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Abstract. Most cloud providers afford their tenants with cryptographic
services that greatly escalate the protection of users’ private keys. Iso-
lated from the guest operating systems (OSes), the keys are kept con-
fidential even if the OS kernel is compromised. However, existing cryp-
tographic services are ineffective in the access control of these critical
services. In particular, they enforce controls for the key accesses mainly
based on non-cryptographic authentication/authorization information
(i.e., the identity and the password). Some platforms leverage other
information such as the resource identification of the Virtual machine
(VM) (e.g., IP address). Therefore, once the password is leaked, the
attacker could invoke the cryptographic service in the victim VM. More-
over, sophisticated attackers can exploit vulnerabilities in the guest OS
kernel and stealthily invoke cryptographic services. In this paper, we pro-
pose a new scheme named En-ACCI to improve the security of crypto-
graphic service invocation in the cloud and achieve better access controls
as well as auditing by leveraging the rich VM context provided by vir-
tual machine introspection (VMI). To the best of our knowledge, we are
the first in the literature to discuss these security issues involved in the
invocation of cryptographic services in the cloud. We address the chal-
lenges by using an access control mechanism atop a set of optimization to
VMI. We have implemented a prototype of En-ACCI, and our evaluation
demonstrates that En-ACCI effectively addresses the authorization and
audit issues in the cloud-based cryptographic service and the introduced
performance overhead is modest.
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1 Introduction

Cloud computing is becoming more and more popular due to its agility, elasticity,
reliability, and scalability. Using cloud computing, an enterprise will reduce the
investment in IT infrastructures and focus on their core business. They also
greatly benefit from add-on services offered by cloud providers. For example,
virtual cryptographic computing and key management services bring enhanced
protections for the tenants’ cryptographic keys.

In these cryptographic computation services, tenants do not store the private
keys. Instead, the cloud providers keep the keys securely and provide interfaces
for tenants to invoke the computations of signing/encryption/decryption. The
cloud providers, as the delegate of the tenants, protect the private keys by stor-
ing them in physically-separated devices (e.g., hardware security module) and
never leak them into unsecure environments. They may further block unautho-
rized invocations to the cryptographic services with strict access control policies.
For instance, only an invoker possessing the correct identity and the correspond-
ing password is authorized to execute the cryptographic computation. Due to
the increasing security requirements from tenants, such add-on services have
become one of the major competitions in the cloud computing market. Typi-
cal cryptographic computing services include AWS CloudHSM [3] and Alibaba
Aliyun encryption service [1]. The key management service (KMS) includes AWS
KMS [4], Alibaba Aliyun KMS [2], Microsoft Azure Key Vault [8], Tencent Ten-
centyun KMS [10], etc.

Compared with other add-on services, the cryptographic service is much more
important because it is used to ensure the security properties (e.g., data confiden-
tiality, authentication, etc.) of other services. The cloud providers can improve
the security of cryptographic services in two ways. First, they provide secure
storage for the cryptographic keys. This can be achieved by existing techniques
such as data encryption or dedicated devices. Second, the cloud enforces strict
access control policies to the cryptographic service invocation and implements
audit mechanisms of these invocations (e.g., AWS CloudTrail [5]). The latter
records the invoker’s identity, the source IP address, the time, the requested
operation and the parameters of the operation in the specified storage for fur-
ther compliance checks, security analysis, and troubleshooting.

However, existing approaches seem to be insufficient. For example, existing
access control implementations of cryptographic services [2,4,8,10] are based on
the identity of invokers and the corresponding passwords, which may be leaked
due to dishonest developers or operators. The monitor tools only record the
account information, identity and IP address of VM, the requested operation
information, and do not log the inner context of the VM. An adversary can eas-
ily circumvent such monitoring. In particular, the adversary having the correct
identity and the password may trigger a malicious process in the victim VM
that invokes the cryptographic service directly, or even remotely exploit existing
process (e.g., through network connections or file handlers) for cryptographic
service invocation.



Enforcing Access Controls for Cryptographic Cloud Service Invocation 215

We observe that existing defense leverages coarse-grained information, which
cannot provide rich information about the context of service invocation. We envi-
sion a new defense that incorporates diverse in-context information to log the
invocation of critical services. Except for the basic information such as identity
and password, the cloud may also check the VM context. Combining these rich
information can greatly raise the bar for the attacker to circumvent the audit
system. For example, the tenant may specify a sound access control policy, allow-
ing the cryptographic computation to be invoked only by legitimate processes
in the whitelist under authorized uid at a specified time frame. Request for
cryptographic computation is fulfilled only if the invoking process is not com-
promised and the information of the invoker comply with the predefined access
control policy. On receiving the request, the cloud provider checks the identity,
the password, and the inner context of the VM, before performing the crypto-
graphic computation. In addition, the cloud also records the inner context of
VM during computation, e.g., the processes, the network connections, opened
files’ information, account, requested operation information, VM’s identifier and
IP address, for a better audit.

There are two approaches to collect context information of service invocation.
One is that the VM reports such information when interacting with the hypervi-
sor. However, a malicious process could potentially manipulate the results sub-
mitted to the hypervisor, or even hijack the system calls to return false results.
The other approach is based on VMI [17], which actively analyzes the VM state
using memory forensic techniques. Although this method may also get the incor-
rect context information of service invocation, it is transparent to the VM. Also,
it reads the memory of VM directly, so it is not subject to the attack which
tampers with the results. Adopting VMI technology to collect the context infor-
mation is promising. However, it still remains challenging:

– Introspection timing. Ideally, when the cryptographic service is invoked,
the VMI components should be triggered immediately to check the VM state.
However, VMI components are not tightly coupled with the programs in the
VM that invoke cryptographic service. In order to be informed about the
cryptographic events in time, we have two options. First, the VMI component
is triggered only when the cryptographic service is invoked. In our scheme, the
VMM invokes the VMI component when the cryptographic service request is
received. Second, the VMI components monitor the whole VM continuously.
Obviously, this would introduce considerable overhead.

– Authenticity of the context of cryptographic services. The VM kernel
may be infected by rootkits. The rootkits may tamper with the invoker’s
process context, misleading the VMI components.

In this paper, we propose a new scheme named En-ACCI to improve the secu-
rity of cryptographic service invocation in the cloud and achieve better audit by
leveraging rich VM context provided by the VMI. The cloud returns the results
of a cryptographic request only after checking that the VM is in a trustwor-
thy state. Moreover, the cloud records the context information during crypto
computing. En-ACCI innovates by adapting VMI for cryptographic service with
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improved performance. Many schemes provide cryptographic service, such as
KMS [2,4,8,10], virtio-ct [20], vTPM [18] and etc. KMS provides cryptographic
service via https networks connections. In virtualization platform, VMM emu-
lates network card. That is to say, all the network I/O operations of the VM are
trapped into the VM monitor (VMM). Similar to KMS, virtio-ct implemented
a software HSM. Each cryptographic service request also causes the VM to be
trapped into the VMM. To address the aforementioned challenges, we need to
modify the I/O handle module in the VMM. Once the I/O module finds that
the VM-Exit event is related to the cryptographic service, En-ACCI will be trig-
gered. To get the correct context information of the invoker, we use the VMI tool
to bridge the semantic gaps. Moreover, before collecting the context information
of VM, En-ACCI scans rootkit in the VM. We have implemented an En-ACCI
prototype based on QEMU/KVM [7,9], and integrated it with a cryptographic
service named virtio-ct [20] which stores the cryptographic keys in a dedicated
storage and completes the cryptographic computation in the trusted VMM. The
main contributions of En-ACCI are as follows:

– To the best of our knowledge, we are the first in the literature to discuss the
security issues involved in the invocation of cryptographic service in the cloud
environment. We propose to address the associated challenges by using a new
access control mechanism atop virtual machine introspection techniques.

– We have developed a set of optimization to existing VMI techniques to
improve the performance of En-ACCI.

– We have implemented a prototype of En-ACCI, and our evaluation demon-
strates that En-ACCI effectively addresses the authorization and audit issues
in the cloud-based cryptographic service and the introduced performance
overhead is modest.

The rest of the paper is organized as follows. We introduce the background in
Sect. 2 and describe the design of En-ACCI in Sect. 3, followed by the implemen-
tation in Sect. 4. In Sect. 5, we analyze the performance and security of En-ACCI.
Related work is introduced in Sect. 6. Finally, we draw the conclusion in Sect. 7.

2 Background

In this section, we firstly give a description of Kernel-based Virtual Machine
(KVM), a popular virtualization solution based on QEMU. Then, we introduce
essential knowledge about the virtual machine introspection (VMI) [17] and
Executable and Linking Format [15] to better understand our solution.

2.1 Kernel-Based Virtual Machine

The KVM [23] is a popular virtualization solution based on QEMU. Taking
advantage of hardware-assisted virtualization extensions such as Intel VT and
AMD-V, it supports executing guest intrusions naively in the host system, thus
improving performance significantly. At a lower level, it is implemented as a
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Fig. 1. Guest execution loop

loadable kernel module, which provides a set of ioctl() system calls to QEMU.
QEMU, as a user-land process, is responsible for machine emulation, scheduling,
resource allocation, and isolation etc. Therefore, QEMU can be viewed as a
Virtual Machine Monitor (VMM).

In QEMU-KVM, except for the traditional kernel mode and user mode,
another execution mode called guest mode is added, as shown in Fig. 1. The
guest mode is essentially the mode in which the guest OS runs. When an excep-
tion or whatever critical system event configured by the KVM is caught, the
VM exits, which is intercepted by the KVM module running in the kernel mode.
Then KVM handles the exception either in the kernel mode directly and returns,
or forwards it to the user mode. In the latter case, after handling the exception,
QEMU calls another ioctl system call to resume the guest execution.

2.2 Virtual Machine Introspection

The Virtual Machine Introspection (VMI) is a technology in which the VMM
dynamically inspects the execution context (internal state) of each VM. The
purposes are mainly for security checking [17,19], software patching [13,14], and
digital forensics [11]. To implement VMI functions, the VMM has to recover the
semantic information of the inspected VM from the view of physical memory.

Depending on the VM OS, the VMI tools get the internal state of VM directly
or reconstruct the high-level semantics. Installing a secret data collection module
in the virtual machine [19,26] makes VMI tools effectively get the VM state. But
there is a risk that the data collection module may be compromised. Utilizing
the OS knowledge (e.g., system symbol map and kernel data struct) of the VM,
VMI tools [11,17] reconstruct high-level semantics from the underlying binary
data. And these VMI tools inspect the VM memory directly without installing
an assistant module in the VM. VMM also obtains the state data of specific
hardware devices of VM externally and then deduces high-level semantic infor-
mation with the help of hardware architecture knowledge. Antfarm [22] proposed
a hardware-based scheme to enable the VMM to track the processes and infer
critical process events such as creation, context switch and exit.
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2.3 Executable and Linking Format

This section describes an object file format called the Executable and Linking
Format (ELF) [15], which is widely used by many OSes including Linux, Solaris,
IRIX and OpenBSD. The proposed En-ACCI needs to access information stored
in the EFL file to perform integrity check of the code segments. There are three
types of ELF files: relocatable file, executable file and shared object file. All of
them share a very similar format but are used for different purposes. As implied
by the name, the executable file is directly loaded into the memory by OS for
execution. The relocatable file contains code and data for individual program
modules, which cannot be executed by its own, but needs to be statically linked
with other object files to assemble an executable file. Similar to relocatable files,
the shared object file is a module of the whole program. However, it is not
statically linked during compilation. Rather, it is dynamically loaded into the
memory by a dynamic loader implemented by relevant run-time.

Code and data in an object file are organized into sections, which are pointed
to by a descriptive section header table. The sections are the basic modules
which are linked together by the linker during linking process. In particular,
sections with the same attributes are combined together to form a new section.
Another important meta-data in an ELF file is the program header table,
which provides program information for the loader. Therefore, it is mandatory
for an executable file. A segment is essentially a chunk of aligned data/code
with the same attributes. An entry in the program header table designates
each segment’s starting/ending addresses, the corresponding offset to the file
image and attributes. The loader is responsible for loading the contents from file
to the virtual memory.

3 System Design

In this section, we first present the threat model, followed by an overview of
En-ACCI. Then, we detail our design from two aspects – access control policy
and memory analysis methodology.

3.1 Threat Model

En-ACCI is designed to prevent unauthorized invocation to the cryptographic
service. We consider an adversary model in which the VM OS is partially compro-
mised by the attacker. Concretely, the attacker could invoke the cryptographic
service by executing any user-space code in the VM. He could also conceal his
unauthorized access to cryptographic service by leveraging rootkits that manip-
ulate system log, process, network and file handle.

As with other VMI systems, we assume the integrity of the basic memory
layer of an OS kernel. That is, the logical addresses of the kernel symbols and
static kernel data structure are not modified [25].

In a cryptographic cloud service, the client invokes the cryptographic service
through the provided program interface. We assume that the cryptographic key is
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well protected by the provider, and the cryptographic computation is performed
in a protected environment. The adversary cannot infer the cryptographic key
from the provider through side channel attacks. Moreover, we assume the oper-
ators of the cryptographic service are honest and never leak the key, invoke the
service nor modify the log information illegally. We assume that the design and
implementation of cryptographic algorithms are secure. Finally, VMM is free of
bugs. This is a very practical assumption considering the much smaller code base
of VMM compared with full-fledged OSes.

3.2 Overview

A conceptual architecture of the proposed solution is illustrated in Fig. 2. As
shown in the figure, En-ACCI is a software component in the VMM, which is
non-bypassable when an app intends to invoke the cryptographic service. If the
request is granted, En-ACCI forwards the request to the cryptographic service,
which is securely implemented.

Fig. 2. En-ACCI architecture

To enforce security checking and auditing, we design our system to include
the following processes.

– Generating profile and hash meta-data. For each version of OS, the
operator needs to generate the corresponding profile, which includes the logic
address of the essential kernel symbols and the offsets of elements in the kernel
structure. This process is invoked only once for each version of the OS. The
profile may be reused for different VMs with the same OS version and doesn’t
need to be regenerated when any kernel module is installed or removed. The
tenant also needs to calculate the hashes of code segments in authorized
binaries and relevant dynamic linking libraries. The hash meta-data include
executable name, virtual addresses and length about the code segments. The
hash meta-data are used to verify the integrity of the authorized processes.

– Specifying access control policy. The tenant may specify the access con-
trol policy for the service invocation on each cryptographic key. The access
control policy defines the conditions that must be satisfied when the cryp-
tographic service is invoked. The tenant may set the effective time for each
policy and modify the policy when needed. In our implementation, the pol-
icy may specify the user ID, user group ID, name, start time, opened files
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and established network connections of the process who may invoke the cryp-
tographic service. Note that the list is flexible and can be extended in the
future. The details of the access control policy are provided in Sect. 3.3.

– Rootkit detection. Once receiving the cryptographic service invocation, En-
ACCI runs rootkit detector to check the state of the VM. Rootkit detector
includes many VMI tools to check the critical kernel data and kernel text.
If a rootkit is detected, the incident is reported.

– Sampling and analyzing the VM memory. Once receiving the crypto-
graphic service request, VMM samples the necessary memory region of the
VM and analyzes it to obtain the elements specified in the access control
policy. We traverse the list of the processes in the VM and determine the
process who invokes the cryptographic service according to the file handle or
network connection corresponding to the cryptographic key.

– Access control enforcement. For each cryptographic service invocation,
after sampling and analyzing the VM memory, we obtain the elements con-
tained in the access control policy and compare the values of the elements
obtained from the analysis with these defined in the policy. We fulfill the
cryptographic service requests only when the policy is satisfied.

3.3 Access Control Policy

The tenant may define the access control policy based on different properties.
These properties are extracted from the inner VM context. In the current version,
En-ACCI supports the following access control properties.

– PID, UID and GID. After executing the application in the monitored VM,
the tenant obtains the process identifier (PID), the identifier of the user that
executes the application (UID), and the identifier of the corresponding user
group (GID).

– Process Name. The name of the process is usually the name of the execution
file, and is limited to 16 characters by default in Linux.

– Location in the process tree. The tenant may specify the blacklist and
whitelist of the processes (according to PID, process name) that run concur-
rently in the VM or in the path from the init process to the application that
invokes the service.

– Process start time. The tenant may obtain the accurate start time of the
application externally, and specify it in the policy about the time frames
during which cryptographic service can be invoked.

– Opened file list. The application may need to open a set of files in the
different periods of normal execution. The cryptographic service is invoked
in a critical region that should be well protected. Therefore, the tenant may
specify the blacklist and whitelist of the files (through the file name and path)
for this application during the cryptographic service invocation.

– Allowed network connections. Similar to the opened file list of the pro-
cess, the tenant may specify the 5-tuple in the form of (src ip, src port, dst ip,
dst port, protocol) of established connections during the service invocation.
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The combination of the elements in the policy raises the bar for the adversary
to invoke the cryptographic service without being noticed. Moreover, the tenant
may find whether the VM contains suspicious processes or kernel modules that
stealthily invoke the cryptographic service illegally, by comparing the results
returned by the command with the ones logged in En-ACCI, and update the
access control policy (e.g., forbidding the service invocation until the VM state
is recovered) in time.

3.4 Memory Analysis

En-ACCI adopts memory analysis to sample the memory of the monitored VM,
figure out the memory region related with the application that invokes the ser-
vice, and obtain the information required by the access control policy.

Memory analysis is performed in VMM, which has access to the memory
image of the monitored VM. According to the profile of the corresponding OS,
we obtain the logical address of the first process (e.g., init in Linux). After
transferring it to the address in the VMM address, we analyze it to get the
semantic information, based on the offset (defined in the profile) of each element.
With the semantic information of the first process, En-ACCI gets the addresses
of all the processes in the VM, and obtains the their semantic information. En-
ACCI figures out the memory region of the cryptographic service invoker by
comparing the information of file list or networking connections with the ones
corresponding to the cryptographic key handler. After figuring out the region
corresponding to the service invoker, En-ACCI parses the figured memory region
to obtain the semantic information, compares the parsed values with the ones
specified in the policy, and finally returns the decision to the cryptographic
service.

However, after obtaining the address of the process, the corresponding pro-
cess may exit, which means that semantic information parse fails. In this case, we
need to re-parse the previous process in the process chain to obtain the address
of the cryptographic service invoker process again. The previous process may
also exit before parsing. In the worst case, we need to trace back to the first
process (i.e., init in Linux).

4 Implementation

We have implemented a prototype of En-ACCI based on QEMU-KVM v1.7.1.
En-ACCI supports Linux distributions with kernel version 2.6 or above, and
Windows OS as VMs. In the following, we describe our implementation on the
CentOS v6.6 (Linux 3.13.7).

4.1 Framework Implementation

Figure 3 demonstrates the architecture of En-ACCI. We showcase how En-ACCI
is used to protect virtio-ct [20], a cryptographic token implemented on KVM.
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Fig. 3. The architecture of En-ACCI when integrating with virtio-ct [20].

In virtio-ct, the application in the monitored VM invokes the cryptographic ser-
vice through a file handle, which is associated with the front-end driver. The
parameters for the cryptographic computation include the identity of the cryp-
tographic key, the corresponding PIN and the plaintext/ciphertext. The front-
end driver routes these parameters to the virtio bus. The back-end driver in
QEMU fetched the arguments on the bus and performs the corresponding cryp-
tographic computation. The back-end driver invokes En-ACCI before performing
the actual computation. En-ACCI conducts the following two steps. It first deter-
mines whether the VM is infected by rootkits, and then checks whether the inner
context of the monitored VM satisfies the specified access control policy. More
specifically:

– Step 1: Before performing the cryptographic computation, En-ACCI checks
whether the request is invoked in a benign environment. This prevents the
back-end driver from being abused by attackers, e.g., accessing keys with-
out authorization or DoS attack by invoking intensive cartographic requests.
Here, the rootkit detector sequentially invokes all the included tools to check
(known) rootkits. To check whether the inner VM state satisfies the specified
policy, En-ACCI first identifies the memory region of the process that invokes
the cryptographic service. Regarding virtio-ct, we can locate the invoker based
the opened files of the process, as the invoker needs to open the special file
that represents the cryptographic key. Then, En-ACCI parses the identified
memory region, and performs the access control according to the obtained
semantic information. If any rootkit is detected or the access control pol-
icy is not satisfied, the back-end driver refuses to fulfill the cryptographic
computation request.

– Step 2: Before returning the result to the front-end driver, En-ACCI performs
checking to avoid the result to be obtained by the illegal user who comprises
the VM or invoker process during the cryptographic computation.



Enforcing Access Controls for Cryptographic Cloud Service Invocation 223

In this step, En-ACCI reuses the result obtained in the previous step. For
example, there is no need to identify the invoker’s memory region. It directly
invokes the rootkit detectors and performs access control by parsing the pre-
viously identified memory region. If the parse fails, or any rootkit exists, or
the access control policy is not satisfied, the back-end driver refuses to return
the computation results.

Except for virtio-ct [20], En-ACCI supports other types of the cryptographic
cloud services. The major difference is the way to identify the corresponding
cryptographic processes. In virtio-ct, we rely on the process’s opened file infor-
mation, which must include the corresponding the cryptographic key. For AWS
CloudHSM and Alibaba Aliyun KMS, we identify a cryptographic process using
the network connection information, because the process must maintain a net-
work connection to the cryptographic service provider.

4.2 En-ACCI Implementation

Linux kernel adopts the data structure task struct to store the metadata of a
process. As shown in Fig. 4, the fields comm, cred, pid and start time contain
information about the process name, UID/GID, PID, process start time, while
fields files and fs store information about open file information (including
network connections) and filesystem information. Note that tasks is a list data
structure used by Linux to keep all the processes in a linked list.

Fig. 4. The Linux process descriptor

We have generated an aforementioned profile For Linux 3.13.7. The pro-
file records the logical address init task and the offsets of the variables in
task struct shown in Fig. 4. En-ACCI adopts these information to parse the
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semantic information of the init process and then follows the linked list indi-
cated by the tasks field (offset is 1640) to obtain the logical addresses of the
other processes. For each process, the PID, UID, GID, process name, and start
time are obtained directly from the task struct, while, En-ACCI needs to parse
the fields files (of type files struct) and fs (of type fs struct) to infer the
information of associated files. The variable fs provides the root dentry through
the variable root (of type path). The variable fdt (of type fdtable) in the
structure files struct contains the information of all files opened by this pro-
cess. That is, the member fd of structure fdtable lists the dentries for each
opened file. The network connection is represented by a file in Linux. We distin-
guish it from normal files through the variable f op in the structure file. The
f op points to the operation that can be invoked on this file, but points to the
function socket file ops when the file is a socket.

The profile only provides the guest logical address of each symbol, while
En-ACCI, being a component of VMM, can access the contents through guest
physical address in the underlying host OS. Therefore, we need to perform
the address translation. En-ACCI invokes cpu physical memory rw provided
by QEMU-Monitor to transfer the guest logical address to the guest physical
address, and then access it for further parse. En-ACCI also records the address
returned by cpu physical memory rw, and uses it with the offset to access the
memory in the host directly when no new guest logical address needs to be pro-
cessed. We implemented the aforementioned procedure in a lightweight way. The
whole implementation comprises about 700 lines of code.

The hash library provides the authorized process names, virtual addresses
of the code segments when the authorized processes is loaded into memory and
the digest of each code page. We analyze the authorized binary files offline in
advance. We calculate the digest of each page in the code segments from start.
For pages contributing to both code segments and data segments, we replace
the data regions with all zero. Then we calculate the digest of each page and
store them in the hash library. En-ACCI determines if the virtual page has been
loaded into physical memory by bit0 in the page table entry and verifies the
integrity of the virtual page.

In our prototype, En-ACCI is integrated with virtio-ct [20], in which the
application invokes the cryptographic service through a virtual device (i.e., a
file). En-ACCI uses the information of this file to figure the memory regions cor-
responding to the application. The semantic analysis of this memory region and
the access control process are performed twice, one before performing the crypto-
graphic computation and the other before returning the result to the application.
Enforcing the access control is implemented in less than 100 lines of code.

En-ACCI also logs the information for each cryptographic service invocation.
In addition to the user identity, IP address and the geographical region of VM,
the parameters and invocation time of the cryptographic service, it also includes
the PID, UID, GID, process name, process start time, the parent process, opened
files, established network connections, and the result of integrity checking.

For rootkit detector, we have implemented three VMI tools to detect a set of
kernel rootkits that alter the control flow by modifying the critical kernel data
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(e.g., IDT and system call table) or directly manipulate the kernel text. The
three VMI tools check the integrity of IDT, system call table and kernel text
respectively. Since our implementation is based on KVM, other popular VMI
tools can be easily integrated in our framework.

5 Analysis

In this section, we evaluate the performance overhead introduced by En-ACCI
and analyze the security improvement brought to cryptographic service invoca-
tions. Finally, we discuss the limitations of En-ACCI in our current prototype.

5.1 Performance Evaluation

The prototype of En-ACCI is implemented as a module for QEMU/KVM v1.7.1
using the C programming language. The profile of the target operating system is
generated using memory forensics tool volatility [11] and dwarf-tools. We set up
our evaluation environment with a Dell Optiplex 9020 powered an Intel i7-4770
CPU (3.4 GHz) and 16 GB RAM. We assigned 4 vCPUs and 4 GB RAM for the
VMs. The host operating system and the VM run CentOS v7.0 and CentOS v6.6
respectively.

We compared the results obtained from En-ACCI with that obtained from the
original virtio-ct and LibVMI-virtio-ct, which performs access control for virtio-
ct based on LibVMI. LibVMI-virtio-ct is implemented as follows: on receiving
the service invocation, it suspends the VM, invoking the LibVMI to analyze the
memory for the entries specified in the access control policy, and returns the
computation results to the resumed VM.

The performance was evaluated at different concurrency levels. In the exper-
iment, we used an application with at most 8 threads to invoke 2048-bit RSA
decryptions. The throughput is demonstrated in Fig. 5. Compared with the orig-
inal virtio-ct, the throughput of En-ACCI is reduced by 17.77% (the number
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Fig. 6. SPEC INT 2006 perf. overhead.

of threads is 8), which is modest compared to 96.71% in LibVMI-virtio-ct (the
thread number is 4).

We also ran SPECINT 2006 to evaluate the impact of En-ACCI to the other
parallel processes. We set the performance of native virtio-ct [20] as the baseline,
and compared En-ACCI with Libvmi-virtio-ct by running SPECINT 2006 when
invoking the cryptographic service every 5 s with En-ACCI and Libvmi-virtio-ct
integrated respectively. As shown in Fig. 6, the impact of En-ACCI to the other
parallel processes is modest (less than 4.5%).

5.2 Security Analysis

En-ACCI raises the bar for the adversary to invoke the cryptographic cloud ser-
vice from three aspects: 1. En-ACCI doesn’t increase the risk of cryptographic
key leakage itself, as it doesn’t need the key for access control or audit. 2. En-
ACCI enforces the access control policy specified by the tenant for each ser-
vice invocation, which increases the difficulties of illegal invocation. 3. En-ACCI
records the detailed information for each cryptographic cloud service invocation.
This information is essential for causality analysis when the system is compro-
mised.

For access control, in addition to identity and password used in KMS [2,4,10],
En-ACCI leverages the approach described in Sect. 3.3 to extract inner VM state.
En-ACCI checks user ID, user group ID and start time of the process to ensure
the invoker process is created by the authorized user at the specified time. The
attacker would fail to invoke the cryptographic service if the invoker process is
started by a different account or is not started during the allowed time frames.
En-ACCI compares the name of the process and digests of the process’s code
segment with that specified in the profile and hash library, to ensure only the
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authorized executable program without integrity compromise can invoke the
cryptographic service. The specified list of opened files and established network
connections prevents the remote attacker who hijacks the victim process through
file handles or network connections from invoking the cryptographic service.

In order to prevent kernel rootkit from manipulating the target memory
region to fool En-ACCI, En-ACCI integrates existing rootkit detector. Once a
rootkit is found, the cryptographic service is interrupted. Moreover, En-ACCI
performs two steps for each service invocation; the first one prevents the attacker
from abusing the cryptographic computation, while the second one ensures that
the computation result is only returned to the legitimate invoker.

En-ACCI also has access to the detailed information about the inner VM
state during the service invocation. Therefore, even if the access control mecha-
nism is somehow bypassed (e.g., when the policy is incorrect), the cloud manager
can identify the illegal invocation in time, analyze the malicious invocation thor-
oughly and modify the access control policy in time to avoid further malicious
invocations.

The adversary who controls VM cannot compromise En-ACCI due to the
isolation mechanism provided by the virtualization. Moreover, the source code
of En-ACCI is only about 700 lines, which makes the formal analysis feasible.

5.3 Limitations

We discuss the limitations of the current En-ACCI prototype. En-ACCI relies on
logical addresses of the kernel symbols and the kernel data structure to perform
semantic analysis. However, as described in [12], the obtained semantic infor-
mation may be incorrect when the kernel data structure is manipulated. In the
current version, we rely on the followings assumptions to ensure the correctness
of the obtained semantic information. (1) The guest OS is patched in time for
known kernel-level vulnerabilities, which allow the attacker to hijack the con-
trol flow of the kernel. We admit that the attacker may still able to hijack the
control flow using the zero-day vulnerabilities. (2) The integrity of the kernel is
checked using existing rootkit detection tools. Therefore, our protection relies
on the effectiveness of existing tools.

6 Related Works

In this section, we summarize existing work on secure service invocation and
cryptographic key protection.

6.1 Cloud-Based Cryptographic Services

Virtio-ct emulates an HSM in VMM. Utilizing the isolation mechanism of the
hypervisor, any code, including ring-0 malicious code in the guest OS cannot
access cryptographic keys. To prevent the adversary from stealthily signing data,
each time the key is accessed, virtio-ct drives the pc-speaker to make a sound
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to notify the user. However, virtio-ct is designed for single PC scenarios instead
of cloud.

For KMS [2,4,8,10], cloud providers provide access control strategy. KMS
can be invoked in three ways in the current commercial design: (1) the web-
based console (2) the command line interface and (3) the cloud service API.
Although a variety of user authentication and access control are provided, the
security of KMS ultimately depends on the identity management and password-
based authentication mechanism. Audit is also provided in several providers.
For example, AWSCloudTrail [5] can record very basic information of the cryp-
tographic invocations.

6.2 Cryptographic Keys Protection

Various schemes have been proposed to protect the confidentiality of the crypto-
graphic key against memory disclosure attacks. New features [6,16] provided by
CPU manufacturer were adopted to protect the cryptographic keys. For example,
Mimosa [21] only keeps plaintext of sensitive data in the transaction memory,
which rolls back to the ciphertext once the memory is accessed by others. Intel
Software Guard Extension (SGX) [6] allows user-level code to allocate private
regions of memory, called enclave, which is isolated from the rest of the sys-
tem, including OS and BIOS. With it, cryptographic services can be securely
implemented.

As more and more services are being migrated to the cloud, the associated
security problems emerge. To mitigate attacks from the inner VM, Virtio-ct [20]
provides virtual cryptographic service while the corresponding key files are stored
in the dedicated storage and the cryptographic program is executed in VMM.
To prevent the attacks to VMM, TrustVisor [24] introduces a small hypervisor
as TCB to enforce the data secrecy and program integrity, even if the OS is
compromised.

En-ACCI adopts virtio-ct to prevent the attacks from the VM. It may also
integrate the other works [6,21] to avoid the memory disclosure attacks on the
physical machine when VMM is deployed, and adopt the schemes proposed in [24]
to reduce the size of TCB where the cryptographic computation is performed.

7 Conclusion

We propose En-ACCI, a VMI-based mechanism to add another line of defense
for cryptographic cloud services. En-ACCI enforces the access control for the
cryptographic cloud service based on the rich VM context, and provides better
audit by recording the detailed information of the VM and invoker process. To
achieve better performance, instead of adopting existing VMI tools (e.g., libvmi)
directly, En-ACCI analyses the VM’s memory based on the logical addresses and
the kernel data structure of the guest OSes, and further identifies and parses
the memory regions of the invoker process in VMM. To ensure the correctness
of the semantical information, En-ACCI integrates existing rootkit detection
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tools and checks the integrity of the invoker’s code segments. The performance
evaluation demonstrates that the performance overhead caused by En-ACCI is
modest (about 17.77%).
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