is correct.

– Vote-and-Go: Compared with the voting system proposed in [31], our voting
system does not need the voter to trigger the tallying phase. Moreover, in
our system, voters can also cast their vote and quit before the voting ends,
unlike [28] which needs all voters to finish voting before tallying the ballots.

5.3 Security and Coercion-Resistance Analysis

To address the security and coercion-resistance, we make the following assump-
tions:

– The trustworthiness of the blockchain platform is achieved by allowing dif-
ferent stakeholders/entities to host the blockchain validation nodes.

– Voters cast their ballots in a secure terminal, which means it is assumed
that no one stand behind a voter or uses digital devices to record the voting
process. We do not take the physical voting environment security into our
consideration.

– The possibility of an attacker to create a blockchain and apply a social engi-
neering technique to launch a phishing attack is beyond our research scope.

– The administrator should not reveal the Paillier system secret key and the
encryption of zeros to anyone.

– Voters should cast their ballots by themselves. No one else can cast the ballot
with a voter’s identification except the voter himself.

We demonstrate the robustness of our system under two typical attacks below.

Man-in-the-Middle Attacks: Our voting system has strong resistance to this
attack. First, as the voters and the smart contract both sign their messages
and the voting data is encrypted, it is impossible for an adversary to forge the
signature or alter the data on any parties involved in the transactions. Second,
the public keys used for signature verification are all published on the blockchain,
preventing the adversary from cheating any parties by replacing the original
public key with the adversary’s public key. The encryption of the ballot also
eliminates the possibility of the ballot leakage.

Denial-of-Service (DoS) Attacks: DoS attack is feasible to launch since the net-
work service is provided in a relatively centralised way. In addition, the servers
have relatively limited processing ability for a large number of requests. Dis-
tributing the service on different nodes is one of the solutions to DoS attack as
it is almost impossible for the adversary to compromise all the servers.

Coercion-Resistance Analysis: Coercion-Resistance means it is infeasible for
the adversary to determine whether a coerced voter complies with the demand.
Our voting system security features discussed in Sect. 5.2 make it impossible
to launch the Ballots-buyer attack and Double voting attack. Additionally, our
voting system is free from randomization attack.
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For the Ballots-buyer attack, an attacker coerces a voter by requiring that
he submits a randomly composed ballot. Under such circumstances, both the
attacker and the voter have no idea about which candidate this voter casts
the ballot for. The purpose of this attack is to nullify the ballots. For our sys-
tem, it is impossible to launch this attack as the voter should prove that the
ciphertext is one out of ρ encrypted candidates by calling {vj , ej , uj}j∈P :=
PoKmem(EncPaillier(ζ, pk), Υ ). Since Υ is held by the smart contract, any ballot
that is not the encryption of any element in Υ is rejected and the voter is noti-
fied that this transaction is failed.

6 System Deployment and Experiments

6.1 System Deployment

Our voting system can be deployed in any blockchain platforms with smart con-
tract capability and achieve the same level of security. There might be some
other reasons to choose a particular platform such as voting latency and flexi-
bility requirements. Different consensus protocols have significant impact on the
blockchain network latency and node scalability [38]. If the ballots’ confirmation
latency is not a major issue for the voting system, the PoW-based blockchain
system could be a good option to achieve maximum node scalability. Otherwise,
a BFT-based blockchain platform is a better solution. In our scenario, we employ
the BFT-based blockchain platform Hyperledger Fabric and deploy our voting
system in a practical scenario.

6.2 Experiments and Performance Evaluation

We deploy our system in docker containers running on a desktop with 4 cores i5-
6500 CPU and 8 GB DDR3 memory. We conduct 1 million voters voting process
on the blockchain that consists of 4 validation nodes and 1 PBFT leader node.
Each of the validation nodes runs in one dedicated container; thus, we run five
docker containers to build our testing blockchain system. We set a voter’s public
key as 1024 and 2048 bits respectively and the Paillier key pairs as 1024 bits.
The deployment pattern is shown in Fig. 1(b). We summarize the time spent on
our employed cryptographic processes for 1 million voters’ voting in Table 1.

Voting Parameters Setting Up Time (Administrator Side): To initialise
the voting, the administrator is responsible for uploading the voting parameters
as discussed in Sect. 3. Let tcal be the time taken to generate T , and tupload be
the time spent on uploading T to the blockchain. With 1024 bits key length, the
pool size is 1 MB. According to our test, tupload is <1 s and Tcal is about 14 s.
In conclusion, under 100 MB bandwidth network, on the smart contract side,
the majority of the time is spent on bottom half key accumulation, and on the
administrator side, the most time-consuming phase is generating and uploading
T (the pool of encryption of zeros).



382 B. Yu et al.

Table 1. Time consumed on each step.

Step Time

Generate T 13, 560ms

Bottom half key
accumulation

<34 s

Top half key
accumulation

<23ms

Download parameters 4ms

Upload ballots ≈776ms

Tally 3, 850ms

Decode and publish <2,000ms

Fig. 2. The diagram of Algorithm 1.

SLRS Parameter Setting Up Time: Compared with LRS, SLRS enables
the size of the signature constant no matter how many signers are involved in
this signature. This feature is critical important for a large scale voting (i.e. the
number of voters > 100, 000 1024-bits keys) as the signature should be constant
to be suitable for storing on the blockchain. Compared with LRS, SLRS needs
an extra step that accumulates all the signers’ public keys. Let yi be the public
key of ith voter and ψ be the SLRS public parameter for all voters. We define
the key accumulation operation for all the voters’ SLRS public keys for the ith

voter as wi = ψy1y2...yi−1yi+1yi+2...yb . In order to make the time spent on key
accumulation acceptable, we divide the key accumulation into two halves. The
bottom half is run on smart contract and the top half is run by each voter.

Bottom Half Time Consumption (Smart Contract Side): For the bottom
half (the bottom half algorithm is shown in our full paper [41]), on the smart
contract, we divide the voter SLRS public keys into m groups and pre-calculate
the accumulation of all the public keys except the keys in the given group i
and denote this key accumulation as wsi. A diagram that shows how bottom
half algorithm works is also given in Fig. 2. We only discuss a case in which the
number of the voters is larger than 500; otherwise, the voters can generate the
key accumulation themselves within a reasonable computation time. We denote
G as the group that contains the voters’ SLRS public key pk and f the public key
accumulation function. We invoke an array operation function append to add an
element into the array. We distribute the voters’ SLRS public keys into u groups
and each group has Num of keys (except the last group). We denote the array
WS to store all ws, and gkeys to store the voters’ SLRS public keys groups. The
most time-consuming part is the multiplication of public keys for each group. In
our implementation, we calculate the WS using four threads to save time.

We evaluate the performance for 1 million voters’ voting and the result is
shown in Fig. 3(a). We find that the time spent on calculating WS decreases with
the growth of the voter numbers in one group. For example, for 1024 bits length
and 2048 bit length key accumulation, it decreases from 34 s and 171 s for the
group that contains 3000 voters to 13 s and 35 s for the group that contains 8, 000
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Fig. 3. SLRS public key accumulation and searching a block on a given blockchain in
1 million voters’ voting

voters, respectively. This is due to (1) the time spent on running the exponential
computation loop in bottom half algorithm that dominates the time spent for
the whole algorithm (2). For the 1 million voters’ public key accumulation, we
decrease the number of groups by increasing the number of the voters in a
group to decrease the time spent on the loop in bottom half execution.

Top Half Time Consumption (Voter Side Key Accumulation): For the
top half execution (The top half algorithm is shown in our full paper [41]), the
voter downloads the array WS and the key group that his key belongs to in
gkeys from the blockchain. The time spent on downloading these parameters is
acceptable because of two reasons (1) the key size and the element size in WS
are constant. (2) The number of groups is relatively small. For instance, if we
have 1 million voters and we group 5000 voters in one group, and set the public
key size as 1024 bits and N as 1024 bits, then the size of all the public keys in
this group, denoted as Y ′, is approximately 624 KB. The size of an element in
WS is restricted by SLRS parameter N ; thus with the parameters above, WS
is 256 KB. Therefore, the total size of Y ′ and WS is about 880 KB. The voter
only needs to do one exponential operation, regardless of the voting scale. From
Fig. 3(b), it can be seen that with the key size of 1024 bits, it increase from
8.48 ms for the group that contains 3000 voters to 16.35 ms for the group that
contains 8000 voters. The increase of time spent for the key accumulation on the
voter’s side can be explained as the increase of time spent in top half execution,
as it dominates the total time spent for the voter side key accumulation.
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For 1 million voter’s voting, we could set the number of voters in one group
smaller to reduce the time spent on the voter side for key accumulation. For the
key length of 1024 bits, we recommend to set each group contains about 7000
voters so that it takes 14 s and 15.48 ms on the smart contract side and the voter
side key accumulation, respectively.

Based on the above experiments, it is clear that both the increases of the block
size and chain length increase the time spent on searching one given block in
the blockchain. For 1 million voters’ voting system, the blockchain that consists
of smaller blocks has better search performance. However, the drawback of the
smaller block size is that it increases the number of searching operations (e.g.,
if we put all ballots in one block, users only searches once to get them; whereas
if we allocate all of them in 10 blocks, users have to search 10 times to get
them). Based on the experiment results shown in Fig. 3(c) and (d), in practice,
we recommend to set each block contains 640 ballots to achieve both a reasonable
search time latency and the average number of search operations.

7 Conclusion

To solve the problems that the current blockchain voting system cannot provide
the comprehensive security features, and most of them are platform dependent,
we have proposed a blockchain-based voting system that the voters’ privacy and
voting correctness are guaranteed by homomorphic encryption, linkable ring sig-
nature, and PoKs between the voter and blockchain. We analyse the correctness
and the security of our voting system. The experimental results show that our
voting system achieves a reasonable performance even in a large scale voting.

References

1. Adida, B.: Helios: web-based open-audit voting. In: USENIX Security Symposium,
vol. 17, pp. 335–348 (2008)

2. Au, M.H., Chow, S.S.M., Susilo, W., Tsang, P.P.: Short linkable ring signatures
revisited. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043, pp.
101–115. Springer, Heidelberg (2006). https://doi.org/10.1007/11774716 9

3. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Constant-size ID-based linkable and
revocable-iff-linked ring signature. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 364–378. Springer, Heidelberg (2006). https://doi.org/
10.1007/11941378 26

4. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Certificate based (linkable) ring signa-
ture. In: Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS, vol. 4464, pp. 79–92.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72163-5 8

5. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Secure ID-based linkable and
revocable-iff-linked ring signature with constant-size construction. Theor. Com-
put. Sci. 469, 1–14 (2013)

6. Baudron, O., Fouque, P.A., Pointcheval, D., Stern, J., Poupard, G.: Practical multi-
candidate election system. In: Proceedings of the Twentieth Annual ACM Sympo-
sium on Principles of Distributed Computing, pp. 274–283. ACM (2001)

https://doi.org/10.1007/11774716_9
https://doi.org/10.1007/11941378_26
https://doi.org/10.1007/11941378_26
https://doi.org/10.1007/978-3-540-72163-5_8


Platform-Independent Secure Blockchain-Based Voting System 385

7. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

8. Chow, S.S.M., Susilo, W., Yuen, T.H.: Escrowed linkability of ring signatures and
its applications. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp.
175–192. Springer, Heidelberg (2006). https://doi.org/10.1007/11958239 12

9. Chow, S.S., Liu, J.K., Wong, D.S.: Robust receipt-free election system with ballot
secrecy and verifiability. In: NDSS, vol. 8, pp. 81–94 (2008)

10. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. Trans. Emerg. Telecommun. Technol. 8(5), 481–490
(1997)

11. follow my vote. https://followmyvote.com/. Accessed 24 June 2017
12. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale

elections. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp.
244–251. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57220-1 66

13. Gentry, C.: A Fully Homomorphic Encryption Scheme. Stanford University (2009)
14. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption.

In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 38

15. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification. Tech-
nical report, 2016–1.10. Zerocoin Electric Coin Company (2016)
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