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Abstract. Security protocols using public-key cryptography often
requires large number of costly modular exponentiations (MEs). With
the proliferation of resource-constrained (mobile) devices and advance-
ments in cloud computing, delegation of such expensive computations
to powerful server providers has gained lots of attention. In this paper,
we address the problem of verifiably secure delegation of MEs using
two servers, where at most one of which is assumed to be malicious (the
OMTUP-model). We first show verifiability issues of two recent schemes:
We show that a scheme from IndoCrypt 2016 does not offer full verifia-
bility, and that a scheme for n simultaneous MEs from AsiaCCS 2016
is verifiable only with a probability 0.5909 instead of the author’s claim
with a probability 0.9955 for n = 10. Then, we propose the first non-
interactive fully verifiable secure delegation scheme by hiding the modulus
via Chinese Remainder Theorem (CRT). Our scheme improves also the
computational efficiency of the previous schemes considerably. Hence,
we provide a lightweight delegation enabling weak clients to securely and
verifiably delegate MEs without any expensive local computation (nei-
ther online nor offline). The proposed scheme is highly useful for devices
having (a) only ultra-lightweight memory, and (b) limited computational
power (e.g. sensor nodes, RFID tags).

Keywords: Verifiable and secure delegation
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1 Introduction

Recent advances in mobile computing, internet of things (IoT), and cloud com-
puting makes delegating heavy computational tasks from computationally weak
units, devices, or components to a powerful third party servers (also programs
and applications) feasible and viable. This enables weak mobile clients with
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limited memory and computational capabilities (e.g. sensor nodes, smart cards
and RFID tags) to be able to utilize several applications of these technologies,
which otherwise is difficult and often impossible because of underlying resource-
intensive operations and consumption of considerable amount of energy.
Unlike fully homomorphic encryption, secure delegation of expensive crypto-
graphic operations (like MEs modulo a prime number p) is the most practical
option along with its little computational costs and applications for critical secu-
rity applications. However, delegating MEs of the form ua mod p to untrusted
servers while ensuring the desired security and privacy properties is highly chal-
lenging; i.e. either u or a, or even both (in most privacy enhancing applications),
contain sensitive informations, thence required to be properly protected from
untrusted servers. Beside these challenges, ensuring the verifiability of the del-
egated computation is very important. As also pointed out in [8,11], failure in
the verification of a delegated computation has severe consequences especially if
the delegated MEs are the core parts of authentication or signature schemes.

Related Work. After the introduction of wallets with observers by Chaum
and Pedersen [4], Hohenberger and Lysyanskaya [7] provided the first secure del-
egation scheme for group exponentiations (GEs) with a verifiability probability
1/2 using two servers, where at most one of them is assumed to be malicious
(the OMTUP-model). They also gave the first formal simulation-based security
notions for the delegation of GEs in the presence of malicious powerful servers.
In ESORICS 2012, Chen et al. [5] improved both the verifiability probability (to
2/3) and the computational overhead of [7]. A secure delegation scheme for two
simultaneous GEs with a verifiability probability 1/2 is also introduced in [5].
In ESORICS 2014, for the first time Wang et al. [13] proposes a delegation
scheme for GEs using a single untrusted server with a verifiability probability
1/2. This scheme involves an online group exponentiation of a small exponent
by the delegator; the choice of such a small exponent is subsequently shown to be
insecure by Chevalier et al. [6] in ESORICS 2016. Furthermore, it is also shown
in [6] essentially that a secure non-interactive (i.e. single-round) delegation with
a single untrusted server requires at least an online computation of a GE even
without any verifiability if the modulus p is known to the server. Kiraz and
Uzunkol [8] introduce the first two-round secure delegation scheme for GEs using
a single untrusted server having an adjustable verifiability probability requiring
however a huge number of queries to the server. They also provide a delega-
tion scheme for n simultaneous GEs with an adjustable verifiability probability.
Cavallo et al. [2] propose subsequently another delegation scheme with a ver-
ifiability probability 1/2 again by using a single untrusted server under the
assumption that pairs of the form (u, ux) are granted at the precomputation for
variable base elements u. However, realizing this assumption is difficult (mostly
impossible) for resource-constrained devices. In AsiaCCS 2016, Ren et al.[11] pro-
posed the first fully verifiable (with a verifiability probability 1) secure delegation
scheme for GEs in the OMTUP-model at the expense of an additional round
of communication. They also provide a two-round secure delegation scheme for
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n ∈ Z
>1 simultaneous GEs which is claimed to have a verifiability probability

1 − 1
2n(n+1) .

Kuppusamy and Rangasamy use in INDOCRYPT 2016 [9] for the first time
the special ring structure of Zp with the aim of eliminating the second round
of communication and providing full verifiability simultaneously. They propose
a non-interactive efficient secure delegation scheme for MEs using Chinese
Remainder Theorem (CRT) in the OMTUP-model which is claimed to satisfy
full-verifiability under the intractability of the factorization problem. This app-
roach is also used very recently by Zhou et al. [14] together with disguising the
modulus p itself, also assuming the intractability of the factorization problem.
They proposed an efficient delegation scheme with an adjustable verifiability
probability using a single untrusted server. However, the scheme in [14] does not
achieve the desired security properties.

Our Contribution. This paper has the following major goals:

1. We analyze two delegation schemes recently proposed at INDOCRYPT 2016
[9] and at AsiaCCS 2016 [11]:
(a) We show that the scheme in [9] is unfortunately totally unverifiable, i.e.

a malicious server can always cheat the delegator without being noticed,
instead of the author’s claim of satisfying the full verifiability.

(b) We show that the scheme for n simultaneous MEs in [11] does not achieve
the claimed verifiability guarantees; instead of having the verifiability
probability 1− 1

2n(n+1) , it only has the verifiability probability at most 1−
n−1

2(n+1) . For instance, it offers a verifiability probability at most ≈ 0.5909
instead of the author’s claim in [11] offering a verifiability probability
≈ 0.9955 for n = 10.

2. We propose the first non-interactive fully verifiable secure delegation scheme
HideP for MEs in the OMTUP-model by disguising the prime number p via
CRT. HideP is not only computationally much more efficient than the pre-
vious schemes but requires also no interactive round, whence substantially
reduces the communication overhead. In particular, hiding p enables the dele-
gator to achieve both non-interactivity and full verifiability at the same time
efficiently.
Note that the delegator of MEs hides the prime modulus p from the servers,
and not from a party intended to be communicated (i.e. a weak device (dele-
gator) does not hide p with whom it wants to run a cryptographic protocol).
In other words, it solely hides p from the third-party servers to which the
computation of MEs is delegated.

3. We apply HideP to speed-up blinded Nyberg-Rueppel signature scheme [10].

We refer the readers to the full version of the paper [12] which provide a delegated
preprocessing technique Rand. It eliminates the large memory requirement and
reduces substantially the computational cost of the precomputation step. The
overall delegation mechanism (i.e. HideP together with Rand) offers a complete
solution for delegating the expensive MEs with full verifiability and security,
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whence distinguish our mechanism as a highly usable secure delegation primitive
for resource-constrained devices.

2 Preliminaries and Security Model

In this section, we first revisit the definitions and the basic notations related to
the delegation of MEs. We then give a formal security model by adapting the
previous security models of Hohenberger and Lysyanskaya [7] and Cavallo et al.
[2]. Lastly, an overview for the requirements of the delegation of a ME1 is given.

2.1 Preliminaries

We denote by Zm the quotient ring Z/mZ for a natural number m ∈ N with
m > 1. Similarly, Z∗

m denotes the multiplicative group of Zm.
Let σ be a global security parameter given in a unary representation (e.g.

1σ). Let further p and q be prime numbers with q | (p − 1) of lengths σ1 and σ2,
respectively. The values σ1 and σ2 are calculated at the setup of a cryptographic
protocol on the input of σ. Let G =< g > denote the multiplicative subgroup of
Z

∗
p of order q with a fixed generator g ∈ G.

The process of running a probabilistic algorithm A, which accepts x1, x2, . . .
as inputs, and produces an output y, is denoted by y ← A(x1, x2, . . .). Let
(zA, zB , tr) ← (A(x1, x2, . . .), B(y1, y2, . . .)) denote the process of running an
interactive protocol between an algorithm A and an algorithm B, where A
accepts x1, x2, . . ., and B accepts y1, y2, . . . as inputs (possibly together with
some random coins) to produce the final output zA and zB , respectively. We
use the expression tr to represent the sequence of messages exchanged by A and
B during protocol execution. By abuse of notation, the expression y ← x also
denotes assigning the value of x to a variable y.

Delegation Mechanism and Protocol Definition. We assume that a delega-
tion mechanism consists of two types of parties called as the client (or delegator)
C (trusted but resource-constrained part) and servers U (potentially untrusted
but powerful part), where U can consist of one or more parties. Hence, the sce-
nario raises if C is willing to delegate (or outsource) the computation of certain
functions to U . For a given σ, let F : Dom(F) → CoDom(F) be a function, where
F’s domain is denoted by Dom(F) and F’s co-domain is denoted by CoDom(F).
desc(F) denotes the description of F. We have two cases for desc(F):

1. desc(F) is known to both C and U , or
2. desc(F) is known to C, and another description desc(F′) is given to U such

that the function F can only be obtained from F′ if a trapdoor information τ
is given. By abuse of notation, we sometimes write τ(F) = F′.

1 In this paper, we introduce a special delegation scheme by working with a subgroup
G of the group Z

∗
p of prime order q.
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From now on, we concentrate on the second case since we propose a delegation
scheme in this scenario. A client-server protocol for the delegated computation
of F is defined as a multiparty communication protocol between C and U and
denoted by (C(1σ, desc(F), x, τ),U(1σ, desc(F′))), where the input x and the trap-
door τ are known only by C. A delegated computation of the value y = F(x),
denoted by

(yC , yS , tr) ← (C(1σ, desc(F), x, τ),U(1σ, desc(F′))),

which is an execution of the above client-server protocol using independently
chosen random bits for C and U . At the end of this execution, C learns yC = y,
U learns yU ; and tr is the sequence of messages exchanged by A and B. Note
that the execution may happen sequentially or concurrently. In the case of the
delegation of MEs, the aim is to always have yU = ∅.

Factorization Problem. We prove some security properties of the proposed
scheme later by using the intractability of the factorization problem2: Given
a composite integer n, where n is a product of two distinct primes p and q, the
factorization problem asks to compute p or q. The formal definition is as follows:

Definition 1. (Factorization Problem) Let σ be a security parameter given in
unary representation. Let further A be a probabilistic polynomial-time algorithm.
Let further the primes p and q, p �= q, are obtained by running a modulus gener-
ation algorithm PrimeGen on the input of σ with n = pq. Run A with the input
n. The adversary A wins the experiment if it outputs either p or q. We define
the advantage of A as

AdvFactA (σ) = Prob [x = p or x = q : (n, p, q) ← PrimeGen(1σ), x ← A(n)] .

2.2 Security Model

Hohenberger and Lysyanskaya provided first formal simulation-based security
notions for secure and verifiable delegation of cryptographic computations in
the presence of malicious powerful servers [7]. Different security assumptions for
delegation of MEs can be summarized according to [7] as follows:

– One-Untrusted Program (OUP): There exists a single malicious program U
performing the delegated MEs.

– One-Malicious version of a Two-Untrusted Program (OMTUP): There exist
two untrusted programs U1 and U2 performing the delegated MEs but only
one of them behaves maliciously.

– Two-Untrusted Program (TUP): There exist two untrusted programs U1 and
U2 performing the delegated MEs and both of them may simultaneously
behave maliciously, but they do not maliciously collude.

2 We assume here that the prime numbers p and q are chosen suitably that the fac-
torization of n = pq is intractable.
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Cavallo et al. [2] gave a formal definition for delegation schemes by relaxing
the security definitions first given in [7]. Although the simulation-based security
definitions [7] intuitively include (whatever can be efficiently computed about
secret values with the protocol’s view can also be efficiently computed without
this view [6]) the most direct way of guaranteeing the desired secrecy and verifi-
ability, its formalization is unfortunately highly complex and subtle. Therefore,
simpler indistinguishability-based security definitions have been recently used
both in [2] and in [6], which, in particular, include the fact that an untrusted
server is unable to distinguish which inputs the other parties use.
In this section, we adapt the security definitions of [2] for our security require-
ments to the OMTUP-model of [7], i.e. the adversary is modeled by a pair
of algorithms A = (E ,U ′), where E denotes the adversarial environment and
U ′ = (U ′

1,U ′
2) is a malicious adversarial software in place of U = (U1,U2), where

exactly one of (U ′
1,U ′

2) is assumed to be malicious. In the OMTUP-model we have
the fundamental assumption that after interacting with C, any communication
between E and U ′

1 or between E and U ′
2 pass solely through the delegator C [7].

Completeness. If the parties (C,U1 and U2) executing the scheme follow the
scheme specifications, then C′s output obtained at the end of the execution would
be equal to the output obtained by evaluating the function F on C. The following
is the formal definition for completeness:

Definition 2. For the security parameter σ, let (C,U1,U2) be a client-server
protocol for the delegated computation of a function F. We say that (C,U1,U2)
satisfies completeness if for any x in the domain of F, it holds that

Prob[(yC , yS , tr) ← (C(1σ, desc(F), x),Ui(1σ, desc(F′)) : yC = F(x)] = 1.

Verifiability. Verifiability means informally that if C follows the protocol, then
the malicious adversary A = (E ,U ′

i), i = 1 or i = 2, cannot convince C to obtain
some output y′ different from the actual output y at the end of the protocol. The
model let further the adversary choose C′s trapdoored input τ(F(x)) and take
part in exponential/polynomial number of protocol executions before it attempts
to convince C with incorrect output values (corresponding to the environmental
adversary E).

Definition 3. Let (C,U1,U2) be a client-server protocol for the delegated com-
putation of a function F and U ′ = (U ′

1,U ′
2) be a malicious adversarial software

in place of U = (U1,U2). We say that (C,U1,U2) satisfies (tv, εv)−verifiability
against a malicious adversary if for any A = (E ,U ′

i), either i = 1 or i = 2,
running in time tv, it holds that

Prob[out ← VerExpF′,A(1σ) : out = 1] ≤ εv,

for small εv, where experiment VerExp is defined as follows:

1. i = 1.
2. (a, τ(F(x1)), aux) ← A(1σ, desc(F′))
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3. While a �= attack do
(yi, (a, τ(F(xi+1)), aux), tri) ← (C(τ(F(xi))),A(aux))
i ← i + 1

4. τ(F(x)) ← A(aux)
5. (y′, aux, tri) ← (C(τ(F(x))),A(aux))
6. return: 1 if y′ �=⊥ and y′ �= F(x)
7. return: 0 if y′ =⊥ or y′ = F(x).

If εv is negligibly small for any algorithm A running in time tv, then (C,U1,U2)
is said to satisfy full verifiability.

Security. Security means informally that if C follows the protocol, then the mali-
cious adversaryA = (E ,U ′

i), i = 1 or i = 2, cannot obtain any information about
C′s input x. The model let further the adversary choose C′s trapdoored input
τ(F(x)) and take part in exponential/polynomial number of protocol executions
before it attempts to obtain useful information about C′s input (corresponding
to the environmental adversary E).

Definition 4. Let (C,U1,U2) be a client-server protocol for the delegated com-
putation of a function F and U ′ = (U ′

1,U ′
2) be a malicious adversarial software in

place of U = (U1,U2). We say that (C,U1,U2) satisfies (ts, εs)−security against
a malicious adversary if for any A = (E ,U ′

i), either i = 1 or i = 2, running in
time ts, it holds that

Prob[out ← SecExpF′,A(1σ) : out = 1] ≤ εs,

for negligibly small εs for any algorithm A running in time ts, where experiment
SecExp is defined as follows:

1. (a, τ(F(x1)), aux) ← A(1σ, desc(F′))
2. While a �= attack do

(yi, (a, τ(F(xi+1)), aux), ·) ← (C(τ(F(xi))),A(aux))
i ← i + 1

3. (τ(F(x0)), τ(F(x1)), aux) ← A(aux)
4. b ← 0, 1
5. (y′, b′, tr) ← (C(τ(F(xb))),A(aux))
6. return: 1 if b = b′

7. return: 0 if b �= b′.

Remark 1. We emphasize that the above security definition corresponds to the
OMTUP-model of [7]. As in [7], the adversary A corresponds to both E and U ′,
and can only interact each other over C after they once begin interacting with
C. The behavior of both parts (E and U ′) is modeled as a single adversary A by
letting the adversary A submit its own inputs to C and see/take part in multiple
executions of (C,U1,U2).

Efficiency Metrics. (C,U1,U2) has efficiency parameters

(tF, tmC , tC , tU1 , tU2 , cc,mc)
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where F can be computed using tF(σ) atomic operations, requires tmC (σ) atomic
storage for C, C computes tC(σ) atomic operations, Ui can be run using tUi

(σ)
atomic operations, C and Ui exchange a total of at most mc messages of total
length at most cc for i = 1, 2.3

2.3 Steps of a Delegation Scheme

Let p and q be distinct prime numbers. We now give four main steps of a dele-
gation of ua mod p under the OMTUP-model, where u ∈ G, a ∈ Z

∗
q and G is a

subgroup of Z∗
p of order q.

1. Precomputation: Invocation of the subroutine Rand: A preprocessing
subroutine Rand is required to randomize u and a and to generate the trap-
door information τ , see the paper’s full version for the details [12].

2. Randomizing a ∈ Z
∗
q and u ∈ G. The base u and the exponent a are both

randomized by C by performing only modular multiplications (MMs) in Z
∗
q

and G with the values from Rand using the trapdoor information τ .
3. Delegation to servers. The randomized elements are queried to the servers

U1 and U2 by using τ . For i = 1, 2, Ui(τ(α), τ(h)) denotes the delegation of
hα mod p with α ∈ Z

∗
q , h ∈ G using the trapdoor information τ in order to

disguise the parameters p, q, whence the concrete description of G.
4. Verification of the delegated computation. Upon receiving the outputs

of U1 and U2, the validity of the delegated computation is verified by compar-
ing the received data with some elements from Rand. If the verification fails,
an error message ⊥ is returned.

5. Derandomizing outputs and computing ua mod p. If the verification is
successful, then ua mod p is computed by C by performing only MMs.

3 Verifiability Issues in Two Recent Delegation Schemes

In this section, we show two verifiability issues for recently proposed delegation
schemes appeared in INDOCRYPT 2016 [9] and AsiaCCS 2016 [11].

3.1 An Attack on the Verifiability of Kuppusamy and Rangasamy’s
Scheme from INDOCRYPT 2016

Using CRT, Kuppusamy and Rangasamy proposed a highly efficient secure del-
egation scheme for MEs in subgroups of Z∗

p [9]. We now show that the scheme
is unfortunately totally unverifiable.

3 We here only consider the group operations like group multiplications, modular
reduction, inversions and exponentiations as atomic operations, and neglect any
lower-order operations such as congruence testing, equality testing, and modular
additions.
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Attack: Let the notation be as in [9]. Assume first that the server U1 is malicious
and U2 is honest. Since the prime p is public, U1 can compute r1r2 = n/p, and
return the bogus values

Y11 :≡ D11 + r1r2 mod n, and Y12 :≡ D12 + r1r2 mod n. (1)

Now, U1 can successfully distinguish D11 and D12 from D13 with probability 1
since the first component of D13 is an element of G whereas the first components
of D11 and D12 are elements of Zn. Afterwards, by the choices of the distinct
primes p, r1 and r2, and the properties Y12 ≡ D12 mod r2 and Y11 ≡ D11 mod r2,
U1 can pass the verification step with Y11 and Y12 instead of using D11 and D12,
respectively. This leads to the bogus final output

Y12 · D21 · D13

instead of the actual output ua = D12 · D13 · D22 given in [9].
Similarly, a malicious U2 can successfully distinguish D21 from D22 with prob-
ability 1 since the first component of D22 is an element of G whereas the first
component of D21 is an element of Zn. Then, U2 can act as the untrusted server
by computing

Y21 ≡ D21 + r1r2 mod r2. (2)

Afterwards, by the choices of the distinct primes p, r1 and r2 and the property
Y21 ≡ D21 mod r2, U2 can pass the verification step with the bogus value Y21.
This results in the output

D12 · Y21 · D13

instead of ua = D12 · D13 · D21 given in [9]. Hence, the scheme in [9] is unfortu-
nately totally unverifiable and the claim regarding full verifiability [9, Thm. 2,
pp. 90] does not hold.

3.2 An Attack on the Verifiability of Ren et al.’s Simultaneous
Delegation Scheme from AsiaCCS 2016

Ren et al. proposed the first fully verifiable two-round secure delegation scheme
for GEs together with a delegation scheme of n simultaneous MEs [11]. We now
show that the author’s claim [11, Thm. 4.2, pp. 298] does not hold.
Attack: Let the notation be as in [11]. Assume without loss of generality that

the server U2 is malicious and U1 is honest. Then, U2 chooses a random θ ∈ G

and sends the bogus value
T212 ≡ D212 · θ

instead of D212 after correctly distinguishing D212 from D211 with probability
at least 1/2. Then, C computes

Θ := θ(
n∏

j=1,i �=j

wj)c/t1 ≡ T212g
−c.
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In order to pass the verification step with Θ · T instead of T , U2 requires to find
an output T23j with T23j �∈ {D22,D23i}, i.e. T23j ≡ D23j mod n for some i �= j,
and sends θ · T23j instead of T23j . Now, since there are n(n + 1)/2 pairs from
the set

D := {D22,D231, · · · ,D23n}
we totally have n(n−1) possibilities for T23j corresponding to a single component
of such a pair. If (Θ1, Θ2) is a pair from the set D. Then,

1. there exists 2 values for T23j which can be detected by C corresponding to
the single pair with (Θ1, Θ2) ≡ (D22,D23i) mod p,

2. there exists n− 1 values of T23j which can be detected by C corresponding to
the pairs of the form (Θ1, Θ2) with T1 = Θ1 ≡ D22 and Θ2 �≡ D23i,

3. there exists n− 1 values of T23j which can be detected by C corresponding to
the pairs of the form (Θ1, Θ2) with T23j = Θ1 ≡ D23i and Θ2 �≡ D12.

Therefore, there exist

n(n + 1) − 2 − (n − 1) − (n − 1) = n(n + 1) − 2n = n(n − 1)

possible values for T23j with T23j �∈ {D22,D23i}. Combining with the probability
of correctly guessing the position of D232, the server U2 can cheat C with a
probability at least n(n−1)

2n(n+1) = n−1
2(n+1) . Hence, the scheme is verifiable with a

probability at most 1 − n−1
2(n+1) instead of the author’s claim that the scheme

would be verifiable with a probability 1 − 1
2n(n+1) . Thereby it also leads to a

bogus output θua1
1 · · · uan

n .
For example with n = 10 and n = 100, the scheme is verifiable only with
probabilities at most 13/22 ≈ 0.5909 and 103/202 ≈ 0.5099 instead of the claims
with probabilities 219/220 ≈ 0.9955 and 20199/20200 ≈ 0.9999, respectively.
Clearly, the verification probability becomes 1/2 if n tends to infinity.

4 HideP: A Secure Fully Verifiable One-Round Delegation
Scheme for Modular Exponentiations

In this section, we introduce our secure delegation scheme HideP in the OMTUP-
model.

Let G =< g > denote the multiplicative subgroup of Z
∗
p of prime order q

with a fixed generator g ∈ G. Our scheme HideP uses another prime r �= p of
length σ1 (e.g. p and r are of about the same size) such that G1 is a subgroup
of prime order q1 of length σ2 (e.g. q and q1 are of about the same size). We
set n := p · r and m := q1 · q. Note that HideP uses the prime number p as a
trapdoor information, i.e. p must be kept secret to both U1 and U2.

Throughout the section Ui(α, h) denotes that Ui takes (α, h) ∈ Z
∗
m × Z

∗
n as

inputs, and outputs hα mod n for i = 1, 2, as described in Sect. (2).
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4.1 HideP: A Secure Fully Verifiable One-Round Delegation Scheme

Our aim is to delegate ua mod p with a ∈ Z
∗
q and u ∈ G.

We now describe our scheme HideP. Public and private parameters of HideP are
given as follows:
Public parameter: n,

Private parameters: Prime numbers p, r, q, and q1, description of the subgroup

G of Z∗
p of order q, u ∈ G, a ∈ Z

∗
q ..

4

Additionally, the static values

Qr :≡ r · (r−1 mod p) mod n, Qp :≡ p · (p−1 mod r) mod n, (3)

Qq1 :≡ q1 · (q−1
1 mod q) mod m, Qq :≡ q · (q−1 mod q1) mod m, (4)

and
R :≡ g · Qr + g1 · Qp mod n (5)

are calculated at the initialization of HideP.

Precomputation. Using the existing preprocessing technique or a delegated
version Rand as described in [12]), C first outputs

(Gt ≡ gtQr mod n, Gγt ≡ gγtQr mod n, Hγt ≡ gγt
1 Qp mod n),

(Ht1 ≡ gt1
1 Qp mod n, Ht2 ≡ gt2

1 Qp mod n, gt
1 mod r),

and
(γ−1 mod m, T1 ≡ t1Qq mod m, T2 ≡ t2Qq mod m)

for random elements t1, t2, t ∈ Z
∗
m with t = t1 + t2.

Masking. The base u is randomized by C with

x1 ≡ u · Gt + Ht1 mod n, (6)

x2 ≡ uGt + Ht2 mod n, (7)

y ≡ Gγt + Hγt mod n. (8)

Note that by CRT we have

x1 ≡ x2 ≡ ugt mod p, y ≡ gγt mod p,

4 More precisely, hiding p enables the delegator to achieve the full verifiability in a sin-
gle round unlike the fully verifiable scheme in [11] which requires an additional round
of communication. The reason is that it is possible for C to send the randomized base
and the exponent by a system of simultaneous congruences, and recover/verify the
actual outputs by performing modular reductions (once modulo p for recovery, and
once modulo r for verification) in a single round. Note that for a given p each client
C is required to use the same prime number r since otherwise p can be found by
taking gcd’s of different moduli.
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and
x1 ≡ gt1

1 mod r, x2 ≡ gt2
1 mod r, y ≡ gγt

1 mod r.

Then, the exponent a is first written as the sum of two randomly chosen elements
a1, a2 ∈ Z

∗
m with a = a1 + a2. Then, the following randomizations are also

computed by C
α1 ≡ a1 · Qq1 + T1 mod m, (9)

α2 ≡ a2 · Qq1 + T2 mod m, (10)

α3 ≡ −a · γ−1 mod m. (11)

Query to U1. C sends the following queries in random order to U1:

1. U1(α1, x1) ←− X1 ≡ xα1
1 mod n,

2. U1(α3, y) ←− Y1 ≡ yα3 mod n.

Query to U2. Similarly, C sends the following queries in random order to U2:

1. U2(α2, x2) ←− X2 ≡ xα2
2 mod n,

2. U2(α3, y) ←− Y2 ≡ yα3 mod n.

Verifying the Correctness of the Outputs of {U1,U2}. Upon receiving the
queries X1 and Y1 from U1, and X2 and Y2 from U2, respectively, C verifies

(X1 mod r) · (X2 mod r)
?≡ gt

1 (12)

and
Y1

?≡ Y2 mod n. (13)

Recovering ua. If Congruences (12) and (13) hold simultaneously, then C
believes that the values X1, X2, Y1 and Y2 have been computed correctly. It
outputs

ua ≡ (X1 mod p) · (X2 mod p) · (Y1 mod p). (14)

If the verification step fails, then C outputs ⊥.

5 Security and Efficiency Analysis

In this section, we give the security analysis of HideP and give a detailed com-
parison with the previous schemes.

5.1 Security Analysis

Theorem 1. Let F ′ be given by the exponentiation modulo n = pr, where the
trapdoor information τ is given by the primes p and r, p �= r. Let further
(C,U1,U2) be a one-client, two-server, one-round delegation protocol implemen-
tation of HideP. Let the adversary be given as A = (U ′, E) in the OMTUP-model
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(i.e. U ′ = (U ′
1,U ′

2) and at most one of U ′
i is malicious with i = 1 or i = 2).

Then, in the OMTUP-model, the protocol (C,U1,U2) satisfies

1. completeness for HideP,
2. security for the exponent a and the exponentiation ua against any (computa-

tionally unrestricted) malicious adversary A, i.e. εs = 0, and security for the
base u with ts = poly(σ) and εs = AdvFactA′ (σ),

3. full verifiability for any malicious adversary A, where tv = poly(σ) and εv =
AdvFactA (σ), and verifiability for any computationally unrestricted malicious
adversary A with εv = 1/2 + ε, where ε is negligibly small in σ,

4. efficiency with parameters where (tF, tmC , tC , tU1 , tU2 , cc,mc), where
– F can be computed by performing tF = 1 exponentiation modulo p
– C′s memory requirement is tmC consists of 1 output of the Rand scheme,
– C can be run by expending tC atomic operations consisting of 7 modu-

lar multiplications and 5 modular reductions (2 multiplications modulo p,
1 multiplication modulo r, 3 multiplications modulo m, 1 multiplication
modulo n, 2 reductions modulo r, and 3 reductions modulo p),

– Ui, i = 1, 2 computes tUi
= 2 exponentiations modulo n for each i = 1, 2,

– C and Ui exchange a total of at most mc = 4 messages of total length cc
consisting of 2 elements modulo m and 2 elements modulo n for i = 1, 2.

Proof. We first note that the efficiency results can easily be verified by inspecting
the description of HideP for the efficiency parameters given above. Throughout
the rest of the proof we assume without loss of generality that U1 is a malicious
server, i.e. adversary is given as A = (U1, E).

Completeness. We first prove the completeness of the verification step. Since
the same base y and the exponent α3 are delegated to both U1 and U2, the
congruence Y1 ≡ Y2 ≡ yα3 holds by the OMTUP assumption. Furthermore, by
the choice of T1 ≡ t1Qq, T2 ≡ t2Qq, we have the congruences

a1Qq1 + T1 ≡ t1 mod q1, a2Qq1 + T2 ≡ t2 mod q1.

Then, together with the equality t = t1 + t2 the following congruence holds:

(X1 mod r) · (X2 mod r) ≡ (xα1
1 mod r) · (xα2

2 mod r)

≡ gt1
1 · gt2

1 mod r

≡ gt1+t2
1 mod r

≡ gt
1 mod r.

Hence, the result follows for the verification step. Then, the result follows by the
congruences

a1Qq1 + T1 ≡ a1 mod q, a2Qq1 + T2 ≡ a2 mod q,
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the equality a = a1 + a2 and Lagrange’s theorem

(X1 · X2 mod p) · (Y1 mod r) ≡ (xα1
1 · xα2

2 mod p) · (yα3 mod p)

≡ (ugt)a1 · (ugt)a2 · g−atγγ−1
mod p

≡ (ugt)a1+a2 · g−at mod p

≡ (ugt)a · g−at mod p

≡ ua · gat · g−at mod p

≡ ua · gat−at mod p

≡ ua mod p.

Security. We argue that HideP satisfies security under the OMTUP-model due
to the following observations:

1. On a single execution of (C,U1,U2) the input (α, x) in the query sent by C to
the adversary A = (U1, E) does not leak any information about u, a and ua.
The reason is that

– u is randomized by multiplying with gt which is random. Hence, the
adversary A cannot obtain any useful information about u even if the
factors p, r of n are known,

– a is randomized by a1 and a2 and aγ. Hence A cannot obtain any useful
information about a by obtaining a1 through x1 and aγ mod p even if it
knows the factors p, r and q, q1 of n and m, respectively.

– To obtain useful information about ua, A requires to know x2 which is
random and not known by the OMTUP assumption.

2. Even if the adversary A sees multiple executions of (C,U1,U2) wherein the
inputs of C are adversarially chosen, A cannot obtain any useful information
about the exponent a chosen by C, and the desired exponentiation ua in a new
execution since logical divisions of a = a1+a2 at each execution involve freshly
generated random elements. This implies that εs = 0 for the exponent a and
the output ua mod p. Assume that A can break the secrecy of the base u with
a non-negligible probability. In particular, it can obtain useful information
about both elements u · GT and ugt with a non-negligible probability, where
GT ≡ gt mod p for some t. Then, A can obtain gcd((uGT − ugt), n). This
gives the factors p and r of n with a non-negligible probability as u · GT ≡
ugt mod p holds. This implies that ts = poly(σ) and εs is at most AdvFactA (σ),
i.e. (C,U1,U2) is a secure implementation of HideP if the factorization problem
is intractable .

In particular, these arguments show that (C,U1,U2) provides unconditional secu-
rity for the exponent a and the output ua against any (computationally unre-
stricted) adversary and security for the base u against any polynomially bounded
adversary.
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Verifiability. Since Y1 and Y2 both have the same base and exponent elements,
U1 cannot cheat the delegator C by manipulating Y1 by the OMTUP assump-
tion. This means that U1 can only pass the verification step by manipulating the
output X1. Hence, the result εp = 1/2+ε (where ε is negligibly small in the secu-
rity parameter σ) holds for any adversary U1 since U1 needs to know the correct
position of x1 which has at most 1/2. We now show that if there exists an adver-
sary A that breaks the verifiability property with a non-negligible probability,
then A can be used to effectively solve the factorization problem. Assume now
that U1 as a malicious server passes the verification step with a bogus output
Z1 (instead of X1 = xα1

1 ) with a non-negligible probability. Then, the following
congruence must hold for any arbitrary output X2 of the honest server U2

Z1X2 ≡ X1.X2 ≡ gt
1 mod r (15)

with a non-negligible probability. This implies that U1 can decide whether the
congruence Z1 ≡ X1 mod r holds with a non-negligible probability. We note that
Z1 �≡ 0 mod r as otherwise Congruence 15 cannot hold with gt

1 �≡ 0 mod r. This
implies that Z1 − X1 ≡ 0 mod r and that Z1 �≡ 0 mod r. From the inequality
Z1−X1 < n (when the representatives are considered as integers), it follows that
U1 can compute gcd(Z1−X1, n) = r with a non-negligible probability. Hence, U1

can obtain information about both the factors p and r of n with a non-negligible
probability. This implies that tv = poly(σ) and εv is at most AdvFactA (σ). ��

Table 1. Comparison of computational and communication costs for C.

Secret p # MMs # Servers # Rounds # Queries Verifiability

[7] TC’05 no 509 2 1 8 1/2

[5] ESORICS’12 no 307 2 1 6 2/3

[13] ESORICS’14 (χ = 264) no 508 1 1 4 1/2

[8] IJIS’16 (c = 4) no 200 1 2 60 9/10

[11] AsiaCCS’16 no 512 2 2 6 1

[9] INDOCRYPT’16 no 27 2 1 5 0

[14] IEEE’17 (b = 16) yes 69 1 1 4 31/32

HideP yes 24 2 1 4 1

5.2 Comparison

We now compare HideP with the previous delegation schemes for MEs. We
denote by MM a modular multiplication, MI a modular inversion, and MR a
modular reduction. Throughout the comparison we make the following assump-
tions:

– we regard 1 MM modulo n as ≈ 4 MMs modulo p,
– 1 MM modulo p and 1 MM modulo r cost approximately the same amount

of computation,



Hide the Modulus: A Secure Non-Interactive 265

Fig. 1. CPU time: HideP vs. Computation

Table 2. CPU cost: HideP vs. Computation

p-size CPU cost for ua mod p

Delegation
cost(ms)

Computing
cost(ms)

Gain
factor

512-bit 390 843 ≈ 2.16

1024-bit 421 1216 ≈ 2.89

2048-bit 452 3697 ≈ 8.18

3072-bit 515 9684 ≈ 18.80

Experiments were conducted on a laptop with an
Intel Core i5 2.6 GHz processor and 4 GB RAM.
Results presented were taken out of 1000 itera-
tions. The comparison is between the CPU time
for HideP’s 24 MMs and local computation of a
ME

– 1 MI is at worst 100 times slower than 1 MM (see [8]),
– we regard 1 MR costs approximately 1 MM (e.g. by means of Barret’s or

Mongomery’s modular reduction techniques).

We give the delegator’s computational workload in Table 1 by considering the
approximate number of MMs modulo p. In particular, Table 1 compares compu-
tational cost and communication overhead of HideP with the previous schemes.
It shows that HideP has not only the best computational cost but requires also
only a single round with 4 queries (instead of 2 rounds and 6 queries when
compared with the only scheme in the literature satisfying full verifiability [11])
(Table 1).
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6 Application: Verifiably Delegated Blind Signatures

Blind signatures were introduced by Chaum [3] and allow a user to obtain the
signature of another user in such a way that the signer do not see the actual
message to be signed and the user without having knowledge of the signing
key is able to get the message signed with that key. Blind signatures are useful
in privacy preserving protocols. For example, in e-cash scenario, a bank needs
to sign blindly the coins withdrawn by its users. Normally, in blind signature
protocols, both the signer and the verifier have to compute MEs using private
and public keys, respectively. As an example, delegation of MMs in blinded
Nyberg-Rueppel signature scheme [1,10] using HideP is depicted in Fig. 2. It
is also evidenced from Fig. 1 that the time taken by HideP is much smaller
than that of directly computing ua mod p, and this gain in CPU time increases
rapidly with the size of the modulus. Hence, HideP becomes more attractive for
resource-constrained scenario such as mobile environment when we go for higher
security levels.

Cloud Servers

Signer(gx) Verifier

r = mgaRb (p)

m′ = rb−1 (q)

c = m′x + k (q) σ = cb + a (q)

R=gk←HideP(.)

1

ga&Rb←HideP(.)

3

R

2

m′
4

c

5

Fig. 2. Delegating blinded Nyberg-Rueppel signature

7 Conclusion

In this work, we addressed the problem of secure and verifiable delegation of
MEs. We observed that two recent schemes [9,11] do not satisfy the claimed ver-
ifiability probabilities. We presented an efficient non-interactive fully verifiable
secure delegation scheme HideP in the OMTUP-model by disguising the modulus
p using CRT. In particular, HideP is the first non-interactive fully verifiable and
the most efficient delegation scheme for modular exponentiations leveraging the
properties of Zp via CRT. As future works, proposing an efficient fully verifiable
delegation scheme without any requirement of online or offline computation of
MEs by the delegator (or its impossibility) under the TUP/OUP assumptions
could be highly interesting.

Acknowledgement. We thank the anonymous reviewers for their helpful comments
on the previous version of the paper which led to improvements in the presentation of
the paper.
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