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Abstract. In his invited talk, joint between CHES 2016 and CRYPTO
2016 on the Future of Embedded Security, Paul Kocher suggested to
move the security into chips because hardware is the lowest level and
thus security can not be compromized by a lower layer. In this paper, we
propose a generic PUF-driven secure code execution architecture that
employs instruction-level code encryption. Our design foresees a tight
integration of a Physically Unclonable Function (PUF) and the decryp-
tion of encrypted program code directly inside the processor’s instruction
pipeline to avert revealing keys or decrypted code in externally accessible
registers or memory. The architecture prevents code-injection by execut-
ing only code encrypted for individual target CPUs, has an adaptable
impact on performance, and requires only minor changes to the soft-
ware development process. Our PUF-based code encryption defends also
from reverse engineering attempts and enforces IP protection. A proof-
of-concept implementation demonstrates the feasibility of our proposed
architecture.
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1 Introduction

Secure and reliable execution of code is of high importance for classical networked
systems in the Internet but even more for networked control systems for critical
processes. Such Cyber-Physical Systems can be found in industrial plants, in
home-automation and in connected cars. In order to avoid negative consequences
like misguided process control, one needs to ensure that only valid and unaltered
code is executed on such embedded devices. At the same time, such code often
contains intellectual property (IP) which makes it necessary to protect the code
from extraction and reverse engineering to avoid leaking of IP.
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Code injection, especially when performed remotely, is one of the most
effective strategies for malicious attackers. Stuxnet, for example, exploited
such a remote code execution vulnerability (CVE-2008-4250) to infect remote
machines [18]. Since the popular phrack article “Smashing the Stack for Fun
and Profit” [24] by Aleph One in 1996, which described simple stack buffer
overflows, new detection and prevention techniques like stack canaries or non-
executable stacks have been proposed just to soon thereafter be circumvented by
more sophisticated attack techniques like Return-Oriented Programming (ROP).
Now, more than two decades later, it is still an open security challenge to effec-
tively prevent injection of unauthorized code into an execution environment. A
Secure Execution Environment (SEE) protects against such code injection to
prevent malicious actions to be executed inside the environment (ensuring code
integrity) and additionally, often prevents genuine code from getting extracted
out of its execution environment to prevent reverse engineering (ensuring code
confidentiality). Thereby, an SEE not only contributes to enhanced resilience
of an otherwise vulnerable platform against malicious manipulation, but also
helps to protect the IP of software and hardware manufacturers. Based on our
threat model (Sect. 2), we present our generic PUF-driven secure code execu-
tion architecture which allows secure execution of encrypted programs where
programs are encrypted per processor instance (Sect. 3). Code that is not prop-
erly encrypted for a specific device will not execute correctly, triggering faults.
Thus, an attacker will not be able to produce and inject valid code that will
exhibit a desired malicious behavior. As an additional effect, relying on a PUF
for re-generating decryption keys implements a strict hardware-binding, where
code cannot be transferred between devices [11,26]. At the same time, the archi-
tecture will effectively prevent reverse engineering of programs stored in such
an embedded system as all such code is encrypted and will only be decrypted
directly inside the execution pipeline on a per-instruction basis. Thereby, our
design minimizes exposure of decryption keys or decrypted instructions to iso-
lated dedicated registers. The proposed design is comparatively lightweight with
a well-defined minimum trusted computing base (TCB) that does not include
external or internal memory or caches. The design can be implemented by a stan-
dard production process. While implementing the architecture, use-case-specific
parameters of freely exchangeable building blocks allow for customization which
we discuss in Sect. 4. Based on a proof-of-concept implementation (Sect. 5) we
investigate the feasibility of our architecture and its overhead in Sect. 6. The anal-
ysis of the state-of-the-art in Sect. 7 shows where our architecture outperforms
comparable earlier approaches. In Sect. 8, we conclude that our design consti-
tutes a major step towards code integrity and code confidentiality in embed-
ded devices. Based on the lessons learned, we present a list of extensions and
enhancements that might be of interest in future work.

2 Threat Model

Our main goal is to protect from code injection attacks, starting from simple
execution of untrusted code but also extending to injection attacks like stack
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buffer overflows and even advanced attacks like ROP. As additional goal, we
aim for code confidentiality, and thus, reliably prevent reverse engineering of
code and IP infringements.

For protection from malicious code injection, we prevent any non-authorized
code to be executed – or rather lead to any behavior that the attacker can control
or predict. Beyond, manipulations of the control flow of a process needs to be
prevented, as some advanced attacks like ROP can achieve their malicious goals
without actually injecting additional instructions.

We consider three types of attacks under this term:

1. Attacks where unauthorized code should be executed in a new process or
thread of its own using whatever execution procedure is foreseen on the target
platform.

2. We consider attacks where an attacker tries to exploit software implementa-
tion flaws like susceptibility to buffer overflows in order to inject self-crafted
code into an existing process or thread and manipulate the program flow to
execute this code.

3. There are attacks that do not involve any additional instructions but only
change the program flow in a way to exhibit new and unintended behavior.
ROP is a prime example of this.

Attacks two and three may be performed remotely or locally via the intended
input methods of legitimate software running on the target processor. All these
attacks are software-centric, however, we do not exclude hardware attackers in
our discussion. Hardware attackers have physical access to the processor, its
memory and peripherals, and might try to inject code by direct manipulation
of memory and any data and instruction cache off- and on-chip. Fault-injection
attacks also fall in this category.

In the case of code confidentiality, an attacker wants to gain additional knowl-
edge on the application code deployed on a system, e.g., as part of a reverse
engineering effort. The system may be under physical control of the attacker,
like often the case in an embedded or mobile system running a supplier’s confi-
dential firmware. We assume that all off-chip bus lines can be probed via openly
accessible chip pins and that all external memory can be read out.

A more sophisticated attacker may even be able to use hardware probes to
read-out from or inject bits into on-chip buses [17]. Beyond, the chip design
and layout may be known to the attacker. This results in an attacker capable
to obtain memory contents via methods like linear code extraction and direct
memory probing. In addition, invasive tampering like glitching or fault injection
on bus lines may also be possible. While an attacker with such advanced capa-
bilities may be extremely hard to defend from, the goal of our architecture is to
minimize the trusted computing base, i.e., the area of the chip and the duration
where such confidential information is exposed.

We note that further attacks like denial-of-service (DoS) and hardware
side-channels are not specifically considered within our approach. Comple-
mentary research exists, proposing countermeasures to side-channel attacks.
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Ascend [10], for example, is specifically designed to hamper side-channel attack-
ers by obfuscating memory access patterns, power consumption and temperature
analyses.

3 Our Architecture for Secure Code Execution

Execution of program code typically happens detached from its development.
Therefore, our architecture distinguishes between a development machine (user
system) and the execution environment (target system). A central advantage of
our architecture is that only encrypted program binaries can be executed which
are bound to a specific processor and which can be decrypted and run only by
that specific processor. To be able to use the benefits of the PUF at execution
time without the need to have it available at development time, we separated
the encryption of the program binary from binding this binary to the PUF.
Therefore, two cryptographic processes have to be discerned: The encryption
and decryption of the binary itself is performed by a random access cipher (e.g.,
XTS [1] or CTR mode), without the use of the PUF (Fig. 1(a), Step 2 and (b),
Step 3). In a separate process, the key used for this operation is encrypted and
decrypted involving the PUF (Fig. 1(a), Step 5 and (b), Step 2).

The architecture of the target system consists of a generic RISC CPU, a
instruction decryption module, and a PUF module. Our CPU uses fixed-length
instructions of 32 bit each. The instruction decryption module and the PUF
module are closely coupled with the CPU’s execution pipeline.

During program execution, the cryptographic instruction decryption
module reads the encrypted binary and decrypts it, (Fig. 1(b), Step 3) instruc-
tion by instruction, during the instruction fetch (IF) stage. This is performed by

Fig. 1. Program encryption and execution process.
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a random access block cipher. Decrypted instructions are directly forwarded to
the instruction decode stage (Fig. 1(b), Step 4) and continue their normal walk
through the pipeline. The binary-specific key ku for the block cipher is secured
through the use of the PUF module, ensuring that any encrypted program can
be decrypted only on the device instance it was created for.

Notation: Encryption and decryption operations of plaintext p and ciphertext
c with key k: Ek(p) and Dk(c); Encrypted entity or ciphertext c of plaintext
p with key k: ck(p) is output of Ek(p); Cryptographic hash function: H(·).

We call the development machine user system and consider it trusted. To
generate a program to be executable on the target system, the user compiles
confidential source code into a binary using a default compiler, e.g., gcc. The
user arbitrarily chooses an ephemeral one-time key ku (Fig. 1(a), Step 1) and
encrypts this binary, instruction by instruction (Fig. 1(a), Step 2). The encrypted
binary is then transferred alongside with ku to the target system through a secure
channel (Fig. 1(a), Step 3). Afterwards, the users local copy of ku can be deleted
(Fig. 1(a), Step 4). On the target system, the user key ku to encrypt the binary
gets itself encrypted by the PUF-generated key kp (Fig. 1(a), Step 5) yielding the
π = ckp

(ku). The PUF is available on the target system and the PUF’s output
can therefore be used as key for this second cipher step.

Each time the program is loaded, this second encryption process is reversed
by decrypting the program-specific key into ku (Fig. 1(b), Step 1 and 2). This
ku is used during execution of the according binary to decrypt the individual
instructions by the instruction decryption module and is kept directly inside the
decryption module. The choice of a suitable cipher mode has to take into account
the requirements induced by the program flow. Program flow must generally
allow for jumps to enable branching and loops, so random access within the
instruction stream is mandatory. Only specific random access modes like CTR
mode of a symmetric cipher fulfill the requirement of random access. We discuss
security implications, in Sect. 4, and Sect. 6.1.

The roles of the components of the architecture during program generation
and program execution are explained in the following sections. Generation and
execution processes are dependent on several entities, besides ku . Foremost, this
is the binary B, resulting from the user’s compilation of source code. B is generic
and needs not to be recompiled for use with another processor instance. The
binary, encrypted with the key ku , is denoted cku

(B). ku and B have to remain
confidential, whereas cku

(B) may be public.

3.1 Program Generation

Program generation takes place in a trusted environment (Fig. 2a). The user
chooses an ephemeral one-time key ku for the block cipher and encrypts the
compiled B with a random access cipher. A program flow is structured in basic
blocks. A basic block is a sequence of instructions with exactly one entry point
and one exit point, and no branches in between. Each basic block is encrypted
to later be decrypted by the hardware instruction decryption module.
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Fig. 2. Our proposed architecture

The program encryption itself is not critical for runtime performance and
requires no hardware support. Particularly, it does not need the PUF or any key
material from it. We currently implement it as standalone tool, processing the
compiled binary in software, but it may be included directly into the compiler.

To finally bind B to a hardware instance, inherent properties of the PUF are
utilized. This part of the process of program generation is shown in Fig. 2a. The
encrypted binary cku

(B) (depicted in blue) and ku are transmitted to the target
system. Since encrypted, cku

(B) may be public, but ku must remain confidential.
To transmit ku securely to the PUF module (depicted as blue “tunnel”), a ded-
icated cable connection can be used during deployment in a secure production
environment. For over-the-air (OTA) deployment, a secure channel (e.g., TLS,
SSH) is required. The PUF module then generates a cryptographic key kp tak-
ing the encrypted binary cku

(B) and the security kernel K as additional input
to prevent their modification. A security kernel K comprises all basic software
components required for secure boot of the system (see also Sect. 3.3).

To protect the user key ku—required for program execution—it is encrypted
on the target system using kp . The encrypted representation π = ckp

(ku) can
be disclosed publicly. It is then stored together with the encrypted binary to
form the program image (cku

(B), π) in publicly shared memory. This scheme
has the advantage that the user does not require access to the target hardware
for preparation of a binary to be executed on it while retaining the security
properties of the PUF.
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3.2 Program Decryption and Execution

To minimize the TCB, i.e., the parts of the processor required to be trusted,
the decryption module is entangled with the instruction fetch (IF) stage of the
processor’s pipeline as shown in Fig. 2b. Encrypted instructions enter the stage
and are decrypted immediately before proceeding to the instruction decode (ID)
stage. Thus, it is possible to encrypt B on a per instruction level.

The nonce and counter generator prepares the counter as input to the block
cipher. It concatenates the base address of each basic block concatenated with
an instruction counter inside the block. Whenever there is a jump, a new base
address is set and the counter is reset to 0. That way, jumps can only target
a start of a basic block, otherwise, the decryption result will be invalid. The
module pre-computes keystream blocks by incrementing the counter value and
allows modularity in the control flow of the executed code. The end of a basic
block is reached when either a jump occurs or the execution linearly continues
into the next basic block. In either case, the processor detects the new block and
reinitializes the decryption accordingly. The implementation has to take care of
resetting the encryption and stalling the processor whenever necessary.

3.3 The Role of the PUF

Since encrypted under ku , any program image I = (cku
(B), π = ckp

(ku)) for
a processor instance may be public. However, the secret key ku is required in
the target system’s instruction-fetch (IF) logic during execution to generate the
decrypted keystream. This is depicted in Fig. 2b, showing how the PUF module
decrypts ku from the image I with help of the PUF key kp and then forwards
ku directly to the decryption. However, a processor instance should not need to
store any information about an image; thus, I has to be self-contained. This is
accomplished by recovering ku from the encrypted π inside the program image
and kp each time a binary is loaded for execution. Only the very same processor
instance can generate the correct kp to restore ku = ckp

(π). kp has to be derived
from the target system’s PUF, using hashes of the encrypted binary and the
security kernel (H(cku

(B)),H(K)) as parameters. This way kp is not only bound
to the device but also to the integrity of the program binary B and the security
kernel K. If B or K is modified, the derived key kp changes and cannot be used
to decrypt the user key ku anymore. A security kernel K, like the boot loader or
the operating-system core, guarantees secure access to system resources.

To securely combine all parameters of the PUF module into one key, we pro-
pose a key derivation function (KDF) like presented by Krawczyk [16]. From the
PUF output sp and the key-derivation parameters, the PUF module calculates:

kp = KDF(sp ,H(cku
(B)),H(K))

During loading of B, kp is derived once and used to recover ku = ckp
(π). In the

IF stage while executing, the ith instruction Bi of B gets decrypted by:

Cipherku
(nonce||i) ⊕ cku

(Bi) = Bi
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Using a PUF, we do not need any secure storage across all memory hierarchies
in our system and thereby minimize the secure and trusted computing base.

4 Customization for an Implementation

A number of security-relevant building blocks exist in our architecture, for which
concrete crypto-primitives have to be chosen during an implementation. The
building blocks that an implementation has to define are: (1) the PUF-type,
(2) the KDF in the PUF-module, (3) the block-cipher for the user-key en- and
decryption, (4) the cipher-mode for the instruction decryption, and (5) the block-
cipher for the instruction decryption.

The selection of crypto primitives is depending on the desired level of secu-
rity and performance for the use case of an implementation. A large number
of options exist for this customization since almost any combination of block-
ciphers, random-access cipher modes, KDFs, and PUFs is possible. Without loss
of generality, we provide examples for a suitable selection of crypto-primitive
sets for each building block in Table 1. All alternatives are a trade-off between
the level of security and performance or chip-area. Hardware implementations
of ciphers with high throughput, typically, need more area. Low latency ciphers
reduce the performance impact, while they, typically, are more susceptible to
attacks [21].

Table 1. Examples of crypto-primitives for an implementation.

Building block Example 1 Example 2 Example 3

PUF-type Ring-Oscillator SRAM Bistable-Ring

Key derivation (KDF) SHA-256 of concatenated keys HKDF HMAC-SHA-256

Block-cipher (user-key) AES-128 PRINCE AES-256

Cipher-mode (instr. decr.) CTR XTS LRW

Block-cipher (instr. decr.) AES-128 PRINCE SIMON

The throughput of block-ciphers in hardware can be increased by paralleliz-
ing cores, but occupying more area. Alternative low-latency block ciphers, like
PRINCE [6] or SIMON [4], may improve performance and reduce area overhead,
at the cost of reduced security as evaluated by Maene et al. [21]. Alternative ran-
dom access cipher modes are understood from disc encryption, where an encryp-
tion block is not chained with the previous plain-text block. Candidates for the
usage in our architecture are the block-cipher modes devised by Liskov, Rivest,
and Wagner (LRW) [20], being an improved security-complexity trade-off com-
pared to CTR, or the XEX-based tweaked-codebook mode with ciphertext stealing
(XTS) [1].
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5 Proof-of-Concept Implementation

To demonstrate the feasibility of our architecture, we implemented a proof-of-
concept (PoC) of our design capable of creating and executing encrypted stan-
dalone program images. We call our PoC implementation the Secure Execution
PUF-based Processor (SEPP). For the cryptographic primitives for the customiz-
able parts, we decided for a conservative selection of thoroughly tested imple-
mentations of well-known algorithms (Table 1, Example 1).

SEPP is based on an OR12001 processor, an implementation of the Open-
RISC OR1000 architecture. It is a popular open-source RISC architecture with
a 32 bit wide fixed-length instruction set and a five stage, single issue pipeline.
We chose an architecture with fixed-length instructions in order to be able to
always map whole instructions to cipher blocks without overlap and alignment
issues. The key parameters of our system are: Architecture: 32 bit RISC; clock
frequency: 50 MHz; instruction cache: 8 Kbyte, 1-way direct-mapped; data cache:
8 Kbyte, 1-way direct-mapped; Memory: 128 MB DDR2 SDRAM.

We extended the OpenRISC Reference Platform (ORPSoC) by two modules
according to our architecture: the PUF module and the instruction decryption
module. We deployed our design on a Digilent Atlys Board powered by a Xilinx
Spartan-6 LX45 FPGA. As development environment we used Xilinx ISE 14.7.
For synthesis, placement, and routing parameters, as well as FPGA-dependent
settings, like operating frequency, we used the defaults distributed with the ORP-
SoC make files. This enables us to directly compare SEPP to ORPSoC.

The RO PUF [23] implementation we utilized generates a single fixed
response by comparing the oscillating frequencies of ring oscillator pairs. To
counter the noise of the PUF output, the C-IBS fuzzy extractor [12] (see Sect. 7)
takes the PUF output and creates helper data to reliably recreate a response.
The corresponding helper data can be stored in memory since an attacker gains
no advantage from it. The output of the C-IBS fuzzy extractor we call sp , the
reliable, embedded PUF secret. The PUF module encapsulates the RO PUF with
the C-IBS fuzzy extractor and a low area AES core in ECB mode for encryption
and decryption of ku on load of the program image. Our PoC implements hash-
ing and combining of the encrypted binary H(cku

(B)) and the security kernel
H(K) in software. The hardware PUF module then combines this result with the
PUF secret sp to create the PUF key kp . For sp to remain confidential, there is
no external interface to access the outputs of the PUF or the fuzzy extractor.

The CPU is interfaced with the PUF module over a dedicated class of special
purpose registers. Those include configuration and status registers as well as the
input for the combined hashes (H(cku

(B)),H(K)). It is important to note that
in program execution mode, ku is directly forwarded to the decryption module
over a separate connection and is not visible on any system bus.

The instruction decryption module is integrated in the processor’s instruction
fetch stage and has no dedicated interface other than the input of ku from the
PUF module. As shown in Fig. 3, the decryption module evaluates the Program

1 http://opencores.org/or1k/OR1200 OpenRISC Processor, accessed 03/13/2017.

http://opencores.org/or1k/OR1200_OpenRISC_Processor


34 S. Kleber et al.

Fig. 3. Simplified structure of the decryption module

Counter (PC) to detect branches and sets the nonce and counter accordingly. The
program flow from one basic block to the other is marked by a custom instruc-
tion, if the block has no preceding branch instruction. These marker instructions
are added prior to the encryption on the user system by a small compiler add-on.
Some instructions take more than one processor cycle to execute. Thus, a first-in,
first-out (FIFO) buffer is added to store the produced blocks of the keystream
until they are needed by the processor. Since a keystream block produced by the
AES-128 cipher can cover four 32 bit instructions of the CPU, an additional mul-
tiplexer following the FIFO is used. It selects the correct part of the keystream
block depending on the current PC. This portion of the keystream block is
XORed with the incoming encrypted instruction and the decrypted instruction
is forwarded to the instruction decode stage.

The AES decryption core, for instruction decryption in CTR, should provide
a throughput sufficiently high to allow sequential code to be decrypted and
executed without stalling. We evaluated several freely available 128 bit-key AES
cores and selected one2 with enough throughput (in keystream blocks per cycle)
for uninterrupted execution.

For an optimal trade-off between FPGA resources, lowest latency, and
throughput, we designed a parallel combination of four 13-cycle encrypt-only
AES cores. In CTR mode, the AES core has to support only encryption. Using
this design, the processor needs to be stalled only once at the beginning of each
basic block for 13 cycles until the first portion of keystream for a basic block is
computed.

The whole SEPP implementation on the Spartan-6 FPGA requires 20,643
Slice LUTs overall and 11,321 Registers, compared to 12,542 LTUs and 6,752
Registers of the baseline ORPSoC. Most of the additional Slices are required
for the PUF and a significant amount for the AES cores. The control logic and
interfaces require only few additional resources. The required resources seem to
be a significant overhead, but recall that all building blocks are exchangeable
and nothing except for SEPP has to run on the device.

The Universal Bootloader Das U-Boot (or U-Boot)3 is used as our software
platform. It was modified to implement the functionality of the target system

2 http://opencores.org/project,aes core, accessed on 03/13/2017.
3 http://www.denx.de/wiki/U-Boot, accessed on 03/13/2017.

http://opencores.org/project,aes_core
http://www.denx.de/wiki/U-Boot
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security kernel, i.e., the generation and execution of encrypted program images
in interaction with the PUF module. It provides a simple command line interface
to the user, for which we added custom commands. RSA public key cryptography
is used by U-Boot to establish a secure communication channel between the user
system and the target system. The KDF calculation for the PUF is implemented
as part of our security kernel.

Program encryption is independent from the PoC hardware and is handled
at the user system. In our case, the user system is a common Linux system for
which we developed helper tools that analyze the compiled binary, encrypt the
code, and package it together with the RSA-encrypted ku in an U-Boot image.
The user transfers such an encrypted program image to the PoC system over
an Ethernet connection. There π is generated and replaces the ku embedded
in the image. This image can now be securely made public as it only contains
encrypted code and the encrypted key ku in form of the public π. The encrypted
image is tied to this exact hardware instance and only this processor with its
unique PUF is able to decrypt and execute it.

6 Discussion

6.1 Security

Through the use of a PUF, there is no unsecured key material that needs to
be stored persistently. Moreover, our architecture is designed to minimize the
TCB, so only the PUF, registers, pipeline, and the ALU need to be trusted.
In contrast, previous approaches needed to trust all on- and off-chip bus lines
and all memory and caches, as presented in Sect. 7. However, invasive hardware
attacks against our architecture, during program execution, could allow for access
to bus lines between PUF, registers, pipeline and ALU or those components
themselves. The most prevalent hardware attacks on processors currently target
off- and on-chip memory bus lines [17]. Although sophisticated and very costly,
these attacks allow for read-out and injection—mostly fault injection—of data
bit by bit. This class of attacks is countered with meshes and other sophisticated
hardware countermeasures, e.g., in smartcard processors. The authors of XOM,
AEGIS, OASIS, and Ascend note that a variety of methods exist to prevent
or impede hardware tampering, e.g., probing or fault-injection. We agree that
such means will become necessary as soon as this class of attacks should become
feasible for processors in CMOS technique. In such a case, costly hardware attack
countermeasures can be applied to our architecture much easier, compared to
securing the whole SoC, including caches and any kind of memory. This follows
from the small chip area to be trusted, compared with previous designs. Figure 2a
and 2b show the trusted area in the design in green color. This provides an
unprecedented option to reduce production cost for this kind of hardware security
measure. To confirm the security of our design, we consider both parts of the
threat model (Sect. 2) code confidentiality and injection prevention separately.
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Code Confidentiality. To achieve code confidentiality, the binary image is
encrypted. The immediate key necessary to decrypt the binary is ku . Knowing a
specific π = Ekp

(ku) and having available the encrypted binary cku
(B) and the

security kernel K as context input for key derivation [16], ku can be recovered
using the correct PUF instance to derive kp . For key derivation, we require the
KDF to be constructed using keyed cryptographic hash functions H(·). Their
second pre-image resistance prevents finding another binary that produces the
same output of the KDF. The KDF also breaks the direct link between user
inputs and kp which could otherwise be exploited. Thereby, it prevents known-
plaintext-attacks on any of the inputs and possibly the output of the en- or
decryption. In addition, a KDF is resilient against length extension attacks.
Only ku and kp need to remain confidential. kp never leaves the PUF module,
whereas ku originates externally. Therefore, the confidentiality of a program is
determined by the confidentiality of ku outside of the processor’s instruction
decode module.

The only time where ku is required outside of the processor is for the user to
encrypt the binary after compilation. Provided the adversary model and scope
of our approach, the only attack vector arises during the necessary transfer of
ku from the user machine to the target machine. Therefore, we require a secure
channel between those two endpoints. This can be ensured during deployment.
Only a low bandwidth is necessary for this channel, since the key is small com-
pared to the binary. We assume that an update mechanism implemented in
trusted software is possible and propose an approach to be explored in follow-up
work in Appendix A. The user machine itself must be secured and trusted. This
can be addressed by known means for host security and is out of the scope of
this work.

Injection Prevention. The prevention of code injection is accomplished by
executing only correctly encrypted code. kp is required to recover ku necessary
to en- and decrypt code of a specific program. Thus, security relies only on the
confidentiality of kp . Provided the threat model, no other kind of trust needs
to be assumed. kp can only be generated by the correct PUF instance with an
unmodified binary B and an unmodified security kernel K as input. Blocking the
key generation data path in the processor—for ultimate security demands by
a hard-wired switch, otherwise by a privileged instruction—the generation of a
new valid π = Ekp

(ku) for any program can be prevented. Since kp is dependent
on cku

(B), no new code using a valid π can be generated. This way, arbitrary
code injections, like buffer overflows, are effectively prevented. Because of the
per-basic-block encryption, the architecture severely limits an attacker’s ability
to construct useful return oriented programming (ROP) gadgets. Therefore, it
effectively prevents malicious control flow manipulation, even for code that is
vulnerable on a conventional architecture.

Our SEPP implementation does not use any signatures of individual instruc-
tions in B to check code integrity. Instead it relies on the failure to decrypt a valid
CPU-instruction at runtime, when an attacker injects a guessed encryption of an
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instruction. In the event of an attack, this exception can gracefully be dealt with
by defining an exception handler in the processor that returns the control flow
back to the trusted B or even K. In the context of instruction set randomization,
Barrantes et al. [3] established that the guessing of a valid instruction is a suffi-
ciently large obstacle for an attacker: For the PowerPC architecture, Barrantes
et al. conclude that escapes are successful in less than 5% of all cases. Since
OpenRISC has a smaller instruction set than the PowerPC, this makes it even
less likely for random bytes to be interpreted as a valid instruction. We estimate
that a typical binary contains 10% branching targets to which the execution can
jump. Combined with the findings of Barrantes et al., the probability for a suc-
cessful instruction escape drops to below 10% · 5% = 0.5%. Thus, to targetedly
inject 5 instructions in a row would succeed in only 3 · 10−12 of all cases. To run
a meaningful attack, the attacker needs to control more than one instruction
in sequence. Therefore, only relying on the decryption of invalid instructions is
superior to validated encryption, under most practical circumstances, when tak-
ing runtime performance into account, due to the high probability that executing
random bytes results in an exception [3]. For high security applications, the used
cipher can be replaced by a lightweight authenticated and verifiable encryption
scheme, e.g., ALE [5].

To prevent the recovery of the true ku from π for a tampered-with binary,
the PUF-based key derivation requires cku

(B) as input to decrypt π into ku .
Moreover, we rely on the failure to correctly recover ku at the time of use if
there had been any tampering with the binary since the time of check. It is
possible to targetedly change a selected portion of a binary in memory, after it
has been read to generate the decryption key. This, however, does not lead to a
practically exploitable time-of-check time-of-use (TOCTOU) attack: An attacker
is not able to discern which instruction actually failed during the manipulated
binary’s execution and for what exact reason. So (s)he can just resort to blind
guessing attacks with the success probability of breaking the encryption scheme
itself. The attack, therefore, does not scale since each single instruction needs to
be reverse engineered again by guessing. The encryption scheme ensures that the
same instruction at another memory location is not discernible for the attacker
this way, either.

In our PoC implementation, we use the well-known CTR mode for random
access to instructions during execution. We are aware of a weakness in CTR
that may be exploited for a theoretical attack under rare circumstances. With
considerable effort of brute-forcing opcodes and in combination with the men-
tioned tedious TOCTOU, an attacker could substitute single instructions. Even
if successful, the usage of the PUF prevents the predictability of the keystream
for other binaries and other devices. Therefore, this attack does not scale to
multiple target machines. If even stricter security properties are desired, CTR
readily may be exchanged for other random access modes in an own implemen-
tation. As pointed out in Sect. 4, CTR is only one of the options as a suitable
crypto-primitive for an implementation.
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6.2 Performance

The PoC shows that our enhanced architecture can be implemented with iden-
tical clock rate as the baseline processor. Therefore, the performance of SEPP is
identical to the baseline system with the exception of the decryption. We there-
fore concentrate our discussion on the performance impact inflicted by decryp-
tion. Decryption latency and bandwidth potentially impact our architecture’s
performance twofold:

First, in a sequential stream of instructions, the processor would be stalled
if the bandwidth of the decryption module would be smaller than the proces-
sor’s bandwidth; we call this execution latency. As described in Sect. 5, our PoC
demonstrates that a hardware-implementation is possible with a decryption-
throughput high enough to completely prevent inflicting any execution latency.
Second, upon each jump, the processor has to be stalled until the newly fetched
instruction is decrypted, causing the so-called warm-up latency latw . Block
cipher modes of operation, like the AES-CTR we used in our PoC, requires a
couple of cycles to warm-up. The number of cycles, before the cipher yields the
first block of output, depends on the implementation of the block cipher. Con-
sequently, the only remaining occurring performance impact during execution is
the warm-up latency at the beginning of basic blocks.

Calculating the Performance Penalty: Since the warm-up latency occurs
at branching instructions, the overall performance penalty is dependent on the
control flow of the program. We can calculate the runtime penalty by normalizing
the number of clock cycles required to execute an encrypted program on the
SEPP platform to the number of clock cycles required to execute an unencrypted
program on the baseline platform:

runtime penalty =
IC · CPI + BIC · latw

IC · CPI ,

where IC denotes the total number of executed instructions of a program and
CPI the average clock cycles per instruction. The values of IC and CPI are
identical for SEPP and the baseline processor. Therefore, the overhead can be
calculated by BIC · latw as the product of the number of branching instructions
(BIC ) and the warm-up latency in clock cycles (latw ).

The AES implementation in our PoC system requires a warm-up latency of
13 clock cycles. Moreover, every processor has a latency induced by each memory
access, for OR1200 and SEPP this is 5 cycles on average. The average memory
access latency and CPI are rough estimations based on the OR1200’s data sheet
and system simulations. For a hypothetical program with 1 mio. instructions,
10% branching instructions and a CPI of 1.5, the runtime penalty calculates to
59% of SEPP compared to the baseline.

We validated this theoretical calculations by reducing the number of jump
instructions in a actual binary from 14.3% to 5.3%. Compared to the base-
line system, the performance penalty decreases from 84% to only 34% for our
PoC measurements. This clearly demonstrates the impact of branch and jump
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instructions on the execution time of encrypted programs. Appendix B contains
details about the practical performance measurements which we conducted.

Remark: Recent advances in the design of hardware block ciphers promise
a significant reduction of the warm-up latency. Since our architecture is not
restricted to AES-CTR, but allows for arbitrary random access modes of suitable
block ciphers, other ciphers can easily be substituted for AES. Low-latency block
ciphers like PRINCE [6] can perform encryption in a single cycle at 14 to 15
times less area cost than AES-128. With an estimated average of 5 cycles per
memory access, the performance penalty inflicted by the warm-up latency drops
below the memory access latency. It needs to be determined at which length
of the critical path the yielded throughput allows for uninterrupted execution.
However, we argue, that such an implementation of the processor would come
without any performance penalty whatsoever, compared to the baseline, but at
the cost of a lower security level [21].

7 Related Work

Secure Code Execution. To our knowledge, there is no previous description of
a system design that embeds security as deep into a chip as our architecture. This
kind of architectures have been termed Isolated Execution Environment (IEE)
[25]. Several recent works on IEEs [10,25,28,29,31] focus on confidentiality of
processed user data and in addition, aim to minimize the side channel attack
surface of processors. However, comparatively few papers address the confiden-
tiality of application code which is the goal of our design. For these approaches,
the assumed attacker capabilities vary substantially.

The eXecute-Only Memory (XOM) architecture [19], for example, considers
main memory to be insecure but on-chip memory like caches to be secure. All
data including code is encrypted when it leaves the cache and decrypted when
it is brought back from main memory. It has been shown that this leads to sub-
stantial latency issues of memory accesses which is enhanced by Yang et al. [29].
In contrast, our approach considers all memory and caches as untrusted and thus
stores only encrypted code.

Ascend [10] is a secure CPU architecture designed to obfuscate input and
output signals on the processor’s pins. The architecture has been extended into
Stream-Ascend [31] to overcome Ascend’s rather harsh limitations on the pro-
cessors interactions with the outside world. Ascend’s main goal is to obfuscate
and minimize side channels due to access timings of off-chip data transfers. The
capabilities of Ascend can be considered orthogonal to our architecture.

The AEGIS secure processor [27,28] is the first attempt to utilize the
challenge-response behavior of a PUF for an IEE. Like the XOM processor,
AEGIS encrypts only main memory using a similar OTP encryption scheme. The
encryption keys are derived from the embedded PUF. Applications can switch
the processor to different secure execution modes to match the current secu-
rity demands. This is very flexible and improves performance compared to full
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program encryption but requires careful consideration by the application’s pro-
grammer, which makes porting existing software to AEGIS a non-trivial task. In
addition, AEGIS requires extensive compiler and OS support, as well as modified
hardware like a custom memory controller. Compared to AEGIS, our approach
aims for a smaller TCB where code is only decrypted directly in the execution
pipeline. As we show, we provide better compatibility with existing code.

OASIS is an instruction set extension for secure CPUs which provides an
IEE for secure execution and remote attestation [25]. All cryptographic keys
are bootstrapped from a PUF secret generated by an SRAM PUF [11]. Data
confidentiality and integrity is established by encrypting program data with
keys bound to the program code. However, unlike our approach, OASIS does
not encrypt the code itself.

Intel SGX provides security enclaves for isolated and secure execution of
programs [9]. To provide and manage enclaves, a large TCB is necessary, encom-
passing not only the processor logic itself. SGX assumes that everything on-chip
is trusted, including caches and memory management. To provide confidential-
ity and integrity for data residing outside of the processor, it requires a complex
Memory Encryption Engine. Thus, SGX does encrypt program code on trans-
fer to the external memory, but it is decrypted transparently on access such
that data and code is available in clear-text within the processor. The separa-
tion between enclaves, to prevent them from reading data from each other, is
hardware-supported but managed completely by the security kernel in software.
So the TCB is further enlarged by the necessity of a complex security kernel.

In summary, most presented approaches are data-centric and attempt to
secure communication to and from the processor by introducing an additional
encryption or obfuscation layer. They essentially localize security at the mem-
ory interface. Once an attacker gains access to CPU internal caches or pins,
instructions are unencrypted and can be read out or modified.

In our architecture, we propose a deeper embedding into the execution
pipeline where code remains encrypted in all memory and caches—even the
instruction cache. Previous architectures come at the price of a relatively large
TCB, including most of the processor and memory attachment, in some cases
even large portions of software with parts of the operating system. This requires
modified compilers, with significant customizations. Thus, the programming
models of such concepts differ significantly from conventional ones.

Our design aims at minimizing such obstacles to the adoption of a secure
IEE, so that it can be integrated much easier into existing environments.

Physical Unclonable Functions and Fuzzy Extractors. Storing encryption
keys in memory inside or – even worse – outside of the CPU is a source of
potential vulnerabilities, as attackers may succeed in extracting them, e.g., by
the use of cold-boot attacks. In our design, we utilize the physical diversity of
chip hardware to deduce a device-unique key that does not need to be stored in
expensive secure non-volatile memory.

Physical unclonable functions (PUFs) evaluate manufacturing variations
in integrated circuits to derive unique secrets inside a device to generate
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cryptographic keys or authenticate a device in a challenge-response proto-
col [2,15]. Instead of storing secrets permanently, PUFs reveal their secret only
during runtime. Popular PUF types for key generation are the SRAM PUF [11]
and the Ring-Oscillator (RO) PUF [23].

The secrets derived from PUFs are noisy and affected by environmental con-
ditions such that they require additional error correction in form of a so-called
Fuzzy Extractor or Helper Data Key Extractor. Helper data is generated to
map the random PUF responses to codewords of an Error-Correcting Code
(ECC), thereby eliminating the variation in the PUF responses. Implementa-
tions of related approaches are based on the Code-Offset construction [7] , the
Syndrome construction [22] or Differential Sequence Coding [13,14]. In this work,
we use a Complementary Index-Based Syndrome coding (C-IBS) RO implemen-
tation [12] which is an extension of IBS [30]. The implementation contains a
small Reed-Muller code with GMC soft-decision decoding [8] as ECC.

8 Conclusions and Future Work

In this paper, we presented a PUF-based secure code execution architecture
to prevent reverse engineering of programs and to counter injection of mali-
cious code into memory and cache to enhance the security of embedded devices.
Deploying confidential code on our platform provides for additional application
security and an enhanced protection of intellectual properties of the software
developer. Novelties of this architecture are to embed a PUF-based decryption
module, as deep as into the instruction fetch stage of the CPU’s pipeline. This
allows for a significantly smaller trusted computing base than previous designs
of a secure processor. By employing a PUF we devise a new cryptographic pro-
tocol to allow binding of decryption to a target hardware instance. Encryption
remains possible at a trusted development machine without access to the tar-
get. Despite these benefits, the architecture’s minimal impact on the software
development process simplifies application migration.

For our proof-of-concept implementation we used AES in CTR mode as a
widely accepted mode of operation. Like all employed crypto-primitives, AES-
CTR mode can be exchanged for a number of other block cipher modes suited for
any individual security demands and addressing practical requirements. Depend-
ing on the acceptable area overhead, branching penalties may be removed almost
completely by doubling the block cipher cores and compute two keystreams
for both control flow branches in parallel. The flexible architecture we pro-
posed allows for the customization of any implementation to meet the individual
requirements of the specific use-case, for which our PoC implementation (SEPP)
is one example. We leave it to future work to evaluate the differences of multiple
incarnations of our architecture besides SEPP, regarding security impact, per-
formance penalty, and chip-area requirement. Ultimately, this ought to result in
an ASIC implementation for productive use.

Our SEPP showed, that direct and immediate placement of the PUF-driven
instruction decryption, right into the instruction fetch stage, can be realized
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and allows reasonable performance. Compared to related work evaluated on an
FPGA, our SEPP has a similar overall performance penalty. At the same time,
our architecture allows SEPP to reach the envisioned stricter security goals by
moving the security deeper into the hardware, as proposed by Paul Kocher at his
CRYPTO/CHES 2016 talk on the Future of Embedded Security. The reduced
attack surface prevents the success of any kind of practical attack for reverse
engineering and injecting code on memory and caches – even the instruction
cache – which related secure architectures do not address in particular. SEPP’s
architecture achieves these properties with minimal impact on the development
of software.

Appendices

Fig. 4. SEPP architecture building blocks overview (orange arrows: key generation,
black arrows: execution) (Color figure online)

A Deployment of Software Updates

Programs are initially flashed to a SEPP-powered System-on-a-Chip (SoC) at
deployment time by the user via a secure connection to the device, e.g., a
dedicated cable. To enable software updates in the field, an encrypted binary
cku

(B)—initially deployed in a secure environment as stated above—may con-
tain an update function. This update function needs to be able to take a new
user-key ku

′ and a new encrypted binary cku
′(B′) and feed it into the PUF-

driven executable-image generation process. SEPP will return π′ = ckp
′(ku ′) to

be packaged into a new image (cku
′(B′), π′) for its current instance. A user sends

cku
′(B′) and ku

′ to this function; the encrypted cku
′(B′) can be transmitted via

an untrusted network connection, while ku
′ needs to be transmitted securely. To

provide this secure channel between user and B running on the SEPP device,
the update function already deployed in the trusted binary B must contain a
suitable encryption scheme, e.g., RSA-based such as TLS or SSH. Due to the
small key size, the secure channel for ku

′ requires only a low data rate.
The PUF-driven executable-image generation process of SEPP, generating

π = ckp
(ku), has to be deactivated physically after deployment of the binaries

for ultimate security demands. This completely prohibits the generation of any
new executable sequence of instructions for this instance of SEPP and therefore
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completely prevents injections. For the over-the-air update, this security feature
has to be deactivated as trade-off for an update path. The executable-image
generation process of SEPP alternatively can only be triggered by a privileged
instruction. This restricts its usage to the security kernel, however shifting the
responsibility into software to decide what trusted code is allowed to generate
new code.

B Practical Performance Measurements

Benchmarks and tests were conducted on our prototype implementation. We
compare the test results with our prototype’s base platform, the OR1200 CPU,
running on the same FPGA board as SEPP’s prototype implementation. In order
to demonstrate the performance impact, we developed a number of custom tests
with known parameters such as the number of branching instructions. These cus-
tom tests were all compiled without any compiler optimization in order to ensure
deterministic outcomes. The results of our tests are summarized in Table 2.

Table 2. Results of custom tests executed on prototype implementation

By reducing the number of jump instructions from 14.3% to 5.3% through
the removal of a function call within a loop, compared to the baseline system,
the performance penalty decreases from 84% to 34%. This clearly demonstrates
the impact of branch and jump instructions on the execution time of encrypted
programs.
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Loops generally introduce a substantial number of jumps into program execu-
tion. To verify this assumption, we manually unrolled a loop of a short example
program. The number of branch instructions thereby decreased from 9.8% to
3.8%, reducing performance penalty from 61% to 17% for our custom test cases.

Furthermore, we performed CoreMark4 benchmarks, to show the influence
of unrolling loops and to enable comparison with future developments and other
platforms. We conducted the benchmark both on our system in encrypted form
as well as on the baseline architecture in unencrypted form. We compare the
benchmark compiled with GCC’s optimization level -O3 with another version
that is compiled with additional loop unrolling optimization, enabled with the
flag -funroll-all-loops. Compilation with -O3 results in a 48.8% penalty of
SEPP, and enabling unrolling reduces this to 43.5%. While the baseline processor
only speeds up by 9% with the additional -funroll-all-loops, SEPP’s execu-
tion speed gains 21%. This confirms that the reduction of branching instruction
benefits SEPP greatly. These benchmark comparisons prove the expected effects
of our instruction-level decryption, specifically the warm-up latency on branch-
ing, for actual calculations.

Unfortunately, the comparison of our prototype with related implementations
is not straightforward, as authors in this field use a variety of methods for perfor-
mance assessment. The AEGIS developers used the SPEC2000 CPU5 benchmark
suite [27], which is not freely available. Lie et al. [19] provide a theoretical per-
formance analysis for their XOM architecture [19]. The OASIS instruction set
extension is not directly comparable to SEPP, as the authors only give absolute
time overheads for specific platform operations [25].

The AEGIS developers state that degradation can be as high as 60%; while
it mostly stays below 40%. XOM’s slow down is less than 50% according to
the authors’ calculations. Given this comparison, we conclude that the runtime
penalty of SEPP lies well within worst case, best case, and average for com-
parable systems. We expect a significant performance advantage of SEPP over
the compared platforms when the described improvements are implemented in
future work.

We are not able to compare SEPP to previous work in respect to FPGA
resources overhead for the lack of information about properties of those
approaches: XOM is only an architectural design without a hardware imple-
mentation [19]. OASIS was only simulated in software [25]. Although, an FPGA
implementation of AEGIS was evaluated [28] no information about their FPGA
resource requirements were given. Its resource overhead was only determined
by an ASIC synthesis. The ASIC area overhead of AEGIS was given as being
roughly 90% larger than their baseline. We consider this value not to be directly
comparable to the roughly 68% Slices overhead of SEPP.

4 http://www.eembc.org/coremark accessed on 27/02/2016.
5 https://www.spec.org/cpu2000/, accessed on 27/02/2016.

http://www.eembc.org/coremark
https://www.spec.org/cpu2000/
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