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Preface

The 21st Information Security Conference, ISC 2018, took place September 9–12,
2018, in Guildford, UK, and was organized by the Surrey Centre for Cyber Security
(SCCS) at the University of Surrey.

ISC is an annual conference focusing on original research in cyber security, applied
cryptography, and privacy. Both academic research with high relevance to real-world
problems and developments in industrial and technical frontiers fall within the scope
of the conference.

ISC 2018 received 59 submissions, which were reviewed by the Program Committee.
Each of the 46 Program Committee members was assigned an average of four
submissions for review. Each paper was assigned to at least three reviewers. The
Program Committee was helped by the reports and opinions of 54 external reviewers.
The submission process was not anonymous and author names were visible to all
reviewers. The review process was organized and managed through EasyChair. The
reviewers were asked to declare any conflicts of interest for all submissions in the
beginning of the process. The selection process was competitive and after highly
interactive discussions and a careful deliberation, 26 papers were selected by the
Program Committee for presentation at the conference.

The invited talks at ISC 2018 were given by Jan Camenisch from IBM Research
Zurich and Aggelos Kiayias from the University of Edinburgh. Invited speakers were
offered the opportunity to publish an invited paper in the conference proceedings. The
prize for the Best Paper was awarded to Masahito Ishizaka and Kanta Matsuura for
their paper “Strongly Unforgeable Signature Resilient to Polynomially Hard-to-Invert
Leakage Under Standard Assumptions.”

ISC 2018 was organized by Liqun Chen and Mark Manulis, who served as program
chairs, selected the Program Committee, and led their efforts in selecting papers that
you will find in this volume, and by Steve Schneider, who served as general chair and
was helped in local organization by Ioana Boureanu and Kaitai Liang. ISC 2018
received generous sponsorship from Springer.

The ISC 2018 chairs would like to thank everyone who contributed to the success
of the conference. We are grateful to the Program Committee and external reviewers
for their commitment, hard work and enthusiasm, to ensure that each paper received a
thorough and fair review. Last but not least, we wish to thank all conference partici-
pants for making ISC 2018 an enjoyable experience.

September 2018 Liqun Chen
Mark Manulis

Steve Schneider
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Relaxed Lattice-Based Signatures
with Short Zero-Knowledge Proofs

Cecilia Boschini1,2, Jan Camenisch1(B), and Gregory Neven1

1 IBM Research - Zurich, Zurich, Switzerland
{bos,jca,nev}@zurich.ibm.com

2 Università della Svizzera Italiana, Lugano, Switzerland

Abstract. Advanced cryptographic protocols such as anonymous cre-
dentials, voting schemes, and e-cash are typically constructed by suit-
ably combining signature, commitment, and encryption schemes with
zero-knowledge proofs. Indeed, a large body of protocols have been con-
structed in that manner from Camenisch-Lysyanskaya signatures and
generalized Schnorr proofs. In this paper, we build a similar framework
for lattice-based schemes by presenting a signature and commitment
scheme that are compatible with Lyubashevsky’s Fiat-Shamir proofs
with abort, currently the most efficient zero-knowledge proofs for lat-
tices. The latter proofs provide a weaker, relaxed form of soundness, i.e.,
the witnesses that the knowledge extractor can obtain are guaranteed to
lie only in a domain that is larger than the one from which the inputs
of honest provers need to come. To cope with this soundness problem,
we define corresponding notions of relaxed signature and commitment
schemes. We demonstrate the flexibility and efficiency of our new prim-
itives by constructing a new lattice-based anonymous attribute token
scheme and providing concrete parameters to securely instantiate this
scheme.

1 Introduction

An established and successful way to construct privacy-enhancing cryptographic
protocols is to suitably combine various primitives such as signatures, commit-
ments, and encryption schemes with efficient zero-knowledge proofs. Examples of
such constructions include blind signatures [2,33], group signatures [9,39], direct
anonymous attestation [16], electronic cash [26], voting schemes [38], adaptive
oblivious transfer [17,24], and anonymous credentials [8,21].

A crucial building block for such solutions is a signature scheme enabling
efficient zero-knowledge proofs of knowledge of a signature on a hidden message.
Commitment schemes are also a common ingredient, either as “glue” to bridge
zero-knowledge proofs over different cryptographic primitives [20], or to facili-
tate zero-knowledge proofs by hiding the message or certain components of the
signature [5,12,22].

One can of course use generic zero-knowledge techniques [36] to combine cryp-
tographic schemes, but to get truly efficient constructions, one needs schemes
c© Springer Nature Switzerland AG 2018
L. Chen et al. (Eds.): ISC 2018, LNCS 11060, pp. 3–22, 2018.
https://doi.org/10.1007/978-3-319-99136-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99136-8_1&domain=pdf


4 C. Boschini et al.

that interact well with each other and allow for efficient zero-knowledge proofs. A
well known set of such schemes consist of Camenisch-Lysyanskaya signatures [22],
Damg̊ard-Fujisaki commitments [30], and Camenisch-Shoup verifiable encryp-
tion [25]. They can be combined using generalized Schnorr proofs [19] and the
Fiat-Shamir transform [32] into efficient proofs of relations between their (com-
mitted) inputs and (committed) outputs. More recently, an alternative set of
primitives has emerged, so-called structure preserving primitives [1,18], that use
Groth-Sahai proofs [37] as a framework to create zero-knowledge proofs.

All of the above schemes, however, are based on hardness assumptions related
to factoring large integers and computing discrete logarithms, which are known
to succumb to attackers with quantum computers. To guarantee security on
the long term, it would be best to switch to quantum-resistant problems such
as the difficulty of computing shortest vectors in lattices. Indeed, a number
of cryptographic primitives whose security relies on lattice-based assumptions
have been proposed, including efficient signature schemes. However, almost all of
these schemes do not lend themselves to efficient zero-knowledge proofs, usually
because they make use of hash functions or have other properties that do prevent
efficient proof protocols. The only exception is the lattice-based signature scheme
proposed by Libert et al. [42], who specifically designed this signature scheme
to be able to use it as a protocol building block. Unfortunately, their scheme
relies on Stern-type zero-knowledge proofs [51] which are proofs with ternary
challenges and hence need to be repeated sufficiently many times, resulting in a
considerable efficiency penalty.

The issue of small challenges could in principle be overcome by using
Lyubashevsky’s “Fiat-Shamir with Aborts” technique [46] which yields much
more efficient proofs because it can use large challenges. However, this approach
will not work for the scheme by Libert et al., because these proofs have the dis-
advantage that they are “relaxed,” in the sense that extracted witnesses are only
guaranteed to lie in a considerably larger domain than the witnesses used to con-
struct the proof. Thus, if such proofs are for instance used to prove knowledge of
a valid message-signature pair, where the message and signature are witnesses,
the extracted values will typically not be a valid message-signature pair.

1.1 Our Results

In this paper, we provide a signature and a commitment scheme that are tailored
to deal with the relaxed witnesses extracted from Lyubashevsky’s zero-knowledge
proofs. To this end, we first define “relaxed” signature and commitment schemes,
in the sense that the respective verification algorithms accept messages, signa-
tures, and openings, respectively, that are never output by the honest signing or
committing algorithms. By allowing exactly the increase in the domain of the
witnesses induced by the relaxed extraction, and by proving that our schemes
remain secure under a suitably adapted notion in spite of that increase, we
obtain two lattice-based primitives with efficient and securely composable zero-
knowledge proofs.
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We demonstrate the use of our signature and commitment schemes in the con-
struction of privacy-enhancing technologies by building an anonymous attribute
token (AAT) scheme [23]. An AAT scheme enables users to obtain credentials
on multiple attributes, so that they can later selectively disclose these attributes
to verifiers in an unlinkable fashion.

We suggest concrete parameter choices for our schemes that yield a secure
yet efficient instantiation. We present two sets of parameters, one assuming the
hardness of new interactive assumptions and one assuming the hardness of Ring-
SIS and Ring-LWE and using a complexity leveraging argument (which blows
up parameters). Even in our most conservative analysis, we obtain presentation
token sizes less than 20 MB, which is well below the signature sizes or related
lattice-based primitives [43]. In our least conservative analysis, assuming the
hardness of two new interactive assumptions, we obtain presentation tokens as
small as 3.42 MB, which make our scheme the most practical lattice-based AAT
scheme.

1.2 Related Work

The only known lattice-based anonymous attribute token scheme [23] has pre-
sentation token sizes that are linear in the number of group members, and is
therefore mainly a proof of concept. Our AAT scheme is the first that could be
considered suitable for practical applications in a post-quantum world1.

Our proposal of lattice-based signature with protocols is not the first attempt
to design efficient cryptographic building blocks. In a concurrent work, Libert
et al. [42] presented a signature scheme with proofs based on a Stern-type ZK
protocol. Moreover, there exists a line of work on lattice-based group signatures
that combines signature schemes (usually variants of Boyen’s signature [14] or
Böhl signature [11]) with non-interactive zero-knowledge (NIZK) protocols, usu-
ally either Stern-type NIZK protocols (cfr. [41,42,44]), or Lyubashevsky proofs
[46] with single-bit challenges (cfr. [40,49])2. The advantage of using these pro-
tocols is that it is possible to prove knowledge of a witness for the exact relation,
thus it is not necessary to relax the verification algorithms. The drawback is
that Stern-type protocols have soundness error of 2/3 and Lyubashevsky proofs
with single-bit challenges of 1/2, thus they require to be repeated a number
of times that is linear in the security parameter to have a negligible soundness
error. This reflects in parameters choices and sizes: as it was already observed
by Libert et al. [43], all the schemes proposed until now output signature of size
greater than 61 MB.

1 We do not claim ours to be the first practical AAT. In fact, an AAT scheme based
on discrete log is at the core of Microsoft’s U-Prove [50].

2 We do not consider in our comparison the lattice-based group signature built by
Benhamouda et al. [10]. Indeed, it is a special case, as the authors avoided expensive
zero-knowledge proofs on lattice signatures by bridging a lattice-based encryption
scheme to a non-lattice-based signature scheme.
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2 Preliminaries

If A is a probabilistic algorithm, then by A(x) we denote the output distribution
of A on input x and run with uniformly chosen random coins. Computing y
with A on input x amounts to choose y from the distribution A(x), denoted
by y $←− A(x). We write y ∈ A(x) if the probability that A(x) will output y is
non-zero. We use AH to denote the fact that A has oracle access to the function
H. A function ν(n) is said to be negligible if ν(n) ≤ 1

p(n) for any polynomial
p(n) and sufficiently large n. Throughout the paper we denote by λ the security
parameter of a scheme.

Let Rq = Zq[x]/〈xn + 1〉 be a polynomial ring for a prime q. Operations
are the usual addition and multiplication modulo q and xn + 1. An element of
Rq is a polynomial a =

∑n−1
i=0 aixi, where ai ∈ {−(q − 1)/2, . . . , (q − 1)/2}.

A matrix in Rn×m
q will be denoted by bold upper-case letters. We define the

following norms on the set of polynomials: ‖a‖1 =
∑n−1

i=0 |ai|, ‖a‖∞ = maxi |ai|
and ‖a‖ =

√∑n−1
i=0 a2

i . A small element of the ring will be a polynomial in Rq

with small coefficient w.r.t. one of these norms depending on the context. With
b ← Rq we will mean that the polynomial b is sampled uniformly at random
from Rq. For two matrices (or vectors) A and B, we will denote by [A | B] their
horizontal concatenation and with [A;B] their vertical concatenation. With 1m

we will indicate the vector of length m whose components are equal to 1, 0m1×m2

(resp., 0m) will be the zero matrix (resp., vector) of dimension m1×m2 (resp., m)
and Im the identity matrix of dimension m. The norms of a vector V = [v1 . . .vk]
are defined as ‖V‖∞ = maxi ‖vi‖∞ and ‖V‖ =

√∑
i ‖vi‖2. The norm of the

sum or product of small polynomials can be bound as it follows.

Lemma 1. Let a, b ∈ Rq be such that n‖a‖∞ · ‖b‖∞ ≤ (q − 1)/2. Then we
have that ‖ab‖ ≤ ‖a‖‖b‖√n and ‖ab‖∞ ≤ ‖a‖∞‖b‖∞n ≤ q−1

2 .

The proof is straightforward and it can be found in the full version [13].
With R3 we denote the ring of polynomials with coefficients in Z3 = {0,±1}.

Throughout the paper we will consider these element as also element of the subset
of Rq of polynomials with coefficients in {±1, 0} using a standard mapping. For
any K|n we can construct a subring R(K)

q of Rq as the subset of elements a ∈ Rq

such that a = a0 + a1xn/K + a2x2n/K + . . . + aK−1x(K−1)n/K . For integer p,
we denote by Rp (resp., R(K)

p ) the subset of Rq (resp., R(K)
q ) that contains

polynomials with coefficients in [−(p − 1)/2, (p − 1)/2].
Among others, the choice of q strongly influences the number of invertible

elements that can be found in the ring. In particular, if q is such that q ≡
5 mod 8, so that all the elements with small enough coefficient (i.e., all a ∈ Rq

such that ‖a‖∞ <
√

q/2) are guaranteed to be invertible [47, Lemma 2.2]. We
denote by Inv(Rq) the set of all the invertible polynomials in Rq.
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2.1 Polynomial Lattices

A m-dimensional polynomial lattice is an additive subgroup of Rq, where a basis
is a vectorB ∈ R1×m

q . Given a vectorA ∈ R1×m
q we define the m-dimensional lat-

tice L⊥(A) as Λ⊥ = L⊥(A) = {V ∈ (Z[x]/〈xn + 1〉)m |AV = 0 mod q} ⊆ Rm
q .

Given a ∈ Rq, a coset Λ + a of a lattice Λ is the set {a + v}v∈Λ. Consider
the obvious embedding that maps a polynomial to the vector of its coefficients.
Then Λ⊥ can be also seen as a nm-dimensional integer lattice over Z. To gen-
erate a discrete Gaussian sample, we can generate a sample over Z

n and then
map it into Rq using the obvious embedding of coordinates into coefficients of
the polynomials. With a slight abuse of notation, we will write y $←− DRq,u,σ to
indicate that y was sampled from D

Zn,u,σ and then mapped to Rq. Similarly, we
omit the 0 and write (y1, . . . ,yk) $←−Dk

Rq,σ to mean that a vector y is generated
according to D

Zkn,0,σ and then gets interpreted as k polynomials yi. Elements
sampled from such distribution, have norm bounded by the following lemma.

Lemma 2 (adaptation of Lemma 1.5 in [7] and Lemma 4.4 in [46]). Let
A ∈ R1×m

q with 211 < m and u ∈ Rq. For σ ≥ λ̃(L⊥(A)) it holds:

1. Pr
s

$←− D⊥
A,u,σ

(‖s‖ > 1.05σ
√

mn) < 2−5.

2. Pr
s

$←− D⊥
A,u,σ

(‖s‖∞ > 8σ) < mn2−25.

In particular, the inequalities hold also when s ← DRm
q ,σ.

Observe that it is enough that the bound holds with non-negligible probability,
as each time we sample we can check the norm of the vector and discard it if
the norm is too large.

We define the largest singular value, a quantity that is used to measure the
geometric quality of a lattice basis. If R ∈ Rk×m

q , then s1(R) = maxu∈Rm
q

‖Ru‖
‖u‖ .

It holds that ‖Ru‖ ≤ s1(R)‖u‖ for every R ∈ R1×m
q and u ∈ Rq. The following

Theorem from [48] shows how a (pseudo-)random vector U, for which no trap-
door is known, can be extended into a pseudo-random vector [U|V] for which
we will be able to sample from D⊥

[U|V+mG],u,σ for any invertible m and for some
standard deviation σ.

Theorem 1 (adapted from [48]). Let A be a vector in R1×�
q and X be a

matrix in R�×m
q . Also define the gadget matrix G = [1 �q1/m . . . �q(m−1)/m].

Then for any invertible m ∈ Rq, there is an algorithm that can sample from the
distribution D⊥

[A|AX+mG],u,σ for any σ ∼ q
1
m s1(X) for any u ∈ Rq.

Lemma 3 is a combination of the double-trapdoor idea from Agrawal et al. [3],
with the sampling procedure by Brakerski et al. [15].

Lemma 3. Suppose U ∈ R1×k
q and V ∈ R1×m

q are polynomial vectors, and
BU ,B(U,V ) are bases of Λ⊥(U) and Λ⊥([U|V]) respectively such that ‖B̃U‖,
‖B̃(U,V )‖ < σ

√
π/ ln(2n + 4). Then, there exists an algorithm SampleD(U,V,

B,u, σ), where B is either BU or B(U,V ), that can efficiently sample from the
distribution D⊥

[U|V],u,σ for any u ∈ Rq.
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The security of our construction will be based on two well-studied lattice prob-
lems over rings:

Definition 1 (Ring-SISm,qβ problem). The Ring-SISm,qβ problem is given a
uniformly distributed vector A ∈ R1×(m−1)

q to find a vector S ∈ Rm
q such that

[A|1]S = 0 and ‖S‖ ≤ β.

Definition 2. The Ring-LWED,s distribution outputs pairs (a,b) ∈ Rq × Rq

such that b = as + e for fixed s ∈ Rq, a uniformly random a from Rq and e
sampled from distribution D.

The Ring-LWEk,D decisional problem on ring Rq with distribution D is to
distinguish whether k pairs (a1,b1), . . . , (ak,bk) were sampled from the Ring-
LWED distribution or from the uniform distribution over R2

q.

We use the root Hermite factor δ introduced By Gama and Nguyen [34]
to estimate the hardness for given parameters of the lattice problems in the
security reductions. We will deduct the number of bits of security from it using
the worst-case analysis by Akim et al. (cfr. Sect. 6 in [4]).

3 Relaxed Zero-Knowledge Proofs over Lattices

The first building blocks we need for our construction are relaxed Σ-protocols and
relaxed non-interactive zero-knowledge proofs of knowledge, where the relaxed
soundness definition guarantees the extraction of a witness from a wider lan-
guage than the one used by an honest prover. Proofs with relaxed extraction
notions have been used implicitly in previous work, e.g., for schemes based on
discrete logarithms in group of unknown order [19,22,25,52] and some lattice-
based schemes [46,47]. We give a simpler definition here that suffices for the
lattice-based protocols that we consider.

3.1 Definition of Relaxed Zero-Knowledge Proofs

Let L ⊆ {0, 1}∗ be a language with witness relation R, meaning x ∈ L ⇔ ∃ w :
(x,w) ∈ R. Let L̄ ⊇ L be a relaxed language with witness relation R̄ ⊇ R. We
define relaxed Σ-protocols inspired by the original definitions by Cramer [28]
and Faust et al. [31], but with a relaxed soundness condition that guarantees the
extraction of a witness from R̄ rather than R (similar to Camenisch et al. [19]).

Definition 3 (Relaxed Σ-protocols). A relaxed Σ-protocol Σ = (P,V)
for relations (R, R̄) is a three-round public-coin interactive proof system where
P = (P0,P1) and V = (V0,V1) are couples of PPT algorithms that, on top of
the standard correctness and honest-verifier zero-knowledge (HVZK) properties,
satisfy the following property:

Relaxed special soundness. There exists an efficient algorithm E, called spe-
cial extractor, that given two accepting conversations (α, β, γ) and (α, β′, γ′)
for language member x̄ ∈ L̄ where β �= β′, computes w̄ ← E(x̄, α, β, γ, β′, γ′)
such that (x̄, w̄) ∈ R̄.
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Relaxed Σ-protocols are relaxed proofs of knowledge, as the knowledge
extractor extracts from P a pair (x,w) in R̄ (the proof is a straightforward
adaptation to relaxed protocols of the proof of Theorem 1 in [29]).

3.2 A Relaxed Σ-Protocol for Proving Linear Relations

We rephrase Lyubashevsky’s “Fiat-Shamir with aborts” technique [45,46] as a
relaxed Σ-protocol for the languages (L, L̄) associated to the following relations:

R =
{

((A,U), (S,1)) ∈ R�×m
q × R1×�

q × Rm
q × {1} : AS = U, ‖S‖ ≤ N, ‖S‖∞ < (q − 1)/(2n)

}

R̄ =
{

((A,U), (S̄, c̄)) ∈ R�×m
q × R1×�

q × Rm
q × C̄ : AS̄ = c̄U, ‖S̄‖ ≤ N̄ , ‖S̄‖∞ ≤ N̄∞

}

for some positive constants N , N̄ , and N̄∞, with N ≤ N̄ , and a challenge set
C ⊆ R(2Kc )

3 and a set of relaxed challenges C̄ ⊆ R(2Kc )
5 , Kc > 0. Let C (resp.

C̄) be a bound on ‖c‖ for c ∈ C (resp. c̄ ∈ C̄). Finding a witness (S̄, c̄) for an
element (A,U) of the language L̄ is hard under the computational assumption

that Ring-SISβ is hard, where β =
√(

N̄2 + C̄2
)
.

The relaxed Σ-protocol (P,V) for (R, R̄) works as follows.

1. First, the prover P samples a masking vector Y $←− Dm
σ (we will determine the

value of σ in a moment), and sends T = AY to V.
2. The verifier V samples a challenge c ∈ C and sends it back to P.
3. The prover then constructs Z = Y+cS and, depending on rejection sampling

(see Theorem 4.6 in [46]), either aborts or sends it to V.
4. The verifier accepts if AZ − cU = T and ‖Z‖ ≤ 1.05σ

√
nm =: N2, ‖Z‖∞ ≤

8σ =: N∞.

Now, observe that the zero-knowledge property is guaranteed by rejection sam-
pling. A standard deviation σ = aT , where T = C · N

√
n is a bound on the

norm of cS obtained from Lemma 1, guarantees that the prover does not abort
with probability at least (1− 2100)/e12/a+1/(2a2) for any a > 0 (cf. [46, Theorem
4.6]). Finally, we set N̄ = 2N = 2.1σ

√
nm and N̄∞ = 2N∞ = 16σ.

One can see that our protocol is a relaxed Σ-protocol as follows. Correctness
follows from Lemma 1.5 in [7]. Zero-knowledge follows from rejection sampling: a
simulator S can simply sample Z $←−Dm

Rq,σ, c $←− C and set T := AZ−cU. Finally,
special soundness is proved as usual by defining an extractor that runs P twice
on different challenges and output as response the difference of the responses. In
the full version [13], we show how a relaxed Σ-protocol (P,V) can be turned into
a relaxed NIZK proof system (PHc ,VHc) using the Fiat-Shamir transform [32]
and one-time signatures.

3.3 Proving Knowledge of Bounded-Degree Secrets in a Subring

In our construction of an anonymous attribute token scheme, we will use the
above protocol in a modified form to let a prover prove knowledge of a [m; s]
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where m is a small element in a subring R(2Km )
q of Rq and with degree

deg(m) < d for some constant d < n. The fact that m is in the subring can
be proved by simply sampling challenges and the first component of the mask-
ing vector Y = [ym;ys] from the subring. The result is that the first component
of the response [zm; zs] = [ym;ys] + c[m; s] is in the subring if m is. The zero-
knowledge property remains guaranteed by rejection sampling.

Proving that m is of degree strictly less than d < n can be done by carefully
choosing the challenge set and the domain of the masking vector. In particular, if
deg(m) ≤ dm and challenges are chosen to be polynomials of degree dc such that
dc + dm < d, then deg(mc) < d. Letting the prover sample the masking vector
ym from the polynomials of degree less than d and applying rejection sampling as
usual preserves the zero-knowledge property when computing zm = mc + ym.
By letting the verifier additionally check that deg(zm) < d, the extractor is
guaranteed to be able to extract a witness m̄ = zm,1 − zm,2 of degree strictly
less than d. Note that sampling a discrete Gaussian distributions of polynomials
of degree at most d − 1 from the subring R(2K)

q can be done by sampling from
D

Zm,σ for m = �(d − 1)n/2K� and mapping coordinates to coefficients. To have

a clearer notation, we define Yd to be the set of elements in the subring R(2K)
q

with degree at most d − 1, so that the distribution of the full masking vector Y
can be written as DY×Rq,σ.

4 A Relaxed Lattice-Based Commitment Scheme

Our second building block is a commitment scheme with an efficient proof of
knowledge of a committed message that uses the Σ-protocol from Sect. 3. To
compensate for relaxed extraction properties of the Σ-protocol, we define relaxed
commitments, where the opening algorithm accepts messages and opening infor-
mation that could not be committed to (respectively, produced) by the honest
commitment algorithm.

4.1 Definition of Relaxed Commitments

A relaxed commitment scheme C for message space U and relaxed message
space Ū ⊇ U consists of a triple of algorithms (ParGenc,Commit,OpenVf), where
cpar ← ParGenc(U , 1λ) generates the parameters on input the message space and
the security parameter, (c, o) ← Commit(cpar ,M) computes the commitment
value c and the opening information o on input the parameters and a message in
U , and {1, 0} ← OpenVf(cpar , c, M̄ , ō) verifies whether ō is an opening of M̄ ∈ Ū
for the commitment c.

A commitment scheme must satisfy the standard correctness and hiding prop-
erties. The binding property is relaxed by considering message relaxation func-
tion f : U → 2Ū and by considering only attacks where the adversary can open a
commitment to two messages from different components of the partition defined
by f .
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Definition 4 (Relaxed Binding). A relaxed commitment scheme C is
f-binding for a function f : U �→ 2Ū if for all polynomial-time A

Pr

⎡

⎣
OpenVf(cpar , c, M̄0, ō0) = 1

∧ OpenVf(cpar , c, M̄1, ō1) = 1
∧ � M ∈ U : {M̄0, M̄1} ⊆ f(M)

: cpar ← ParGenc(U , 1λ),
(c, M̄0, ō0, M̄1, ō1) ← A(cpar)

⎤

⎦ ≤ ν(n) .

4.2 Designing Appropriate Message and Challenge Spaces

Our goal is to create a commitment scheme where the relaxed Σ-protocol from
Sect. 3 can be used to prove knowledge of a committed message, where the mes-
sage and opening information are part of the witness. The problem with relaxed
Σ-protocols is that they cannot guarantee the extraction of a valid witness for
the original relation R, but only for the relaxed relation R̄. The witnesses in
the latter have larger norms and explicitly admit “small multiples”: if (S,1) is
a valid witness in R so that AS = U, then (S̄ = c̄S, c̄) is a valid witness in
R̄ so that AS̄ = c̄U, where c̄ ∈ C̄ = {c − c′ : c, c′ ∈ C} and where C is the
challenge space. By relaxing the opening verification of the commitment scheme
to accept extracted messages and opening information, we allow a commitment
to be opened to a small multiple c̄m of the originally committed message m ∈ U .
In order to preserve a meaningful notion of relaxed binding, we must choose the
message and challenge spaces so that the sets of small multiples of different mes-
sages are disjoint, i.e., that there do not exist distinct m,m′ ∈ U and c̄, c̄′ ∈ C̄
such that mc̄ = m′c̄′.

For efficiency reasons, we choose messages and challenges from the subring
R(2K)

3 so that they have at most 2K nonzero coefficients. By choosing the message
and challenge spaces as

U = {1} ∪ {m ∈ R(2K)
3 : deg(m) = n/2 ∧ m is irreducible in Zq[x]}

C = {c ∈ R(2K)
3 : deg(c) < n/4}

Ū = {m̄ ∈ R(2K)
2p+1 : deg(m̄) < 3n/4}

C̄ = {c − c′ : c, c′ ∈ C} ,

(1)

we have that each m̄ ∈ Ū can have at most one irreducible factor of degree n/2
in Zq[x]. By defining the message relaxation function f as

f(m) = {m̄ ∈ Ū : m|m̄ in Zq[x]} for m �= 1
f(1) = {m̄ ∈ Ū : � ∃ m ∈ U \ {1} : m|m̄ in Zq[x]} ,

(2)

the unique factorization of polynomials in Zq[x] guarantees that the partition
components f(m) and f(m′) are disjoint for any distinct m,m′ ∈ U .

To generate elements of U , we suggest to generate random monic polyno-
mials of degree n/2 in R(2K)

3 and test them for irreducibility, which can be
done efficiently (e.g., using Proposition 3.4.4 in [27]). By the Gauss’ formula,
the number of monic polynomials of degree n/2 that are irreducible in Zq[x]
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is approximately qn/2/(n/2). Assuming that the irreducible polynomials are
“spread evenly” across Zq[x], one expects to sample an average of n/2 poly-
nomials until finding an irreducible one.

4.3 A Lattice-Based Relaxed Commitment Scheme

Our relaxed commitment uses message space U and relaxed message space Ū
defined in Eq. (1). The algorithms of our relaxed commitment scheme rC are as
follows.

Parameter generation. ParGenc selects a uniformly random commitment key
C $←−R1×m

q and the parameters N̄c and N̄c,∞ that will be defined in Sect. 6.
It outputs cpar = (C, N̄c, N̄c,∞).

Commitment generation. On input (cpar ,m), the algorithm Commit first
checks that m ∈ R(2K)

3 , that deg(m) = n/2, and that m is irreducible. It
then selects uniformly random E $←− R1×m

3 and b $←−R3, and constructs the
commitment as F = (C + mG + E)b−1. It outputs (F, (1,E,b)).

Opening verification. On input a message m̄, a commitment F, and opening
values (c̄, Ē, b̄), OpenVf outputs 1 if F = (c̄C + m̄G + Ē)b̄−1, m̄ ∈ Ū and
(c̄, Ē, b̄) ∈ OV = {(c̄, Ē, b̄) ∈ C̄ ×R1×m

q ×Rq : ‖[Ē, b̄]‖ ≤ N̄c ∧ ‖[Ē, b̄]‖∞ ≤
N̄c,∞}.

Correctness follows easily from the parameters computation (cf. Sect. 6). We
show in the full version [13] that it satisfies the relaxed binding property under
the Ring-SIS assumption and the hiding property under the following new and,
we believe, reasonable assumption. To gain trust in our new assumption, in the
full version [13] we give a variant of the assumption that we show to be equiva-
lent to Ring-LWE and that, through a complexity leveraging argument, implies
Assumption 1. We therefore obtain two ways to interpret our security result:
either one believes Assumption 1 below directly, or one only believes the weaker
Ring-LWE assumption and compensates for the tightness loss in complexity
leveraging by adjusting the scheme parameters.

Assumption 1. Consider the following game between an adversary A and a
challenger for fixed m ∈ N and distribution D:

1. The challenger outputs a uniformly random C $←− R1×m
q to A.

2. A sends back m ∈ U .
3. The challenger samples a uniformly random bit b $←− {0, 1}. If b = 1, it samples

an error vector E $←−Dm and a uniform secret s $←−D, and sends F = (C +
mG − E)s−1 to A. Otherwise, it sends a uniform F $←−R1×m

q to A.
4. A sends a bit b′ to the challenger.

The advantage of A in winning the game is
∣
∣Pr(b = b′) − 1

2

∣
∣. The assumption

states that no PPT A can win the previous game with non-negligible advantage.
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5 Relaxed Lattice-Based Signatures

The third building block is a signature scheme for which the rΣ protocol from
Sect. 3 can be used to prove knowledge of a signature on a committed message.
Similarly to the relaxed commitments of the previous section, we also define
relaxed signature schemes to accommodate for the relaxed extraction of the
rΣ protocol. More specifically, the verification algorithm is relaxed to accept
messages and signatures that could never be signed, respectively produced, by
the honest signing algorithm. At the same time, we also relax the unforgeability
notion so that the adversary’s forgery cannot be on a message that is within the
span, through a function f , of its previous signing queries.

5.1 Definition of Relaxed Signatures

A relaxed signature scheme associated with message space M and relaxed mes-
sages space M̄ ⊇ M consists of a parameter generation algorithm SParGen that
on input security parameter 1λ outputs system parameters spar ; a key gener-
ation algorithm SKeyGen that on input spar outputs a signing key sk and a
verification key vk ; a signing algorithm Sign that on input sk and a message
M ∈ M outputs a signature sig ; and a verification algorithm SVf that on input
vk , a message M̄ ∈ M̄ and a signature ¯sig returns 1 if the signature is valid or 0
if it is invalid. Correctness requires that SVf(vk ,M, sig) = 1 for all messages
M ∈ M, for all security parameters λ ∈ N, for all (sk , vk) ∈ SKeyGen(spar), and
for all sig ∈ Sign(sk ,M).

Relaxed unforgeability is parameterized by a message relaxation function
g : M → 2M̄. The adversary in the g-relaxed unforgeability below wins the game
if it can output a valid signature on a message M̄ ∈ M̄ that is not in the span
through g of its signature queries.

Definition 5 (Relaxed Unforgeability). A relaxed signature scheme
(SParGen,SKeyGen,Sign,SVf) is g-relaxed unforgeable if for all PPT A the prob-
ability

Pr

[

SVf
(
vk , M̄ , ¯sig

)
= 1 ∧ M̄ /∈ g(Q) :

spar ← SParGen(1n), (sk , vk) ← SKeyGen(spar),
(M̄, ¯sig) ← AOS (n, spar , vk)

]

is negligible, where the oracle OS(M) returns Sign(spar , sk , vk ,M) and Q is the
set of A’s queries to OS.

The concept of relaxed signatures is somewhat reminiscent of a technique
used for proofs of knowledge of a strong-RSA-based signature in groups of
unknown order [22]. Here, one has to prove that the message lies in a certain
space, but the correctness of such a proof is only guaranteed when the actual
message lies in a smaller interval. The approach was used in several privacy-
preserving protocols, but was never formalized and did not require an adapted
unforgeability notion.
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5.2 A Lattice-Based Relaxed Signature Scheme

We describe a relaxed signature scheme with message space M = {(m, α) ∈
U × {0, 1}∗}, where U is as defined in Eq. (1). In a typical use case, m is a user
identity and α an attribute value assigned to that user. Our scheme combines a
weakly secure version of Boyen signatures [14] to sign user identities and Gentry-
Peikert-Vaikuntanathan signatures [35] to sign attribute values.

To use the rΣ protocol from Sect. 3.2 to prove knowledge of a signature for
a committed user identity m, we relax the verification algorithm so that the
(relaxed) witness that can be extracted from a valid rΣ protocol is still considered
a valid signature for a message from the relaxed message space M̄ = Ū ×{0, 1}∗,
where Ū is as defined in Eq. (1).

Our relaxed signature scheme rS is described as follows:

System parameters. The system parameters spar include a uniformly random
matrix C ∈ R1×m

q , a gadget vector G of length m as defined in Theorem 1,
and a hash function H : {0, 1}∗ → Rq.
It also contains the following parameters: σt is the standard deviation of the
trapdoor distribution, σ is the standard deviation of the signature distribu-
tion, p is a bound on the norm of user identities m̄, Ns is a bound on the
norm of honestly created signatures; N̄s, N̄s,∞, and C̄ are bounds on the
norm of components of signatures accepted by the relaxed verification algo-
rithm, C and C̄ are challenge spaces defined in Eq. (1). Concrete values for
these parameters will be provided in the correctness discussion and in Table 1.
When discussing the correctness of the signature, we give precise formulas for
all the previous parameters but N̄s, N̄s,∞, and C̄. These last three depend
on the extraction algorithm of the relaxed Σ-protocol in Sect. 6. Their com-
putation is standard, and is described in the full version [13]. For correctness
to hold, we only need to impose that N̄s > Ns and C̄ ≥ 1.

Key generation. The signer chooses a uniform polynomial a ∈ Rq and sets
A = [a|1]. The secret signing key is sampled as X $←− D2×m

Rq,σt
. Letting A =

[a|1], the public verification key is the vector V = [A|B|C|1] = [A|AX +
G|C|1] ∈ R1×(3+2m)

q .
Signing. If M = (m, α) /∈ M then abort. Otherwise, the signer calculates S ←

SampleD([A|B|C + mG],H(α), σ) (see Lemma 3) and outputs a signature
sig = (1, [S;0],1). The entry (m, α, sig) is stored so that the same signature
sig is returned next time that (m, α) is signed.

Verification. Verification of a signature ¯sig = (c̄1, S̄, c̄2) on message M̄ =
(m̄, α) returns 1 if [A|B|c̄1C + m̄G|1]S̄ = c̄2H(α), if M̄ ∈ M̄, and if ¯sig ∈
{(c̄1, S̄, c̄2) ∈ C̄ × R3+2m

q × Rq : ‖S̄‖ ≤ N̄s ∧ ‖S̄‖∞ ≤ N̄s,∞ ∧ ‖c̄2‖ ≤ C̄}.
Otherwise, it returns 0.

Correctness of the rS scheme follows from the choices of parameters explained
in the full version [13]. We prove the g-unforgeability of our rS scheme under the
following assumption.
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Assumption 2. Let Σ̄ = {(c1,S, c2) ∈ C̄ × R3+2m
q × Rq : ‖S‖ ≤ N ′ ∧ ‖c2‖ ≤

C ′} for some fixed parameters. Consider the following game between an adver-
sary A and a challenger for fixed m ∈ N and distribution D:

1. The challenger chooses a $←−Rq, C $←− R1×m
q , and X $←−D2×m

Rq,σt
. It sets A =

[a|1] and B = AX + G, where G =
[
1 �q1/m . . . �q(m−1)/m].

2. The challenger runs A on input
[
A B C 1

]
, giving it access to a ran-

dom oracle H : {0, 1}∗ → Rq and an oracle OS that on input m ∈
U and a string α ∈ {0, 1}∗ outputs a small vector

[
S ; 0

]
in the coset

L⊥(
[
A B C + mG 1

]
) + H(α) such that ‖S‖ ≤ NS.

3. Algorithm A outputs m̄ ∈ Ū , ᾱ ∈ {0, 1}∗, c̄1 ∈ C̄, a ring element c̄2 and a
vector S̄. Algorithm A wins the game if (c̄1, S̄, c̄2) ∈ Σ̄, m̄ ∈ Ū , such that S is
a short vector of the coset L⊥(

[
A B C̄ 1

]
)+c2H(ᾱ)) where C̄ = c̄1C− m̄G,

and (m̄c̄−1
1 , ᾱ) was not queried to the OS oracle.

The assumption states that no PPT algorithm A can win the game with non-
negligible probability.

Theorem 2. An algorithm A that breaks the g-uf-cma unforgeability of the
relaxed signature scheme in time t and probability εA can break the Assump-
tion 2 in time t with probability εA in the Random Oracle Model.

A valid forgery can be used to break Assumption 2 because unforgeability is
defined w.r.t. a function g. This guarantees that m̄ and c̄1 output by A are such
that m̄c̄−1

1 was not queried to OS as specified by the assumption.
Assumption 2 is very similar to the g-unforgeability experiment itself, but,

similarly to what we did for the hiding property of the rC scheme, we gain trust in
the assumption in the full version [13] by describing a variant of the assumption
that is implied by the Ring-LWE and Ring-SIS assumptions, and that through
a complexity leveraging argument implies Assumption 2. Again, this yields two
possible ways of interpreting our result: either one believes Assumption 2 directly,
or one believes the Ring-SIS and Ring-LWE assumption and adjusts the scheme
parameters to compensate for the tightness loss due to complexity leveraging.

6 Relaxed Proofs of Signatures on Committed Messages

We now prove how our three primitives can be composed together to prove knowl-
edge of a signature S on a secret m w.r.t. a public bit-string α. To prove knowl-
edge of both S and m, the protocol exploits the relaxed commitment scheme
defined in Sect. 4.3. The commitment allows to prove knowledge of the signature
and the secret part of the message in two separate equations, and this is needed
both for technical and practical reasons. On one hand, this gives a better bound
on the extracted message, as rejection sampling can be performed separately on
the two equations. On the other hand, this allows to prove knowledge of a set of
signatures {Si}i=1,...,� on messages (m, αi) for i = 1 . . . , , i.e., on message pairs
composed by the same secret m and by different public bit-strings αi. This is
important because in the AAT this protocol allows a user with identity m to
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create a presentation token for an attribute α, and it is often necessary for the
user to disclose multiple attributes at the same time. We show at the end of this
section the intuition behind the generalization to the multiple-signatures case,
i.e., how the user can prove that she has signatures by the issuer on the pairs
(mi, αi)i, where in fact m = mi = mj is her id. For sake of simplicity, we start
presenting the proof for a single message-signature pair.

Let A, B, and C be the public vectors of the signature scheme. Given α and
the public parameters of the signature, P wants to prove that she owns some
“small” (m, (c1,S, c2)) such that [A|B|c1C + mG|1]S = c2H(α). To construct
a relaxed Σ-protocol (cf. Sect. 3), rewrite the characterizing equation as follows.
Let (1,S,1) be a honestly-generated signature on (m, α), i.e.

[A|B|C + mG|1]S = H(α) (3)

Generate a commitment F = b−1(C+mG+E) to m and substitute C+mG =
Fb−E in Eq. (3). Rearranging the terms, P can now use the protocol in Sect. 3
to show she owns some “small” (S̄c, c̄1, S̄s, c̄2) satisfying:

(I)
[−GT FT −Im

]

︸ ︷︷ ︸
=Ac

⎛

⎝
m̄
b̄
ĒT

⎞

⎠

︸ ︷︷ ︸
=S̄c

= c̄1CT , (II) [A|B|F|1]
︸ ︷︷ ︸

=As

⎛

⎜
⎜
⎝

S̄1

S̄2

S̄3

s̄4

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
=S̄s

= c̄2H(α). (4)

Indeed, P samples Y1
$←−DY3n/4×R1+m

q ,σ1
and Y2

$←− D2m+3
Rq,σ2

and sends as com-

mitments (AcY1,AsY2). Upon receiving the challenge c from the verifier, the
prover sets Z1 = Y1+cSc and Z2 = Y2+cSs, and does rejection sampling sepa-
rately on them. The verifier accepts if the response satisfies the bounds deriving
from the use of rejection sampling, i.e. ‖Z1‖ ≤ 1.05σ1

√
n(2 + m), ‖Z2‖ ≤ 1.05σ2√

n(2 + 2m), ‖Z1‖∞ ≤ 8σ1, ‖Z2‖∞ ≤ 8σ2, and the first component of Z1 is in
the subring. More discussion on the protocol can be found in the full version [13].

In Theorem 3 are defined the relations for the relaxed Σ-protocol. We only
highlight that the extractor is standard, so it rewinds the prover to obtain two
responses to different challenges. Hence, for it to extract a valid opening infor-
mation, it is enough to set N̄c = 2.1σ2

√
n(2 + 2m) and N̄c,∞ = 16σ1. The

algorithm and the bounds on the norm of the extracted witness Ns, N̄s, N̄s,∞,
C̄ can be found in the full version [13].

Theorem 3. Given Ns as in Sect. 5.2 and N̄s = 8.82(3 + 2m)σ1σ2n
√

nm,
N̄s,∞ = 512σ1σ2n, C̄ = 4.2σ1n

√
2K−2 − 1 and p = 16σ1, the protocol (P,V)

is a relaxed Σ-protocol for the following pair of relations:

R = { ((As,H(α)), (m, (1,S,1))) : m ∈ U , [A|B|1C + mG|1]S = 1H(α)
and ‖S‖ ≤ Ns}

R̄ = { ((As,H(α)), (m̄, (c̄1, S̄, c̄2))) : m̄ ∈ Ū , c̄1 ∈ C̄, ‖c̄2‖ ≤ C̄

[A|B|c̄1C + m̄G|1]S̄ = c̄2H(α) and ‖S̄‖ ≤ N̄s, ‖S̄‖∞ ≤ N̄s,∞}
under Ring-LWER3 with the uniform distribution.
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Setting when K = 6 as in Table 1 the cardinality of C is |C| = 32
K−2−1 = 315,

hence the proof has to be repeated 6 times to have negligible soundness error.
The relaxed Σ-protocol can be transformed into a NIZK proof using the

Fiat-Shamir transform combined with an OTS (cf. Sect. 3.2).
A proof of knowledge of  signatures Si generated by signer i on  messages

(m, αi) is constructed by combining  of the previous proofs in parallel. Assume
that the parameters of the rC and rS schemes are shared among all signers. This
means that the verification key of signer j is [Aj |Bj |C] for the same C. Hence,
the prover can generate a commitment F to m using C as public matrix, and
generate a proof Πi that she knows a secret S̄c that satisfies relation (I) in (4)
and S̄s,i, c̄ that satisfy [Ai|Bi|F|1]S̄s,i = c̄H(αi) for i = 1, . . . , . The relaxed
binding property of the commitment guarantees that the hidden part of the
message m is the same in all proofs.

7 Compact Anonymous Attribute Tokens from Lattices

Anonymous attribute tokens [23] can be seen as simplified anonymous creden-
tials, allowing users to obtain a credential from an issuer that contains a list of
attributes. Users can selectively disclose subsets of these attributes to verifiers
in such a way that not even the verifier and the issuer together can link differ-
ent presentations by the same user. In this section, we focus on AAT schemes
without opening (AAT-O), i.e., without a trusted opener who can de-anonymize
presentation tokens. Formal definitions of the scheme can be found in the full
version [13].

7.1 Compact AATs from Lattices

From the relaxed primitives that we introduced, it is possible to construct an
AAT-O scheme with compact presentation tokens. Parameters for the commit-
ment scheme are generated from the signature parameters spar using DeriveParc
that, on input spar , sets the commitment public matrix C to be the third block
of the signature public key vk = [A|B|C|1] and computes N ′

c,2, N
′
c,∞.

System Parameter Generation. The system parameters are the signature
parameters spar from Sect. 5.2. Then it runs cpar ← DeriveParc(spar) and
outputs par = (spar , cpar).

Issuer Key Generation. The issuer runs the signing key generation SKeyGen
to obtain isk = X and the public matrix ipk = [A|B|C|1].

Issuance. To issue a credential to a user for attributes (αi)�
i=1, the issuer

chooses an id = m ∈ U , checks that m /∈ S and computes signatures on
(m, i‖atti) using the Sign algorithm. The credential consists of m, (αi)�

i=1

together with the resulting signatures (1, [Si;1],1). The issuer adds m to S.
Presentation. To create a presentation token for attributes (αi)i∈R and mes-

sage M , the user creates a relaxed commitment F to m and generates NIZK
proofs Πi that he knows signatures on the committed message and i‖αi for
i ∈ R, whereby he includes the message M in the Fiat-Shamir hash. The pre-
sentation token pt consists of the commitment F and the transcripts (Π)i∈R.
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Verification. The verifier checks the validity of (Π)i∈R w.r.t. F and the mes-
sage M . If the tests pass, he outputs accept , otherwise reject .

Parameters for this scheme are presented in Table 1. Details on how they
were computed can be found in the full version [13].

Table 1. Table of parameters for the AAT scheme without opening for λ = 80 bits of
security and K = 6. All the values are rounded up.

Compl. Lev. δ Parameters Sizes

n q m σt ipk (KB) usk (KB) token (MB)

NO <1.002926 212 ∼2110 5 4 620 271 3.42

YES <1.0003788 213 ∼298 18 4 3714 863 17.77

Security. The security of this AAT-O follows from the security guarantees of
its building blocks. Unforgeability relies on the relaxed unforgeability of the rS
scheme, on the relaxed binding property of the rC scheme and on the relaxed
simulation soundness of the rΣ scheme. The proof strategy is to run the adversary
and extract from the forged presentation token using the Generalized Forking
Lemma [6]. The proof can be found in the full version of the paper [13].

Theorem 4 (Unforgeability). Assume A is an adversary that runs in time
tA, makes qD random-oracle queries for credentials issued to dishonest users (if
A queries for a credential on (id , (αi)i=1,...,m), we count it as m queries) and qH

queries for credential issued and presentation tokens of honest users and breaks
the unforgeability of the AAT with probability εA, then there exists an algorithm
that breaks the unforgeability of the signature in time tB = 32ta(qD + qH)/εA ·
ln(16/εA) with probability εB = εA/8 after asking qD queries to the signing oracle
in the Random Oracle Model.

Anonymity is guaranteed by the zero-knowledge property of rΣ and by the hiding
property of rC. The proof of the theorem can be found in the full version [13].

Theorem 5 (Anonymity). If an adversary A running in time t breaks the
anonymity of the AAT with probability at most ε, then there is an adversary
running in time t who breaks the hiding property of the commitment scheme
with advantage at most ε in the Random Oracle Model.
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tures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42045-0 3

41. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature
scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS,
vol. 8383, pp. 345–361. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54631-0 20

42. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–
403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 13

43. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

44. Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter,
shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 19

45. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

46. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/3-540-45539-6_38
https://doi.org/10.1007/11426639_12
https://doi.org/10.1007/978-3-642-42045-0_3
https://doi.org/10.1007/978-3-642-42045-0_3
https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-46447-2_19
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43


22 C. Boschini et al.

47. Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices. In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 293–
323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 11

48. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

49. Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices.
In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401–426. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46447-2 18

50. Paquin, C., Zaverucha, G.: U-prove cryptographic specification v1. 1, revision 3,
December 2013

51. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 2

52. Xue, R., Li, N., Li, J.: Algebraic construction for zero-knowledge sets. J. Comput.
Sci. Technol. 23(2), 166–175 (2008)

https://doi.org/10.1007/978-3-319-56620-7_11
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-662-46447-2_18
https://doi.org/10.1007/3-540-48329-2_2


Software Security



Secure Code Execution: A Generic
PUF-Driven System Architecture

Stephan Kleber1(B), Florian Unterstein2, Matthias Hiller2, Frank Slomka3,
Matthias Matousek1, Frank Kargl1, and Christoph Bösch1
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Abstract. In his invited talk, joint between CHES 2016 and CRYPTO
2016 on the Future of Embedded Security, Paul Kocher suggested to
move the security into chips because hardware is the lowest level and
thus security can not be compromized by a lower layer. In this paper, we
propose a generic PUF-driven secure code execution architecture that
employs instruction-level code encryption. Our design foresees a tight
integration of a Physically Unclonable Function (PUF) and the decryp-
tion of encrypted program code directly inside the processor’s instruction
pipeline to avert revealing keys or decrypted code in externally accessible
registers or memory. The architecture prevents code-injection by execut-
ing only code encrypted for individual target CPUs, has an adaptable
impact on performance, and requires only minor changes to the soft-
ware development process. Our PUF-based code encryption defends also
from reverse engineering attempts and enforces IP protection. A proof-
of-concept implementation demonstrates the feasibility of our proposed
architecture.

Keywords: Secure Execution Environment · PUF · FPGA

1 Introduction

Secure and reliable execution of code is of high importance for classical networked
systems in the Internet but even more for networked control systems for critical
processes. Such Cyber-Physical Systems can be found in industrial plants, in
home-automation and in connected cars. In order to avoid negative consequences
like misguided process control, one needs to ensure that only valid and unaltered
code is executed on such embedded devices. At the same time, such code often
contains intellectual property (IP) which makes it necessary to protect the code
from extraction and reverse engineering to avoid leaking of IP.
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Code injection, especially when performed remotely, is one of the most
effective strategies for malicious attackers. Stuxnet, for example, exploited
such a remote code execution vulnerability (CVE-2008-4250) to infect remote
machines [18]. Since the popular phrack article “Smashing the Stack for Fun
and Profit” [24] by Aleph One in 1996, which described simple stack buffer
overflows, new detection and prevention techniques like stack canaries or non-
executable stacks have been proposed just to soon thereafter be circumvented by
more sophisticated attack techniques like Return-Oriented Programming (ROP).
Now, more than two decades later, it is still an open security challenge to effec-
tively prevent injection of unauthorized code into an execution environment. A
Secure Execution Environment (SEE) protects against such code injection to
prevent malicious actions to be executed inside the environment (ensuring code
integrity) and additionally, often prevents genuine code from getting extracted
out of its execution environment to prevent reverse engineering (ensuring code
confidentiality). Thereby, an SEE not only contributes to enhanced resilience
of an otherwise vulnerable platform against malicious manipulation, but also
helps to protect the IP of software and hardware manufacturers. Based on our
threat model (Sect. 2), we present our generic PUF-driven secure code execu-
tion architecture which allows secure execution of encrypted programs where
programs are encrypted per processor instance (Sect. 3). Code that is not prop-
erly encrypted for a specific device will not execute correctly, triggering faults.
Thus, an attacker will not be able to produce and inject valid code that will
exhibit a desired malicious behavior. As an additional effect, relying on a PUF
for re-generating decryption keys implements a strict hardware-binding, where
code cannot be transferred between devices [11,26]. At the same time, the archi-
tecture will effectively prevent reverse engineering of programs stored in such
an embedded system as all such code is encrypted and will only be decrypted
directly inside the execution pipeline on a per-instruction basis. Thereby, our
design minimizes exposure of decryption keys or decrypted instructions to iso-
lated dedicated registers. The proposed design is comparatively lightweight with
a well-defined minimum trusted computing base (TCB) that does not include
external or internal memory or caches. The design can be implemented by a stan-
dard production process. While implementing the architecture, use-case-specific
parameters of freely exchangeable building blocks allow for customization which
we discuss in Sect. 4. Based on a proof-of-concept implementation (Sect. 5) we
investigate the feasibility of our architecture and its overhead in Sect. 6. The anal-
ysis of the state-of-the-art in Sect. 7 shows where our architecture outperforms
comparable earlier approaches. In Sect. 8, we conclude that our design consti-
tutes a major step towards code integrity and code confidentiality in embed-
ded devices. Based on the lessons learned, we present a list of extensions and
enhancements that might be of interest in future work.

2 Threat Model

Our main goal is to protect from code injection attacks, starting from simple
execution of untrusted code but also extending to injection attacks like stack
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buffer overflows and even advanced attacks like ROP. As additional goal, we
aim for code confidentiality, and thus, reliably prevent reverse engineering of
code and IP infringements.

For protection from malicious code injection, we prevent any non-authorized
code to be executed – or rather lead to any behavior that the attacker can control
or predict. Beyond, manipulations of the control flow of a process needs to be
prevented, as some advanced attacks like ROP can achieve their malicious goals
without actually injecting additional instructions.

We consider three types of attacks under this term:

1. Attacks where unauthorized code should be executed in a new process or
thread of its own using whatever execution procedure is foreseen on the target
platform.

2. We consider attacks where an attacker tries to exploit software implementa-
tion flaws like susceptibility to buffer overflows in order to inject self-crafted
code into an existing process or thread and manipulate the program flow to
execute this code.

3. There are attacks that do not involve any additional instructions but only
change the program flow in a way to exhibit new and unintended behavior.
ROP is a prime example of this.

Attacks two and three may be performed remotely or locally via the intended
input methods of legitimate software running on the target processor. All these
attacks are software-centric, however, we do not exclude hardware attackers in
our discussion. Hardware attackers have physical access to the processor, its
memory and peripherals, and might try to inject code by direct manipulation
of memory and any data and instruction cache off- and on-chip. Fault-injection
attacks also fall in this category.

In the case of code confidentiality, an attacker wants to gain additional knowl-
edge on the application code deployed on a system, e.g., as part of a reverse
engineering effort. The system may be under physical control of the attacker,
like often the case in an embedded or mobile system running a supplier’s confi-
dential firmware. We assume that all off-chip bus lines can be probed via openly
accessible chip pins and that all external memory can be read out.

A more sophisticated attacker may even be able to use hardware probes to
read-out from or inject bits into on-chip buses [17]. Beyond, the chip design
and layout may be known to the attacker. This results in an attacker capable
to obtain memory contents via methods like linear code extraction and direct
memory probing. In addition, invasive tampering like glitching or fault injection
on bus lines may also be possible. While an attacker with such advanced capa-
bilities may be extremely hard to defend from, the goal of our architecture is to
minimize the trusted computing base, i.e., the area of the chip and the duration
where such confidential information is exposed.

We note that further attacks like denial-of-service (DoS) and hardware
side-channels are not specifically considered within our approach. Comple-
mentary research exists, proposing countermeasures to side-channel attacks.
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Ascend [10], for example, is specifically designed to hamper side-channel attack-
ers by obfuscating memory access patterns, power consumption and temperature
analyses.

3 Our Architecture for Secure Code Execution

Execution of program code typically happens detached from its development.
Therefore, our architecture distinguishes between a development machine (user
system) and the execution environment (target system). A central advantage of
our architecture is that only encrypted program binaries can be executed which
are bound to a specific processor and which can be decrypted and run only by
that specific processor. To be able to use the benefits of the PUF at execution
time without the need to have it available at development time, we separated
the encryption of the program binary from binding this binary to the PUF.
Therefore, two cryptographic processes have to be discerned: The encryption
and decryption of the binary itself is performed by a random access cipher (e.g.,
XTS [1] or CTR mode), without the use of the PUF (Fig. 1(a), Step 2 and (b),
Step 3). In a separate process, the key used for this operation is encrypted and
decrypted involving the PUF (Fig. 1(a), Step 5 and (b), Step 2).

The architecture of the target system consists of a generic RISC CPU, a
instruction decryption module, and a PUF module. Our CPU uses fixed-length
instructions of 32 bit each. The instruction decryption module and the PUF
module are closely coupled with the CPU’s execution pipeline.

During program execution, the cryptographic instruction decryption
module reads the encrypted binary and decrypts it, (Fig. 1(b), Step 3) instruc-
tion by instruction, during the instruction fetch (IF) stage. This is performed by

Fig. 1. Program encryption and execution process.
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a random access block cipher. Decrypted instructions are directly forwarded to
the instruction decode stage (Fig. 1(b), Step 4) and continue their normal walk
through the pipeline. The binary-specific key ku for the block cipher is secured
through the use of the PUF module, ensuring that any encrypted program can
be decrypted only on the device instance it was created for.

Notation: Encryption and decryption operations of plaintext p and ciphertext
c with key k: Ek(p) and Dk(c); Encrypted entity or ciphertext c of plaintext
p with key k: ck(p) is output of Ek(p); Cryptographic hash function: H(·).

We call the development machine user system and consider it trusted. To
generate a program to be executable on the target system, the user compiles
confidential source code into a binary using a default compiler, e.g., gcc. The
user arbitrarily chooses an ephemeral one-time key ku (Fig. 1(a), Step 1) and
encrypts this binary, instruction by instruction (Fig. 1(a), Step 2). The encrypted
binary is then transferred alongside with ku to the target system through a secure
channel (Fig. 1(a), Step 3). Afterwards, the users local copy of ku can be deleted
(Fig. 1(a), Step 4). On the target system, the user key ku to encrypt the binary
gets itself encrypted by the PUF-generated key kp (Fig. 1(a), Step 5) yielding the
π = ckp

(ku). The PUF is available on the target system and the PUF’s output
can therefore be used as key for this second cipher step.

Each time the program is loaded, this second encryption process is reversed
by decrypting the program-specific key into ku (Fig. 1(b), Step 1 and 2). This
ku is used during execution of the according binary to decrypt the individual
instructions by the instruction decryption module and is kept directly inside the
decryption module. The choice of a suitable cipher mode has to take into account
the requirements induced by the program flow. Program flow must generally
allow for jumps to enable branching and loops, so random access within the
instruction stream is mandatory. Only specific random access modes like CTR
mode of a symmetric cipher fulfill the requirement of random access. We discuss
security implications, in Sect. 4, and Sect. 6.1.

The roles of the components of the architecture during program generation
and program execution are explained in the following sections. Generation and
execution processes are dependent on several entities, besides ku . Foremost, this
is the binary B, resulting from the user’s compilation of source code. B is generic
and needs not to be recompiled for use with another processor instance. The
binary, encrypted with the key ku , is denoted cku

(B). ku and B have to remain
confidential, whereas cku

(B) may be public.

3.1 Program Generation

Program generation takes place in a trusted environment (Fig. 2a). The user
chooses an ephemeral one-time key ku for the block cipher and encrypts the
compiled B with a random access cipher. A program flow is structured in basic
blocks. A basic block is a sequence of instructions with exactly one entry point
and one exit point, and no branches in between. Each basic block is encrypted
to later be decrypted by the hardware instruction decryption module.
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Fig. 2. Our proposed architecture

The program encryption itself is not critical for runtime performance and
requires no hardware support. Particularly, it does not need the PUF or any key
material from it. We currently implement it as standalone tool, processing the
compiled binary in software, but it may be included directly into the compiler.

To finally bind B to a hardware instance, inherent properties of the PUF are
utilized. This part of the process of program generation is shown in Fig. 2a. The
encrypted binary cku

(B) (depicted in blue) and ku are transmitted to the target
system. Since encrypted, cku

(B) may be public, but ku must remain confidential.
To transmit ku securely to the PUF module (depicted as blue “tunnel”), a ded-
icated cable connection can be used during deployment in a secure production
environment. For over-the-air (OTA) deployment, a secure channel (e.g., TLS,
SSH) is required. The PUF module then generates a cryptographic key kp tak-
ing the encrypted binary cku

(B) and the security kernel K as additional input
to prevent their modification. A security kernel K comprises all basic software
components required for secure boot of the system (see also Sect. 3.3).

To protect the user key ku—required for program execution—it is encrypted
on the target system using kp . The encrypted representation π = ckp

(ku) can
be disclosed publicly. It is then stored together with the encrypted binary to
form the program image (cku

(B), π) in publicly shared memory. This scheme
has the advantage that the user does not require access to the target hardware
for preparation of a binary to be executed on it while retaining the security
properties of the PUF.
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3.2 Program Decryption and Execution

To minimize the TCB, i.e., the parts of the processor required to be trusted,
the decryption module is entangled with the instruction fetch (IF) stage of the
processor’s pipeline as shown in Fig. 2b. Encrypted instructions enter the stage
and are decrypted immediately before proceeding to the instruction decode (ID)
stage. Thus, it is possible to encrypt B on a per instruction level.

The nonce and counter generator prepares the counter as input to the block
cipher. It concatenates the base address of each basic block concatenated with
an instruction counter inside the block. Whenever there is a jump, a new base
address is set and the counter is reset to 0. That way, jumps can only target
a start of a basic block, otherwise, the decryption result will be invalid. The
module pre-computes keystream blocks by incrementing the counter value and
allows modularity in the control flow of the executed code. The end of a basic
block is reached when either a jump occurs or the execution linearly continues
into the next basic block. In either case, the processor detects the new block and
reinitializes the decryption accordingly. The implementation has to take care of
resetting the encryption and stalling the processor whenever necessary.

3.3 The Role of the PUF

Since encrypted under ku , any program image I = (cku
(B), π = ckp

(ku)) for
a processor instance may be public. However, the secret key ku is required in
the target system’s instruction-fetch (IF) logic during execution to generate the
decrypted keystream. This is depicted in Fig. 2b, showing how the PUF module
decrypts ku from the image I with help of the PUF key kp and then forwards
ku directly to the decryption. However, a processor instance should not need to
store any information about an image; thus, I has to be self-contained. This is
accomplished by recovering ku from the encrypted π inside the program image
and kp each time a binary is loaded for execution. Only the very same processor
instance can generate the correct kp to restore ku = ckp

(π). kp has to be derived
from the target system’s PUF, using hashes of the encrypted binary and the
security kernel (H(cku

(B)),H(K)) as parameters. This way kp is not only bound
to the device but also to the integrity of the program binary B and the security
kernel K. If B or K is modified, the derived key kp changes and cannot be used
to decrypt the user key ku anymore. A security kernel K, like the boot loader or
the operating-system core, guarantees secure access to system resources.

To securely combine all parameters of the PUF module into one key, we pro-
pose a key derivation function (KDF) like presented by Krawczyk [16]. From the
PUF output sp and the key-derivation parameters, the PUF module calculates:

kp = KDF(sp ,H(cku
(B)),H(K))

During loading of B, kp is derived once and used to recover ku = ckp
(π). In the

IF stage while executing, the ith instruction Bi of B gets decrypted by:

Cipherku
(nonce||i) ⊕ cku

(Bi) = Bi
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Using a PUF, we do not need any secure storage across all memory hierarchies
in our system and thereby minimize the secure and trusted computing base.

4 Customization for an Implementation

A number of security-relevant building blocks exist in our architecture, for which
concrete crypto-primitives have to be chosen during an implementation. The
building blocks that an implementation has to define are: (1) the PUF-type,
(2) the KDF in the PUF-module, (3) the block-cipher for the user-key en- and
decryption, (4) the cipher-mode for the instruction decryption, and (5) the block-
cipher for the instruction decryption.

The selection of crypto primitives is depending on the desired level of secu-
rity and performance for the use case of an implementation. A large number
of options exist for this customization since almost any combination of block-
ciphers, random-access cipher modes, KDFs, and PUFs is possible. Without loss
of generality, we provide examples for a suitable selection of crypto-primitive
sets for each building block in Table 1. All alternatives are a trade-off between
the level of security and performance or chip-area. Hardware implementations
of ciphers with high throughput, typically, need more area. Low latency ciphers
reduce the performance impact, while they, typically, are more susceptible to
attacks [21].

Table 1. Examples of crypto-primitives for an implementation.

Building block Example 1 Example 2 Example 3

PUF-type Ring-Oscillator SRAM Bistable-Ring

Key derivation (KDF) SHA-256 of concatenated keys HKDF HMAC-SHA-256

Block-cipher (user-key) AES-128 PRINCE AES-256

Cipher-mode (instr. decr.) CTR XTS LRW

Block-cipher (instr. decr.) AES-128 PRINCE SIMON

The throughput of block-ciphers in hardware can be increased by paralleliz-
ing cores, but occupying more area. Alternative low-latency block ciphers, like
PRINCE [6] or SIMON [4], may improve performance and reduce area overhead,
at the cost of reduced security as evaluated by Maene et al. [21]. Alternative ran-
dom access cipher modes are understood from disc encryption, where an encryp-
tion block is not chained with the previous plain-text block. Candidates for the
usage in our architecture are the block-cipher modes devised by Liskov, Rivest,
and Wagner (LRW) [20], being an improved security-complexity trade-off com-
pared to CTR, or the XEX-based tweaked-codebook mode with ciphertext stealing
(XTS) [1].
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5 Proof-of-Concept Implementation

To demonstrate the feasibility of our architecture, we implemented a proof-of-
concept (PoC) of our design capable of creating and executing encrypted stan-
dalone program images. We call our PoC implementation the Secure Execution
PUF-based Processor (SEPP). For the cryptographic primitives for the customiz-
able parts, we decided for a conservative selection of thoroughly tested imple-
mentations of well-known algorithms (Table 1, Example 1).

SEPP is based on an OR12001 processor, an implementation of the Open-
RISC OR1000 architecture. It is a popular open-source RISC architecture with
a 32 bit wide fixed-length instruction set and a five stage, single issue pipeline.
We chose an architecture with fixed-length instructions in order to be able to
always map whole instructions to cipher blocks without overlap and alignment
issues. The key parameters of our system are: Architecture: 32 bit RISC; clock
frequency: 50 MHz; instruction cache: 8 Kbyte, 1-way direct-mapped; data cache:
8 Kbyte, 1-way direct-mapped; Memory: 128 MB DDR2 SDRAM.

We extended the OpenRISC Reference Platform (ORPSoC) by two modules
according to our architecture: the PUF module and the instruction decryption
module. We deployed our design on a Digilent Atlys Board powered by a Xilinx
Spartan-6 LX45 FPGA. As development environment we used Xilinx ISE 14.7.
For synthesis, placement, and routing parameters, as well as FPGA-dependent
settings, like operating frequency, we used the defaults distributed with the ORP-
SoC make files. This enables us to directly compare SEPP to ORPSoC.

The RO PUF [23] implementation we utilized generates a single fixed
response by comparing the oscillating frequencies of ring oscillator pairs. To
counter the noise of the PUF output, the C-IBS fuzzy extractor [12] (see Sect. 7)
takes the PUF output and creates helper data to reliably recreate a response.
The corresponding helper data can be stored in memory since an attacker gains
no advantage from it. The output of the C-IBS fuzzy extractor we call sp , the
reliable, embedded PUF secret. The PUF module encapsulates the RO PUF with
the C-IBS fuzzy extractor and a low area AES core in ECB mode for encryption
and decryption of ku on load of the program image. Our PoC implements hash-
ing and combining of the encrypted binary H(cku

(B)) and the security kernel
H(K) in software. The hardware PUF module then combines this result with the
PUF secret sp to create the PUF key kp . For sp to remain confidential, there is
no external interface to access the outputs of the PUF or the fuzzy extractor.

The CPU is interfaced with the PUF module over a dedicated class of special
purpose registers. Those include configuration and status registers as well as the
input for the combined hashes (H(cku

(B)),H(K)). It is important to note that
in program execution mode, ku is directly forwarded to the decryption module
over a separate connection and is not visible on any system bus.

The instruction decryption module is integrated in the processor’s instruction
fetch stage and has no dedicated interface other than the input of ku from the
PUF module. As shown in Fig. 3, the decryption module evaluates the Program

1 http://opencores.org/or1k/OR1200 OpenRISC Processor, accessed 03/13/2017.

http://opencores.org/or1k/OR1200_OpenRISC_Processor
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Fig. 3. Simplified structure of the decryption module

Counter (PC) to detect branches and sets the nonce and counter accordingly. The
program flow from one basic block to the other is marked by a custom instruc-
tion, if the block has no preceding branch instruction. These marker instructions
are added prior to the encryption on the user system by a small compiler add-on.
Some instructions take more than one processor cycle to execute. Thus, a first-in,
first-out (FIFO) buffer is added to store the produced blocks of the keystream
until they are needed by the processor. Since a keystream block produced by the
AES-128 cipher can cover four 32 bit instructions of the CPU, an additional mul-
tiplexer following the FIFO is used. It selects the correct part of the keystream
block depending on the current PC. This portion of the keystream block is
XORed with the incoming encrypted instruction and the decrypted instruction
is forwarded to the instruction decode stage.

The AES decryption core, for instruction decryption in CTR, should provide
a throughput sufficiently high to allow sequential code to be decrypted and
executed without stalling. We evaluated several freely available 128 bit-key AES
cores and selected one2 with enough throughput (in keystream blocks per cycle)
for uninterrupted execution.

For an optimal trade-off between FPGA resources, lowest latency, and
throughput, we designed a parallel combination of four 13-cycle encrypt-only
AES cores. In CTR mode, the AES core has to support only encryption. Using
this design, the processor needs to be stalled only once at the beginning of each
basic block for 13 cycles until the first portion of keystream for a basic block is
computed.

The whole SEPP implementation on the Spartan-6 FPGA requires 20,643
Slice LUTs overall and 11,321 Registers, compared to 12,542 LTUs and 6,752
Registers of the baseline ORPSoC. Most of the additional Slices are required
for the PUF and a significant amount for the AES cores. The control logic and
interfaces require only few additional resources. The required resources seem to
be a significant overhead, but recall that all building blocks are exchangeable
and nothing except for SEPP has to run on the device.

The Universal Bootloader Das U-Boot (or U-Boot)3 is used as our software
platform. It was modified to implement the functionality of the target system

2 http://opencores.org/project,aes core, accessed on 03/13/2017.
3 http://www.denx.de/wiki/U-Boot, accessed on 03/13/2017.

http://opencores.org/project,aes_core
http://www.denx.de/wiki/U-Boot
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security kernel, i.e., the generation and execution of encrypted program images
in interaction with the PUF module. It provides a simple command line interface
to the user, for which we added custom commands. RSA public key cryptography
is used by U-Boot to establish a secure communication channel between the user
system and the target system. The KDF calculation for the PUF is implemented
as part of our security kernel.

Program encryption is independent from the PoC hardware and is handled
at the user system. In our case, the user system is a common Linux system for
which we developed helper tools that analyze the compiled binary, encrypt the
code, and package it together with the RSA-encrypted ku in an U-Boot image.
The user transfers such an encrypted program image to the PoC system over
an Ethernet connection. There π is generated and replaces the ku embedded
in the image. This image can now be securely made public as it only contains
encrypted code and the encrypted key ku in form of the public π. The encrypted
image is tied to this exact hardware instance and only this processor with its
unique PUF is able to decrypt and execute it.

6 Discussion

6.1 Security

Through the use of a PUF, there is no unsecured key material that needs to
be stored persistently. Moreover, our architecture is designed to minimize the
TCB, so only the PUF, registers, pipeline, and the ALU need to be trusted.
In contrast, previous approaches needed to trust all on- and off-chip bus lines
and all memory and caches, as presented in Sect. 7. However, invasive hardware
attacks against our architecture, during program execution, could allow for access
to bus lines between PUF, registers, pipeline and ALU or those components
themselves. The most prevalent hardware attacks on processors currently target
off- and on-chip memory bus lines [17]. Although sophisticated and very costly,
these attacks allow for read-out and injection—mostly fault injection—of data
bit by bit. This class of attacks is countered with meshes and other sophisticated
hardware countermeasures, e.g., in smartcard processors. The authors of XOM,
AEGIS, OASIS, and Ascend note that a variety of methods exist to prevent
or impede hardware tampering, e.g., probing or fault-injection. We agree that
such means will become necessary as soon as this class of attacks should become
feasible for processors in CMOS technique. In such a case, costly hardware attack
countermeasures can be applied to our architecture much easier, compared to
securing the whole SoC, including caches and any kind of memory. This follows
from the small chip area to be trusted, compared with previous designs. Figure 2a
and 2b show the trusted area in the design in green color. This provides an
unprecedented option to reduce production cost for this kind of hardware security
measure. To confirm the security of our design, we consider both parts of the
threat model (Sect. 2) code confidentiality and injection prevention separately.
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Code Confidentiality. To achieve code confidentiality, the binary image is
encrypted. The immediate key necessary to decrypt the binary is ku . Knowing a
specific π = Ekp

(ku) and having available the encrypted binary cku
(B) and the

security kernel K as context input for key derivation [16], ku can be recovered
using the correct PUF instance to derive kp . For key derivation, we require the
KDF to be constructed using keyed cryptographic hash functions H(·). Their
second pre-image resistance prevents finding another binary that produces the
same output of the KDF. The KDF also breaks the direct link between user
inputs and kp which could otherwise be exploited. Thereby, it prevents known-
plaintext-attacks on any of the inputs and possibly the output of the en- or
decryption. In addition, a KDF is resilient against length extension attacks.
Only ku and kp need to remain confidential. kp never leaves the PUF module,
whereas ku originates externally. Therefore, the confidentiality of a program is
determined by the confidentiality of ku outside of the processor’s instruction
decode module.

The only time where ku is required outside of the processor is for the user to
encrypt the binary after compilation. Provided the adversary model and scope
of our approach, the only attack vector arises during the necessary transfer of
ku from the user machine to the target machine. Therefore, we require a secure
channel between those two endpoints. This can be ensured during deployment.
Only a low bandwidth is necessary for this channel, since the key is small com-
pared to the binary. We assume that an update mechanism implemented in
trusted software is possible and propose an approach to be explored in follow-up
work in Appendix A. The user machine itself must be secured and trusted. This
can be addressed by known means for host security and is out of the scope of
this work.

Injection Prevention. The prevention of code injection is accomplished by
executing only correctly encrypted code. kp is required to recover ku necessary
to en- and decrypt code of a specific program. Thus, security relies only on the
confidentiality of kp . Provided the threat model, no other kind of trust needs
to be assumed. kp can only be generated by the correct PUF instance with an
unmodified binary B and an unmodified security kernel K as input. Blocking the
key generation data path in the processor—for ultimate security demands by
a hard-wired switch, otherwise by a privileged instruction—the generation of a
new valid π = Ekp

(ku) for any program can be prevented. Since kp is dependent
on cku

(B), no new code using a valid π can be generated. This way, arbitrary
code injections, like buffer overflows, are effectively prevented. Because of the
per-basic-block encryption, the architecture severely limits an attacker’s ability
to construct useful return oriented programming (ROP) gadgets. Therefore, it
effectively prevents malicious control flow manipulation, even for code that is
vulnerable on a conventional architecture.

Our SEPP implementation does not use any signatures of individual instruc-
tions in B to check code integrity. Instead it relies on the failure to decrypt a valid
CPU-instruction at runtime, when an attacker injects a guessed encryption of an
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instruction. In the event of an attack, this exception can gracefully be dealt with
by defining an exception handler in the processor that returns the control flow
back to the trusted B or even K. In the context of instruction set randomization,
Barrantes et al. [3] established that the guessing of a valid instruction is a suffi-
ciently large obstacle for an attacker: For the PowerPC architecture, Barrantes
et al. conclude that escapes are successful in less than 5% of all cases. Since
OpenRISC has a smaller instruction set than the PowerPC, this makes it even
less likely for random bytes to be interpreted as a valid instruction. We estimate
that a typical binary contains 10% branching targets to which the execution can
jump. Combined with the findings of Barrantes et al., the probability for a suc-
cessful instruction escape drops to below 10% · 5% = 0.5%. Thus, to targetedly
inject 5 instructions in a row would succeed in only 3 · 10−12 of all cases. To run
a meaningful attack, the attacker needs to control more than one instruction
in sequence. Therefore, only relying on the decryption of invalid instructions is
superior to validated encryption, under most practical circumstances, when tak-
ing runtime performance into account, due to the high probability that executing
random bytes results in an exception [3]. For high security applications, the used
cipher can be replaced by a lightweight authenticated and verifiable encryption
scheme, e.g., ALE [5].

To prevent the recovery of the true ku from π for a tampered-with binary,
the PUF-based key derivation requires cku

(B) as input to decrypt π into ku .
Moreover, we rely on the failure to correctly recover ku at the time of use if
there had been any tampering with the binary since the time of check. It is
possible to targetedly change a selected portion of a binary in memory, after it
has been read to generate the decryption key. This, however, does not lead to a
practically exploitable time-of-check time-of-use (TOCTOU) attack: An attacker
is not able to discern which instruction actually failed during the manipulated
binary’s execution and for what exact reason. So (s)he can just resort to blind
guessing attacks with the success probability of breaking the encryption scheme
itself. The attack, therefore, does not scale since each single instruction needs to
be reverse engineered again by guessing. The encryption scheme ensures that the
same instruction at another memory location is not discernible for the attacker
this way, either.

In our PoC implementation, we use the well-known CTR mode for random
access to instructions during execution. We are aware of a weakness in CTR
that may be exploited for a theoretical attack under rare circumstances. With
considerable effort of brute-forcing opcodes and in combination with the men-
tioned tedious TOCTOU, an attacker could substitute single instructions. Even
if successful, the usage of the PUF prevents the predictability of the keystream
for other binaries and other devices. Therefore, this attack does not scale to
multiple target machines. If even stricter security properties are desired, CTR
readily may be exchanged for other random access modes in an own implemen-
tation. As pointed out in Sect. 4, CTR is only one of the options as a suitable
crypto-primitive for an implementation.
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6.2 Performance

The PoC shows that our enhanced architecture can be implemented with iden-
tical clock rate as the baseline processor. Therefore, the performance of SEPP is
identical to the baseline system with the exception of the decryption. We there-
fore concentrate our discussion on the performance impact inflicted by decryp-
tion. Decryption latency and bandwidth potentially impact our architecture’s
performance twofold:

First, in a sequential stream of instructions, the processor would be stalled
if the bandwidth of the decryption module would be smaller than the proces-
sor’s bandwidth; we call this execution latency. As described in Sect. 5, our PoC
demonstrates that a hardware-implementation is possible with a decryption-
throughput high enough to completely prevent inflicting any execution latency.
Second, upon each jump, the processor has to be stalled until the newly fetched
instruction is decrypted, causing the so-called warm-up latency latw . Block
cipher modes of operation, like the AES-CTR we used in our PoC, requires a
couple of cycles to warm-up. The number of cycles, before the cipher yields the
first block of output, depends on the implementation of the block cipher. Con-
sequently, the only remaining occurring performance impact during execution is
the warm-up latency at the beginning of basic blocks.

Calculating the Performance Penalty: Since the warm-up latency occurs
at branching instructions, the overall performance penalty is dependent on the
control flow of the program. We can calculate the runtime penalty by normalizing
the number of clock cycles required to execute an encrypted program on the
SEPP platform to the number of clock cycles required to execute an unencrypted
program on the baseline platform:

runtime penalty =
IC · CPI + BIC · latw

IC · CPI ,

where IC denotes the total number of executed instructions of a program and
CPI the average clock cycles per instruction. The values of IC and CPI are
identical for SEPP and the baseline processor. Therefore, the overhead can be
calculated by BIC · latw as the product of the number of branching instructions
(BIC ) and the warm-up latency in clock cycles (latw ).

The AES implementation in our PoC system requires a warm-up latency of
13 clock cycles. Moreover, every processor has a latency induced by each memory
access, for OR1200 and SEPP this is 5 cycles on average. The average memory
access latency and CPI are rough estimations based on the OR1200’s data sheet
and system simulations. For a hypothetical program with 1 mio. instructions,
10% branching instructions and a CPI of 1.5, the runtime penalty calculates to
59% of SEPP compared to the baseline.

We validated this theoretical calculations by reducing the number of jump
instructions in a actual binary from 14.3% to 5.3%. Compared to the base-
line system, the performance penalty decreases from 84% to only 34% for our
PoC measurements. This clearly demonstrates the impact of branch and jump
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instructions on the execution time of encrypted programs. Appendix B contains
details about the practical performance measurements which we conducted.

Remark: Recent advances in the design of hardware block ciphers promise
a significant reduction of the warm-up latency. Since our architecture is not
restricted to AES-CTR, but allows for arbitrary random access modes of suitable
block ciphers, other ciphers can easily be substituted for AES. Low-latency block
ciphers like PRINCE [6] can perform encryption in a single cycle at 14 to 15
times less area cost than AES-128. With an estimated average of 5 cycles per
memory access, the performance penalty inflicted by the warm-up latency drops
below the memory access latency. It needs to be determined at which length
of the critical path the yielded throughput allows for uninterrupted execution.
However, we argue, that such an implementation of the processor would come
without any performance penalty whatsoever, compared to the baseline, but at
the cost of a lower security level [21].

7 Related Work

Secure Code Execution. To our knowledge, there is no previous description of
a system design that embeds security as deep into a chip as our architecture. This
kind of architectures have been termed Isolated Execution Environment (IEE)
[25]. Several recent works on IEEs [10,25,28,29,31] focus on confidentiality of
processed user data and in addition, aim to minimize the side channel attack
surface of processors. However, comparatively few papers address the confiden-
tiality of application code which is the goal of our design. For these approaches,
the assumed attacker capabilities vary substantially.

The eXecute-Only Memory (XOM) architecture [19], for example, considers
main memory to be insecure but on-chip memory like caches to be secure. All
data including code is encrypted when it leaves the cache and decrypted when
it is brought back from main memory. It has been shown that this leads to sub-
stantial latency issues of memory accesses which is enhanced by Yang et al. [29].
In contrast, our approach considers all memory and caches as untrusted and thus
stores only encrypted code.

Ascend [10] is a secure CPU architecture designed to obfuscate input and
output signals on the processor’s pins. The architecture has been extended into
Stream-Ascend [31] to overcome Ascend’s rather harsh limitations on the pro-
cessors interactions with the outside world. Ascend’s main goal is to obfuscate
and minimize side channels due to access timings of off-chip data transfers. The
capabilities of Ascend can be considered orthogonal to our architecture.

The AEGIS secure processor [27,28] is the first attempt to utilize the
challenge-response behavior of a PUF for an IEE. Like the XOM processor,
AEGIS encrypts only main memory using a similar OTP encryption scheme. The
encryption keys are derived from the embedded PUF. Applications can switch
the processor to different secure execution modes to match the current secu-
rity demands. This is very flexible and improves performance compared to full
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program encryption but requires careful consideration by the application’s pro-
grammer, which makes porting existing software to AEGIS a non-trivial task. In
addition, AEGIS requires extensive compiler and OS support, as well as modified
hardware like a custom memory controller. Compared to AEGIS, our approach
aims for a smaller TCB where code is only decrypted directly in the execution
pipeline. As we show, we provide better compatibility with existing code.

OASIS is an instruction set extension for secure CPUs which provides an
IEE for secure execution and remote attestation [25]. All cryptographic keys
are bootstrapped from a PUF secret generated by an SRAM PUF [11]. Data
confidentiality and integrity is established by encrypting program data with
keys bound to the program code. However, unlike our approach, OASIS does
not encrypt the code itself.

Intel SGX provides security enclaves for isolated and secure execution of
programs [9]. To provide and manage enclaves, a large TCB is necessary, encom-
passing not only the processor logic itself. SGX assumes that everything on-chip
is trusted, including caches and memory management. To provide confidential-
ity and integrity for data residing outside of the processor, it requires a complex
Memory Encryption Engine. Thus, SGX does encrypt program code on trans-
fer to the external memory, but it is decrypted transparently on access such
that data and code is available in clear-text within the processor. The separa-
tion between enclaves, to prevent them from reading data from each other, is
hardware-supported but managed completely by the security kernel in software.
So the TCB is further enlarged by the necessity of a complex security kernel.

In summary, most presented approaches are data-centric and attempt to
secure communication to and from the processor by introducing an additional
encryption or obfuscation layer. They essentially localize security at the mem-
ory interface. Once an attacker gains access to CPU internal caches or pins,
instructions are unencrypted and can be read out or modified.

In our architecture, we propose a deeper embedding into the execution
pipeline where code remains encrypted in all memory and caches—even the
instruction cache. Previous architectures come at the price of a relatively large
TCB, including most of the processor and memory attachment, in some cases
even large portions of software with parts of the operating system. This requires
modified compilers, with significant customizations. Thus, the programming
models of such concepts differ significantly from conventional ones.

Our design aims at minimizing such obstacles to the adoption of a secure
IEE, so that it can be integrated much easier into existing environments.

Physical Unclonable Functions and Fuzzy Extractors. Storing encryption
keys in memory inside or – even worse – outside of the CPU is a source of
potential vulnerabilities, as attackers may succeed in extracting them, e.g., by
the use of cold-boot attacks. In our design, we utilize the physical diversity of
chip hardware to deduce a device-unique key that does not need to be stored in
expensive secure non-volatile memory.

Physical unclonable functions (PUFs) evaluate manufacturing variations
in integrated circuits to derive unique secrets inside a device to generate
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cryptographic keys or authenticate a device in a challenge-response proto-
col [2,15]. Instead of storing secrets permanently, PUFs reveal their secret only
during runtime. Popular PUF types for key generation are the SRAM PUF [11]
and the Ring-Oscillator (RO) PUF [23].

The secrets derived from PUFs are noisy and affected by environmental con-
ditions such that they require additional error correction in form of a so-called
Fuzzy Extractor or Helper Data Key Extractor. Helper data is generated to
map the random PUF responses to codewords of an Error-Correcting Code
(ECC), thereby eliminating the variation in the PUF responses. Implementa-
tions of related approaches are based on the Code-Offset construction [7] , the
Syndrome construction [22] or Differential Sequence Coding [13,14]. In this work,
we use a Complementary Index-Based Syndrome coding (C-IBS) RO implemen-
tation [12] which is an extension of IBS [30]. The implementation contains a
small Reed-Muller code with GMC soft-decision decoding [8] as ECC.

8 Conclusions and Future Work

In this paper, we presented a PUF-based secure code execution architecture
to prevent reverse engineering of programs and to counter injection of mali-
cious code into memory and cache to enhance the security of embedded devices.
Deploying confidential code on our platform provides for additional application
security and an enhanced protection of intellectual properties of the software
developer. Novelties of this architecture are to embed a PUF-based decryption
module, as deep as into the instruction fetch stage of the CPU’s pipeline. This
allows for a significantly smaller trusted computing base than previous designs
of a secure processor. By employing a PUF we devise a new cryptographic pro-
tocol to allow binding of decryption to a target hardware instance. Encryption
remains possible at a trusted development machine without access to the tar-
get. Despite these benefits, the architecture’s minimal impact on the software
development process simplifies application migration.

For our proof-of-concept implementation we used AES in CTR mode as a
widely accepted mode of operation. Like all employed crypto-primitives, AES-
CTR mode can be exchanged for a number of other block cipher modes suited for
any individual security demands and addressing practical requirements. Depend-
ing on the acceptable area overhead, branching penalties may be removed almost
completely by doubling the block cipher cores and compute two keystreams
for both control flow branches in parallel. The flexible architecture we pro-
posed allows for the customization of any implementation to meet the individual
requirements of the specific use-case, for which our PoC implementation (SEPP)
is one example. We leave it to future work to evaluate the differences of multiple
incarnations of our architecture besides SEPP, regarding security impact, per-
formance penalty, and chip-area requirement. Ultimately, this ought to result in
an ASIC implementation for productive use.

Our SEPP showed, that direct and immediate placement of the PUF-driven
instruction decryption, right into the instruction fetch stage, can be realized
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and allows reasonable performance. Compared to related work evaluated on an
FPGA, our SEPP has a similar overall performance penalty. At the same time,
our architecture allows SEPP to reach the envisioned stricter security goals by
moving the security deeper into the hardware, as proposed by Paul Kocher at his
CRYPTO/CHES 2016 talk on the Future of Embedded Security. The reduced
attack surface prevents the success of any kind of practical attack for reverse
engineering and injecting code on memory and caches – even the instruction
cache – which related secure architectures do not address in particular. SEPP’s
architecture achieves these properties with minimal impact on the development
of software.

Appendices

Fig. 4. SEPP architecture building blocks overview (orange arrows: key generation,
black arrows: execution) (Color figure online)

A Deployment of Software Updates

Programs are initially flashed to a SEPP-powered System-on-a-Chip (SoC) at
deployment time by the user via a secure connection to the device, e.g., a
dedicated cable. To enable software updates in the field, an encrypted binary
cku

(B)—initially deployed in a secure environment as stated above—may con-
tain an update function. This update function needs to be able to take a new
user-key ku

′ and a new encrypted binary cku
′(B′) and feed it into the PUF-

driven executable-image generation process. SEPP will return π′ = ckp
′(ku ′) to

be packaged into a new image (cku
′(B′), π′) for its current instance. A user sends

cku
′(B′) and ku

′ to this function; the encrypted cku
′(B′) can be transmitted via

an untrusted network connection, while ku
′ needs to be transmitted securely. To

provide this secure channel between user and B running on the SEPP device,
the update function already deployed in the trusted binary B must contain a
suitable encryption scheme, e.g., RSA-based such as TLS or SSH. Due to the
small key size, the secure channel for ku

′ requires only a low data rate.
The PUF-driven executable-image generation process of SEPP, generating

π = ckp
(ku), has to be deactivated physically after deployment of the binaries

for ultimate security demands. This completely prohibits the generation of any
new executable sequence of instructions for this instance of SEPP and therefore
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completely prevents injections. For the over-the-air update, this security feature
has to be deactivated as trade-off for an update path. The executable-image
generation process of SEPP alternatively can only be triggered by a privileged
instruction. This restricts its usage to the security kernel, however shifting the
responsibility into software to decide what trusted code is allowed to generate
new code.

B Practical Performance Measurements

Benchmarks and tests were conducted on our prototype implementation. We
compare the test results with our prototype’s base platform, the OR1200 CPU,
running on the same FPGA board as SEPP’s prototype implementation. In order
to demonstrate the performance impact, we developed a number of custom tests
with known parameters such as the number of branching instructions. These cus-
tom tests were all compiled without any compiler optimization in order to ensure
deterministic outcomes. The results of our tests are summarized in Table 2.

Table 2. Results of custom tests executed on prototype implementation

By reducing the number of jump instructions from 14.3% to 5.3% through
the removal of a function call within a loop, compared to the baseline system,
the performance penalty decreases from 84% to 34%. This clearly demonstrates
the impact of branch and jump instructions on the execution time of encrypted
programs.
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Loops generally introduce a substantial number of jumps into program execu-
tion. To verify this assumption, we manually unrolled a loop of a short example
program. The number of branch instructions thereby decreased from 9.8% to
3.8%, reducing performance penalty from 61% to 17% for our custom test cases.

Furthermore, we performed CoreMark4 benchmarks, to show the influence
of unrolling loops and to enable comparison with future developments and other
platforms. We conducted the benchmark both on our system in encrypted form
as well as on the baseline architecture in unencrypted form. We compare the
benchmark compiled with GCC’s optimization level -O3 with another version
that is compiled with additional loop unrolling optimization, enabled with the
flag -funroll-all-loops. Compilation with -O3 results in a 48.8% penalty of
SEPP, and enabling unrolling reduces this to 43.5%. While the baseline processor
only speeds up by 9% with the additional -funroll-all-loops, SEPP’s execu-
tion speed gains 21%. This confirms that the reduction of branching instruction
benefits SEPP greatly. These benchmark comparisons prove the expected effects
of our instruction-level decryption, specifically the warm-up latency on branch-
ing, for actual calculations.

Unfortunately, the comparison of our prototype with related implementations
is not straightforward, as authors in this field use a variety of methods for perfor-
mance assessment. The AEGIS developers used the SPEC2000 CPU5 benchmark
suite [27], which is not freely available. Lie et al. [19] provide a theoretical per-
formance analysis for their XOM architecture [19]. The OASIS instruction set
extension is not directly comparable to SEPP, as the authors only give absolute
time overheads for specific platform operations [25].

The AEGIS developers state that degradation can be as high as 60%; while
it mostly stays below 40%. XOM’s slow down is less than 50% according to
the authors’ calculations. Given this comparison, we conclude that the runtime
penalty of SEPP lies well within worst case, best case, and average for com-
parable systems. We expect a significant performance advantage of SEPP over
the compared platforms when the described improvements are implemented in
future work.

We are not able to compare SEPP to previous work in respect to FPGA
resources overhead for the lack of information about properties of those
approaches: XOM is only an architectural design without a hardware imple-
mentation [19]. OASIS was only simulated in software [25]. Although, an FPGA
implementation of AEGIS was evaluated [28] no information about their FPGA
resource requirements were given. Its resource overhead was only determined
by an ASIC synthesis. The ASIC area overhead of AEGIS was given as being
roughly 90% larger than their baseline. We consider this value not to be directly
comparable to the roughly 68% Slices overhead of SEPP.

4 http://www.eembc.org/coremark accessed on 27/02/2016.
5 https://www.spec.org/cpu2000/, accessed on 27/02/2016.

http://www.eembc.org/coremark
https://www.spec.org/cpu2000/
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Abstract. Dynamic analysis of Android malware suffers from tech-
niques that identify the analysis environment and prevent the malicious
behavior from being observed. While there are many analysis solutions
that can thwart evasive malware on Windows, the application of similar
techniques for Android has not been studied in-depth. In this paper, we
present Lumus, a novel technique to uncover evasive malware on Android.
Lumus compares the execution traces of malware on bare metal and emu-
lated environments. We used Lumus to analyze 1,470 Android malware
samples and were able to uncover 192 evasive samples. Comparing our
approach with other solutions yields better results in terms of accuracy
and false positives. We discuss which information are typically used by
evasive malware for detecting emulated environments, and conclude on
how analysis sandboxes can be strengthened in the future.

1 Introduction

Malicious applications are a major threat to Android users, as they may steal
sensitive data, send SMS messages to premium numbers, and manipulate mobile
banking transactions [8]. The analysis of an apps behavior is crucial for protect-
ing mobile devices, e.g., to analyze applications before they are published in app
stores. Several approaches have been proposed for Android app analysis [6,7,16,
24,27], including the classification into malicious or benign [1,5,25,28,30,31,33].

Analysis techniques are typically divided into static and dynamic approaches.
Static approaches become less effective when dealing with highly obfuscated
samples [3,10,20], or with samples that obtain and execute code at runtime [17,
23]. Dynamic approaches are able to run obfuscated samples and samples that
c© Springer Nature Switzerland AG 2018
L. Chen et al. (Eds.): ISC 2018, LNCS 11060, pp. 47–66, 2018.
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fetch code dynamically, but can be evaded by malware that employs anti-analysis
techniques. Anti-analysis techniques are used to identify emulated environments,
and eventually to change an apps behavior to evade detection.

Researchers have identified several anti-analysis techniques that are used by
Android apps to distinguish real from analysis environments [9,18,22,26,29].
Emulation is used by most analysis systems due to scalability. Hence, an alterna-
tive for analyzing apps without being evaded by common anti-analysis techniques
is using real devices, as, for example, done by BareDroid [21] and Bolt [7]. How-
ever, by studying evasive malware samples in-depth, researchers can also identify
ways to make emulated systems resilient to evasive malware.

In this paper, we present Lumus, a technique to identify Android malware
that exhibits evasive behavior. We analyze the behavior of malware samples by
comparing their execution traces on actual devices and emulators. While systems
proposed in the literature also identify evasive malware on Windows [12,15],
those techniques cannot directly be applied to Android given the differences
between the two operating systems. To demonstrate this, we created detectors
based on the Windows techniques proposed in Disarm [15] and Barecloud [12],
and compared their results with Lumus, which obtained better results.

We analyzed 1,470 Android malware samples selected from different families
and identified 192 samples that exhibit evasive behavior. We manually inspected
a subset of the detected malware to identify how they evade dynamic analysis.
To compare our technique with other solutions, we randomly selected 50 samples
from different families and manually analyzed them to validate our results.

2 Approach

To identify evasive malware, systems proposed in non-mobile literature [12,15]
usually compare behavior profiles using distance equations or hierarchically struc-
turing them to compute their similarity—they use system call traces as input
data and focus on Windows malware. However, Android malware in general
executes far fewer actions than Windows malware and many of the proposed
approaches for detecting evasive malware require a minimum number of actions
from malware for the detection process (e.g., Disarm [15] requires at least 150
actions). Furthermore, many Android malware are repackaged apps that also
perform benign behavior. Therefore, depending on the malware family, infec-
tious actions that make use of anti-analysis features in Android malware can be
a very small subset of all possible behaviors, but might just as well comprise
most of the app’s behavior.

Our approach to identify actual differences of behaviors in Android mal-
ware running in bare metal and emulated environments that are not related
to idiosyncrasies between these two environments is as follows. First we try to
identify the cause of each observed different action through information that is
easily obtained in Android, but not for Windows programs. More precisely, we
track: (i) executed methods of the app under analysis; (ii) methods from the
framework called by the methods identified in (i); (iii) system calls invoked by
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the app; (iv) interaction of the apps with functionalities that create threads or
indirectly change their execution flow; (v) information provided by the system
regarding events that stop the execution of apps; and (vi) information about
external stimuli. With all this information, we can trace back the call sequence
that led to the behavior observed only in bare metal, identifying the entry point
that originated this sequence and possibly the external stimulus that caused it.
By comparing the sequence obtained from the bare metal system to the behav-
ior observed in the emulator we can identify the reason for the divergence (e.g.,
some event not being generated, a difference in some method’s execution, the
analysis time ending in one of the environments, or the system stopping the app
for some reason).

Lumus’ work flow is detailed in Fig. 1 in form of a process diagram. The events
from (i)–(vi) are collected in form of log files for the bare metal and emulator
executions. While the bare metal device is brought back to a consistent state
the comparison engine uses the collected information to create the divergence
report by comparing the information in (i)–(vi) for the emulator and bare metal
executions.

Fig. 1. Abstract process diagram of our approach. For simplicity reasons the snapshot
reconstruction subsystem for the bare metal device has been left out of the loop.

3 Behavior Representation

We represent the behavior of an app in a given analysis environment as a set
of actions observed during its execution. Each action is a tuple a represented as
a = (action type, operation, argument), where action type is one of {Network,
File, Intent, Exec, Phone, Dex, Billing, Multimedia}. Details about the action
types and its operations and arguments are presented in the Appendix.
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3.1 Behavior Normalization

Filenames written by apps may be randomly generated, which makes multiple
executions of the same application produce different behavior profiles. To over-
come this problem we adopt Disarm’s approach [15]: for each sandbox—emulated
or bare metal—we identify files that were written in only one instance of this
sandbox and consider these as possibly random files. Possibly random files in
multiple instances of a sandbox that have the same directory and extension
are considered as random. We keep the directory name and extension of these
actions but replace the file name by <RANDOM>. We also normalize file paths
related to the SD card, as it can be accessed in different ways. Malware may
also randomly select contacts registered in the system as destinations of SMS
messages.

Therefore, we inspect actions related to sending SMS messages and, if some
destination is a contact registered in the system, we replace it by <CONTACT>.
Additionally, we filter simple actions that are common to most apps, such as
writing to the shared memory device or to the logging device. Another group of
actions we filter are related to Androids’ Webview, an in-app solution to display-
ing web pages. Since it relies on libraries only available on bare metal devices
the behavior will differ in the emulator, leading to false positives in applications
using WebViews. Another challenge of the behavioral analysis problem, espe-
cially when the app needs to be executed multiple times, is that certain network
behavior might only be observed in some of the runs. To address this challenge,
during our analysis when some host is accessed in bare metal and the same DNS
name is requested in the emulated context, but this request fails, we add the
same failed request to the emulated analysis.

4 Evasive Behavior Identification

To identify whether an app is evasive or not, Lumus analyzes its execution in
a bare metal environment and in an emulated environment, and then compares
the monitored behavior for differences. If the behavior in the two environments
is different, Lumus identifies the root cause for the divergence, which can be:
(i) a variation in the code path executed or (ii) some event that prevented the
app from continuing executing in the emulated environment. To increase the
app code coverage during dynamic analysis, Lumus generates stimuli in the
form of GUI interactions and Intents, which can be used to start activities or
receivers. Lumus provides the same stimuli for both bare metal and emulated
environments. Moreover, Lumus takes into account non-determinism during app
execution, Lumus executes each sample three times in each environment.

Let Bi and Ej be the set of actions monitored in the bare metal environment
for the ith run and in the emulated environment for the jth run, respectively,

with 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3. Also, let B =
3⋃

i=1

Bi and E =
3⋃

j=1

Ej be the set of

all actions executed in bare metal and in emulated environments, respectively.
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Since we are interested in finding apps that hide their actions during analysis
in the emulated environment, Lumus first selects the set A of actions that were
only executed in a real device. Thus, A = B − B ∩ E.

For each action ak in A, Lumus constructs Rk, a set with the Android mal-
ware traces obtained from bare metal analysis that contain this action. Lumus
compares each Bl in Rk to every Ej to identify why ak was not executed in
the emulated analyses. Since Lumus tracks when methods begin and end, it can
identify the app’s method that executed the action we are interested in. At this
point, Lumus knows the main entry point for the execution of an app obtained
through bare metal analysis (Bl), which will be called from now on Mk. This
entry point Mk led to the execution of action ak, and possibly the external stim-
ulus that caused this action. Lumus finds the occurrences of Mk in Ej and, if it
knows the stimulus that originated it, Lumus compares each Mk in Ej with the
Bl call sequence that led to ak. With this comparison, Lumus identifies where
is the point of divergence of the execution path, i.e., when the emulated system
should also execute the action, but instead chose to follow another path. More
precisely, Lumus identifies which of the following is the cause of the divergence:
(i) difference in execution path; (ii) app not responding; (iii) end of analysis; (iv)
fatal exception; or (v) entry point not reached. If the reason for the divergence
is a different code path executed, Lumus considers the app evasive, otherwise,
an execution problem.

4.1 Call Sequence Reconstruction

Lumus records when each thread of the analyzed app enters and leaves its meth-
ods, identifying what method performed a given action. It also logs the methods
called, so that the analysis trace can be looked back, starting from the method
that executed the action, and sequence of method calls that led to this action
is identified. This allows the tracking of actions to an entry point interfacing
the Android framework, where the capability to observe direct calls to meth-
ods no longer exists. Android classes may have several entry points, which may
be executed because of commonly creating activities (e.g., onCreate), starting
services (e.g., onStart), starting receivers (e.g., onReceive), running tasks (e.g.,
run), and handling of received messages (e.g., handleMessage). One possibility
would be to compare all executions of the entry point method in the bare metal
and emulated systems, but this could lead to wrong results, because of uncer-
tainty. The phenomenon of uncertainty can happen, for instance, if an activity
handles different functionalities, all executed through the same entry point. In
that case, our approach is to try to identify the source methods from which the
execution changed to the entry points, to perform a more precise comparison of
the executions. To accomplish this, Lumus investigates Intents sent by the app,
the use of several methods that cause indirect changes in the execution flow and
the use of external stimuli.

To identify Intents that may have resulted in a specific entry point method
being executed, we look for Intents sent by the app that match that method.
For example, if the method we are analyzing is ClassA.onStartCommand(Intent,
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int, int), we assume ClassA is a service, since onStartCommand(Intent, int, int)
is one of the entry points of the class Service that can be overwritten. As the
Android documentation states, this method is called by the system when a client
explicitly starts the service by calling startService(Intent). Thus, to find the
source that directed the execution to this method we look for actions that start
services using ClassA as an argument. Finding sources of entry points to activ-
ities is similar to finding services. To find the sources that led to the execution
of receivers, however, we need to inspect the intent filters used by the class and
find out which Intents sent match these filters (see Sect. 5).

Another source of control flow changes performed by Lumus is the use of the
following groups of methods: (i) methods that schedule a class to be invoked
after some delay or periodically (e.g., Timer.schedule and ScheduledThread-
PoolExecutor.schedule), which result in the execution of the methods run() or
call() of the destination class, (ii) methods that send messages to its UI thread
(e.g., Handler.sendMessageDelayed), which result in the execution of handleMes-
sage(Message), and (iii) methods that start a new thread, e.g., Thread.start(),
which result in the execution of run() and AsyncTask.execute(Params...), which
in turn may result in the execution of different methods (e.g., doInBackground
(Params...)). To track these control flow changes, Lumus employs instrumenta-
tion of the Android framework to assign labels to the messages/tasks sent or to
the threads created. To do so, we log the control flow changes when the source
method is executed and also when the destination methods are executed. With
this information, Lumus can track the source call of any of these methods.

The last type of interaction that can cause the execution of entry points is
external stimuli. Lumus also employs instrumentation of the tools used to create
the stimuli, identifying when Intents are sent, keys are pressed, and GUI inter-
actions are performed. These Intents are identified as the source of some entry
point, similarly to the approach adopted for Intents sent by the app, explained
above. Examples of entry points executed by key strokes are onKey and onKey-
Down. For GUI interactions, examples of common entry points executed are
onClick, onTouchEvent and onItemClick.

When tracing the sequence of calls that led to some action, a list of subse-
quences is created. Along with each subsequence the time of the call that created
the next subsequence or that executed the action is kept.

4.2 Comparing Sequences

After identifying the list of subsequences of method calls that led to the execution
of an action in the bare metal environment, Lumus needs to compare this list
with the list obtained from the analysis within the emulated system to identify
the cause of divergence. We hereafter refer to this list of subsequences as BareSeq
and to the resulting list of subsequences obtained from the emulated environment
as ResEmu. Lumus iterates over each subsequence SubBarei of BareSeq, com-
paring it to its counterpart in ResEmu. For each iteration, action time is the
time when the call that created the next subsequence was executed or the time
when the action was performed. Also, let EPi be the entry point of SubBarei.
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[78] BARE: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ −> %’com.adobe.flashplayer .
AdobeFlashCore.writeConfig(java.lang.String, java.lang.String)’
EMU: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ −> %’com.adobe.flashplayer .

AdobeFlashCore.writeConfig(java.lang.String, java.lang.String)’
...
[85] BARE: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ −> ’java.lang.String.indexOf(

java.lang.String)’
EMU: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ −> ’java.lang.String.indexOf(

java.lang.String)’
[86] BARE: ’None’

EMU: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ −> ’java.lang.System.exit(int)’

[87] BARE: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ −> ’com.adobe.flashplayer .
AdobeFlashCore.isOnline()’
EMU: ’None’

...
[102] BARE: ’com.adobe.flashplayer .AdobeFlashCore.onCreate()’ −> ’com.adobe.flashplayer .

FlashVars.<init>()’
EMU: ’None’

Listing 1.1. Excerpt of the alignment of an evasive sample. The comparison extends to
methods and method values to mitigate the downsides of signature only comparisons.

Lumus finds all occurrences of EPi in ResEmu that have the same origin as in
BareSeq. Lumus then proceeds to compare EPi from BareSeq with each instance
of EPi identified in the emulated results.

Given two entry point methods, Lumus finds where they begin and end,
obtaining the call sequence in this interval. Lumus aligns these two sequences,
one from BareSeq and other from ResEmu, using a global alignment algorithm.
If SubBarei is the last subsequence of BareSeq, Lumus compares the aligned
sequences to determine the divergence that prevented ResEmu from reaching the
call at action time. Otherwise, let CallNext be the method call in SubBarei
that created the next subsequence of BareSeq. If the app did not reach CallNext
in ResEmu, Lumus compares the aligned sequences to determine the divergence
that prevented ResEmu from reaching CallNext. However, if the app reached
CallNext in ResEmu, Lumus obtains the next subsequence of BareSeq, with
entry point EPi+1, and finds this entry point in ResEmu by checking for possible
destinations of CallNext. If Lumus is not able to find an equivalent of EPi+1 in
ResEmu, it is likely that the execution was interrupted before the call performed
at CallNext could take effect, so Lumus does not consider it an evasion.

When comparing two aligned sequences, we want to identify the reason for
their divergence regarding some action executed at time ti (either a behavior
only observed in BareSeq or some call that created the next subsequence of
BareSeq and that was not executed in ResEmu). To do so, Lumus iterates over
the calls in the aligned sequences and when ti passes, considering the time of the
bare metal calls, Lumus checks what was the last call in the emulated sequence.
There are three possibilities for this last call: (i) a tag indicating the end of the
analysis, (ii) a tag indicating that the system killed the app for not responding
or for some other error, (iii) a call to some app’s or Lumus method.
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If Lumus identifies case (iii), we assume a divergence in code path taken—an
indication of evasive behavior. Lumus prints the aligned sequences to help an
analyst who needs to manually identify what caused the executions to follow
different code paths. Conversely, if the last identified call matches cases (i) or
(ii), we assume that an execution error occurred, not an evasion. For illustration,
we present an excerpt of the output generated for one sample that is evasive
in Listing 1.1. To perform sequence alignment, Lumus uses the global alignment
algorithm provided by the swalign library. We chose a global alignment algorithm
because we need to have a global understanding of the sequences, as our analysis
depends on the alignment reaching the point in the bare metal sequence where
the target action happened. If the aligned sequence does not reach this point,
Lumus is unable to identify the cause of divergence.

Arguments selection is an important step when using alignment algorithms.
The arguments Lumus needs to define to calculate the similarity score between
two sequences are: (i) m for matches, with m > 0; (ii) mi for mismatches, with
mi < 0; (iii) go for opening gaps, with go < 0; (iv) ge for extending gaps, with
ge < 0. To prevent mismatches during the analysis, we used a high value for
|mismatch| in Lumus. We also believe that beginnings and endings of methods
of the analyzed app are more important in the alignment than other types of
calls, so we assign 2∗m for matches of this type. Furthermore, since Lumus aims
at investigating evasive behavior, we want to prioritize gap extensions over gap
openings, so |go| > |ge|. In the end, the inequality |mismatch| > m > |go| > |ge|
guides the definition of arguments.

5 Monitoring System

To track the behavior of the analyzed apps, Lumus monitors which apps’ meth-
ods were executed, which methods were called from them, and which system
calls were executed. To monitor system calls, Lumus uses a kernel driver that
intercepts them. When a system call is executed, the driver registers its argu-
ments and calls the original system call. To obtain information related to the
use of Intents, the driver inspects ioctl calls that target the binder device. If the
operation performed is a binder transaction (BC TRANSACTION), Lumus logs
the destination class, method id and arguments passed. To identify which actual
method is represented by the method id, Lumus examines the corresponding
AIDL file in the Android source code.

To monitor the executed methods, Lumus leverages the “method trace” func-
tionality of the Android runtime (ART) and instrument libart. Every time the
execution goes in and out of a method, Lumus registers it. Also, when some
method is called, Lumus logs the source and destination of such action. This
allows Lumus to also identify Java methods called from native code. To avoid
registering too much information, Lumus focuses on new UIDs, so it does not
track apps that are already installed in the system when it is in a clean state.

When trying to identify the method call that resulted in the execution of some
receiver, Lumus needs to identify which intent filters are used by this receiver
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and look for broadcasts sent that match them. Parsing the app’s manifest is
not enough to obtain all intent filters that were used, since the app can register
others at runtime. To overcome this limitation, Lumus also tracks all calls to
Context.registerReceiver.

The use of threads, tasks and message passing between them introduces a
level of indirection that prevents us from tracking the execution flow just by look-
ing at method invocations (Sect. 4). To be able to reconstruct the call sequence
in these cases, Lumus needs to track the use of threads, tasks, and messages. To
do so, Lumus generates a random number that is assigned to a thread (when
it is created), to a task (when it is scheduled), and to a message (when it is
sent). Lumus also logs this identifier when they are actually used or executed,
allowing a parser to match each use or execution of these types to their cre-
ation. This matching allows us to track the call sequence in these cases. So, for
instance, when the method Timer.schedule, which schedules a task for repeated
fixed-delay execution, is executed, the system generates a random number, logs
it and assigns it to the task. Every time this task is executed, the identification
number is logged. To correlate the external stimuli with the app behavior (e.g.,
clicks and broadcasts), Lumus needs to know the time at which each stimulus
was provided. To achieve this, Lumus employs the instrumentation of the am and
input tools used to create these actions.

Analysis Environments. When analyzing malware, it is important to make
sure that the environment is not infected before the start of the analysis. Per-
forming an analysis in an infected system may result in wrong results, as one
piece of malware can influence the behavior of others. To analyze samples in the
emulator, we take advantage of the snapshot functionality, which allows us to
restore the system to a clean state after every analysis without incurring any
boot time. Analyzing malware in real devices is more challenging as we cannot
take advantage of snapshots. One possible way to overcome this problem is to
restore the state of the device’s partitions after every analysis, as performed by
Baredroid [21]. However, this approach is time consuming because the system
needs to reboot every time it is restored.

The approach adopted in Lumus is to maintain the system clean after each
analysis as follows. In Android, apps can only write to a very limited set of direc-
tories, which includes mainly the app’s dir (/data/data/<PACKAGE-NAME>/)
and the SD card. When the app is uninstalled after analysis, its directory is
deleted by Lumus. Files written to the SD card can affect the behavior of other
apps that might interact with these files. Thus, all files belonging to the SD card
are deleted after every analysis.

Many malware target vulnerabilities in the kernel or privileged processes to
operate with root privileges. As the /system partition, corresponding to kernel
code, is mounted as read-only by default, even apps that are able to obtain
root privilege first need to remount this partition. To prevent it, our kernel
driver blocks all system calls that attempt to remount the /system partition
in writing mode. This protection can be bypassed if the malware manages to
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access the original mount system call. However, we only used the system to test
our proposed technique to identify evasive malware. If one wants to use a similar
system to receive submissions or analyze apps that could potentially target the
system, a better restoration process would be necessary. Furthermore, during
our experiments our driver did not actually have to block any calls to mount, so
we believe that bypass through remount was not a problem.

To increase code coverage during dynamic analysis, it is important to pro-
vide GUI interactions and to cause activities, services and receivers to execute.
However, as we are comparing multiple executions, it is also important that we
provide exactly the same interactions, so that the same code paths are exercised,
at least until evasive code is reached or some problem stops the app execution.
To accomplish this, we use the Droidbot [14] tool to interact with apps. Droid-
bot generates random events, including GUI interactions, broadcasts and specific
activities. It also registers the exact events generated and is able to replay them
from a file instead of randomly generating them. Thus, in our first bare metal
execution of each malware, we randomly generate events and save them into a
file. In the following bare metal executions and in the emulated analyses, we
make Droidbot read the events from the saved file and replay them.

One way that malware can identify analysis environments is by checking
which apps are installed in the system. The lack of the Google Play app, for
instance, is a strong indication that the device is not used by an actual user.
Hence, we installed in the bare metal environment Open GAPPS, a set of basic
apps present in all Android systems. Further, we also installed a few very popular
apps and created fake contact information. These apps and contact information
make the bare metal and emulated systems different, which could, therefore,
cause some apps to behave differently, but not because they intend to evade
analysis systems. On the one hand, this could possibly lead our technique to
identify such samples as evasive, increasing the number of false-positives. On the
other hand, preventing such false-positives may result in false-negatives since the
bare metal system could also be detected as an analysis system. We chose to use
these techniques and risk increasing false-positives instead of risking increasing
false-negatives.

6 Evaluation

For our experiments we used Google’s QEMU-based Android emulator, the
SDKs’ Android Virtual Device (AVD) and an LG G2Mini device. Both the bare
metal and the emulated Android systems had our modified version of Android
5.1. Each analysis was executed for at most three minutes in the bare metal
environment and at most 10 min in the emulated environment—our experiments
showed that the emulator environment incurred a 3X performance penalty on
the analysis. Since we can identify when a divergence in behavior is caused by
one analysis system finishing before the other, this difference in execution time
has no negative effects on our technique.

To evaluate Lumus, we dynamically analyzed a subset of the samples in our
malware dataset obtained from VirusShare, Malgenome [32], contagio mobile,
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AndroMalShare and Drebin [1]. To select this subset we first obtained their
detection label by antivirus software, using Virustotal. We separated them by
families, using the results of the ESET-NOD32 anti-virus, and selected at most
five samples from each family, resulting in a set of 1,470 samples. We analyzed
these samples to obtain their behavior and used Lumus to identify which ones
have evasive behavior. Since we did not have a ground truth with information
about all these samples, we randomly selected 50 samples, all from different
families, and manually inspected their results to identify possible false-negatives
and false-positives. This manually analyzed samples became the ground-truth
for our subsequent analysis.

Our technique detected 7 out of 50 samples (14%) in the subset as evasive. In
the following, we provide a detailed analysis of each of the 7 cases. We consider
as false-negatives the samples that did evade analysis but Lumus did not iden-
tify as evasive, and we consider as false-positives those whose behavior exhibited
in the bare metal was different from the emulated without trying to identify if
the execution was inside an analysis system. Note that Lumus considers evasive
those samples that execute some action only in the bare metal system, without
executing some similar action in the emulated system, even if this divergence
is not caused by a clear identification of the analysis system. For instance, if a
sample tries to send SMS messages to contacts stored in the phone and it only
shows this behavior in the bare metal because there is no contact registered in
the emulated environment, Lumus considers it as evasive. We do this because,
despite not being a clear sign of anti-analysis behavior, it is successful in prevent-
ing some action from being observed in the emulator and so could be employed as
an anti-analysis technique. To test our intuition that the existing techniques to
identify evasive Windows malware would not present as good results if applied
to Android malware, we implemented detectors based on the techniques pro-
posed by Disarm [15] and Barecloud [12]. Since the behavior of Android and
Windows malware are different in various aspects, we used our behavior model
when implementing these techniques. To make the comparison fairer, we used the
threshold that would yield the best results to each of these techniques, instead
of the threshold they found for Windows malware. Table 1 presents this compar-
isons’ results, showing that our technique is far more suitable to the Android
environment.

Table 1. Lumus vs. other Windows-based approaches to uncover evasive malware
reimplemented for Android.

Approach TP TN FP FN A

Lumus 100% 93.5% 6.5% 0.0% 96.7%

Disarm (t = 0.12) 100% 78.3% 21.7% 0.0% 89.1%

Barecloud (t = 0.36) 100% 67.4% 32.6% 0.0% 83.7%
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6.1 Discussion

We discuss below the samples that Lumus identified as evasive, explaining why
we consider them as a true-positive (TP) or false-positive (FP). For the TP,
we discuss which extra behavior was observed due to the divergence and what
difference between the environments was the cause of divergence.

Sample 1: It changes its behavior if /system/xbin/busybox, /system/bin/busy-
box or /bin/busybox is present in the system. This deviation resulted in the
malware writing to the file shared prefs/config.xml and many files in the dir
/SD card/LuckyPatcher/. This may not have been intended as an anti-analysis
technique, since most user systems do not have these files. However, because it
does prevent some of the malware behavior from being observed in the emulated
environment, we considered the behavior as TP;

Sample 2: It identifies if the phone number starts with “15555”, whether the
IMEI starts with “00000000” or if the IMSI starts with “31026”. Upon detection,
it calls System.exit(0). This is a clear case of evasive malware and a TP. The
behavior resulting from the divergence is composed of starting a service and
starting two alarms that send Intents;

Sample 3: It copies the icons of the apps installed in the system to the direc-
tory /data/data/com.pintudog/files/icons/. Since the list of apps installed in the
emulator and in the bare metal environments is not the same, the monitored
actions ended up being different. However, at a higher level it is still the same
behavior, so we consider this as FP;

Sample 4: It verifies if the IMEI contains the string “000000000000000”. If so,
the malware calls System.exit(0). Similarly to Sample 2, this is a clear example
of anti-analysis and a TP. The actions resulting from the divergence are the fol-
lowing: starting a service, creating a wake lock and connecting to the dnsproxyd
device to make a DNS request;

Sample 5: The different actions in this sample’s behavior are related to a file
associated with the graphical interface, as the graphical libraries used in the bare
metal and emulated systems are different. Since this is not actually related to
the behavior of the malware, we considered this sample as a FP;

Sample 6: During its execution it verified which Wifi networks are available. In
the emulated system it does not identify any Wifi network, so it takes a different
execution path. The behavior that is executed only in bare metal, as a result
of this difference, is writing a file in the SD card. Since this behavior is related
to the malware execution and cannot be observed in the emulator unless some
update is made to it, we considered this sample as a TP;

Sample 7: This sample randomly chose the domain name to access from a list
of predefined names. This resulted in one domain used in bare metal not being
used in the emulated analysis. Except for the domain difference, their behavior
is the same, so we considered this as FP.
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6.2 Employed Emulator Detection Techniques

Out of the complete dataset of 1,470 samples, our technique identified 192 as
evasive. A manual inspection of these evasive samples yielded several techniques
that were used to discern emulators from bare metal devices. Most of these
techniques use static or dynamic artifacts to detect differences from a bare metal.

Static artifacts usually constitute environmental values and configurations
that differ between emulators and bare metal devices, and do not change between
many complex states. Most of these values in fact remain constant at runtime
and do not react much or not at all to environmental stimuli. Dynamic arti-
facts on the other hand usually result from the emulated interfaces that either
show insufficient behavior compared to a bare metal device or are not emulated
at all and can thus a variety of states can occur at runtime. This results in
inconsistencies that shouldn’t occur during normal bare metal execution [21].

We manually inspected the results of some of these samples to understand
how they evade analysis. Bellow we describe the anti-analysis techniques we
identified that are different from the ones explained before:

Static artifacts often can be queried through simple value lookup mech-
anisms. This allows for an easy to implement branching control flow, where
depending on the lookups’ result the behavior can be benign or invasive. The
previously introduced Sample 2 and Sample 4 also exhibited this behavior. Specif-
ically, they leverage telephony related values to detect an emulated environment.
Androids’ TelephonyManager class allows to query specific information about
the phones’ identifiers, such as the IMEI and the IMSI, and the phones’ line1
number. Vidas et al. pointed out that the AVD has the hard coded values of
155552155** (wildcards in the line1 number are replaced by the system at boot
time with the last two digits of the Android debug bridge (ADB) port) as its
line1 number, a zeroed IMEI and an IMSI of 310260000000000. Hence, check-
ing for these values enables an application to detect the AVD as several samples
in our dataset did. The downside of using telephony related values is necessary
Phone permission group, specifically the READ PHONE STATE permission. Request-
ing this permission as an application that does not necessarily need it, e.g., a
flashlight app, might raise some red flags and speed up discovery by malware
analysts.

A permissionless technique is given through Androids’ build properties. Appli-
cations can user the android.os.Build class or query the properties through
one of the API methods ProcessBuilder.start and Runtime.exec. The tell-
tale build properties of an emulator the malware probed for were the presence
of the string “google sdk” in the PRODUCT or MODEL properties, “generic” in the
BRAND or DEVICE properties and “goldfish” (“Goldfish” is the previous canonical
name for the QEMU-based AVD; the current canonical name is “Ranchu”) in
the HARDWARE property. If the device FINGERPRINT contained any of the strings
“qemu”, “sdk” or “generic” an emulator was detected as well. These build prop-
erties tests have in common that a value from a bare metal device is compared
to its changed but present equivalent on an emulator. Another possibility is
the examination of values that are only present on one of the two, e.g., the
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QEMU properties which are only present in Google’s QEMU-based emulator. A
query for “qemu” being present in the properties is enough to detect an anal-
ysis environment in this case, e.g., “qemu.sf.fake camera”, “ro.kernel.qemu” or
“ro.kernel.android.qemud”. Similar is to the build properties the existence of spe-
cific files can be queried. Exemplary the existence of QEMUD, Androids’ QEMU
Multiplexing Daemon can be assumed if the file /system/bin/qemud exists or as
with sample 1 the existence of /system/bin/busybox helps detect specific envi-
ronments.

Lastly, the presence of specific installed packages can be leveraged to make
assumptions about the runtime environment. The absence of the Google Service
Framework (com.google.android.gsf) constitutes an exception to the rule on
a bare metal device. However, the AVD does not have its own version preinstalled
making the query for this framework a valid choice. In addition the overall num-
ber of installed packages is revealing as well. An application can query installed
packages through the PackageManager. Finding only packages from the domains
com.android and com.google on a device reveals a bogus environment as a nor-
mal user would install packages from several other domains.

The Dynamic artifacts we encountered often leveraged the reactions to cer-
tain stimuli given by the application at runtime to ascertain whether the under-
lying device is an emulator. Although this sometimes can be handled through
a value lookup mechanism a more stable solution to test dynamic artifacts at
runtime is given through error handling. To hide malicious logic through error
handling an application could either try to access interfaces or runtime resources
unavailable in an emulator or try to trigger an exception only on bare metal
devices. Accessing resources unavailable inside an AVD will trigger an excep-
tion preventing code after the access request from being executed. Exceptions
created only on bare metal devices allow malware authors to place exploitation
logic inside the exception handling routine, leading to the same result as above.
This blurs the line between regular and evasion logic and is harder to detect,
especially through static analysis techniques.

Amongst the analyzed samples the connectivity interfaces WifiManager and
BluetoothManager were frequented to detect a bogus environment dynamically.
By default the emulator does not emulate the connectivity interfaces, meaning
no other Wifi networks can be encountered around the device and the number
of saved Wifi networks is zero. Samples used this to detect emulation if no saved
Wifi networks were present and a scan request for Wifi networks came back
empty or raised an exception. The BluetoothManager was used to retrieve the
Handle for a bluetooth adapter used to interact with other bluetooth devices.
Google’s AVD does not emulate a bluetooth interface, hence the bluetooth
adapter returned is a null Object and raises a NullPointerException if used.
Applications can also abuse the emulated network connection itself. Specifically
the emulators inability to forward ICMP packets can easily be used for detection.

The dynamic counterpart to the static query whether certain packages are
installed is the interaction with those packages. Specifically the interaction with
Googles’ own PlayStore allows the detection of an emulator since by default
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only the bare minimum of applications are installed, excluding Google Play and
as previously mentioned even the Google Services Framework. Interaction with
unavailable services and applications, such as an intent trying to start the Play-
Store, causes an exception which some of the analyzed samples used to display
a benign behavior should an exception occur. Additionally, any action requir-
ing a fully set up Google Account will fail as emulators are not set up with
an account by default. Google Cloud Messaging is an exemplary service that
requires a registered Google account to set up a Cloud Messaging id, also failing
with an exception if no account has been set up. Root usage can prove helpful as
well in distinguishing emulators from real devices. Specifically the “su” binary
was used by some samples to try and gain superuser privileges. If no additional
privileges were acquired by the application the execution path did not change
and the additional malicious actions were not executed.

The last category we will present are sensor-related evasion techniques. The
average Android device comes outfitted with several sensor types fitting the
broad categories “Motion Sensors”, “Environmental Sensors” and “Position Sen-
sors”. Similar to the connectivity interfaces the AVD does not emulate all sen-
sors. We compared a LG Nexus 5X emulator to its bare metal counterpart and
found 16 sensors emulated on the AVD while the actual model posses 25 sensors,
excluding location sensors. A query about the sensor name reveals “Goldfish-*”
(the wildcard represents the sensor name, e.g., Goldfish-Accelerometer for an
accelerometer) as opposed to real devices that offer the vendors canonic name,
e.g., “BMI160 accelerometer”. Another conspicuous detail is that the emulators’
sensors all have one of two values as the sensors’ vendor, either “The Android
Open Source Project” or “AOSP” while bare metal devices feature an existing
company, for example “Bosch”. Trying to interact with sensors that are not
available will lead to exceptions as well as using services that depend on the
existence of certain sensors. We discovered malware in our dataset that uses the
LocationManager for this purpose. A request to register a LocationListener
results in an Exception on emulators leading to benign behavior.

Current Android Virtual Device Development. The different techniques
we discussed were used by our malware samples to display a benign behavior
in case an emulated environment was detected. These techniques rely on either
differences in the execution environment or differences in the system behavior
during execution. To increase the resilience of emulators against detection these
differences can be addressed by closing the gap between bare metal devices and
emulators. This would work to our advantage by reducing the false positive rate
for our approach.

Most static artifacts can be addressed through changes in the installation
images for the AVD. For example, the hard coded telephony values can be ran-
domized and the build properties can be modeled to simulate a real device
either by changing them directly or hooking the methods used to query them [4].
Progress in bridging the gap between emulators and bare metal devices is also
made by the Android Studio developers in order to improve the testing con-
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ditions for application authors. Versions of Android Studio newer than 2.3.2
started to feature AVD images including the GSF, GAPPS and Google Play,
complementary to the system images without GSF. Dynamic artifacts can also
be emulated but would require more effort in specific cases. A subset of device
sensors is already emulated by the AVD and allows for event input, e.g., fake
location providers would allow location spoofing and recoded series of events can
simulate a moving device.

6.3 Limitations

Our detection approach relies on identifying differences between the execution
of samples in bare metal and an emulator. Therefore, if execution does not reach
the code with anti-analysis features, divergences cannot be observed. Insuffi-
cient code coverage is a common problem for dynamic analysis systems, as only
executed behavior is usually analyzed. To exploit this, malware can delay the
execution of anti-analysis code, or can only execute anti-analysis code after a
series of complex GUI interactions that automatic interaction tools are unlikely
to reach.

Some malware may be able to detect both environments as analysis sys-
tems, because despite the bare metal environment being more similar to a real
device, there are still differences that can be exploited, such as information
about the user’s behavior (e.g., browsing history and SMS history) and user
data. Miramirkhani et al. analyzed these so-called wear-and-tear artifacts for
Windows-based operating systems and their viability for analysis environment
detection is considered very high because emulators and sandboxes are too “spot-
less”, meaning virtually no user data and signs of usage can be detected [19].

When tracing back the origin of some behavior executed in bare metal, we
may find some entry point whose source we cannot identify. In these cases we
compare this untraced entry point with all instances of the same entry point in
the emulated environment. In some cases, this may lead to wrong conclusions.
Furthermore, differences in the systems may lead to the execution of different
actions that are not related to evading analysis or to the execution of equivalent
actions in both systems, but that are considered different in our behavior model.
This is the general problem that introduces false positives, e.g., Lumus flagging
Sample 3 and Sample 5 as evasive. Also, sources of non-determinism that we do
not currently handle may lead to the execution of the same high-level behavior,
but different actions according to our model. This is the problem that resulted in
Lumus flagging Sample 7 as evasive. This malware randomly selects the domain
name to access from a predefined list, so the domain accessed in bare metal and
emulator were different, but the same code path was executed in both cases.

Lastly, the introduction of Google’s SafetyNet Attestation API poses a threat
to most dynamic analysis systems. The SafetyNet Attestation API allows an
application to assess the security and compatibility of the Android environments
in which the application is executed. The attestation is handled off-device by
Google’s servers after specific environmental data from the device is collected
and the result is sent to any server specified by the malware’s author. This allows
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malware to implement easy to use server-side runtime environment checks and
even application tamper detection.

7 Related Work

Researchers have presented several techniques [9,18,22,29] that Android mal-
ware may use to evade detection by making static analysis harder or by cir-
cumventing dynamic analysis. Matenaar and Schulz [18] present a method for
an app to identify if it is executing inside QEMU, the basis of the Android
emulator. Vidas and Christin [29] present anti-analysis techniques based on
Android APIs, system properties, network information, QEMU characteristics,
performance, hardware and software components. Petsas et al. [22] demonstrate
anti-analysis techniques based on Android APIs, system properties, sensors and
QEMU characteristics. Instead of manually identifying differences between real
and emulated devices, Jing et al. [9] developed Morpheus, a framework that auto-
matically generates heuristics that can identify, based on files, system properties
and Android APIs.

Systems that automatically identify malware equipped with anti-analysis
techniques have been developed for Windows [2,11–13,15]. Balzarotti et al. [2]
propose recording the system calls executed by a sample in a reference envi-
ronment and replaying the monitored system calls in an emulator to identify
if the observed behavior is different. Lindorfer et al. [15] analyze malware sam-
ples in different environments and identify differences in the observed actions.
Barecloud [12] is a system that dynamically analyzes malware in four different
environments and detects evasive malware by comparing the reports provided
by these systems in a hierarchical approach. Kolbitsch et al. [13] detect and
mitigate malicious programs that stall before executing their malicious behavior.
Malgene [11] combines sequence alignment of system call traces, obtained from a
bare metal and an emulated environment, with taint tracking to identify evasion
signatures of evasive malware.

8 Conclusions

In this paper, we presented Lumus, a novel approach to identify evasive Android
malware by comparing its execution on a bare metal analysis system and on an
emulated analysis system. For each action executed only in bare metal, Lumus
identified the basic cause why it was not successfully performed in the emu-
lated environment, differentiating the cases in which there was evasion from the
cases in which there was some analysis problem. Our experiments showed that
our approach is much more effective for detecting Android malware with anti-
analysis features compared to attempting to directly apply existing Windows-
based approaches used to detect evasive malware. We analyzed 1,470 malware
samples, from which our technique identified 192 as evasive. We presented
detected evasion techniques after manually analyzing the samples.
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Appendix - Action Types and Its Operations
and Arguments

Behavior is represented by actions, where each action is a tuple a = (action type,
operation, argument), and action type is one of {Network, File, Intent, Exec,
Phone, Dex, Billing, Multimedia}. Action types, as well as its operations and
arguments are described below.

Network. For network related actions, operation is one of {INET, UNIX,
NETLINK, BLUETOOTH}. INET operations represent TCP and UDP con-
nections and argument is the destination. Since multiple resolutions of the same
DNS name may result in different IP addresses, we consider two actions the
same if they use the same IP address or the same DNS name as destination.
UNIX operations represent connections to UNIX sockets and the argument is
the filesystem path used. BLUETOOTH operations represent the use of the
Bluetooth device and the argument is the operation performed with this device.
Lastly, NETLINK operations represent connections using NETLINK sockets and
the argument used is the protocol parameter passed to the socket.

File. The monitored operations on files are WRITE and DELETE, and the
argument of both is the file path.

Intent. Intent-related operations include ACTIVITY, SERVICE, BROAD-
CAST and ALARM. The argument for all these operations is the “action” argu-
ment of the Intent or the destination class of the Intent. ALARM operations
refer to the use of AlarmManager to send Intents.

Exec. This action type represents the launch of the execve system call, which is
used by the API methods ProcessBuilder.start and Runtime.exec. The argument
used is the name of the executable file being invoked.

Phone. This action represents the use of phone capabilities. We currently con-
sider only one operation of this type (sending SMS messages); the argument is
the destination number of the message.

Dex. This action type represents the use of dynamic code loading and its argu-
ment is the path of the file being loaded.

Billing. This action represents the use of the billing functionality; the argument
is the type of action performed.

Multimedia. The operations included in this action type are CAMERA,
AUDIO and WAKELOCK. The argument in these cases is the type of action
being performed, which includes taking pictures, recording videos, recording
audio, or acquiring wake locks.
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Abstract. Software is usually built on top of shared libraries. Vulnera-
bilities that lie in those dependencies may have huge impact on multiple
software. ICU (International Components for Unicode) is one of the most
widely used common components in modern software, providing Unicode
and Globalization support. ICU is used in a wide range of software from
over 70 companies and organizations, including very popular software
such as Chrome, Android, macOS, iOS, Windows 10, Edge, Firefox.

In this paper, we proposed a fuzzing method to discover vulnerabili-
ties in ICU library that are reachable from upper layer application soft-
ware. We also built a prototype named ICUFuzzer to uncover triggerable
bugs in browsers’ JavaScript Engine, with which we have detected three
zero-day vulnerabilities affecting popular browsers like Chrome, Safari
and Firefox. According to our further analysis, one of the bugs can be
exploited to leak sensitive memory informations to bypass mitigations
like ASLR and PIE.

Keywords: ICU · Fuzzing · Browser

1 Introduction

In recent years, security researchers have done some interesting vulnerability
research in compromising modern software by exploiting security flaws from third
party libraries. lokihardt successfully turned a buffer overflow bug in libANGLE
to get remote code execution in Chrome browser in Pwn2Own 2016. Richard Zhu
leveraged a bug in libvorbis to achieve code execution in Firefox in Pwn2Own
2018. Some researcher demonstrated how to use a one byte overflow in DNS
library to take remote control of Chrome OS. From the cases above, we can learn
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that those shared libraries have become huge attack surfaces in modern software.
Since third party libraries are shared code among multiple software, the bugs that
lie in those dependencies are also shared. Bugs in fundamental libraries may have
higher impact than bugs in code that is not shared. Designing new techniques
for automatically finding hidden flaws in those fundamental dependencies now
become important task, especially the bugs that are reachable in upper level
applications.

Our research focus on a mature, widely used libraries named ICU [10]. ICU is
short for International Components for Unicode, providing Unicode and Glob-
alization support for software applications. ICU is widely portable and gives
applications the same results on all platforms and between C/C++ and Java
software. ICU library is used everywhere, including document processing soft-
ware like OpenOffice and LibreOffice, browsers like Chrome, Safari and Firefox,
operating systems like Android, macOS, iOS, Windows and Linux. ICU is inte-
grated as a fundamental component through high level APIs in various software
stack. Only security flaws in ICU that is reachable from the input through API
calls could result in security impact. So our methodology is designed for finding
bugs in ICU that is triggerable from the entry point of application software.

Fuzzing is a widely used technique to detect vulnerabilities in software. We
designed a fuzzing based method to effectively find exploitable bugs in ICU
libraries. In our method, we will do a in-depth analysis on the connection between
target software and ICU library. Target software mostly use part of APIs from
ICU, and does some parameter filtering before invoking. So the analysis result
will help us infer the input generation rules for fuzzing, so that we can get rid
of useless mutations as many as possible while fuzzing. Moreover, we combine
coverage-guided fuzzing technique to improve the code coverage.

Evaluation. To evaluate the effectiveness of our design. We implemented a
prototype ICUFuzzer to detect vulnerabilities in ICU that can be triggered
from browsers’ JavaScript engine. We have studied how the browsers implement
ECMAScript Internationalization API with the underlying support of ICU and
figured out how parameters are passed from the ECMAScript API to low level
ICU functions, and how the browsers filter them for security concerns. With
our findings, we developed a dedicated input generation engine inside the fuzzer
which produces inputs that can bypass the filters. With our methodology, we
significantly improve the effectiveness of fuzzing and quickly find three zero-day
bugs, 2 of them can be triggered in Chrome and 1 can be triggered in Chrome,
Safari, and Firefox.

Contribution. This paper makes the following contributions:

– We are the first to conduct fuzzing research on ICU library.
– We designed a fuzzer for finding bugs in ICU that is reachable from applica-

tion software. By analyzing the data flow from the input in target application
to the arguments passed down to ICU, we turn fuzzing target applications
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into fuzzing ICU directly to achieve better performance and keep zero false
positive at the same time. Coverage guided fuzzing technique is also applied
here to further improve the code coverage.

– We implemented ICUFuzzer based on our fuzzer design and effectively find
three zero-day bugs that are exploitable in modern browsers.

Paper Organization. The paper is organized as follows. In Sect. 2, we give
brief introduction on ICU, including the attack surfaces of ICU. In Sect. 3, we
use V8 JavaScript engine as an example to describe how ICU is integrated into
other applications. In Sect. 4, we will introduce our system design, and how we
build the prototype ICUfuzzer. In Sect. 5, we show the results of finding bugs by
ICUFuzzer. In the last part of Sects. 6 and 7, we conclude our work and give a
summary on other related work.

2 Preliminaries

2.1 ICU Basics

International Components for Unicode (ICU) is an open source project of mature
C/C++ and Java libraries for Unicode support, software internationalization,
and software globalization. It is widely portable to many operating systems and
environments. It gives applications the same results on all platforms and between
C, C++, and Java software. The ICU project is sponsored, supported, and used
by IBM and many other companies.

Here are a few highlights of the services provided by ICU:

– Code Page Conversion: Convert text data to or from Unicode and nearly any
other character set or encoding.

– Collation: Compare strings according to the conventions and standards of a
particular language, region or country.

– Formatting: Format numbers, dates, times and currency amounts according
the conventions of a chosen locale.

– Time Calculations: Multiple types of calendars are provided beyond the tra-
ditional Gregorian.

– Unicode Support: ICU closely tracks the Unicode standard, providing easy
access to all of the many Unicode character properties.

2.2 Who Uses ICU?

ICU is used in almost every popular operation systems. In Apple macOS, ICU
library is going with the default install under the name libicucore.A.dylib. In
Microsoft Windows 10, ICU library is distributed in two dynamic link libraries,
icuin.dll and icuuc.dll. In Ubuntu, the package of ICU contains multiple shared
libraries named libicu*.so.

ICU is heavily used in document processing software like LibreOffice,
OpenOffice, PDF Box and products from Adobe. Document processing software
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have been large attack surfaces used in real world APT attacks for years. Docu-
ment exploits are usually malformed documents distributed by email phishing.
So exploitable bugs in ICU are possible to be abused in traditional document
attack scenario.

ICU is also used in trending application software like mobile operating sys-
tems, IoT devices, and smart cars. ICU can be found in Android and iOS, and
even in the automotive from venders like Alfa Romeo, Audi, Mercedes-Benz,
BMW.

ICU is used everywhere. The work for finding bugs in such a fundamental
library is critical.

2.3 Attack Surfaces in ICU

Core function of ICU that many software rely on is Unicode and internation-
alization support, which are encoding translation from or to Unicode, locale
conversion for numbers, datas, times and currency amounts, Unicode supported
regular expression, etc. All the operations above are related to encoding and
format translation, which are implemented with lots of memory manipulations.
The C/C++ code for handling of large amount of specifications, encodings and
locales could become large attack interfaces. In our research, we focus on memory
corruption bugs in ICU’s C/C++ library.

3 ICU in JavaScript Engine

3.1 ECMAScript Internationalization API

The ECMAScript Internationalization API [11] is a standard that helps handle
locales of dates, numbers, and currencies in JavaScript. There is a specification
that defines the application programming interface for ECMAScript objects.
Most of the modern browsers implement ECMAScript Internationalization API
based on ICU including Chrome, Safari and Firefox.

3.2 Architecture

To explain how ICU is integrated with JavaScript engine, we take Chrome’s
V8 engine as an example. Figure 1 shows the implementation architecture in
Chrome’s JavaScript engine V8. Every JavaScript Internationalization API call
will be first handled by some internal JavaScript code and runtime engine written
in C++, and then the execution goes down to the ICU library.

So JavaScript Internationalization API calls can be the surfaces of browser
attacks. If malformed arguments of Internationalization API calls are passed
down to ICU, bugs in ICU will be triggered. However, according to our analysis,
not arbitrary arguments can be passed directly to functions in ICU. There are
security checks or filters in V8, which prevents some ICU bugs to be triggered.
Our fuzzer will only focus on reachable bugs.



ICUFuzzer: Fuzzing ICU Library for Exploitable Bugs in Multiple Software 71

Fig. 1. Internationalization API architecture in V8

3.3 JavaScript Internationalization API

The Intl object [12] is the namespace for the ECMAScript Internationalization
API, which provides language sensitive string comparison, number formatting,
and date and time formatting. The Intl object have 4 properties, which are
constructors for Collator, NumberFormat, DateTimeFormat and PluralRules
objects:

– The Intl.Collator object is a constructor for collators, objects that enable
language sensitive string comparison.

– The Intl.DateTimeFormat object is a constructor for objects that enable
language-sensitive date and time formatting.

– The Intl.NumberFormat object is a constructor for objects that enable lan-
guage sensitive number formatting.

– The Intl.PluralRules object is a constructor for objects that enable plural
sensitive formatting and plural language rules.

The objects above are core structures in Internationalization API. The code
snippet below demonstrates the character comparison between “ä” in German
and “a” in English by creating an Intl.Collator object and calling its method
compare.

var options = { sensitivity: 'base' };
new Intl.Collator('de',options).compare('ä', 'a');
// 0

The code snippet below illustrates the date and time formatting by creating
an Intl.DateTimeFormat object and calling its method format.

var date = new Date(Date.UTC(2012, 11, 20, 3, 0, 0));
// request a weekday along with a long date
var options = { weekday: 'long', year: 'numeric',

month: 'long', day: 'numeric' };
new Intl.DateTimeFormat('de-DE', options).format(date);
// "Donnerstag, 20. Dezember 2012"

The code snippet below illustrates the currency formatting by creating an
Intl.NumberFormat object and calling its method format.
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var number = 123456.789;
var options = {style:'currency',currency:'EUR' };
// request a currency format
new Intl.NumberFormat('de-DE', options).format(number);
// 123.456,79 e

Table 1 summarized all the constructors and methods in JavaScript Inter-
nationalization API. We can see all the constructors receive two optional argu-
ments: locales and options.

Table 1. Constructors and methods in JavaScript internationalization API

Objects/Constructors Methods

Intl.Collator(locales, options) Intl.Collator.prototype.resolvedOptions()

Intl.DateTimeFormat(locales, options) Intl.DateTimeFormat.prototype.format(date)

Intl.DateTimeFormat.prototype.formatToParts(date)

Intl.DateTimeFormat.prototype.resolvedOptions()

Intl.NumberFormat(locales, options) Intl.NumberFormat.prototype.format(number)

Intl.NumberFormat.prototype.formatToParts(number)

Intl.NumberFormat.prototype.resolvedOptions()

Intl.PluralRules(locales, options) Intl.PluralRules.prototype.resolvedOptions()

Intl.PluralRules.prototype.select(number)

Locales Argument. The locales argument must be either a string holding a
BCP 47 language tag [13], or an array of such language tags. A BCP 47 language
tag defines a language and minimally contains a primary language code. In its
most common form it can contain, in order: a language code, a script code,
and a country or region code, all separated by hyphens. The subtags identifying
languages, scripts, countries (regions), and (rarely used) variants in BCP 47
language tags can be found in the IANA Language Subtag Registry [10]. While
the tag is not case sensitive, it is recommended to use title case for script code,
upper case for country and region codes and lower case for everything else. The
following are examples of locales:

– “hi”: Hindi (primary language).
– “de-AT”: German as used in Austria (primary language with country code).
– “zh-Hans-CN”: Chinese written in simplified characters as used in China (pri-

mary language with script and country codes).

BCP 47 also allows for extensions. JavaScript internationalization functions
use the “u” (Unicode) extension, which can be used to request additional cus-
tomization of Collator, NumberFormat, or DateTimeFormat objects. The Uni-
code extension uses additional keys as subtags.

Let’s take the constructor Intl.Collator as an example. Collator supports
3 Unicode extension keys, co, kn, and kf. These keys can be used in the locales,
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and locales can be passed to the constructor to customize the Collator
object:

– co is for variant collations for certain locales. Possible values include: "big5-
han", "dict", "direct", "ducet", "gb2312", "phonebk", "phonetic", "pi-
nyin", etc.

– kn specifies whether numeric collation should be used, such that
“1”<“2”<“10”. Possible values are "true" and "false".

– kf specifies whether upper case or lower case should sort first. Possible values
are "upper", "lower", or "false" (use the locale’s default).

More details about Unicode extension keys for other objects can be found
in MDN web docs [12]. Table 2 summarizes extension keys and possible values.
Below are some example locales that use Unicode extension keys:

– "de-DE-u-co-phonebk": Use the phonebook variant of the German sort
order, which expands umlauted vowels to character pairs: ä → ae, ö → oe, ü
→ ue.

– "en-GB-u-ca-islamic": Use British English with the Islamic (Hijri) calen-
dar, where the Gregorian date 14 October, 2017 is the Hijri date 24 Muhar-
ram, 1439.

Table 2. Unicode extensions keys and values in Locales argument

Constructor Unicode extension key Possible values

Collator co “big5han”, “dict”, “direct”, “ducet”,
“gb2312”, “phonebk”, “phonetic”,
“pinyin”, etc.

kn “true”, “false”

kf “upper”, “lower”, “false”

DateTimeFormat nu “arab”, “arabext”, “bali”, “beng”,
“deva”, “fullwide”, “gujr”, “guru”,
“hanidec”, etc.

ca “buddhist”, “chinese”, “coptic”,
“ethioaa”, “ethiopic”, “gregory”,
“hebrew”, “indian”, “islamic”,
“islamicc”, etc.

hc “h11”, “h12”, “h23”, “h24”

NumberFormat nu “arab”, “arabext”, “bali”, “beng”,
“deva”, “fullwide”, “gujr”, “guru”,
“hanidec”, etc.

Options Argument. The options argument must be an object with proper-
ties that vary between constructors and functions. Properties in the options
argument are like optional configurations. Different constructors and functions
require different properties. For example, the constructor Intl.DateTimeFormat
supports some properties as below:



74 K. Yang et al.

– localeMatcher specifies the locale matching algorithm to use. Possible val-
ues are “lookup” and “best fit”; the default is “best fit”. This property is
supported by all language sensitive constructors and functions.

– timeZone specifies the time zone to use, such as "Asia/Shanghai", "Asia/K-
olkata", "America/New York".

– hour12 specifies Whether to use 12-h time (as opposed to 24-h time). Possible
values are true and false; the default is locale dependent.

Detailed information on properties and functions can be retrieved from MDN
web docs [12].

3.4 Data Flow from JavaScript to ICU

In previous section, we have gone through the entry level data structures and
methods in Javascript International API. In this part, we will dive deep into the
implementation of V8 engine to understand how input arguments are handled
and passed to ICU.

We will follow the execution of constructor and methods of Intl.DateTimeF-
ormat to understand the argument data flow. Figure 2 depicts the basic

Fig. 2. Date and Time related International API’s Input Filtering Process in V8
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procedure. The inputs for Intl.DateTimeFormat’ are locales, options
and Date. locales will be resolved in function resolveLocale() and fil-
tered. Then time zone information will be extracted from options and fil-
tered in canonicalizeTimeZoneID(). Both filters are implemented in internal
JavaScript code intl.js.

Locale Filtering. For locale filtering in resolveLocale(), the following steps
will be taken:

1. Canonicalize the language code in function canonicalizeLanguageTag()
(a) Call function isStructuallyValidLanguageTag(), to match the locale

by three regular expressions: LANGUAGE TAG RE, LANGUAGE VARIANT RE
and LANGUAGE SINGLETON RE

(b) check if locale conform to strict BCP47 rules by performing a pair of
invertible operations: calling uloc forLanguageTag() and uloc toLang-
uageTag()

2. Split the Unicode extensions from locale
3. Check extension keys extracted from locale by matching a pre-initialized

key list

Options Filtering. Just like locale, V8 will also filter the argument options
before passing it to ICU. In the constructor Intl.DateTimeFormat, the property
timeZone in argument options will be filtered in function canonicalizeTime-
ZoneID() by following steps:

1. Use regular expression to check if timeZone string matches the format of
Area/Location(/Location)*

2. Convert the location string to be titlecased by function toTitleCaseTime-
zoneLocation(). For example, convert “bueNos airES” to “Buenos Aires”.

4 System Design

4.1 Design Goals

In Sect. 3, we study how ICU is integrated inside V8 engine. Most of modern
application software like browsers are designed and implemented in a hierarchical
structure, which depends on a lot of fundamental libraries in the low level. ICU
is one of the critical components and has not received much attention on security
aspect.

In this paper, we aim at designing a fuzzing methodology to uncover the
bugs in ICU library. It is worth emphasizing that the ICU bugs that we are
fuzzing for should be reachable from target applications. Our fuzzer is designed
for hunting bugs that can affect specific application. The reason is that, if we
consider a library separately, the threat model may not be very clear. Libraries
are only responsible for exposing dozens of APIs, and library developers may
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know little on how these interfaces will be used in the applications. So if we
apply bug finding in ICU in the context of application software, the results will
bring more practical value.

Research on general fuzzing techniques has been lasted for long time and
already made very good progress. In our research, we are going to apply the
in-depth understanding on ICU into the fuzzer to achieve better performance
and results.

4.2 Design Challenges

Fuzzing ICU for exploitable bugs in target application could be carried out in two
different ways. One is fuzzing the application directly. By mutating and feeding
the input that is ICU related to the target software, the crashes you get are real
bugs that will surely affect the application. However, according to our analysis on
V8, there will be a middle layer between the input layer and ICU that is always
checking or filtering the test cases generated by the fuzzer. So the mutation will
be struggled in surviving the filters, large amount of computation resources in
fuzzing will be wasted in finding paths in the application that can reach ICU.
Meanwhile, compared with ICU library, application is more complex software
like browsers and pdf readers. Fuzzing ICU in the context of whole application
is slow. To conclude, this method has an advantage of 0 false negative, but has
low efficiency.

The other method is fuzzing ICU APIs directly. By figuring out which APIs
target application relies on, fuzzer can skim the target software and feed mutated
arguments directly to ICU APIs. The second method also has a drawback that
even if you find a test case that can crash ICU, the bug could not be reproduced
in the context of target application. The input will go into the application first
and be filtered before being passed to the low level’s library. This idea can help
improve the fuzzing throughput, but will have very high false positive.

In Fig. 3, it shows the different fuzzing points between two methods discussed
above. The challenge we are facing here is that we cannot have low false negative
and high fuzzing throughput at the same time.

Fig. 3. Different Fuzzing Point Between Two Methods
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4.3 System Architecture

To overcome the drawbacks in two fuzzing methods discussed above, and keep
the good parts for both, we can fuzz the ICU API directly while embedding the
filters in target application into the fuzzer to make sure there is no false positive.
By analyzing ICU and its depending software, we can obtain the filtering rules
like what we have done in Sect. 3 for browsers. Then by embedding the rules
inside our fuzzer, we could filter the invalid test cases before feeding them to
ICU. In the Fig. 4 below, it illustrates the basic idea of our fuzzer. We call this
kind of fuzzer context aware fuzzer, because by applying the filtering rules in the
application, the fuzzer is granted with the knowledge from the target software.
Every test case will be checked inside fuzzer before going to ICU, and there is
no need to run the entire application while fuzzing.

Fig. 4. Context aware ICU fuzzer

In our fuzzer, we can further improve the effectiveness of test cases generation
by applying grey-box fuzzing method. We introduced coverage guided fuzzing
technique here. In Fig. 5, we can see all of the internal modules for the ICU
fuzzer. The Executor always get new test case from the Mutator, then pass it

Fig. 5. Context aware ICU fuzzer combined with coverage guided fuzzing
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to the Embedded Filters extracted from target application. The filter will stop
the execution if the test case is not valid, other than the execution will go to
the ICU API for testing. Executor should be able to retrieve the code coverage
information and decide if this test case should be further mutated or abandoned.
Good test cases will be remained and the execution will be guided to discover
new branches in ICU library.

Executor and Embedded Filters. The argument filters in the applications
are usually implemented for filtering locale strings and various properties in
options. According to Sect. 3, we can see in the browser case, most of these
filters are regular expressions. So we can collect all the rules and program them
in the fuzzer as embedded filters. For the test inputs that can bypass the filters,
we pass them to native ICU calls.

Mutation. Different ICU APIs have different arguments. In order to design a
mutation method that is able to adapt to different number and types of argu-
ments. We use a popular mechanism supported in almost every programing
language to unify the input data for different ICU APIs—serialization and dese-
rialization. We take byte stream as a unifying input format in fuzzing. Mutation
is easy to be implemented on byte stream, e.g. bit flips, byte flips, bit rotations or
arithmetic operations. When a test case of byte stream is delivered to Executor,
the input stream will first be deserialized into corresponding arguments that is
compatible with ICU APIs to be tested. Figure 6 demonstrates the deserializa-
tion and mutation process.

Fig. 6. Context aware ICU fuzzer combined with coverage guided fuzzing

4.4 ICUFuzzer for JavaScript Engine

To evaluate our design, we implemented a prototype named ICUFuzzer to fuzz
for exploitable bugs in browsers. We use libFuzzer [19] as underlying support for
coverage-guided fuzzing. We focus on fuzzing International APIs—constructors
and methods of 4 core objects: Collator, DateTimeFormat, NumberFormat and
PluralRules, as listed in Table 1. Let’s take DateTimeFomat and NumberFormat
as two examples to show how we map the upper level APIs to low level ICU
APIs.
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Fuzzing Intl.DateTimeFomat. In JavaScript, methods from the object Date-
TimeFomat are invoked in the following manner:

1. Create an object of Intl.DateTimeFormat by the constructor, specifying
locales and options.

2. Use the object initialized in the previous step to call Format(date) or
formatToParts(date) to format date into specified locales and options.

All the arguments specified in JavaScript will be filtered in V8 and passed
to APIs in ICU. After passing down to the ICU part, three methods will be
invoked:

1. icu::SimpleDateFormat() creates an object SimpleDateFormat in ICU
from locales and properties in options.

2. icu::TimeZone::createTimeZone() creates the TimeZone object informa-
tion in ICU from timeZone property in options.

3. icu::SimpleDateFormat::format() is responsible for arbitrary date format-
ting according to the configuration.

According to our design, ICUFuzzer will directly fuzz the ICU functions
(Figs. 7 and 8).

Fig. 7. Data flow in Intl.DateTimeFomat

Fig. 8. Data flow in Intl.NumberFormat
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Fuzzing Intl.NumberFormat. In JavaScript, methods from the object Date-
TimeFomat are invoked in the following procedure:

1. Create an object of Intl.NumberFormat by the constructor, specifying lo-
cales and options.

2. Use the object initialized in the previous step to call Format(date) or
formatToParts(date) to format number into specified locales and options.

All the arguments specified in JavaScript will be filtered in V8 and passed
to APIs in ICU. After passing down to the ICU part, three methods will be
invoked:

1. icu::SimpleNumberFormat() creates an object SimpleNumberFormat in ICU
from locales and properties in options.

2. icu::TimeZone::createTimeZone() creates the TimeZone object informa-
tion in ICU from timeZone property in options.

3. icu::SimpleNumberFormat::format() is responsible for arbitrary number
formatting according to the configuration.

Filters in V8. According to the analysis result in Sect. 2, there are locale filter
and options filter implemented in V8’s Intl.js. We extracted all the filtering rules
for locale as multiple regular expressions as below.

regex simple_re("^[a-z]{2,3}$", std::regex::ECMAScript);

regex singleton_re("^([0-9]|[A-WY-Za-wy-z])$", std::regex::ECMAScript |

std::regex::icase);

regex variant_re("^(([a-zA-Z]|[0-9]){5,8}|([0-9]([a-zA-Z]|[0-9]){3}))$",
std::regex::ECMAScript | std::regex::icase);

regex langtag_re("^(([a-zA-Z]{2,3}(-([a-zA-Z]{3}(-[a-zA-Z]{3}){0,2}))?|[a-

zA-Z]{4}|[a-zA-Z]{5,8})(-([a-zA-Z]{4}))?(-([a-zA-Z]{2}|[0-9]{3}))

?(-(([a-zA-Z]|[0-9]){5,8}|([0-9]([a-zA-Z]|[0-9]){3})))*(-(([0-9]|[A-WY

-Za-wy-z])(-([a-zA-Z]|[0-9]){2,8})+))*(-(x(-([a-zA-Z]|[0-9]){1,8})+))

?|(x(-([a-zA-Z]|[0-9]){1,8})+)|((en-GB-oed|i-ami|i-bnn|i-default|i-

enochian|i-hak|i-klingon|i-lux|i-mingo|i-navajo|i-pwn|i-tao|i-tay|i-

tsu|sgn-BE-FR|sgn-BE-NL|sgn-CH-DE)|(art-lojban|cel-gaulish|no-bok|no-

nyn|zh-guoyu|zh-hakka|zh-min|zh-min-nan|zh-xiang)))$", std::regex::

ECMAScript | std::regex::icase);

regex any_ext_re("-[a-z0-9]{1}-.*", std::regex::ECMAScript);

regex uni_ext_re("-u(-[a-z0-9]{2,8})+", std::regex::ECMAScript);

regex locale_re("^([a-z]{2,3})-([A-Z][a-z]{3})-([A-Z]{2})$", std::regex::

ECMAScript);

For options, we also listed the checking rules in V8 for different properties
in Table 3.
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Table 3. Part of extracted rules in V8’s options filter.

Property Type Filtering rules for value

Weekday string narrow: ‘EEEEE’, short: ‘EEE’, long: ‘EEEE’

Era string narrow: ‘GGGGG’, short: ‘GGG’, long: ‘GGGG’

Year string 2-digit: ‘yy’, numeric: ‘y’

Month string 2-digit: ‘MM’, numeric: ‘M’, narrow: ‘MMMMM’, short: ‘MMM’, long: ‘MMMM’

Day string 2-digit: ‘dd’, numeric: ‘d’

The filters above are embedded into ICUFuzzer to get rid of potential false
positive test cases, which could only crash ICU but not the browsers.

5 Evaluation

5.1 Experiment Design

To evaluate bug hunting capability of ICUFuzzer, we run it in a desktop PC
that equipped with Intel i7 processor with clock speed of 2.67 GHz, with 8 Gb
of RAM, and with Ubuntu 16.04. Within 10 min, we got dozens of crashes. We
manually analyzed and classified the crashes, then we realized we found 3 0 days
in latest ICU code base, and all of them can crash the latest Chrome browser
through loading a snippet of JavaScript where we invoke JavaScript International
APIs with malformed arguments. We reported to Chrome and have all the bugs
fixed. We will go through the 3 bugs in the next part.

5.2 Results

CVE-2017-15422: Persian Calendar Integer Overflow. This bug affects
Chrome, Safari and Firefox and exists in the code snippet below:

//i18n/persncal.cpp
void PersianCalendar::handleComputeFields(int32_t julianDay,

UErrorCode &/*status*/)
{
int32_t daysSinceEpoch = julianDay - PERSIAN_EPOCH;//
year = 1 + ClockMath::floorDivide(33 * daysSinceEpoch + 3,

12053);
.......
dayOfMonth = dayOfYear - kPersianNumDays[month] + 1; // Out

of bound memory read
}

Integer overflow can happen in the expression 33 * daysSinceEpoch, leading
to an unbounded month value. The unbounded month value will be used as an
index in array kPersianNumDays, which can be exploited to read out of bound
memory. We have successfully turn the bug into a working exploit targeting
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Chrome, Safari and Firefox to leak memory addresses, which means modern
mitigations ASLR and PIE are bypassed. According our survey, this bug has
been existed for more than 5 years.

Here is the proof of concept code that can trigger the bug in the browser.

var dateformatter = new Intl.DateTimeFormat("bs-Cyrl-u-ca-
persian");

date = null;
Date.prototype["valueOf"] = function (){};//date returns NaN
d = dateformatter.formatToParts(date);

CVE-2017-15396: NumberingSystem::createInstance Stack Overflow.
This bug only affects Chrome. Look at the code snippet below:

char buffer[ 96 ];
int32_t count = inLocale.getKeywordValue("numbers",buffer,

sizeof(buffer),status);
if ( count > 0 ) {

buffer[count] = '\0'; //count = 99

The integer variable count can exceed the size of buffer, leading to a stack
out of bound write.

Proof of concept code is as below:

var nf = new Intl.NumberFormat('bs-u-nu-bzcu-cab-cabs-
avnlubs-avnihu-zcu-cab-cbs-avnllubs-avnihq-zcu-cab-cbs-
ubs-avnihu-cabs-flus-xxd-vnluy');

CVE-2017-15406: CanonicalizeLanguageTag Stack Overflow. This bug
only affects Chrome. Look at the code snippet below:

char icu_result[ULOC_FULLNAME_CAPACITY];
uloc_forLanguageTag(*locale_id, icu_result,

ULOC_FULLNAME_CAPACITY, nullptr, &error);
// localeID is not terminated with null byte
...
if (uprv_strlen(localeID) > 0) { // overflowed

localeID doesn’t need to be null terminated, so the result of uprv str-
len(localeID) could be oversized, leading to a stack out of bound write.

Proof of concept code is as below:

var dateti1 = new Intl.DateTimeFormat("iw-up-a-caiaup-araup-
ai-pdu-sp-bs-up-arscna-zeieiaup-araup-arscia-rews-us-up-
arscna-zeieiaup-araup-arsciap-arscna-zeieiaup-araup-
arscie-u-sp-bs-uaup-arscia");
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6 Related Work

Fuzzing was originally introduced as one of several tools to test UNIX utilities [1].
Since then, much work has been devoted to improving general fuzzing technique.
Guided fuzzing is proposed to direct fuzzers toward specific types of vulnerabil-
ities. One of the typical design for guided fuzzing is selectively choosing optimal
test cases [2,3]. Dowser [2] and BuzzFuzz [4] applies taint-tracking to analyze
the relations between test cases and code regions in target software. Flayer [5]
allows an auditor to skip complex checks in the target application to improve
the code coverage of fuzzing. Similarly, Taintscope [6] uses a checksum detection
algorithm to remove checksum code from applications. Symbolic execution is
also applied to fuzzing to gain maximal code coverage [7–9]. These approaches
reply on symbolic execution to generate inputs that will take new code paths.

There are many other research focus on applying fuzzing in some application
scenarios and making improvement by using unique characteristics in the sce-
narios, including our research in the paper. IntentFuzzer [15] applies dynamic
fuzzing method in Android IPC mechanism to find permission leak vulnerabil-
ities. jFuzz [16] uses a combination of concrete and symbolic execution to fuzz
Java program. MTF [17] proposed a guided fuzzing strategy instead of random
testing to fuzz Modbus/TCP protocol. IOTFUZZER [18] applies the knowl-
edge from mobile applications in the fuzzer to find memory corruptions in IoT
firmware.

7 Conclusion

In this paper, we proposed a fuzzing based method to discover bugs in ICU.
Our method is interested in the bugs that are exploitable in the context of
application software that use ICU. After we conducted a in-depth study on the
implementation details of JavaScript International API, we understand the data
flow from entry level input to low level ICU functions and the underlying input
filtering mechanism. By applying these knowledge to the fuzzer, we improve the
fuzzer to have high throughput and low false positive at the same time. We
implemented a prototype named ICUFuzzer to evaluate our design. ICUfuzzer
is dedicated for finding ICU bugs in browsers. By running the fuzzer, we have
found three zero-day bugs in modern browsers. One of them can be exploited
to leak memory information, the others can crash the browser and possibly get
remote code execution.
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Abstract. Communication security has become an indispensable
demand of smartphone users. End-to-end encryption is the key factor
for providing communication security, which mainly relies on public key
cryptography. The main and unresolved issue for public key cryptog-
raphy is to correctly match a public key with its owner. Failing to do
so could lead to man-in-the-middle attacks. Different public key ver-
ification methods have been proposed in the literature. The methods
which are based on verification by the users themselves are preferable
with respect to cost and deployability than the methods such as digital
certificates that involve the use of trusted third parties. One of these
methods, fingerprinting was recently replaced by a method called safety
number in the open source messaging application, SIGNAL. The devel-
opers of SIGNAL claimed this change would bring usability and security
advantages however no formal user study was conducted supporting this
claim. In this study, we compare the usability and security aspects of
these two methods with a user study on 42 participants. The results
indicate with significance that the safety number method leads to more
successful results in less time for public key verification as compared to
the fingerprint method.

Keywords: Public key verification · Safety number · Fingerprint
Usability · SIGNAL

1 Introduction

Secure communication over the Internet has become a crucial need for all of us,
today. End-to-end encryption is the name of the tool and the technology that
ensures encryption is performed with the keys stored only at the users’ devices,
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hence the communication providers and other third parties are not able to read
the message content. However, first generation of end-to-end encryption tools
such as PGP have not become widespread mainly because they are not easy to
use [3,4,6,9].

Since the first days of end-to-end encryption, two important aspects in secure
messaging landscape have changed: (i) with smartphones taking place of personal
computers (PCs), communication has mostly been through mobile devices, and
(ii) the awareness about privacy and security has increased.

The new generation of messaging applications falls into two categories from
security point of view; applications that provide encryption between the user
and a server and applications that provide end-to-end encryption. Applications
in the first category allow the service provider and others to read the messages
being sent and received hence offer very little for those caring their security and
privacy [7].

The requirements for a mobile messaging application targeting mainly con-
sumer market to provide end-to-end encryption is minimum. Unlike some enter-
prise settings, digital certificates and trusted third parties are not involved. As
soon as the application is downloaded to the smartphone, and registration is
made via the mobile number, required keys for end-to-end encryption are gen-
erated. A central database stores identities of the registered users, and shares
corresponding identities to the users that want to communicate with others.
This system is not free of risks. For instance, if the central database is intention-
ally manipulated by the system administrator or manipulated as the outcome
of an attack and user identities and/or their public keys are changed, man-in-
the-middle attacks are possible. As a result, the ability to verify communicating
parties via their public keys becomes essential for a secure communication.

Public key verification is presented through various user interfaces. Recently,
messaging application SIGNAL has made a change and began using a method
called safety numbers instead of fingerprints. In our work, our aim is to analyze
security and usability aspects of this new public key verification method and
compare it against fingerprint method. For this purpose, we design and conduct
a user study using previous and current versions of SIGNAL on Android smart-
phones. SIGNAL Android application is chosen in our work for several reasons.
First, its open source nature allows us to set up our own environment for the
user study (this is especially important to test the older version). Second, it is
one of the few messaging applications which seem to realize the importance of
public key verification problem (the rationale behind the transition to safety
number method - happened in November 2016 [5] - is well-documented in their
official blog, though it lacks any formal supporting arguments). Finally, What-
sApp, another instant messaging application having more than a billion users,
uses the SIGNAL protocol for end-to-end encryption [2].

Its leadership as a privacy advocate and general public acceptance of security
and trust offered by SIGNAL hints us that the safety number method becomes
more and more widely used in applications. Therefore, we strongly believe a
timely user study to investigate the security and usability of this public key
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verification method fills an important hole. To our best knowledge, our study is
the first in evaluating safety number method and comparing it with fingerprint
method with a formal user study. For this purpose, we devise a user study in
a lab environment with 42 users. The obtained results indicate that public key
verification via safety number method is indeed more advantageous than the
public key verification via fingerprint method with respect to success rate and
verification time.

The rest of the paper is organized as follows. We briefly give background
information and present related work in the following section, Sect. 2. In Sect. 3,
we describe the user study in detail and define our hypotheses for the study.
After presenting the obtained results, we discuss them together with statistical
analysis in Sect. 4. Finally, we finish up the paper with concluding remarks in
Sect. 5.

2 Background and Related Work

In this section, we briefly describe the session establishment and maintaining
protocol used in SIGNAL and the public key verification methods used in this
study; safety number and fingerprint method. We also present the concerned
threat model and summarize the earlier work.

2.1 SIGNAL Protocol

The SIGNAL protocol consists of three main parts: registration to the central
server, establishment of the messaging session, and the actual message exchange
(see Fig. 1).

When a user registers with their mobile number on the SIGNAL server, the
key sets are generated in the background. The generated private key is stored at
the mobile device, and never shared with any other party (including the central
server). When the user sends or receives a message request, the corresponding
public keys required to establish a mutual session is downloaded from the central
server during the initial setup. Session keys remain same as long as the appli-
cation is not removed from the device or sessions are not re-established. Hence,
they generally last for a long time, e.g. weeks, months or years. Once the messag-
ing session is established, identity keys of the communicating contacts are stored

Fig. 1. A basic demonstration of how SIGNAL protocol works.
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in the application. These keys can be accessed within the application. The public
key verification process is simply determining whether these keys belong to the
correct person or not. Normally, users are expected to perform verification upon
session establishment or a genuine phone change of the communicating party.

The SIGNAL server is responsible for two tasks: relaying the messages to
respective users and distributing public keys. Neither encryption nor decryption
is performed on the server. When a user wants to establish a message session
with another, (s)he requests their key set from the central server along with
the identity key of that user. With the obtained key set, the user generates a
symmetric key that is used to encrypt and decrypt messages. The same process
is performed at the other side and the same symmetric key is generated. After-
wards, secure messaging takes place using this symmetric key. Both parties keep
the identity key of their conversation partner.

2.2 Public Key Verification with Fingerprints

In the fingerprint method, each registered user has a fingerprint that is gener-
ated from her public key. This fingerprint is represented as a hexadecimal value
consisting of 66 characters. For verification, the user must access the verification
page first. This page consists of fingerprints of both users (see Fig. 2). Successful

Fig. 2. Fingerprints on the verification page with a barcode symbol on top right. The
displayed menu when the barcode symbol is touched is shown on the right side.
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verification requires both users to ensure her own fingerprint is identical to the
fingerprint on the corresponding part of the conversation partner’s device.

It is also possible to perform the comparison via QR codes. For this purpose,
one user must display their QR code via the “Display your QR code” button,
while the partner must scan the displayed QR code via the “Scan contact’s QR
code” button. Similar to manual verification, this process must be repeated for
the other device. Examples for matched (left) and unmatched (right) QR code
scan results are given in Fig. 3.

Fig. 3. QR scan results in the fingerprint method.

2.3 Public Key Verification with Safety Numbers

Unlike the fingerprint method, verification requires comparison of a single safety
number that is derived from the public keys of the communicating parties in the
safety number method. The safety number is specific to the session; that is, each
session has its own different safety number. This safety number consists of 60
characters, represented as groups of 5-digit integers (see Fig. 4).

Upon reaching the verification page, users have two options to verify the
safety number: they may either compare the 5-digit integers represented on their
mobile devices by themselves, or they can use the QR scanning option similar
to the previous method. Since the safety number is same in both devices, one
verification is adequate. Examples for matched (left) and unmatched (right) QR
code scan results are given in Fig. 5.
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Fig. 4. Safety number and its QR code on the verification page.

Fig. 5. QR scan results in the safety number method.
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2.4 Threat Model

As mentioned before, secret session keys are generated and stored at the end
devices (smartphones). The cryptographic algorithms and protocols are assumed
to be secure hence it is impossible for a third party to generate the session
key. However, the SIGNAL central database may be manipulated by a system
administrator or by an external attacker, and hence, attacks against the session
(either during the initial setup or against the already established session) may
become possible.

Our work focuses on attacks against the established session. Specifically, we
envision a scenario in which two users have already established a messaging ses-
sion and then an attacker sends his key set to the users via the central database.
In such a case, SIGNAL warns its users and suggests them to perform pub-
lic key verification. We simulate such an attack scenario in our user study and
investigate the effectiveness of implemented measures against this kind of threat.

2.5 Related Work

Public key verification is not a new problem, however expecting it to be per-
formed successfully by novice smart phone users who only want to chat with
their friends may be considered a more challenging problem. Having said that,
the results of Whitten and Tygar’s user study measuring the usability of PGP
to send and receive end-to-end encrypted e-mails showed that the problem is a
difficult one even for the experienced users [9]. Follow-up studies has shown that
email settings are especially problematic with respect to public key verification
e.g., [3,4].

For secure messaging settings, the work by Schroder et al. presented a user
study for the earlier fingerprint method of the SIGNAL messaging application
for public key verification [7]. 21 of the 28 users who participated in this study
failed to compare fingerprints.

In a recent work by Tan et al. the authors compared various public key
verification interfaces [8]. 661 participants attended the large-scale user study
which involve many different fingerprint representations. One of their conclu-
sions is that all the representations and configurations they experimented with
exhibited higher rates of successful attack than seems desirable for high-risk
situations.

3 Methodology

In this section, we describe the methodology of our user study and the hypotheses
set prior to the study.

3.1 Design

The user study was carried out at the Information Security Lab of TOBB Uni-
versity of Economics and Technology. A total of 42 users were initially split into
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two similar groups of 21 users, and each group was tested with a different version
of the SIGNAL application. Apart from the application version, which uses a
different method for public key verification, all other factors were kept same for
each group. Participants were specifically asked to think aloud during the study
to understand their train of thought at every step. Participants were asked to
answer some questions on their demographic status and their overall opinion
about the study during and after the study.

3.2 Scenario

At the beginning of the study, we briefly informed the participants about the
study, and we gave them three pieces of information. The given information con-
sists of postal address, bank account and credit card information. We asked them
to send this information, one by one, to the operator through SIGNAL applica-
tion that is preinstalled on a smartphone. We told participants to assume that
given information were their personal information, and the operator was a close
relative.

The rest of the scenario can be summarized as follows:

i. Initially, at the preliminary stage, we asked the user to open the SIGNAL
application and send the address part to the operator. At the end of this
stage, a session has been established between two users (the participant and
the operator).

ii. Then, before moving onto the next stage, the user is asked to answer demo-
graphic questions. While the user was answering these questions, we moved
the operator’s sim card into another smartphone, and registered to the sys-
tem with the same mobile phone number. Registering to the application
from a different smartphone causes the change of public key for this mobile
phone number, and hence, existing key set for the session will no longer
match. This action basically simulates a man-in-the-middle attack, since a
successful attack would also change the public key of the user. We note that
the participants were kept busy with demographic questions and they did
not see the actions taken by the operator.

iii. After answering demographic questions, we asked the user to send her bank
account number to the operator. Users in different groups were encountered
with different types of error messages at this point. The users of the old ver-
sion of the application (which uses the fingerprint method) were encountered
with an error message with a red exclamation mark (see Fig. 6), while users
of the new version of the application (which uses safety number method)
were warned with a mere text (Fig. 7). Both versions of the application
allow users to access the public key verification page with a single tap at
the prompts. At the end of this stage, users who wanted to continue with
the next step without entering the public key verification page were asked
to verify the identity of their conversation partner within the application.
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iv. Finally, we asked the user to send their credit card information to the oper-
ator over the SIGNAL application. Since the public key does not match, the
correct behavior for a user would be to discontinue the study and not to
send the sensitive information.

Fig. 6. Left: “Not Delivered” error. Right: Warning that the change of credentials
(fingerprint method). (Color figure online)

Fig. 7. Left: Warning of safety number change. Right: Safety number verification page
(safety number method).
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Participants were not forced to send any information to the operator at any
stage, and they were informed that they could communicate with the operator
face to face whenever they needed. Apart from that, the operator sat at the
remote corner of the laboratory and did not play an active role at any stage.
Also, he did not inform the user about verification process. After the verification
process, we asked the users to answer a short questionnaire about the study and
their understandings of man-in-the-middle attack.

3.3 Study Environment

We used three smartphones (Android 6.0) and one computer in our study. We
used the computer for testing the old version of SIGNAL (version 3.13.0) with
two purposes: as the central database server, and also as a wireless access point
providing Internet to smartphones. For testing the new version of SIGNAL, we
used the current SIGNAL application (version 4.11.5) that was readily available
on the app store. The user dealt with only one smartphone, while remaining two
smartphones were used by the operator. All the devices were fully restored to
their original state for each participant.

There were 42 users aged between 18 and 25 participated in this user study.
All participants were TOBB University of Economics and Technology students
who were enrolled to the “Introduction to Computer Science” course in Com-
puter Engineering department, and they were rewarded with extra credits in
the course for participating. Among participants, 18 (43%) of them were female
and remaining 24 participants (57%) were male. Participants were split into
two similar, equally sized groups. The study lasted about 15 to 25 min for each
participant.

All participants stated that they were actively using WhatsApp (42) as
instant messaging application, while SnapChat (28), Skype (22), Facebook Mes-
senger (14), Telegram (5), Discord (2), Viber (1), Bip (1), Signal (1) were also
used.

Finally, participants expressed their knowledge level on information security
as follows: 31 of them (74%) chose none or very low, 7 of them (17%) chose
medium, and 4 of them (9%) chose high. None of the 42 participants expressed
themselves as an expert. Among all, 5 participants (12%) have expressed they
had prior information about man-in-the-middle attacks.

3.4 Hypotheses

On our self-trials, we encountered a system behavior in the previous version
of the SIGNAL application which did not allow sending new messages after
the conversation partner’s public key changes until verification is completed;
whereas, current version warns the user about a possible security problem, yet,
allows communication. It has been shown with user studies that, active and
obstructive actions, such as blocking communication, does not improve security
[1]. Still we wanted to re-evaluate the effects of active (blocking communication)
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and passive (allowing communication with a warning) actions on directing users
to public key verification process in our study.

Since the main goal of the study is to compare the effectiveness of two meth-
ods for public key verification, fingerprint and safety number, we compare user
success rates and time for comparison in each method. We expect to have higher
success rates and lower comparison times for the safety number method, since
comparing 12 blocks of 5-digit integers seems easier than comparing two blocks
of 66 hexadecimal characters.

As a result, we specify our null hypotheses as follows:

H1 In terms of directing users to the public key verification process, there is no
difference between allowing or blocking sending new messages after conver-
sation partner’s public key changes.

H2 There is no difference between the safety number and the fingerprint meth-
ods in terms of key verification success.

H3 There is no difference between the safety number and the fingerprint meth-
ods in terms of public key comparison time.

4 Results and Analysis

As described in Subsect. 3.2, users were initially asked to send the provided
address information to the operator. All participants completed this prelimi-
nary task successfully. After sending the address, we asked the participants to
answer some demographic questions. As they were answering the questions, we
transported the sim card of the operator into another smartphone. This action
changed the operator’s public keys for simulating the man-in-the-middle attack.
Next, users were asked to send their bank account information to the opera-
tor. Different versions of the SIGNAL application behaved differently at this
point. Older version, which uses the fingerprint method for public key verifi-
cation, disallows its users to send new messages until public key verification is
complete; on the other hand, the current version that uses the safety number
method warns the user with a passive message. We observed participants in both
groups, and noticed that 4 out of 21 participants (19%) accessed the verification
page through the provided link in the older version (v3.13.0), whereas only 1
participant accessed it using the provided link in the current version (v4.11.5)
(see Fig. 8). The chi square test for independence suggests no significant differ-
ence in effects of employing either a blocking or non-blocking warning message
on security (χ2 = 2.04, p = 0.15), resulting in insufficient evidence to reject the
null hypothesis H1.

Participants, who did not access the public key verification page by them-
selves were directed to it, and the study continued with final phase, where they
were asked to send their credit card information. Since the public key does not
match, we expected the users to end the communication without sending the
credit card number. As a result, we define a successful verification as the com-
bination of realizing the mismatch and not sending the credit card information.
We believe that, this definition is reasonable because participants stated that
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Fig. 8. Performances of the SIGNAL applications used in the study, on directing users
to the verification page.

they all use the WhatsApp application in their daily life, and WhatsApp imple-
ments the SIGNAL protocol. They might have to deal with such situation by
themselves in a real-life scenario. According to this metric, 9 out of 21 partici-
pants (43%) were considered successful in the public key verification via safety
number method; whereas only 3 of the 21 participants (14%) were successful in
the public key verification via fingerprint method (see Fig. 9). The chi square
test for independence suggests marginally significant difference in choice of pub-
lic key verification methods (χ2 = 4.2, p = 0.04). As a result, we reject the null
hypothesis H2 in favor of the safety number method.

Fig. 9. Verification success rates of users.

Finally, average public key verification times for the safety number
method and the fingerprint method are 82 s and 130 s, respectively (Fig. 10).
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According to the Mann-Whitney-U test, a between-group median comparison
test for not normally distributed data, the difference is marginally significant
(W = 58, p = 0.04), and hence, we reject the null hypothesis H3 favoring the
safety number method.

Fig. 10. Average public key comparison times of users.

To sum up, there was not enough evidence to reject the null hypothesis H1:
a blocking warning message does not increase security as compared to non-
blocking warning message. On the other hand, hypotheses H2 and H3 were
rejected favoring the safety number method: the safety number method leads
to more successful verification in less amount of time, when compared to the fin-
gerprint method. Lastly, we acknowledge that involving more participants that
represent the general user profile better could help us draw more significant
results.

5 Conclusion

End-to-end encryption has become a necessity for secure communication. Smart-
phone communication applications provide high availability and mobility to its
users; hence, their market share increase day by day. On the other hand, they
must compete each other to satisfy their users’ security demands.

WhatsApp is a popular communication application with more than a billion
users, and it uses the SIGNAL protocol for end-to-end encryption. The SIGNAL
protocol has recently changed an important feature: its public key verification
method. In its older versions, it used the fingerprint method for public key ver-
ification, whereas, the safety number method for public key verification is now
utilized in its current version.

In this study, we presented a user study which evaluates and compares the
security and usability aspects of the fingerprint and the safety number methods
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used in older and current versions of the SIGNAL messaging application, respec-
tively. The results of our user study indicate that users achieve more success and
spend less time with the safety number method as compared to the fingerprint
method for public key verification. Although our results indicate a significant
improvement with the new safety number method, we argue that the obtained
results does not reflect yet that the problem has been solved i.e., still majority of
users could not successfully perform public key verification even with the safety
number method before transmitting a sensitive message. Hence, we urge usable
security researchers to continue working on the public key verification problem
since there is still an obvious room for more improvement.
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Abstract. Being the first generic algorithm for finding the best dif-
ferential and linear characteristics, Matsui’s branch and bound search
algorithm (EUROCRYPT 1994) and its variants have played an impor-
tant role in the security analysis of symmetric-key primitives. However,
Matsui’s algorithm is difficult to implement, optimize, and be applied to
different ciphers with reusable code. Another approach getting popular
in recent years is to encode the search problem as a Mixed Integer Linear
Programming (MILP) model which can be solved by open-source or com-
mercially available optimizers. In this work, we show how to tweak the
objective functions of the MILP models for finding differential character-
istics such that a set of constraints derived from the bounding condition
of Matsui’s algorithm can be incorporated into the models. We apply the
new modeling strategy to PRESENT (S-box based SPN design), SIMON
(Feistel structure), and SPECK (ARX construction). For PRESENT,
the resolution time is significantly reduced. For example, the time to
prove that the exact lower bound of the probabilities of the differential
characteristics for 7-round PRESENT is reduced from 48638 s to 656 s.
For SIMON, obvious acceleration is also observed, and for the ARX
cipher SPECK, the new model is unable to speed up the resolution. In
the future, it is interesting to investigate how to integrate other search
heuristics proposed in the literature of symmetric-key cryptanalysis into
the MILP models, and how to accelerate the resolution of MILP models
for finding characteristics of ARX ciphers.

Keywords: Differential characteristic · Linear characteristic
Branch and bound · Matsui’s algorithm · MILP

1 Introduction

Differential and linear attacks are two of the most fundamental methods for ana-
lyzing symmetric-key primitives, which many advanced cryptanalytic techniques
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are derived from or partly rely on. Performing differential and linear analysis is a
tedious routine work for the designers and cryptanalysts of symmetric-key algo-
rithms. Matsui’s branch and bound search algorithm [21] is a classical approach
for finding the best differential and linear characteristics, and it is extremely effi-
cient for some specific ciphers. But, implementing Matsui’s algorithm properly
demands for sophisticated programming skills when cipher-specific optimizations
are taken into account [5,6,12]. Moreover, there seems to be no obvious way to
create highly reusable code for Matsui’s algorithm targeting different ciphers.

However, the diversity of cryptographic algorithms is an unstoppable trend.
In the case of block ciphers, to have a single algorithm work as a security solution
for all scenarios is doomed to fail due to the ever-increasing complexity and diver-
sity of today’s communication systems. Over recent years, we have witnessed
many new block ciphers designed for lightweight devices or dedicated use cases.
These include, to just name a few of them, the ISO standard PRESENT [11],
SIMON and SPECK [7] designed by the NSA, the SKINNY family presented in
CRYPTO 2016 [8], and Rasta with minimizing AND-related metrics as its main
design objective [15]. We refer the reader to [9] for a more comprehensive sur-
vey. To meet the requirements of the target applications, these newly designed
block ciphers typically use lightweight components with relatively weak local
cryptographic properties, consume less resources when implemented and exe-
cuted, and reserve limited security margins aggressively. This approach makes
the design and evaluation more difficult, where the security bounds cannot be
derived theoretically.

In such situation, the security evaluation against differential and linear
attacks have to be performed with the help of search tools. Matsui’s algorithm
is obviously not a satisfactory choice not only because of its inconvenience but
also that it is unable to get useful results in some cases. Another option getting
more and more popular in recent years is the Mixed Integer Linear Program-
ming (MILP) based method, where the problem of searching for characteristics is
transformed into an MILP model that can be solved with generic MILP solvers.

Similar to SAT/SMT and CP based methods [4,19,22,26], in the MILP based
approach [23,28,29], the cryptanalysts only need to specify the problem in stan-
dard modeling languages without mixing in the actual search algorithms. This
decoupling of formulation and resolution is the key that makes the MILP based
approach more attractive than Matsui’s algorithm. Unlike Matsui’s algorithm,
searching heuristics and optimizations can be issued externally without touch-
ing the sophisticated code powering the search. In addition, cryptanalysts benefit
directly from the advancement of MILP resolution techniques. So far, the MILP
based approach covers many cryptanalytic techniques, including differential/lin-
ear [18,28], impossible differential [25], zero-correlation linear [14], and integral
cryptanalysis [30].

Despite all these advantages, there are situations where Matsui’s algorithm
performs far more better than the MILP based approach (e.g., search for the
best characteristics of DES and PRESENT in the single-key model). Moreover,
both MILP and Matsui’s algorithm rarely work for non-lightweight designs under
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today’s computational power. Therefore, it is of great importance to improve the
efficiency of the MILP based approach, and a natural question to ask is whether
it is possible to strengthen the MILP based search with Matsui’s algorithm. In
this work, we make a first step towards this direction. Finally, before we present
our work, we emphasis that all of our analysis are based on the Markov assump-
tion [20], where we assume that each round of an iterative cipher is independent.

Motivation and Contribution. One obvious difference between Matsui’s algo-
rithm and the MILP based approach is worth to highlight. When we search
for the best characteristic of an R-round iterative block cipher, Matsui’s algo-
rithm requires the probabilities of the optimal characteristics of the same cipher
reduced to r rounds for 1 ≤ r < R. That is, to get the result of R rounds, we
must first run Matsui’s algorithm for rounds 1, 2, · · · , and R − 1. These prob-
abilities are employed to prune the search tree according to certain bounding
conditions. In contrast, in the MILP based approach, we always set up an R-
round model directly, and do not exploit the solutions for lower rounds explic-
itly. This fact motivates us to enhance the R-round MILP models by taking
into account some information of the solutions of lower rounds. We achieve this
by adapting the objective function of an R-round model such that constraints
encoding Matsui’s bounding conditions can be incorporated into the model. In
practice, this new modeling strategy leaves many choices for the cryptanalysts,
since one can choose to include only a subset of the constraints generated from
Matsui’s bounding conditions. We perform experiments on PRESENT, SIMON,
and SPECK, which shows that the inclusion of the constraints derived from
Matsui’s algorithm leads to significantly improved resolution performance for
PRESENT. For SIMON, obvious improvement is also observed, and for the
ARX cipher SPECK, the new model is unable to accelerate the resolution per-
formance. Our work suggests that trying to combine the power of dedicated
search algorithms implemented in general purpose programming language and
MILP is a valuable endeavor. In the future, it is interesting to see how to inte-
grate other search heuristics [16,17] to speed up the resolution of the MILP
models for finding characteristics of ARX ciphers.

Organization. In Sects. 2 and 3, we give a brief introduction of Matsui’s algo-
rithm and the MILP based differential and linear analysis. A method for enhanc-
ing the MILP models with constraints generated from Matsui’s bounding con-
dition is presented in Sect. 4. We then show applications of the enhanced MILP
models in Sect. 5. Section 6 concludes the paper and suggests future work.

2 Matsui’s Algorithm

At Eurocypt 1994, Matsui presented a branch and bound search algorithm that
can be used to identify the maximum probability characteristic of a target block
cipher [21]. Matsui’s algorithm, together with its variations, has been an impor-
tant tool in the practice of security evaluation of symmetric-key primitives. It
is improved in subsequent work [3,6,13,24] and adapted to ARX constructions
in [10,31].
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A general description of Matsui’s algorithm for an iterative block cipher
depicted in Fig. 1 is given in Algorithm 1. Our presentation largely follows the
work of Bannier et al. [5]. Also note that Algorithm 1 is an over simplifica-
tion of Matsui’s algorithm, which does not exhibit the necessary details (e.g.,
the technique for controlling the number of initial branches, the order in which
candidates are enumerated) in actual implementations.

α0
1

α1
2

α2 . . . αr−1
r

αr
r+1

αr+1 . . . αR−2
R−1

αR−1
R

αR

Fig. 1. An R-round iterative cipher, where T = (α0, · · · , αR) is an R-round differential
characteristic with probability P(T ), and the probability of the differential αr−1 → αr

is denoted by PRd(r).

With the knowledge of the best probabilities PBest(i) of i-round character-
istics for i ∈ {1, · · · , R − 1}, Matsui’s algorithm explores the search space of
all possible characteristics in a depth-first approach, and output the optimal R-
round characteristic. The search space conceptually forms a tree structure, and
at the rth level of the tree, T[1,r] = (α0, · · · , αr) is assigned to actual values by
Matsui’s algorithm, and all possible values of (αr+1, · · · , αR+1) form a subtree
to be explored. We call T[1,r] with r < R instantiated with actual values a partial
solution (corresponding to intermediate node of the search tree), and T = T[1,R]

instantiated with actual values a full solution (corresponding to a leaf node of
the search tree). Thus, when Matsui’s algorithm goes one level deeper into the
search tree, it extends the current partial solution towards a full solution.

The efficiency of Matsui’s algorithm comes from the fact that it will not try to
extend every partial solution. Before trying to extend the current partial solution,
the so-called bounding condition specified in line 24 of Algorithm 1 is tested,
which essentially states that if this condition is violated, a better characteristic
will never be found by extending the current partial solution, and therefore we
should give up the current branch, backtrack to the upper level of the search
tree, and try another branch.

The variable PEstim in Matsui’s algorithm keeps track of the best character-
istic known so far. Only when a strictly better characteristic is encounter during
the search, it will be updated (see line 42 of Algorithm 1).

Moreover, in Matsui’s algorithm, The first and last rounds receive special
treatment (see functions FirstRound() and LastRound() in Algorithm 1), where
the input and output difference is determined directly by the output differences
of the round 1 and round R − 1, without the effort of searching through a set of
candidates.
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Algorithm 1. Matsui’s Algorithm
Input: R ∈ Z

∗, R ≥ 2; q > 0; PBest(1), PBest(2), . . . , PBest(R − 1)

Output: differential characteristic T = (α0, α1, . . . , αR−1) ∈ F
n
2 where probability

P(T ) = PEstim

1 Algorithm OptimalTrail(R, q, PBest(1), . . . , PBest(R − 1)) // Entry Point

2 for each non-zero α1 do

3 T = (), PEstim ← q

4 Call FirstRound()

5 end

6 if T �= () then

7 return T , PEstim = P(T )

8 end

9 end

10

11 Function FirstRound() // Subroutine

12 PRd(1) ← maxαP(α → α1)

13 α0 ← α, s.t P(α → α1) = PRd(1)

14 if R > 2 then

15 Call Round(2)

16 else

17 Call LastRound()

18 end

19 end

20

21 Function Round(r)(2 ≤ r ≤ R − 1) // Subroutine

22 for each candidate α for αr−1 do

23 PRd(r) ← P(αr−1 → α)

24 if
r∏

i=1
PRd(i) · PBest(R − r) ≥ PEstim then

25 // Matsui’s bounding condition

26 αr ← α

27 if r + 1 < R then

28 Call Round(r+1)

29 else

30 Call LastRound()

31 end

32

33 end

34 end

35 end

36

37 Function LastRound() // Subroutine

38 for each candidate α for αr−1 do

39 PRd(R) ← maxαP(αR−1 → α)

40 αR ← α, s.t P(αR−1 → α) = PRd(R)

41 end

42 if
R∏

i=1
PRd(i) > PEstim then // A strictly better trail is found

43 T ← (α0, α1, . . . , αR−1)

44 PEstim ←
R∏

i=1
PRd(i)

45 end

46 end
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3 MILP Aided Characteristic Search

At first, MILP was used to determine the minimum number of differentially or
linearly active S-boxes of word-oriented ciphers [23,29]. In [28], Sun et al. intro-
duced the convex hull computation method which can encode any subset of 0–1
vectors as the solution set of a system of linear inequalities. Thanks to this
technique, actual differential and linear characteristics can be found with MILP
based method. Subsequently, the MILP aided approach is applied in impossi-
ble differential analysis [25], zero-correlation linear analysis [14], and Integral
cryptanalysis [30]. It is also extended and adapted to analyze ARX based con-
structions [18]. In what follows, we give a brief introduction of the MILP mod-
eling technique for finding differential characteristics, which is employed in the
following sections.

The key to transfer the problem of searching for differential characteristics
into an MILP model is to express the propagation rules of the characteristics as a
set of linear inequalities, and encode the overall probability as a linear function.

Objective Function. Since the goal is to find the optimal characteristic, we set
the objective function to minimize the probability of the underlying differential
characteristic. However, we must be able to express the probability as a linear
function at the first place to make it valid in MILP. Such representations are
available for SIMON, SPECK, and PRESENT [18,28]. For the sake of simplicity
and without loss of generality, we assume the probability (or its equivalence) can
be represented by

R∑

i=1

k∑

j=1

Ai,j ,

and we call Ai,j ’s are probability weight variables, where Ai,j for j ∈ {1, · · · , k}
is the probability weight variables of round i of an iterative cipher. Under this
notation, the probability weight contributed by round i is

∑k
j=1 Ai,j .

Modeling XOR. Let a ⊕ b = c, where a, b, c ∈ F2 are the bit-level input
and output differences of the XOR operation. Then (a, b, c) is a valid differential
characteristic of XOR if and only if a+b+c−2d⊕ = 0, where a, b, and c ∈ {0, 1},
and d⊕ is a 0–1 dummy variable.

Modeling S-box. The exact differential property of an ω × ν S-box S can
be modeled by a set of linear inequalities with the convex hull computation
method [28]. Let D = {(a,b) ∈ {0, 1}ω+ν : P (a → b) > 0} be the set of all
possible input-output differential patterns of S, where a = (a0, a1, . . . , aω−1) and
b = (b0, b1, . . . , bν−1). Then, we can compute the H-representation of D ⊆ R

ω+ν .
With the help of the greedy algorithm proposed in [28], we can extract a system
of inequalities whose 0–1 solution set is exactly D. Sometimes, it is possible to
encode the differential probabilities of a → b into D, and we refer the reader to
[18,27,28] for concrete examples.

Modeling Modular Addition [18]. Suppose a = (a0, a1, . . . , an−1), b =
(b0, b1, . . . , bn−1) and c = (c0, c1, . . . , cn−1) are the input and output bit-level
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XOR-difference of addition module 2n. The constraints are as follows, where d⊕
is 0–1 dummy variable, si(i = 1, . . . , n − 2) are 0–1 active markers and

∑n−2
i=1 si

is negative logarithm of the probability P [(a,b) → c].
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

an−1 + bn−1 + cn−1 ≤ 2
an−1 + bn−1 + cn−1 − 2d⊕ ≥ 0
d⊕ − an−1 ≥ 0
d⊕ − bn−1 ≥ 0
d⊕ − cn−1 ≥ 0
−ai + bi + si ≥ 0
−bi + ci + si ≥ 0
ai − ci + si ≥ 0
ai + bi + ci − si ≥ 0
−ai − bi − ci − si ≥ −3
ci + ai−1 + bi−1 − ci−1 + si ≥ 0
−ai − bi − ci + 3ai−1 + 3bi−1 + 3ci−1 + 2si ≥ 0
ai + bi + ci − 3ai−1 − 3bi−1 − 3ci−1 + 2si ≥ −6
−bi + ai−1 − bi−1 − ci−1 + si ≥ −2
ci + ai−1 − bi−1 + ci−1 + si ≥ 0
−ai − bi − ci − 3ai−1 + 3bi−1 − 3ci−1 + 2si ≥ −6
−ai − ai−1 − bi−1 + ci−1 + si ≥ −2
ai + bi + ci − 3ai−1 + 3bi−1 + 3ci−1 + 2si ≥ 0
(i = 1, . . . , n − 2)

(1)

4 Enhancing MILP Based Search with Matsui’s
Bounding Condition

Firstly, let us recall the bounding condition of Matsui’s algorithm (see
Algorithm 1):

r∏

i=1

PRd(i) · PBest(R − r) ≥ PEstim. (2)

When we run Matsui’s algorithm against an R-round cipher, the variable PEstim

keeps track of the probability of the best characteristic known by the algorithm
so far, and it will be updated dynamically if a strictly better characteristic is
encountered during the search. Whenever the algorithm needs to go one level
deeper into the search tree, condition (2) is tested. A violation of (2) implies that
any extension of the partial solution leads to inferior characteristics with prob-
ability less than PEstim (the probability of a known characteristic). Therefore,
the entire subtree is pruned.

To integrate Matsui’s bounding condition into the MILP models, we intro-
duce a variable named xobj acting as the variable PEstim in Matsui’s algorithm,
and let

Minimize xobj

be the objective function of the new model. Note that this is a very natural
choice since the variable xobj always keeps track of the currently known best
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solution during the resolution of the MILP model. To make the xobj correspond
to the probability of the identified characteristic, we put an equation

xobj =
R∑

i=1

k∑

j=1

Ai,j

into the constraints section of the model. At this point, the new model is com-
pletely equivalent to the original model. What we do is essentially renaming the
objective function of the original model.

Assuming we know the probabilities PBest(1), PBest(2), · · · , PBest(R−1), we
are now ready to express the bounding condition (2) as

i∑

t=1

k∑

j=1

At,j + wt(PBest(R − i)) ≤ xobj, i = 1, . . . , R − 1 (3)

R∑

t=i+1

k∑

j=1

At,j + wt(PBest(i)) ≤ xobj, i = 1, . . . , R − 1 (4)

Therefore, for an R-round model, we can generate 2R−2 more constraints, where
wt(·) make Pbest(i) compatible with the probability weight variables. The most
different part of the new model is that it takes into account the solutions of the
models of lower rounds. In the following, we present three different modeling
strategies, which will be compared in the next section.

• MI : The original model without any modification.
• MII : The model with modified objective function, and R − 1 additional con-

straints of (4) generated from Matsui’s bounding condition for round 1 to
round R − 1 respectively.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min xobj∑
i,j

Ai,j − xobj = 0

R∑
t=i+1

k∑
j=1

At,j + wt(PBest(i)) ≤ xobj, i = 1, . . . , R − 1

(5)

• MIII : The model with modified objective function, and all 2R−2 additional
constraints.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min xobj∑
i,j

Ai,j − xobj = 0

R∑
t=i+1

k∑
j=1

At,j + wt(PBest(i)) ≤ xobj, i = 1, . . . , R − 1

i∑
t=1

k∑
j=1

At,j + wt(PBest(R − i)) ≤ xobj, i = 1, . . . , R − 1

(6)
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5 Applications

In this section, we apply the modeling strategy presented in Sect. 4 to PRESENT,
SIMON, and SPECK. The reasons that these ciphers are selected as the experi-
mental targets are twofold. Firstly, the probabilities (or their equivalences) of the
differential characteristics of these ciphers can be expressed as linear functions.
Secondly, they represent the most common structures for modern block ciphers,
where PRESENT is a SPN network, SIMON is a Feistel cipher with pure bitwise
operations, and SPECK is an ARX construction.

However, we admit that in our experiments only lightweight primitives are
involved. This is because generally MILP based approach (and actually all cur-
rently available automatic search tools) is too inefficient to search for character-
istics of non-lightweight ciphers directly, and it is sometimes difficult to modeling
the components of non-lightweight ciphers at the first place. For example, only
recently, Abdelkhalek et al. show how to model the differential property of an
8×8 S-box with MILP [2], and even that, the search procedure has to be divided
into two steps for a cipher involving 8 × 8 S-boxes, where only truncated differ-
entials are identified in the first step.

In addition, since the focus of this paper is to improve the MILP based
method, we will not give a comparison between Matsui’s algorithm and the
MILP based approach. Nevertheless, we would like to mention that Matsui’s
algorithm is much more better than MILP in the case of PRESENT, while for
SIMON and SPECK, it is inferior to MILP. Finally, all of the models presented
in this paper are solved by the MILP optimizer Gurobi (version 7.0.2) [1] running
at 16 threads on a server with Intel� Xeon� E5-2637V3 CPU 3.50 GHz.

5.1 Application to PRESENT

The PRESENT, designed by Bogdanov et al., is an ISO standardized lightweight
block cipher [11]. The round function of PRESENT is shown in Fig. 2, and we
refer the reader to [11] for more information.

S S S S S S S S S S S S S S S S

Fig. 2. The round function of PRESENT

We construct three models MI , MII , and MIII according to the strategies
presented in Sect. 4. The resolution time for these models are recorded in Table 1.
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Note that what we measure is the time cost for the solver to prove that the
solution it identified is optimal. This timing information is of most importance
since in the design process what we care is the bound, and the tighter the bound
is, the more accurate the security evaluation.

Table 1. Experimental results of PRESENT

R p MI MII MIII

1 2−2 0.01s 0.09s 0.13s

2 2−4 0.95s 0.95s 0.06s

3 2−8 3.70s 2.82s 2.43s

4 2−12 15.78s 10.08s 8.82s

5 2−20 629.83s 114.13s 448.61s

6 2−24 1740.55s 200.03s 74.56s

7 2−28 48638.29s 714.03s 655.36s

8 2−32 >10h 2124.51s 1074.45s

From Table 1 we can see that the resolution time can be significantly improved
by using the new modeling strategies. For instance, we can prove that the prob-
ability of the optimal characteristic of 8-round PRESENT is 2−32 in 1074.45 s
by using MIII , while for MI we can not get this result in less 10 h. Moreover,
by using the new models, some interesting phenomenons are observed that we
cannot explain. For example, the resolution time of MIII for 6-round PRESENT
is faster than that of the 5-round model.

5.2 Application to SIMON

SIMON (depicted in Fig. 3) is a family of lightweight block ciphers with Feistel
structure involving only bitwise operations: XOR, AND, and Rotation, which is
designed by the National Security Agency of USA. The parameters of different
SIMON instances involved in our experiments are summarized in Table 2.

Table 2. Parameters for SIMON32 and SIMON48

Variant 2n/mn Block Size 2n Key Size mn Round r

32/64 32 64 32

48/72 48 72 36

48/96 48 96 36

We construct three models MI , MII , and MIII according to the strategies
presented in Sect. 4. The resolution time for these models are recorded in Table 3.
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Fig. 3. The round function of SIMON

Table 3. Experimental results of SIMON

Block size 2n R p MI MII MIII

32 11 2−30 75.05s 79.22s 67.92s

12 2−34 657.37s 559.83s 209.09s

48 13 2−38 309.58s 376.33s 109.85s

14 2−44 4627.26s 3577.05s 2942.85s

15 2−46 31979.80s 3351.41s 2444.28s

16 2−50 >20h >15h 26589.96s

From Table 3 we can see that, for larger number of rounds, the improvement
is obvious. For example, using MIII we can prove that the probability of the
optimal characteristic of 15-round SIMON48 is 2−46 in 2444.28 s, while for MI ,
the resolution time is 31979.80 s.

5.3 Application to SPECK

The SPECK is a family of ARX Feistel block ciphers (depicted in Fig. 4) designed
by the National Security Agency of USA. The parameters of different SPECK
instances involved in our experiments are summarized in Table 4.

We construct three models MI , MII , and MIII according to the strate-
gies presented in Sect. 4. The resolution time for these models are recorded in
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Fig. 4. The round function of SPECK

Table 4. Parameters for SPECK32 and SPECK48

Variant 2n/mn Block Size 2n Key Size mn Round r α β

32/64 32 64 22 7 2

48/72 48 72 22 8 3

48/96 48 96 23 8 3

Table 5. Experimental results of SPECK

Block size 2n R p MI MII MIII

32 5 2−9 9.78s 17.15s 26.08s

6 2−13 173.67s 820.82s 390.33s

7 2−18 7175.87s >10000s >10000s

48 5 2−10 32.90s 358.11s 273.98s

6 2−14 1482.66s 2626.50s 2287.21s

7 2−19 40860.38s >100000s >100000s

Table 5. However, the results show that the new modeling strategies are infe-
rior to the original method. This may somehow implies that adding Matsui’s
bounding conditions for MILP models of ARX ciphers is not a good choice.
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6 Conclusion

Borrowing the ideas from Matsui’s algorithm, we tweak the MILP models for
differential cryptanalysis by altering the objective functions and introducing in
special constraints derived from Matsui’s bounding condition. We apply this new
modeling strategy to PRESENT, SPECK, and SIMON, which demonstrates that
the fusion of Matsui’s bounding condition and the MILP approach leads to faster
resolution in some cases. Therefore, the new modeling approach is expected to
reduce the time cost of differential and linear analysis. In particular, during the
design process of symmetric-key schemes, a larger design space may be explored
within limited time. Our work shows that it is beneficial to include Matsui’s
bounding condition in the MILP models for differential analysis. More generally,
it is interesting to see how to integrate other search heuristics [16,17] from the
literature of symmetric-key cryptanalysis into the MILP models.
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Abstract. In this paper, we revisit the relationship between the prob-
ability of differential trails and the input difference of each round for
SIMON-like block ciphers. The key observation is that not only the Ham-
ming weight but also the positions of active bits of the input difference
have effect on the probability. Based on this, our contributions are mainly
twofold. Firstly, we rebuild the MILP model for SIMON-like block ciphers
without quadratic constraints. Accordingly, we give the accurate objec-
tive function and reduce its degree to one by adding auxiliary variants to
make the model easy to solve. Secondly, we search for optimal differential
trails for SIMON and SIMECK based on this model. To the best of our
knowledge, this is the first time that related-key differential trails have
been obtained. Besides, we not only recover the single-key results in [11],
but also obtain impossible differentials through this method.

Keywords: SIMON · SIMECK · Related-key differential trails
Impossible differentials · MILP

1 Introduction

Devices of small size, such as smart cards and sensor networks, are increasingly
involved in our life. Despite of the convenience, a major concern is that these
highly constrained devices cannot afford the computational cost of traditional
block ciphers such as DES and AES. To this end, the notion of lightweight block
cipher was raised, and has seen a flourish of research works in recent years.

Specifically, SIMON and SPECK families of block ciphers [4] proposed by
the NSA are amongst the most promising candidates. The distinguishing fea-
ture of SIMON (SPECK) is that AND operations (modular additions) serve as
non-linear components instead of S-boxes, and this directly yields an implemen-
tation advantage on both hardware and software platforms. Later on, Yang et
al. proposed a variant of SIMON, namely SIMECK [22] which adopts the rota-
tional constants and key schedules of SPECK within the framework of SIMON.
c© Springer Nature Switzerland AG 2018
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We refer to both SIMON and SIMECK as SIMON-like block ciphers, as intro-
duced in [11].

Related Work. For SIMON, no designing rationale or security analysis was
explicitly given in the original paper [4]. Lots of subsequent researches have been
done for evaluating its security, and a majority of these works are also applicable
to the SIMECK case due to their great similarities [22].

There have been many results for SIMON by differential cryptanalysis [2,3,6–
11,20] and linear cryptanalysis [1,12,14]. To our interest, Kölbl et al. [9] gave an
exact closed form expression for the differential probability, and obtained single-
key differential characteristics through SAT/SMT solvers; in 2017, Liu et al. [11]
further investigated the relationship between Hamming weight of input difference
and differential probability, and proposed an automatic searching algorithm by
adapting Matsui’s algorithm [13], and obtained optimal single-key differential
trails for SIMON-like block ciphers.

On the other hand, Todo introduced the notion of division property, and
used it in finding integral distinguishers for SIMON [18]; later on, Todo and
Morii proposed a fine-grained variant called bit-based division property [19], and
thus gave integral distinguisher for SIMON32 with one more round.

Besides, the method of Mixed-Integer Linear Programming (MILP) is widely
used in automatic searching recently [15,17]. Specifically for SIMON, Sun et al.
modified the original model [15,17] into an MIP (Mixed-Integer Programming)
one by adding quadratic constraints [16], to remove invalid characteristics out
of the feasible region. Although they made it theoretically solvable by adding
auxiliary variants, it still seems rather sophisticated to make practical use of this
model. It is worth noting that based on division property, Xiang et al. [21] applied
MILP to automatically searching integral distinguishers for six lightweight block
ciphers including SIMON and SIMECK.

Throughout, no cryptanalysis work has been done for SIMON-like block
ciphers in related-key setting, and this issue is also mentioned by the designers
of SIMON [5] and SIMECK [22] independently. In fact, the behavior of certain
block cipher under related-key differential cryptanalysis is an important criterion
for its security, since the secret keys are often updated in security protocols or
differences can be incorporated using fault attacks. Meanwhile, avoiding high-
probability related-key differential characteristics is one of the goal of the key
schedule.

Our Contributions. In this paper, we make a fine-grained analysis of the
ROTATION-AND operations and construct proper MILP models for SIMON-
like block ciphers. As a result, we give related-key differential trails for SIMON-
like block ciphers for the first time.

Specifically, we revisit the relationship between the input difference and the
probability of differential trails, and reveal that the active bits’ positions of the
input difference will not only determine which bits of the output difference are
likely to be active, but also affect the probability of differential characteristics.
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From this we can get all possible output differences of the ROTATION-AND
operation and their accurate probabilities directly from input difference, rather
than using a DDTA (Difference Distribution Table of AND) accompanied with
some checking conditions as done in [6,9,11]. As a result, we can construct proper
MILP models with linear objective function while without quadratic constraints,
and search related-key differential trails for SIMON and SIMECK automatically,
as well as impossible differentials.

Our main results are listed in the following:

1. We find 10, 9, 9 rounds optimal related-key differential trails for SIMON32/64,
SIMON48/96 and SIMON64/128 with probability 2−16, 2−18 and 2−18

respectively, costing about 15 days, 6 days and 7 days respectively.1 More-
over, we find that there is an 8-round period trail with probability 2−n

for SIMON2n/4n, and thus all trails can be extended to 19 rounds with
probability 2−2n.

2. We find two 11 rounds optimal related-key differential trails for SIMON48/72
and SIMON64/96 with probability 2−22 and 2−22 respectively, costing about
7 days and 7 days respectively. The extension for SIMON48 reaches 16 rounds
with probability 2−50, and the extension for SIMON64 reaches 18 rounds with
probability 2−64.

3. We find 15, 16, 16 rounds optimal related-key differential trails for
SIMECK32/64, SIMECK48/96, and SIMECK64/128 with probability 2−34,
2−40, and 2−40 respectively, costing about 9.6 h, 3.8 days and 4 days respec-
tively. The extension of SIMECK48/96 reaches 19 rounds with probabil-
ity 2−48, and the extension for SIMECK64/128 reaches 23 rounds with
probability 2−66.

For searching single-key differential trails, without of generality, we assume
that there must exist certain round with input difference of Hamming weight
one when considering the diffusion of block ciphers. Then by our method, we
can recover the results in [11]. In addition, we also get 11, 12 and 13 rounds
impossible differentials for SIMON32, SIMON48 and SIMON64 respectively, and
get 11, 15 and 17 rounds impossible differentials for SIMECK32, SIMECK48 and
SIMECK64 respectively, all in the single-key setting.

Organization of the Paper. We introduce notations and recall the construc-
tions of SIMON-like block ciphers in Sect. 2. In Sect. 3, we present the main
theorem on relationship between the input difference and the differential prob-
ability, and construct proper MILP models for SIMON-like block ciphers. Our
results are presented in Sect. 4. Section 5 is a conclusion of this paper.

1 All experiments are performed on a PC with 2.5 GHz Intel Core i7 and 16GB 1600
MHz DDR3.
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2 Preliminaries

2.1 Notations

We say a bit is active if it is one. For the left half input difference in SIMON2n,
each bit has a subscript denoting its position, with that of the most significant
bit being 0; all subscripts are in the sense modulo n. We list main notations in
Table 1.

Table 1. Notations.

Notation Description

�, & AND operation

⊕ XOR operation

Si left circular shift by i bits

S−i right circular shift by i bits

Δxr
i the i-th bit of left half input difference of the r-th round

Δdr
i the i-th bit of output difference of AND operation of the r-th round

(a, b, c) the rotation parameters for SIMON-like block ciphers

2.2 A Brief Description of SIMON and SIMECK

The round function of SIMON-like block ciphers is shown in Fig. 1, with the value
of (a, b, c) being (8, 1, 2) and (0, 5, 1) for SIMON and SIMECK respectively.

Fig. 1. The round function of
SIMON-like block ciphers.

Fig. 2. The key expansion of SIMECK.
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The key schedules of SIMON and SIMECK are totally different. The constant
C = 2n−4 = 0xff ···fc, and the generation of constant sequence {zj} is referred
to [4] (for SIMON) and [22] (for SIMECK). The key of the i-th round is denoted
by ki, and the identical permutation is denoted by I. For SIMON2n/mn, round
keys are generated by

ki+m =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C ⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)S−3ki+1, if m = 2,

C ⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)S−3ki+2, if m = 3,

C ⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)(S−3ki+3 ⊕ ki+1), if m = 4.

For SIMECK2n/4n, the key schedules are shown in Fig. 2. The updating
function is expressed as

⎧
⎨

⎩

ki+1 = ti,

ti+3 = ki ⊕ f(ti) ⊕ C ⊕ (zj)i.

where f(x) = x � S5(x) ⊕ S1(x) is part of the round function.

3 Constructing MILP Models for SIMON-like Block
Ciphers

In this section, we make a fine-grained analysis of the relationship between input
and output difference of the ROTATION-AND operations. We prove that not
only the Hamming weight but also the active bits’ positions of the input differ-
ence can affect the probability of differential characteristics. The former has been
proved by Liu et al. [11], and we highlight the latter’s importance in construct-
ing proper MILP models for SIMON-like block ciphers. Specifically, we give the
following theorem:

Theorem 1. Let f(x) = Sa(x) � Sb(x) be a Boolean function from F
n
2 to itself,

and gcd(n, a − b) = 1. Let Δx, Δd ∈ F
n
2 be the input and output difference of f

respectively, with wt(Δx) = m, m < n, and R = {Δxi0 ,Δxi1 , . . . ,Δxim−1} be
the set of all active bits in Δx. If there exist

1. p1 pairs of {ij, ik} such that |ij − ik|≡ |a − b| mod n; and
2. p2 pairs of {ij, ik} such that |ij − ik|≡ 2|a − b| mod n and there exists some

h such that |h − ij |≡ |a − b| mod n, |h − ik|≡ |a − b| mod n, Δxh /∈ R;

then there will be 22m−p1−p2 possible values for Δd, and each has the same
probability 2−2m+p1+p2 .

To prove this theorem, we use the following lemma, which can be regarded as
a generalization of Observation 2 in [8]. All proofs can be found in the Appendix.
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Lemma 1. Let f(x) = Sa(x) � Sb(x) be a Boolean function from F
n
2 to itself.

Let Δx, Δd ∈ F
n
2 be the input and output difference of f respectively, and x ∈ F

n
2

be an input of f . Then,

1. In Δx, only two bits, namely Δxi+a and Δxi+b can affect the value of Δdi,
which is an arbitrary bit in Δd;

2. An arbitrary bit Δxi in Δx, can affect only two bits Δdi−a and Δdi−b in Δd;
3. An arbitrary bit xi in x can affect at most two bits Δdi−a and Δdi−b in Δd.

Specifically, Δdi−a is affected by xi, iff. Δxi−a+b = 1; Δdi−b is affected by
xi, iff. Δxi−b+a = 1.

Based on Theorem 1, we can construct proper MILP models for SIMON-like
block ciphers in the following.

Constraints Imposed by XOR Operations. There are lots of XOR oper-
ations in either round functions or key schedules of SIMON-like block ciphers.
This turns out be a bottleneck in constructing efficient models if we follow the
XOR constraints given in [15,17], since there will be too many auxiliary variants.
However, we note that all possible points can be figured out easily and linear
constraints without auxiliary variants can then be obtained using the SageMath
code in [17]. We demonstrate this by the following example.

Let x ⊕ y ⊕ z = w, where x, y, z, w ∈ F2. All possible points for (x, y, z, w)
are (0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1,
1, 0, 0) and (1, 1, 1, 1). We can easily get the linear constraints as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + y − z + w ≥ 0
x + y + z − w ≥ 0
−x + y + z + w ≥ 0
x − y + z + w ≥ 0
−x − y + z − w ≥ −2
x − y − z − w ≥ −2
−x + y − z − w ≥ −2
−x − y − z + w ≥ −2

Constraints Imposed by ROTATION-AND Operations. Based on
Theorem 1, we divide the n bits input difference and n bits output difference of
ROTATION-AND operations into n groups. Specifically, group i (0 ≤ i ≤ n−1)
consists of three input difference bits at positions (i, i+ t, i+2t) and two output
difference bits at positions (i − b, i + t − b), where t = |a − b|.

Taking SIMON32 as an example, we list all 16 groups in Table 2, and all
possible points with respect to each group in Table 3. Then we can get the
following linear constraints by running the SageMath code [17] on input of all
possible points, where there is no auxiliary variants and the feasible region of
which contains no invalid characteristics.



122 X. Wang et al.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δxr
i+t − Δxr

i+2t − Δdr
i−b + Δdr

i+t−b ≥ −1

Δxr
i + Δxr

i+t − Δdr
i−b ≥ 0

−Δxr
i + Δxr

i+t + Δdr
i−b − Δdr

i+t−b ≥ −1

Δxr
i+t + Δxr

i+2t − Δdr
i+t−b ≥ 0

Table 2. The 16 groups for SIMON32.

Input Bits 0,7,14 7,14,5 14,5,12 5,12,3 12,3,10 3,10,1 10,1,8 1,8,15

Output Bits 15,6 6,13 13,4 4,11 11,2 2,9 9,0 0,7

Input Bits 8,15,6 15,6,13 6,13,4 13,4,11 4,11,2 11,2,9 2,9,0 9,0,7

Output Bits 7,14 14,5 5,12 12,3 3,10 10,1 1,8 8,15

Objective Functions. Let the probability of the differential characteristic be
2−w. Then we have the following objective function from Theorem1:

w =
R∑

r=0

(2
n−1∑

i=0

Δxr
i −

n−1∑

i=0

Δxr
i Δxr

i+t −
n−1∑

i=0

Δxr
i Δxr

i+2t +
n−1∑

i=0

Δxr
i Δxr

i+tΔxr
i+2t).

(1)
However, this objective function of degree three makes it hard to solve the

model. To solve this issue, we form n groups with group i consisting of three
bits input difference (Δxr

i , Δxr
i+t, Δxr

i+2t) as well as an auxiliary variants pr
i , in

order to reduce the degree of the objective function to one.

w = 2
R∑

r=0

n−1∑

i=0

Δxr
i −

R∑

r=0

n−1∑

i=0

pr
i . (2)

Then we can obtain the following linear constraints, taking the relationships
between (Δxr

i , Δxr
i+t, Δxr

i+2t) and pr
i as shown in Table 4.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δxr
i+2t − pr

i ≥ 0

−Δxr
i − Δxr

i+2t + pr
i ≥ −1

−Δxr
i+t − Δxr

i+2t + pr
i ≥ −1

Δxr
i + Δxr

i+t − pr
i ≥ 0

Since the non-linear key schedules of SIMECK essentially reuse its round
function, the objective function of SIMECK turns out to

w = 2
R∑

r=0

n−1∑

i=0

Δxr
i −

R∑

r=0

n−1∑

i=0

pr
i + 2

R−3∑

r=1

n−1∑

i=0

Δkr
i −

R−3∑

r=1

n−1∑

i=0

pr
ki. (3)
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4 (Related-Key) Differential Trails for SIMON and
SIMECK

In this section, we show the (related-key) differential trails for SIMON and
SIMECK, which are automatically searched by solving the MILP models in
Sect. 3 using Gurobi. Our results are twofold: first and foremost, we give (long)
related-key differential trails for SIMON-like block ciphers for the first time;
second, using the same method, we give impossible differentials for SIMON-like
block ciphers and recover the trails given by Liu et al. [11], both in the single-key
setting.

Table 3. All possible points for each group.

(Δxr
i , Δxr

i+t, Δxr
i+2t ) (Δdr

i−b, Δdr
i+t−b)

(0, 0, 0) (0, 0)

(0, 0, 1) (0, 0), (0,1)

(0, 1, 0) (0, 0), (0,1), (1,0), (1,1)

(0, 1, 1) (0, 0), (0,1), (1,0), (1,1)

(1, 0, 0) (0, 0), (1,0)

(1, 0, 1) (0, 0), (1,1)

(1, 1, 0) (0, 0), (0,1), (1,0), (1,1)

(1, 1, 1) (0, 0), (0,1), (1,0), (1,1)

Table 4. The value of auxiliary variant pr
i .

(Δxr
i , Δxr

i+t, Δxr
i+2t ) pr

i

(0, 0, 0) 0

(0, 0, 1) 0

(0, 1, 0) 0

(0, 1, 1) 1

(1, 0, 0) 0

(1, 0, 1) 1

(1, 1, 0) 0

(1, 1, 1) 1

4.1 Related-Key Differential Trails

We present optimal related-key differential trails for SIMON32/64 in Table 6,
SIMON48/72 and SIMON48/96 in Table 7, SIMECK32/64 and SIMECK48/96
in Table 8. The optimal trails for SIMON64 and SIMECK64 are identical to
those for SIMON48 and SIMECK48 respectively.
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Except for SIMECK32/64, constrained by the limited computational
resources, it is still difficult to obtain longer optimal related-key differential trails
for other parameters, whose probabilities may hopefully reach the security mar-
gin. To solve this issue, putting some optimal trail in the middle, we search both
forwards and backwards until it reaches the security margin. In addition, we
observe that there exists an 8-round period for SIMON32/64 in the related-key
setting, which yields a 19-round related-key differential trail with probability
2−32. These results are summarized in Table 5.

4.2 Single-Key Differential Trails

For obtaining single-key trails, it indeed costs more time by directly solving
the MILP models in Sect. 3 than using the method in [11]. However, a key
observation is that in optimal single-key differential trails, there is always some
round’s input difference with Hamming weight one. This can explained from the
following two perspectives: on the one hand, the upper-bound of probability of
each round is negatively related to the Hamming weight of its input difference,
as proved in [11]; on the other hand, considering the diffusion property, an active
input difference bit of some round can make many forward and backward bits
active; thus, it is intuitive to require the hamming weight of some round’s input
difference to be the least (namely one), for obtaining long trails.

Keeping these in mind, we can recover the results in [11] (R-round optimal
single-key differential trails) using much less time, by solving the MILP models
with the precondition that there exists some r ∈ {0, · · · , R − 1} such that the
Hamming weight of the r-th round’s input difference is one.

Table 5. The probabilities of optimal and best related-key differential trails for variants
of SIMON and SIMECK. To distinguish from optimal trails, best trails are labeled with
*. For simplicity, all probabilities p are given as (− log2 p) in the table.

Rounds 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

SIMON32/64 0 2 4 8 11 16 16* 24* 24* 24* 24* 32* 32* 32* 32* - - - -

SIMON48/72 2 4 6 12 14 18 22 30* 33* 40* 42* 50* - - - - - - -

SIMON48/96 0 2 4 8 12 18 24* 35* 36* 36* 36* 48* 48* 48* 48* - - - -

SIMON64/96 2 4 6 12 14 18 22 30* 34* 42* 46* 54* 55* 64* 70* - - - -

SIMON64/128 0 2 4 8 12 18 26* 36* 41* 48* 48* 64* 64* 64* 64* - - - -

SIMECK32/64 0 2 4 8 10 14 18 22 26 30 34 - - - - - - - -

SIMECK48/96 0 2 4 8 10 14 18 22 26 30 34 40 42* 46* 48* - - - -

SIMECK64/128 0 2 4 8 10 14 18 22 26 30 34 40 42* 46* 48* 54* 56* 62* 66*

4.3 Impossible Differentials

Considering the miss-in-the-middle approach and the diffusion property, we
search impossible differentials for SIMON-like block ciphers in single-key set-
ting, under that there is only one active bit in either the input difference or the
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Table 6. 10 rounds optimal related-key differential trails for SIMON32/64, where the
numbers represent the positions of active bits of input difference of each round while
‘-’ represents that there is no active bits.

R SIMON32/64

Δxl Δxr Δk

0 - 1,3,5,7,9,11,13,15 1,3,5,7,9,11,13,15

1 - - -

2 - - 0,2,4,6,8,10,12,14

3 0,2,4,6,8,10,12,14 - 1,3,5,7,9,11,13,15

4 - 0,2,4,6,8,10,12,14 0,2,4,6,8,10,12,14

5 - - -

6 - - 1,3,5,7,9,11,13,15

7 1,3,5,7,9,11,13,15 - 1,3,5,7,9,11,13,15

8 - 1,3,5,7,9,11,13,15 1,3,5,7,9,11,13,15

9 - - -

10 - - 0,2,4,6,8,10,12,14

11 0,2,4,6,8,10,12,14 - 1,3,5,7,9,11,13,15

Table 7. Optimal related-key differential trails for SIMON48.

R SIMON48/72 SIMON48/96

Δxl Δxr Δk Δxl Δxr Δk

0 - 7,8,9,10,22 4,6,7,8,9,10,22 - 9,11,12,13,16,17,19 9,11,12,13,16,17,19

1 4,6 - 2,4,22 - - 11,12,14,15

2 22 4,6 1,2,4,6,20 11,12,14,15 - 9,12,14

3 1,2 22 0,22,23 11 11,12,14,15 9,10,14,15

4 - 1,2 1,2,22 11,12 11 9

5 22 - 20 11 11,12 9,10,11,12

6 - 22 22 - 11 11

7 - - 22 - - -

8 22 - 1,2,20 - - 13

9 1,2 22 0,4,6,22,23 13 - 9,10,16,17

10 4,6 1,2 1,4,7,8,9,10,22 9,10,11,16,17 -

11 7,8,9,10,22 4,6

output difference. Then if the MILP models are infeasible under this condition,
we get impossible differentials.

Taking the rotational invariance property of SIMON-like block ciphers [20],
for each variant of SIMON2n and SIMECK2n, an impossible differential addi-
tionally yields (n − 1) impossible differentials by rotation. Our main results are
listed in Table 9.
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Table 8. Optimal related-key differential trails for SIMECK32 and SIMECK48.

R SIMECK32/64 SIMECK48/96

Δxl Δxr Δk Δxl Δxr Δk

0 - 4,8,9,10 4,8,9 - 18 18

1 10 - 9 - - -

2 - 10 10 - - 20

3 - - - 20 - -

4 - - - 19 20 18

5 - - - 20 19 19

6 - - 10 19 20 20

7 10 - - 18,19 19 17

8 9 10 - - 18,19 -

9 4,8,9,10 9 9 18,19 - -

10 5,7 4,8,9,10 10 17,19 18,19 16,20

11 6,8,9 5,7 - 20 17,19 17

12 - 6,8,9 8,9 - 20 -

13 6 - 5 20 - 19

14 - 6 10 - 20 20

15 6,10 - - - 17

16 17 -

Table 9. Impossible differentials for SIMON and SIMECK in single-key.

ROUNDS Trails

SIMON32 11 (0,4000)�(80,0);
(0,4000)�(20,0)

SIMON48 12 (0,400000)�(800000,0);
(0,400000)�(200000,0)

SIMON64 13 (0,40000000)�(8000000,0);
(0,40000000)�(800000,0);
(0,40000000)�(200000,0);
(0,40000000)�(80,0);
(0,40000000)�(20,0);
(0,40000000)�(2,0)

SIMECK32 11 (0,4000)�(200,0);
(0,4000)�(8,0)

SIMECK48 15 (0,400000)�(800000,0);
(0,400000)�(200000,0);
(0,400000)�(20000,0);
(0,400000)�(8,0)

SIMECK64 17 (0,40000000)�(8000000,0);
(0,40000000)�(2,0)

5 Summary

In this paper, we mainly studied the security of SIMON-like block ciphers in the
related-key setting, by a fine-grained analysis of the ROTATION-AND oper-
ations. We hope our work helpful in designing key schedules for SIMON-like
block ciphers. For future works, it is desirable to obtain longer optimal differ-
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ential trails in related-key setting, maybe by combining our work with other
automatic searching algorithm, e.g., SAT/SMT solver.

Acknowledgement. The authors thank the anonymous reviewers of ISC2018 for use-
ful comments. This work was supported by the NSFC under grant #61379139.

A Proof of Lemma 1

Proof. Let x and (x ⊕ Δx) be two inputs of the function f . We have

Δd = f(x) ⊕ f(x ⊕ Δx)

= (Sa(x) � Sb(x)) ⊕ (Sa(x ⊕ Δx) � Sb(x ⊕ Δx))

= Sa(x) � Sb(Δx) ⊕ Sa(Δx) � Sb(x) ⊕ Sa(Δx) � Sb(Δx)

(4)

Then for any bit Δdi in Δd (i = 0, · · · , n − 1), we have

Δdi = xi+a � Δxi+b ⊕ Δxi+a � xi+b ⊕ Δxi+a � Δxi+b (5)

Obviously, only two bits in Δx, namely Δxi+a and Δxi+b can affect the value
of Δdi.

Fix an arbitrary i, assume that Δdk is affected by Δxi. First, we have

Δdk = xk+a � Δxk+b ⊕ Δxk+a � xk+b ⊕ Δxk+a � Δxk+b, (6)

from Eq. (5). If Δdk is affected by Δxi, then we have

i ≡ k + a mod n (7)

or
i ≡ k + b mod n (8)

Put it in another form, we have

k ≡ i − a mod n (9)

or
k ≡ i − b mod n (10)

So proved that an arbitrary bit Δxi can affect only two bits Δdi−a and
Δdi−b.

From Eq. (5), we have that

(1) if Δxi+a = 0,Δxi+b = 0, then Δdi = 0;
(2) if Δxi+a = 1,Δxi+b = 1, then Δdi = (xi+a ⊕ xi+b) � 1 ⊕ 1;
(3) if Δxi+a = 1, Δxi+b = 0, then Δdi = Δxi+a � xi+b = xi+b;
(4) if Δxi+a = 0, Δxi+b = 1, then Δdi = xi+a � Δxi+b = xi+a.

Let xi denote an arbitrary bit in x. Δdk is affected by xi, iff. k ≡ i−a mod n
and Δxk+b = Δxi−a+b = 1, or k ≡ i − b mod n and Δxk+a = Δxi−b+a = 1. �	



128 X. Wang et al.

B Proof of Theorem 1

Proof. Let Rd be the collection of bits in Δd which are affected by bits in R.
From Lemma 1,

Rd = {Δdi0−a,Δdi0−b,Δdi1−a,Δdi1−b, . . . ,Δdim−1−a,Δdim−1−b}
There may be duplicate elements in the collection Rd.

1. Since a 
= b, then i� − a 
≡ i� − b mod n, for � = 0, · · · ,m − 1;
2. For 0 ≤ j 
= k ≤ m − 1, ij − a 
≡ ik − a mod n, since ij 
= ik;
3. For 0 ≤ j 
= k ≤ m−1, if ij −a ≡ ik − b mod n, then ij − ik ≡ a− b mod n;
4. For 0 ≤ j 
= k ≤ m−1, if ij − b ≡ ik −a mod n, then ij − ik ≡ b−a mod n;

If there exist p1 pairs of {ij , ik} such that |ij − ik|≡ |a − b| mod n, we have

ij − ik ≡ a − b mod n (11)

or
ij − ik ≡ b − a mod n (12)

we claim that Eqs. (11) and (12) cannot hold true simultaneously, otherwise it
contradicts with gcd(n, a − b) = 1. Let R′

d denote the set obtained by removing
duplicate elements from the collection Rd. Then if there exist p1 pairs of {ij , ik}
such that |ij − ik|≡ |a − b| mod n, |Rd|−|R′

d|= p1.
Now we turn to discuss the relationships amongst bits in Δd. First, for Δdk /∈

R′
d, we have Δxk+a = 0 and Δxk+b = 0 from Lemma 1; specifically, Δdk = 0

holds with probability 1, regardless of the values of xk+a and xk+b. Thus, we
need only to discuss the relationships amongst bits in R′

d. For Δdk ∈ R′
d, it

has been proved by Lemma 1 that at least one of Δxk+a and Δxk+b is active.
Specifically,

1. Δxk+a = 1, Δxk+b = 0. In this case, Δdk = xk+b. If there exists some other
bit Δd′

k ∈ R′
d such that Δd′

k is dependent of Δdk, then k′ ≡ k+b−a mod n,
since Δdk+b−a is the only bit which may be affected by xk+b except for Δdk

from Lemma 1.

Δdk+b−a =Δxk+b � xk+2b−a ⊕ xk+b � Δxk+2b−a

⊕ Δxk+b � Δxk+2b−a

(13)

If Δxk+2b−a ∈ R, then Δdk+b−a = xk+b = Δdk; otherwise, Δdk+b−a = 0
holds with probability 1 (independent of Δdk).

2. Δxk+a = 0, Δxk+b = 1. In this case, Δdk = xk+a. If there exists some other
bit Δd′

k ∈ R′
d such that Δd′

k is dependent of Δdk, then k′ ≡ k+a−b mod n,
since Δdk+a−b is the only bit which may be affected by xk+a except for Δdk

from Lemma 1.

Δdk+a−b =Δxk+a � xk+2a−b ⊕ xk+a � Δxk+2a−b

⊕ Δxk+a � Δxk+2a−b

(14)

If Δxk+2a−b ∈ R, then Δdk+a−b = xk+a = Δdk; otherwise, Δdk+a−b = 0
holds with probability 1 (independent of Δdk).
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3. Δxk+a = 1, Δxk+b = 1. In this case, Δdk = (xk+a ⊕ xk+b) � 1 ⊕ 1. From
Lemma 1, the only other bit which may be affected by xk+a is Δdk+a−b.
Specifically, the following equation holds if Δxk+2a−b ∈ R.

Δdk+a−b = (xk+2a−b ⊕ xk+a) � 1 ⊕ 1 (15)

From Lemma 1, the only other bit which may be affected by xk+b is Δdk+b−a.
Specifically, the following equation holds if Δxk+2b−a ∈ R.

Δdk+b−a = (xk+b ⊕ xk+2b−a) � 1 ⊕ 1 (16)

It is obvious that Δdk can be dependent of other bit(s) in R′
d, only in the case

that Δxk+2a−b,Δxk+2b−a ∈ R. However, since Δdk+b−a and Δdk+a−b intro-
duce the new bits (variants) of xk+2a−b and xk+2b−a respectively, we should
involve more elements in R′

d to reduce the effects of xk+2a−b and xk+2b−a.
Again from Lemma 1, the only other bit affected by xk+2a−b (xk+2b−a)
is Δdk+2a−2b = (xk+3a−2b ⊕ xk+2a−b) � 1 ⊕ 1 (Δdk+2b−2a = (xk+2b−a ⊕
xk+3b−2a) � 1 ⊕ 1) on condition that Δxk+3a−2b ∈ R (Δxk+3b−2a ∈ R).
Thus, in order to eliminate the effects of xk+2a−b and xk+2b−a, the only choice
(from Lemma 1) is involving the new bits of Δdk+2a−2b and Δdk+2b−2a, which
can indeed eliminate xk+2a−b and xk+2b−a however introduce two new vari-
ants of xk+3a−2b and xk+3b−2a. Under the condition gcd(n, a − b) = 1, this
eliminating-while-introducing process will succeed iff. |R|= n, and the proba-
bility of each possible value of Δd is 2−(n−1) which coincides with the result
in [11]. On the other hand, Δdk = (xk+a ⊕ xk+b) � 1 ⊕ 1 is independent of
other bits in R′

d when |R|< n.

�	
For a better understanding, we give an example with (n, a, b)=(8, 0, 3) as

shown in Fig. 3. Assume that Δx0 = 1, Δx3 = 1. Only in the case where all
input difference bits are active, can Δd0 be dependent of other bits in Δd,
namely Δd0 = Δd1 ⊕ · · · ⊕ Δd7.

1. Δd0 = (x0 ⊕ x3) � 1 ⊕ 1
2. Δd5 = (x0 ⊕ x5) � 1 ⊕ 1, when Δx5 = 1; Δd3 = (x6 ⊕ x3) � 1 ⊕ 1, when

Δx6 = 1
3. Δd2 = (x2 ⊕ x5) � 1 ⊕ 1, when Δx2 = 1; Δd6 = (x6 ⊕ x1) � 1 ⊕ 1, when

Δx1 = 1
4. Δd7 = (x2 ⊕ x7) � 1 ⊕ 1, when Δx7 = 1; Δd1 = (x1 ⊕ x4) � 1 ⊕ 1, when

Δx4 = 1
5. Δd4 = (x4 ⊕ x7) � 1 ⊕ 1

Essentially, given gcd(n, a−b) = 1, there is only one cycle (
(

3 6 1 4 7 2 5 0
6 1 4 7 2 5 0 3

)

in this example). More generally, when gcd(n, a−b) = t, there will be t cycles, and
this in some way explains the rationalities of such requirement gcd(n, a− b) = 1.
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Fig. 3. The affected relationship between input and output difference bits of
ROTATION-AND.
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Abstract. Previous research on linear cryptanalysis with Speck has
proved that good linear trails and a meaningful distinguisher for vari-
ants of Speck can be found. In this paper we use two different linear
approximations of modular addition to search for even better linear trails.
Also, we have added a heuristic to search for large bias approximations
for the state conversion approach. We will explain how the automatic
search works and discuss its performance. Finally we illustrate that lin-
ear approximations with large bias exist in variants of Speck.
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1 Introduction

In the last couple of years a surge of new block cipher designs has urged the need
for cryptanalysts to scrutinize their security. Lightweight ciphers are designed
for resource-constrained devices. Designing ciphers for these devices means that
one has to make design trade-off’s keeping in mind the limitations that such
an environment presents, such as limited memory, restricted computational and
energy resources, etc.

A popular construction for block ciphers is Addition Rotation and XOR,
abbreviated as ARX. In this construction a block is split into 2 or more words,
which are then added, XORed and rotated by the round function. The popularity
of the ARX construction stems from its good performance in software. Confusion
is achieved by using modular addition in the round function, whereas diffusion
is achieved by using bitwise rotation and xor.

In this paper we try to analyse the security of Speck, a block cipher that
has been published by the NSA in 2013 [6]. Speck is a lightweight block cipher
designed to achieve good performance in software. The block consists of two
words, each 16/24/32/48 or 64 bit, which are processed a number of times by
the round function. At the end of the last round a ciphertext is obtained. Speck
comes in different variants for which different security and performance levels
are provided, see Table 1.
c© Springer Nature Switzerland AG 2018
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Since the publication of the cipher in 2013, several papers have analysed its
security [1,4,10]. The best published attacks on Speck are differential cryptan-
alytic attacks [10]. However, recently linear cryptanalysis applied against Speck
has proved to deliver good linear approximations that can be used for testing the
security of the cipher [14,21]. Linear cryptanalysis is a known plaintext attack
developed in 1993 by Matsui [15]. When using this method the adversary searches
for possible correlations between bits of the input and bits of the output. Once
such a correlation is found, the known plaintexts and ciphertexts can be used to
recover the secret key.

This paper applies two known approaches to linear approximate modular
addition, using them separate and combined. In addition we introduce a heuristic
for searching linear trails using state conversion.

The rest of this paper is structured as follows. In Sect. 2 we describe Speck. In
Sect. 3 we discuss shortly the related work. In Sect. 4 we explain the 2 approaches
of linear approximating modular addition. In Sect. 5 we explain the automatic
search method that has been used to obtain linear trails for Speck. In Sect. 6 we
present the linear trails we found for Speck. Finally, in Sect. 7 we conclude this
paper.

2 A Brief Description of Speck

The cipher comes in several versions sharing the same Feistel structure and round
function. The different parameters of all Speck versions are presented in Table 1.

The round function of Speck uses three operations:

– Modular addition, �.
– Left and right circular bit shifting, α and β.
– Bitwise XOR, ⊕.

Table 1. Variants of the Speck family [6]

Block size n Key size Word size α β Rounds

32 64 16 7 2 22

48 72 24 8 3 22

96 23

64 96 32 8 3 26

128 27

96 96 48 8 3 28

144 29

128 128 64 8 3 32

192 33

256 34



134 D. Bodden

Fig. 1. Speck round function

The output of the round function is:
xi+1 = (xi ≫ α) � (yi)
yi+1 = ((xi ≫ α) � (yi)) ⊕ (yi ≪ β))

The output words xi+1 and yi+1 are the input words for the next round. In Fig. 1
the round function of Speck is shown.

3 Related Work

Since the publication of Speck there has been a fair amount of analysing done
on the security and performance of the cipher. The best attacks to date are
of the family of differential cryptanalysis [1,4,10]. Differential cryptanalysis has
been developed by Biham and Shamir in 1990 [5]. When using differential crypt-
analysis the adversary investigates how differences in the input affect the output,
trying to discover non-random behaviour. Results of previous differential attacks
concerning Speck are presented in Table 2.

From the results of differential cryptanalysis on Speck we gather that these
methods are successful in attacking a large number of rounds in the chosen
plaintext model. Looking at the design of Speck we might expect that linear
cryptanalysis might be effective as well. This has been demonstrated by recent
research on linear cryptanalysis on variants of Speck [14,21]. Results of previous
linear attacks concerning Speck are presented in Table 3.

The results of linear cryptanalysis on Speck are at the moment not better
then the differential attacks. Yet, they are not far off the mark. Considering the
recent gains made with linear cryptanalysis on Speck, this paper complements
previous work by evaluating the resistance of Speck against linear cryptanalysis
in the known plaintext model. The contribution of this paper is to introduce a
heuristic search method for linear trails that uses several approaches to approx-
imate modular addition [7,19] to find long linear trails in a short search time in
a relevant search space.
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Table 2. Trail lengths of differential cryptanalysis attacks concerning Speck

Variant n Distinguished rounds/
Total rounds

Probability Reference

32 9/22 2−30 [11]

10/22 2−30 [10]

48 11/22 2−45 [11]

11/22 2−40 [10]

64 15/22 2−62 [11]

15/26 2−60 [10]

96 14/28 2−84 [10]

16/28 2−87 [11]

128 15/32 2−112 [10]

19/32 2−119 [11]

Table 3. Trail length of linear cryptanalysis attacks concerning Speck

Variant n Distinguished rounds/
Total rounds

Bias Reference

32 9/22 2−14 [21]

9/22 2−14 [11]

9/22 2−14 [18]

48 9/22 2−20 [21]

10/22 2−22 [11]

10/22 2−22 [18]

64 12/26 2−31 [21]

12/26a 2−30 [18]

13/26 2−30 [11]

96 6/28 2−11 [21]

15/28 2−45 [18]

15/28 2−45 [11]

128 6/32 2−11 [21]

16/32 2−61 [18]

16/32 2−58 [11]
a In discussion with the authors [14] it was established
that the length of the linear trail is correct, but that
the input of the last two rounds should be for λxi =
0x41000040, λyi = 0x4c000040 and λxi = 0x2698200,
λui = 0x62080200 with the same cost as in the paper.
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4 Linear Approximation of Modular Addition

Linear cryptanalysis is a powerful cryptanalytic method with regard to crypt-
analysis of block ciphers. When using linear cryptanalysis, an adversary tries
to find a linear expression that approximates a non-linear function with a
probability different than 1

2 [15]. The approximation has the form:

Pi ⊕ ... ⊕ Pj ⊕ Ck... ⊕ Cl = Km... ⊕ Kn (1)

with Pi...Pj being bits from the plaintext, Ck...Cl bits from the ciphertext and
Km...Kn bits from the key. Once a good approximation is found the adversary
can retrieve one key bit. To combine linear approximations we use the Piling Up
Lemma [15]. This will tell us the bias of the combined approximation. For two
approximations, with ε1 and ε2 as their respective biases, combining them gives
an overall bias:

ε = 2 · ε1ε2 (2)

This can be generalized for σ approximations:

ε = 2σ−1 ·
σ∏

i=1

εi (3)

The combined approximations can be used to form a linear distingisher ζ for
the cipher. This ζ can be used to detect non-random behaviour in supposed to
be random signals. Meaning that ζ can be used to detect if a certain cipher is
being used. When a good ζ is found, the input bits are masked by

{
λx1 ;λy1

}
,

and the output bits are masked using {λxr ;λyr}, resulting in:

T = #
{
λx1 · x ⊕ λy1 · y ⊕ λxr · x ⊕ λyr · y = 0

}
(4)

with r being the length of ζ, T the counter and · being the dot product. This
should be repeated for at least ε−2 messages. If T is around:

ε−2 · (
1
2

± ε) (5)

we have discovered the cipher in a signal.

4.1 Approach 1

The modular addition operation, which is used as the non-linear operation of
Speck, consists of an xor and a carry. A chain of carries means using the previous
carry in the current operation. This makes the behaviour of modular addition
non-linear. To approximate the behaviour of Speck, we have to deal with modu-
lar addition in such a way that takes out this non-linear behaviour. The property
of modular addition that we use is exploring the correlation between two neigh-
bouring bits. Suppose we have 3 words x, y and z with z = x � y and x, y
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∈ {0, 1}n. According to Cho and Pieprzyk [7], each single z(i) bit written as
function of x(i),· · · ,x(0) and y(i),· · · ,y(0) bits can be expressed as:

z(i) = x(i)⊕y(i)⊕x(i−1) ·y(i−1)⊕
i−2∑

j=0

x(j) ·y(j)
i−1∏

k=j+1

[
x(k)⊕y(k)

]
, i = 1, 2, ..., n−1 .

(6)
with xi and yi representing 1 bit each and z(0) = x(0) ⊕ y(0). The carry R(x, y)
of the modular addition is represented by:

R(x, y)(i) = x(i) · y(i) ⊕
i−1∑

j=0

x(j) · y(j)

i∏

k=j+1

[
x(k) ⊕ y(k)

]
, i = 0, 1, ..., n − 2 . (7)

Then we can also write z(i) = x(i) ⊕ y(i) ⊕ R(x, y)(i−1) for i = 1, ...(n − 1).
We use a property of modular addition mentioned in another paper of Cho and
Pieprzyk [8] that removes the carry chain from Eq. 6. This property uses consecu-
tive bits as underlying requirement to keep the probability for the approximation
constant. The parity of two consecutive bits can be approximated as:

z(i) ⊕ z(i−1) = x(i) ⊕ x(i−1) ⊕ y(i) ⊕ y(i−1), Pr[Ri(x, y) ⊕ Ri−1(x, y) = 0] =
3

4
. (8)

hence, if a mask λ contains only two consecutive bits, we can say:

Pr [λ · (x � y) = λ · (x ⊕ y)] =
3
4

. (9)

This expression says that using a mask λ to mask out the bits we want to
throw away and keep the bits we are interested in, the consecutive bits, and
we linearise the left side of the expression by replacing it with the right side.
This approximation holds with probability 3

4 only for 2 consecutive bits. For an
ARX construction, Eq. 9 remains valid as long as the following two conditions
are avoided:

1. Bitwise rotation moves a pair of approximated bits to the MSB (most signifi-
cant bit position) and LSB (least significant bit position) hence not adhering
to the Cho and Pieprzyk framework, take for instance the following example
0000000011000000 ≫ 7 = 1000000000000001.

2. Or, xor breaks the consecutive bits input into single bits output, hence not
adhering to the Cho and Pieprzyk framework, take for instance the following
example 0000000011000000 ⊕ 0000000110000000 = 0000000101000000.

4.2 Approach 2

Another approach to linearly approximate modular addition is using the research
of Wallén [19,20]. Later Nyberg and Wallén used this approach to search for
linear approximations of the stream cypher Snow2.0 [17]. Recently, Lui and Yao
applied this approach to variants of Speck [14,21]. Our approach 2 for variants
of Speck is based on these works.
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Let u be the output mask of the modular addition and v, w be the input
masks. The correlation is:

c(u, v, w) � 2Pr(u · (Z1 � Z2) ⊕ v · Z1 ⊕ w · Z2 = 0) − 1 . (10)

with Z1 and Z2 to be independent uniform distributed random variables. This
expression says that a modular addition can be approximated by replacing the
modular addition with 3 variables u, v and w. Several follow up approaches
exist how to search for valid u, v and w. One possible approach would be to
enumerate all possible u, v, w masks and use branch—and bound techniques to
find a good linear approximation [19–21]. An alternative approach is to produce
a partial linear mask table by using state conversion [18]. In this paper we use
an adjusted version of the second approach to search for valid u, v and w masks
that deliver good linear approximations with large bias.

We use state conversion [17,19] to compute the correlation from Eq. 10. The
state conversion can be computed using the standard automaton, illustrated in
Fig. 2.

e0start e1

0

0

7

1,2,3,4,5,6
0,3,5,6 (cost+1)

1,2,4,7 (cost+1)

Fig. 2. The standard automaton, graphically illustrated

This standard automaton, a state machine, checks the validity of each ui,
vi, wi. Starting at the LSB or MSB, the standard automaton combines the bits
ui, vi, wi and checks the current state, iterating over the whole mask. The cost
of the approximation is in this approach also expressed in bias. The bias will
increase by one every time the state passes e1 → e1 or e1 → e0. Free passes are
e0 → e0 or e0 → e1. The approximation of the modular addition fails if state
transition goes e1 → O.

For a certain iteration we have u, w and v. The standard automaton starts
in state e0 with checking the state conversion of the most significant bit or least
significant bit of ui, wi and vi, taking each a bit of these masks and combines
them into ζi. According standard automaton, the following state conversion can
happen:
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– if e0 and ζi ∈ {1, 2, 3, 4, 5, 6}, the state is then O
– if e0 and ζi ∈ {0} counter no addition, the states stays e0
– if e0 and ζi ∈ {7} counter no addition, the states changes to e1
– if e1 and ζi ∈ {0, 3, 5, 6} counter +1, the states stays e1
– if e1 and ζi ∈ {1, 2, 4, 7} counter +1, the state changes to e0.

The above mentioned state conversion goes on until n. At the end of the
Automaton the counter represents the bias of the state conversion for n over ζi

concerning u, w and v.

5 Automated Search for Linear Trails

This paper is not the first to introduce a automated search for primitive
characteristics [9,12,13]. Yet, there are important differences. First, Leurent’s
research focuses on automated differential cryptanalysis on ARX ciphers. Sec-
ond, Dobraunig et al. focuses on linear cryptanalysis approaches for substitution-
permutation networks. The automated search introduced in this paper focuses
on linear cryptanalysis of ARX ciphers with 2 main parts: combining several
linear cryptanalysis approaches and introducing an heuristic approach.

In order to automate the search for good linear trails, we have designed
a parallel algorithm. The algorithm is implemented using a parallel program-
ming language called OpenCL [16,18]. Unique to OpenCL is that it takes an
abstraction of the hardware layer and is vendor independent. A particular asset
using this parallel programming language is that it dynamically use the available
resources to maximise computing in parallel mode.

The configuration on which the computation has run was a 40 core Intel Xeon
machine with a clock speed of 3.10 GHz, exclusively using CPU’s. The time it
took to compute all pairs of consecutive bits for the 32 bit version was less than
0.01 s to a few minutes for the largest variant of Speck.

5.1 Combined Approach

Approach 1 has been introduced and later implemented in a automated search
by Ashur et al. [2,3]. In this paper we work further on that work combined with
approach 2 introduced by Yao et al. and improved by Liu et al. [14,21] that we
fit into a heuristic.

Combining both approaches for searching good linear trails makes sense.
The first approach iterates over a small space by checking all possible pairs
of consecutive bits over the length of the mask. Yet, this method has a lot of
restrictions under which the search for linear trail breaks. Whereas, the second
approach gives more freedom, i.e. an extra variable for every modular addition,
meaning 2

n
2 per modular addition more space to search for a long trail. On the

contrary, the downside is that this method cannot run on the complete available
search space, as the number of mask combinations to search from is to intractable
for present-day computers.
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The combined approach starts first using the first approach until the compu-
tation breaks and then switches to the second approach. We started by searching
in the space of all possible pairs of consecutive bits over the length of a mask (e.g.
starting with one pair of two consecutive bits up to n

2 pairs of two consecutive
bits). Practically, this means applying the following steps on the round function
of a cipher:

1. Replace every modular addition with XOR.
2. Following two actions have to be done in parallel

(a) Replace branch with XOR
(b) Replace prior existing XORs with branch

3. Reverse the direction of the horizontal arrows

We have done this analysis in the forward direction, backward direction and
combining forward and backward together. The forward direction is exactly the
same as the original cipher, whereas in the backward direction the vertical arrows
and the circular rotation are reversed. In Fig. 3 we show a simplified cipher using
the framework of Cho and Pieperzyk for searching linear trails, respectively in
the backward and in the forward direction [2].

Fig. 3. Approach 1: a transformation of the Speck one round function (on the left
(right) to search for linear 1 round approximation in the backward (forward) direction)

We have iterated over all pairs of consecutive bits until one of two stop
conditions have been met. The first stop condition is when a mask containing
non-consecutive bits is encountered in the round function entering into the mod-
ular addition. The other condition upon which the computation will be stopped
is when the counter exceeds minimum bias.

When the first stop condition is triggered using the first approach, the com-
bined approach switches to the second approach. The search space for the second
approach is not limited to only consecutive bits. The following steps are rule of
thumb to convert the round function of the cipher for the second approach:
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1. Replace every modular addition with a branch consisting of v, w and u, with
w having a double sided arrows. This branch will not be changed later to xor.

2. Following two actions have to be done in parallel
(a) Replace branch with XOR
(b) Replace prior existing XORs with branch

3. Reverse the direction of the horizontal arrows

This approach follows the same set up as the first approach, a forward direction,
a backward direction and a combination of the both. When working exclusively
with approach 2, finding linear trails in both direction makes no difference.
However with the first approach it does. As the second approach starts at the
point the first approach stops, the second approach will go in the direction that
has been started during the computation for the first approach. In Fig. 4 we
show a simplified cipher using the theory of Wallén for searching linear trails,
respectively in the backward and in the forward direction [20].

Fig. 4. Approach 2: a transformation of the Speck one round function (on the left
(right) to search for linear 1 round approximation in the backward (forward) direction)

In order to find approximations with large bias we restrict the allowable bias
to T ≤ n

2 +1. The bias for one pair of bits is Pr[Ri(x, y)⊕Ri−1(x, y) = 0]− 1
2 =

1
4 . Generalized to � pairs of bits the bias can be calculated using the Piling Up
Lemma:

2�−1 · (1 − Pr[Ri(x, y) ⊕ Ri−1(x, y) = 0])�
. (11)

with values for � = 1, ..., n
2 . The bias is calculated with the value obtained by the

hamming weight of the mask passing the modular addition in the round function
divided by 2, multiplied by the bias of the previous rounds, calculated on the
approximated modular addition λ · (x ⊕ y).

5.2 Heuristic

Not only both the approaches are combined, but we also introduce a fast heuristic
search for masks in approach 2 to speed up the switch from approach 1 to 2.
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Namely, by finding an u, v and w that is valid for approach 2, given the last
correct output of the linear trail that broke with approach 1. An approach would
be to just iterate over all possibilities of wi and ui or vi. However, this approach
is slow and for the larger impossible to check all possible masks. To solve this
difficulty we use the Automaton to search only for fixes for the 2 dependent
mask, for the forward direction w and u, that have a large bias. The heuristic
works as follows for the forward direction:

1. When consecutive bits check fails, use the heuristic
2. Given v, choose a w and u as follows

(a) if (state 0 AND bit 0 for vi) ⇒ wi = 0, ui = 0
(b) else if (state 0 AND bit 1 for vi) ⇒ wi = 1, ui = 1
(c) else if (state 1 AND bit 0 for vi) ⇒ wi = 0, ui = 1, cost +1
(d) else if (state 1 AND bit 1 for vi) ⇒ wi = 1, ui = 1, cost +1

3. Result is a valid w, u, v for the Automaton with minimal cost. Perform
Automaton and calculate new bias

The heuristic also works in the backward direction. Instead of v, now u is given.
The only change compared to the explanation of the heuristic in the forward
direction, is to interchange v and u from position. In Fig. 5 we illustrate how the
heuristic searches for a fix with a low cost.

e0start e1

000

111

001 or 010 (cost+1)
100 or 111 (cost+1)

Fig. 5. Heuristic automaton: finding u,v and w with a low cost

5.3 Searching in a Smaller Relevant Space

A final improvement was to use the hamming weight for filtering the input space
of approach 1 on masks that had a certain hamming weight, depending on the n
blocksize of the Speck variant. After analysing several trails, by branching every
trail, we found that long linear trails had a low hamming weight. In the long
linear trails we never saw a hamming weight larger than 12. The improvement
helped to reduced the search time for the larger variants of Speck.

6 Linear Trails of the Round Function of Speck

Linear cryptanalysis relies on collecting a large amount of input and output
pairs in order to verify whether the approximation has been satisfied or not.
In this work we experimented with several variants of the approaches to linear
approximate modular addition. We concluded the following experiments:
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– approach 1 searching with pairs of consecutive bits limited to a certain ham-
ming weight

– approach 2 with a heuristic searching all possible bits limited to a certain
hamming weight

– combined approach with a heuristic searching all possible bits limited to a
certain hamming weight

The overall best result for the several approaches are shown in Table 4. From the
result in Table 4 we observe that both approach 2 and the combined approach
find longer linear trails compared to approach 1. This observation is clear for
all variants of Speck, except for the 64-bit variant. In the following sections we
explain in more details these results and the differences between the results of
the approaches.

Table 4. Best trail length of the different approaches

Variant n Approach 1
Distinguished rounds/
Total rounds

Approach 2
Distinguished rounds/
Total rounds

Combined approach
Distinguished rounds/
Total rounds

32 7/22 8/22 8/22

48 8/22 9/22 9/22

64 11/26 11/26 11/26

96 11/28 12/28 12/28

128 13/32 14/32 13/32

6.1 Results Approach 1

The search space for the first approach has been limited to start fixing one mask
λx1 with one pair of consecutive bits (0x3, 0x6, ...) and keeping the other mask
λy1 zero, checking how the masks evolve both in the forward and backward
direction.

After receiving promising results for one pair we extended the computation to
all possible pairs of two consecutive bits given a block size. We found out that the
consecutive bits search space still wasted time on checking masks that would in
this approach not result in long trails. This is because approach 1 uses hamming
weight to calculate the cost for each pass trough the linear approximated modular
addition. After careful analysis of long trails we found out that there is a certain
upperbound on the hamming weight of masks. Above this limit the trails stopped
early because reaching the upperbound for the allowed bias to find good linear
trails. The hamming weight upperbound depends largely on the variant of Speck
that is employed for searching linear trails. By limiting the maximum allowable
hamming weight for masks we could search in the more relevant search space,
and by archiving this we found long linear trails in a short time. In Table 5 we
show the best linear trails found for variants of Speck by approach 1. From the
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Table 5. Approach 1: length linear trails for different variants of Speck

Variant n Distinguished rounds/
Total rounds

Bias Upperbound
hamming weight

Mask
searched

Search time
in sec.

32 7/22 2−14 2 92 0.0120

48 8/22 2−22 2 132 0.0115

64 11/26 2−32 2 172 0.1148

96 11/28 2−42 2 252 0.0190

128 13/32 2−58 2 642 0.0090

results of approach 1 we can derive that this method doesn’t find the longest
trails already discovered by other methods in the research community. However,
this approach finds in a relatively short time trails that are not far off the mark
of the longest linear trails.

We have looked further in to the causes why approach 1 doesn’t find the
longest trails of all existing methods to find linear trails. One of the possible
causes are that approach 1 restricts too much the search space to only consecutive
bits. Secondly, the method to linear approximate modular addition that is used
in this approach puts heavy restrictions on the conditions that valid masks are
found.

6.2 Results Approach 2

The second approach in this paper is based on the state machine. The search
space we used was limited to all n bits with a certain upperbound hamming
weight, that can be set freely. In order to overcome the time complexity problem
that other papers hit upon [21], we introduce a heuristic to find good linear
trails in a short search time. In Table 6 we show the best linear trails found for
variants of Speck by approach 2.

Table 6. Approach 2: length linear trails for different variants of Speck

Variant n Distinguished rounds/
Total rounds

Bias Upper bound
hamming weight

Mask
searched

Search time
in sec.

32 8/22 2−16 2 1372 0.5087

48 9/22 2−23 2 3012 0.5175

64 11/26 2−32 2 5292 21.0613

96 12/28 2−47 2 11772 22.1236

128 14/32 2−65 2 20812 7.8315

From the results of approach 2 we can conclude that we get mixed results
compared to approach 1. For the 32, 48, 96 and 128 variant approach 2 finds
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one more round,while for 64 the found trail length stays the same. A downside
of approach 2 is the apparent longer search time. The search time for approach
2 heavily depends upon the upperbound that is set for the hamming weight on
the input masks. A higher upperbound results in a larger search time and space.
A larger search space has more possible masks to search for a long trail, yet has
a longer search time. A way to counter the longer search time is to partition the
search space in small chunks. The partial result of a chunk can give feedback on
the current best result.

An interesting result from the experiments on this approach is that by chang-
ing the parameters for the heuristic the length of the trails differ. One can tune
the heuristic parameters by changing the following values:

– if e1 and vi == 0
• set current bit of ui to 0 and set wi to 1, or
• set current bit of ui to 1 and set wi to 0

– if e1 and vi == 1
• set current bit of ui to 1 and set wi to 1, or
• set current bit of ui to 0 and set wi to 0

From running several experiments with different parameters for the heuristic
on variants of Speck we found an indication that the following parameter setting
finds the longest linear trails.

– if e1 and vi == 0
• set current bit of ui to 0 and set wi to 1

– if e1 and vi == 1
• set current bit of ui to 1 and set wi to 1

There is no clear indication why this particular parameter setting should be
optimal.

6.3 Results Combined Approach

A last approach that we investigated in this paper is a combination of both
previous mentioned approaches. From the first approach we expected to deliver
reasonable long trails in a short time, with approach 2 picking up on the moment
approach 1 fails and try to further extend linear trails. An overview of the
obtained results from the experiments are illustrated in Table 7. The combined
approach finds the same trails length for almost all variants of Speck. Yet, on
the 32 variant of Speck one round less is found. An interesting observation is
that for 32 much more masks has to be searched leading to a longer search time
compared to approach 2 with the same trail length as the combined approach.
In addition, the search performance of 32 to the other variants of Speck for the
combined approach is significantly worse. The combined approach seems to work
faster in terms of search performance compared to approach 2.

Looking into more detail to a complete linear trail we can investigate inter-
esting aspects of its behaviour. In Table 8 a full linear trail is illustrated for
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Table 7. Combined approach: linear trail length for different versions of Speck

Variant n Distinguished rounds/
Total rounds

Bias Upperbound
hamming weight

Mask
searched

Search time in sec.

32 8/22 2−15 8 392032 113.1070

48 9/22 2−23 2 3012 2.8183

64 11/26 2−31 2 5292 10.0541

96 12/28 2−48 2 11772 0.9943

128 13/32 2−58 2 20812 2.5044

Table 8. Linear trail for Speck variant 48, using the combined approach

Trail length Cost Action log

1 3 λxi is 0x036300 and λyi is 0x00630f

2 2 λxi is 0x030003 and λyi is 0x030360

3 1 λxi is 0x030000 and λyi is 0x000300

4 1 λxi is 0x000300 and λyi is 0x000000

5 2 λxi is 0x00001b and λyi is 0x000018

6 3 λxi is 0xc300c0 and λyi is 0xd800c0

7 4 λxi is 0x06dd00 and λyi is 0xc61e00 breaks consecutive, fixed with
heuristic vi is 0x0006dd, ui is 0x0006dd and wi is 0x0006df

8 4 λxi is 0x30c023 and λyi is 0x30c6fe breaks consecutive, fixed with
heuristic vi is 0x2330c0, ui is 0x2330c0 and wi is 0x3330c0

9 4 λxi is 0x3c8130 and λyi is 0x1fb1f0 breaks consecutive, fixed with
heuristic vi is 0x303c81, ui is 0x303c81 and wi is 0x303cc1

fails 6 λxi is 0x4c5508 and λyi is 0x7c6989 breaks consecutive, fixed with
heuristic vi is 0x084c55, ui is 0x084c55 and wi is 0x0c6c7f, but
iteration breaks because upper bound is reached 24 + 6 ⇒ 48/2

Speck variant 48. In this linear trail is clear that as of trail length 7 the heuristic
switches between the two approaches. In addition, this linear trail demonstrates
that the using multiply approaches to linear approximate of modular addition
can further extend linear trails.

Next, we illustrate how the heuristic switches to the second approach and
searches for a fix that works with the Automaton. We take the example of
forward iteration of round 7 for Speck variant 48.

The input of round 6 λxi is 0x30c023 and λyi is 0x30c6fe. One of the
conditions for the first approach is to check if 0x30c023 ≫ α consist exclusively
of consecutive bits. We can check that this is not the case:

hexadecimal 0x30c023 ≫ α is 0x2330c0
binary 001100001100000000100011 ≫ α is 001000110011000011000000
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Table 9. How the heuristic finds a valid w and v in the forward direction

State Cost Action log

0 0 1st first bit (msb)of vi is 0, heuristic picks 0 for both wi and ui, cost is zero and

stay in state 0

0 0 2nd bit of vi is 0 and we are in state 0, heuristic picks 0 for both wi and ui, cost

is zero and stay in state 0

1 0 3rd bit of vi is 1 and we are in state 0, heuristic picks 1 for both wi and ui, cost

of zero and change state to 1

0 1 4th bit of vi is 0 and we are in state 1, heuristic picks 0 ui and 1 for wi, cost of

one and change state to 0

0 0 5th bit of vi is 0 and we are in state 0, heuristic picks 0 for both wi and ui, cost

is zero and stay in state 0

0 0 6th bit of vi is 0 and we are in state 0, heuristic picks 0 for both wi and ui, cost

is zero and stay in state 0

1 0 7th bit of vi is 1 and we are in state 0, heuristic picks 1 for both wi and ui, cost

is zero and change state to 1

0 1 8th bit of vi is 1 and we are in state 1, heuristic picks 1 for both wi and ui, cost

is one and change state to 0

0 0 9th bit of vi is 0 and we are in state 0, heuristic picks 0 for both wi and ui, cost

is zero and stay in state 0

0 0 10th bit of vi is 0 and we are in state 0, heuristic picks 0 for both wi and ui, cost

is zero and stay in state 0

1 0 11th bit of vi is 1 and we are in state 0, heuristic picks 1 for both wi and ui, cost

is zero and change state to 1

0 1 12th bit of vi is 1 and we are in state 1, heuristic picks 1 for both wi and ui, cost

is one and change state to 0

0 0 13th bit of vi is 0 and we are in state 0, heuristic picks 0 for both wi and ui, cost

is zero and stay in state 0

0 0 14th bit of vi is 0 and we are in state 0, heuristic picks 0 for both wi and ui, cost

is zero and stay in state 0

0 0 15th bit of vi is 0 and we are in state 0, heuristic picks 0 for both wi and ui, cost

is zero and stay in state 0

0 0 16th bit of vi is 0 and we are in state 0, heuristic picks 0 for both wi and ui, cost

is zero and stay in state 0

1 0 17th bit of vi is 1 and we are in state 1, heuristic picks 1 for both wi and ui, cost

is zero and change state to 1

0 1 18th bit of vi is 1 and we are in state 0, heuristic picks 1 for both wi and ui, cost

is one and change state to 0

0 0 19th bit of vi is 0 and we are in state 0, heuristic picks 0 for both wi and ui, cost

is zero and stay in state 0

0 0 20th bit of vi is 0 and we are in state 0, heuristic picks 0 for both wi and ui, cost

is zero and stay in state 0

0 0 21st bit of vi is 0 and we are in state 0, heuristic picks 0 for both wi and ui, cost

is zero and stay in state 0

0 0 22nd bit of vi is 0 and we are in state 0, heuristic picks 0 for both wi and ui, cost

is zero and stay in state 0

0 0 23rd bit of vi is 0 and we are in state 0, heuristic picks 0 for both wi and ui, cost

is zero and stay in state 0

0 0 24th bit of vi is 0 and we are in state 0, heuristic picks 0 for both wi and ui, cost

is zero and stay in state 0
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From these results we can conclude the condition of consecutive bits doesn’t
hold any more. The heuristic then switches to the second approach and tries to
find w, u and v with a large bias. The heuristic tries to find a valid ui, vi and
wi. The mask vi is given as

0x30c023 ≫ α is 0x2330c0 and in binary 001000110011000011000000

iterating over all bits of vi from the most significant bit position (e.g. left to
right).

The detailed search of the heuristic to find a valid wi and vi with a large bias
is illustrated in Table 9.

In the end the heuristic has found a valid w and u, respectively 0x2330c0
and 0x3330c0, with a bias of 4.

7 Conclusions

In this paper we investigated the linear behaviour of Speck in the known plaintext
model. We explained the theory behind our method, presented a new heuristic
search method for finding linear trails and gave the linear trails for each version
of Speck found by several approaches to approximate modular addition. We
demonstrated that using a heuristic search method can significantly shorten the
time find long linear trails in a relevant search space.

The analysis in this paper tested the strength of the Speck round function and
demonstrated that the cipher offers sufficient resistance against linear cryptanal-
ysis. The heuristic search method introduced in this paper uses a very greedy
search approach. Further research could investigate how the heuristic can be
changed to explore different possible optimal paths. For example, exploring every
round which parameter setting for the heuristic is optimal for the masks under
investigation.

In this paper we employed a state of the art parallel computing technique,
called OpenCL, which supported the fast search in a relevant search space for
linear trails. Several novel parallel search techniques have used, like partitioning
the relevant search space in optimal chunks for the hardware used. Another,
heuristic search technique used in this paper is the use of lookup tables for cre-
ating the relevant search space up to the hamming weight upperbound. In future
research the employed parallel computing technique could further be improved.
One improvement could be to limit the computing space to the newly added
search space. For example, if in the previous experiment the hamming weight
upperbound was set to n − 1 and the current upperbound is set to n, one could
compute all masks combinations again. Which will mean that a large part of the
search space is searched again without changing any parameters and also will
result in a longer search time. By only computing the new search space, instead
of all previously computed space of lower hamming weight masks there will be
a significant reduction in the time needed to find linear trails.

In future research better heuristics can be investigated to find good linear
trails. We believe more research into heuristic search in linear cryptanalysis can
further improve the length of linear trails.
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Abstract. In this paper, we describe a new cube searching method
called conditional searching. The main idea of this new searching method
is to reduce the searching space and contains two main steps: finding
complementary variables and searching conditional cubes. At the first
step, we introduce a concept of complementary variables corresponding
to cube variables to ensure that cube variables are not multiplied with
each other in the first few propagations. According to the taps in the
feedback functions, two main strategies are given to find complementary
variables. At the second step, we first give a simple algorithm to estimate
the maximal size of conditional cubes that don’t contain any comple-
mentary variable. Then another algorithm is given to search conditional
cubes. We can confirm the maximum numbers of initialization rounds of
some NFSR-based cryptosystems such that the generated keystream bit
does not achieve the maximum algebraic degree with our cube searching
method and the algebraic degree estimated method numeric mapping.
We apply our method to Trivium to verify the validity and our searching
space is about 212.5 much smaller than that of existing results. We also
introduce two Trivium-variants named Par-Trivium and Loc-Trivium,
and apply the method to them. We can get an upper bound of the maxi-
mum initialization rounds when we change the parameters or the key and
IV loading locations in Trivium. The applications provide some insights
into the taps used in the feedback functions of such stream ciphers. We
believe that our method is useful in both cryptanalysis and design of
NFSR-based cryptosystems.

Keywords: Cryptanalysis · Numeric mapping · Stream cipher
Trivium · Trivium variants

1 Introduction

A nonlinear feedback shift register (NFSR) is widely used in modern crypto-
graphic primitives, especially in radio-frequency identification devices (RFID)
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and wireless sensor networks applications. Most NFSR-based cryptosystems can
be described as tweakable Boolean functions with respect to both secret vari-
ables (e.g., key bits) and public variables (e.g., plaintext bits or initial value
(IV) bits). The algebraic degrees of these Boolean functions are of great impor-
tance in the security of the corresponding primitives. For a cryptographic prim-
itive with low algebraic degree, it is vulnerable to many known attacks, such as
cube attacks [1–4] and higher order differential attacks [5,6] which are the most
powerful cryptanalytic tools against NFSR-based cryptosystems. Cube attack is
introduced by Dinur and Shamir [1], which is a chosen plaintext key-recovery
attack. Since then, cube attack has attracted much attention in recent public
cryptographic literatures. At Eurocrypt 2015, Dinur et al. [2] publish a key-
recovery attack on Keccak keyed modes, where the cube variables are selected
not to multiply with each other after the first round, then the output degree
of the polynomials is reduced. Later Huang et al. [7] propose a new conditional
cube attack on Keccak keyed modes and present an 8-round attack on Keyak.
Recently, conditional cube attack is applied to round-reduced ASCON [8] and
River Keyak [9]. Also, algebraic attacks [10,11] and integral attacks [12] are easy
to perform on a cryptographic primitive with low algebraic degree.

For modern cryptographic primitives, it is difficult to compute the exact val-
ues of the algebraic degrees. But, there are several theoretical tools can be used
to estimate the upper bounds on the algebraic degrees of iterated permutations,
and concurrently exploited to attack iterated ciphers [1,13–15]. Yet for NFSR,
there are few tools for estimating its algebraic degree, besides symbolic compu-
tation and statistical analysis. Some techniques highly depend on computational
capabilities which restrict the cryptanalytic results. A variant of cube attacks
called dynamic cube attacks can reach much higher attack complexity, but they
are still limited by the size of the cubes [1,4]. Based on this point, in either
cube attacks or cube testers, the cubes with size larger than 54 have never been
utilized in cryptanalysis of NFSR-based cryptosystems. Recently, at CRYPTO
2017, two works on cube attacks use the cubes with size larger than 50. The one
by Todo et al. [16] presents possible key recovery attacks against Trivium [17],
Grain-128a [18] and ACORN [19] using the cubes of sizes 72, 92 and 64. They
mainly make use of the propagation of the bit-based division property of stream
ciphers. The other by Liu [20] gives a tool called numeric mapping to iteratively
obtain the upper bounds on the algebraic degrees of NFSR-based cryptosystems.

Our Contributions. In this paper, we propose a new cube searching method
named conditional searching. The main idea of this new searching method is to
reduce the searching space through controlling the propagation of the IV bits
and contains two main steps: finding complementary variables and searching
conditional cubes. At the finding complementary variables step, we introduce a
concept of complementary variables corresponding to cube variables. To ensure
that cube variables are not multiplied with each other in the first few propa-
gations, we give two main strategies to find complementary variables according
to the taps used in the feedback functions and the size of cubes needed. At the
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second step, we first give a simple algorithm to estimate the maximal size of
conditional cubes which means that there is not any corresponding complemen-
tary variable. Then another algorithm is given to search conditional cubes. With
our cube searching method and the algebraic degree estimated method numeric
mapping introduced by Liu [20], we can confirm the maximum numbers of ini-
tialization rounds of some NFSR-based cryptosystems such that the generated
keystream bit does not achieve the maximum algebraic degree.

We apply our method to Trivium to verify the validity with the searching
space of size about 212.5. While in [20], the searching space is 225. Our searching
space is smaller than that of the existing results. We also apply the method
to Trivium-variants containing Par-Trivium and Loc-Trivium. For Par-Trivium,
where the parameters in Trivium are changed, we estimate the algebraic degrees
and can get an upper bound of the maximum initialization rounds such that
the generated keystream bit does not achieve the maximum algebraic degree.
The experiments show that the maximum round of Par-Trivium is 863 which is
the worst case. So, parameters in Par-Trivium can be as big as possible on the
premise of the security against other attacks. And for Loc-Trivium, where the
key and IV loading locations are changed in Trivium, we can get similar results.
The experiments show that the maximum initialization round of all considered
Trivium-variants is 910, which is the worst case and should be avoided to be
resistant to cube attacks or cube tests when new ciphers are designed. The
applications provide some insights into the taps used in the feedback functions
and the key and IV loading locations of such stream ciphers, which are useful in
both cryptanalysis and design of NFSR-based cryptosystems.

Organization of the Paper. The rest of this paper is structured as follows. In
Sect. 2, basic definitions and notations are provided. Section 3 shows the general
framework of our conditional searching method, while its applications on Trivium
and Trivium-variants are given in Sects. 4 and 5. Section 6 concludes the paper.

2 Preliminaries

Boolean Functions and Algebraic Degree. Let F2 be the binary field and
F

n
2 the n-dimensional vector space over F2. An n-variable Boolean function is

a mapping from F
n
2 into F2. An n-variable Boolean function f can be uniquely

represented as a multivariate polynomial over F2,

f(x1, x2, · · · xn) = ⊕
c=(c1,c2,···cn)∈F2

ac

n∏

i=1

xci
i , ac ∈ F2,

called the algebraic normal form (ANF). The algebraic degree of f , denoted by
deg(f), is defined as max{wt(c)|ac �= 0}, where wt(c) is the Hamming weight
of c.
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Numeric Mapping. Let f(x1, x2, · · · xn) = ⊕
c=(c1,c2,···cn)∈F2

ac

n∏
i=1

xci
i (ac ∈ F2)

be a Boolean function. Denote by Bn the set of all n-variable Boolean functions.
The numeric mapping [20], denoted by DEG is defined as

DEG : Bn × Zn → Z,

(f,D) �→ max
ac �=0

{
n∑

i=1

cidi},
(1)

where D = (d1, d2, · · ·, dn) and ac’s are coefficients of the ANF of f . Let
gi(1 ≤ i ≤ n) be Boolean functions on m variables, and denote deg(G) =
(deg(g1),deg(g2), · · ·,deg(gn)) for G = (g1, g2, · · ·, gn). The numeric degree of the
composite function h = f ◦ G is defined as DEG(f,deg(G)), denoted by DEG(h)
for short. The algebraic degree of h is always less than or equal to the numeric
degree of h. The algebraic degrees of the output bits with respect to the inter-
nal states can be estimated iteratively for NFSR-based cryptosystems by using
numeric mapping.

Cube Testers. Given a Boolean function f and a term tI containing vari-
ables from an index subset I that are multiplied together, the function can be
written as

f(x1, x2, · · ·, xn) = fS(I) · tI ⊕ q(x1, x2, · · ·, xn),

where the terms in q(x1, x2, · · ·, xn) miss at least one variable from I and fS(I)
is called the superpoly of I in f . The basic idea of cube testers is that

∑

x′∈CI

f = fS(I),

where CI are all possible values of the subset of variables in the term tI . The tar-
get of cube testers work by evaluating superpolys of carefully selected terms tI ’s
which are products of public variables (e.g., IV bits), and trying to distinguish
them from a random function. A cube tester can detect the nonrandomness in
cryptographic primitives by extracting the testable properties of the superpoly,
such as unbalance, constantness and low degree, with the help of property testers.
Especially, the superpoly fS(I) is equal to a zero constant, if the algebraic degree
of f in the variables from I is smaller than the size of I.

3 A New Method for Searching Cube

In this section, we propose a new model for searching cube, called conditional
searching. The new searching method consists of two phases, finding complemen-
tary variables and searching conditional cubes. First, we will give a generalized
model of the initialization phases of NFSR-based cryptosystems.
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3.1 Generalized Model

For NFSR-based cryptosystems, especially NFSR-based stream ciphers, the ini-
tialization phase is used to initialize the internal state using secret variables (e.g.,
key bits) and public variables (e.g., plaintext bits or IV bits). Then the encryp-
tion phase just consists of an exclusive or (XOR) with the continuously updated
keystream. The generalized model of initialization phases of some NFSR-based
cryptosystems can be depicted as Fig. 1, which is helpful in the sense that we
could study some special properties/choices more clearly in a unified framework.

Fig. 1. Generalized initialization phase of NFSR-based cryptosystem

FSR1 and FSR2 are two registers. Here we stress that FSR1 in the model can
be further decomposed into a series of cascaded smaller NFSRs or LFSRs, which
could also be treated by our cryptanalysis. There are two Boolean functions
involved in the model: a (either linear or non-linear) Boolean function g and a
non-linear Boolean function f . FSR2 is initialized by the padded IV. It is obvious
that our generalized model could cover initialization processes of Grain v1 [21],
Trivium and so on. Denote by St and Bt the initial states of FSR1 and FSR2 at
time t with size of m1 and m2. At each step, FSR2 is updated by f , sometimes
without any taps from FSR1, and FSR1 is updated by g as follows:

– FSR1 is updated recursively by g as St+1 = (st+1, st+2, · · ·, st+m1) with
st+m1 = g(St, Bt).

– FSR2 is updated recursively by f as Bt+1 = (bt+1, bt+2, · · ·, bt+m2) with
bt+m2 = f(Bt, St) or bt+m2 = f(Bt).

– We assume these processes are invertible, and the inverse processes are
St−1 = (st−1, st, · · ·, st+m1−2) with st−1 = g−1(St, Bt) and Bt−1 = (bt−1, bt,
· · ·, bt+m2−2) with bt−1 = f−1(Bt, St) or bt−1 = f−1(Bt).

3.2 Conditional Searching Method

Huang et al. [7] propose a new conditional cube attack on Keccak keyed modes
and present an 8-round attack on Keyak. By restraining some bit conditions of
the key, they obtain a new set of cube variables which not only do not multiply
with each other after the first round, but also contains one cube variable that does
not multiply with other cube variables after the second round, and then the out-
put degree over cube variables is further reduced. Based on this method, we give
our conditional searching method which is a searching tool with some conditions
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to reduce the searching space. The conditional cubes used in our paper is differ-
ent, which means that the cubes do not contain any complementary variables.
Before the method is given, we will give a definition of complementary variables.
In the cube attack or cube test against stream cipher, cube variables are chosen
from the IV bits with length l, where IV = (iv1, iv2, · · ·, ivl). When ivi is chosen
as a cube variable, the variables that must not be chosen are called complemen-
tary variables corresponding to the cube variable ivi. Our conditional searching
method contains two steps: finding complementary variables and searching con-
ditional cubes. We call the cubes that do not contain any corresponding comple-
mentary variables, conditional cubes for simplicity. The conditional cubes and
the maximum numbers of initialization rounds (maximum rounds for simplic-
ity) are corresponding to the situation that the generated keystream bit does
not achieve the maximum algebraic degree.

Finding Complementary Variables. The main way to find complementary
variables is to control the propagation of cube variables. As shown in the gener-
alized model, the IV bits are loaded in FSR2 and cube variables are chosen from
them. This way, the propagation paths of the IV bits are of importance to choose
cube variables and determine the corresponding complementary variables. In the
beginning, the IV bits only appear in FSR2 and take part in the update of FSR2
(or FSR1) through the feedback function f (or g). Several steps later, they will
appear in both FSR2 and FSR1.

It is intuitive that if the cube variables are not multiplied with each other
in the first few propagations, the maximum initialization round, such that the
generated keystream bit does not achieve the maximum algebraic degree, will
be larger. The complementary variables are determined by these variables that
would be multiplied with each other. For the multiplied variables, if one of them
is chosen to be cube variable, the others are defined as complementary vari-
ables. This way, the taps in the feedback functions play a leading role in finding
complementary variables. It is easy to see that the more propagations are con-
trolled, the less conditional cubes are satisfied. Two main strategies to choose
cube variables are used here.

– In the beginning, where the IV bits take part in the first iteration, cube
variables should not be multiplied with each other.

– When the IV bits as a part of the feedback value take part in the update
function, cube variables must not be multiplied with each other.

By an iteration we mean two or more rounds which depends on the maximal
tap in the feedback function, more details, one can see the following example.

Example 1. Let m1 = m2 = 8 and

st+8 = st+6st+1 + st + bt+2,

bt+8 = bt+4bt+3 + bt + st+3,

S1 = (s1, s2, · · ·, s8) = (iv1, iv2, · · ·, iv8),
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where t ≥ 1. For FSR2, the maximal tap in the feedback function is st+6 and an
iteration means two rounds, where

the first iteration
{

s9 = s7s2 + s1 + b3
s10 = s8s3 + s2 + b4

the second iteration
{

s11 = s9s4 + s3 + b5
s12 = s10s5 + s4 + b6

the third iteration
{

s13 = s11s6 + s5 + b7
· · ·

What we need to control is the first two iterations, that is t ≤ 4. In the first
iteration, s7, s2 and s8, s3 are multiplied with each other. In the second iter-
ation, s9 is multiplied with s4 and s10 is multiplied with s5, where s9 and s10
are feedback values. Take the IV bits into account, the multiplied pairs are
(iv2, iv7), (iv3, iv8), (iv1, iv4) and (iv2, iv5), during the first two iterations. We
can predict that if ivi is a cube variable, ivi+3 and ivi+5 will be multiplied
with ivi at some point. So, the complementary variables are ivi+3 and ivi+5

corresponding to the cube variable ivi. Similarly, for FSR1, when t = 9, the
number of the iterations with respect to S1 is larger than two. The multiplied
pairs are (iv4, iv5), (iv5, iv6) and (iv6, iv7), during the first two iterations and
the complementary cube variable is ivi+1 corresponding to the cube variable ivi.
In summary, if ivi is chosen to be a cube variable, the set of complementary
variables is {ivi+1, ivi+3, ivi+5}.

Searching Conditional Cube. Once the complementary variables are
obtained, we need to search the conditional cubes that do not contain any com-
plementary variables. But before that, we have to determine the maximal size
of conditional cubes and then to search this kind of cubes. If the number of
variables that can be used as cube variables is small, the problem is very easy.
As shown in Example 1, the maximal size of conditional cubes is four, which
are {iv1, iv3, iv5, iv7} and {iv2, iv4, iv6, iv8}. We can verify that among condi-
tional cubes, cube variables will not be multiplied with each other in the first
few rounds and there is not any complementary variables {ivi+1, ivi+3, ivi+5}
corresponding to ivi.

In the NFSR-based stream ciphers, the length of the IV bits is so large that
we can’t easily estimate the maximal size and search the cubes. Two algorithms
are given to solve these two problems. Let the set of the complementary variables
corresponding to ivi be C

′
= {ivi+j1 , ivi+j2 , · · ·, ivi+jm

}. Algorithm 1 is used to
estimate the maximal size of conditional cubes. The main idea is to choose one
special cube according to the indexes of the IV bits from small to large. It is
obvious that the size dim of this special cube is the maximal size and all the
conditional cubes are of size less than dim.

Algorithm 2 is given to search conditional cubes with the maximal size dim.
First, we evenly divide the IV bits into several parts. For the first part, search all
sub-conditional cubes with possible sizes. For other parts, we can get the corre-
sponding sub-conditional cubes by changing the subscripts, as show in line 7 of
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Algorithm 1. Estimation of maximal size

Require: the complementary variables set C
′
, the set C = φ , and the length l of the

IV bits
Ensure: the maximal size of conditional cubes
1: for i from 1 to l do
2: if ivi /∈ C

′
then

3: Add ivi to C.
4: Add ivi+j1 , ivi+j2 , · · ·, ivi+jm to C′.
5: end if
6: end for
7: Let dim = |C|, where |C| is the size of set C.
8: return dim is the maximal size of conditional cubes.

Algorithm 2. Searching conditional cubes

Require: the maximal size dim, the complementary variables set C
′
, l , m

Ensure: the maximal round of conditional cubes
1: for i from 1 to m do
2: In the set {iv1, iv2, · · ·, ivm}, search all possible sub-conditional cubes with size

i and denoted by Ci. Denote the size of Ci by SCi.
3: end for
4: for all combinations of sub-conditional cubes with size subdimj , such that

subdim1 + subdim2 + · · · + subdiml/m = dim do
5: for j from 1 to l/m do
6: Choose one sub-conditional cube in Csubdimj

7: Add (j − 1) · m to the subscripts of the sub-conditional cube.
8: end for
9: Put the sub-conditional cubes with size subdimj together to obtain a cube with

size dim
10: Test whether the cube with size dim is a conditional cube.
11: if the cube is an conditional cube then
12: Estimate the maximum round with numeric mapping method.
13: end if
14: end for
15: return the maximal round of conditional cubes

Algorithm 2. Second, examine the combinations of all possible sub-conditional
cubes to obtain the conditional cubes. Denote the length of the IV bits and
the evenly divided factor by l and m. Evenly divide the IV bits into l/m parts,
denoted by part j, where 1 ≤ j ≤ l/m. Denoted by subdimj the sub-size of
sub-conditional cubes chosen from part j. The criteria of testing whether the
cube with size dim is a conditional cube is to verify that if ivi is a cube variable,
whether the complementary variables in C

′
are cube variables. For example, if

the length of the IV bits is 80, we can evenly divide them into 4 parts, iv1 to
iv20, iv21 to iv40, iv41 to iv60, and iv61 to iv80. The first part is iv1 to iv20
and all sub-conditional cubes with possible sizes can be obtained by the sim-
ple exhaustive search method. For other parts, add 20, 40, 60 to the subscripts
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of the sub-conditional cubes. If the size of conditional cubes is 38, we need to
consider all possible combinations of sub-conditional cubes, where the sum of
the sub-sizes is 38. Then for each cube variable ivi, verify whether the cor-
responding complementary variables are cube variables. If not, this cube is a
conditional cube.

The main time complexity of Algorithm 2 is to test the combinations of sub-
conditional cube with size of subdimj , where 1 ≤ j ≤ l/m. According to the
length of the IV bits and the maximum size of conditional cubes, m need to be
chosen carefully, which plays an important role in the time complexity. Whether
the IV bits need to be divided depends on the complementary variables. For
Trivium, two complementary variables are ivi+1 and ivi−1 and we can exhaust
search all the cubes containing no adjacent indexes. Then the criteria is used to
test whether the cubes are conditional cubes.

4 Applications to Trivium

Trivium is a stream cipher designed in 2005 and has been selected as one of
the portfolio for hardware ciphers (Profile 2) by the eSTREAM project. Though
Trivium is designed to provide a flexible trade-off between speed and gate count
in hardware, it also provides extremely efficient software implementation. Triv-
ium has attracted much attention in recent public cryptographic literatures for
its simplicity and very good performance, such as [26,27].

In this section, we apply our conditional searching method to Trivium to
verify the validity of our method.

4.1 A brief description of Trivium

Trivium generates up to 264 bits of keystream from an 80-bit secret key and
an 80-bit IV. For the sake of simplicity, we give an alternative description of
the algorithm different from the already existed ones. Let A, B and C be three
registers of sizes 93, 84 and 111. Denoted by At, Bt and Ct the corresponding
states at time t (t ≥ 0),

At = (xt
1, x

t
2, · · ·, xt

93),
Bt = (yt

1, y
t
2, · · ·, yt

84),
Ct = (zt

1, z
t
2, · · ·, zt

111),

and the three quadratic update functions are

xt
93 = zt−1

1 + zt−1
2 · zt−1

3 + zt−1
46 + xt−1

25 ,

yt
84 = xt−1

1 + xt−1
2 · xt−1

3 + xt−1
28 + yt−1

7 ,

zt
111 = yt−1

1 + yt−1
2 · yt−1

3 + yt−1
16 + zt−1

25 .
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The algorithm is initialized by loading an 80-bit secret key and an 80-bit IV into
the 288-bit initial state, and setting all remaining bits to 0, except for z1, z2
and z3,

(x0
1, x

0
2, · · ·, x0

93) ← (0, · · ·, 0, k0, · · ·, k79),
(y0

1 , y
0
2 , · · ·, y0

84) ← (0, · · ·, 0, iv0, · · ·, iv79),
(z01 , z

0
2 , · · ·, z0111) ← (1, 1, 1, 0, · · ·, 0).

Let h be the output function. After an initialization of N rounds, in which the
internal state is updated for N times, the cipher generates a keystream bit by
h(At, Bt, Ct) for each t ≥ N .

4.2 Conditional Searching for Trivium

The 80-bit IV is loaded into the shift register B and the propagation paths are
shown in Fig. 2. To find the complementary variables, we just need to control
the paths 1© and 2© in the first few rounds. For path 1©, we guarantee that
the cubes are not multiplied with each other in the first iteration. According to
the taps in the feedback functions, the complementary variables are ivi−1 and
ivi+1 corresponding to cube variable ivi. When the IV bits in the register C
begin to be transmitted to the register A, we need to control the path 2©. The
complementary variables are ivi+14 and ivi+16 corresponding to cube variable
ivi. In summary, if ivi is chosen to be a cube variable, the set of complementary
variables is {ivi−1, ivi+1, ivi+14, ivi+16}.

Fig. 2. Propagation paths of IV

With Algorithm 1, we know that the sizes of conditional cubes are less than
38. Then, with Algorithm 2, we can obtain all conditional cubes of size 37 and
38 in a dozen seconds on a common PC. The result, see Table 1, shows that
the output of 837-round Trivium has degree strictly less than 37 over a subset
of the IV bits with size 37, which agrees with [20]. The corresponding cubes

Table 1. Results of Trivium

Maximum round/cube size Searching space

[20] 837/37 225

Our method 837/37 212.5
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are the same and the amount of the conditional cubes is 5945 ≈ 212.5. Before
this paper, the amount of cubes need to be searched is about 225 [20]. We can
conclude that our conditional searching method is valid for Trivium and it has
better performance.

5 Applications to Trivium-Variant Ciphers

The analysis of Trivum-like ciphers is to find a variant that will remove one
of the biggest deficiencies in the Trivium design: the huge number of initial
1152 rounds, which makes the original Trivium stream cipher to have very high
initial latencies when used in IoT devices. The parameters used in Trivium are
subtle that a little change will affect the security a lot. Although there are some
Trivium-based cryptosystems, such as Kreyvium [22], TriviA-SC [23] Bivium
[24], Trivium-N [25] and so on, how do the parameters work is still a problem to
be solved. In this section, we introduce two Trivium-variants named Par-Trivium
and Loc-Trivium, and apply the conditional searching method to them to give
some guidelines for choosing parameters according to the algebraic degree.

5.1 Applications to Par-Trivium

Par-Trivium is a variant of Trivium, where the parameters in the feedback func-
tions of Trivium are changed. Determined by propagation paths of the IV bits,
the algebraic degrees of conditional cubes are mainly associated with the taps
from the register where the IV bits are loaded, and distances between the indexes
of multiplied variables. In order to keep the elegant structure, the feedback func-
tions of Par-Trivium at time t can be write as

xt
93 = zt−1

1 + zt−1
α · zt−1

α+δ + zt−1
46 + xt−1

25 ,

yt
84 = xt−1

1 + xt−1
α · xt−1

α+δ + xt−1
28 + yt−1

γ ,

zt
111 = yt−1

1 + yt−1
α · yt−1

α+δ + yt−1
β + zt−1

25 .

For Trivium, α = 2, β = 16, γ = 7, δ = 1. For simplicity, we denote by Rα,β,γ,δ

the maximum round that the conditional cubes of size 37 ≤ n ≤ 40 have reached
maximum degrees. Sometimes a part of the subscripts would be omitted and the
symbol becomes Rβ,γ , Rα and so on.

The impacts of parameters α, β, γ and δ on the algebraic degrees are sum-
marized in the following three properties.

Property 1. When β, γ and δ are fixed, the maximum round that the condi-
tional cubes have reached maximum degrees decreases with the growth of α.

It is obvious that the larger α is, the earlier the feedback values take part in
the iterations and the smaller the maximum round is. For β = 16, γ = 7, δ = 1,
the result is listed in Table 2. We can see that the maximum rounds Rα is
decreased with the growth of α.
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Table 2. The maximum rounds Rα, when β = 16, γ = 7, δ = 1

α 2 7 12 17 22 27 32 37 42 47 52 57 62 67 72 77 82

Rα 837 741 708 704 640 601 575 524 487 449 407 364 315 272 226 189 156

For Par-Trivium with parameters (α, β, γ, δ), the complementary variables
are ivi−δ, ivi+δ, ivi+β−δ−1 and ivi+β+δ−1 corresponding to cube variable ivi.
When i + β + δ − 1 > 79, ivi+β+δ−86+γ will be multiplied with ivi+δ−86+γ

according to the propagation paths of the IV bits. Also, when i+β − δ −1 > 79,
ivi+β−δ−86+γ will be multiplied with ivi−δ−86+γ . For example, when α = 2, β =
16, γ = 7 and δ = 2, we can know that

z1111 = y0
16 + · · · = iv11 + · · · ,

· · ·
z4111 = y3

16 + y3
2 · y3

4 + · · · = iv14 + iv0 · iv2 + · · · ,

z5111 = y4
16 + y4

1 + y4
2 · y4

4 + · · · = iv15 + iv0 + iv1 · iv3 + · · · ,
· · ·
z88111 = y87

16 + y87
1 + y87

2 · y87
4 + · · · = iv78 + iv63 + iv64 · iv66 + · · · ,

z89111 = y88
16 + y88

1 + y88
2 · y88

4 + · · · = iv79 + iv64 + iv65 · iv67 + · · · ,

z90111 = y89
16 + y89

1 + y89
2 · y89

4 + · · · = iv2 + iv65 + iv66 · iv68 + · · · ,
· · ·
z103111 = y102

16 + y102
1 + · · · = iv15 + iv78 + · · · ,

z104111 = y103
16 + y103

1 + · · · = iv16 + iv79 + · · · ,

z105111 = y104
16 + y104

1 + · · · = iv17 + iv2 + · · ·

according to the feedback functions. When t = 198, z88111 and z90111 will take part
in the feedback of x198

93 and iv2 will be multiplied with iv63. Also, at time t = 213,
z103111 and z105111 will take part in the feedback of x213

93 and iv2 will be multiplied
with iv15. Take these into consideration, we can use our conditional searching
method to estimate the maximum round Rα,β,γ,δ with respect to the conditional
cubes of size 37 ≤ n ≤ 40 and we get the following result.

Property 2. For parameters α, β, γ and δ, let q = 79 − δ mod 2δ and

β∗ = β/(2δ)� · 2δ + 1,

γ∗=
{

δ+1+2kδ, 0 ≤ q ≤ δ − 2
q − δ+2kδ, δ − 1 ≤ q ≤ 2δ − 1,

where k is the maximum integer satisfying γ ≥ γ∗. When α and δ are fixed,
the maximum round Rβ,γ that the conditional cubes of size 37 ≤ n ≤ 40 have
reached maximum degrees, satisfies that

Rβ,γ ≤ Rβ∗,γ∗

and Rβ∗,γ∗ decreases with the growth of β∗ or γ∗.
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When α and δ are fixed, for any β and γ, we can obtain an upper bound of
the number of initialization rounds such that the generated keystream bit does
not achieve the maximum algebraic degree. For example, when α = 2 and δ = 2,
we can get q = 1 and list a part of the maximum rounds for different β and γ
in Table 3. We can see that in each square, the upper bound of the maximum
rounds appears at the lower left. For 21 ≤ β ≤ 24 and 9 ≤ γ ≤ 12, it shows that
Rβ,γ ≤ Rβ∗,γ∗ = R21,9, where β∗ = 21 and γ∗ = 9, which is indicated by the
gray part. Also, Rβ∗,γ∗ is inversely proportional to β∗ or γ∗, see the numbers
in bold in Table 3. Parameters β and γ for the maximum rounds in bold are
the corresponding β∗ and γ∗. So, in design of Trivium-Like stream cipher, it is
needed to choose β and γ as big as possible, and β∗ and γ∗ should be avoided.
While the location of the lower bound is indeterminate in spite of the fact in
Table 3. It’s a coincidence that the maximum round in the first column and
second row is the smallest number.

Table 3. The maximum rounds Rβ,γ , where α = 2 and δ = 2

Property 3. Let α = 2. When β and γ run through all possible combinations,
the maximum round that the conditional cubes have reached maximum degree
decreases with the growth of δ.

It may be more persuasive to consider the relationship between the maximum
round and δ if β and γ are also fixed. But when β and γ are also fixed, different
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δ would lead to the sizes of the corresponding conditional cubes smaller than 37,
which makes the comparison meaningless. For α = 1, β = 16, γ = 7, the size
of the conditional cubes is 38 corresponding to δ = 1, but if δ = 6, the size of
the conditional cubes is smaller than 33. So we run through all possible β and
γ to compare the maximum rounds. When 1 ≤ δ ≤ 5, the results are listed in
Table 4. Here α = 2 and three taps from register B, which are y1, y2 and y2+δ,
are fixed. yγ takes part in the feedback of register B separately and yβ takes
part in the feedback of register C with y1, y2 and y2+δ together, as

yt
84 = xt−1

1 + xt−1
2 · xt−1

2+δ + xt−1
28 + yt−1

γ ,

zt
111 = yt−1

1 + yt−1
2 · yt−1

2+δ + yt−1
β + zt−1

25 .

So the range of values for γ is 1 to 84 and for β is 2 to 84. When δ is given, the
minimum values of β∗ and γ∗, and the maximum value of rounds are determined
by Property 2. But some pairs of (β, γ) aren’t in consideration. For example,
when δ = 3, β∗

min = 7, γ∗
min = 1 and R7,1 = 851. But for 2 ≤ β ≤ 6, we need to

estimate the corresponding maximum rounds separately.

Table 4. The maximum rounds Rβ,γ,δ, where α = 2 and k is a positive integer

δ Taps in B β∗ γ∗ Rβ,γ

1 {y1, y2, y3, yβ , yγ} 1 + 2k 1 + 2k max{Rβ,γ |2 ≤ β ≤ 3, γ = 1}= R3,1 = 863

2 {y1, y2, y4, yβ , yγ} 1 + 4k 1 + 4k max{Rβ,γ |2 ≤ β ≤ 5, γ = 1}= R5,1 = 861

3 {y1, y2, y5, yβ , yγ} 1 + 6k 1 + 6k max{Rβ,γ |2 ≤ β ≤ 7, γ = 1}= R3,1 = 854

4 {y1, y2, y6, yβ , yγ} 1 + 8k 5 + 8k max{Rβ,γ |2 ≤ β ≤ 9, 1 ≤ γ ≤ 5}= R9,1 = 847

5 {y1, y2, y7, yβ , yγ} 1 + 10k 5 + 10k max{Rβ,γ |2 ≤ β ≤ 11, 1 ≤ γ ≤ 5}= R3,1 = 842

The results give us some design principles for designing Trivium-Like ciphers.
Ideally, the smaller the maximum rounds of NFSR-based cryptosystems such
that the generated keystream bit does not achieve the maximum algebraic degree
the better. So the parameters in Par-Trivium should be as big as possible on the
premise of the security against other attacks. From the experiment results, we
can know that the maximum round of Par-Trivium is 863 which is the worst
case.

5.2 Applications to Loc-Trivium

Loc-Trivium is a variant of Trivium, where the key and the IV loading locations
are changed in Trivium. In Trivium, the key bits are loaded into the register
A and the IV bits are loaded into the register B. The maximum round that
conditional cubes reach maximum degree is influenced mainly by propagation
paths of the IV bits. So, if we change the key and IV loading locations, the
maximum round will be changed. The experiments show that the maximum
round is influenced mainly by the IV loading location and the corresponding
taps. Here, an example is given to illustrate our findings.
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Example 2. For Loc-Trivium, if we load the IV bits into the register A and the
key bits into the register C, and other parameters remain unchanged, the loading
procedure becomes

(x0
1, x

0
2, · · ·, x0

93) ← (0, · · ·, 0, iv0, · · ·, iv79),
(y0

1 , y
0
2 , · · ·, y0

84) ← (1, 1, 1, 0, · · ·, 0),

(z01 , z
0
2 , · · ·, z0111) ← (0, · · ·, 0, k0, · · ·, k79).

With the tool numeric mapping, we can estimate the maximum round R of Loc-
Trivium. The results are listed in the second column of Table 5. We can see that
the key bits loaded into the register A and the IV bits loaded into the register
B are not the best choice in view of the algebraic degree. The best choice is to
load the key bits into register A and the IV bits into the register C and the
maximum round is 814 smaller than 837.

Table 5. R with different key and IV loading locations

Key, IV location R (taps unchanged) R (taps changed)

(A, B) ← (Key, IV ) 837 863

(C, B) ← (Key, IV ) 828 864

(A, C) ← (Key, IV ) 814 904

(B, C) ← (Key, IV ) 825 910

(B, A) ← (Key, IV ) 825 876

(C, A) ← (Key, IV ) 825 853

If we also change the taps from the register loaded with the IV bits as shown
in Sect. 5.1, we can get similar results, except the complementary variables. The
feedback functions at time t turn into

xt
93 = zt−1

1 + zt−1
α · zt−1

α+δ + zt−1
46 + xt−1

γ ,

yt
84 = xt−1

1 + xt−1
α · xt−1

α+δ + xt−1
β + yt−1

7 ,

zt
111 = yt−1

1 + yt−1
α · yt−1

α+δ + yt−1
16 + zt−1

25 .

The complementary variables are ivi−δ, ivi+δ, ivi+β−δ−1 and ivi+β+δ−1 corre-
sponding to the cube variable ivi. When i+β+δ−1 > 79, ivi+β+δ−113+γ will be
multiplied with ivi+δ−113+γ according to the propagation paths of the IV bits.
Also, when i+β−δ−1 > 79, ivi+β−δ−113+γ will be multiplied with ivi−δ−113+γ .

In the third column of Table 5, we list the maximum rounds R when the cor-
responding parameters are also changed. The result shows that Loc-Trivium
with the key loaded in the register B and IV loaded in the register C has
the maximum rounds 910, which is the worst case. The corresponding feedback
functions are
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xt
93 = zt−1

1 + zt−1
2 · zt−1

3 + zt−1
3 + xt−1

25 ,

yt
84 = xt−1

1 + xt−1
2 · xt−1

3 + xt−1
28 + yt−1

7 ,

zt
111 = yt−1

1 + yt−1
2 · yt−1

3 + yt−1
16 + zt−1

1 .

Here some tap positions are the same. Ensure that all tap positions are distinct,
we obtain that the maximum rounds is 906 and the corresponding feedback
functions are

xt
93 = zt−1

1 + zt−1
2 · zt−1

3 + zt−1
5 + xt−1

25 ,

yt
84 = xt−1

1 + xt−1
2 · xt−1

3 + xt−1
28 + yt−1

7 ,

zt
111 = yt−1

1 + yt−1
2 · yt−1

3 + yt−1
16 + zt−1

4 .

The results show that the key and IV loading locations play important roles
in the algebraic degree of NFSR-based cryptosystems. When a new cipher with
the similar structure is designed, both the parameters and the key and IV loading
locations should be taken into account. The worst case that the maximum rounds
is 910 or 906, which should be avoided to be resistant to cube attacks or cube
tests when new ciphers are designed.

6 Conclusions

In this paper, we have shown a new cube searching method. The main idea
is to reduce the searching space through controlling the propagation of the
IV bits. With our cube searching method and the algebraic degree estimated
method numeric mapping, we can confirm the maximum numbers of initialization
rounds of some NFSR-based cryptosystems such that the generated keystream
bit does not achieve the maximum algebraic degree. As illustrations, we applied
our method to Trivium to verify the validity, our searching space is much smaller
than that of the existing results. We also applied our method to two Trivium-
variants, named Par-Trivium and Loc-Trivium, and we can get an upper bound
of the maximum initialization rounds.

We believe that our method is useful in both cryptanalysis and design of
NFSR-based cryptosystems. In design of Trivium-Like stream cipher, it is needed
to choose α, β, γ and δ as big as possible on the premise of the security against
other attacks, and β∗ and γ∗ should be avoided. The experiments show that the
maximum round of Par-Trivium is 863 which is the worst case. For the key and
IV loading locations, if other parameters are not changed, the loading locations
used in Trivium are the worst case, but it doesn’t threaten the security. If other
parameters are also changed, the worst and best choices are also given. For Loc-
Trivium, the maximum initialization round of all considered Trivium-variants is
910 which is the worst case and should be avoided to be resistant to cube attacks
or cube tests.
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Abstract. Searchable symmetric encryption (SSE) schemes are com-
monly proposed to enable search in a protected unstructured documents
such as email archives or any set of sensitive text files. However, some
SSE schemes have been recently proposed in order to protect relational
databases. Most of the previous attacks on SSE schemes have only tar-
geted its common use case, protecting unstructured data. In this work,
we propose a new inference attack on relational databases protected via
SSE schemes. Our inference attack enables a passive adversary with only
basic knowledge about the meta-data information of the target relational
database to recover the attribute names of some observed queries. This
violates query privacy since the attribute name of a query is secret.

1 Introduction

Searchable symmetric encryption (SSE) schemes provide one of the practical
solutions for searching on encrypted data. It was firstly proposed by Song et al.
in [26] and later improved by Curtmola et al.’s [10]. Based on Curtmola et al.’s
security model many SSE schemes were proposed such as [7–9]. The efficiency of
SSE schemes comes at the cost of some leakage that might make them vulnerable
to inference attacks [6,15].

Traditionally, SSE schemes are designed to protect a set of unstructured
documents (e.g. email archives or a backup or any set of sensitive text files).
However, recently Cash et al. proposed an elegant scheme [8] that targets rela-
tional databases by increasing the functionality through supporting a large sub-
set of Boolean queries. Their scheme also has good performance as it achieves
a query speed that is comparable to the query speed under the unprotected
MySQL (release 5.5) but with a storage cost of up to seven times the unen-
crypted data [8,14].

One can argue that SSE schemes offer better security than other encrypted
search schemes such as deterministic or order preserving encryption schemes
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since they do not leak the frequency of an attribute-value pair before query-
ing it. The security of SSE schemes has been well studied against inference
attacks [6,15] in their traditional use case scenario where document datasets
such as email archives are protected. More recently, the work in [1] presented the
first security analysis of searchable encrypted relational databases (i.e. relational
databases protected via SSE) by proposing an inference attack, called Relational-
Count, exploiting the structural properties of relational databases and using only
knowledge about the frequency distribution of the attribute-value pairs which is
much less than the prior knowledge (i.e. joint frequency of attribute-value pairs
which is equivalent to knowledge of the whole plaintext database) required by
the Count attack [6].

However, in this work we further improve the analysis of searchable encrypted
relational databases and show that there is an extra leakage that could reveal the
attribute name (also known as column name) of all the queries (i.e. encrypted
attribute-value pairs) belonging to a specific database column.

Henceforth, we will use the words “query” and “query token” interchangeably
to mean an encrypted attribute-value pair that has been queried (or an encrypted
keyword in the context of unstructured databases). Thus, query recovery means
finding the actual plaintext of the query which is an attribute-value pair (or a
keyword). Also, relational database tables protected via SSE schemes will either
be called SSE-protected databases or searchable encrypted relational databases.
Finally, the words “attribute” and “column” will also be used interchangeably
throughout the paper.

Our Contribution. The contribution of this paper is twofold. First, we propose
a new attack on searchable encrypted relational databases. Our attack recovers
the attribute names or column names of queries and thus we call it the Attribute-
Name recovery attack. Our attack breaks the query privacy by recovering the
secret attribute names of some of the observed queries. We propose two simple
algorithms (one is deterministic and the other is heuristic), that take as input the
set of issued queries and divide it into different subsets where each subset repre-
sents all the values belonging to a specific column. Table 2 shows the number of
columns recovered by our attack on three different real world databases protected
by an SSE scheme. It is apparent from Table 2 that for the Adult [19] and the
Bank [25] database tables which have 14/32561 and 17/4521 columns/records
respectively, our attack recovers almost all the columns and thus completely
breaks the privacy of queries. However, regarding larger database tables such as
the Census which has 40/299285 columns/records, we are able to recover slightly
more than half of the columns. Most notably, our attack works using only the
meta-data information (i.e. column names and their cardinalities where the car-
dinality of a column is defined as the number of unique elements in the column)
and the number of records about the protected relational database table under
attack. This lesser amount of required knowledge makes our Attribute-Name
recovery attack more applicable in practice than all previous attacks on SSE
schemes [1,6,15] as they require at least prior knowledge about the frequency
distribution of the keywords or attribute-value pairs in the target database.
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Second, we combine our Attribute-Name recovery attack with the Relational-
Count attack [1]. This gives us a second attack that recovers the values of queries
but requires knowledge about the frequency distribution of the attribute-value
pairs in the target database. The results about the number of recovered queries
in different SSE-protected relational databases are shown in Table 3.

Related Work. Query recovery attacks exploiting the access pattern leakage of
SSE schemes were proposed by Islam et al. [15] and later improved by Cash et
al. [6]. The recent inference attack on searchable encrypted relational databases
by Abdelraheem et al. [1] exploits the properties of relational databases. This
reduces the attacker’s knowledge from full database knowledge required by pre-
vious inference attacks [6,15] to only partial knowledge represented by the fre-
quency distribution of the attribute-value pairs in the target database. Unlike
Abdelraheem et al.’s Relational-Count attack [1] which still requires the fre-
quency distribution of the attribute-value pairs in the target database, our first
proposed attack recovers the attribute names of queries by requiring only the
attacker’s knowledge about the meta-data information of the target protected
database. Moreover, as shown in Table 3, our second proposed attack recovers
more queries than those recovered by Abdelraheem et al.’s Relational-Count
attack [1].

Naveed et al. [22] proposed a number of attacks targeting relational database
columns encrypted using deterministic encryption [4] or order preserving encryp-
tion algorithms [2,5] in CryptDB [24] where encrypted values belonging to the
same column whose name is encrypted are collected together as one set or more
precisely one column vector. While the approach seems similar, their column
finder procedure is significantly different than our attribute recovery attack. It
takes as input the set of encrypted values (i.e. column vector of encrypted values)
belonging to the same unknown column whose name is encrypted. Their app-
roach recovers the encrypted name by matching the number of distinct encrypted
values with each column’s cardinality defined in the set of plaintext columns (i.e.
a column name and its possible values are known) belonging to the attacker’s
auxiliary or background data. Their procedure relies mainly on the attributes’
(i.e. columns) cardinalities.

In contrast, our attack described in Algorithm 1 takes as input all the
observed encrypted queries in an SSE scheme. Then using the access pattern
leakage inherent in SSE schemes in addition to basic background data about the
number of records and attributes’ cardinalities, it divides the observed encrypted
queries into different classes where each class contains a set of encrypted queries
belonging to the same attribute. Thus, each class or set of encrypted queries
found by our attack is actually the input used by Naveed et al.’s column finder
procedure.

The recent generic attacks [17] proposed at CCS 2016 target any secure
database systems supporting range queries but leaking the access pattern with-
out any prior knowledge about the database under attack. Most notably, one
of their generic attacks target even secure encrypted search methods support-
ing range queries and only leaking the communication volume (i.e. query result
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size) such as fully homomorphic encryption or ORAM schemes. Their attacks
only target range queries and they require the attacker to gather at least N4

queries (N is the domain size) to mount the attack successfully. However, our
work targets relational databases protected by SSE schemes dealing with equal-
ity queries. There are only two things in common between our attack and theirs,
and that is the requirement of knowing the number of records and the query
result size (or communication volume as defined in [17]).

Organization of the Paper. Section 2 gives a brief overview of SSE schemes
and inference attacks. In Sect. 3, we point out the security risks of using SSE
schemes in relational databases by proposing a new frequency attack exploiting
the properties of relational databases. In Sect. 4, we present detailed experimen-
tal results demonstrating our attacks and then discuss some countermeasures.
Section 5 concludes the paper.

2 Background About SSE Schemes

Definition. An SSE scheme takes as inputs a plaintext database index together
with the client’s secret keys and outputs an encrypted index where each key-
word w in the plaintext index is transformed into a token t using a deterministic
encryption algorithm and its corresponding documents’ identifiers are encrypted
using a randomized encryption algorithm. An SSE scheme encrypts the original
documents by employing a randomized encryption algorithm using the client’s
secret keys and stores the encrypted documents in an encrypted database indexed
by the document identifiers. Both the encrypted index and the encrypted doc-
uments database are sent to the cloud server. To search for a keyword w, the
client issues a query by generating its token t using its secret keys and sends
it to the server. The server responds by sending the corresponding encrypted
documents from the encrypted documents database to the client.

Our focus will be on analyzing the security of relational databases protected
by SSE schemes that are adaptively secure as defined by Curtmola et al. [10].
The use of SSE schemes to protect SSE schemes was firstly proposed by Cash
et al. [7,8] where the database records are considered as documents and the
attribute-value pairs are considered as keywords (e.g. each keyword is represented
as wi = (attributei, vi) where attributei is the attribute name and vi is its value).

Leakage Profile. An SSE scheme leaks the access pattern: the result of the
query or the record (or document) IDs corresponding to the queried keyword
wi, DB(wi), and also leaks the search pattern: the fact that whether two searches
are the same or not.

Attack Model. All recent SSE schemes follow the adaptive security definition
proposed by Curtmola et al. [10] where security is achieved against an honest-
but-curious server. That means a passive adversary following the protocol but
curious to use the leakage profile to learn about the queries and the encrypted
records.
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Inference Attacks on SSE Schemes. Classical ciphers were broken by fre-
quency analysis which is a standard example of an inference attack where an
attacker can recover a plaintext character by inferring some information about
its corresponding ciphertext character using language statistics. Similarly, using
publicly-available auxiliary data, an inference attack can be mounted on adaptive
SSE schemes to recover the plaintext of queries issued by the client and observed
by the attacker (e.g. honest-but-curious server or passive external attacker). This
kind of attack performs query recovery and was proposed by Islam, Kuzu, and
Kantarcioglu (IKK) in [15]. Their attack, known in the literature as the IKK
attack, targets the strongest kinds of SSE schemes which are those proved to be
secure under the adaptive security definition. The IKK attack assumes knowl-
edge about the joint frequency (or co-occurrence count) of any two plaintext
attribute-value pairs (or two keywords) wi, wj ∈ W. It also assumes knowledge
about the plaintext of a subset of queries issued by the client.

A similar inference attack has been proposed recently by Cash et al. is called
the Count attack [6]. The Count attack assumes the attacker’s knowledge about
the number of occurrences of each keyword/attribute-value over all the doc-
uments/records (i.e.|DB(wi)| where wi ∈ W and DB is the original plaintext
dataset). This is also called keyword frequency knowledge and we denote this
knowledge by KF . Similar to the IKK attack, it also assumes knowledge about
the joint frequency (or co-occurrence count) of any two plaintext attribute-value
pairs (or two keywords) wi, wj ∈ W. Both, the IKK and the Count attacks,
represent the joint frequency knowledge in a matrix called the co-occurrence
knowledge-matrix, Cw. Therefore, both attacks require a complete knowledge
about the plaintext dataset under attack in order to form the co-occurrence
knowledge-matrix. Both attacks exploit the access pattern leakage inherent in
SSE schemes, in this case enabling the computation of the result size of any
observed query and also the observed joint frequency of any two observed queries.
In the relational database setting, this is equal to the size of the set resulting
from the intersection between the result sets of the two queries. A joint co-
occurrence query-matrix, Ct, is then formed and compared to the co-occurrence
knowledge-matrix, Cw in both attacks.

The recent Relational-Count [1] inference attack also performs query recov-
ery but on searchable encrypted relational databases. Its query recovery rate
is less than the Count attack but it is more practical than the Count attack
since it requires only the knowledge of the frequency distribution of the plain-
text attribute-value pairs in the target database rather than the joint frequency
knowledge required by the Count attack. The difference lies in the fact that the
Relational-Count attack uses Observation 1 (See Sect. 3) to discard the wrong
candidates in the list of possible candidates for a query with non-unique result
size in contrast to the Count attack which uses prior joint frequency knowledge
to discard wrong candidates from the same list.
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3 Attacking Searchable Encrypted Relational Databases

As demonstrated in the recent Relational-Count inference attack [1], the struc-
ture of relational databases does enable an attack on searchable encrypted rela-
tional databases without resorting to the co-occurrence knowledge-matrix Cw

about the relational database under attack. In the following, we describe our
Attribute-Name recovery attack. Our attack works under the assumption that
enough queries have been observed and that the attacker knows the meta-data
information about the target database (e.g. column names A and the cardinal-
ity of each column which is equivalent to the number of unique values in the
column).

Note that the meta-data information represents the least possible prior
knowledge that could be acquired by an attacker. We define this as the attacker’s
basic background knowledge KB. This is definitely much less than the prior
knowledge required by previously discussed inference attacks and could be
guessed or acquired from public data. For example, if an honest-but-curious
server holds an encrypted medical data, then an attacker can easily acquire the
columns’ or attributes’ names of the protected data by referring to publicly-
available information such as the meta-data about database tables used in stan-
dard medical software applications such as OpenEMR [23]1.

In addition to this basic knowledge, our attack assumes also the attacker’s
knowledge of the number of records in the target database which can be dynamic
depending on the protected database under attack. The number of records could
be gained either through a guess-and-determine process especially for small or
medium sized databases or through a leakage of the SSE scheme under attack
which is the case in some notable SSE schemes such as [9,16,20,27]. Moreover,
our attack could also recover the attribute value of a given attribute name ‘a’
under the assumption that the attacker knows KF .

3.1 Attribute-Name Recovery Attacks (First Attack)

We make use of the following simple observation, proposed in [1], about the
joint frequency (or the co-occurrence count) of observed queries sharing the
same attribute name on searchable encrypted relational databases.

Observation 1. The observed joint frequency (or observed co-occurrence count)
between any two different queries is non-zero only when their corresponding
attribute names are different.

The observation should be clear from the fact that each relational database
record has only one value for each column or attribute name. For example,
let t1 be the query token corresponding to the plaintext attribute-value pair
“Sex : Male”, t2 be the query token corresponding to the plaintext attribute-value
pair“Sex : Female”, and t3 be the query token corresponding to the plaintext
1 OpenEMR is a well known open source medical software supporting Electronic Med-

ical Records (EMR).
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attribute-value pair “Age : 18”. Now, the observed joint frequency of t1 and t2
must be zero as there cannot be a relational database record whose“Sex” value
is both “Male” and“Female”. Also there is no guarantee that the observed joint
frequency of t1 and t3 (or t2 and t3) is zero since their corresponding attribute
names are different.

More generally, Observation 1 might allow an attacker to answer the following
question “Do the queries ti and tj have the same attribute name ?”. Here the
attacker does not need any knowledge other than the observed access pattern
leakage Ct. If the value Ct[ti, tj ] does not equal zero, then ti and tj definitely
have different attribute names. Otherwise, the attacker cannot answer.

Our first proposed attack, the attribute-name recovery attack, is based on
Observation 2 which follows immediately from Observation 1 and the fact that
the total frequency of all the domain values of an attribute a in a searchable
encrypted relational database (EDB) equals the number of records in EDB. Going
back to our previous example and assuming that the number of records in EDB
is n, one can see that since t1 and t2 have the same attribute name and |Sex| =
2 (i.e. the cardinality of “Sex”) then the following equation will be satisfied:
|t1| + |t2| = n. This gives an example that explains the following observation.

Observation 2. Let t = {t1, · · · , tl} be the set of observed queries where l ≤
|W|. Let |ti| denote the result size of query token ti. Let Ct be the observed co-
occurrence query-matrix. Let n be number of records in a searchable encrypted
relational database EDB. Let ‘a’ be an attribute name in the EDB with cardinality
|a|. Then there exists a subset2 s ⊆ t where

∑
ti∈s |ti| = n, |s| = |a|, and

∀ti, tj ∈ s, Ct[ti, tj ] = 0 when l = |W |.
Observation 2 can be used to develop an algorithm that distinguishes between
observed queries. Such a distinguisher algorithm can be mounted by a weak
attacker (hence a strong attack) who observes only the access pattern leakage
of queries and has no prior knowledge other than KB (i.e. number of records,
column names and their cardinalities).

Description of Algorithm 1. Algorithm 1 takes as input a set of observed
query tokens t = {t1, ..., tl} and the attacker’s basic background knowledge KB.
It divides and classifies these tokens according to their attribute names into
different sets where each set Ga belongs to one attribute name a = (ai) or
multiple attributes names a = (ai, aj) sharing the same cardinality |ai|. Note
that the pseudo-code of Algorithm 1 provides only an overview about the steps
and does not represent a description of our implementation. In the following, we
discuss how to efficiently implement Algorithm 1.

Step 7 and Step 8 can give us an idea about the time complexity of
Algorithm 1 since they form the known k-SUM problem (i.e. Given A =
{a1, · · · , as} and a target sum t. Is there any subset of indices {i1, · · · , ik} such
that

∑k
j=1 |aij | = t ?) with an additional condition that the observed joint fre-

quency (or co-occurrence count) value between any two elements in the subset is
2 If the cardinality |a| is not unique, then k subsets will exist where k is the number

of attributes whose cardinalities are equal to |a|.
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Algorithm 1. Attribute Recovery Attack
Require: KB and observed query tokens t = {t1, ..., tl} and their results. |a| ≡ cardi-

nality of a ∈ A where a can represent a single attribute name or multiple attribute
names sharing the same cardinality |a|. |ti| ≡ result size of query token ti.

Ensure: Recover the attribute name of observed queries.
1: Set R = {}. Compute the co-occurrence query-matrix Ct from query tokens t.
2: For each ti, create a list Qi holding ti in its head (i.e. Qi[1] = ti) and all other

query tokens tj ’s where Ct[ti, tj ] = 0.
3: Sort all the lists Qi according to their size in ascending order. Add all the sorted

lists Qi’s to a lists’ container L where L[i, j] is the jth query in the ith list L[i].
4: Set Ga ← {} for each attribute a and ctr = 1.
5: while ctr ≤ l AND A �= ∅ do
6: L[ctr] ← L[ctr]\R
7: for all S ⊆ L[ctr] where L[ctr, 1] ∈ S do
8: if

∑
tu∈S |tu| = n and Ct[tu, tv] = 0 , ∀tu, tv ∈ S then

9: for all a ∈ A do
10: if |S| = |a| then
11: Ga ← Ga ∪ S
12: R ← R ∪ Ga

13: A ← A\a
14: print(“Possible solution for cardinality ”,|a|, “ is ”,Ga)
15: goto Step 16

16: ctr = ctr + 1

17: return R.

zero. The k-Sum problem is a parameterized version of the subset sum problem
which is a known NP-complete problem. The brute force algorithm for the k-
SUM problem takes O(sk) where s is the size of the given set. There are simple
algorithms solving this problem in O(s

k
2 log s) when k is even and O(s

k+1
2 ) when

k is odd [3,11,13].
However, employing the observed joint frequency (or co-occurrence count)

condition might reduce the above complexity times but this needs further inves-
tigation. Obviously, Algorithm 1 performs well when k is small (i.e. the attribute
cardinality is small). When the target sum t is not very large (i.e. number of
records n is not very large), one can use the known dynamic programming tech-
nique to solve the subset sum problem in pseudo-polynomial time O(st) [18].

Another way to look at Algorithm 1 is to consider the co-occurrence query-
matrix as the adjacency matrix of a weighted graph GCo whose nodes are the
queries and any two nodes are connected by an edge whose weight is the observed
joint frequency (or co-occurrence count) value between the two connected nodes
(i.e. a zero value for the joint frequency (or co-occurrence count) means no edge
or edge with weight zero). This allows us to consider the elements of the list
L[ctr] created in Algorithm 1 as nodes in another smaller weighed graph GL[ctr]

whose adjacent matrix is a submatrix of the co-occurrence query-matrix (i.e.
adjacent matrix of the bigger graph GCo containing all queries).
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Now rather than looking at the subsets of L[ctr] (Note that the first element
L[ctr, 1] should be included in all subsets) whose size is equivalent to a given
cardinality |a|, one can look at the independent sets of the graph GL[ctr] cor-
responding to the list L[ctr] whose size is equivalent to |a| with the additional
condition that the total sum of the frequency of each node (i.e. query) equals
the total number of records n. This is the known independent set NP-Complete
problem with an additional filtering condition. We have implemented Step 8 in
Algorithm 1 using a greedy solution to the independent set problem where a
node with the maximum degree is included in the solution and all its neighbors
are discarded (See Sect. 4). Appendix A gives an example where the queries are
represented in a graph and the problem of finding the attribute name of each
query is equivalent to finding solutions to the independent set problem of a given
graph.

Now, one can ask, which approach (i.e. independent set algorithms or k-
SUM algorithms or dynamic programming of subset sum) is better to implement
Step 7 and Step 8 in Algorithm 1. The answer depends on the target database
table and the available queries. We have implemented the dynamic programming
algorithm for the subset problem where all the solutions are traced back and
the joint frequency (or co-occurrence count) condition is evaluated after finding
each solution. This is practical when O(st) is pseudo-polynomial which means
that the number of records t is not large and for each cardinality there exists a
constructed list L[ctr] whose size s is not large.

However, Algorithm 1 will not be practical to apply when the constructed
lists are large. Therefore, we propose Algorithm 2, which is an efficient heuristic
algorithm that can find valid solutions faster. Algorithm 2 takes as input the
constructed lists L[ctr], the number of records, and the observed query-matrix.
The algorithm is based on the observation that “the intersection between lists
whose heads belong to a similar attribute name gives a list containing queries
whose result sizes add up to the number of records”. The problem here lies in
identifying the lists whose heads belong to the same attribute name. Our heuris-
tic approach allows the intersection between lists whose heads are queries that
are disjoint. Its time complexity is O(|W |2) where |W | is the number of attribute-
value pairs which is equivalent also the number of lists L[i].

Unlike Algorithm 1 which needs to find all the solutions of a subset sum
problem (see Step 8 in Algorithm 1), the heuristic approach only needs to find the
intersection (see Step 8 in Algorithm 2) between two sorted sets at each iteration
which takes O(m1 log(m2)) where m1 is the size of the small list and m2 is the
size of the larger. For each list L[i], it outputs a possible solution R[i]. Note that
a correct solution R[i] is more likely to appear and to be confirmed many times
but not more than |R[i]| times. No doubt false positives will appear especially
for columns with small cardinalities, even if the number of confirmations for a
solution R[i], C[R[i]], is exactly |R[i]|. The order of lists L[i] affects the results
of the intersections, so the algorithm might not succeed in finding the right
solution. So further work is required to study the success rate of our heuristic
approach.
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Algorithm 2. Heuristic Approach
1: procedure Heuristic(L, Ct, n, t = {t1, ..., tl}, A)
2: R = {}
3: C = {} � Hash table to map similar entries in R to one entry
4: while L is decreasing do
5: for all L[i] do
6: R[i] ← L[i]
7: for all L[j] where L[j, 1] ∈ L[i] do
8: S ← R[i] ∩ L[j]
9: if

∑
tu∈S |tu| ≥ n then

10: R[i] ← S

11: if
∑

tu∈R[i] |tu| = n & Ct[tu, tv] = 0 , ∀tu, tv ∈ R[i] then

12: R[i] ← Sort(R[i]) � Sort according to query no.
13: if R[i] ∈ C then
14: C[R[i]] ← C[R[i]] + 1
15: else
16: C[R[i]] ← 0

17: for all R[i] where |R[i]| ∈ |A| & (R[i] ∩ R\R[i] = φ) do
18: if C[R[i]] ≈ |R[i]| then
19: print(R[i], “ holds queries of an attribute with card. ”,|R[i]|)
20: for all L[j] do
21: if L[j, 1] ∈ R[i] then
22: L ← L\L[j]
23: else
24: L[j] ← L[j]\R[i]

However, experiments show that such false positive solutions are discarded by
Step 17. As long as there are no intersections between solutions, any number of
confirmations more than one will give us confidence that our solution is correct.
In our experiments, for small cardinalities ≤ 15, we require that the number of
confirmations to be exactly equivalent to the number of confirmations. But for
other cardinalities, we require that the number of confirmations ≥ 10.

Experiments show that Algorithm 2 managed to recover many attributes in
large databases such as the Census database [21] while Algorithm 1 succeeded
in recovering almost all the columns (12/14) in the Adult database [19] which is
a small database with only 498 attribute-value pairs.

Algorithms 1 and 2 break query privacy after observing enough queries
using a less amount of required knowledge. To realize their effect, assume that
an attacker has observed enough queries on a searchable encrypted relational
database, then Algorithm 1 can give us an answer to: “Have all possible val-
ues about attribute‘x’ been queried ?”. To answer such a question, an attacker
needs to know the number of records n which could be possible as noted above.
The attacker also needs to know the cardinality of x, |x|, which could also be
possible as many relational database tables are standard such as the sensitive
OpenEMR [23] relational databases. Employing Algorithm 1, after observing
enough queries, might return all the queries with the same attribute that have
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result sizes whose sum is equivalent to n. If there is only one attribute whose
cardinality equals ‘|x|’, then Algorithm 1 will yield one solution if all values
of ‘x’ have been queried. The ability to answer the above question does break
the query privacy meant to be provided by using SSE and confirms the recent
results [1] that the leakage resulting from protecting relational databases with
SSE schemes is more than the leakage resulting from protecting unstructured
data with SSE schemes.

3.2 Recovering Attribute Values (Second Attack)

Algorithms 1 and 2 might enable an attacker to recover the attribute names of
some queries without any knowledge except the basic knowledge, KB. Now with
KB, the attacker knows the domain or space values of a given attribute name.
Moreover, with the access pattern leakage, the attacker knows the result set size
(i.e. number of records holding the corresponding attribute-value pair for the
query token) of each observed query.

However, in order to recover the attribute values of observed queries whose
attribute names are recovered with Algorithm 1, without any prior joint fre-
quency knowledge such as those used in the Count attack KF and Cw, an
attacker needs to know at least the rank-size or rank-frequency distribution of
the attribute values. Note that the knowledge of the rank-size or rank-frequency
distribution of a given attribute value does not necessarily imply the knowledge
of the frequency of each attribute value KF . For example, an attacker might
know that in a certain country, from Census data, that the number of females
exceeds the number of males without knowing the exact numbers.

Using rank-size distribution knowledge only instead of KF knowledge, an
attacker can create a list La containing the attribute values of an attribute
named a that is sorted according to their rank-size in descending order. Let Lq

be a list containing the result-size of each query such that Lq[i] contains the
result size of query token ti. Let Sort(Lq) be the list obtained after sorting Lq in
descending order. Let Find(Sort(Lq), Lq[i]) be a function that gives the location
corresponding to ti in the sorted list. Then the value of the query token ti will
be La[Find(Sort(Lq), Lq[i])]. If all the result sizes of queries in Lq are unique,
then the above attack succeeds with probability one. Otherwise, there might be
an error whenever we have a tie in the result sizes between two or more queries
in Lq.

Using KF knowledge which is a very strong assumption compared to the rank-
size distribution knowledge, an attacker can populate a list of lists data structure,
say La, where La[j] gives the value (or a list of values) of the attribute ‘a’ whose
frequency value (values) equals j. Assuming, for example, that Algorithm 1 has
recovered the attribute name of a query token ti to be ‘a’, then one can see
that by adding the result-size of observed queries to a dictionary Dq (i.e. Dq[ti]
gives the result-size of query token ti), then La[Dq[ti]] will be the attribute value
(or the possible attribute values) of an observed query token ti whose attribute
name is a. If each list in La (i.e. La[j]) has size 1, then this process yields
one value for the query token ti whose frequency matches the result-size of ti,
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Dq[ti]. Otherwise, it will return the list of all the possible values of the query
token ti which appear Dq[ti] times over all the database records. The two above
procedures are standard frequency analysis attacks similar to the one described
by Naveed et al. [22] for attacking columns of a relational database encrypted
using deterministic encryption.

However, our attacks target searchable encrypted relational databases by
firstly recovering the attribute name of a given query using only the meta-data
information about the databases and then secondly recovering its value when
background knowledge about the databases (i.e. the distribution of the attribute-
value pairs) under attack is known. Moreover, rather than firstly recovering all
the attribute names of the issued queries and then secondly recovering all the
values using the attacker’s frequency knowledge, we can use the frequency knowl-
edge and use our attribute-name recovery attack and at the same time apply
the Relational-Count attack proposed by Abdelraheem et al. [1]. Combining the
Attribute-Name Recovery attack and the Relational-Count attack allows us to
recover more queries. This combination represents our second proposed attack.
See the graph on the right in Fig. 1 at Appendix A to see the effect of our second
attack when combined with our first attack. In Sect. 4, we give some experi-
mental results on the Bank database [25] where this combination significantly
increases the number of recovered queries and closes the security gap between
deterministic encryption and searchable encryption schemes.

4 Experimental Results and Countermeasures

In this section, we show the practical viability and threat posed by our first
proposed attack (attribute-name recovery) as well as our second proposed attack
which recovers the actual plaintext values of the queries.

Our first attack is represented by Algorithm 1 (subset sum approach or Inde-
pendent set approach) and Algorithm 2. We also combine both Algorithms 1
and 2 (subset sum approach) by using Algorithm 2 first and then using the
reduced and unresolved lists produced by Algorithm 2 as an input for Algo-
rithm 1 (subset sum approach) in order to tackle the unresolved lists with small
sizes. Our attack takes as input the access pattern of the observed queries (i.e.
access pattern = record IDs and result size), which enables the attacker to com-
pute the observed co-occurrence matrix Ct. It also takes as input the basic back-
ground information represented in only the meta-data information about the
relational database under attack (i.e. KB). Our goal is to distinguish between
queries belonging to different attribute names and gather all queries belonging
to the same attribute in a single unit column. This will reduce that the secu-
rity offered by SSE and make it close to the security offered by deterministic
encryption when enough queries are issued which will enable an attacker with
background knowledge about the actual database or its distribution to recover
all queries and thus all attribute values of the target database as demonstrated
by Naveed et al. [22] and discussed above in Sect. 3.2.

We tested our attacks against the three relational database tables used in [1],
namely, the Adult [19], the Bank [25], and the Census [21]. The implementation
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of our attacks can be accessed from the link https://goo.gl/WxmSU4. Before
describing our experimental results, we give a short description about these
three databases.

Relational Databases. The three relational database tables are publicly avail-
able online at the UCI Machine Learning Repository [12]: (1) Adult [19]: consists
of 32561 rows (records), 14 columns (attributes), and has 498 distinct attribute-
value pairs. (2) Bank [25]: consists of 4521 rows, 17 columns (attributes), and
has 3720 distinct attribute-value pairs. (3) Census [21]: consists of 299285 rows,
40 columns (attributes), and has 4001 distinct attribute-value pairs.

Query Generation. Using a single-keyword Bitmap-based SSE scheme sim-
ilar to the ones described in [15,27], each target relational database is trans-
formed into a separate searchable encryption relational database where all pos-
sible queries within it are issued. The queries were chosen randomly from the
set of all available queries (498 queries for the Adult database, 3720 queries for
the bank database and 3993 queries for the Census database) by a client and
each query result set and its access pattern leakage were recorded by an honest-
but-curious server. Using this observed-queries knowledge, our attacker (i.e. the
honest-but-curious server) can compute the joint frequency (or co-occurrence
count) value between any two queries and thus the whole co-occurrence query-
matrix, Ct.

Sizes of the Sorted Lists. Both Algorithms 1 and 2 depend on the lists L[ctr]
whose sizes determine the time complexity of both algorithms. The sizes of the
lists L[ctr] vary depending on the database under attack and the number of
issued queries. For example, in the Adult database when all the 498 queries are
issued, the smallest list has size 13 and the largest list has size 485 whereas in
the Bank database when all the 3720 queries are issued, the smallest list has size
37 and the largest list has size 3704 and in the Census database when all the
4001 queries are issued, the smallest list has size 11 and the largest list has size
3962 (Table 1).

Table 1. Sizes of the Sorted Lists (increasing order) in each of the three databases (i.e.
Adult, Bank and Census) when all the possible queries are issued in each protected
database. The 1st list (L[1]) for the Adult database has size 13, the 2nd list (L[2]) has
size 28 and so on. last refers to the last list which corresponds to the 498th list in the
Adult database, the 3720th list in the Bank database and the 4001th list in the Census
database.

Data Set 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... last

Adult 13 28 41 45 52 67 89 89 93 118 118 119 129 135 136 ... 485

Bank 37 288 374 662 662 662 770 852 954 1184 1465 1518 1812 1878 1963 ... 3704

Census 11 25 25 30 34 55 107 110 111 127 127 152 157 197 198 ... 3962

https://goo.gl/WxmSU4
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4.1 Experimental Results of Our First Attack

Experiments with Algorithm 1. Algorithm 1 is implemented using two
approaches. The first approach is the known dynamic programming with a back-
tracking procedure to solve the subset sum problem in each list L[ctr] and the
second approach is a greedy algorithm that solves the independent set prob-
lem. Table 2 shows the results of using the two approaches of implementing
Algorithm 1 on the above three databases. The results show that the subset
sum implementation is more successful than the independent set implementa-
tion when the database table has a small number of attribute-value pairs such
as the Adult database which has only 498 attribute-value pairs and thus at
most 498 queries. So regarding the Adult database, all the columns or attribute
names whose cardinalities are unique have been recovered successfully. However,
columns with the same cardinality such as the “sex” and salary “class”, where
each has two values, have been distinguished from the other attributes but one
can not tell which of the two values point to the “sex” attribute and which point
to the “class” attribute. Similarly, each of the “education” and “education-num”
attributes has 16 values3. However, all their values were in one list ranked at
position ctr = 13 in the sorted lists’ container and at the same time each value
in each attribute has zero joint frequency (or co-occurrence count) value with
all the other values except one value. This makes it impossible to separate the
values of each attribute as we did for the “sex” and “class” attributes. In fact,
our dynamic programming implementation of Algorithm 1 generated exactly
32678 = 215 solutions. The reason is that the first element of each list is included
in each solution but each of all the other 15 values has two possibilities which
gives us in total 215 solutions. However, the set of all queries belonging to “edu-
cation” and “education-num” will be identified and separated from the other
queries but not from each other. In such scenarios Algorithm 1 fails completely
to recover the attribute name of a class of queries.

Regarding the Census and the Bank databases, the greedy approach of the
independent set implementation of Algorithm 1 is more effective as it recovers
more columns. Note that the subset sum approach is deterministic but it takes
too long time to resolve a single list L[ctr] with a large size. For example, we are
only able to resolve the first three lists in the Bank database using the subset sum
implementation but we cannot resolve the 4th ranked list in the Bank database
whose size is 662 and all the other lists corresponding to the Bank database in
a reasonable time using the subset sum implementation. However, when we use
the greedy approach for the independent set (note that this approach is heuristic
so we check the intersections between solutions similar to Step 17 in Algorithm 2
to discard false positives), we are able to recover 10/17 columns compared to
only 3/17 recovered columns when using the subset sum implementation.

Experiments with Algorithm 2. The heuristic approach presented in
Algorithm 2 was more effective than the deterministic approach presented
in Algorithm 1. We tested Algorithm 2 against the three above databases.

3 There is one-to-one correspondence between education and education-num.
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Table 2. Attribute-Name Recovery Results on Different Relational Databases when
all the possible queries are issued. The entry 22/40 indicates that we have recovered
22 columns out of 40 columns in the Census database.

Algorithm Census Bank Adult

1 (Subset sum) 6/40 3/17 12/14

1 (Independent set) 6/40 10/17 2/14

2 (Intersection) 20/40 12/17 10/14

2 (Int.)+1 (Sub.) 22/40 12/17 12/14

The results are depicted in Table 2 and they show clearly that the heuristic app-
roach presented in Algorithm 2 recovers more columns. For example, it recovered
20/40 columns in the Census database compared to only 6/40 when Algorithm 1
(independent set approach) is employed. Moreover, when we combine the inter-
section heuristic approach with the subset sum approach, we recover even more
columns in the Census database as shown in the last row of Table 2 where 22/40
queries are recovered.

4.2 Experiments to Recover the Attribute Values

Under the assumption that the attacker has background knowledge represented
only in the frequency distribution, we apply both the Attribute-Name Recovery
attack and the Relational-Count attack on the Bank database. Our goal is to
recover more queries compared to the case where only the Relational-Count
attack is applied.

Combining Algorithm 2 and the Relational-Count attack allows us to recover
more queries than those recovered when only the Relational-Count is applied [1].
Table 3 summarizes the results of experiments to recover the attribute val-
ues using our second attack (i.e. combination of the Attribute-Name and the
Relational-Count attack). The table shows that when all queries are issued, our
second attack recovers more queries than those recovered using the Relational-
Count attack. So one can conclude that for some relational database tables (e.g.
small number of columns, unique cardinality, non-zero co-occurrence between
attribute-value pairs belonging to different columns), SSE schemes security level
is very close to the security level provided by deterministic encryption schemes.

Table 3. The table shows the number of queries recovered from three SSE-protected
relational databases (Adult, Bank and Census) using both the Relational-Count
attack [1] and our second attack.

Attack Adult Bank Census

Our Second Attack 240/272 147/150 760/829

Relational-Count Attack [1] 236/272 122/150 757/829
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Note that the maximum number of queries that can be recovered in each SSE-
protected database is upper bounded by the number of queries that can be
recovered when the columns’ of the relational database is protected using a
deterministic encryption algorithm. This upper bound is equivalent to 272, 150
and 829 in the Adult, Bank and Census databases respectively due to the exis-
tence of some values within the same column that have the same frequency in
these databases.

4.3 Countermeasures

The padding countermeasure, which is proposed in [6,15], hides the actual result
size of each query and therefore might prevent our Attribute-Name recovery
attack. However, depending on the padding level, a variant of the Attribute-
Name recovery attack that does not look for the exact number of records but for
a range of possible values for the number of records might still allow the attacker
to find queries belonging to the same column.

5 Conclusion

In this paper, we proposed two attacks on relational databases protected via SSE
schemes. Our first attack breaks query privacy as it classifies the set of issued
queries into different subsets where each subset holds the queries belonging to
a specific column. Remarkably, our first attack is more practical than all other
proposed attacks on SSE schemes [1,6,15] which require prior knowledge about
the frequency distribution of the attribute-value pairs in the target database.
This is because our attribute-name recovery attack does not require any prior
knowledge about the target database other than the meta-data information and
the number of records. An important message of this paper is that SSE schemes
leaking the number of records n should not be used.

Moreover, we improved the Relational-Count attack [1] by combining it with
our first attack. This combination allows us to recover more queries on some
databases. Our work is important because it shows that protecting relational
databases via SSE schemes breaks query privacy as it allows an attacker to
recover the attribute names of some of the observed queries. In particular, the
queries belonging to columns with low cardinality will be easily distinguished
from other queries without waiting for all queries to be issued.

Our experiments assume that all the possible queries on a searchable
encrypted database are issued which is one limitation of our work. Observa-
tion 2 will not hold for some attributes when the number of issued queries is less
than the number of all the attribute-value pairs in the encrypted database since
the existence of a subset of observed queries belonging to a certain attribute is
not certain. Estimating the existence probability of a certain subset of observed
queries depends on the distribution of the issued queries which varies from one
user to another. So further work is required to estimate this probability.
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A Example Explaining Our Attribute-Name Recovery
Attack

In the following, we give a toy example to demonstrate our attack. Assume
that we have a relational database table as shown in Table 4. Using a determin-
istic encryption algorithm to encrypt the “Sex” and“Education” columns and
using an order preserving encryption will transform our relational database table
to an encrypted relational database table as shown in Table 5. However, most
secure SSE schemes will transform an inverted index such as the one displayed
in Table 6 into a length-hiding encrypted index where the server does not know
the frequency or result length of each keyword token before being queried.

After observing all the queries issued on the encrypted index shown in
Table 6. Our attribute-name recovery attack tries to resolve the attribute name
of each observed query by exploiting the access pattern leakage. Figure 1 shows
three graphs whose nodes represent the observed queries. The graph on the left

Table 4. The table shows a plaintext relational database table.

ID Sex Education Age

1 M Bsc 40

2 F Msc 39

3 F PhD 30

4 M PhD 45

5 M Bsc 25

6 F Bsc 23

7 M Msc 30

Table 5. The table shows an encrypted relational database table. DET refers to
Deterministic Encryption and OPE refers to Order Preserving Encryption. Column
names can either be replaced by random labels or deterministically encrypted using
the table unique ID.

ID DET (Education||tableID,K0) DET (Age||tableID,K0) DET (Sex||tableID,K0)

1 DET (Bsc,K2) OPE(40,K3) DET (M,K1)

2 DET (Msc,K2) OPE(39,K3) DET (F,K1)

3 DET (PhD,K2) OPE(30,K3) DET (F,K1)

4 DET (PhD,K2) OPE(45,K3) DET (M,K1)

5 DET (Bsc,K2) OPE(25,K3) DET (M,K1)

6 DET (Bsc,K2) OPE(23,K3) DET (F,K1)

7 DET (Msc,K2) OPE(30,K3) DET (M,K1)
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Table 6. The table shows an inverted index for the relational database table shown in
Table 4. Each keyword w is represented as w = (a : v) where a refers to its attribute
name and v refers to its value.

Keyword Record IDs

Sex:F 2, 3, 6

Sex:M 1, 4, 5, 7

Education:Bsc 1, 5, 6

Education:Msc 2, 7

Education:PhD 3, 4

Age:23 6

Age:25 5

Age:30 3, 7

Age:39 2

Age:40 1

Age:45 4

shows the server’s knowledge (represented by the frequencies or result lengths of
observed queries gained from the access pattern leakage) before launching our
attacks. When we apply the Attribute-Name recovery attack using only as back-
ground knowledge the meta-data information about the table and the number
of records, the Server will know only the attribute names, “Education”, “Sex”

Table 7. The table shows a length-hiding encrypted index before being randomly per-
muted for the inverted index shown in Table 6. DET refers to deterministic encryption
and Enc refers for a randomized encryption algorithm. Note that this encrypted index
is not secure as the rows needs to be securely and randomly shuffled and the number
of rows needs to be padded to the maximum number of keywords possible.

Keyword Record IDs

DET (Sex : F, K0) Enc(2||3||6||∗, K1)

DET (Sex : M, K0) Enc(1||4||5||7, K1)

DET (Education : Bsc, K0) Enc(1||5||6||∗, K1)

DET (Education : Msc, K0) Enc(2||7|| ∗ ||∗, K1)

DET (Education : PhD, K0) Enc(3||4|| ∗ ||∗, K1)

DET (Age : 23, K0) Enc(6|| ∗ || ∗ ||∗, K1)

DET (Age : 25, K0) Enc(5|| ∗ || ∗ ||∗, K1)

DET (Age : 30, K0) Enc(3||7|| ∗ ||∗, K1)

DET (Age : 39, K0) Enc(2|| ∗ || ∗ ||∗, K1)

DET (Age : 40, K0) Enc(1|| ∗ || ∗ ||∗, K1)

DET (Age : 45, K0) Enc(4|| ∗ || ∗ ||∗, K1)



Practical Attacks on Relational Databases 189

and “Age” represented by the graph on the middle in Fig. 1. Note that Naveed
et al. [22] attack recovers column names and values of the encrypted database
table shown in Table 5 using public background data. However, our attribute-
name recovery attack recovers the query issued on the encrypted index shown in
Table 7 using only meta-data information about the database table in addition
to the number of records which can be leaked by some SSE schemes or guessed
by the attacker.

Moreover, when we apply both the Attribute-Name recovery attack and the
Relational-Count attack using the frequency distribution knowledge, the Server
will know both the attribute names and their corresponding actual values. This
additional knowledge is represented in Fig. 1 by the graph on the right.

Fig. 1. Nodes on the graphs represent all the possible queries that can be issued in
the relational database index table shown in Table 6 after being encrypted by an SSE
scheme. An edge between nodes (queries) exists if the intersection between their cor-
responding result sets is non-zero. The graph on the left shows queries as nodes of a
graph labeled by their result lengths before applying our attacks. The graph on the
middle shows what the server will learn after applying our attribute-name recovery
attack. Note that the green color refers to the “Sex” attribute name and the blue color
refers to the “Education” attribute name and the red color refers to the “Age” attribute
name. The graph on the right shows what the server could learn after applying our
second attack (Attribute-Name recovery attack combined with the Relational-Count
attack).
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scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 20

9. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 33

10. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: CCS (2006)

11. Erickson, J.: Lower bounds for linear satisfiability problems. In: SODA 1995 (1995)
12. Center for Machine Learning and Intelligent Systems. University of california,

irvine. https://archive.ics.uci.edu/ml/datasets.html. Accessed June 2017
13. Gold, O., Sharir, M.: Improved bounds for 3sum, k-sum, and linear degeneracy.

CoRR, abs/1512.05279 (2015)
14. IARPA. Poster about protecting privacy and civil liberties. https://www.iarpa.

gov/images/files/programs/spar/09-SPAR final v21.pdf
15. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable

encryption: Ramification, attack and mitigation. In NDSS 2012 (2012)
16. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-

tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 22

17. Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: Generic attacks on secure out-
sourced databases. In: CCS (2016)

18. Kleinberg, J., Tardos, E.: Algorithm design. Pearson Education India (2006)
19. Kohavi, R., Becker, B.: Adult data set (1996). https://archive.ics.uci.edu/ml/

machine-learning-databases/adult/. Accessed June 2017
20. Kurosawa, K., Ohtaki, Y.: UC-secure searchable symmetric encryption. In:

Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 285–298. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32946-3 21

21. Lane, T., Kohavi, R.: Census-income (kdd) data set (2000). https://archive.ics.uci.
edu/ml/machine-learning-databases/census-income-mld/. Accessed June 2017

22. Naveed, M., Kamara, S., Wright, C.: Inference attacks on property-preserving
encrypted databases. In: CCS 2015 (2015)

23. OpenEMR. http://www.open-emr.org/. Accessed Mar 2017
24. Popa, R.A., Redfield, C., Zeldovich, N., Balakrishnan, H.: Cryptdb: protecting con-

fidentiality with encrypted query processing. In: ACM Symposium on Operating
Systems Principles (2011)

https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1007/978-3-642-17373-8_33
https://archive.ics.uci.edu/ml/datasets.html
https://www.iarpa.gov/images/files/programs/spar/09-SPAR_final_v21.pdf
https://www.iarpa.gov/images/files/programs/spar/09-SPAR_final_v21.pdf
https://doi.org/10.1007/978-3-642-39884-1_22
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/
https://doi.org/10.1007/978-3-642-32946-3_21
https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/
https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/
http://www.open-emr.org/


Practical Attacks on Relational Databases 191

25. Laureano, R., Moro, S., Cortez, P.: Using data mining for bank direct marketing:
an application of the crisp-dm methodology. In: Novais, P., et al. (eds.) Proceed-
ings of the European Simulation and Modelling Conference - ESM 2011, pp. 117–
121, Guimarães, Portugal, EUROSIS, October 2011. https://archive.ics.uci.edu/
ml/datasets/Bank+Marketing. Accessed June 2017

26. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Security and Privacy, S&P 2000

27. Van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computa-
tionally efficient searchable symmetric encryption. In: Workshop on Secure Data
Management (2010)

https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing


A Simple Algorithm for Estimating
Distribution Parameters

from n-Dimensional Randomized
Binary Responses

Staal A. Vinterbo(B)

Department of Information Security and Communication Technology,
Norwegian University of Science and Technology, Trondheim, Norway

Staal.Vinterbo@ntnu.no

Abstract. Randomized response is attractive for privacy preserving
data collection because the provided privacy can be quantified by means
such as differential privacy. However, recovering and analyzing statistics
involving multiple dependent randomized binary attributes can be dif-
ficult, posing a significant barrier to use. In this work, we address this
problem by identifying and analyzing a family of response randomizers
that change each binary attribute independently with the same proba-
bility. Modes of Google’s Rappor randomizer as well as applications of
two well-known classical randomized response methods, Warner’s orig-
inal method and Simmons’ unrelated question method, belong to this
family. We show that randomizers in this family transform multinomial
distribution parameters by an iterated Kronecker product of an invert-
ible and bisymmetric 2×2 matrix. This allows us to present a simple and
efficient algorithm for obtaining unbiased maximum likelihood parame-
ter estimates for k-way marginals from randomized responses and pro-
vide theoretical bounds on the statistical efficiency achieved. We also
describe the efficiency – differential privacy tradeoff. Importantly, both
randomization of responses and the estimation algorithm are simple to
implement, an aspect critical to technologies for privacy protection and
security.

Keywords: Privacy · Data collection · Randomized response
Disclosure control

1 Introduction

Randomized response, introduced by Warner in 1965 [23], works by allowing
survey respondents to sample their response according to a particular proba-
bility distribution. This provides privacy while still allowing the surveyor to
gain insights about the queried population. Due to its suitability for large scale
privacy preserving data collection, randomized response has lately enjoyed a
resurgence in interest from Apple and Google, among others.
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As an example of randomized response, consider a population of parties each
holding an independent sensitive bit b with P (b = 1) = p where p is unknown.
We want to estimate p and therefore randomly select m parties i to ask for
their bit values bi for this purpose. Tools from information security allow us to
collect the bit values and compute the estimate p̂ = m−1

∑
i bi of p without

access to any proper subset sum of bit values. However, if p̂ = 1 we can infer
that bi = 1 for all observed bits. Even if we are trusted with this knowledge,
disseminating p̂ allows outsiders to infer bi = 1 for any party i known to be a
contributor. Knowing this, parties might not be willing to share their bit-value
directly. However, if each contributor is allowed to lie with a probability q < 1

2 ,
then we can argue that 1−q

q is the upper limit to which any adversary can update
their belief regarding the true value of any contributed bit. If parties then agree
to contribute, we can still estimate p, albeit at a loss of statistical efficiency.

In 1977, Tore Dalenius defined disclosure about an object x by a statistic v
with respect to a property p to have happened if the value p(x) can be deter-
mined more accurately with knowledge of v than without [7]. A goal of informa-
tion security is preserving the integrity circles of trust. Mechanisms to achieve
this include access control, communication security, and secure multi-party com-
putation. These mechanisms have in common that the protected information is
well circumscribed, and the states of allowed access are discrete. Disclosure con-
trol, on the other hand, provides a tool for considering questions regarding the
consequence of access, and how to deal with information not necessarily well
circumscribed. An emerging standard for defining privacy based on disclosure
control is differential privacy [9]. The likelihood ratio 1−q

q from the example above
is an example of a quantification of disclosure risk, and the log transformation
of this ratio is parameterized in differential privacy. We can also view the above
randomization as enabling continuously graded access to each contributor’s bit,
quantifiable by entropy, for example.

In the past, when surveys were conducted manually with responses recorded
on paper, surveys were generally limited to a single randomized dichotomous
question. It was simply too expensive to survey enough individuals to support
efficient recovery of parameter estimates with multiple randomized questions.
With the advent of computerized surveys, enrollment is much easier, particu-
larly if the data is collected automatically. With increased enrollment comes the
ability to consider multiple randomized values per respondent and still obtain
efficient estimates of population distribution parameters. On the other hand,
multiple randomized values per response significantly increases the difficulty of
analysis. For example, the first publication regarding Google’s 2014 Rappor tech-
nology for automatically collecting end user data with randomized response [10]
only considered each bit in an n-bit response independently as if it were the
only bit randomized. The consideration of several bits jointly, had to wait for a
subsequent publication [11]. Neither of these publications provided theoretical
bounds of efficiency loss due to randomization. The point is that analyzing multi-
question randomized response can be difficult, potentially causing surveyors to
adopt less effective privacy protections.
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We address this problem by defining a family of very easily implementable
randomizers of length n-bit strings or surveys with n sensitive dichotomous ques-
tions. For the randomizers in this family, we provide simply computable distri-
bution parameter estimators as well as statistical efficiency bounds for these.
As these randomizers act on each response bit independently, marginals can be
queried and recovered independently. This is helpful when bit k to query is cho-
sen based on the length k − 1 based marginal already queried, or when the bits
of responses are distributed among multiple sources.

1.1 Contributions in Detail

A randomized response method can be seen as a randomized algorithm M that
takes a response x as input and produces a randomized response r = M(x).
Encoding both x and r as length n bit strings, the algorithm M can be char-
acterized by a 2n × 2n matrix C where the entry indexed by (r, x) contains
P (r = M(x)). If M is applied independently to each of m strings sampled accord-
ing to a multinomial distribution with parameters m ∈ N and π ∈ [0, 1]2

n

, the
resulting strings are expected to be multinomially distributed with parameters
m and Cπ. Consequently, if C is invertible we can obtain a maximum likeli-
hood estimate for π from the histogram y of observed randomized responses as
m−1C−1y. If C is not invertible, using the expectation maximization algorithm
can be a suitable, albeit more complicated alternative for obtaining estimates.
In general, the expression of C can be such that estimators for the population
parameters are not available in closed form [3].

We first recognize that a randomizer M that randomizes each bit in a length n
string x independently in an identical manner can be represented by the iterated
Kronecker product C of a bisymmetric 2×2 matrix (Theorem 1 and Proposition 2).
For the family of such randomizers, our contributions are developments of

– a definition of C−1 in terms of an iterated Kronecker products of a bisym-
metric 2 × 2 matrix,

– closed form formulas for the individual entries of both C and C−1, of which
at most n + 1 are distinct in each matrix (Theorem 2 and Corollary 1),

– a closed form formula for the trace of the covariance matrix for the unbiased
maximum likelihood estimator m−1C−1Y (Lemma 1),

– a closed form formula for the effective loss in sample size for estimating π
due to randomization (Theorem 3) together with concentration bounds for
uniformly distributed π (Proposition 4),

– an analysis of the loss of effective sample size in terms of the afforded level
of differential privacy (Theorem 4).

As the Kronecker product can be implemented in linear time in the number
of entries in the result, C and C−1 for iterated bisymmetric randomizers can
be computed by an algorithm that is linear in the number of entries of these
matrices (Proposition 5). We show that this algorithm is simple to state and
simple to implement (Sect. 4.2), which facilities adoption as well as verification of
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implementation correctness. These are both critical aspects of algorithms applied
for privacy protection and security.

Finally, we show that our results apply to modes of Rappor, application of
Warner’s original randomizer [23] and Simmon’s unrelated question random-
izer [13].

2 Related Work

Randomized response was first introduced primarily as a technique to reduce
bias introduced by absent or untruthful responses to a single potentially sensi-
tive dichotomous question [23]. Much research into randomized response is in
the context of an interview tool for social sciences research. Here, randomization
devices generally consist of a physical source of randomness like a spinner or
a coin, together with a protocol for how the respondent should use it. These
devices are then evaluated in terms of both human factors, e.g., protocol com-
pliance and response rates, as well as the statistical utility of their randomized
output [17,22]. Randomized response surveys carry a double burden of requir-
ing additional time and effort on behalf of the respondents, as well as requiring
an enrollment that increases rapidly in the number of questions that require
randomization. This might explain why randomized response designs for single
dichotomous sensitive questions [4,12,13,23] are much more common in the lit-
erature than for multiple sensitive questions [3,5] or polychotomous questions
[1]. Furthermore, multiple authors point out that while there exists a substantial
body of methods research, “there have been very few substantive applications
[of randomized response techniques]” [4,17,22].

However, as automated data collection on very large populations has become
available, interest in randomized response involving multiple independent ques-
tions has emerged. Two examples are Google’s Rappor [10] technology for col-
lecting end-user data, and Apple’s technology for collecting analytics data in
MacOS and iOS [2,21].

The view of randomizers as transformations of multinomial distribution
parameters has been investigated in the context of local differential privacy [8].
Kairouz et al. [15] analyze what they call staircase mechanisms, which in the
context of this paper can be thought of as family of randomized response mech-
anisms where C = BD, where B is a matrix that contains at most two values,
located on the diagonal and elsewhere, respectively, and D is a diagonal matrix.
In particular, they investigate a randomized response mechanism k-RR where D
is the identity matrix. For k-RR they show that this mechanism is optimal with
respect to the tradeoff between differential privacy and utility defined in terms
of KL-divergence. In subsequent work [14] they further analyze Warner’s orig-
inal proposal, their k-RR staircase mechanism and Rappor under general loss
functions. They show that for n = 1 Warner’s proposal is optimal for any loss
and any differential privacy level. This is the only case where the k-RR family of
staircase mechanisms intersects the family of randomizers presented here in this
paper. Furthermore, their analysis is based on entire responses being known up
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front and it is not clear how to apply their work in the case where a response is
an interactively queried sequence of n > 1 randomized bits.

3 Randomizing Mechanisms

3.1 Length n Bit Strings and the Multinomial Distribution

Let B = {0, 1}, and let ∧,∨,⊕ denote logical and, or, and exclusive or. For
x, y, u ∈ B

n let x ≥ y ⇐⇒ x ∧ y = y, x =u y ⇐⇒ x ∧ u = y ∧ u,
and [x]u = {y|x =u y}. Now, let ei ∈ Bn be the string with a single 1 at
position i, and let for a set of indices K, eK ≥ ei ⇐⇒ i ∈ K. For x =
(x0, x1, . . . , xn−1) ∈ B

n, |x| =
∑n−1

i=0 xi. Also let η : B
n → N be defined as

η(x0, x1, . . . , xn−1) =
∑n−1

i=0 xi2i, and let ς = n−1. The function η lets us treat
element x ∈ B

n as a 0-based index η(x) which we will do often. Also, let 

denote the coordinate-wise (Hadamard) product.

Consider an experiment that produces an outcome in {0, 2, . . . , k − 1} for
some positive integer k, where outcome i is produced with probability pi. Let
m indicate a fixed number of independent experiments and let Xi denote the
number of times outcome i is observed among the m experiments. Note that∑k−1

i=0 Xi = m. Then X = (X0,X1, . . . , Xk−1) follows a multinomial distribution
Mult(m,π) where π = (p0, p1, . . . , pk−1). The variables in X have expectations
mπ and variances mπ 
 (1 − π), and we can think of a realization of X as a
histogram over the outcomes of the m experiments. Also, when m = 1, X follows
a categorical distribution, and when m = 1 and k = 2, X follows a Bernoulli
distribution. If experiments produce outcomes in B

n for n ∈ N, we let Xi be the
number of times ς(i) ∈ B

n is observed among m experiments.
The estimator π̂∗(m) = m−1X is a maximum likelihood estimator for π (e.g.,

[16, example 6.11]) and the covariance matrix of π̂∗(m) is

cov(π̂∗(m)) = m−1(diag(π 
 (1 − π) + π 
 π) − ππT ) = m−1(diag(π) − ππT )

where diag(v) is the square matrix with the elements of v along the diagonal.

3.2 Randomizers as Linear Transformations

For a string of bits of length n, we will think of a randomizing mechanism as
a function M : B

n × B
∞ → B

n × B
∞ that takes a bit string and an infinite

sequence of independent uniformly distributed random bits that serves as the
source of randomness, and returns the randomized string and what remains of
the source of randomness. Since the source of randomness consists of uniformly
and independently distributed bits, we will let the randomness be implicit and
state that randomizer M is a randomized algorithm M : B

n → B
n. We can

define randomizer M in terms of a 2n × 2n conditional probability matrix

CM r,x = P (r = M(x)).
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Then, if C = CM and X is Mult(m,π), then Y = CX is Mult(m,Cπ). If C
invertible, then we can let π̂(m) = m−1C−1Y be an estimator for π with

E(π̂(m)) = m−1C−1 E(Y ) = m−1C−1mCπ = π,

from which we see that it is unbiased. The invariance property of maximum
likelihood estimators [6, theorem 7.2.10] states that if θ̂ is a maximum likelihood
estimator for parameter θ, then for any function g we have that g(θ̂) is a max-
imum likelihood estimator for g(θ). Consequently, for invertible matrix C we
have that π̂(m) = C−1m−1Y = m−1C−1Y is an unbiased maximum likelihood
estimator of π. The covariance matrix of π̂(m) is

cov(π̂(m)) = cov(m−1C−1Y ) = m−1
(
C−1diag(Cπ)C−1T − ππT

)
.

Proposition 1. If

L(m) =
Tr(cov(π̂(m)))
Tr(cov(π̂∗(m)))

where Tr(A) denotes the sum of the elements along the diagonal of square matrix
A. Then L = L(m) = L(m′) for any m,m′ > 0, and for α ≥ 1,

E
(‖π̂(αLm) − π‖22

) ≤ E
(‖π̂∗(m) − π‖22

)
.

By the above proposition, the loss of quality of estimation when using ran-
domized responses over non-randomized responses can be described by L.

4 Bitwise Independent Randomizers

Let (x : xs) ∈ B
n be a length n sequence of bits with first bit x and length n − 1

tail xs, and let M = (M ′ : Ms) be a sequence of bit randomizers. Now define

R(ε, x) = R(M, ε) = ε

R(M ′ : Ms, x′ : xs) = M ′(x′) : R(Ms, xs)

where ε is the empty sequence. We will think of R as a function that maps a
length n sequence of bit randomizers M to a randomizer R(M) of length n bit
strings. We note that R(M) randomizes each bit independently, and that any
randomizer of length n bit strings that randomizes each bit independently can
be written as R(M ′) for some sequence of bit randomizers M ′. We will call these
bitwise independent randomizers.

We first repeat a result regarding bitwise independent randomizers, first
established by Bourke [5], namely that R(M) is defined by the Kronecker prod-
uct ⊗ of its constituent bit randomizers.

Theorem 1 (Bourke 1982). For a sequence M = (M0,M1, . . . ,Mn−1) of
independent bit randomizers, CR(M) = CM0 ⊗ CM1 ⊗ · · · ⊗ CMn−1 .

We now examine a special case of bitwise independent randomizers in more
detail.
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4.1 Iterated Bisymmetric Randomizers

Let a bisymmetric bit randomizer M be a bit randomizer that has a matrix

CM = Ca,b =
(

a b
b a

)

that is symmetric about both its main diagonals, i.e., is a bisymmetric matrix.
We now consider bitwise independent randomizers generated by a sequence of
identical bisymmetric bit randomizers.

Definition 1. The iterated Kronecker product of bisymmetric Ca,b is

Ca,b(n) =

{
Ca,b ⊗ Ca,b(n − 1) if n > 0,
(1) otherwise.

Proposition 2. Let M = (M0,M1, . . . ,Mn−1) be a sequence of identical bisym-
metric bit randomizers with CMi

= Ca,b. Then CR(M) = Ca,b(n).

The iterated Kronecker product preserves properties of Ca,b in the sense of
the following.

Proposition 3. The matrix Ca,b(n)

a. is bisymmetric,
b. has a constant diagonal, and
c. has a constant anti-diagonal, and
d. contains at most n + 1 distinct entries.

As a consequence we will call M with CM = Ca,b(n) iterated bisymmetric
randomizers. We also note that since a column in CM contains a distribution,
the sum of entries must be 1. Consequently, b = 1 − a, and we can define
Ca(n) = Ca,1−a(n), and let CM = Ca(n) for iterated bisymmetric randomizer M .
Our main results regarding iterated bisymmetric randomizers are the following.
First we turn to the results regarding CM and C−1

M .

Theorem 2. Let M be a randomizer with CM = Ca(n). Then

CM r,x = an−d(1 − a)d

where d = |r ⊕ x|. If a �= 1
2 , then

C−1
M = C a

2a−1
(n).

Corollary 1. If a �= 1
2 ,

CM
−1
x,r =

an−d(a − 1)d

(2a − 1)n

for d = |x ⊕ r|.
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We now apply the above results to determine bounds for the statistical effi-
ciency of iterated bisymmetric randomizers.

Lemma 1. Let π̂ be the unbiased estimator defined in Sect. 3.2 associated with
the randomizer M with invertible C = CM = Ca(n). If a �= 1

2 the trace of the
variance-covariance matrix of π̂ is given by

Tr(cov(π̂)) = m−1(c − s)

where

c =
(

a2 + (1 − a)2

(2a − 1)2

)n

,

and s = πT π =
∑

x p2x.

Theorem 3. For πT π < 1, a �= 1/2, and π̂ associated with M as in Lemma 1
the loss as defined in Proposition 1 is given by

L = fL(s) =

(
a2+(1−a)2

(2a−1)2

)n

− s

1 − s

for s = πT π =
∑

x p2x. Also, fL(2−n) ≤ L.

When π is a random uniformly sampled probability distribution on 2n cate-
gories1, the quantity πT π, also known as the Greenwood statistic, has expected
value E(πT π) = 2

2n+1 and variance Var(πT π) = 4(2n−1))
(2n+1)2 (2n+2) (2n+3) [18]. As π

is usually unknown, we can approximate the loss L as L(n) = fL( 2
2n+1 ). We

state the following about the quality of this approximation.

Proposition 4. For n > 2 and π a random uniformly sampled probability dis-
tribution on n categories,

P (1 ≤ E(fL(πT π))
fL( 2

2n+1 )
≤ 1 + δ(n)) ≥ 0.99.

where δ(n) ∈ O(2−3n) and δ(3) < 0.2386.

Also, δ(4) < 0.0029. Finally, we can compare iterated bisymmetric randomiz-
ers in terms of the efficiency of their estimators π̂, which in turn means comparing
their associated values for c in Lemma 1. Here smaller is better.

4.2 A Simple Algorithm

A randomizer with CM = Ca(n) can be implemented as M(x) = x ⊕ u, where
u is a length n sequence of independent Bernoulli trials with success probability
1 − a.
1 Distributed as the flat Dirichlet distribution of order 2n.
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Let (r0, r1, . . . , rm−1) be m n-bit randomized responses where each bit has
been randomized by an independent bisymmetric bit randomizer with CM = Ca,
and let ri[K] denote the sub-sequence of ri indexed by K ⊆ {0, 1, . . . , n − 1} in
order. By Theorem 2 we can then estimate the marginal multinomial distribution
parameter π̂K for the bits indexed by the k bits in K as follows:

1. let y = (y0, y1, . . . , y2k−1) where yi = |{j | η(rj [K]) = i}|, i.e., y is the
histogram over observed sub-sequences, and

2. π̂K = m−1C a
2a−1

(k) y.

Proposition 5. The simply recursive algorithm Ca(n) can be implemented to
run in time that is linear in the number of entries of the output matrix.

A Python code example for implementing the algorithm above is as follows.

Implementation 1.

from numpy import array, kron, log2, bincount as bc, arange

def C(n, a):

c, z = array([[a, 1-a], [1-a, a]]), array([1])

return z if n < 1 else kron(c, C(n-1, a))

def pihat(a, Y):

m, n = float(sum(Y)), int(log2(len(Y)))

return C(n, a/(2*a - 1)).dot(Y)/m

def hist(R):

_,n = R.shape

x = 2**(n-1-arange(n))

return bc(R.dot(x), minlength = 2**n)

For input R being a m×n numpy array of m randomized length n binary responses
and K a list of column indices, the call pihat(a, hist(R[:,K])) computes the
value for π̂K .

4.3 Privacy Considerations

The results established so far are about efficiency aspects of estimating multino-
mial parameters as functions of population and randomization parameters. We
now briefly turn to a measure of privacy risk for bit-wise independent random-
izers.

Now, let M be a bit randomizer such that entries in CM all are positive,
i.e., randomization happens for both possible inputs. We will in this section only
consider such bit randomizers. Let

lM (r) =
maxx P (r = M(x))
minx P (r = M(x))

.
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The likelihood ratio lM (r) can be thought of representing the best evidence
for preferring one hypothetical input over another when given the randomized
output r. This is reflected in the definition of Differential Privacy [9], where a
randomized algorithm M can be considered α-differentially private if, for any
measurable subset S of possible outputs, and inputs D and D′ obtained from
any two sets of individuals that overlap in all but one individual, we have that

P (M(D) ∈ S)
P (M(D′) ∈ S)

≤ exp(α),

and the probabilities are over the randomness available to the algorithm.
Now let lM = maxr lM (r), then it follows that M is a log(lM )-differentially

private algorithm. Now consider R(M) for n bit randomizers M = (Mi)n−1
i=0

such that lMi
≥ lMi+1 , and let k ≥ |x ⊕ x′| for any x, x′ given as input to R(M).

Then l =
∏k−1

i=0 lMi
can be an upper bound of privacy loss for any respondent.

Specifically, R(M) is then a log(l)-differentially private algorithm.
Now assume that M is bisymmetric. Exploiting the structure of M , we get

that lM = la = r(a) where r(a) = max(a−1(1 − a), a(1 − a)−1). If R(M) is an
iterated bisymmetric randomizer, i.e., CR(M) = Ca(m), then l = (la)k, and we
have that R(M) is α-differentially private for α = log(lka) = k log(r(a)). This is
particularly useful if a is an invertible function aφ(φ). Then, we can write

αφ(φ) = k log(r(aφ(φ))), and

φα(α) = a−1
φ (r−1(exp(α/k))).

We have from Lemma 1 that c is a function ca(a). We can now view c as a
function of φ by cφ = ca ◦ aφ, where ◦ denotes function composition. Expanding
further, we can let c be a function of α as cα = cφ ◦ φα. This means that

cα = ca ◦ aφ ◦ φα

= ca ◦ aφ ◦ a−1
φ

◦ r−1 ◦ exp ◦ (x �→ x/k)

= ca ◦ r−1 ◦ exp ◦ (x �→ x/k).

The last equation shows that cα is independent of the functional shape of a(φ),
and therefore this holds for L as well. In other words, from a perspective of differ-
ential privacy, the performance of iterated bisymmetric randomizers in terms of
L is independent of the functional shape of invertible a(φ). The above reasoning
proves the following Theorem.

Theorem 4. For any α-differentially private iterated bisymmetric randomizer
for inputs not differing in more than k bits, for c from Lemma 1,

c ≥ cα(α) =
(

exp(2α/k) + 1)
(exp(α/k) − 1)2

)n

,

and for L from Theorem 3,
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L ≥ L(α) =
cα(α) − s

1 − s

where s = πT π.

Combining the above with Theorem 2 in [14], stating the optimality of
Warner’s randomizer with regards to the privacy-utility tradeoff for any loss
function and privacy level, we conclude the following.

Corollary 2. For n = 1, bisymmetric iterated randomizers are optimal with
respect to loss L for any privacy level α.

5 Case Studies

5.1 The Unrelated Uniform Question Device

In Simmons’ unrelated question method, the interviewer asks the respondent
to answer a question randomly selected between the sensitive question of inter-
est and an unrelated question that the respondent presumably has no problem
answering truthfully. The unrelated question is chosen with probability p. Here
we analyze the variant of this method where the unrelated question is “Flip a
coin. Is it heads?”. In other words, the case where interviewer knows that the
answer to the unrelated question is uniformly distributed in the study sample.

Let A : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n be given by

A(x, u, z) = x 
 (1 − u) + z 
 u

where 1 is the string with all elements 1. Letting Bn
p denote a sequence of

n independent Bernoulli variables each taking value 1 with probability p, the
randomizer M(x) can then be defined as M(x) = A(x, u, z) where u and z are
realizations of Bn

p and Bn
0.5 variables, respectively.

We start by noting that if A(x, u, z) = r, then u ≥ d = x ⊕ r. Now, let U ,
and Z be independent Bn

p and Bn
0.5 variables, respectively. Then

P (r = A(x,U, Z)) =
∑

u≥d

P (U = u)P (Z =u r),

were d = r ⊕ x. Now, P (U = u) = p|u|(1 − p)n−|u| and P (Z =u r) = (1/2)|u|.
Furthermore, there are 2n−|d| strings u such that u ≥ d, and of those

(
n−|d|

i

)

have |u| = i + |d|. Consequently,

cr,x = P (r = A(x,U, Z)) =
n−|d|∑

i=0

(
n − |d|

i

)(p

2

)i+|d|
(1 − p)n−(i+|d|).

If we instead note that each bit is randomized independently by a bit randomizer
MS with matrix C 2−p

2
, then by applying Theorem 2 we get that for n ≥ 1

CM r,x =
p|x⊕r|(2 − p)n−|x⊕r|

2n
.
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Algebraic manipulations yield that cr,x = CM r,x, and the value for c in
Lemma 1 is

cM =
(

p2 − 2p + 2
2(p − 1)2

)n

.

Figure 1(a) shows the effect of increasing the number of randomized response
data points by a factor L for computing π̂. As expected, the plot for π̂(L1000) is
close to the target π̂∗(1000). Figure 1(b) shows the growth of log(fL(2(2n+1)−1))
in n for three values of p. Figure 1(c) plots the ratio of L and the approximated
loss fL(2(2n + 1)−1) for 100 uniformly random distributions π and three proba-
bilities p of 0.0001, 0.5, and 0.9999.

Fig. 1. (a): Plot of π̂∗(1000), π̂(1000), and π̂(L1000) for 100 randomly generated
datasets with the same fixed π = (0.05, 0.15, 0.3, 0.5)T , p = 0.5, and L = 9.75. (b):
log(L) = log(fL(2(2n + 1)−1)) for n = 1, 2, . . . , 12 and three values of p. (c): The ratio

fL(πT π)

fL(2(2n+1)−1)
for 100 random uniformly sampled π for each 2 ≤ n ≤ 12 and three

values of p

5.2 Warner’s Original Device: A Randomizer Comparison

Warner’s original randomizer involved a spinner with two areas “Yes” and “No”,
with a probability p for indicating “Yes”. The respondent was then asked to spin
the spinner unseen by the interviewer and respond with “yes” if the spinner indi-
cated the respondent’s true answer to the sensitive question and “no” otherwise.
The corresponding bit randomizer MW has matrix Cp, which is invertible if
p �= 0.5. Furthermore, we have that the value for c as defined in Lemma 1 is

cW =
(

2p2 − 2p + 1
(2p − 1)2

)n

.

We can use the ratio cM/cW to compare the estimators for π̂ corresponding to
the independent question and Warner’s original method, respectively. We have
that cM/cW < 1 for p ∈ (0, 2

3 ). Figure 2(a) shows a plot of this ratio for n = 1.
We see that when p < 2

3 , the unrelated question randomizer is preferable with
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respect to estimating π, and particularly so around p = 0.5 (cW is undefined
at p = 0.5). The preference regions are emphasized as n increases. However, if
we express cM and cW as functions of privacy level α using the results from
Sect. 4.3, we get that the two randomizers perform identically as

cM (α) = cW (α) =
(

exp(2α) + 1
(exp(α) − 1)2

)n

.

Figure 2(b) shows cM (α) = cW (α) for α ∈ [0.2, 2] and n = 1.

(a) (b)

Fig. 2. (a) The ratio cM/cW for p ∈ (0, 0.8) and n = 1. (b) cM (α) = cW (α) for n = 1
and α ∈ [0.2, 2]

5.3 The Rappor Randomizer

In Rappor, randomization is applied after an hashing of ordinal values onto a
bit string. Here we only examine the randomizer.

The Rappor randomizer is a bit-wise independent randomizer R(M1, . . . ,Mn)
where Mi = M for all i. The bit randomizer M is a combination of two bit ran-
domizers, “Permanent Randomized Response” (PR) and “Instantaneous Ran-
domized Response” (IR), respectively. The PR randomizer is the above MS

randomizer with p = f , while

CMIR =
(

1 − p 1 − q
p q

)

.

A bit b decides the combination, where b = 1 is called “one-time” mode, and
M(b) = (1 − b)(MIR ◦ MS) + bMS . Consequently, CM(1) = C 2−f

2
. When p =

1 − q, we recognize MIR as Warner’s MW with parameter q, and CM(0) =
Cq C 2−f

2
= Cq−(q− 1

2 )f
. This means that the Rappor randomizer is an iterated

bisymmetric randomizer when p = 1 − q or b = 1.
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6 Conclusion

A family of randomized response methods is described and analyzed. Instances
of both well known classical and recently developed methods belong to this
family. The analysis resulted in an efficient algorithm for estimating multinomial
population parameters from randomized responses, and the statistical efficiency
of the produced estimates was described.

The investigated statistical loss grows exponentially in the number of dimen-
sions n, as does the size of the matrix C that describes the effect of random-
ization on the multinomial parameters. Consequently, the estimation of these
multinomial parameters is only practical for small n, even with a large num-
ber of observations. However, the knowledge of how statistical loss grows with
dimensionality allows the determination of a value k for which it is feasible to
estimate parameters for size k marginals. Since individual variables are random-
ized independently, only the variables in the relevant feasible marginals need to
be obtained. Furthermore, due to the independent randomization of variables
these can be queried interactively across distributed data sources.

Brevity is said to be a hallmark of simplicity [20]. Simple algorithms are more
likely to be implemented and trusted by practitioners, their implementations are
easier to maintain and adapt to changing contexts, and they are easier to imple-
ment in constrained environments such as in hardware [19]. Simple algorithms
are also easier to debug and implement correctly, which is critical in systems that
need to implement privacy and security requirements. The algorithm presented
here is simple. It centers on a short recursive definition of the matrix C−1, which
is shown implemented in four lines of Python, a multi-purpose programming lan-
guage with a significant current market-share. Furthermore, an implementation
of the full process of computing parameter estimates from binary randomized
input was implemented in an additional nine lines of Python code, making iter-
ated bisymmetric randomizers a potentially attractive alternative for randomized
response applications.

Acknowledgments. Thanks go to the anonymous reviewers for their comments. This
work was in part funded by Oppland fylkeskommune.

A Proofs

We start by making a key observation.

Observation 1: Consider the 2n × 2n matrix C. If we let entry Cix′,jy′ =
η((ix′) ⊕ (jy′)) = 2η(i⊕j) η(x′ ⊕ y′), we get that Cx,y = 1n−|x⊕y| 2|x⊕y|. Since
we can write C = J1 ⊗ J2 ⊗ · · · ⊗ Jn where Jk is the 2 × 2 matrix J such

that Ji,j = 2i⊕j , i.e., J =
(

1 2
2 1

)

, we get that Dx,y = an−|x⊕y| b|x⊕y| for

D = Ca,b(n) = B1 ⊗ B2 ⊗ · · · ⊗ Bn where Bk =
(

a b
b a

)

.
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Proof of Proposition 1: Note that we can write

Tr(cov(π̂(m))) =
∑

x

Var(π̂x(m)), Tr(cov(π̂∗(m))) =
∑

x

Var(π̂∗
x(m))

Var(π̂x(m)) = m−1F (x, π), Var(π̂∗
x(m)) = m−1G(x, π)

where F and G are functions independent of m. Then for any positive integer m,

L(m) =
m−1

∑
x F (x, π)

m−1
∑

x G(x, π)
=

∑
x F (x, π)

∑
x G(x, π)

= L.

and
∑

x

Var(π̂x(αLm)) =
∑

x

α−1m−1L−1F (x, π) ≤ m−1L−1
∑

x

F (x, π)

=
∑

x

m−1G(x, π) =
∑

x

Var(π̂∗
x(m)).

Furthermore,

E
(‖π̂(m) − π‖22

)
= E

(
∑

x

(π̂x(m) − px)2
)

=
∑

x

E
(
(π̂x(m) − px)2

)

=
∑

x

Var(π̂x(m)),

and similarly E
(‖π̂∗(m) − π‖22

)
=

∑
x Var(π̂∗

x(m)). �
Proof of Proposition 2: The proposition follows directly from Theorem 1. �
Proof of Proposition 3: We first note that for i ∈ {0, 1, . . . , 2n − 1} we have
that ς((2n − 1) − i) = 1 ⊕ ς(i). From this and that ⊕ commutes, we get

1. |ς(i) ⊕ ς(n − i)| = n, and
2. |ς(i) ⊕ ς(j)| = |ς(2n − 1 − j) ⊕ ς(2n − 1 − i)|.

The above and that the entry Ca,b(n)i,j = g(|ς(i)⊕ ς(j)|, a, b) for some g, the
proposition follows. �
Proof of Theorem 2: The first equation follows directly from Observation 1.
We have that Ca,b(1) is invertible if a2 �= b2. From this and that (A ⊗ B) =
(A−1 ⊗ B−1) we complete the proof. �
Proof of Lemma 1: From Sect. 3.2 we have that

cov(π̂(m)) = m−1
(
C−1diag(Cπ)C−1T − ππT

)
.

By properties of the trace of matrix products and symmetry of C−1,

Tr
(
m−1

(
C−1diag(Cπ)C−1T − ππT

))

= m−1
(
Tr

(
C−1diag(Cπ)C−1T

)
− Tr(ππT )

)

= m−1
(
Tr(C−1C−1diag(Cπ)) − s

)
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From (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) it follows that Ca(n)Ca(n) =
Ca2+(1−a)2(n). From this and Theorem 2 and Corollary 1 we get that the entry
(C−1C−1)0,0 = f(n, a) where

f(n, a) =
(

a2 + (1 − a)2

(2a − 1)2

)n

.

Furthermore, from Proposition 3 the diagonal entries of C−1C−1 are all f(n, a).
Combining this, that Tr(AB) =

∑
i,j(A 
 BT )i,j , and

∑
x Cxπ = 1,

Tr(C−1C−1diag(Cπ)) =
∑

x

f(n, a)Cxπ = f(n, a)
∑

x

Cxπ = f(n, a),

and consequently, Tr(cov(π̂x(m))) = m−1 (f(n, a) − s). �
Proof of Theorem 3: We have that

Tr(cov(π̂∗)) = m−1 Tr(diag(π) − ππT ) = m−1(1 − s).

From Lemma 1 and Proposition 1 we get that L = fL(s) = c−s
(1−s) for c =

(
a2+(1−a)2

(2a−1)2

)n

. From 0 ≤ px ≤ 1 and
∑

x px = 1, s has a minimum when
px = 1/2n for all x, and maximum when px = 1 for a fixed x, and py = 0
for y �= x. These values are then 2n

(2n)2 = 2−n and 1, respectively. The m’th

derivative of fL(s) = c−s
1−s wrt. 0 ≤ s < 1 is f

(m)
L (s) = m!

(1−s)m (fL(s) − 1). The
loss fL therefore achieves its minimum at fL(2−n). �
Proof of Proposition 4 (sketch): The m’th derivative of fL(s) = c−s

1−s wrt.

0 ≤ s < 1 is f
(m)
L (s) = m!

(1−s)m (fL(s) − 1). Since c ≥ 1, f
(m)
L ≥ 0 for all m > 0. In

particular, we have that fL is convex, as is f
(m)
L for all m. Using the expectation

for a first order Taylor approximation for convex fL we have that for random
variable S

fL(E(S)) ≤ E(fL(S)) ≤ fL(E(S)) +
λ

2
Var(S) (*)

where λ = maxx∈I f
(2)
L (x) ≥ 0 for suitable interval I. Dividing (∗) by

fL(E(S)) = L(n), we get

1 ≤ E(fL(S))
fL(E(S))

≤ 1 + δ,

where

δ =
λ Var(S)

2fL(E(S))
.

Let S = πT π. Recalling that c = c(a)n and expanding both numerator and
denominator at n = 3 (where the minimum occurs since fL is increasing and
Var(S) and E(S) are both decreasing in n), we see that δ(n) ∈ O(2−3n). Applying
Chebyshev’s inequality, we have that P (S ≥ E(S) + 10Var(S)

1
2 ) ≤ 0.01. Evalu-

ating δ at E(S) + 10Var(S)
1
2 and n = 3, we arrive at the numerical bound. �
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Proof of Proposition 5: Let the computation of Z ⊗R require tf (n2) time for
2×2 matrix Z and R of size n×n. Then we can compute Ra,b(n) at a time cost of
t(n) = tf (22(n−1))+ t(n− 1) =

∑n
i=0 tf (22i) =

∑n
i=0 tf (4i). Letting tf (n) = k4n

for some k, then t(n) = 4k
∑n

i=0 22i = 4k
∑n

i=0 4i = 4k(1+ 1−4n

1−4 ) = 4k(1+ 4n−1
3 ).

Now we have that t(n) = O(4n) = O(2n2) = O(|Ra,b(n)|). In other words, the
singly recursive algorithm Ra,b(n) is linear in the time in the number of elements
of the output matrix as we can perform tf in linear time in the size of input
R, in fact we can expect that the Kronecker product can be implemented with
k ≤ 3, due to reading, multiplication, and writing. �
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Abstract. Most cloud providers afford their tenants with cryptographic
services that greatly escalate the protection of users’ private keys. Iso-
lated from the guest operating systems (OSes), the keys are kept con-
fidential even if the OS kernel is compromised. However, existing cryp-
tographic services are ineffective in the access control of these critical
services. In particular, they enforce controls for the key accesses mainly
based on non-cryptographic authentication/authorization information
(i.e., the identity and the password). Some platforms leverage other
information such as the resource identification of the Virtual machine
(VM) (e.g., IP address). Therefore, once the password is leaked, the
attacker could invoke the cryptographic service in the victim VM. More-
over, sophisticated attackers can exploit vulnerabilities in the guest OS
kernel and stealthily invoke cryptographic services. In this paper, we pro-
pose a new scheme named En-ACCI to improve the security of crypto-
graphic service invocation in the cloud and achieve better access controls
as well as auditing by leveraging the rich VM context provided by vir-
tual machine introspection (VMI). To the best of our knowledge, we are
the first in the literature to discuss these security issues involved in the
invocation of cryptographic services in the cloud. We address the chal-
lenges by using an access control mechanism atop a set of optimization to
VMI. We have implemented a prototype of En-ACCI, and our evaluation
demonstrates that En-ACCI effectively addresses the authorization and
audit issues in the cloud-based cryptographic service and the introduced
performance overhead is modest.

Keywords: Cryptographic service · Cloud security
Invocation security · VMI · Access control
Virtualization-based security

c© Springer Nature Switzerland AG 2018
L. Chen et al. (Eds.): ISC 2018, LNCS 11060, pp. 213–230, 2018.
https://doi.org/10.1007/978-3-319-99136-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99136-8_12&domain=pdf


214 F. Jiang et al.

1 Introduction

Cloud computing is becoming more and more popular due to its agility, elasticity,
reliability, and scalability. Using cloud computing, an enterprise will reduce the
investment in IT infrastructures and focus on their core business. They also
greatly benefit from add-on services offered by cloud providers. For example,
virtual cryptographic computing and key management services bring enhanced
protections for the tenants’ cryptographic keys.

In these cryptographic computation services, tenants do not store the private
keys. Instead, the cloud providers keep the keys securely and provide interfaces
for tenants to invoke the computations of signing/encryption/decryption. The
cloud providers, as the delegate of the tenants, protect the private keys by stor-
ing them in physically-separated devices (e.g., hardware security module) and
never leak them into unsecure environments. They may further block unautho-
rized invocations to the cryptographic services with strict access control policies.
For instance, only an invoker possessing the correct identity and the correspond-
ing password is authorized to execute the cryptographic computation. Due to
the increasing security requirements from tenants, such add-on services have
become one of the major competitions in the cloud computing market. Typi-
cal cryptographic computing services include AWS CloudHSM [3] and Alibaba
Aliyun encryption service [1]. The key management service (KMS) includes AWS
KMS [4], Alibaba Aliyun KMS [2], Microsoft Azure Key Vault [8], Tencent Ten-
centyun KMS [10], etc.

Compared with other add-on services, the cryptographic service is much more
important because it is used to ensure the security properties (e.g., data confiden-
tiality, authentication, etc.) of other services. The cloud providers can improve
the security of cryptographic services in two ways. First, they provide secure
storage for the cryptographic keys. This can be achieved by existing techniques
such as data encryption or dedicated devices. Second, the cloud enforces strict
access control policies to the cryptographic service invocation and implements
audit mechanisms of these invocations (e.g., AWS CloudTrail [5]). The latter
records the invoker’s identity, the source IP address, the time, the requested
operation and the parameters of the operation in the specified storage for fur-
ther compliance checks, security analysis, and troubleshooting.

However, existing approaches seem to be insufficient. For example, existing
access control implementations of cryptographic services [2,4,8,10] are based on
the identity of invokers and the corresponding passwords, which may be leaked
due to dishonest developers or operators. The monitor tools only record the
account information, identity and IP address of VM, the requested operation
information, and do not log the inner context of the VM. An adversary can eas-
ily circumvent such monitoring. In particular, the adversary having the correct
identity and the password may trigger a malicious process in the victim VM
that invokes the cryptographic service directly, or even remotely exploit existing
process (e.g., through network connections or file handlers) for cryptographic
service invocation.
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We observe that existing defense leverages coarse-grained information, which
cannot provide rich information about the context of service invocation. We envi-
sion a new defense that incorporates diverse in-context information to log the
invocation of critical services. Except for the basic information such as identity
and password, the cloud may also check the VM context. Combining these rich
information can greatly raise the bar for the attacker to circumvent the audit
system. For example, the tenant may specify a sound access control policy, allow-
ing the cryptographic computation to be invoked only by legitimate processes
in the whitelist under authorized uid at a specified time frame. Request for
cryptographic computation is fulfilled only if the invoking process is not com-
promised and the information of the invoker comply with the predefined access
control policy. On receiving the request, the cloud provider checks the identity,
the password, and the inner context of the VM, before performing the crypto-
graphic computation. In addition, the cloud also records the inner context of
VM during computation, e.g., the processes, the network connections, opened
files’ information, account, requested operation information, VM’s identifier and
IP address, for a better audit.

There are two approaches to collect context information of service invocation.
One is that the VM reports such information when interacting with the hypervi-
sor. However, a malicious process could potentially manipulate the results sub-
mitted to the hypervisor, or even hijack the system calls to return false results.
The other approach is based on VMI [17], which actively analyzes the VM state
using memory forensic techniques. Although this method may also get the incor-
rect context information of service invocation, it is transparent to the VM. Also,
it reads the memory of VM directly, so it is not subject to the attack which
tampers with the results. Adopting VMI technology to collect the context infor-
mation is promising. However, it still remains challenging:

– Introspection timing. Ideally, when the cryptographic service is invoked,
the VMI components should be triggered immediately to check the VM state.
However, VMI components are not tightly coupled with the programs in the
VM that invoke cryptographic service. In order to be informed about the
cryptographic events in time, we have two options. First, the VMI component
is triggered only when the cryptographic service is invoked. In our scheme, the
VMM invokes the VMI component when the cryptographic service request is
received. Second, the VMI components monitor the whole VM continuously.
Obviously, this would introduce considerable overhead.

– Authenticity of the context of cryptographic services. The VM kernel
may be infected by rootkits. The rootkits may tamper with the invoker’s
process context, misleading the VMI components.

In this paper, we propose a new scheme named En-ACCI to improve the secu-
rity of cryptographic service invocation in the cloud and achieve better audit by
leveraging rich VM context provided by the VMI. The cloud returns the results
of a cryptographic request only after checking that the VM is in a trustwor-
thy state. Moreover, the cloud records the context information during crypto
computing. En-ACCI innovates by adapting VMI for cryptographic service with



216 F. Jiang et al.

improved performance. Many schemes provide cryptographic service, such as
KMS [2,4,8,10], virtio-ct [20], vTPM [18] and etc. KMS provides cryptographic
service via https networks connections. In virtualization platform, VMM emu-
lates network card. That is to say, all the network I/O operations of the VM are
trapped into the VM monitor (VMM). Similar to KMS, virtio-ct implemented
a software HSM. Each cryptographic service request also causes the VM to be
trapped into the VMM. To address the aforementioned challenges, we need to
modify the I/O handle module in the VMM. Once the I/O module finds that
the VM-Exit event is related to the cryptographic service, En-ACCI will be trig-
gered. To get the correct context information of the invoker, we use the VMI tool
to bridge the semantic gaps. Moreover, before collecting the context information
of VM, En-ACCI scans rootkit in the VM. We have implemented an En-ACCI
prototype based on QEMU/KVM [7,9], and integrated it with a cryptographic
service named virtio-ct [20] which stores the cryptographic keys in a dedicated
storage and completes the cryptographic computation in the trusted VMM. The
main contributions of En-ACCI are as follows:

– To the best of our knowledge, we are the first in the literature to discuss the
security issues involved in the invocation of cryptographic service in the cloud
environment. We propose to address the associated challenges by using a new
access control mechanism atop virtual machine introspection techniques.

– We have developed a set of optimization to existing VMI techniques to
improve the performance of En-ACCI.

– We have implemented a prototype of En-ACCI, and our evaluation demon-
strates that En-ACCI effectively addresses the authorization and audit issues
in the cloud-based cryptographic service and the introduced performance
overhead is modest.

The rest of the paper is organized as follows. We introduce the background in
Sect. 2 and describe the design of En-ACCI in Sect. 3, followed by the implemen-
tation in Sect. 4. In Sect. 5, we analyze the performance and security of En-ACCI.
Related work is introduced in Sect. 6. Finally, we draw the conclusion in Sect. 7.

2 Background

In this section, we firstly give a description of Kernel-based Virtual Machine
(KVM), a popular virtualization solution based on QEMU. Then, we introduce
essential knowledge about the virtual machine introspection (VMI) [17] and
Executable and Linking Format [15] to better understand our solution.

2.1 Kernel-Based Virtual Machine

The KVM [23] is a popular virtualization solution based on QEMU. Taking
advantage of hardware-assisted virtualization extensions such as Intel VT and
AMD-V, it supports executing guest intrusions naively in the host system, thus
improving performance significantly. At a lower level, it is implemented as a
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Fig. 1. Guest execution loop

loadable kernel module, which provides a set of ioctl() system calls to QEMU.
QEMU, as a user-land process, is responsible for machine emulation, scheduling,
resource allocation, and isolation etc. Therefore, QEMU can be viewed as a
Virtual Machine Monitor (VMM).

In QEMU-KVM, except for the traditional kernel mode and user mode,
another execution mode called guest mode is added, as shown in Fig. 1. The
guest mode is essentially the mode in which the guest OS runs. When an excep-
tion or whatever critical system event configured by the KVM is caught, the
VM exits, which is intercepted by the KVM module running in the kernel mode.
Then KVM handles the exception either in the kernel mode directly and returns,
or forwards it to the user mode. In the latter case, after handling the exception,
QEMU calls another ioctl system call to resume the guest execution.

2.2 Virtual Machine Introspection

The Virtual Machine Introspection (VMI) is a technology in which the VMM
dynamically inspects the execution context (internal state) of each VM. The
purposes are mainly for security checking [17,19], software patching [13,14], and
digital forensics [11]. To implement VMI functions, the VMM has to recover the
semantic information of the inspected VM from the view of physical memory.

Depending on the VM OS, the VMI tools get the internal state of VM directly
or reconstruct the high-level semantics. Installing a secret data collection module
in the virtual machine [19,26] makes VMI tools effectively get the VM state. But
there is a risk that the data collection module may be compromised. Utilizing
the OS knowledge (e.g., system symbol map and kernel data struct) of the VM,
VMI tools [11,17] reconstruct high-level semantics from the underlying binary
data. And these VMI tools inspect the VM memory directly without installing
an assistant module in the VM. VMM also obtains the state data of specific
hardware devices of VM externally and then deduces high-level semantic infor-
mation with the help of hardware architecture knowledge. Antfarm [22] proposed
a hardware-based scheme to enable the VMM to track the processes and infer
critical process events such as creation, context switch and exit.
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2.3 Executable and Linking Format

This section describes an object file format called the Executable and Linking
Format (ELF) [15], which is widely used by many OSes including Linux, Solaris,
IRIX and OpenBSD. The proposed En-ACCI needs to access information stored
in the EFL file to perform integrity check of the code segments. There are three
types of ELF files: relocatable file, executable file and shared object file. All of
them share a very similar format but are used for different purposes. As implied
by the name, the executable file is directly loaded into the memory by OS for
execution. The relocatable file contains code and data for individual program
modules, which cannot be executed by its own, but needs to be statically linked
with other object files to assemble an executable file. Similar to relocatable files,
the shared object file is a module of the whole program. However, it is not
statically linked during compilation. Rather, it is dynamically loaded into the
memory by a dynamic loader implemented by relevant run-time.

Code and data in an object file are organized into sections, which are pointed
to by a descriptive section header table. The sections are the basic modules
which are linked together by the linker during linking process. In particular,
sections with the same attributes are combined together to form a new section.
Another important meta-data in an ELF file is the program header table,
which provides program information for the loader. Therefore, it is mandatory
for an executable file. A segment is essentially a chunk of aligned data/code
with the same attributes. An entry in the program header table designates
each segment’s starting/ending addresses, the corresponding offset to the file
image and attributes. The loader is responsible for loading the contents from file
to the virtual memory.

3 System Design

In this section, we first present the threat model, followed by an overview of
En-ACCI. Then, we detail our design from two aspects – access control policy
and memory analysis methodology.

3.1 Threat Model

En-ACCI is designed to prevent unauthorized invocation to the cryptographic
service. We consider an adversary model in which the VM OS is partially compro-
mised by the attacker. Concretely, the attacker could invoke the cryptographic
service by executing any user-space code in the VM. He could also conceal his
unauthorized access to cryptographic service by leveraging rootkits that manip-
ulate system log, process, network and file handle.

As with other VMI systems, we assume the integrity of the basic memory
layer of an OS kernel. That is, the logical addresses of the kernel symbols and
static kernel data structure are not modified [25].

In a cryptographic cloud service, the client invokes the cryptographic service
through the provided program interface. We assume that the cryptographic key is
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well protected by the provider, and the cryptographic computation is performed
in a protected environment. The adversary cannot infer the cryptographic key
from the provider through side channel attacks. Moreover, we assume the oper-
ators of the cryptographic service are honest and never leak the key, invoke the
service nor modify the log information illegally. We assume that the design and
implementation of cryptographic algorithms are secure. Finally, VMM is free of
bugs. This is a very practical assumption considering the much smaller code base
of VMM compared with full-fledged OSes.

3.2 Overview

A conceptual architecture of the proposed solution is illustrated in Fig. 2. As
shown in the figure, En-ACCI is a software component in the VMM, which is
non-bypassable when an app intends to invoke the cryptographic service. If the
request is granted, En-ACCI forwards the request to the cryptographic service,
which is securely implemented.

Fig. 2. En-ACCI architecture

To enforce security checking and auditing, we design our system to include
the following processes.

– Generating profile and hash meta-data. For each version of OS, the
operator needs to generate the corresponding profile, which includes the logic
address of the essential kernel symbols and the offsets of elements in the kernel
structure. This process is invoked only once for each version of the OS. The
profile may be reused for different VMs with the same OS version and doesn’t
need to be regenerated when any kernel module is installed or removed. The
tenant also needs to calculate the hashes of code segments in authorized
binaries and relevant dynamic linking libraries. The hash meta-data include
executable name, virtual addresses and length about the code segments. The
hash meta-data are used to verify the integrity of the authorized processes.

– Specifying access control policy. The tenant may specify the access con-
trol policy for the service invocation on each cryptographic key. The access
control policy defines the conditions that must be satisfied when the cryp-
tographic service is invoked. The tenant may set the effective time for each
policy and modify the policy when needed. In our implementation, the pol-
icy may specify the user ID, user group ID, name, start time, opened files
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and established network connections of the process who may invoke the cryp-
tographic service. Note that the list is flexible and can be extended in the
future. The details of the access control policy are provided in Sect. 3.3.

– Rootkit detection. Once receiving the cryptographic service invocation, En-
ACCI runs rootkit detector to check the state of the VM. Rootkit detector
includes many VMI tools to check the critical kernel data and kernel text.
If a rootkit is detected, the incident is reported.

– Sampling and analyzing the VM memory. Once receiving the crypto-
graphic service request, VMM samples the necessary memory region of the
VM and analyzes it to obtain the elements specified in the access control
policy. We traverse the list of the processes in the VM and determine the
process who invokes the cryptographic service according to the file handle or
network connection corresponding to the cryptographic key.

– Access control enforcement. For each cryptographic service invocation,
after sampling and analyzing the VM memory, we obtain the elements con-
tained in the access control policy and compare the values of the elements
obtained from the analysis with these defined in the policy. We fulfill the
cryptographic service requests only when the policy is satisfied.

3.3 Access Control Policy

The tenant may define the access control policy based on different properties.
These properties are extracted from the inner VM context. In the current version,
En-ACCI supports the following access control properties.

– PID, UID and GID. After executing the application in the monitored VM,
the tenant obtains the process identifier (PID), the identifier of the user that
executes the application (UID), and the identifier of the corresponding user
group (GID).

– Process Name. The name of the process is usually the name of the execution
file, and is limited to 16 characters by default in Linux.

– Location in the process tree. The tenant may specify the blacklist and
whitelist of the processes (according to PID, process name) that run concur-
rently in the VM or in the path from the init process to the application that
invokes the service.

– Process start time. The tenant may obtain the accurate start time of the
application externally, and specify it in the policy about the time frames
during which cryptographic service can be invoked.

– Opened file list. The application may need to open a set of files in the
different periods of normal execution. The cryptographic service is invoked
in a critical region that should be well protected. Therefore, the tenant may
specify the blacklist and whitelist of the files (through the file name and path)
for this application during the cryptographic service invocation.

– Allowed network connections. Similar to the opened file list of the pro-
cess, the tenant may specify the 5-tuple in the form of (src ip, src port, dst ip,
dst port, protocol) of established connections during the service invocation.
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The combination of the elements in the policy raises the bar for the adversary
to invoke the cryptographic service without being noticed. Moreover, the tenant
may find whether the VM contains suspicious processes or kernel modules that
stealthily invoke the cryptographic service illegally, by comparing the results
returned by the command with the ones logged in En-ACCI, and update the
access control policy (e.g., forbidding the service invocation until the VM state
is recovered) in time.

3.4 Memory Analysis

En-ACCI adopts memory analysis to sample the memory of the monitored VM,
figure out the memory region related with the application that invokes the ser-
vice, and obtain the information required by the access control policy.

Memory analysis is performed in VMM, which has access to the memory
image of the monitored VM. According to the profile of the corresponding OS,
we obtain the logical address of the first process (e.g., init in Linux). After
transferring it to the address in the VMM address, we analyze it to get the
semantic information, based on the offset (defined in the profile) of each element.
With the semantic information of the first process, En-ACCI gets the addresses
of all the processes in the VM, and obtains the their semantic information. En-
ACCI figures out the memory region of the cryptographic service invoker by
comparing the information of file list or networking connections with the ones
corresponding to the cryptographic key handler. After figuring out the region
corresponding to the service invoker, En-ACCI parses the figured memory region
to obtain the semantic information, compares the parsed values with the ones
specified in the policy, and finally returns the decision to the cryptographic
service.

However, after obtaining the address of the process, the corresponding pro-
cess may exit, which means that semantic information parse fails. In this case, we
need to re-parse the previous process in the process chain to obtain the address
of the cryptographic service invoker process again. The previous process may
also exit before parsing. In the worst case, we need to trace back to the first
process (i.e., init in Linux).

4 Implementation

We have implemented a prototype of En-ACCI based on QEMU-KVM v1.7.1.
En-ACCI supports Linux distributions with kernel version 2.6 or above, and
Windows OS as VMs. In the following, we describe our implementation on the
CentOS v6.6 (Linux 3.13.7).

4.1 Framework Implementation

Figure 3 demonstrates the architecture of En-ACCI. We showcase how En-ACCI
is used to protect virtio-ct [20], a cryptographic token implemented on KVM.
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Fig. 3. The architecture of En-ACCI when integrating with virtio-ct [20].

In virtio-ct, the application in the monitored VM invokes the cryptographic ser-
vice through a file handle, which is associated with the front-end driver. The
parameters for the cryptographic computation include the identity of the cryp-
tographic key, the corresponding PIN and the plaintext/ciphertext. The front-
end driver routes these parameters to the virtio bus. The back-end driver in
QEMU fetched the arguments on the bus and performs the corresponding cryp-
tographic computation. The back-end driver invokes En-ACCI before performing
the actual computation. En-ACCI conducts the following two steps. It first deter-
mines whether the VM is infected by rootkits, and then checks whether the inner
context of the monitored VM satisfies the specified access control policy. More
specifically:

– Step 1: Before performing the cryptographic computation, En-ACCI checks
whether the request is invoked in a benign environment. This prevents the
back-end driver from being abused by attackers, e.g., accessing keys with-
out authorization or DoS attack by invoking intensive cartographic requests.
Here, the rootkit detector sequentially invokes all the included tools to check
(known) rootkits. To check whether the inner VM state satisfies the specified
policy, En-ACCI first identifies the memory region of the process that invokes
the cryptographic service. Regarding virtio-ct, we can locate the invoker based
the opened files of the process, as the invoker needs to open the special file
that represents the cryptographic key. Then, En-ACCI parses the identified
memory region, and performs the access control according to the obtained
semantic information. If any rootkit is detected or the access control pol-
icy is not satisfied, the back-end driver refuses to fulfill the cryptographic
computation request.

– Step 2: Before returning the result to the front-end driver, En-ACCI performs
checking to avoid the result to be obtained by the illegal user who comprises
the VM or invoker process during the cryptographic computation.
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In this step, En-ACCI reuses the result obtained in the previous step. For
example, there is no need to identify the invoker’s memory region. It directly
invokes the rootkit detectors and performs access control by parsing the pre-
viously identified memory region. If the parse fails, or any rootkit exists, or
the access control policy is not satisfied, the back-end driver refuses to return
the computation results.

Except for virtio-ct [20], En-ACCI supports other types of the cryptographic
cloud services. The major difference is the way to identify the corresponding
cryptographic processes. In virtio-ct, we rely on the process’s opened file infor-
mation, which must include the corresponding the cryptographic key. For AWS
CloudHSM and Alibaba Aliyun KMS, we identify a cryptographic process using
the network connection information, because the process must maintain a net-
work connection to the cryptographic service provider.

4.2 En-ACCI Implementation

Linux kernel adopts the data structure task struct to store the metadata of a
process. As shown in Fig. 4, the fields comm, cred, pid and start time contain
information about the process name, UID/GID, PID, process start time, while
fields files and fs store information about open file information (including
network connections) and filesystem information. Note that tasks is a list data
structure used by Linux to keep all the processes in a linked list.

Fig. 4. The Linux process descriptor

We have generated an aforementioned profile For Linux 3.13.7. The pro-
file records the logical address init task and the offsets of the variables in
task struct shown in Fig. 4. En-ACCI adopts these information to parse the
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semantic information of the init process and then follows the linked list indi-
cated by the tasks field (offset is 1640) to obtain the logical addresses of the
other processes. For each process, the PID, UID, GID, process name, and start
time are obtained directly from the task struct, while, En-ACCI needs to parse
the fields files (of type files struct) and fs (of type fs struct) to infer the
information of associated files. The variable fs provides the root dentry through
the variable root (of type path). The variable fdt (of type fdtable) in the
structure files struct contains the information of all files opened by this pro-
cess. That is, the member fd of structure fdtable lists the dentries for each
opened file. The network connection is represented by a file in Linux. We distin-
guish it from normal files through the variable f op in the structure file. The
f op points to the operation that can be invoked on this file, but points to the
function socket file ops when the file is a socket.

The profile only provides the guest logical address of each symbol, while
En-ACCI, being a component of VMM, can access the contents through guest
physical address in the underlying host OS. Therefore, we need to perform
the address translation. En-ACCI invokes cpu physical memory rw provided
by QEMU-Monitor to transfer the guest logical address to the guest physical
address, and then access it for further parse. En-ACCI also records the address
returned by cpu physical memory rw, and uses it with the offset to access the
memory in the host directly when no new guest logical address needs to be pro-
cessed. We implemented the aforementioned procedure in a lightweight way. The
whole implementation comprises about 700 lines of code.

The hash library provides the authorized process names, virtual addresses
of the code segments when the authorized processes is loaded into memory and
the digest of each code page. We analyze the authorized binary files offline in
advance. We calculate the digest of each page in the code segments from start.
For pages contributing to both code segments and data segments, we replace
the data regions with all zero. Then we calculate the digest of each page and
store them in the hash library. En-ACCI determines if the virtual page has been
loaded into physical memory by bit0 in the page table entry and verifies the
integrity of the virtual page.

In our prototype, En-ACCI is integrated with virtio-ct [20], in which the
application invokes the cryptographic service through a virtual device (i.e., a
file). En-ACCI uses the information of this file to figure the memory regions cor-
responding to the application. The semantic analysis of this memory region and
the access control process are performed twice, one before performing the crypto-
graphic computation and the other before returning the result to the application.
Enforcing the access control is implemented in less than 100 lines of code.

En-ACCI also logs the information for each cryptographic service invocation.
In addition to the user identity, IP address and the geographical region of VM,
the parameters and invocation time of the cryptographic service, it also includes
the PID, UID, GID, process name, process start time, the parent process, opened
files, established network connections, and the result of integrity checking.

For rootkit detector, we have implemented three VMI tools to detect a set of
kernel rootkits that alter the control flow by modifying the critical kernel data
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(e.g., IDT and system call table) or directly manipulate the kernel text. The
three VMI tools check the integrity of IDT, system call table and kernel text
respectively. Since our implementation is based on KVM, other popular VMI
tools can be easily integrated in our framework.

5 Analysis

In this section, we evaluate the performance overhead introduced by En-ACCI
and analyze the security improvement brought to cryptographic service invoca-
tions. Finally, we discuss the limitations of En-ACCI in our current prototype.

5.1 Performance Evaluation

The prototype of En-ACCI is implemented as a module for QEMU/KVM v1.7.1
using the C programming language. The profile of the target operating system is
generated using memory forensics tool volatility [11] and dwarf-tools. We set up
our evaluation environment with a Dell Optiplex 9020 powered an Intel i7-4770
CPU (3.4 GHz) and 16 GB RAM. We assigned 4 vCPUs and 4 GB RAM for the
VMs. The host operating system and the VM run CentOS v7.0 and CentOS v6.6
respectively.

We compared the results obtained from En-ACCI with that obtained from the
original virtio-ct and LibVMI-virtio-ct, which performs access control for virtio-
ct based on LibVMI. LibVMI-virtio-ct is implemented as follows: on receiving
the service invocation, it suspends the VM, invoking the LibVMI to analyze the
memory for the entries specified in the access control policy, and returns the
computation results to the resumed VM.

The performance was evaluated at different concurrency levels. In the exper-
iment, we used an application with at most 8 threads to invoke 2048-bit RSA
decryptions. The throughput is demonstrated in Fig. 5. Compared with the orig-
inal virtio-ct, the throughput of En-ACCI is reduced by 17.77% (the number
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of threads is 8), which is modest compared to 96.71% in LibVMI-virtio-ct (the
thread number is 4).

We also ran SPECINT 2006 to evaluate the impact of En-ACCI to the other
parallel processes. We set the performance of native virtio-ct [20] as the baseline,
and compared En-ACCI with Libvmi-virtio-ct by running SPECINT 2006 when
invoking the cryptographic service every 5 s with En-ACCI and Libvmi-virtio-ct
integrated respectively. As shown in Fig. 6, the impact of En-ACCI to the other
parallel processes is modest (less than 4.5%).

5.2 Security Analysis

En-ACCI raises the bar for the adversary to invoke the cryptographic cloud ser-
vice from three aspects: 1. En-ACCI doesn’t increase the risk of cryptographic
key leakage itself, as it doesn’t need the key for access control or audit. 2. En-
ACCI enforces the access control policy specified by the tenant for each ser-
vice invocation, which increases the difficulties of illegal invocation. 3. En-ACCI
records the detailed information for each cryptographic cloud service invocation.
This information is essential for causality analysis when the system is compro-
mised.

For access control, in addition to identity and password used in KMS [2,4,10],
En-ACCI leverages the approach described in Sect. 3.3 to extract inner VM state.
En-ACCI checks user ID, user group ID and start time of the process to ensure
the invoker process is created by the authorized user at the specified time. The
attacker would fail to invoke the cryptographic service if the invoker process is
started by a different account or is not started during the allowed time frames.
En-ACCI compares the name of the process and digests of the process’s code
segment with that specified in the profile and hash library, to ensure only the
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authorized executable program without integrity compromise can invoke the
cryptographic service. The specified list of opened files and established network
connections prevents the remote attacker who hijacks the victim process through
file handles or network connections from invoking the cryptographic service.

In order to prevent kernel rootkit from manipulating the target memory
region to fool En-ACCI, En-ACCI integrates existing rootkit detector. Once a
rootkit is found, the cryptographic service is interrupted. Moreover, En-ACCI
performs two steps for each service invocation; the first one prevents the attacker
from abusing the cryptographic computation, while the second one ensures that
the computation result is only returned to the legitimate invoker.

En-ACCI also has access to the detailed information about the inner VM
state during the service invocation. Therefore, even if the access control mecha-
nism is somehow bypassed (e.g., when the policy is incorrect), the cloud manager
can identify the illegal invocation in time, analyze the malicious invocation thor-
oughly and modify the access control policy in time to avoid further malicious
invocations.

The adversary who controls VM cannot compromise En-ACCI due to the
isolation mechanism provided by the virtualization. Moreover, the source code
of En-ACCI is only about 700 lines, which makes the formal analysis feasible.

5.3 Limitations

We discuss the limitations of the current En-ACCI prototype. En-ACCI relies on
logical addresses of the kernel symbols and the kernel data structure to perform
semantic analysis. However, as described in [12], the obtained semantic infor-
mation may be incorrect when the kernel data structure is manipulated. In the
current version, we rely on the followings assumptions to ensure the correctness
of the obtained semantic information. (1) The guest OS is patched in time for
known kernel-level vulnerabilities, which allow the attacker to hijack the con-
trol flow of the kernel. We admit that the attacker may still able to hijack the
control flow using the zero-day vulnerabilities. (2) The integrity of the kernel is
checked using existing rootkit detection tools. Therefore, our protection relies
on the effectiveness of existing tools.

6 Related Works

In this section, we summarize existing work on secure service invocation and
cryptographic key protection.

6.1 Cloud-Based Cryptographic Services

Virtio-ct emulates an HSM in VMM. Utilizing the isolation mechanism of the
hypervisor, any code, including ring-0 malicious code in the guest OS cannot
access cryptographic keys. To prevent the adversary from stealthily signing data,
each time the key is accessed, virtio-ct drives the pc-speaker to make a sound
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to notify the user. However, virtio-ct is designed for single PC scenarios instead
of cloud.

For KMS [2,4,8,10], cloud providers provide access control strategy. KMS
can be invoked in three ways in the current commercial design: (1) the web-
based console (2) the command line interface and (3) the cloud service API.
Although a variety of user authentication and access control are provided, the
security of KMS ultimately depends on the identity management and password-
based authentication mechanism. Audit is also provided in several providers.
For example, AWSCloudTrail [5] can record very basic information of the cryp-
tographic invocations.

6.2 Cryptographic Keys Protection

Various schemes have been proposed to protect the confidentiality of the crypto-
graphic key against memory disclosure attacks. New features [6,16] provided by
CPU manufacturer were adopted to protect the cryptographic keys. For example,
Mimosa [21] only keeps plaintext of sensitive data in the transaction memory,
which rolls back to the ciphertext once the memory is accessed by others. Intel
Software Guard Extension (SGX) [6] allows user-level code to allocate private
regions of memory, called enclave, which is isolated from the rest of the sys-
tem, including OS and BIOS. With it, cryptographic services can be securely
implemented.

As more and more services are being migrated to the cloud, the associated
security problems emerge. To mitigate attacks from the inner VM, Virtio-ct [20]
provides virtual cryptographic service while the corresponding key files are stored
in the dedicated storage and the cryptographic program is executed in VMM.
To prevent the attacks to VMM, TrustVisor [24] introduces a small hypervisor
as TCB to enforce the data secrecy and program integrity, even if the OS is
compromised.

En-ACCI adopts virtio-ct to prevent the attacks from the VM. It may also
integrate the other works [6,21] to avoid the memory disclosure attacks on the
physical machine when VMM is deployed, and adopt the schemes proposed in [24]
to reduce the size of TCB where the cryptographic computation is performed.

7 Conclusion

We propose En-ACCI, a VMI-based mechanism to add another line of defense
for cryptographic cloud services. En-ACCI enforces the access control for the
cryptographic cloud service based on the rich VM context, and provides better
audit by recording the detailed information of the VM and invoker process. To
achieve better performance, instead of adopting existing VMI tools (e.g., libvmi)
directly, En-ACCI analyses the VM’s memory based on the logical addresses and
the kernel data structure of the guest OSes, and further identifies and parses
the memory regions of the invoker process in VMM. To ensure the correctness
of the semantical information, En-ACCI integrates existing rootkit detection
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tools and checks the integrity of the invoker’s code segments. The performance
evaluation demonstrates that the performance overhead caused by En-ACCI is
modest (about 17.77%).
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Abstract. We propose a multi-authority fast data cloud-outsourcing
(MFDCO) scheme especially suitable for mobile devices. It is a multi-
authority online/offline encapsulation scheme based on efficient large-
universe ciphertext-policy attribute-based encryption, and supports fine-
grained access control, dynamic revocation, and public validity test.
Any party can become an authority to participate in the distribution
of attribute credential and credential updating. Apart from the ini-
tial generation of public global parameters, there is no requirement for
any coordination among distinct authorities. In addition, the MFDCO
scheme allows data owners to enforce fine-grained access control through
lightweight online operations, which is extremely friendly for mobile
users. It is equipped with an efficient revocation mechanism to real-
ize dynamic access credential revocations. It also allows public encap-
sulation validity test, thus preventing attackers from stuffing users’
data storage accounts with invalid encapsulations, as well as achieving
security against active attacks. Comprehensive analyses illustrate that
the MFDCO scheme is suitable for commercial sensitive data cloud-
outsourcing, especially in public cloud environment.

1 Introduction

Cloud computing is a promising distributed computation paradigm for large
pool of shared resources, which can provide numerous benefits, e.g., broader
data availability, reduced IT resource costs, better flexibility and increased col-
laboration. Data cloud-outsourcing, as an important part of cloud computing,
has received considerable attention from both industries and academic organi-
zations. By providing an on-demand, self-service, and pay-as-you-go business
model [7], cloud outsourcing, especially outsourcing to public cloud, is an eco-
nomic and convenient approach for efficient data sharing. Combined with online
data management functionality, a data cloud-outsourcing system can provide
flexible access control and almost unbounded resources in an on-demand fash-
ion at low prices. In this way, enormous amount of commercial documents and
c© Springer Nature Switzerland AG 2018
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customer data can be outsourced to public cloud, so that corporations are shifted
away from deploying expensive data storage systems and complicated data man-
agement systems. Meanwhile, employees can share data to the cloud and poten-
tial data consumers can access documents through public cloud conveniently.

While data cloud-outsourcing system provides numerous benefits to users,
there are still various remaining problems. We will discuss three main challenges,
which are untrusted cloud service providers (CSP), weak security models, and
the difficulty of cross-domain data sharing.

First, an untrusted CSP may use corporations’ sensitive data without autho-
rization. To protect outsourced data against an untrusted CSP, a promising app-
roach is to use cryptographic tools. Many up-to-date cryptographic access control
countermeasures have been proposed to address this problem [11,31,32]. Com-
paring with traditional systems, cryptographic countermeasures allow corpora-
tion managers to enforce access control policies even when the CSP is untrusted.
However, while mitigating this security risk, the introduction of cryptography
incurs new problems such as key management, heavy computation and addi-
tional storage overheads. It is worth noting that existing proposals [13,24,30]
involve numerous expensive asymmetric cryptographic operations, and the com-
putation complexity increases with the complexity of the chosen access policy,
making it unaffordable for mobile users to enforce fine-grained access control.

Second, current security models are too weak to capture realistic attacks
in cloud storage scenarios. They mainly prevent passive attacks and collusion
attacks. However, in public cloud outsourcing scenarios, for one thing, attackers
may have the ability to collect data leaked by target users or even manipulate
data to reveal partial sensitive information [2]. For another, as encapsulated data
look random, attackers may easily stuff users’ cloud storage accounts with junk
data at a very low cost. Such attacks have not been fully considered previously.
Few existing similar proposals, except for one [32] we previously proposed, can
provide an efficient way to publicly verify encapsulation and filter junk data
without sacrificing the efficiency of encapsulation procedure.

Third, in most existing access control proposals for cloud outsourcing, access
credentials are managed by a central trusted authority. This centralization
requirement results in a restriction that these systems can only be used within
one trust domain or a specific organization. However, in commercial applications,
data owners need to share documents across different organizations. A possible
scenario is that both corporations issue access credentials as part of a joint
project, where single-authority access control systems might be problematic.

Based on the above observations, we are inspired to design cross-domain
access control scheme to achieve secure data cloud outsourcing.

1.1 Our Contributions

We propose a multi-authority fast data cloud-outsourcing (MFDCO) scheme
especially suitable for mobile devices. It is a multi-authority online/offline encap-
sulation scheme based on efficient large-universe ciphertext-policy attribute-
based encryption (CP-ABE), and supports fine-grained access control, dynamic
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revocation, public encapsulation validity test. Compared with previous
works [12,18,19], our scheme supports more functionalities, and is much faster
in real-time data encapsulation. These features make our scheme a promising
solution to secure data outsourcing in public cloud. In more detail, our MFDCO
scheme satisfies the following properties:

– Decentralization: Any party can become an authority to distribute and update
users’ access credentials, achieving decentralization.

– Fine-grained access control: Our scheme enforces fine-grained access control on
the data record level for different users. Each data record is associated with
an access policy. Only parties whose roles match the access policy specified
by the data are able to decapsulate.

– Dynamic credential revocation: By publishing credential updating periodically,
our scheme achieves dynamic access credential revocation without changing
the global public parameters.

– Public encapsulation validity test and junk encapsulation filtering: With the help
of a well-constructed verification term and the inner relationship of encap-
sulation components, an attacker sending random junk data can be easily
detected and filtered. The cost of checking encapsulation validity is much less
than that of generating well-formed encapsulations, which greatly mitigates
the threat of junk data attack.

– Online/offline encapsulation: Most heavy computations are completed in the
offline stage. In the online encapsulation stage, data owners only need to
execute lightweight operations, which enables mobile users to realize real-
time data outsourcing.

– Security against active attacks: An attacker can collude with CSP and all other
users except the target user, and can adaptively know the decapsulated data
except the target one.

1.2 High-Level Idea of Our Construction

To achieve decentralization in ABE, it is natural to think about equipping each
authority with a different master secret key, and then sharing to data consumers
through issuing corresponding part of access credentials. However, attackers may
be able to control a set of corrupted authorities and make collusion attacks.

Recall in a single-authority ABE, a central authority chooses a unique set of
random elements for each user to “tie” together different components of a specific
private key, each component representing a different attribute. This method will
be problematic in multi-authority settings, as these key components may be
issued by different authorities. To resolve this problem, we import the Lewko
and Waters (LW-11) multi-authority technique [16], which uses a unique global
identity GID and applies a hash function over GID to “tie” together attribute
credential components belonging to a specific user. The secret information can
be extracted only when a data consumer’s whole access credential satisfies the
policy of this encapsulation, so that attackers cannot combined their attribute
credentials with other users’ to decapsulate unauthorized data.
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The LW-11 decentralizing ABE works in composite order groups, where expo-
nentiation operations are too slow for real-time data outsourcing. Besides, prac-
tical cloud-outsourcing applications call for expressive access policy, and each
authority is usually responsible for several attributes. However, in the LW-
11 scheme, attribute universe is restricted to polynomial size, each authority
supports only one attribute and can be used only once when describing access
policies, which obviously restricts its application. So, we further introduce the
Rouselakis-Waters (RW-15) technique [20] to pare this decentralization mecha-
nism down to prime order groups, and remove the above restrictions. A trade-off
of the RW-15 technique is a static security model in the random oracle model,
where key queries must be issued before parameters are published.

Considering revocation, we resort to the Boldyreva-Goyal-Kumar (BGK-08)
revocation technique [4]. However, when combining the BGK-08 and the RW-15
technique in a straightforward way, the static model of RW-15 requires attackers
to issue a target list of revocation on target time beforehand to allow a simula-
tor to prepare public global parameters. This requirement weakens the security
result of our MFDCO scheme. To remove revocation list requirement, we intro-
duce the Seo-Emura (SE-13) revocation technique [22]. After dividing the master
secret key into two parts, which are respectively contained in the attribute cre-
dential and credential updating, we construct the attribute credential part under
the Rouselakia-Waters (RW-13) secret key form [19] and the credential update
part under the Boneh-Boyen (BB-04) secret key form [5]. In this way, revoca-
tion list and revocation time are separated in access credential generation and
revocation, therefore enhancing the security of our MFDCO scheme.

In order to achieve real-time encapsulation, we adopt the Hohenberger-
Waters (HW-14) online/offline technique [12]. Without the knowledge of assigned
access policy or actual data, we cover most heavy algebraic group operations in
the offline stage. In the online stage, data owners decide the actual access policy
and finish the encapsulation with lightweight operations. The main challenge
comes from that the public verification term is related to specific access pol-
icy and data, but both are unknown in the offline stage. Here, we introduce
chameleon hash functions. In the offline stage, data owners randomly choose an
access policy and a data item, calling the chameleon hash function to compute
a verification term. In the online stage, data owners utilize the chameleon hash
trapdoor to replace random elements with actual ones without changing the ver-
ification item, i.e., change the pre-image of the hash to string of actual data and
policy. In this way, our MFDCO system allows public encapsulation validity test
and invalid encapsulation filtering, and further achieve security against active
attacks.

1.3 Related Work

The concept of ABE was introduced by Sahai and Waters [21], since then many
extensions of ABE for security [6,14] and efficiency [26] have been proposed. Due
to the capability of providing fine-grained access control over encrypted data,
ABE is an ideal paradigm for data cloud outsourcing applications, but improving



MFDCO for Mobile Devices 235

its efficiency is still a challenge. Although techniques like proxy re-encryption [1]
and security mediated certificateless signatures [29] techniques can be used to
reduce the encapsulation cost, integrated schemes still require heavy operations
during data encapsulation. Furthermore, few schemes support ill-formed encap-
sulation public filtering while keeping online encapsulation procedure efficient.

Very recently, we proposed a fast data cloud-outsourcing scheme with public
validity test and flexible access control for mobile devices (FDCO) [32]. However,
the FDCO scheme is limited to a single central authority, which greatly restricts
data sharing domain. In this work, we utilize a two-step “splitting” technique and
improve the FDCO scheme to a multi-authority data cloud-outsourcing system,
supporting credentials from different organizations and enables cross-domain
data sharing. Besides, lots of works have already considered multi-authority ABE
schemes [6,17], and multi-authority cloud storage environment [8,13,28].

2 Preliminaries

2.1 Notations

For a, b ∈ N with a < b, we define [a, b] = {a, a+1, · · · , b}. We write [a] as short-
hand for [1, a]. By {Xi}i∈[n], we denote a sequence of elements X1,X2, · · · ,Xn.

When S is a set, the cardinality of S is denoted by |S|. By s1, s2, · · · , sn
R←− S

with n ∈ N, we denote that elements s1, · · · , sn are picked uniformly at random
from S. We define M ∈ Z

m×n
p as a matrix of size m × n with elements in Zp.

Two special subsets of the matrix are the row vector Z1×n
p and the column vector

Z
m×1
p . We denote the i-th row of matrix M by Mi and the i-th entry in vector v

by vi. For two vectors v and w, the inner product of them is denoted by 〈v,w〉.
The operation (·)T denotes the transposed vector/matrix.

Denote a binary tree by BT . For a leaf node η in BT , we denote the set of
nodes on the path from node η to the root node by Path(η) (η and the root node
are also included in Path(η)).

2.2 Linear Secret Sharing Scheme

Definition 1 (LSSS [3,20]). Let p be a prime and U be an attribute universe.
A secret sharing scheme

∏
with domain of secrets Zp for realizing access policy

on U is linear if: (1) The shares of a secret z ∈ Zp for each attribute form a
vector over Zp. (2)For each access policy A on U , there exists a share-generating
matrix M ∈ Z

�×n
p for

∏
. For each x ∈ [�], we define function δ(x) that labels

Mx with an attribute from U , i.e., δ : [�] → U .
Considering the column vector v = (z, r2, r3, · · · , rn)T, λ = Mv ∈ Z

�×1
p is

the vector of � shares of the secret z, where r2, · · · , rn
R←− Zp. The x-th entry λx

belongs to the attribute δ(x) for x ∈ [�].

We refer to the tuple (M, δ) as an access policy A encoded by LSSS-policy.
Let S and S ′ respectively denote an authorized set and an unauthorized set for
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the LSSS policy (M, δ), where M ∈ Z
�×n
p and δ : [�] → U . We define I ⊆ [�] as

I = {x|δ(x) ∈ S}, and I ′ ⊆ [�] as I ′ = {x|δ(x) ∈ S ′}.
Then we have the following two properties: (1) Reconstruction property: Any

authorized set can reconstruct the shared secret efficiently. For any authorized
set S, there exists constants {ωx ∈ Zp}x∈I such that for any valid shares {λx =
(Mv)x}x∈I of a secret z, we have

∑

x∈I

ωxλx = z. The constants {ωx}x∈I can

be generated in time polynomial in the size of M; (2) Security property: No
unauthorized set can obtain any partial information about the shared secret. For
any unauthorized set S ′, such constants {ωx}x∈I do not exist. In this case, there
exists a vector d = (d1, · · · , dn) ∈ Z

1×n
p , such that 〈Mx,d〉 = 0 for all x ∈ I ′

and d1 can be any non-zero element in Zp.

2.3 Access Policy

Definition 2 (Access Policy [3]). Let U be a set of parties. An access policy
A on U is a collection of non-empty subsets of U , i.e., A ⊆ 2U\{∅}. A set in A

is called an authorized set, and a set not in A is called an unauthorized set.

In our system, each stored data item is associated with an access policy. Only
parties whose roles match the specified access policy are able to decapsulate. The
roles of the parties are denoted by a set of attributes in the attribute universe
U . The access policy A contains the authorized sets of attributes.

2.4 Chameleon Hash Functions

A chameleon hash function has a chameleon hash key/trapdoor pair (chk, td).
Using the chameleon hash key chk, anyone can efficiently compute the hash value
of any given input, and it is hard to find a collision for any given input. However,
with the trapdoor td, there exists an efficient algorithm which can find collisions
for every given input [15]. Formally, it consists of three efficient algorithms:

– (chk, td) ← CHGen(1λ). The key generation algorithm takes a security param-
eter λ ∈ N as input, and outputs an hash key/trapdoor pair (chk, td).

– Hm ← CHash(chk,m, rm). The hash algorithm takes as inputs a chameleon
hash key chk, a message m, and an auxiliary random parameter rm. It outputs
a hash value Hm of the given message m.

– rm′ ← Coll(td,m, rm,m′). The chameleon collision finding algorithm takes as
inputs a trapdoor td, a message m and its auxiliary parameter rm when
previously computing its hash value Hm, and another message m′ 	= m
used for forging. It outputs another auxiliary parameter rm′ such that
Hm = CHash(chk,m, rm) = CHash(chk,m′, rm′).

2.5 Revocation Mechanism

The revocation mechanism is borrowed from [32]. There are four components:
a binary tree BT , a revocation list RL, a time T , and an algorithm CUNode.



MFDCO for Mobile Devices 237

Each attribute set is assigned to a leaf node in BT . The revocation list RL stores
all pairs of nodes assigned to revoked access credentials and their revocation time
(ηi, Ti). When an access credential is required to be revoked at time T , the system
adds it to RL, runs algorithm CUNode, and refreshes credential updates.

The algorithm CUNode takes as inputs BT , RL, T , and outputs a minimal
set of nodes whose credential updates need to be published. None of the nodes
in RL with time t ≤ T have any ancestor or themselves in this set, and all other
leaf nodes have exactly one ancestor or themselves in this set.

2.6 Multi-authority Mapping

In the multi-authority ABE setting, each attribute is controlled by a specific
authority i ∈ UΘ, where UΘ is the universe of all authorities. We define a public
function T : U → UΘ that maps each attribute to a unique authority. Recall that
the function δ : [�] → U , which maps each row of share-generating matrix M to
a specific attribute. We define a compound function ρ(·) = T(δ(·)), which maps
each row of M to a specific authority, i.e., ρ : [�] → UΘ.

For example, in the implementation of the RW-15 multi-authority CP-ABE
scheme, both the attribute ID and the authority ID consist of alphanumeric
strings. The full attributes are expressed in the form of “[attribute-id]@[authority-
id]”, and the mapping T extracts the part after “@” of the full attribute string.

2.7 “Zero-Out” Technique

Let M ∈ Z
�×n
p be the share-generating matrix of a linear secret sharing scheme

for an access policy A, and let C ⊆ [�] be a unauthorized set of rows. Let c ∈ N

be the dimension of the space spanned by rows in C.
Then the distribution of the shares {λx}x∈[�] sharing the secret z ∈ Zp gener-

ated with the matrix M is the same as the distribution of the shares {λ′
x}∀x∈[�]

sharing the same secret z generated with some matrix M̂, where M̂x,j = 0 for all
(x, j) ∈ C× [n−c]. We omit the detailed description and proof of the “Zero-Out”
technique, and refer readers to RW-15 [20].

3 System Architecture and Security Model

3.1 System Architecture

The system architecture is shown in Fig. 1. Following the generic cloud stor-
age system model [25,30], our MFDCO scheme involves six types of parties:
system manager, authority, data owner, auditor, cloud storage server and data
consumer.

– A system manager is responsible for initiating the system.
– Authorities are responsible for issuing attribute credentials to recognized data

consumers, and managing the revocation state by publishing credential updat-
ing of their responsible attributes.
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Fig. 1. System architecture.

– Data owners encapsulate data with on-demand access policies, and upload to
the cloud storage server to share with a specific set of data consumers.

– An auditor checks whether the data are correctly encapsulated according to
the specified access policies before storing them in cloud.

– A cloud storage server maintains well-encapsulated data and responses to
data retrieval requests.

– Data consumers get their attribute credentials and credential updating from
relevant authorities, retrieve encapsulation from the cloud storage server, and
decapsulate data that matching their attributes.

A MFDCO scheme consists of eight probabilistic polynomial-time algorithms.

– GlobalSetup(1λ, N) → GP : Run by a system manager to initiate the system.
This algorithm takes as inputs a security parameter λ and a maximal num-
ber of allowed attribute sets N , and outputs a public global parameter GP ,
including descriptions of an attribute universe U , an authority universe UΘ,
a global identifier universe GID, and a mapping T.

– AuthoritySetup(GP, i) → {PKi, SKi}: Run by each authority i ∈ UΘ to gen-
erate its own public/secret key pair. This algorithm takes as inputs a public
global parameter GP , and outputs a public/secret key pair of each authority
i as (PKi, SKi).

– DataEnc(GP, {PKi},A, T,M) → CT : Run by data owners to encapsulate
data. This algorithm takes as inputs a public global parameter GP , a set of
public key {PKi}, an on-demand access policy A, an encapsulation time T
and data M , and outputs a corresponding encapsulation CT .

– EncFilt(GP,CT ) → v: Run by auditors to verify and filter encapsulated data.
This algorithm takes as inputs a public global parameter GP and an encap-
sulation CT , and outputs a bit v. v is set to 1 if CT is a valid encapsulation,
and 0 otherwise.
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– ACGen(GP,GID,S, {SKi}) → acS : Run by authorities to generate attribute
credentials. This algorithm takes as inputs a public global parameter GP , a
global identifier GID of a user, a specified attribute set S = {A1, A2, · · · , Aκ},
an authority’s secret key SKi. Each authority outputs its responsible set of
attribute credential component acx, and finally we collect all acx to form the
whole attribute credential acS .

– CredUp(GP,GID,S, T, {SKi}) → cuT : Run by authorities for periodically
credential updating to realize credential revocation. The CredUp algorithm
takes as inputs a public global parameter GP , a global identifier GID of a
user, a specified attribute set S = {A1, A2, · · · , Aκ}, a credential update time
T and an authority’s secret key SKi. Each authority outputs its responsible
set of credential updating component cuT,x, and finally we collect all cuT,x

to form the whole credential updating cuT .
– DataDec(GP, acS , cuT , CT ) → M : Run by data consumers to decapsulate

data. This algorithm takes as inputs a public global parameter GP , an
attribute credential acS , a credential update cuT and an encapsulation CT ,
and outputs decapsulated data M .

– ACRevoke(GP,S, T ) → RL: Run by authorities for user revocations. The
ACRevoke algorithm takes as inputs a public global parameter GP , a revoked
attribute set S and a revoked time T , and outputs a revocation list RL.

An MFDCO scheme must satisfy the following correctness property.

Definition 3 (Correctness). An MFDCO scheme is correct if for any GP
generated by the GlobalSetup algorithm, any set of key pairs {PKi, SKi} gener-
ated by the AuthoritySetup algorithm, any CT generated by the DataEnc algorithm
using relevant authorities’ public keys on any message M and access structure
A, any acS generated by the ACGen algorithm and any cuT generated by the
CredUp algorithm using relevant authorities’ secret keys for a user GID on any
A-authorized set of attributes, it holds DataDec(GP, acS , cuT , CT ) = M .

3.2 Security Model

We assume that after public global parameters being published, each non-
corrupted authority honestly sets up itself and securely issues attribute cre-
dentials to legal data consumers. Non-corrupted authorities never reveal any
private information to non-entitled parties. But an attacker can control a set of
corrupted authorities. All other parties, including data owners, data consumers,
auditors and the cloud storage server, are honest-but-curious. They correctly
execute the required procedures, but may collude to get access to unauthorized
information. In addition, some authorized data consumers may obliviously leak
their decapsulated data to attackers, but their attribute credentials are assumed
to be kept securely.

3.3 Formal Security Definition

We formally define the security game between a challenger B and an adversary
A following the general security model in Sect. 3.2.
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Goal of the Adversary: To extract useful information from the challenge
encapsulation of his/her choice, which is associated with the target access policy
and target time that he/she previous committed to in the initiation stage.

Ability of the Adversary: The adversary can (1) choose a set of corrupted
authorities that he can control before seeing the public global parameters; (2)
collude with other legal unauthorized data consumers, and revoked authorized
data consumers; (3) control the revocation state; and (4) adaptively know the
recovered data, except the challenge one.

Requirement: The adversary cannot obtain any useful information about the
challenge encapsulation.

Both adversary A and challenger B are given a security parameter λ as input.
The security game is described as follows:

Initialization. A commits to a challenge access policy (M∗, δ∗) and a challenge
time T ∗. It also needs to output a set of corrupted authorities CΘ, a set of non-
corrupted authorities NΘ, a collection of all queried GIDs and their attributes
sets Q = {(GIDi, Si)}.

Setup. B generates GP , gives GP to A and generates public keys of all non-
corrupted authorities.

Phase 1. A issues queries, and each query is one of: (1) Attribute credential query
for attribute set S. B generates acS for S and gives it to A; (2) Decapsulation
query for (hdr, en) with (M, δ) chosen by A; B decapsulates the data and returns
the result to A. (3) Revocation query for attribute set S and time T . B runs
ACRevoke to update revocation list RL; (4) Credential update query on T . B
generates and publishes credential updating according to RL.

Challenge. When A decides that Phase 1 is over, it outputs two equal-length
data data0 and data1. B flips a coin b

R←− {0, 1}, encapsulates datab with (M∗, δ∗)
and T ∗, and returns (hdr∗, en∗) to A.

Phase 2. A further issues queries, with an additional constraint that in the
decapsulation query, the issued data satisfies that (hdr, en) 	= (hdr∗, en∗). B
responds the same as in Phase 1.

Guess. Finally, A outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

Considering the running sequence of algorithms shown in Fig. 1, the above
queries must satisfy the following conditions: (1) Revocation queries and cre-
dential update queries should be issued after all other queries, i.e., the time of
revocation query and credential update query should be later than the time of all
previous queries; (2) The revocation query on time T should be done before the
credential update query on time T ; (3) If an attribute credential for S satisfying
(M∗, δ∗) is queried, then its access credential must be revoked for any t ≤ T ∗.

First, revocation query and credential update query will change the revoca-
tion state, thus determining the final access control state, i.e., whether a certain
data consumer can decapsulate a certain encapsulation. So this operation need
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to be executed at the end of all queries. Second, because revocation query will
change the revocation list RL, which is an essential part in credential update
procedure, so system updates the credentials at the end of the time period T ,
and all revoked procedures on that time must be done before credential updat-
ing. Third, if an attribute credential satisfying the target access policy (M∗, δ∗)
is queried, but not revoked before the target time T ∗, then adversary A can
use acS and cuS to decapsulate the challenge encapsulation, in which situation
system will be trivially broken.

The advantage of A in attacking our system with security parameter λ is

AdvA(λ) = |Pr[b′ = b] − 1/2|

Definition 4 (Security). An MFDCO scheme is secure against selectively
chosen access policy & time and chosen ciphertext attack if for any probabilis-
tic polynomial time adversary A, the advantage of winning the security game
defined above is negligible in λ.

3.4 The q-wDPBDHE2 Computational Assumption

The security of our MFDCO scheme cannot be directly reduced to the RW-
13 CP-ABE or the RW-15 multi-authority scheme, since we additionally need
to handle the decapsulation queries, the revocation queries and the credential
update queries. We use a modified version of the q-Decisional Parallel Bilin-
ear Diffie-Hellman Exponent Assumption [27]. We refer to our assumption as
q-wDPBDHE2 assumption for short. The difference between the q-wDPBDHE
assumption of our previous FDCO scheme [32] and this q-wDPBDHE2 assump-
tion is that, in the latter assumption, the {gai/bj } terms go up to i = 2q instead
of q.

Let G(1λ) be an efficient group generator algorithm. Run (p,G,GT , e) ←
G(1λ), and sample g

R←− G, a, s, b1, b2, · · · , bq
R←− Zp. The q-wDPBDHE2 prob-

lem is that given (D,G) as inputs, and then to determine whether G equals
e(g, g)saq+1

, or is a random element in GT , where

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g, gs

gai

, gbj , gsbj , gaibj , ∀i ∈ [q], j ∈ [q]

gai·bj/b2
j′ , ∀i ∈ [2q], j ∈ [q], j′ ∈ [q], i 	= q + 1, j 	= j′

gai/bj , gai/b2j , ∀i ∈ [2q], j ∈ [q], i 	= q + 1

gsaibj/bj′ , gsaibj/b2
j′ ,∀i ∈ [q], j ∈ [q], j′ ∈ [q], j 	= j′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The q-DPBDHE assumption was shown generically secure in [27], and fol-
lowing a similar proof, we can prove that the q-wDPBDHE2 assumption is also
generically secure.
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Theorem 1. For an algorithm A that outputs b ∈ {0, 1}, its advantage in solv-
ing the q-wDPBDHE2 problem with the security parameter λ is defined as

AdvA(λ) =
∣
∣
∣Pr

[
A(D,G = e(g, g)saq+1

) = 1
]

− Pr
[
A(D,G

R←− GT ) = 1
]∣
∣
∣ ,

where the probability is over random choices of an element g ∈ G, exponents
a, s, b1, b2, · · · , bq ∈ Zp, and the random bits used by A.
The q-wDPBDHE2 assumption holds if no polynomial time algorithm has non-
negligible advantage in solving the q-wDPBDHE2 problem, i.e., AdvA(λ) ≤ ε.

4 The Proposed MFDCO Scheme

4.1 Construction

GlobalSetup(1λ, N) → GP : The setup algorithm takes as inputs a security
parameter λ ∈ N and the maximal number of allowed attribute sets N ∈ N,
which implies N different global identities (GIDs) of users. Denote the attribute
universe by U = [0, p−1

2 ], and the verification universe by V = [p+1
2 , p−1]. Denote

the authority universe by UΘ. Define a public function T : U → UΘ. The com-
pound mapping T is described in Sect. 2.6. Let εsym = (SymEnc,SymDec) be
a secure symmetric encryption scheme. Let Hash : {0, 1}∗ → [p+1

2 , p − 1] be a
standard collision resistant hash function. The chosen chameleon hash function
is CHash: {0, 1}∗ → Zp, with an auxiliary parameter universe R. We define a
hash function H : GID → G to hash the identity of each user to an element in
G, and a function F : Zp → G to map an arbitrary string into an element in G.

1. Obtain (p,G,GT , e) ← G(1λ), where G, GT are of prime order p, bilinear map
e : G × G → GT .

2. Sample g, h, u, v, hr, ur
R←− G, α

R←− Zp and compute gα.
3. Set RL = ∅ and sample a binary tree BT with at least N leaf nodes.
4. Output the public global parameters

GP =

(
λ, p,G,GT , gα,CHash,Hash,H,F,T

R,U ,UΘ,GID, g, h, u, v, hr, ur, RL,BT

)

.

AuthoritySetup(GP, i) → {PKi, SKi}: Each authority i chooses two random
exponents αi, βi

R←− Zp, and publishes PKi = {e(g, g)αi , gβi} as its public key.
SKi = {αi, βi} is set as secret key.

DataEnc(GP, {PKi}, (M, δ), T, data) → (hdr, en).

A. Preparation: Proceed without the knowledge of (M, δ), T or data. P is the
given maximum number of rows in policy (M, δ).
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1. Sample z
R←− Zp and compute key = e(g, g)αz.

2. For each x ∈ [P ], sample λ′
x, μ′

x, α′
ρ(x), β

′
ρ(x), T

′, γx, tx
R←− Zp, and compute

CR,1 = uT ′
r hr, C0,1,x = e(g, gα)λ′

xe(g, g)α′
ρ(x)txe(g, CR,1)tx , C0,2,x = gαμ′

x ,

C0,3,x = F(δ(x))txvtx , C0,4,x = gβ
′
ρ(x)tx , Cx,1 = (uγxh)−tx , Cx,2 = gtx .

3. Sample t0
R←− Zp and compute Cv,1 = gt0 .

4. Obtain (chk, td) ← CHGen(1λ), where (chk, td) denotes a pair of chameleon
hash key and the corresponding trapdoor.

5. Sample rm′
R←− R, m′ R←− {0, 1}∗ and compute V = Hash(chk‖CHash(chk,

m′, rm′)), Cv,2 = (uV h)−t0 .
6. Store the intermediate header as

ihdr =

(
key, z, T ′, chk, td, rm′ ,m′, {λ′

x, μ′
x, α

′
ρ(x), β

′
ρ(x), γx, tx}x∈[P ], CR,1,

Cv,1, Cv,2, {C0,1,x, C0,2,x, C0,3,x, C0,4,x, Cx,1, Cx,2}x∈[P ]

)

.

B. Real-time encapsulation: Take (M, δ), T and data as inputs, where the share-
generating matrix M ∈ Z

�×n
p , δ : [�] → U , � ≤ P . Considering the x-th row

of matrix M, its corresponding attribute is denoted by δ(x), which is man-
aged by authority ρ(x). Parse the public key of authority ρ(x) as PKρ(x) =
{e(g, g)αρ(x) , gβρ(x)}. Process items in ihdr and fulfill the encapsulation:

1. Sample y2, · · · , yn, w2, · · · , wn
R←− Zp and parse y = (z, y2, · · · , yn)T, w =

(0, w2, · · · , wn)T.
2. Parse λ = (λ1, λ2, · · · , λ�)T = My and μ = (μ1, μ2, · · · , μ�)T = Mw.
3. For each x ∈ [�], compute Cx,3 = λx − λ′

x, Cx,4 = −tx(δ(x) − γx), Cx,5 =
μx − μ′

x, Cx,6 = tx(βρ(x) − β
′
ρ(x)), Cx,7 = tx(αρ(x) − α

′
ρ(x)).

4. Compute CR,2 = T − T ′, en = SymEnc(key, data) and set
m = en‖Cv,1‖Cv,2‖C1,1‖ · · · ‖C1,7‖ · · · ‖C�,1‖ · · · ‖C�,7‖CR,1‖CR,2‖(M, δ)‖T.

5. Utilize the collision finding algorithm to compute rm = Coll(td,m′, rm′ ,m).
6. Parse the stored data as (hdr, en), where the header hdr is

hdr =

(
(M, δ), T, chk, rm, Cv,1, Cv,2, CR,1, CR,2,

{Cx,1, Cx,2, · · · Cx,7, C0,1,x, · · · C0,4,x}x∈[�]

)

.

EncFilt(GP, (hdr, en)) → v: Detect and filter ill-formed encapsulation (hdr, en):

1. Compute V = Hash(chk‖CHash(chk,m, rm)).
2. For each x ∈ [�], verify attributes e(g−1, Cx,1u

Cx,4) ?= e(Cx,2, u
δ(x)h).

3. Verify encapsulation time CR,1u
CR,2
r

?= uT
r hr.

4. Verify verification term e(g−1, Cv,2)
?= e(Cv,1, u

V h).
5. If any equation does not hold, output v = 0; otherwise output v = 1.

ACGen(GP,GID,S, {SKi}) → acS : To implement the revocation mechanism [4],
we use a binary tree data structure and a credential updating node algorithm
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CUNode. The algorithm CUNode outputs the minimal set of nodes needed to be
updated, and its description is provided in the full version paper.

Take S = {A1, A2, · · · , Aκ} as input. Let ẑ be the index of attribute δ(x) in
set S, we have δ(x) = Aẑ. Parse the secret key of authority T(Aẑ) as SKρ(x) =
{αρ(x), βρ(x)}. Each authority does its own part of the following operations.

1. Sample an unassigned leaf node η from BT and store S in node η.
2. For each node θ ∈ Path(η): If gθ is already stored in node θ, retrieve it.

Otherwise, sample gθ
R←− G and store (gθ, g̃θ = g/gθ) in node θ.

3. Sample rθ, r1, r2, · · · , rκ
R←− Zp, and compute Kθ,1 = grθ , for each x ∈ [κ],

Kθ,x,1 = g
αρ(x)

θ H(GID)βρ(x)F(δ(x))rθ , Kθ,x,2 = grx ,Kθ,x,3 = (uδ(x)h)rxv−rθ .
4. Output an attribute credential as

acS = (S, {(Kθ,1, {Kθ,x,1,Kθ,x,2,Kθ,x,3}x∈[κ])}θ∈Path(η)).

CredUp(GP,GID,S, T, {SKi}) → cuT : Take S = {A1, A2, · · · , Aκ} as input,
where κ = |S|. The corresponding authority of attribute Aẑ is T(Aẑ). Let ẑ be
the row index of the attribute δ(x) in set S, we have δ(x) = Aẑ. Parse the secret
key of authority T(Aẑ) as SKρ(x) = {αρ(x), βρ(x)}. Each authority does its own
part of the following operations.

1. Invoke the CUNode algorithm. For each node θ ∈ CUNode(BT,RL, T ),
retrieve g̃θ from node θ.

2. For each x ∈ [κ], compute K̃θ,x,1 = g̃
αρ(x)

θ H(GID)βρ(x)(uT
r hr).

3. Publish the credential updating as cuT = {(θ, {K̃θ,x,1}x∈[κ])}θ∈CUNode(BT,RL,T )

DataDec(GP, acS , cuT , (hdr, en))→ data: Take as inputs attribute credential acS
and credential updating cuT : acS = (S, {(Kθ,1, {Kθ,x,1,Kθ,x,2,Kθ,x,3}x∈[κ])}θ∈I′ ),
cuT = {(θ, {K̃θ,x,1}x∈[�])}θ∈J ′ , where I ′ = Path(η) and J ′ = CUNode(BT,RL, T ).
Check I ′ ∩ J ′: If I ′ ∩ J ′ = ∅, no ancestor node of acS is updated, which means
the access credential for S is revoked, so output ⊥. Otherwise, choose θ ∈ I ′ ∩J ′:

1. Compute Kx,0 = Kθ,x,1K̃θ,x,1 = gαρ(x)uT
r hrH(GID)2βρ(x)F(δ(x))rθ .

2. Parse I = {x|δ(x) ∈ S} and compute {ωx ∈ Zp}x∈I such that
∑

x∈I

ωxMx =

(1, 0, · · · , 0), and we have
∑

x∈I

ωxλx = z and
∑

x∈I

ωxμx = 0.

3. Compute

C0,1,xe(g, gα)Cx,3e(g, g)Cx,7e(H(GID), C0,4,xgCx,6)2e(H(GID), C0,2,xgαCx,5)

e(C0,3,x,Kθ,1)−1e(Cx,1uCx,4 ,Kθ,ẑ,2)−1e(Cx,2,Kθ,ẑ,3)−1e(Cx,2, u
−CR,2
r Kx,0)

=e(g, gα)λxe(H(GID), gα)μx

and output an encapsulated key as key =
∏

x∈I

(e(g, gα)λxe(H(GID), gα)μx)ωx ,

where ẑ is the index of the attribute δ(x) in S.

ACRevoke(GP,S, T ) → RL: If there is a leaf node η associated with S, then
update RL ← RL ∪ {(η, T )} and publish it. Otherwise, output ⊥.
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4.2 Correctness

Next we show the stored data is correctly encapsulated by the data owner. For
all x ∈ I, we have: e(g−1, Cx,1u

Cx,4) = e(Cx,3, u
ρ(x)h) and CR,1u

CR,2
r = g, uT

r hr.
Since V = Hash(chk‖CHash(chk,m, rm)), we have e(g−1, Cv,2) = e(Cv,1, u

V h).

If an attribute set S satisfies the access policy (M, δ), then we have∑

x∈I

ωxλx = s and
∑

x∈I

ωxμx = 0. Since ẑ is the index of attribute δ(x) in set S, we

have δ(x) = Aẑ. Therefore, we have key =
∏

x∈I

(e(g, gα)λxeH(GID), gα)μx)ωx =

e(g, g)αz.
Hence, a data consumer can correctly extract the encapsulation key key to

recover the data.

4.3 Formal Security Result

We proceed our security reduction in the random oracle model under a modified
q-wDPBDHE computational assumption defined in Sect. 3.4, which is called q-
wDPBDHE2 assumption. More formally,

Theorem 2. If the q-wDPBDHE2 assumption holds, then all probabilistic poly-
nomial time adversaries, with maximal number of qs attribute credential queries,
maximal number of qd decapsulation queries, have only a negligible advantage in
breaking our MFDCO scheme in the random oracle model.

We prove the security of our MFDCO scheme by constructing a sequence of
games [23], in which Game 0 is identical to the game defined in Sect. 3.2 while
other games are similar to Game 0 in their overall structure, and only differ from
Game 0 in terms of how the simulator works. All of these games are viewed as
operating on the same underlying probability space. We show that if adversary
A can only solve the q-wDPBDHE2 problem with negligible advantage, then he
can only break our MFDCO scheme in the security model defined in Sect. 3.3
with negligible advantage. The fact that no efficient algorithm can solve the q-
wDPBDHE2 problem with non-negligible advantage in polynomial time assures
the security of our MFDCO scheme. Next we show the high level idea of the
proof. The details of the proof is provided in the full version paper.

In our MFDCO scheme, the security and privacy of the stored data is pro-
tected by the chosen symmetric encryption scheme εsym, e.g., AES [10], with a
secret key key. The key key is encapsulated in hdr and can only be decapsulated
by authorized data consumers. Even if an attacker colludes with all unautho-
rized users and the CSP, and adaptively gets all keys except the target key, he
can get no useful information about the target data unless he can break the
well-designed symmetric encryption scheme.

We adopt a two-step “splitting” technique to realize fine-grained access con-
trol over the protected key with multi-authority and revocation functionality.
(1) “Splitting-1”: we split hidden parameters (i.e., part of secret key information)
into two parts: During the generation of authorities’ public keys, the elements
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in the first column of the secret sharing matrix are programmed into e(g, g)αi

component, while the remaining in gβi . During the generation of the challenge
ciphertext, the secret sharing vector λ (corresponding to e(g, g)αi) will hold the
secret z = saq+1 on the first position, and the zero sharing vector μ (correspond-
ing to gβi) will hold terms saq, saq−1, · · · , sa2 on all other positions except the
first one. (2) “Splitting-2”: we present the attribute credential (corresponding to
data consumers’ attribute set S) under the RW-13 key form and the credential
updating (corresponding to revocations on time T ) under the BB-04 key form.

When generating data consumers’ attribute credentials or credential updat-
ing, all terms in “splitting-1” procedure are “recombined” to give a full series
of q terms. Once an authorized data consumer gets his/her attribute credential
and credential updating, he/she can recover the key and decapsulate data.

In order to isolate the influence of corrupted authorities and achieve secu-
rity against active attacks, we reconstruct the challenge access policy by two
steps in the security reduction. First, we utilize the “Zero-Out” technique [20]
to substitute the secret sharing matrix M∗ with a new matrix M̂

∗
. It allows

a simulator to isolate an unauthorized set of rows and ignore it in the remain-
ing of the security proof. Then, utilizing verification term V , we introduce the
notion of “Virtual Attribute”, and use V ∗ (the verification term of the challenge
ciphertext) as an special virtual attribute to substitute matrix M̂

∗
with another

new matrix M̃
∗
. The access policy is transformed into the original policy OR

V ∗. As V /∈ [0, p−1
2 ], V is not a valid attribute in our MFDCO scheme, whereas

V is a valid attribute in the RW-13 CP-ABE scheme. A simulator can correctly
generate an attribute credential for the attribute set S = {V }. After these two
steps, from the view of A, the security game remains indistinguishable with the
origin one as if simulator used M∗.

5 Efficiency Analysis

Table 1 presents the complexity of each procedure in our MFDCO scheme. We
assume that an access credential acS is associated with attribute set S for κ =
|S|, and the access policy specified in encapsulation is (M, δ) with M ∈ Z

�×n
p . For

simplicity, each authority is responsible of one attribute. The maximal number
of attributes involved in attribute sets and access policies are P . The number of
attributes involved in the decapsulation procedure is denoted by |I| ≤ P . For
revocation procedure, we assume that R of N access credentials are revoked.

From Table 1, we conclude that our scheme is efficient, especially in real-time
encapsulation, where no multiplication, exponent or pairing operation in G and
GT is involved. The proposal provides better user experience for mobile devices.
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Table 1. Complexity of MFDCO. τe denotes the time to compute one exponentiation
in G or GT . τm denotes the time of one multiplication in G. τp denotes the time of
one pairing operation. P denotes the maximum number of rows in M. |I| denotes the
number of attributes involved in DataDec. � denotes the number of attributes involved
in access policy A. κ denotes the total number of attributes allowed in a instantiation.
R of N access credentials are revoked in CredUp.

Procedures Time cost

Setup τp + τe

AuthoritySetup τp + 2τe

DataEnc Preparation (9P + 5)τe + (3P + 2)τm + (P + 1)τp

Real-time none

EncFilt (2� + 3)τe + (2� + 3)τm + (2� + 2)τp

ACGen log N · [(7κ + 1)τe + 4κτm]

CredUp R log(N/R)(3κτe + 3κτm) if 1 < R ≤ N/2

(N − R)(3κτe + 3κτm) if N/2 < R ≤ N

DataDec 6|I|τe + (11|I| − 1)τm + 7|I|τp

6 Conclusion

We propose an efficient MFDCO scheme that offers a fast and secure cross-
domain public cloud outsourcing approach, especially appealing to mobile
devices, and achieve security against active attackers in the random oracle model.
The MFDCO supports fine-grained access control, dynamic credential revoca-
tion, public encapsulation validity test and junk encapsulation filtering, and
achieves decentralization and fast online encapsulation. As a future work, we will
consider implementing our MFDCO scheme in embedded platform to evaluate
its practicality, and further introduce the technique of certificateless encryption
and timed-release encryption [9] to see if it brings about exciting practical result.
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Abstract. Security protocols using public-key cryptography often
requires large number of costly modular exponentiations (MEs). With
the proliferation of resource-constrained (mobile) devices and advance-
ments in cloud computing, delegation of such expensive computations
to powerful server providers has gained lots of attention. In this paper,
we address the problem of verifiably secure delegation of MEs using
two servers, where at most one of which is assumed to be malicious (the
OMTUP-model). We first show verifiability issues of two recent schemes:
We show that a scheme from IndoCrypt 2016 does not offer full verifia-
bility, and that a scheme for n simultaneous MEs from AsiaCCS 2016
is verifiable only with a probability 0.5909 instead of the author’s claim
with a probability 0.9955 for n = 10. Then, we propose the first non-
interactive fully verifiable secure delegation scheme by hiding the modulus
via Chinese Remainder Theorem (CRT). Our scheme improves also the
computational efficiency of the previous schemes considerably. Hence,
we provide a lightweight delegation enabling weak clients to securely and
verifiably delegate MEs without any expensive local computation (nei-
ther online nor offline). The proposed scheme is highly useful for devices
having (a) only ultra-lightweight memory, and (b) limited computational
power (e.g. sensor nodes, RFID tags).

Keywords: Verifiable and secure delegation
Modular exponentiations · Cloud security · Applied cryptography
Lightweight cryptography

1 Introduction

Recent advances in mobile computing, internet of things (IoT), and cloud com-
puting makes delegating heavy computational tasks from computationally weak
units, devices, or components to a powerful third party servers (also programs
and applications) feasible and viable. This enables weak mobile clients with
c© Springer Nature Switzerland AG 2018
L. Chen et al. (Eds.): ISC 2018, LNCS 11060, pp. 250–267, 2018.
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limited memory and computational capabilities (e.g. sensor nodes, smart cards
and RFID tags) to be able to utilize several applications of these technologies,
which otherwise is difficult and often impossible because of underlying resource-
intensive operations and consumption of considerable amount of energy.
Unlike fully homomorphic encryption, secure delegation of expensive crypto-
graphic operations (like MEs modulo a prime number p) is the most practical
option along with its little computational costs and applications for critical secu-
rity applications. However, delegating MEs of the form ua mod p to untrusted
servers while ensuring the desired security and privacy properties is highly chal-
lenging; i.e. either u or a, or even both (in most privacy enhancing applications),
contain sensitive informations, thence required to be properly protected from
untrusted servers. Beside these challenges, ensuring the verifiability of the del-
egated computation is very important. As also pointed out in [8,11], failure in
the verification of a delegated computation has severe consequences especially if
the delegated MEs are the core parts of authentication or signature schemes.

Related Work. After the introduction of wallets with observers by Chaum
and Pedersen [4], Hohenberger and Lysyanskaya [7] provided the first secure del-
egation scheme for group exponentiations (GEs) with a verifiability probability
1/2 using two servers, where at most one of them is assumed to be malicious
(the OMTUP-model). They also gave the first formal simulation-based security
notions for the delegation of GEs in the presence of malicious powerful servers.
In ESORICS 2012, Chen et al. [5] improved both the verifiability probability (to
2/3) and the computational overhead of [7]. A secure delegation scheme for two
simultaneous GEs with a verifiability probability 1/2 is also introduced in [5].
In ESORICS 2014, for the first time Wang et al. [13] proposes a delegation
scheme for GEs using a single untrusted server with a verifiability probability
1/2. This scheme involves an online group exponentiation of a small exponent
by the delegator; the choice of such a small exponent is subsequently shown to be
insecure by Chevalier et al. [6] in ESORICS 2016. Furthermore, it is also shown
in [6] essentially that a secure non-interactive (i.e. single-round) delegation with
a single untrusted server requires at least an online computation of a GE even
without any verifiability if the modulus p is known to the server. Kiraz and
Uzunkol [8] introduce the first two-round secure delegation scheme for GEs using
a single untrusted server having an adjustable verifiability probability requiring
however a huge number of queries to the server. They also provide a delega-
tion scheme for n simultaneous GEs with an adjustable verifiability probability.
Cavallo et al. [2] propose subsequently another delegation scheme with a ver-
ifiability probability 1/2 again by using a single untrusted server under the
assumption that pairs of the form (u, ux) are granted at the precomputation for
variable base elements u. However, realizing this assumption is difficult (mostly
impossible) for resource-constrained devices. In AsiaCCS 2016, Ren et al.[11] pro-
posed the first fully verifiable (with a verifiability probability 1) secure delegation
scheme for GEs in the OMTUP-model at the expense of an additional round
of communication. They also provide a two-round secure delegation scheme for
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n ∈ Z
>1 simultaneous GEs which is claimed to have a verifiability probability

1 − 1
2n(n+1) .

Kuppusamy and Rangasamy use in INDOCRYPT 2016 [9] for the first time
the special ring structure of Zp with the aim of eliminating the second round
of communication and providing full verifiability simultaneously. They propose
a non-interactive efficient secure delegation scheme for MEs using Chinese
Remainder Theorem (CRT) in the OMTUP-model which is claimed to satisfy
full-verifiability under the intractability of the factorization problem. This app-
roach is also used very recently by Zhou et al. [14] together with disguising the
modulus p itself, also assuming the intractability of the factorization problem.
They proposed an efficient delegation scheme with an adjustable verifiability
probability using a single untrusted server. However, the scheme in [14] does not
achieve the desired security properties.

Our Contribution. This paper has the following major goals:

1. We analyze two delegation schemes recently proposed at INDOCRYPT 2016
[9] and at AsiaCCS 2016 [11]:
(a) We show that the scheme in [9] is unfortunately totally unverifiable, i.e.

a malicious server can always cheat the delegator without being noticed,
instead of the author’s claim of satisfying the full verifiability.

(b) We show that the scheme for n simultaneous MEs in [11] does not achieve
the claimed verifiability guarantees; instead of having the verifiability
probability 1− 1

2n(n+1) , it only has the verifiability probability at most 1−
n−1

2(n+1) . For instance, it offers a verifiability probability at most ≈ 0.5909
instead of the author’s claim in [11] offering a verifiability probability
≈ 0.9955 for n = 10.

2. We propose the first non-interactive fully verifiable secure delegation scheme
HideP for MEs in the OMTUP-model by disguising the prime number p via
CRT. HideP is not only computationally much more efficient than the pre-
vious schemes but requires also no interactive round, whence substantially
reduces the communication overhead. In particular, hiding p enables the dele-
gator to achieve both non-interactivity and full verifiability at the same time
efficiently.
Note that the delegator of MEs hides the prime modulus p from the servers,
and not from a party intended to be communicated (i.e. a weak device (dele-
gator) does not hide p with whom it wants to run a cryptographic protocol).
In other words, it solely hides p from the third-party servers to which the
computation of MEs is delegated.

3. We apply HideP to speed-up blinded Nyberg-Rueppel signature scheme [10].

We refer the readers to the full version of the paper [12] which provide a delegated
preprocessing technique Rand. It eliminates the large memory requirement and
reduces substantially the computational cost of the precomputation step. The
overall delegation mechanism (i.e. HideP together with Rand) offers a complete
solution for delegating the expensive MEs with full verifiability and security,
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whence distinguish our mechanism as a highly usable secure delegation primitive
for resource-constrained devices.

2 Preliminaries and Security Model

In this section, we first revisit the definitions and the basic notations related to
the delegation of MEs. We then give a formal security model by adapting the
previous security models of Hohenberger and Lysyanskaya [7] and Cavallo et al.
[2]. Lastly, an overview for the requirements of the delegation of a ME1 is given.

2.1 Preliminaries

We denote by Zm the quotient ring Z/mZ for a natural number m ∈ N with
m > 1. Similarly, Z∗

m denotes the multiplicative group of Zm.
Let σ be a global security parameter given in a unary representation (e.g.

1σ). Let further p and q be prime numbers with q | (p − 1) of lengths σ1 and σ2,
respectively. The values σ1 and σ2 are calculated at the setup of a cryptographic
protocol on the input of σ. Let G =< g > denote the multiplicative subgroup of
Z

∗
p of order q with a fixed generator g ∈ G.

The process of running a probabilistic algorithm A, which accepts x1, x2, . . .
as inputs, and produces an output y, is denoted by y ← A(x1, x2, . . .). Let
(zA, zB , tr) ← (A(x1, x2, . . .), B(y1, y2, . . .)) denote the process of running an
interactive protocol between an algorithm A and an algorithm B, where A
accepts x1, x2, . . ., and B accepts y1, y2, . . . as inputs (possibly together with
some random coins) to produce the final output zA and zB , respectively. We
use the expression tr to represent the sequence of messages exchanged by A and
B during protocol execution. By abuse of notation, the expression y ← x also
denotes assigning the value of x to a variable y.

Delegation Mechanism and Protocol Definition. We assume that a delega-
tion mechanism consists of two types of parties called as the client (or delegator)
C (trusted but resource-constrained part) and servers U (potentially untrusted
but powerful part), where U can consist of one or more parties. Hence, the sce-
nario raises if C is willing to delegate (or outsource) the computation of certain
functions to U . For a given σ, let F : Dom(F) → CoDom(F) be a function, where
F’s domain is denoted by Dom(F) and F’s co-domain is denoted by CoDom(F).
desc(F) denotes the description of F. We have two cases for desc(F):

1. desc(F) is known to both C and U , or
2. desc(F) is known to C, and another description desc(F′) is given to U such

that the function F can only be obtained from F′ if a trapdoor information τ
is given. By abuse of notation, we sometimes write τ(F) = F′.

1 In this paper, we introduce a special delegation scheme by working with a subgroup
G of the group Z

∗
p of prime order q.
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From now on, we concentrate on the second case since we propose a delegation
scheme in this scenario. A client-server protocol for the delegated computation
of F is defined as a multiparty communication protocol between C and U and
denoted by (C(1σ, desc(F), x, τ),U(1σ, desc(F′))), where the input x and the trap-
door τ are known only by C. A delegated computation of the value y = F(x),
denoted by

(yC , yS , tr) ← (C(1σ, desc(F), x, τ),U(1σ, desc(F′))),

which is an execution of the above client-server protocol using independently
chosen random bits for C and U . At the end of this execution, C learns yC = y,
U learns yU ; and tr is the sequence of messages exchanged by A and B. Note
that the execution may happen sequentially or concurrently. In the case of the
delegation of MEs, the aim is to always have yU = ∅.

Factorization Problem. We prove some security properties of the proposed
scheme later by using the intractability of the factorization problem2: Given
a composite integer n, where n is a product of two distinct primes p and q, the
factorization problem asks to compute p or q. The formal definition is as follows:

Definition 1. (Factorization Problem) Let σ be a security parameter given in
unary representation. Let further A be a probabilistic polynomial-time algorithm.
Let further the primes p and q, p �= q, are obtained by running a modulus gener-
ation algorithm PrimeGen on the input of σ with n = pq. Run A with the input
n. The adversary A wins the experiment if it outputs either p or q. We define
the advantage of A as

AdvFactA (σ) = Prob [x = p or x = q : (n, p, q) ← PrimeGen(1σ), x ← A(n)] .

2.2 Security Model

Hohenberger and Lysyanskaya provided first formal simulation-based security
notions for secure and verifiable delegation of cryptographic computations in
the presence of malicious powerful servers [7]. Different security assumptions for
delegation of MEs can be summarized according to [7] as follows:

– One-Untrusted Program (OUP): There exists a single malicious program U
performing the delegated MEs.

– One-Malicious version of a Two-Untrusted Program (OMTUP): There exist
two untrusted programs U1 and U2 performing the delegated MEs but only
one of them behaves maliciously.

– Two-Untrusted Program (TUP): There exist two untrusted programs U1 and
U2 performing the delegated MEs and both of them may simultaneously
behave maliciously, but they do not maliciously collude.

2 We assume here that the prime numbers p and q are chosen suitably that the fac-
torization of n = pq is intractable.
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Cavallo et al. [2] gave a formal definition for delegation schemes by relaxing
the security definitions first given in [7]. Although the simulation-based security
definitions [7] intuitively include (whatever can be efficiently computed about
secret values with the protocol’s view can also be efficiently computed without
this view [6]) the most direct way of guaranteeing the desired secrecy and verifi-
ability, its formalization is unfortunately highly complex and subtle. Therefore,
simpler indistinguishability-based security definitions have been recently used
both in [2] and in [6], which, in particular, include the fact that an untrusted
server is unable to distinguish which inputs the other parties use.
In this section, we adapt the security definitions of [2] for our security require-
ments to the OMTUP-model of [7], i.e. the adversary is modeled by a pair
of algorithms A = (E ,U ′), where E denotes the adversarial environment and
U ′ = (U ′

1,U ′
2) is a malicious adversarial software in place of U = (U1,U2), where

exactly one of (U ′
1,U ′

2) is assumed to be malicious. In the OMTUP-model we have
the fundamental assumption that after interacting with C, any communication
between E and U ′

1 or between E and U ′
2 pass solely through the delegator C [7].

Completeness. If the parties (C,U1 and U2) executing the scheme follow the
scheme specifications, then C′s output obtained at the end of the execution would
be equal to the output obtained by evaluating the function F on C. The following
is the formal definition for completeness:

Definition 2. For the security parameter σ, let (C,U1,U2) be a client-server
protocol for the delegated computation of a function F. We say that (C,U1,U2)
satisfies completeness if for any x in the domain of F, it holds that

Prob[(yC , yS , tr) ← (C(1σ, desc(F), x),Ui(1σ, desc(F′)) : yC = F(x)] = 1.

Verifiability. Verifiability means informally that if C follows the protocol, then
the malicious adversary A = (E ,U ′

i), i = 1 or i = 2, cannot convince C to obtain
some output y′ different from the actual output y at the end of the protocol. The
model let further the adversary choose C′s trapdoored input τ(F(x)) and take
part in exponential/polynomial number of protocol executions before it attempts
to convince C with incorrect output values (corresponding to the environmental
adversary E).

Definition 3. Let (C,U1,U2) be a client-server protocol for the delegated com-
putation of a function F and U ′ = (U ′

1,U ′
2) be a malicious adversarial software

in place of U = (U1,U2). We say that (C,U1,U2) satisfies (tv, εv)−verifiability
against a malicious adversary if for any A = (E ,U ′

i), either i = 1 or i = 2,
running in time tv, it holds that

Prob[out ← VerExpF′,A(1σ) : out = 1] ≤ εv,

for small εv, where experiment VerExp is defined as follows:

1. i = 1.
2. (a, τ(F(x1)), aux) ← A(1σ, desc(F′))
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3. While a �= attack do
(yi, (a, τ(F(xi+1)), aux), tri) ← (C(τ(F(xi))),A(aux))
i ← i + 1

4. τ(F(x)) ← A(aux)
5. (y′, aux, tri) ← (C(τ(F(x))),A(aux))
6. return: 1 if y′ �=⊥ and y′ �= F(x)
7. return: 0 if y′ =⊥ or y′ = F(x).

If εv is negligibly small for any algorithm A running in time tv, then (C,U1,U2)
is said to satisfy full verifiability.

Security. Security means informally that if C follows the protocol, then the mali-
cious adversaryA = (E ,U ′

i), i = 1 or i = 2, cannot obtain any information about
C′s input x. The model let further the adversary choose C′s trapdoored input
τ(F(x)) and take part in exponential/polynomial number of protocol executions
before it attempts to obtain useful information about C′s input (corresponding
to the environmental adversary E).

Definition 4. Let (C,U1,U2) be a client-server protocol for the delegated com-
putation of a function F and U ′ = (U ′

1,U ′
2) be a malicious adversarial software in

place of U = (U1,U2). We say that (C,U1,U2) satisfies (ts, εs)−security against
a malicious adversary if for any A = (E ,U ′

i), either i = 1 or i = 2, running in
time ts, it holds that

Prob[out ← SecExpF′,A(1σ) : out = 1] ≤ εs,

for negligibly small εs for any algorithm A running in time ts, where experiment
SecExp is defined as follows:

1. (a, τ(F(x1)), aux) ← A(1σ, desc(F′))
2. While a �= attack do

(yi, (a, τ(F(xi+1)), aux), ·) ← (C(τ(F(xi))),A(aux))
i ← i + 1

3. (τ(F(x0)), τ(F(x1)), aux) ← A(aux)
4. b ← 0, 1
5. (y′, b′, tr) ← (C(τ(F(xb))),A(aux))
6. return: 1 if b = b′

7. return: 0 if b �= b′.

Remark 1. We emphasize that the above security definition corresponds to the
OMTUP-model of [7]. As in [7], the adversary A corresponds to both E and U ′,
and can only interact each other over C after they once begin interacting with
C. The behavior of both parts (E and U ′) is modeled as a single adversary A by
letting the adversary A submit its own inputs to C and see/take part in multiple
executions of (C,U1,U2).

Efficiency Metrics. (C,U1,U2) has efficiency parameters

(tF, tmC , tC , tU1 , tU2 , cc,mc)
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where F can be computed using tF(σ) atomic operations, requires tmC (σ) atomic
storage for C, C computes tC(σ) atomic operations, Ui can be run using tUi

(σ)
atomic operations, C and Ui exchange a total of at most mc messages of total
length at most cc for i = 1, 2.3

2.3 Steps of a Delegation Scheme

Let p and q be distinct prime numbers. We now give four main steps of a dele-
gation of ua mod p under the OMTUP-model, where u ∈ G, a ∈ Z

∗
q and G is a

subgroup of Z∗
p of order q.

1. Precomputation: Invocation of the subroutine Rand: A preprocessing
subroutine Rand is required to randomize u and a and to generate the trap-
door information τ , see the paper’s full version for the details [12].

2. Randomizing a ∈ Z
∗
q and u ∈ G. The base u and the exponent a are both

randomized by C by performing only modular multiplications (MMs) in Z
∗
q

and G with the values from Rand using the trapdoor information τ .
3. Delegation to servers. The randomized elements are queried to the servers

U1 and U2 by using τ . For i = 1, 2, Ui(τ(α), τ(h)) denotes the delegation of
hα mod p with α ∈ Z

∗
q , h ∈ G using the trapdoor information τ in order to

disguise the parameters p, q, whence the concrete description of G.
4. Verification of the delegated computation. Upon receiving the outputs

of U1 and U2, the validity of the delegated computation is verified by compar-
ing the received data with some elements from Rand. If the verification fails,
an error message ⊥ is returned.

5. Derandomizing outputs and computing ua mod p. If the verification is
successful, then ua mod p is computed by C by performing only MMs.

3 Verifiability Issues in Two Recent Delegation Schemes

In this section, we show two verifiability issues for recently proposed delegation
schemes appeared in INDOCRYPT 2016 [9] and AsiaCCS 2016 [11].

3.1 An Attack on the Verifiability of Kuppusamy and Rangasamy’s
Scheme from INDOCRYPT 2016

Using CRT, Kuppusamy and Rangasamy proposed a highly efficient secure del-
egation scheme for MEs in subgroups of Z∗

p [9]. We now show that the scheme
is unfortunately totally unverifiable.

3 We here only consider the group operations like group multiplications, modular
reduction, inversions and exponentiations as atomic operations, and neglect any
lower-order operations such as congruence testing, equality testing, and modular
additions.
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Attack: Let the notation be as in [9]. Assume first that the server U1 is malicious
and U2 is honest. Since the prime p is public, U1 can compute r1r2 = n/p, and
return the bogus values

Y11 :≡ D11 + r1r2 mod n, and Y12 :≡ D12 + r1r2 mod n. (1)

Now, U1 can successfully distinguish D11 and D12 from D13 with probability 1
since the first component of D13 is an element of G whereas the first components
of D11 and D12 are elements of Zn. Afterwards, by the choices of the distinct
primes p, r1 and r2, and the properties Y12 ≡ D12 mod r2 and Y11 ≡ D11 mod r2,
U1 can pass the verification step with Y11 and Y12 instead of using D11 and D12,
respectively. This leads to the bogus final output

Y12 · D21 · D13

instead of the actual output ua = D12 · D13 · D22 given in [9].
Similarly, a malicious U2 can successfully distinguish D21 from D22 with prob-
ability 1 since the first component of D22 is an element of G whereas the first
component of D21 is an element of Zn. Then, U2 can act as the untrusted server
by computing

Y21 ≡ D21 + r1r2 mod r2. (2)

Afterwards, by the choices of the distinct primes p, r1 and r2 and the property
Y21 ≡ D21 mod r2, U2 can pass the verification step with the bogus value Y21.
This results in the output

D12 · Y21 · D13

instead of ua = D12 · D13 · D21 given in [9]. Hence, the scheme in [9] is unfortu-
nately totally unverifiable and the claim regarding full verifiability [9, Thm. 2,
pp. 90] does not hold.

3.2 An Attack on the Verifiability of Ren et al.’s Simultaneous
Delegation Scheme from AsiaCCS 2016

Ren et al. proposed the first fully verifiable two-round secure delegation scheme
for GEs together with a delegation scheme of n simultaneous MEs [11]. We now
show that the author’s claim [11, Thm. 4.2, pp. 298] does not hold.
Attack: Let the notation be as in [11]. Assume without loss of generality that

the server U2 is malicious and U1 is honest. Then, U2 chooses a random θ ∈ G

and sends the bogus value
T212 ≡ D212 · θ

instead of D212 after correctly distinguishing D212 from D211 with probability
at least 1/2. Then, C computes

Θ := θ(
n∏

j=1,i �=j

wj)c/t1 ≡ T212g
−c.
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In order to pass the verification step with Θ · T instead of T , U2 requires to find
an output T23j with T23j �∈ {D22,D23i}, i.e. T23j ≡ D23j mod n for some i �= j,
and sends θ · T23j instead of T23j . Now, since there are n(n + 1)/2 pairs from
the set

D := {D22,D231, · · · ,D23n}
we totally have n(n−1) possibilities for T23j corresponding to a single component
of such a pair. If (Θ1, Θ2) is a pair from the set D. Then,

1. there exists 2 values for T23j which can be detected by C corresponding to
the single pair with (Θ1, Θ2) ≡ (D22,D23i) mod p,

2. there exists n− 1 values of T23j which can be detected by C corresponding to
the pairs of the form (Θ1, Θ2) with T1 = Θ1 ≡ D22 and Θ2 �≡ D23i,

3. there exists n− 1 values of T23j which can be detected by C corresponding to
the pairs of the form (Θ1, Θ2) with T23j = Θ1 ≡ D23i and Θ2 �≡ D12.

Therefore, there exist

n(n + 1) − 2 − (n − 1) − (n − 1) = n(n + 1) − 2n = n(n − 1)

possible values for T23j with T23j �∈ {D22,D23i}. Combining with the probability
of correctly guessing the position of D232, the server U2 can cheat C with a
probability at least n(n−1)

2n(n+1) = n−1
2(n+1) . Hence, the scheme is verifiable with a

probability at most 1 − n−1
2(n+1) instead of the author’s claim that the scheme

would be verifiable with a probability 1 − 1
2n(n+1) . Thereby it also leads to a

bogus output θua1
1 · · · uan

n .
For example with n = 10 and n = 100, the scheme is verifiable only with
probabilities at most 13/22 ≈ 0.5909 and 103/202 ≈ 0.5099 instead of the claims
with probabilities 219/220 ≈ 0.9955 and 20199/20200 ≈ 0.9999, respectively.
Clearly, the verification probability becomes 1/2 if n tends to infinity.

4 HideP: A Secure Fully Verifiable One-Round Delegation
Scheme for Modular Exponentiations

In this section, we introduce our secure delegation scheme HideP in the OMTUP-
model.

Let G =< g > denote the multiplicative subgroup of Z
∗
p of prime order q

with a fixed generator g ∈ G. Our scheme HideP uses another prime r �= p of
length σ1 (e.g. p and r are of about the same size) such that G1 is a subgroup
of prime order q1 of length σ2 (e.g. q and q1 are of about the same size). We
set n := p · r and m := q1 · q. Note that HideP uses the prime number p as a
trapdoor information, i.e. p must be kept secret to both U1 and U2.

Throughout the section Ui(α, h) denotes that Ui takes (α, h) ∈ Z
∗
m × Z

∗
n as

inputs, and outputs hα mod n for i = 1, 2, as described in Sect. (2).
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4.1 HideP: A Secure Fully Verifiable One-Round Delegation Scheme

Our aim is to delegate ua mod p with a ∈ Z
∗
q and u ∈ G.

We now describe our scheme HideP. Public and private parameters of HideP are
given as follows:
Public parameter: n,

Private parameters: Prime numbers p, r, q, and q1, description of the subgroup

G of Z∗
p of order q, u ∈ G, a ∈ Z

∗
q ..

4

Additionally, the static values

Qr :≡ r · (r−1 mod p) mod n, Qp :≡ p · (p−1 mod r) mod n, (3)

Qq1 :≡ q1 · (q−1
1 mod q) mod m, Qq :≡ q · (q−1 mod q1) mod m, (4)

and
R :≡ g · Qr + g1 · Qp mod n (5)

are calculated at the initialization of HideP.

Precomputation. Using the existing preprocessing technique or a delegated
version Rand as described in [12]), C first outputs

(Gt ≡ gtQr mod n, Gγt ≡ gγtQr mod n, Hγt ≡ gγt
1 Qp mod n),

(Ht1 ≡ gt1
1 Qp mod n, Ht2 ≡ gt2

1 Qp mod n, gt
1 mod r),

and
(γ−1 mod m, T1 ≡ t1Qq mod m, T2 ≡ t2Qq mod m)

for random elements t1, t2, t ∈ Z
∗
m with t = t1 + t2.

Masking. The base u is randomized by C with

x1 ≡ u · Gt + Ht1 mod n, (6)

x2 ≡ uGt + Ht2 mod n, (7)

y ≡ Gγt + Hγt mod n. (8)

Note that by CRT we have

x1 ≡ x2 ≡ ugt mod p, y ≡ gγt mod p,

4 More precisely, hiding p enables the delegator to achieve the full verifiability in a sin-
gle round unlike the fully verifiable scheme in [11] which requires an additional round
of communication. The reason is that it is possible for C to send the randomized base
and the exponent by a system of simultaneous congruences, and recover/verify the
actual outputs by performing modular reductions (once modulo p for recovery, and
once modulo r for verification) in a single round. Note that for a given p each client
C is required to use the same prime number r since otherwise p can be found by
taking gcd’s of different moduli.
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and
x1 ≡ gt1

1 mod r, x2 ≡ gt2
1 mod r, y ≡ gγt

1 mod r.

Then, the exponent a is first written as the sum of two randomly chosen elements
a1, a2 ∈ Z

∗
m with a = a1 + a2. Then, the following randomizations are also

computed by C
α1 ≡ a1 · Qq1 + T1 mod m, (9)

α2 ≡ a2 · Qq1 + T2 mod m, (10)

α3 ≡ −a · γ−1 mod m. (11)

Query to U1. C sends the following queries in random order to U1:

1. U1(α1, x1) ←− X1 ≡ xα1
1 mod n,

2. U1(α3, y) ←− Y1 ≡ yα3 mod n.

Query to U2. Similarly, C sends the following queries in random order to U2:

1. U2(α2, x2) ←− X2 ≡ xα2
2 mod n,

2. U2(α3, y) ←− Y2 ≡ yα3 mod n.

Verifying the Correctness of the Outputs of {U1,U2}. Upon receiving the
queries X1 and Y1 from U1, and X2 and Y2 from U2, respectively, C verifies

(X1 mod r) · (X2 mod r)
?≡ gt

1 (12)

and
Y1

?≡ Y2 mod n. (13)

Recovering ua. If Congruences (12) and (13) hold simultaneously, then C
believes that the values X1, X2, Y1 and Y2 have been computed correctly. It
outputs

ua ≡ (X1 mod p) · (X2 mod p) · (Y1 mod p). (14)

If the verification step fails, then C outputs ⊥.

5 Security and Efficiency Analysis

In this section, we give the security analysis of HideP and give a detailed com-
parison with the previous schemes.

5.1 Security Analysis

Theorem 1. Let F ′ be given by the exponentiation modulo n = pr, where the
trapdoor information τ is given by the primes p and r, p �= r. Let further
(C,U1,U2) be a one-client, two-server, one-round delegation protocol implemen-
tation of HideP. Let the adversary be given as A = (U ′, E) in the OMTUP-model
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(i.e. U ′ = (U ′
1,U ′

2) and at most one of U ′
i is malicious with i = 1 or i = 2).

Then, in the OMTUP-model, the protocol (C,U1,U2) satisfies

1. completeness for HideP,
2. security for the exponent a and the exponentiation ua against any (computa-

tionally unrestricted) malicious adversary A, i.e. εs = 0, and security for the
base u with ts = poly(σ) and εs = AdvFactA′ (σ),

3. full verifiability for any malicious adversary A, where tv = poly(σ) and εv =
AdvFactA (σ), and verifiability for any computationally unrestricted malicious
adversary A with εv = 1/2 + ε, where ε is negligibly small in σ,

4. efficiency with parameters where (tF, tmC , tC , tU1 , tU2 , cc,mc), where
– F can be computed by performing tF = 1 exponentiation modulo p
– C′s memory requirement is tmC consists of 1 output of the Rand scheme,
– C can be run by expending tC atomic operations consisting of 7 modu-

lar multiplications and 5 modular reductions (2 multiplications modulo p,
1 multiplication modulo r, 3 multiplications modulo m, 1 multiplication
modulo n, 2 reductions modulo r, and 3 reductions modulo p),

– Ui, i = 1, 2 computes tUi
= 2 exponentiations modulo n for each i = 1, 2,

– C and Ui exchange a total of at most mc = 4 messages of total length cc
consisting of 2 elements modulo m and 2 elements modulo n for i = 1, 2.

Proof. We first note that the efficiency results can easily be verified by inspecting
the description of HideP for the efficiency parameters given above. Throughout
the rest of the proof we assume without loss of generality that U1 is a malicious
server, i.e. adversary is given as A = (U1, E).

Completeness. We first prove the completeness of the verification step. Since
the same base y and the exponent α3 are delegated to both U1 and U2, the
congruence Y1 ≡ Y2 ≡ yα3 holds by the OMTUP assumption. Furthermore, by
the choice of T1 ≡ t1Qq, T2 ≡ t2Qq, we have the congruences

a1Qq1 + T1 ≡ t1 mod q1, a2Qq1 + T2 ≡ t2 mod q1.

Then, together with the equality t = t1 + t2 the following congruence holds:

(X1 mod r) · (X2 mod r) ≡ (xα1
1 mod r) · (xα2

2 mod r)

≡ gt1
1 · gt2

1 mod r

≡ gt1+t2
1 mod r

≡ gt
1 mod r.

Hence, the result follows for the verification step. Then, the result follows by the
congruences

a1Qq1 + T1 ≡ a1 mod q, a2Qq1 + T2 ≡ a2 mod q,
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the equality a = a1 + a2 and Lagrange’s theorem

(X1 · X2 mod p) · (Y1 mod r) ≡ (xα1
1 · xα2

2 mod p) · (yα3 mod p)

≡ (ugt)a1 · (ugt)a2 · g−atγγ−1
mod p

≡ (ugt)a1+a2 · g−at mod p

≡ (ugt)a · g−at mod p

≡ ua · gat · g−at mod p

≡ ua · gat−at mod p

≡ ua mod p.

Security. We argue that HideP satisfies security under the OMTUP-model due
to the following observations:

1. On a single execution of (C,U1,U2) the input (α, x) in the query sent by C to
the adversary A = (U1, E) does not leak any information about u, a and ua.
The reason is that

– u is randomized by multiplying with gt which is random. Hence, the
adversary A cannot obtain any useful information about u even if the
factors p, r of n are known,

– a is randomized by a1 and a2 and aγ. Hence A cannot obtain any useful
information about a by obtaining a1 through x1 and aγ mod p even if it
knows the factors p, r and q, q1 of n and m, respectively.

– To obtain useful information about ua, A requires to know x2 which is
random and not known by the OMTUP assumption.

2. Even if the adversary A sees multiple executions of (C,U1,U2) wherein the
inputs of C are adversarially chosen, A cannot obtain any useful information
about the exponent a chosen by C, and the desired exponentiation ua in a new
execution since logical divisions of a = a1+a2 at each execution involve freshly
generated random elements. This implies that εs = 0 for the exponent a and
the output ua mod p. Assume that A can break the secrecy of the base u with
a non-negligible probability. In particular, it can obtain useful information
about both elements u · GT and ugt with a non-negligible probability, where
GT ≡ gt mod p for some t. Then, A can obtain gcd((uGT − ugt), n). This
gives the factors p and r of n with a non-negligible probability as u · GT ≡
ugt mod p holds. This implies that ts = poly(σ) and εs is at most AdvFactA (σ),
i.e. (C,U1,U2) is a secure implementation of HideP if the factorization problem
is intractable .

In particular, these arguments show that (C,U1,U2) provides unconditional secu-
rity for the exponent a and the output ua against any (computationally unre-
stricted) adversary and security for the base u against any polynomially bounded
adversary.
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Verifiability. Since Y1 and Y2 both have the same base and exponent elements,
U1 cannot cheat the delegator C by manipulating Y1 by the OMTUP assump-
tion. This means that U1 can only pass the verification step by manipulating the
output X1. Hence, the result εp = 1/2+ε (where ε is negligibly small in the secu-
rity parameter σ) holds for any adversary U1 since U1 needs to know the correct
position of x1 which has at most 1/2. We now show that if there exists an adver-
sary A that breaks the verifiability property with a non-negligible probability,
then A can be used to effectively solve the factorization problem. Assume now
that U1 as a malicious server passes the verification step with a bogus output
Z1 (instead of X1 = xα1

1 ) with a non-negligible probability. Then, the following
congruence must hold for any arbitrary output X2 of the honest server U2

Z1X2 ≡ X1.X2 ≡ gt
1 mod r (15)

with a non-negligible probability. This implies that U1 can decide whether the
congruence Z1 ≡ X1 mod r holds with a non-negligible probability. We note that
Z1 �≡ 0 mod r as otherwise Congruence 15 cannot hold with gt

1 �≡ 0 mod r. This
implies that Z1 − X1 ≡ 0 mod r and that Z1 �≡ 0 mod r. From the inequality
Z1−X1 < n (when the representatives are considered as integers), it follows that
U1 can compute gcd(Z1−X1, n) = r with a non-negligible probability. Hence, U1

can obtain information about both the factors p and r of n with a non-negligible
probability. This implies that tv = poly(σ) and εv is at most AdvFactA (σ). ��

Table 1. Comparison of computational and communication costs for C.

Secret p # MMs # Servers # Rounds # Queries Verifiability

[7] TC’05 no 509 2 1 8 1/2

[5] ESORICS’12 no 307 2 1 6 2/3

[13] ESORICS’14 (χ = 264) no 508 1 1 4 1/2

[8] IJIS’16 (c = 4) no 200 1 2 60 9/10

[11] AsiaCCS’16 no 512 2 2 6 1

[9] INDOCRYPT’16 no 27 2 1 5 0

[14] IEEE’17 (b = 16) yes 69 1 1 4 31/32

HideP yes 24 2 1 4 1

5.2 Comparison

We now compare HideP with the previous delegation schemes for MEs. We
denote by MM a modular multiplication, MI a modular inversion, and MR a
modular reduction. Throughout the comparison we make the following assump-
tions:

– we regard 1 MM modulo n as ≈ 4 MMs modulo p,
– 1 MM modulo p and 1 MM modulo r cost approximately the same amount

of computation,
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Fig. 1. CPU time: HideP vs. Computation

Table 2. CPU cost: HideP vs. Computation

p-size CPU cost for ua mod p

Delegation
cost(ms)

Computing
cost(ms)

Gain
factor

512-bit 390 843 ≈ 2.16

1024-bit 421 1216 ≈ 2.89

2048-bit 452 3697 ≈ 8.18

3072-bit 515 9684 ≈ 18.80

Experiments were conducted on a laptop with an
Intel Core i5 2.6 GHz processor and 4 GB RAM.
Results presented were taken out of 1000 itera-
tions. The comparison is between the CPU time
for HideP’s 24 MMs and local computation of a
ME

– 1 MI is at worst 100 times slower than 1 MM (see [8]),
– we regard 1 MR costs approximately 1 MM (e.g. by means of Barret’s or

Mongomery’s modular reduction techniques).

We give the delegator’s computational workload in Table 1 by considering the
approximate number of MMs modulo p. In particular, Table 1 compares compu-
tational cost and communication overhead of HideP with the previous schemes.
It shows that HideP has not only the best computational cost but requires also
only a single round with 4 queries (instead of 2 rounds and 6 queries when
compared with the only scheme in the literature satisfying full verifiability [11])
(Table 1).
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6 Application: Verifiably Delegated Blind Signatures

Blind signatures were introduced by Chaum [3] and allow a user to obtain the
signature of another user in such a way that the signer do not see the actual
message to be signed and the user without having knowledge of the signing
key is able to get the message signed with that key. Blind signatures are useful
in privacy preserving protocols. For example, in e-cash scenario, a bank needs
to sign blindly the coins withdrawn by its users. Normally, in blind signature
protocols, both the signer and the verifier have to compute MEs using private
and public keys, respectively. As an example, delegation of MMs in blinded
Nyberg-Rueppel signature scheme [1,10] using HideP is depicted in Fig. 2. It
is also evidenced from Fig. 1 that the time taken by HideP is much smaller
than that of directly computing ua mod p, and this gain in CPU time increases
rapidly with the size of the modulus. Hence, HideP becomes more attractive for
resource-constrained scenario such as mobile environment when we go for higher
security levels.

Cloud Servers

Signer(gx) Verifier

r = mgaRb (p)

m′ = rb−1 (q)

c = m′x + k (q) σ = cb + a (q)

R=gk←HideP(.)

1

ga&Rb←HideP(.)

3

R

2

m′
4

c

5

Fig. 2. Delegating blinded Nyberg-Rueppel signature

7 Conclusion

In this work, we addressed the problem of secure and verifiable delegation of
MEs. We observed that two recent schemes [9,11] do not satisfy the claimed ver-
ifiability probabilities. We presented an efficient non-interactive fully verifiable
secure delegation scheme HideP in the OMTUP-model by disguising the modulus
p using CRT. In particular, HideP is the first non-interactive fully verifiable and
the most efficient delegation scheme for modular exponentiations leveraging the
properties of Zp via CRT. As future works, proposing an efficient fully verifiable
delegation scheme without any requirement of online or offline computation of
MEs by the delegator (or its impossibility) under the TUP/OUP assumptions
could be highly interesting.

Acknowledgement. We thank the anonymous reviewers for their helpful comments
on the previous version of the paper which led to improvements in the presentation of
the paper.



Hide the Modulus: A Secure Non-Interactive 267

References

1. Asghar, N.: A survey on blind digital signatures. Technical report (2011)
2. Cavallo, B., Di Crescenzo, G., Kahrobaei, D., Shpilrain, V.: Efficient and secure

delegation of group exponentiation to a single server. In: Mangard, S., Schaumont,
P. (eds.) RFIDSec 2015. LNCS, vol. 9440, pp. 156–173. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24837-0 10

3. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston,
MA (1983). https://doi.org/10.1007/978-1-4757-0602-4 18

4. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

5. Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New algorithms for secure out-
sourcing of modular exponentiations. In: Foresti, S., Yung, M., Martinelli, F.
(eds.) ESORICS 2012. LNCS, vol. 7459, pp. 541–556. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33167-1 31

6. Chevalier, C., Laguillaumie, F., Vergnaud, D.: Privately outsourcing exponentia-
tion to a single server: cryptanalysis and optimal constructions. In: Askoxylakis, I.,
Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp.
261–278. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45744-4 13

7. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 15

8. Kiraz, M.S., Uzunkol, O.: Efficient and verifiable algorithms for secure outsourcing
of cryptographic computations. Int. J. Inf. Sec. 15(5), 519–537 (2016). https://doi.
org/10.1007/s10207-015-0308-7

9. Kuppusamy, L., Rangasamy, J.: CRT-based outsourcing algorithms for modular
exponentiations. In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016.
LNCS, vol. 10095, pp. 81–98. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49890-4 5

10. Nyberg, K., Rueppel, R.A.: Message recovery for signature schemes based on
the discrete logarithm problem. In: De Santis, A. (ed.) EUROCRYPT 1994.
LNCS, vol. 950, pp. 182–193. Springer, Heidelberg (1995). https://doi.org/10.1007/
BFb0053434

11. Ren, Y., Ding, N., Zhang, X., Lu, H., Gu, D.: Verifiable outsourcing algorithms
for modular exponentiations with improved checkability. In: AsiaCCS 2016, pp.
293–303. ACM, New York (2016). https://doi.org/10.1145/2897845.2897881

12. Uzunkol, O., Rangasamy, J., Kuppusamy, L.: Hide The Modulus: a secure non-
interactive fully verifiable delegation scheme for modular exponentiations via CRT
(full version). IACR Cryptology ePrint Archive, Report 2018 (2018). https://
eprint.iacr.org/2018/644

13. Wang, Y., Wu, Q., Wong, D.S., Qin, B., Chow, S.S.M., Liu, Z., Tan, X.: Securely
outsourcing exponentiations with single untrusted program for cloud storage. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 326–343.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9 19

14. Zhou, K., Afifi, M.H., Ren, J.: ExpSOS: secure and verifiable outsourcing of expo-
nentiation operations for mobile cloud computing. IEEE Trans. Inf. Forensics Sec.
12(11), 2518–2531 (2017). https://doi.org/10.1109/TIFS.2017.2710941

https://doi.org/10.1007/978-3-319-24837-0_10
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-642-33167-1_31
https://doi.org/10.1007/978-3-319-45744-4_13
https://doi.org/10.1007/978-3-540-30576-7_15
https://doi.org/10.1007/s10207-015-0308-7
https://doi.org/10.1007/s10207-015-0308-7
https://doi.org/10.1007/978-3-319-49890-4_5
https://doi.org/10.1007/978-3-319-49890-4_5
https://doi.org/10.1007/BFb0053434
https://doi.org/10.1007/BFb0053434
https://doi.org/10.1145/2897845.2897881
https://eprint.iacr.org/2018/644
https://eprint.iacr.org/2018/644
https://doi.org/10.1007/978-3-319-11203-9_19
https://doi.org/10.1109/TIFS.2017.2710941


Offline Assisted Group Key Exchange

Colin Boyd, Gareth T. Davies, Kristian Gjøsteen, and Yao Jiang(B)

NTNU, Norwegian University of Science and Technology, Trondheim, Norway
{colin.boyd,gareth.davies,kristian.gjosteen,yao.jiang}@ntnu.no

Abstract. We design a group key exchange protocol with forward
secrecy where most of the participants remain offline until they wish
to compute the key. This is well suited to a cloud storage environment
where users are often offline, but have online access to the server which
can assist in key exchange. We define and instantiate a new primitive, a
blinded KEM, which we show can be used in a natural way as part of
our generic protocol construction. Our new protocol has a security proof
based on a well-known model for group key exchange. Our protocol is
efficient, requiring Diffie–Hellman with a handful of standard public key
operations per user in our concrete instantiation.

Keywords: Authenticated key exchange
Group key exchange · Forward secrecy · Cloud storage

1 Introduction

We consider the following collaboration scenario. Isabel would like to use a cloud
storage provider to share some files with her collaborators Robin and Rolf. While
Isabel and her collaborators have some level of trust in the cloud storage provider,
they do not want the provider to be able to see the contents of their files. In
other words, Isabel needs to share some secret key material with Robin and Rolf.
This paper addresses the problem of sharing this secret key material.

There are a number of possible solutions. The simplest is for Isabel to encrypt
the key material using public key encryption and send the ciphertexts to Robin
and Rolf, who can then decrypt. However, this solution does not provide forward
secrecy. If either Robin or Rolf’s decryption keys are compromised at any point
in the future, the confidentiality of the key material is also compromised.

Group key exchange (GKE) can give us forward secrecy. However, Isabel and
her collaborators will not be online all the time, and the time spent offline is
non-trivial. If Isabel and her collaborators want to use a traditional GKE, then
Isabel cannot share her files until every collaborator has been online. Likewise,
the individual collaborators cannot look at the shared files until every other
collaborator has been online. This is impractical, and no system that has inter-
actions between the initiator and the responders can be practical in this setting.

In this paper, we propose a GKE protocol that provides forward secrecy
and is non-interactive with respect to the sharing parties, hence suitable for our
c© Springer Nature Switzerland AG 2018
L. Chen et al. (Eds.): ISC 2018, LNCS 11060, pp. 268–285, 2018.
https://doi.org/10.1007/978-3-319-99136-8_15
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collaboration scenario: Isabel comes online, runs her part of the GKE protocol,
receives the key material and shares the files. As the individual collaborators
come online, they run their part of the GKE protocol, receive the key material
and get access to the shared files.

1.1 Secure Sharing and Forward Secrecy

The users in our collaboration scenario will be content to trust their cloud storage
provider (CSP) to make their data available. Some users will be content to
trust their CSP to use simple access control to prevent unauthorized access
or modification. However, for many users such a convenient trust assumption
regarding confidentiality or integrity is either unreasonable, legally impossible
or otherwise undesirable. For this reason, many CSPs support (in addition to
access control) the obvious solution of user-side encryption of data, where the
CSP does not know the key material used for encryption and decryption1.

The use of encryption means that groups of users must establish shared key
material in order to share data. This suggests group key exchange. However,
group key exchange protocols are usually interactive, while in our collaboration
scenario, Isabel’s collaborators may not all be online at the same time, so com-
pleting the group key exchange would take too long, and until the key material
was agreed upon, no work could be done.

We therefore desire non-interactive solutions that allow the initiator to com-
plete their actions before any recipients come online, and do not require any
interaction between the recipients. This rules out traditional group key exchange
protocols [2,3,6,14,19].

The natural non-interactive solution is to use public key encryption (or per-
haps other similar primitives, such as broadcast encryption). However, in the
outsourced storage scenario, forward secrecy – compromise of long-term keys
does not compromise previously completed sessions – is important. Forward
secrecy is typically achieved through the use of interaction with Diffie–Hellman
or other ephemeral keys. Using ephemeral keys for confidentiality and long-term
keys only for authentication ensures that later release of long-term secrets does
not reveal the session key.

Forward secrecy presents an inherent conflict with our requirement to have a
non-interactive solution. Indeed, a simple generic argument implies that forward
secrecy without interaction is impossible: without interaction the recipient can-
not provide an ephemeral input and therefore the recipient’s long-term key alone
must be sufficient to recover the session key. Recent proposals have attempted
to work around this argument in different ways. The first line of work, includ-
ing the X3DH [24] and ART [9] protocols, insists that recipients upload some
pre-keys to the CSP at some point before the initiator begins their activity.
These pre-keys are then used as if they were ephemeral, however if one recipient
never comes online then they could sit on the server indefinitely: this is a re-
definition of ephemeral and long-term keys, as used by standard key exchange

1 This practice is confusingly often called zero knowledge in commercial circles.
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Fig. 1. Comparison of secure sharing protocols. a Re-defined ‘ephemeral keys’; b Re-
defined ‘long-term keys’; c If the server honestly deletes all ephemeral data; d Users
must upload pre-keys.

security models. Another approach, taken by Green and Miers [15] and further
developed by Günther et al. [17] and Derler et al. [13], concerns so-called zero-
round-trip-time (0RTT) key exchange. In this model, the long-term decryption
key is updated (punctured) once the recipient comes online, in such a way that
the crucial ciphertexts can no longer be decrypted by that (long-term) key. Thus
the long-term key is no longer static but evolves over time. Forward secrecy with
puncturable encryption relies crucially on the assumption that the protocol (sin-
gle) message arrives at the receiver. Until that happens the receiver private key
is not updated and so the encrypted data is vulnerable to receiver compromise.
In addition we note that these works rely on less efficient cryptographic primi-
tives and require increased storage and secure deletion properties at the receiver.
Figure 1 summarizes selected existing literature on file-sharing protocols.

1.2 Contributions

In this paper, we run into two major obstacles. We need a group key exchange
protocol that is non-interactive with respect to the initiator and the responders,
and that at the same time provides forward secrecy.

We overcome these obstacles by noting that the cloud server is online at all
times, and use ephemeral values provided by the cloud server to give us forward
secrecy. This allows us to achieve the best possible level of forward secrecy in our
collaboration scenario, without trusting the cloud server. Our protocol is simple
and relies only on standard assumptions.

We regard the following as the main contributions of this paper.

– We propose a novel practical group key exchange protocol suitable for use in
cloud storage. Our protocol is described in Sect. 5.

– We include a formal security analysis of our protocol in a strong security
model with trust assumptions suited to the cloud scenario. The proof is in a
security model which is detailed in Sect. 3.

– We introduce definitions and constructions for a new cryptographic primitive,
blinded KEMs, which may find other applications. We describe this primitive
and provide two secure constructions in Sect. 4.
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2 Preliminaries

For a set S, denote x
$←− S to mean choosing x uniformly at random from S. We

write return b′ ?= b as shorthand for if b′ = b then return 1; else return 0,
with an output of 1 indicating successful adversarial behavior.

2.1 Public-Key Encryption

A public-key encryption scheme PKE = (KGpke,Enc,Dec) with message space
M is defined as follows. KGpke takes as input some security parameter(s), if
any, and outputs a public encryption key pk and a secret decryption key sk .
Enc takes a message m and produces a ciphertext c using pk : c ← Encpk (m).
Dec decrypts a ciphertext c using sk to recover m or in the case of failure a
symbol ⊥: m/⊥ ← Decsk (c). Correctness requires that m ← Decsk (Encpk (m))
for all m∈ M.

We denote the usual advantage of an adaptive chosen ciphertext adver-
sary A against real-or-random security for the public-key encryption scheme
by Advror-cca2

PKE (A). In our protocol’s security proof, it is actually convenient to
use a generalization of this notion, which we discuss in the full version [4].

2.2 Digital Signatures

A signature scheme DS = (KGsig,Sign,Verify) with message space M is defined
as follows. KGsig takes as input some security parameter(s), if any, and outputs
a signing key sk and a public verification key vk . Sign creates a signature σ on
a message m: σ ← Signsk (m). Verify verifies that the signature on the message
is in fact valid: 0/1 ← Verifyvk (m,σ), with 1 indicating successful verification.
Correctness requires that Verifyvk (m,Signsk (m)) = 1 for all m ∈ M.

Definition 1. Let DS = (KGsig,Sign,Verify) be a signature scheme. Then the
suf-cma advantage of an adversary A against DS is defined as

Advsuf-cma
DS (A) = Pr[Expsuf-cma

DS (A) = 1].

where the experiment Expsuf-cma
DS (A) is given in Fig. 2.

Expsuf-cma
DS (A) :

SLIST ← ∅
sk , vk ← KGsig

(m, σ) ← AO.Sign(vk)
if Verifyvk (m, σ) and (m, σ) /∈ SLIST

return 1
else

return 0

O.Sign(m) :
if m M∈� then

return ⊥
σ ← Signsk (m)
SLIST ← SLIST ∪ (m, σ)
return σ

Fig. 2. The experiment defining suf-cma security for signature schemes.
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Note that in the existential unforgeability under chosen message attack (euf-cma)
game the list SLIST only keeps track of the messages queried by the adversary
during the Sign queries phase, so A is not allowed to output (m,σ2) if she sent
m to O.Sign and received σ1.

2.3 Hardness Assumptions

Definition 2. Fix a cyclic group G of prime order q with generator g. The
advantage of an algorithm A solving the Decision Diffie-Hellman (DDH) problem
for G and g is

AdvDDH
G

(A) = 2
∣
∣
∣Pr[ExpDDH

G
(A) = 1] − 1

2

∣
∣
∣

where the experiment ExpDDH
G

(A) is given in Fig. 3.

ExpDDH
G

(A) :

b
$←− {0, 1}

x, y, z
$←− Zq

if b = 1
c ← gxy

else
c ← gz

b′ ← A(gx, gy, c)
return b′ ?= b

Fig. 3. DDH experiment.

ExpCR
F (A) :

f
$←− F

x, y ← A(f)
if x �= y ∧ f(x) = f(y) then

return 1
else

return 0

Fig. 4. Collision resistance experiment.

Definition 3. Let F be a family of functions. The collision resistance advantage
of an adversary A running in time t is

AdvCR
F (A) =

∣
∣ Pr[ExpCR

F (A) = 1]
∣
∣

where the experiment ExpCR
F (A) is given in Fig. 4.

Note that in an abuse of notation, we sometimes write AdvCR
f (A), with the

understanding that the function family F exists and that the choice of a function
f is done at some point.

3 GKE Protocol Model

The model described in this section is based on previous models for group key
exchange such as those of Katz and Yung [19] and Bresson and Manulis [5]. This
includes game-based security definitions.
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3.1 Communication Model

A GKE protocol P is a collection of probabilistic algorithms that determines
how oracles of the principals behave in response to signals (messages) from their
environment.

Protocol Participants and Long-Lived Keys. Each principal V in the protocol is
either a user U or a server S. In every session, each user may act as either an
initiator I or a responder R. Each principal V holds long-term secret keys, and
corresponding public keys of all principals are known to all.

Session Identifiers and Partner Identifiers. Protocol principals maintain mul-
tiple instances, or sessions, that may be run simultaneously and we denote a
session of principal V by the oracle

∏α
V with α ∈ N.

Each oracle
∏α

V is associated with the variables statusαV, roleα
V, pidα

V, sidα
V, kα

V

as follows:

– statusαV takes a value from {unused , ready , accepted , rejected}.
– roleα

V takes a value from: S, I, R.
– pidα

V contains a set of principals.
– sidα

V contains a string defined by the protocol.
– kα

V the agreed session key (if any).

A session identifier, denoted sid , is a protocol-defined value stored at a prin-
cipal intended to provide a link to other sessions in the same protocol run. A set
of partner identifiers, denoted pid , contains the identities of all intended users
in a session.

Each oracle
∏α

V is unused until initialization, by which it is told to act as a
server or a user together with the long term secret keys. During initialization all
oracles begin with statusαV = ready and roleα

V, pidα
V, sidα

V and kα
V all equal to ⊥.

Executing the Protocol. After the protocol starts, each oracle
∏α

V learns its part-
ner identifier pidα

V and sends, receives and processes messages.
If the protocol at oracle

∏α
V fails, for example if signature verification or key

confirmation fails, then the oracle changes its state to rejected and no longer
responds to protocol messages. Otherwise, if V is a user, after computing kα

V

oracle
∏α

V changes its state to accepted and no longer responds to protocol
messages, and if V is the server, oracle

∏α
V accepts after all responder oracles

get their messages or expiration.

3.2 Security Notions

Adversarial Model. An efficient adversary A interacts with sessions by using the
set of queries defined below. This models the ability of A to completely control
the network, deciding which instances run and obtaining access to other useful
information. The Test query can only be asked once by A and is only used to
measure adversary’s success; it does not correspond to any actual adversary’s
ability.
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– Execute(S): Input a set of unused oracles S which execute an honest run of
the protocol. The oracles compute what the protocol specifies and returns the
output messages.

– Send(
∏α

V,m): Sends message m to oracle
∏α

V. The oracle computes what the
protocol defines, and sends back the output message (if any), together with
the status of

∏α
V.

– Corrupt(V): Outputs principal V’s long-term secret key.
– Reveal(

∏α
V): Outputs session key kα

V if oracle
∏α

V has accepted and holds some
session key kα

V .
– Test(

∏α
V): If oracle

∏α
V has status accepted , holding a session key kα

V , then a
bit b is randomly chosen and this query outputs the session key kα

V if b = 1,
or a random string from the session key space if b = 0.

Partnering. A secure GKE protocol should ensure that the session key estab-
lished in an oracle

∏α
V is independent of session keys established in other ses-

sions, except for the partners of
∏α

V. This is modeled by allowing the adversary
to reveal any session key except the one in the Test session and its partners.
Informally, partnering is defined in such a way that oracles who are supposed to
agree on the shared session key are partners.

Definition 4. Two oracles
∏α

V and
∏β

W are partners if pidα
V = pidβ

W and sidα
V =

sidβ
W.

Freshness. The notion of freshness models the conditions on the adversary’s
behaviour that are required to prevent trivial wins.

Definition 5. An oracle
∏α

V is fresh if neither this oracle nor any of its part-
nered oracles have been asked a Reveal query, and either

– no server player nor any player in pidα
V was corrupted before every partnered

oracle reached status accepted; or
– no player in pidα

V is ever corrupted.

Security Game. Bringing together everything we have introduced so far, we can
describe the game that allows us to measure the advantage of an adversary
against a GKE protocol.

Definition 6. Let P be a GKE protocol. The game Expake
P (A) consists of the

following three phases:

– Initialization. Each principal V runs the key generation algorithm to generate
long-term key pairs. The secret keys are only known to the principal, while
public keys are revealed to every principal and the adversary.

– Queries. The adversary A is allowed to make Execute, Send, Reveal, Corrupt,
and Test queries. During this phase, A is only allowed to ask only one Test
query to a fresh oracle, which should remain fresh until the end of this phase.

– Guessing. A outputs its guess b′.
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The output of the game is 1 if b = b′, otherwise 0.
The advantage of the adversary A against the ake-security of P is

Advake
P (A) = 2

∣
∣
∣Pr[Expake

P (A) = 1] − 1/2
∣
∣
∣ .

4 Blinded KEM

The concept of using public-key encryption to transport keys for use in symmet-
ric encryption is by now well studied [1,10–12,18,20]. This primitive is known
as a key encapsulation mechanism (KEM) and is used in conjunction with a
data encapsulation mechanism (DEM) that models some symmetric encryption
scheme. This KEM-DEM framework is widely deployed in internet protocols,
however – as we mentioned earlier – it does not provide any forward secrecy.
The cloud scenario allows the initiator to store the encapsulated key and the
DEM ciphertext in some repository for the recipient to later retreive, but we
ask: can the (untrusted) cloud give us some notion of forward secrecy of the key
that the initator wishes to transport?

It is well known how to turn a KEM into a key exchange protocol. We shall
introduce a new primitive, which we call blinded KEM, and in the next section
we will explain how to turn such a primitive into a group key exchange protocol
suitable for our purposes.

Compared to a traditional KEM, a blinded KEM has two additional algo-
rithms: a blinding algorithm takes some encapsulation2 and adds a blinding
value, and an unblinding algorithm (that requires an unblinding key created by
the blinding algorithm) removes this blinding value from the blinded key. Note
that this construction does not generalize existing KEMs since our decapsulation
procedure works on blinded encapsulations rather than encapsulations.

The point of this new idealized primitive is to allow parties to safely out-
source decapsulation by creating a blinded encapsulation, having someone else
decapsulate and then unblinding the result. With careful key management, this
idea will give us forward secrecy in our cloud scenario. We will develop this idea
into a group key exchange protocol in the next section.

The concept of blinding is best known in the context of blind signatures, but
have been used extensively in many areas of cryptography. It has also been used
in the context of blind decryption [16,25], and some of the schemes are quite
similar to our constructions, even though they have very different applications
in mind and also different security requirements.

After providing a definition of this primitive’s algorithms, we give two natural
constructions (based on DH and RSA).

Definition 7. A blinded key encapsulation mechanism (blinded KEM) BKEM
consists of five algorithms (KGBKEM,Encap,Blind,Decap,Unblind). The key gen-
eration algorithm KGBKEM outputs an encapsulation key ek and a decapsulation
2 We abuse nomenclature throughout the rest of the paper and use ‘encapsulation’ to

refer to a key encapsulation that is yet to be blinded.
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key dk. The encapsulation algorithm Encap takes as input an encapsulation key
and outputs an encapsulation C and a key k ∈ G. The blinding algorithm takes
as input an encapsulation key and an encapsulation and outputs a blinded encap-
sulation C̃ and an unblinding key uk. The decapsulation algorithm Decap takes a
decapsulation key and a (blinded) encapsulation as input and outputs a (blinded)
key k̃. The unblinding algorithm takes as input an unblinding key and a blinded
key and outputs a key.

The algorithms satisfy the correct decapsulation requirement: When (ek , dk)
← KGBKEM, (C, k) ← Encapek , (C̃, uk) ← Blindek (C) and k̃ ← Decapdk (C̃), then

Unblinduk (k̃) = k.

Definition 8. Let BKEM = (KGBKEM,Encap,Blind,Decap,Unblind) be a blinded
KEM. The distinguishing advantage of any adversary A against BKEM getting
r blinded decapsulation samples is

Advind
BKEM(A, r) = 2

∣
∣
∣Pr[Expind

BKEM(A, r) = 1] − 1/2
∣
∣
∣,

where the experiment Expind
BKEM(A, r) is given in Fig. 5.

Expind
BKEM(A, r) :

b
$←− {0, 1}

(ek , dk) ← KGBKEM

(C, k1) ← Encapek

k0
$←− G

for j ∈ {1, . . . , r} do
(C̃j , uk j) ← Blindek (C)
k̃j ← Decapdk (C̃j)

b′ ← A(ek , C, kb, {(C̃j , k̃j)}1≤j≤r )
return b′ ?= b

Fig. 5. Indistinguishability experiment Expind
BKEM(A, r) for a blinded KEM.

Definition 9. Let ek be any public key and let C0 and C1 be two encapsulations.
Define X0 and X1 to be the statistical distribution of the blinded encapsulation
output by Blindek (C0) and Blindek (C1), respectively. We say that the blinded
KEM is ε-blind if the statistical distance of X0 and X1 is at most ε.

Definition 10. Let ek be any public key and let C be an encapsulation of the
key k. Let C̃ be a blinded encapsulation of C with corresponding unblinding key
uk. We say that the blinded KEM is rigid if there is exactly one k̃ such that
Unblinduk (k̃) = k.

We now present two instantiations of blinded KEMs based on well-known
hardness assumptions, namely DDH and the RSA problem.
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4.1 Construction I: DH-Based

We consider the following Diffie-Hellman-based blinded KEM (DH-BKEM). Let
G be a group of prime order q with generator g and define DH-BKEM in Fig. 6.

KGBKEM() :

s
$←− Z

∗
q

ek ← gs

dk ← s
return ek , dk

Encapek :

i
$←− Z

∗
q

C ← gi

k ← ek i

return C, k

Blindek (C) :

t
$←− Z

∗
q

C̃ ← Ct

uk ← t−1 mod q
return C̃, uk

Decapdk (C̃) :
k̃ ← C̃dk

return k̃

Unblinduk (k̃) :
k ← k̃uk

return k

Fig. 6. Diffie-Hellman-based blinded KEM (DH-BKEM).

Theorem 1. DH-BKEM is a 0-blind BKEM and is rigid. Furthermore, let A
be any adversary against the above construction getting r blinded decapsulation
samples. Then there exists an adversary Br against DDH such that

Advind
DH-BKEM(A, r) ≤ AdvDDH

G
(Br ).

The running time of Br is essentially the same as the running time of A.

Proof. For any encapsulation, since t is a random number, the blinded encap-
sulation C̃ output by Blind is uniformly distributed on G. It follows that the
construction is 0-blind. In a similar vein, the unblinding procedure is a permu-
tation on the keyspace so the construction is rigid.

Next, consider a tuple (ek , C, k). The reduction Br is given in Fig. 7. In the
event that (ek , C, k) is a DDH tuple, then Br perfectly simulates the input of A
in Expind

DH-BKEM(A, r) when b = 1. Otherwise, Br perfectly simulates the input
of A in Expind

DH-BKEM(A, r) when b = 0. The claim follows.

Reduction Br .
for j ∈ {1, . . . , r} do

tj
$←− Z

∗
q

C̃j ← gtj

k̃j ← ek tj

b′ ← A(ek , C, k, {(C̃j , k̃j)}1≤j≤r )
return b′

Fig. 7. DDH adversary Br playing ExpDDH
G

(Br ), used in the proof of Theorem 1.
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4.2 Construction II: RSA-Based

We consider the following RSA-based blinded KEM (RSA-BKEM). Unlike the
above DH-based blinded KEM, this is less suitable for use in key exchange,
since generating RSA keys is quite expensive. The scheme needs a hash function
HRSA-BKEM, and is detailed in Fig. 8.

KGBKEM() :
p, q, n, e, d ← RSA.KG
ek ← (n, e)
dk ← (n, d)
return ek , dk

Encapek :

i
$←− {1, . . . , n − 1}

C ← ie mod n
k ← HRSA-BKEM(i)
return C, k

Blindek (C) :

t
$←− {1, . . . , n − 1}

C̃ ← (teC) mod n
uk ← t−1 mod n
return C̃, uk

Decapdk (C̃) :
k̃ ← C̃d mod n
return k̃

Unblinduk (k̃) :
k′ ← (k̃uk) mod n
k ← HRSA-BKEM(k′)
return k

Fig. 8. RSA-based blinded KEM (RSA-BKEM).

Just like for the DH-based construction, this scheme is a blinded KEM, it
is 0-blind and any adversary against indistinguishability in the random oracle
model can be turned into an adversary against the RSA problem, in a straight-
forward way. We omit the proof. Note that this construction is not rigid since
any hash collision provides two different values that map to the same k. (Dealing
with this would complicate the security proof for little gain.)

5 Offline Assisted Group Key Exchange Protocol

We now describe a generic protocol for cloud-assisted group key exchange using a
blinded KEM, and then give a concrete instantiation using our DH-based blinded
KEM from Sect. 4.1. Our scenario consists of the following participants:

– The initiator wants to establish a shared key k with a set of responders. First,
the initiator I interacts with the server, then the initiator generates a key and
“invitation messages” for the responders R1, ...,Rn.

– Each responder wants to allow the initiator to establish a shared key with
him. When responder Ri gets their “invitation message” from the initiator,
they will interact with the server to decrypt the shared key.
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– The server temporarily stores information assisting in the computation of the
shared secret key k, until every responder has gotten the key.

A conceptual overview of our construction is given in Fig. 9: the number-
ing indicates the order in which the phases of the protocol are done. A more
diagrammatic overview is provided for the single-responder case in Fig. 10, and
the general case is presented in Fig. 11. In these figures and for the rest of this
section we will reduce notational overload by writing SignRj

instead of SignskRj

(and EncRj
instead of EncpkRj

etc.), and allow the reader to infer which type of
key is being used from the algorithm in use.

S

(ek , dk) ← KGBKEM k̃ ← Decapdk (C̃)

I

(C, k) ← Encapek

R

(C̃, uk) ← Blindek (C)

k ← Unblinduk (k̃)

1. ek

2. C

3. C̃

4. k̃

Fig. 9. Diagram describing how the group key exchange protocol uses the blinded KEM
to do key exchange in the single responder case. For clarity, identities, nonces, session
identifiers, key confirmation, public key encryption and digital signatures are omitted.
Figure 10 contains a more detailed message sequence chart for the single responder case.

Definition 11. An Offline Assisted Group Key Exchange Protocol (OAGK) is
defined in Fig. 11 and is parameterized by the following components. Let

– BKEM = (KGBKEM,Encap,Blind,Decap,Unblind) be a blinded KEM,
– DS = (KGsig,Sign,Verify) be a signature scheme,
– PKE = (KGpke,Enc,Dec) be a public-key encryption scheme,
– H be a hash function,
– KDF be a key derivation function.

Note that in our model, we do not have a reveal state query, so there is no need
to explicitly erase state information. In a real implementation, making sure that
ephemeral and medium-term key material is erased at appropriate times is vital.

In order to break our protocol an adversary must compromise both the server
and one of the users. The server stores a medium-term key which is deleted after
the protocol run is complete (or after a time-out) after which compromise of the
server is allowed. We note that it would not be difficult to enhance our protocol
with forward secure encryption [7] if receiver compromise is deemed a likely risk.
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RSI

Stage 1:

Choose nonce NI

σ1 ← SignI(NI, pid)
NI, pid , σ1−−−−−−−−−−−−−−−−→

Verify σ1

(ek , dk) ← KGBKEM

σ2 ← SignS(NI, pid , ek)
sid ← H(I,NI, pid , ek)

Verify σ2

(ek , σ2)←−−−−−−−−−−−−−−−−
sid ← H(I,NI, pid , ek)

Stage 2:

(C, k) ← Encapek
kI ← KDF(′′1′′, k, sid)
τI ← KDF(′′2′′, k, sid)
c ← EncR(C, ek, τI, sid , pid)
σ3 ← SignI(c)

c, σ3−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Verify σ3

Accept kI (C, ek, τI, sid , pid) ← DecR(c)
Stage 3:

(C̃, uk) ← Blindek (C)
σ4 ← SignR(sid , ek , C̃)

Verify σ4

(sid , C̃, σ4)←−−−−−−−−−−−−−−−−
Verify R ∈ pid

k̃ ← Decapdk (C̃)
σ5 ← SignS(sid , k̃)

(sid , k̃, σ5)−−−−−−−−−−−−−−−−→ Verify σ5

k ← Unblinduk (k̃)
kR ← KDF(′′1′′, k, sid)
τR ← KDF(′′2′′, k, sid)

τR
?= τI

Accept kR

Fig. 10. Message sequence chart for the OAGK protocol with a single responder R.
Figure 11 contains a complete protocol description for the multi-responder case.

5.1 Efficiency

There are different ways to measure the efficiency of group key exchange proto-
cols, including the number of protocol messages, the number of rounds of paral-
lel messages, and the (average) computation per user. There exist theoretically
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I running oracle
∏α

I as initiator on input
pid :

1. Choose random NI.
2. σ1 ← SignI(NI, pid).
3. Send (NI, pid , σ1) to S.

10. Get (ek , σ2) from S.
11. Verify that σ2 is S’s signature on

(NI, pid , ek).
12. sid ← H(I,NI, pid , ek).
13. (C, k) ← Encapek .
14. Session key kα

I ← KDF(′′1′′, k, sid)
15. Key confirmation:

τα
I ← KDF(′′2′′, k, sid)

16. For every responder Rj in pid , do:
(a) cj ← EncRj (C, ek, τα

I , sid , pid).
(b) σ3,j ← SignI(cj).
(c) Send (cj , σ3,j) to Rj .

17. Output kα
I .

Phase I of S running oracle
∏β

S as server
on message (NI, pid , σ1) from I:

4. Verify that σ1 is I’s signature on
(NI, pid).

5. (ek , dk) ← KGBKEM.
6. σ2 ← SignS(NI, pid , ek).
7. sid ← H(I,NI, pid , ek).
8. Store (sid , I, pid , dk , ∅).
9. Send (ek , σ2) to I.

Rj running oracle
∏ν

Rj
as responder on

message (cj , σ3,j) from I:

18. Verify that cj is I’s signature on σ3,j .
19. (C, ek, τα

I , sid , pid) ← DecRj (cj).
20. (C̃j , uk j) ← Blindek (C).
21. σ4 ← SignRj

(sid , ek , C̃j).

22. Send (sid , C̃j , σ4) to S.
32. Get (sid , k̃j , σ5) from S.
33. Verify that σ5 is S’s signature on

(sid , k̃j).
34. kj ← Unblindukj (k̃j).
35. Session key: kν

Rj
← KDF(′′1′′, kj , sid)

36. Key confirmation:
τν
Rj

← KDF(′′2′′, kj , sid)
If τν

Rj
= τα

I then
Accept and output kν

Rj
.

else
Reject.

Phase II of S running oracle
∏β

S as server
on message (sid , C̃j , σ4) from Rj , with
stored state (sid , I, pid , dk , T ):

23. Lock the state (sid , . . . ) until done.
24. Verify that σ4 is Rj ’s signature on

(sid , ek , C̃j).
25. Verify that Rj ∈ pid .
26. Verify that Rj �∈ T .
27. k̃j ← Decapdk (C̃j).
28. σ5 ← SignS(sid , k̃j).
29. Send (sid , k̃j , σ5) to Rj .
30. Let T ′ = T ∪ {Rj}.
31. Update the state (sid , . . . , T ) to

(sid , . . . , T ′).

Fig. 11. The three roles of the group key exchange protocol. Suppose {Rj}j∈J are the
identities of users that I wishes to share a common session key with (pid = I|{Rj}j∈J).
Note that the line numbering indicates the order in which the lines of the various roles
are reached during a protocol execution.
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efficient examples [2,3] but most practical protocols employ a generalisation of
the Diffie–Hellman protocol. One such generalisation is the well-known scheme
of Burmester and Desmedt [6] which requires 2 rounds of communication and 3
exponentiations per user in its unauthenticated version.

An example of a modern optimised protocol is that of Gao et al. [14] which
adds signatures to all messages and requires users to verify the signature on
broadcast messages from all other users. In comparison our requirements are
relatively modest. We require 3 rounds but do not use broadcast messages at
all. The protocol participants perform 5 public key operations each, consisting
of signature generation/verification, public key encryption/decryption and key
encapsulation/decapsulation. As mentioned, the non-interactive nature of our
scenario means that we wish for the initiator to be able to do all of their inter-
action during some initial phase.

5.2 Protocol Security

An adversary against the GKE protocol OAGK plays the game defined in
Sect. 3.2. We need to give a useful bound for its advantage.

Theorem 2. Consider an adversary A against the GKE protocol OAGK running
with n users, having at most s sessions, each involving at most r responders.
Then adversaries B0, B1, B2, B3 and B4 exist, running in essentially the same
time as A, such that

Advake
OAGK(A) ≤ AdvCR

H (B0) + (n + 1)Advsuf-cma
DS (B1)

+ snrAdvror-cca2
PKE (B2) + sAdvCR

KDF(B3) + srε

+ sAdvind
BKEM(B4, r)

+ negligible terms.

We sketch the ideas used in the proof. We need to guess which session the
adversary is going to issue the Test query for. If we guess correctly, the game
proceeds unchanged. If we guess incorrectly, the game immediately stops, we flip
a coin b′ and pretend that the adversary output b′. It is clear that the adversary’s
advantage in this game is now 1/s times the original advantage.

We must also handle the situation where the adversary issues a corruption
query that would render our chosen session non-fresh. In this case, the game
immediately stops, we flip a coin b′ and pretend that the adversary output b′.
Observe that if we stop for this reason, the adversary could not issue a test query
(and our chosen session is now the only session a test query could be issued for),
so the adversary would have no information about b. The probability that the
adversary guesses b correctly is therefore unchanged.

Depending on when the server is corrupted (if it is corrupted at all), we need
to bound the adversary’s advantage in slightly different ways. An upper bound
on the adversary’s advantage will then be the sum of the two different bounds.

If we suppose that every partnered oracle in our session reached status
accepted before the server or any player running a partnered oracle is corrupted.
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In this case, thanks to the signatures and the nonces, the adversary sees at most
a blinded KEM public encapsulation key, an encapsulation of a session key,
at most r blinded encapsulations of the same session key with corresponding
blinded decapsulations. By indistinguishability for the blinded KEM, it follows
that the adversary cannot distinguish between the actual encapsulated key and
a randomly chosen key, so the adversary has no information about b.

Next, suppose no responder player is ever corrupted. In this case, the adver-
sary (in the worst case) chooses the keys for the blinded KEM, but the public
key encryption ensures that the adversary cannot see the actual encapsulation
of the key. In other words, the adversary only sees blinded encapsulations of an
unknown encapsulation, which reveals little information about the encapsulated
key by ε-blindness of the blinded KEM. Furthermore, the rigidity of the blinded
KEM ensures that every responder can detect an incorrect server response, unless
a collision in the key derivation function occurs.

The complete proof is given in the full version [4].

5.3 Instantiating the Protocol with the DH Blinded KEM

We instantiate the above offline assisted group key exchange protocol OAGK with
the DH-based blinded KEM from Sect. 4.1, the protocol denoted by DH-OAGK.
In this instantiation, we choose the nonce NI from the group G.

In Fig. 12, we present the core of the resulting protocol (without identities,
nonces, session identifiers, key confirmation, authentication and encryption) sim-
ilar to Fig. 9. We only show one responder.

Theorems 1 and 2 show that this instantiation is secure.

S

1. dk
$←− Z

∗
q , ek ← gdk 4. k̃ ← C̃dk

I

2. i
$←− Z

∗
q

C ← gi

k ← eki

R

3. t
$←− Z

∗
q

C̃ ← Ct

uk ← t−1

5. k = k̃uk

1. ek

2. {C}

3. C̃

4. k̃

Fig. 12. Running protocol DH-OAGK with one responder, where {C} = EncR(C, · · · ).
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Abstract. In cloud computing, delegated computing raises the security
issue of guaranteeing data authenticity during a remote computation.
Existing solutions do not simultaneously provide fast correctness veri-
fication, strong security properties, and information-theoretic confiden-
tiality. We introduce a novel approach, in the form of function-dependent
commitments, that combines these strengths. We also provide an instan-
tiation of function-dependent commitments for linear functions that is
unconditionally, i.e. information-theoretically, hiding and relies on stan-
dard hardness assumptions. This powerful construction can for instance
be used to build verifiable computing schemes providing information-
theoretic confidentiality. As an example, we introduce a verifiable multi-
party computation scheme for shared data providing public verifiability
and unconditional privacy towards the servers and parties verifying the
correctness of the result. Our scheme can be used to perform verifiable
computations on secret shares while requiring only a single party to com-
pute the audit data for verification. Furthermore, our verification pro-
cedure is asymptotically even more efficient than performing operations
locally on the shared data. Thus, our solution improves the state of the
art for authenticated computing, verifiable computing and multi-party
computation.

Keywords: Commitments · Homomorphic cryptography · MPC

1 Introduction

Today, it is common practice to outsource time-consuming computations to the
cloud. Such infrastructures attractively offer cost savings and dynamic comput-
ing resource allocation. In such a situation, it is desirable to be able to verify the
outsourced computation. The verification must be efficient, by which we mean
that the verification procedure is significantly faster than verified computation
itself. Otherwise, the verifier could as well carry out the computation by himself,
negating the advantage of outsourcing.

Often, not only the data owner is interested in the correctness of a compu-
tation; but also third parties, like insurance companies in the case of medical
data. For such third party verifiers, another desired property for verification
c© Springer Nature Switzerland AG 2018
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procedures is proof of origin: evidence linking the result of the outsourced com-
putation to their input. This additional guarantee is required because proofs of
correct computation usually do not explicitly include input values. It is espe-
cially important if the verifier of the correctness proof is a third party who does
not trust the cloud provider to provide the correct input to the computation.
Together, these two pieces of evidence guarantee that the output received by the
provider was indeed correctly computed from the initially provided input.

In addition, there are scenarios in which computations are performed over
sensitive data. For instance, a cloud server may collect health data of individuals
and compute their averages. So the challenge arises to design efficient verifica-
tion procedures for outsourced computing that are privacy-preserving. Growing
amounts of data are sensitive enough to require long-term protection. Electronic
health records, voting records, or tax data require protection periods exceeding
the lifetime of an individual. Over such a long time, complexity-based confiden-
tiality protection is unsuitable because algorithmic progress is unpredictable. In
contrast, information-theoretic confidentiality protection is not threatened by
algorithmic progress and supports long-term security.

Two categories of solutions simultaneously address verifiability, proof of ori-
gin, and confidentiality:

– Homomorphic authenticators [1], which sometimes allow for efficient verifica-
tion, keeping the computational effort of the verifier low. They do, however,
not provide information-theoretic privacy, i.e. they are not long-term secure.
Schemes like the one presented in [11] offer context hiding security, i.e. authen-
ticators to the output of a computation do not leak information about the
input. In this work, we consider a privacy notion which is even stronger than
context hiding. In our case, no information is leaked; in particular, not even
about the output.

– Homomorphic commitments [6,25,27] can be used for auditing. Authenticity
is typically achieved by using a secure bulletin board [16]. In particu-
lar, Pedersen commitments [25] provide long-term security: they achieve
information-theoretic privacy for the input values to arbitrary linear func-
tions. Homomorphic commitments however, feature computationally costly
correctness verification.

For a more detailed comparison to related work, see Sect. 5.

1.1 Contributions

In this paper, we solve the problem of providing efficient verification and proof
of origin with information-theoretic privacy for linear functions. To achieve this,
we introduce a novel generic construction that combines information-theoretic
privacy with strong unforgeability and fast verification. We call this construction
function-dependent commitments (FDCs). In addition to this main contribution,
we provide a concrete, unconditionally hiding instantiation of FDCs for linear
functions using pairings, demonstrating that our generic construction can be



Function-Dependent Commitments for Verifiable Multi-party Computation 291

realized in the standard model. In terms of hardness assumptions, only a variant
of the Diffie–Hellman problem [11] is required. Our instantiation achieves suc-
cinctness and efficient verification. Finally, we showcase a verifiable multi-party
computation scheme based on the concrete instantiation. This scheme makes it
possible to verify whether the reconstructed result has been computed correctly
by computing additional audit data on a single storage server. Previous pro-
posals require all storage servers to perform computations to check correctness.
Our scheme provides unconditional input-output privacy towards the servers and
parties verifying computational correctness.

1.2 Outline

The remainder of this paper is organized as follows. We first introduce our frame-
work for FDC schemes (Sect. 2). We then present a concrete instantiation of an
FDC using pairings, and prove its properties (Sect. 3). A sketch of how this
instantiation can be used to build a verifiable computing scheme for shared data
is presented next (Sect. 4). Finally, we compare our contribution with related
work (Sect. 5) and conclude (Sect. 6).

2 Function-Dependent Commitments

In this section, we present our novel FDC scheme and define its relevant prop-
erties. We define the classical properties of commitments, binding and hiding,
in the context of FDCs. Furthermore we provide definitions for evaluation cor-
rectness and unforgeability. In terms of performance properties, we consider
succinctness and amortized efficiency.

Like in the case of homomorphic commitments or authenticators, a function-
dependent commitment can be used to derive new commitments by its homo-
morphic properties. It is necessary that the homomorphic property cannot be
abused to create forgeries. In the context of homomorphic authenticators, the
notions of labeled and multi-labeled programs (see e.g. [4]) are introduced to
provide meaningful security definitions.

Evaluating a function can be modeled as performing a program on a set of
labeled inputs that belong to a given dataset. On a high level, a message is
uniquely identified by two identifiers: one input identifier τ , and one dataset
identifier Δ. One can think of a dataset as an array of message, and of the input
identifiers as pointers to specific positions within this array.

This enables a precise description of homomorphic properties. For authen-
ticators, it is usually required that only authenticators created under the
same dataset identifier are used for homomorphic evaluation. We now formally
describe labeled and multi-labeled programs, in the vein of Backes et al. [4].

A labeled program P consists of a tuple (f, τ1, . . . , τk), where f : Mk → M is a
function with k inputs and τi ∈ χ is a label for the i-th input of f from some set χ.
Given a set of labeled programs P1, . . . ,Pt and a function g : Mt → M, they can
be composed by evaluating g over the labeled programs, i.e. P∗ = g(P1, . . . ,Pt).
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The identity program with label τ is given by Iτ = (fid, τ), where fid : M → M
is the identity function. Program P = (f, τ1, . . . , τk) can be expressed as the
composition of k identity programs P = f(Iτ1 , . . . , Iτk

).
A multi-labeled program PΔ is a pair (P,Δ) of the labeled program P and a

dataset identifier Δ. Given a set of t multi-labeled programs with the same data
set identifier Δ, i.e. (P1,Δ), . . . , (Pt,Δ), and a function g : Mt → M, a com-
posed multi-label program P∗

Δ can be computed, consisting of the pair (P∗,Δ),
where P∗ = g(P1, . . . ,Pt). Analogously to the identity program for labeled pro-
grams, we refer to a multi-labeled identity program by I(Δ,τ) = ((fid, τ),Δ).

Using the formalism of multi-labeled programs, we now define FDCs.

Definition 1. A FDC scheme is a tuple of algorithms (Setup, KeyGen, Public-
Commit, PrivateCommit, FunctionCommit, Eval, FunctionVerify, PublicDecommit):

Setup(1λ) takes as input the security parameter λ and outputs public parameters
pp. We implicitly assume that every algorithm uses these public parameters,
leaving them out of the notation.

KeyGen(1λ) takes the security parameter λ as input and outputs a secret-public
key pair (sk, pk).

PublicCommit(m, r) takes as input a message m and randomness r and outputs
commitment C.

PrivateCommit(sk,m, r,Δ, τ) takes as input the secret key sk, a message m, ran-
domness r, a dataset Δ, and an identifier τ and outputs an authenticator A
for the tuple (m, r,Δ, τ).

FunctionCommit(pk,P) takes as input the public key pk and a labeled program P
and outputs a function commitment F to P.

Eval(PΔ,A1, . . . ,An) takes as input a multi-labeled program PΔ = ((f, τ1, . . . ,
τn),Δ) and a set of authenticators A1, . . . ,An, where Ai is an authenticator
for (mi, ri,Δ, τi), for i = 1, . . . , n. It computes an authenticator A∗ to the tuple
(f(m1, . . . ,mn), f(r1, . . . , rn),Δ, (τ1, . . . , τn)) using A1, . . . ,An and outputs A∗.

FunctionVerify(pk,A,C,F,Δ) takes as input a public key pk, a FDC containing
an authenticator A and a commitment C, a function commitment F, as well
as a dataset identifier Δ. It outputs either 1 (accept) or 0 (reject).

PublicDecommit(m, r,C) takes as input message m, randomness r, and commit-
ment C. It outputs either 1 (accept) or 0 (reject).

FunctionVerify only verifies whether the pair (C,A) is a correct FDC to F
while PublicDecommit allows to check that C opens to a specific pair of opening
values (m, r).

2.1 Properties of Function-Dependent Commitments

As for classical commitments we want our schemes to be binding (see e.g. [30]).
That is, after committing to a message, it should be infeasible to open the
commitment to a different message. For a formal definition we refer to the full
version.
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Another important notion, targeting privacy, is the hiding property. Com-
mitments are intended to not leak information about the messages they contain.
This is not to be confused with the context hiding property, where homomorphic
authenticators to the output of a computation do not leak information about the
inputs to the computation. They do however leak information about the output.

Definition 2 (Hiding). A FDC is called computationally hiding if the sets of

commitments {PublicCommit(m, r) | r
$← R} and {PublicCommit(m′, r′) | r′ $←

R} as well as {PrivateCommit(sk,m, r,Δ, τ) | r
$← R} and {PrivateCommit(sk,m′,

r′,Δ, τ) | r′ $← R} have distributions that are indistinguishable for any proba-
bilistic polynomial-time (PPT) adversary A for all m �= m′ ∈ M.

A FDC is called unconditionally hiding if these sets have the same distribu-
tion respectively for all m �= m′ ∈ M.

An obvious requirement for an FDC is to be correct, i.e. if messages are
authenticated properly and evaluation is performed honestly, the resulting com-
mitment should be verified. This is formalized in the following definition.

Definition 3 (Evaluation Correctness). A FDC achieves evaluation cor-
rectness if for any set of messages, m1, . . . ,mn ⊂ M, any set of randomness
r1, . . . , rn ⊂ R, any set of identifiers τ1, . . . , τn ⊂ χ, and any multi-labeled
program PΔ = ((f, τ1, . . . , τn),Δ) we have FunctionVerify(pk,A,C,F,Δ) = 1,
where Ai = PrivateCommit(sk,mi, ri,Δ, τi) for i ∈ [n], A = Eval(PΔ,A1, . . . ,An),
C = PublicCommit(f(m1, . . . ,mn), f(r1, . . . , rn)), and F = FunctionCommit(pk,P).

For the security notion of FDCs, we first provide a definition for well defined
programs and forgeries on these programs. Then, we introduce an experiment
the attacker can run in order to generate a successful forgery and present a
definition for unforgeability based on this experiment.

Definition 4 (Well Defined Program). A labeled program P = (f, τ1, . . . , τn)
is well defined with respect to a list LΔ if one of the two following cases holds:

1. There are messages m1, . . . ,mn such that (τi,mi) ∈ LΔ ∀ i = 1, . . . , n.
2. There is an i ∈ {1, . . . , n} such that (τi, ·) /∈ LΔ and f({mj}(τj ,mj)∈LΔ

∪
{m̃k}(τk,·)/∈LΔ

) does not depend on the choice of m̃k ∈ M.

Definition 5 (Forgery). A forgery is a tuple (PΔ,C,A) such that

FunctionVerify(pk,A,C,FunctionCommit(pk,P),Δ) = 1

holds and one of the following conditions is met:

Type 1: The list LΔ was not initialized during the game, i.e. no message was
ever committed under the data set identifier Δ.

Type 2: PΔ is well defined with respect to list LΔ and
C �= PublicCommit(f({mj}(τj ,mj)∈LΔ

), f({rj}(τj ,rj)∈LΔ
)), i.e. C is not the cor-

rect commitment to the output of the computation.
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Type 3: PΔ is not well defined with respect to LΔ.

This definition of forgeries is consistent with existing definitions, e.g. [11].
It is an immediate corollary of [18, Theorem 5.1] that if P contains a linear
function, then any adversary who outputs a Type 3 forgery can be converted
into one that outputs a Type 2 forgery. To define unforgeability, we first describe
the experiment EXPUF−CMA

A,Com (λ) between an adversary A and a challenger C.

EXPUF−CMA
A,Com (λ) :

Setup C calls pp
$← Setup(1λ) and gives pp to A.

Key Generation C calls (pk, sk) $← KeyGen(1λ) and gives pk to A.
Queries A adaptively submits queries for (Δ, τ,m, r) where Δ is a dataset, τ is

an identifier, m is a message, and r is a random value. C proceeds as follows:
– If (Δ, τ,m, r) is the first query with dataset identifier Δ, it initializes an

empty list LΔ = ∅ for Δ.
– If LΔ does not contain a tuple (τ, ·, ·), i.e. A never queried (Δ, τ, ·, ·),

C calls A ← PrivateCommit(sk,m, r,Δ, τ), updates the list LΔ = LΔ ∪
(τ,m, r), and gives A to A.

– If (τ,m, r) ∈ LΔ, then C returns the same authenticator A as before.
– If LΔ already contains a tuple (τ,m′, r′) for (m, r) �= (m′, r′), C returns ⊥.

Forgery A outputs a tuple (PΔ,m, r,A).

EXPUF−CMA
A,Com (λ) outputs 1 if the tuple returned by A is a forgery as defined

before in Definition 5.

Definition 6 (Unforgeability). A FDC is unforgeable if for any PPT adver-
sary A we have

Pr[EXPUF−CMA
A,Com (λ) = 1] = negl(λ),

where negl(λ) denotes any function negligible in the security parameter λ.

Regarding performance, we consider additional properties. Succinctness spec-
ifies a limit on the size of the FDCs, thus keeping the required bandwidth low,
when using FDCs to verify the correctness of an outsourced computation.

Definition 7 (Succinctness). A FDC is succinct if, for a fixed security param-
eter λ, the size of the authenticators depends at most logarithmically on the
dataset size n.

Amortized efficiency specifies a bound on the computational effort required
to perform verifications.

Definition 8 (Amortized Efficiency). Let PΔ = ((f, τ1, . . . , τn),Δ) be a
multi-labeled program, m1, . . . ,mn ⊂ M a set of messages, r1, . . . , rn ⊂ R a
set of randomness, and t(n) be the time required to compute f(m1, . . . ,mn). A
FDC achieves amortized efficiency if for given authenticator A and function
commitment F the time required for the computation of FunctionVerify(pk,A,
PublicCommit(m, r),F,Δ) is t′ = o(t(n)).
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Analogous definitions for amortized efficiency haven been given in
[4,11,14,31]. The usual one-time pre-computation is captured by our algorithm
FunctionCommit. In the case of reuse of the same function over multiple datasets,
this property enables an improvement in terms of runtime.

3 A Pairing-Based FDC Instantiation

In this section, we present an instantiation of a FDC scheme based on pairings.
Our construction uses asymmetric bilinear groups. It can be use to verify the
correct evaluation of linear functions. In the following, we analyze our scheme
with regard to their hiding and binding property, as well as correctness, unforge-
ability, succinctness and amortized efficiency.

Definition 9. Let G be a generator of cyclic groups of order p and let G
$←

G(1λ). We say the Discrete Logarithm assumption (DL) holds in G if there
exists no PPT adversary A that, given (g, ga) for a random generator g ∈ G

and random a ∈ Zp, can output a with more than negligible probability, i.e. if

Pr[a ← A(g, ga) | g
$← G, a

$← Zp] = negl(λ).

Definition 10 (Asymmetric bilinear groups [8]). An asymmetric bilinear
group is a tuple bgp = (p,G1,G2,GT , g1, g2, e), such that:

– G1,G2, and GT are cyclic groups of prime order p,
– g1 ∈ G1 and g2 ∈ G2 are generators for their respective groups,
– the DL assumption holds in G1,G2, and GT ,
– e : G1 × G2 → GT is bilinear, i.e. e

(
g1

a, g2
b
)

= e (g1, g2)
ab holds for all

a, b ∈ Z,
– e is non-degenerate, i.e. e (g1, g2) �= 1, and
– e is efficiently computable.

We write gt = e (g1, g2).

The security of our pairing-based instantiation relies on a hardness assump-
tion previously introduced by Catalano et al. [11], the Flexible Diffie-Hellman
Inversion (FDHI) problem. It was shown by these authors that the FDHI holds
in the generic group model.

Definition 11 ([11]). Let G be a generator of asymmetric bilinear groups and

let bgp = (p,G1,G2,GT , g1, g2, e)
$← G(1λ). We say the Flexible Diffie–Hellman

Inversion (FDHI) assumption holds in bgp if for every PPT adversary A

Pr[W ∈ G1\{1G1} ∧ W ′ = W
1
z : (W,W ′) ← A(g1, g2, gz

2 , g
v
2 , g

z
v
1 , gr

1, g
r
v
1 ) |

z, r, v
$← Fp] = negl(λ).
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3.1 Construction

We are now ready to describe the algorithms making up our FDC. We use a
signature scheme Σ = (SigKeyGen,Sign,SigVerify) and a pseudorandom function
F : K × {0, 1}∗ → Fp. For a set of possibly different messages m1, . . . ,mn, we
denote by mi the i-th message. Since our messages are vectors, i.e. m ∈ F

T
p , we

write m[j] to indicate the j-th entry of message vector m. Therefore mi[j] denotes
the j-th entry of the i-th message. Given a linear function f, its i-th coefficient
is denoted by fi, i.e. f(m1, . . . ,mn) =

∑n
i=1 fimi.

Setup takes as input the security parameter λ. It defines the parameters n, T ∈
N. Then, it first chooses a bilinear map bgp= (p,G1,G2,GT , g1, g2, e) with
e (g1, g2) = gt. Afterwards, it chooses a0, . . . , aT ∈ Fp uniformly at random.
It checks whether aj �= ai for all j �= i. If it fails it chooses a new aj . Then,
for all j = 0, . . . , T it computes Hj = g

aj

1 . It outputs the public parameters
pp = (n, T, bgp,H0, . . . HT ).

KeyGen takes as input the security parameter λ, and the public parameters pp.
Then it chooses y ∈ Fp uniformly at random and computes Y = gy

2 . Addi-
tionally it chooses b1, . . . bn ∈ Fp uniformly at random and checks whether
bi �= bj for all i �= j. If it fails it chooses a new bi. Then, for all i = 1, . . . , n

it computes Ĥi = gbi
1 and ĥi = gbi

t . Then, the algorithm chooses random
seeds K,K ′ ∈ K for a pseudorandom function F : K × {0, 1}∗ → Fp.
Finally, it generates keys for the signature scheme by calling (skSig, pkSig) ←
SigKeyGen(1λ) and outputs public key pk = (pkSig, Y, ĥ1, . . . , ĥn) and secret
key sk = (skSig, y, Ĥ1, . . . , Ĥn,K,K ′).

PublicCommit takes as input the public parameters pp, a message m ∈ F
T
p , and

randomness r ∈ Fp. It computes C = H r
0 · ∏T

j=1 H
m[j]
j , where m[j] is the j-th

entry of message vector m ∈ F
T
p , and outputs commitment C.

PrivateCommit takes as input the secret key sk, a message m ∈ F
T
p , randomness

r ∈ Fp, a dataset Δ ∈ {0, 1}∗, and an identifier τ ∈ [n]. It first computes
z = FK(Δ) with the pseudorandom function F and calculates Z = gz

2 . Then,
it binds Z to the dataset identifier Δ by signing their concatenation, i.e.
σΔ = Sign(skSig,Δ | Z). Then, it computes u = FK′(Δ | τ), U = gu

1 , and
V = (U ·Ĥτ ·Hyr

0 ·∏T
j=1 H

ym[j]
j )

1
z . It returns authenticator A = (σΔ, Z, U, V ).

FunctionCommit takes as input the public key pk and a labeled program P =
(f, τ1, . . . , τn). It computes F =

∏n
i=1 ĥfi

i , where fi denotes the i-th coefficient
of f, and outputs function commitment F.

Eval takes as input a linear function f and authenticators A1, . . . ,An where Ai =
(σΔ,i, Zi, Ui, Vi). It sets σΔ = σΔ,1, Z = Z1 and computes U =

∏n
i=1 U fi

i and
V =

∏n
i=1 V fi

i and outputs authenticator A = (σΔ, Z, U, V ).
FunctionVerify takes as input the public key pk, an authenticator A = (σΔ, Z, U,

V ), a commitment C, a function commitment F, and a dataset identifier Δ.
It checks whether SigVerify(pkSig, σΔ,Δ | Z) = 1 holds. If not it outputs 0,
otherwise it checks whether e (V,Z) = e (U, g2) · F · e (C, Y ) holds. If it does,
it outputs 1; otherwise it outputs 0.
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PublicDecommit takes as input the public parameters pp, a message m ∈ F
T
p ,

randomness r ∈ Fp, and a commitment C. It outputs 1 if C = PublicCommit
(pp, m, r) and 0 otherwise.

Our construction can also be used to provide authenticity in the form of
unconditionally hiding authenticators, similarly to signatures. First, algorithm
KeyGen is called. To authenticate a message m, the owner of the corresponding
secret key sk generates a random value r and computes an authenticator A with
algorithm PrivateCommit. The authenticator A serves as a signature for m. To
verify the authenticity of m, the verifier first requests m and r from the data
owner. It next computes commitment C by calling PublicCommit with m, r, and
the public key pk. Then, it uses pk and algorithm FunctionCommit to generate a
function commitment Fid to the identity function of m. Finally, it calls algorithm
FunctionVerify to check whether the tuple C,A,Fid,Δ is valid.

3.2 Properties

In the following, we first prove that our concrete scheme is indeed correct in the
sense of Definition 3. We then prove that it satisfies the classical commitment
properties — binding and hiding. With respect to efficiency, we next show suc-
cinctness and amortized efficiency. Finally, we reduce the security of our scheme
to the hardness of the FDHI assumption.

Theorem 1. Our construction is a correct FDC (Definition 3).

Proof. Let m1, . . . ,mn ∈ F
T
p be a set of messages, r1, . . . , rn ∈ Fp a set of

randomness, τ1, . . . , τn ∈ χ set of identifiers, and PΔ = ((f, τ1, . . . , τn),Δ) a
linear multi-labeled program. We set m = f(m1, . . . ,mn), r = f(r1, . . . , rn),
Ai = (σΔ,i, Zi, Ui, Vi) ← PrivateCommit(sk,mi, ri,Δ, τi), for i = 1, . . . , n, as well
as F ← FunctionCommit(pk,PΔ) and C ← PublicCommit(m, r).

Let A = (σΔ, Z, U, V ) ← Eval(PΔ,PrivateCommit(sk,m1, r1,Δ, τ1), . . . ,
PrivateCommit(sk,mn, rn,Δ, τn)). By construction, we have σΔ = σΔ,1 which
is correctly verified as long as the underlying signature scheme is correct.
Furthermore, consider (fid, τi) the identity function on the i-th input and let
Fi ← FunctionCommit(pk, ((fid, τi),Δ)) = Fi = ĥi. Since zi = FK(Δ) and
Zi = gzi

2 we have Zi = Z, ∀ i ∈ [n] and therefore e (Vi, Zi) = e (Vi, Z) =
e
(
(Ui · Ĥτi

· Hyri
0 · ∏T

j=1 H
ymi[j]
j )

1
z , Z

)
= e

(
Ui · Ĥτi

· Hyri
0 · ∏T

j=1 H
ymi[j]
j , g2

)

= e (Ui, g2) · e
(
Ĥτi

, g2

)
· e

(
Hyri

0 · ∏T
j=1 H

ymi[j]
j , g2

)

= e (Ui, g2) · ĥτi
· e

(
H ri

0 · ∏T
j=1 H

mi[j]
j , gy

2

)
.

Hence e (V,Z) = e
(∏n

i=1 V fi
i , Z

)

= e
(
(
∏n

i=1 U fi
i · Ĥ fi

τi
· Hyrifi

0 · ∏T
j=1 H

fi·ymi[j]
j )

1
z , Z

)

= e
(∏n

i=1 U fi
i , g2

)
· (

∏n
i=1 ĥfi

τi
) · e

(
H

∑n
i=1 fi·ri

0 · (
∏T

j=1 H
∑n

i=1 fi·mi[j]
j ), gy

2

)

= e (U, g2) · F · e
(
H r

0 · ∏T
j=1 H

m[j]
j , Y

)
= e (U, g2) · F · e (C, Y )

This shows the correctness of our scheme.
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Theorem 2. Our construction is a binding FDC scheme as long as the discrete
logarithm problem in G1 is hard.

Proof. Assume we have access to an oracle O(·) that on input pk outputs (m, r) �=
(m′, r′) such that PublicCommit(m, r) = PublicCommit(m′, r′). Given g1 ∈ G1

from bgp we show how to use O(·) to solve the discrete logarithm problem in
G1, i.e. computing x for g′

1 = gx
1 , where g′

1 ∈ G1. During the generation of public
key pk in KeyGen, we choose random α0, . . . , αT ∈ F

∗
p and compute H0 = g′

1
α0

and Hi = gαi
1 for i = 1, . . . , T .

Afterwards, we query O(pk), and receive (m, r) �= (m′, r′). If r = r′ we submit
a new query. Otherwise we have H0

r · ∏T
j=1 Hj

mj = H0
r′ · ∏T

j=1 Hj
m′

j ⇔ g′
1
α0r ·

∏T
j=1 g

αjmj

1 = g′
1
α0r′ · ∏T

j=1 g
αjm′

j

1 ⇔ g
x·α0(r−r′)+

∑T
j=1 αj(mj−m′

j)

1 = g01

⇔ x · α0(r − r′) +
∑T

j=1 αj(mj − m′
j) = 0 ⇔ x = 1

α0(r−r′)

∑T
j=1 αj(m′

j − mj)
and found the discrete logarithm gx

1 = g′
1. The binding property of algorithm

FunctionCommit can be proven completely analogously.

Theorem 3. Our construction is an unconditionally hiding FDC (Definition 2).

Proof. If r
$← Fp is chosen uniformly at random then {H r

0 | r
$← Fp} is uni-

formly distributed over G1. Therefore the set {H r
0 · ∏T

j=1 H
m[j]
j | r

$← Fp}
is uniformly distributed over G1. So {PublicCommit(m, r) | r ∈ Fp} and
{PublicCommit(m′, r′) | r′ ∈ Fp} have the same distribution ∀m,m′ ∈ F

T
p . The

output of PrivateCommit is an authenticator A = (σΔ, Z, U, V ). By construc-
tion σΔ, Z, U are all independent of m. Considering the V component, we have

V =
(
U · Ĥτ · (H r

0 · ∏T
j=1 H

m[j]
j )y

) 1
z

. This is uniformly distributed over G1 if

and only if the set {H r
0 · ∏T

j=1 H
m[j]
j | r

$← Fp} is. As we have shown this to be
true {PrivateCommit(sk,m, r,Δ, τ) | r ∈ Fp} and {PrivateCommit(sk,m′, r′,Δ, τ)
| r′ ∈ Fp} have the same distribution for all m,m′ ∈ F

T
p .

Theorem 4. Our construction is succinct (Definition 7).

Proof. The number of elements contained in an authenticator PrivateCommit is
constant and does therefore not depend on n, the size of the dataset.

Theorem 5. Our construction achieves amortized efficiency (Definition 8).

Proof. PublicCommit is independent of n. FunctionVerify consists of a signature
verification, two pairing evaluations, and two group operations. Thus their com-
bined running time is independent of n whereas an evaluation of f is ≥ O(n).
Therefore, our construction achieves amortized efficiency for suitably large n.

Theorem 6. Our construction is an unforgeable FDC scheme (Definition 6) if
Σ is an unforgeable signature scheme, F is a pseudorandom function and the
FDHI assumption (see Definition 11) holds in bgp.
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Proof. This proof follows the structure of [11, Theorem 8]. A major difference is
that, in our security reduction, the actual outcome of the computation function
f is never required. In particular [12, Lemmata 5 and 7], knowledge of the forged
outcome of the computation is a crucial part of the security reductions that
prove indistinguishability between games. We present a new indistinguishability
reduction that only uses group elements.

To prove Theorem 6, we define a series of games with the adversary A and
we show that the adversary A wins, i.e. the game outputs 1, only with negligible
probability. Following the notation of [11], we write Gi(A) to denote that a run
of game i with adversary A returns 1. We use flag values badi, initially set to
false. If at the end of the game any of these flags is set to true, the game simply
outputs 0. Let Badi denote the event that badi is set to true during game i.

Due to Theorem 5.1 in [18], any adversary who outputs a Type 3 forgery (see
Definition 5) can be converted into one that outputs a Type 2 forgery. Therefore
we only have to deal with Type 1 and Type 2 forgeries.

Game 1 is the security experiment EXPUF−CMA
A,Com (λ) between an adversary A

and a challenger C, where A only outputs Type 1 or Type 2 forgeries.
Game 2 is defined as Game 1, except for the following change. Whenever A

returns a forgery (P∗
Δ∗ ,m∗, r∗,A∗) with A∗ = (σ∗

Δ, Z∗, U∗, V ∗) and Z∗ has
not been generated by the challenger during the queries, then Game 2 sets
bad2 = true. It is worth noticing that after this change the game never outputs
1 if A returns a Type 1 forgery.

Game 3 is defined as Game 2, except that the pseudorandom function F is
replaced by a random function R : {0, 1}∗ → Fp.

Game 4 is defined as Game 3, except for the following change. At the beginning
C chooses μ ∈ [Q] uniformly at random, with Q = poly(λ) the number of
queries made by A during the game. Let Δ1, . . . ,ΔQ be all the datasets
queried by A. Then if in the forgery Δ∗ �= Δμ, set bad4 = true.

Game 5 is defined as Game 4, except for the following change. At the beginning,
C chooses zμ ∈ Fp at random and computes Zμ = g

zμ

2 . It uses Zμ whenever
queried for dataset Δμ. It chooses bi, si ∈ Fp uniformly at random for i =
1, . . . n and sets Ĥi = g

bi+zμsi

1 as well as ĥi = g
bi+zμsi

t . If k = μ, simulator S
sets the component Uτ = g

−bτ −a0yr−∑T
j=1 ajym[j]

1 .
Game 6 is defined as Game 5, except for the following change. The challenger

runs an additional check. It computes m̂ = P(m1, . . . ,mn), r̂ = P(r1, . . . , rn),
as well as Â = Eval(P∗

Δ∗ ,A1, . . . ,An), i.e. it runs an honest computation over
the messages, randomness and authenticators in dataset Δμ. If

FunctionVerify(pk,A∗, C∗,FunctionCommit(pk,P∗),Δ∗) = 1

and U∗ = Û , then C sets bad6 = true.
Game 7 is defined as Game 6, except for the following change. During a query

for (Δμ, τ,m, r), the challenger sets Uτ = g−bτ
1 .

– Any noticeable difference between Games 1 and 2 can be reduced to producing
a forgery for the signature scheme. If Bad2 occurs, then A produced a valid
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signature σ∗
Δ∗ for (Δ∗ | Z∗) despite never having queried a signature on any

(Δ∗ | ·). This is a forgery on the signature scheme.
– Under the assumption that F is pseudorandom, Games 2 and 3 are compu-

tationally indistinguishable.
– By definition, Pr[G3(A)] = Q · Pr[G4(A)].
– Pr[G4(A)] = Pr[G5(A)], since the public keys are perfectly indistinguishable.
– Clearly, |Pr[G5(A)]−Pr[G6(A)]| ≤ Pr[Bad6]. This occurs only with negligible

probability if the FDHI assumption holds. For a proof of this statement, we
refer to the full version.

– Since the bi were chosen uniformly at random, Game 7 is perfectly indistin-
guishable from Game 6. After these modifications, Game 7 can only output
1 if A produces a forgery (P∗

Δ∗ ,m∗, r∗,A∗) with A∗ = (σ∗
Δ, Z∗, U∗, V ∗) s.t.

FunctionVerify(pk,A∗,PublicCommit(m̂, r̂),FunctionCommit(pk,P∗),Δ∗) = 1

and (m̂, r̂) �= (m∗, r∗), Û �= U∗, and V̂ �= V ∗. This only occurs with negligible
probability if the FDHI assumption holds. For a corresponding proof, we refer
to the full version.

4 Verifiable Computing on Shared Data from Our FDC

We now show how to build a verifiable multi-party computation scheme for lin-
ear functions using our pairing-based FDC construction from Sect. 3. A trivial
solution would be to use a linearly homomorphic authenticator on each set of
shares, running the homomorphic evaluation multiple times in parallel. Our con-
struction only requires a single evaluation over the authenticators. We first recall
the algorithms making up a verifiable computing scheme. We then briefly list
relevant properties, and then present our construction. Finally, we sketch proofs
for the properties of our verifiable computing scheme, notably input and output
privacy.

Definition 12 (Verifiable Computing Scheme). A Verifiable Computing
Scheme VC is a tuple of the following PPT algorithms ([19]):

VKeyGen(1λ, f) : The probabilistic key generation algorithm takes a security
parameter λ and the description of a function f . It generates a secret key
sk, a corresponding verification key vk, and a public evaluation key ek (that
encodes the target function f) and returns all these keys.

ProbGen(sk, x) : The problem generation algorithm takes a secret key sk and data
x. It outputs a decoding value ρx and a public value σx which encodes x.

Compute(ek, σx) : The computation algorithm takes the evaluation key ek and the
encoded input σx. It outputs an encoded version σy of the function’s output
y = f(x).

Verify(vk, ρx, σy) : The verification algorithm obtains a verification key vk and
the decoding value ρx. It converts the encoded output σy into the output of
the function y. If y = f(x) holds, it returns y or outputs ⊥ indicating that σy

does not represent a valid output of f on x.
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Relevant properties for verifiable computing schemes are correctness, pub-
licly verifiability, and security. For formal definitions, see [17]. Further privacy
properties are input privacy w.r.t. the servers, output privacy w.r.t. the servers,
input privacy w.r.t. the verifier, and output privacy w.r.t. the verifier (see [17]).
These computationally secure versions can naturally be extended to information-
theoretically secure versions; for more details we refer to the full version.

4.1 Construction

Our instantiation of a FDC can be used to build a verifiable computing scheme
for shared data supporting linear functions. Secure multi-party computation per-
formed on shared data is realized using a secret sharing scheme, e.g. Shamir
secret sharing [30], which we briefly describe. To share a secret m ∈ Fp,
the client chooses random a1, . . . , at−1 ∈ Fp and computes the polynomial
P (x) = m + a1x + . . . + at−1x

t−1. By evaluating P (j) for j = 1, . . . , k it creates
k shares which are given to k shareholders. Since a polynomial of degree t − 1 is
uniquely determined by t points (j, P (j)) one can recover the secret by request-
ing t shares. At the same time, even a computationally unbounded adversary
cannot learn anything about m from t− 1 shares or less (see [30]). Shamir secret
sharing is linearly homomorphic, i.e. αP (j) + βP ′(j) = (αP + βP ′)(j) for any
two polynomials P, P ′ ∈ Fp[x] and constants α, β ∈ Fp. Linear functions can
thus be evaluated locally on the shares.

Verifiable computing for shared data can be performed as follows. For
VKeyGen, the client runs Setup,Gen, and FunctionCommit of our construction
(see Sect. 3). In our construction, the verification key consists of the public key
and the function commitment, i.e. vk = (pk,F) and the evaluation key ek is just
the multi-labeled program PΔ. Assume the client outsourced its secret data to
a distributed storage system, i.e. it computed for each secret mi a polynomial
Pi(x) and sent φj(mi) = Pi(j) to shareholder j. To allow the shareholders to per-
form operations on this data, for each secret mi for i = 1, . . . , n it first chooses a
random value ri and sends a corresponding share φ′

j(ri) = P ′
i (j) to shareholder j.

For ProbGen, the secret key sk is used by the client to run PrivateCommit of
our construction computing a public value σmi

in form of an authenticator Ai for
the pair (mi, ri). Then, the client sends this value to a dedicated shareholder. The
authenticators are unconditionally hiding, i.e. they reveal no information about
secrets mi nor randomness ri even to a computationally unbounded attacker.
The share Pi(j) and the authenticator Ai is in our construction the encoding
required by ProbGen with no decoding value needed.

For Compute, a distinct principal (or the client) gives program PΔ =
((f, τ1, . . . , τn),Δ) to the shareholders. Since a majority of storage servers is
assumed to be honest (this is a common assumption), privacy-violating func-
tions can be denied. Each shareholder j performs program PΔ by evaluat-
ing f on its shares, i.e. it computes shares φj(m) = f(φj(m1), . . . , φj(mn))
and φ′

j(r) = f(φ′
j(r1), . . . , φ

′
j(rn)). Furthermore, the dedicated shareholder com-

putes an authenticator for the result by performing Eval of our construction
on A1, . . . ,An. The shareholders then use their shares to reconstruct [30] the
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claimed outcome of the function evaluation m and r, and call PublicCommit with
m and r to obtain a corresponding commitment C. These commitments are lin-
early homomorphic, and the shareholders can construct C by reconstructing m
and r in the exponent.

For Verify, anyone can run FunctionVerify with C, A, F, and Δ as input, in
order to prove that C is a commitment to the correct solution. If output privacy
is not desired, m and r can be made public; this allows checking that these are
opening values to C by calling PublicDecommit of our construction.

4.2 Properties

Theorem 7. The verifiable computing scheme for shared data presented above
provides correctness, public verifiability, security, input privacy w.r.t. the servers,
output privacy w.r.t the servers, input privacy w.r.t. the verifier, and output
privacy w.r.t. the verifier.

Proof. These properties mainly follow from the properties of our FDC:

Correctness follows directly from the evaluation correctness of FDCs.
Public verifiability follows from the construction of algorithm Gen of FDCs.

The output of this algorithm are two keys, a secret key to generate the authen-
ticators and a public key to generate commitments to messages and functions.

Security follows from the unforgeability of our FDC.
Input privacy w.r.t. the servers follows from using multi-party computa-

tion, where each shareholder independently computes the function on its
shares. Our scheme offers input privacy against an adversary actively cor-
rupting at most t − 1 shareholders, while unforgeability holds even if
the adversary can actively corrupt all shareholders. We prove privacy
w.r.t. the servers by showing that a simulator S can simulate the pro-
tocol without needing to know any input values. Assume that sj(m) =
(sj(m[1]), . . . sj(m[T ])) and the simulator S stores each xj , where Hj = g

xj

1 .
Then, the simulator chooses ri ∈ Fp uniformly at random for i = 1, . . . , n
and gives PrivateCommit(sk, 0, ri,Δ, τ), sj(0), sj(ri) to the adversary A for
i = 1, . . . , n, j = 1, . . . , t − 1. Afterwards, A outputs A∗ and t − 1 shares
of the result (m̂, r̂). S can produce shares that reconstruct to m̂ and use its
knowledge of each xj to find an opening (m̂, r̂) such that PublicCommit(m̂, r̂)
satisfies FunctionVerify(pk,Eval(PΔ,PrivatCommit(sk,m1, r1,Δ, τ1), . . . ,
PrivatCommit(sk,mn, rn,Δ, τn)), PublicCommit(m̂, r̂),
FunctionCommit(pk,P),Δ) = 1.

Output privacy w.r.t. the servers follows directly from the input privacy
w.r.t. the servers and the unconditional hiding property of the public com-
mitments.

Input privacy w.r.t. the verifier is derived as follows. We show that a sim-
ulator S given access to the secret key sk, a message m̂, and randomness r̂
can compute the authenticator Â = (σΔ, Z, Û , V̂ ) to the outcome (m̂, r̂) of
a computation PΔ = ((f, τ1, . . . , τn),Δ) without needing to know any valid
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input values. It first computes z = FK(Δ) with the pseudorandom function
F and calculates Z = gz

2 . Then, it binds Z to the dataset identifier Δ by
concatenating both and signing it, i.e. σΔ = Sign(skSig,Δ | Z). Then, it com-
putes ui = FK′(Δ | i), and Ui = gui

1 for i = 1, . . . , n. Afterwards it computes
Û =

∏n
i=1 U fi

i . It sets V̂ = (Û · ∏n
i=1 Ĥ fi

i · Hy
0 r̂ · ∏T

j=1 H
ym̂[j]
j )

1
z . It returns

authenticator Â = (σΔ, Z, Û , V̂ ). By construction, this is the authenticator
created by Eval for any authenticators to valid input values (mj , rj). There-
fore an authenticator created by Eval hides the input values perfectly, i.e.
even against a computationally unbounded adversary.

Output privacy w.r.t. the verifier follows directly from the input privacy
w.r.t. the verifier and the unconditional hiding property of the public com-
mitments.

5 Related Work

Commitments: Commitment schemes are a convenient tool to add verifiability
to various processes, such as secret sharing [25], multi-party computation [6],
or e-voting [22]. The most well-known and widely used commitment schemes
used to provide verifiability are Pedersen’s commitments [25]. However, this
work presents the first function-dependent commitment scheme. Unlike previ-
ous commitment schemes, our solution provides succinctness and amortized effi-
ciency. Furthermore, function-dependent commitments support messages stored
in datasets and thus enables a much more expressive notion of public verifia-
bility and more rigorous definition of forgery. Besides, a secure bulletin board
is not required for our solution. In [21], the notion of functional commitments
is introduced. Their notion of function bindingness, however, is strictly weaker
than our notion of adaptive unforgeability. The instantiation proposed supports
linear functions on field elements, i.e. vectors of length 1, while we support vec-
tors of arbitrary polynomial length. Furthermore, notions such as amortized effi-
ciency and succinctness are not considered. In commitment based audit schemes
authenticity is typically achieved by using a secure bulletin board [16], for which
finding secure instantiations has been challenging so far.

Homomorphic authenticators: Homomorphic authenticators have been proposed
both in the secret key setting, as homomorphic MACs (e.g. [1,4,10,31]), and in
the public key setting as homomorphic signatures (e.g. [2,11,13,14,26]). In con-
trast, our approach additionally considers information-theoretic privacy. Most
existing constructions do not consider output privacy. In [26] a solution is pro-
posed in the random oracle model for computational output privacy. Our con-
struction is the first to achieve this in an information-theoretic sense.

Catalano–Fiore–Nizzardo homomorphic signature scheme [11]: Both our FDC
and the homomorphic signature scheme presented in [11] are based on the FDHI
assumption, and indeed our FDC builds on this homomorphic signature scheme.
The Catalano–Fiore–Nizzardo construction is context hiding, i.e. signatures to
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the output of a function do not leak information about the inputs to the function
beyond knowledge of the output to a third party verifier. By contrast, our FDC
achieves an even stronger privacy property: information-theoretic input–output
privacy with respect to both verifiers and servers. A freshly signed signature
in the case of [11] still reveals information about the message to an adversary
corrupting a server. Our unconditionally hiding FDC, however, does not. Fur-
thermore, our verification algorithm FunctionVerify only requires a commitment
to the output of a computation, enabling output privacy, while verification in
[11] requires the output itself. This called for a novel strategy in our security
reduction.

Functional cryptography: Functional dependencies in general were, until now,
only available for primitives required to be either hiding, i.e. functional encryp-
tion, or binding, i.e. functional signatures. Our notion of FDCs is both binding
and (depending on the instantiation, even unconditionally) hiding. Functional
encryption and functional signatures have been used to build verifiable com-
puting schemes. However, the functional-encryption-based solution proposed by
Parno et al. [24] does not provide privacy nor public verifiability. The solution
by Barbosa and Farshim [5] makes use of additional primitives, such as predicate
encryption schemes for general predicates for which no efficient construction is
available. Furthermore, this solution only provides computational input privacy
with respect to the verifier. For functional signatures, only one verifiable com-
puting scheme has been proposed by Boyle et al. [9]; it does not provide any
privacy.

Verifiable computation: There are many more verifiable computing schemes
using proof- and argument-based systems, or based on fully homomorphic
encryption. However, there are only few approaches that address public veri-
fiability and input privacy. There are also argument-based verifiable computing
schemes available that provide public verifiability and statistical input privacy
towards the verifier [3,7,15,23,29]. All of these are based on strong, so called
non-falsifiable assumptions [20]. However, these verifiable computing schemes
are not tailored to perform computations on secret shares. Schoenmakers and
Veeningen show [28] how to achieve this, but they demand that every shareholder
performs computations in order to allow for verification and thereby produces
a significant overhead. Our verifiable computing scheme for shared data allows
to process secret shares while only one storage server has to compute the audit
data. Furthermore, since our solution only makes use of FDC and signatures we
are able to provide a concrete instantiation of this approach using our FDC con-
struction. The resulting scheme provides public verifiability, unconditional input
privacy towards the servers and the verifier, and relies on standard assumptions.

Multi-party computation: Regarding multi-party computation, only two schemes
enable a publicly verifiable audit trail. They have been proposed by Baum
et al. [6] and Schabhüser et al. [27]. Unlike our approach, they achieve pub-
lic verifiability for arbitrary arithmetic circuits. However, our approach is the
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first with amortized efficiency. The client incurs setup costs, but setup is only
performed once. Afterwards, multiple functions can be evaluated and verified.
The verification process itself is more efficient than performing the operations
locally for a suitably large number of inputs n.

6 Conclusion

In this paper, we introduced a novel approach to guarantee data authenticity
in delegated computing settings. Our function-depend commitments enable fast
correctness verification, proof of origin, and information-theoretic input-output
privacy. We also provided a concrete instantiation of this generic construction
for linear functions. Using this instantiation, we introduced a verifiable comput-
ing scheme for shared data with unconditional privacy both towards the server
and the verifier. Furthermore, this scheme only requires a single party to per-
form the computationally more costly computation of the authenticators. Our
instantiation does not require revealing a computation’s outcome, but merely a
commitment to it, thus also satisfying information-theoretic output privacy.

Future Work: Our FDC instantiation adds verifiability and authenticity to appli-
cations while maintaining privacy — even unconditionally. We intend to further
analyse this impact of FDCs on applications processing sensitive data. To this
end, we plan to examine the composability of FDCs and investigate black-box
constructions of FDC-based verifiable multi-party computation schemes.
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26. Schabhüser, L., Buchmann, J., Struck, P.: A linearly homomorphic signature
scheme from weaker assumptions. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol.
10655, pp. 261–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
71045-7 14
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Abstract. In this paper, we focus on constructing IBE from hardness
assumptions without pairings. Especially, we propose two IBE schemes
that are provably secure under new number theoretic assumptions over
the group Z

∗
N2 , in the Random Oracle (RO) model. We essentially take

advantage of the underlying algebraic structure to overcome the difficul-
ties in devising an IBE scheme.

More precisely, our contributions are two-fold and can be summarised
as follows: (i) We give two concrete pairing-free constructions of IBE
based on a variant of DDH assumption and Paillier’s DCR assumption
respectively over the group Z

∗
N2 . These schemes are quite efficient and

easily to be proven IND-ID-CPA in the random oracle model. (ii) We
also provide a generic construction of selectively secure IBE from DDH
group with a DL-solvable subgroup in the standard model by employing
puncturable PRFs and indistinguishability obfuscation.

Keywords: Identity-based encryption · Pairing
Number-theoretic assumption · Random Oracle
Quadratic residuosity · Diffie-Hellman

1 Introduction

Identity-based encryption (IBE) initiated by Shamir [21] is a public-key mecha-
nism, where given short public parameters arbitrary strings could serve as valid
public keys. The first practical IBE scheme was realized by Boneh and Franklin
[6] based on bilinear maps and the security of this construction was argued in
the random oracle model [2]. Soon after, a widespread interest in realizing IBE
schemes based on various assumptions has been aroused. Roughly, according to
the based-on assumptions of existing constructions of IBE this body of work can
be divided into three directions.

The first aims to build on various assumptions on groups with a bilinear
map (pairing), e.g., [4–6,9,22,23]. However, the implementation of pairing itself
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L. Chen et al. (Eds.): ISC 2018, LNCS 11060, pp. 308–327, 2018.
https://doi.org/10.1007/978-3-319-99136-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99136-8_17&domain=pdf


On Constructing Pairing-Free Identity-Based Encryptions 309

is much more expensive than traditional number theoretic operations, e.g., mod-
ular exponentiation.

The second pursues on constructing IBE based on learning-with-errors
(LWE) assumption instead of bilinear pairing, which is started from the work of
Gentry et al. [15]. Since the first LWE-based IBE scheme in [15] is shown to be
secure in the random oracle model, several other LWE-based IBE schemes meet-
ing the security in standard model are proposed subsequently [1,10]. Lattice-
based IBE schemes behave better in encryption and decryption procedures than
pairing-based ones, and have prominent feature of resisting quantum attacks.
However, the somewhat large public parameter size and private key size sub-
stantially restrict their deployment in space-sensitive applications, e.g., mobile
devices.

The third direction seeks to construct on a more traditional number theo-
retic problem, namely the Quadratic Residuosity (QR) assumption (in the ran-
dom oracle model). Cocks [12] provided the first elegant QR-based IBE scheme
of which the security proof also relies on the random oracle model. However,
the encryption of an �-bit message is of size 2� log2 N , which implies Cocks’s
IBE scheme is not space efficient. From then on, constructing an IBE scheme
with short ciphertext avoiding pairings turns into an interesting problem. In
the following work, Boneh et al. [7] proposed a more efficient QR-based IBE
scheme in the RO model, which reduces the length of ciphertext in Cocks’s
scheme by expanding an �-bit message to a ciphertext of size � + log2 N . Very
recently, constructions of IBE based on the hardness of the (Computational)
Diffie-Hellman (CDH) Problem and Factoring have also be obtained. The great
work of Döttling and Garg [13] proposed a candidate construction of IBE scheme
from the CDH assumption by a novel tree based approach. Their construc-
tions bypass the known impossibility results [3] through delicately embedding
chameleon encryptions and public key encryptions into several garblings of cir-
cuits. However, the non-black-box use of underlying primitives inside the garbled
circuits makes the ciphertext size really large, also the encryption and decryp-
tion procedures thereby inevitably become a main bottleneck to implement in
practice. They leave the problem of constructing an efficient IBE scheme from
the Diffie-Hellman Assumption as an open problem.

In this work, we proceed the study on the third direction. Since we have
observed the drawbacks above and hardness of constructing efficient QR-based
(in the RO model) and DH-based IBE schemes (in the standard model), we ask
the following question:

Can we build efficient IBE schemes on other traditional pairing-free number
theoretic problems, such as Decisional Composite Residuosity problem or Deci-
sional Diffie-Hellman problem in the random oracle model?

Our Contributions. In this paper, we give positive answer to the above ques-
tion. We give two concrete constructions of IBE schemes based on a variant
of DDH assumption [8] and Paillier’s DCR [18] assumption respectively over the
group Z

∗
N2 . These schemes are quite efficient and easily to be proven IND-ID-CPA
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in the random oracle model. We also provide a generic construction of selectively
secure IBE from DDH group with a DL-solvable subgroup in the standard model.

In Table 1, we compare our concrete constructions with existing high perfor-
mance pairing-based IBE schemes. Pairing-based schemes are equipped with a
bilinear group pair (G,G) where a bilinear map e : G × G → GT exists. The sec-
ond column shows the underlying assumptions. The third to fifth columns list
the public parameter size, plaintext length and ciphertext length respectively
which are measured by numbers of specific group elements consumed by each
schemes. The notation | · | where · is one of (G,GT ,Z∗

N2) stands for a single
element in a concrete group. The sixth and seventh columns show the time of
basic operations in encryption and decryption. The basic operations including
exponentiation (Exp) and pairing which occur on bilinear group, modular expo-
nentiation (Mod Exp) which occurs on group Z

∗
N2 . As can be seen from the table,

our schemes are efficient in that the encryption only takes 2 modular exponen-
tiations and the decryption takes one, whereas the pairing-based schemes not
only require a number of exponentiation operations (w.r.t. G or GT ), but more
or less depend on several pairing operations as well.

Table 1. Comparison with existing pairing-based IBEs

Assumption Parameter

size

Plaintext

length

Ciphertext

length

Encryption Decryption Random

Oracle

BF01 [6] BDH 2|G| |GT | |G| + |GT | 2 Exp,1

Pairing

1 Exp, 1

Pairing

�

BB04 [4] BDH 3|G| + |GT | |GT | 2|G| + |GT | 3 Exp, 1

Pairing

2 Pairing ✗

This paper sDDH log2 N + |Z∗
N2 | |Z∗

N2 | 2|Z∗
N2 | 2 Mod Exp 1 Mod Exp �

DCR log2 N + |Z∗
N2 | log2 N 2|Z∗

N2 | 2 Mod Exp 1 Mod Exp �

Overview of our Techniques. Here we briefly present the roadmap to achieve
our pairing-free IBE construction (in the RO model). The core idea of construct-
ing an IBE scheme is to look for a mechanism that a private key corresponding to
any identity could be derived by a trusted third party, usually known as private
key generator (PKG). Consider the classical ElGamal encryption: (gr, hr · m)
where the public key is a group element h = ga for a secret exponent a. Given
different secret key ai the public/secret key pair (gai , ai) is different, which in
turn could be regarded as an identity (public key) and its corresponding user
key (secret key). Thus, if we are able to merge exponentially many public/secret
key pairs into one system that could be managed by a PKG (using master secret
key), then a IBE system which performs as efficiently as the original separated
encryption systems is achieved. However, starting from this intuitive point of
view, when we set ga as the hash value for identity ID, say H(ID), an intractable
problem is how to extract the secret key a from H(ID) which afterwards will be
used as the decryption key. Since solving the discrete logarithm problem is hard
in a cyclic group of prime order, we seek to find a set that makes it possible to
extract discrete logarithm.
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We require two ingredients to establish our IBE cryptosystem. The first one
is a large set which is embedded in a DDH hard cyclic group and allows for
extracting exponentially many discrete logarithms privately with the aid of a
trapdoor1. We refer to this set as the DL-solvable set. It is essential to not rely
on any algorithms that are designed to resolve the longstanding discrete loga-
rithm problem as they are time-consuming and not suitable for our IBE scenario.
In other words, this “extracting” process should be accomplished efficiently by
the PKG who owns a master secret key. The second one is a secure encoding
method or hash function that could transform any fixed-length identity from a
bitstring into a member of the DL-solvable set. Based on these two groundwork,
thereafter we could successfully implement our IBE constructions.

Our IBE constructions make use of a cryptographic group Z
∗
N2 , which has

been well investigated because of the elegant work of Paillier [18]. The central
idea of realizing the IBE scheme in the Z

∗
N2 group is that we can solve partial

discrete logarithm in this group if we know the factorization of N . More precisely,
if an ElGamal type encryption scheme is built on a cyclic subgroup that is set up
in Z

∗
N2 , then the ciphertext is composed of (�gr�N2 , �hr · M�N2). Applying our

intuitive idea of setting the public/secret key pair, the hash value H(ID) for an
identity ID plays the rule of value h, and the private key dID for ID is set as the
exponent value of H(ID) by solving the discrete logarithm using the factorization
of N . In consequence, the IBE scheme resulting from the ElGamal scheme is as
following: C = (�gr�N2 , �H(ID)r ·M�N2) and dID = x where gx = H(ID). In this
case, the IBE scheme can be easily designed and the security of the scheme can
be proven by the DDH assumption.

However, in order to design an IBE scheme as described above, it should be
possible to design hash function H(ID) and solve the discrete logarithm of H(ID)
using trapdoor information. To settle this problem, we define a DL-solvable set
Gs := {g1, g2, ..., gN−1} and embed the value x into a new exponent where x
can be seen as a partial discrete logarithm. Using the helpful property in the
set Gs that the partial discrete logarithm of the subgroup 〈1 + N〉 is inherited
by using �gλ(N)�N2 = 1 + N , where λ(N) stands for the Carmichael’s function,
we could derive the private key dID. One may wonder whether a possible way of
mapping into the subset Gs even exists since it seems hard to restrict the image
of hash functions within the sets generated by g. We demonstrate the possibility
of mapping identity ID ∈ {0, 1}∗ to an element in set Gs by designing a group
hash function, namely H : {0, 1}∗ → Gs in the group Z

∗
N2 . The group hash

function is highly structured, and may not have strong properties of simulating
a random oracle. Unfortunately, we can only prove the security of our scheme
assuming “some” hash function could be served as a random oracle. Removing
the random oracle would be a challenging work.

Our second construction is based on the Decisional Composite Resid-
uosity (DCR) assumption. Recall that DCR assumption states that uniform

1 Of course, this cannot be realized in a prime order group due to the hardness of
discrete logarithm problem, instead we can choose a composite order group with
unknown order.
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distribution over the group Z
∗
N2 is computationally indistinguishable from that

over the subgroup of N -th power residues. As none of these two indistinguish-
able groups is cyclic, it’s hard to adapt our previous technique to the DCR-
based scheme in the same way. Fortunately, we can further take advantage of
the underlying Z

∗
N2 group structure in the case that the factors of N are safe

primes. Here we denote by G and GN the quadratic residues of Z∗
N2 and 2N -th

power residues of Z∗
N2 respectively, both of which are cyclic subgroups of Z∗

N2 .
Under this circumstance, the DCR assumption indicates that to distinguish the
uniform distribution over G from the uniform distribution over GN is compu-
tationally infeasible [16]. To construct an IBE scheme, we first design a PKE
scheme where the ciphertext is (�gr�N2 , �hr · (1 + N)M�N2). Now the element g
is a generator of the subgroup GN instead of G. If h is a uniform and random
element in GN , the scheme is proven secure by DCR assumption. The resulted
IBE scheme is as: C = (�gr�N2 , �H(ID)r · (1 + N)M�N2) and dID = x where
gx = H(ID). But the problem arises that it seems not possible to solve the
discrete logarithm of H(ID) with a trapdoor if we simply hash onto the cyclic
group GN , since the order of this group is a multiplication of two primes, which
ensures that discrete logarithm problem is evidently hard. So as to potentially
use the underlying structure of group itself to help us reverse the secret x, we
define a DL-solvable set Gs := {[g(1+N)]1, [g(1+N)]2, ..., [g(1+N)]

N−1
4 } where

�g(1 + N)�N2 is a generator of G. First observe that it is solvable by the master
secret key owner as he/she can cancel out the gα term. Furthermore, if we lift
this set up to N -th power, the 1+N part of each element vanishes. We hence give
a IBE construction: (�gNr�N2 , �H(ID)Nr · (1 + N)M�N2) assuming the existence
of hash function H : {0, 1}∗ → Gs.

Both of our constructions over the group Z
∗
N2 rely on a security proof in the

random oracle model. In an IBE security game, the simulator should answer the
key extraction queries without the factorization of the modulus. We mainly take
advantage of the programmability of RO to resolve this problem.

We also give a generic way to construct a selectively secure IBE starting with
DDH group with a DL-solvable subgroup [11] in the standard model assuming
the existence of iO and puncturable PRF. The new aspect of our iO-based
construction is our instantiation of the hash function for any identity ID where a
PRF is applied to a fixed-length identity to get a pseudorandomness value which
is corresponding to a secret exponent of a public element in the DL-solvable set.

2 Preliminaries

In what follows we will denote with κ ∈ N a security parameter. We denote by
negl(·) a function negligible in some parameter. We write x ← X for sampling x
from the set X uniformly at random. [N ] denotes a set {1, 2, . . . , N} where N is
a positive integer and �·�n stands for an integer modulo n. We denote by U(S)
the uniform distribution on a finite set S. If two distributions X,Y are taken
values from a same finite set Ω, the statistical distance Δ(X,Y ) of distributions
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X and Y is defined as:

Δ(X,Y ) =
1
2

∑

ω∈Ω

|Prx←X [x = ω] − Pry←Y [y = ω]| .

Below we recall the notions of some cryptographic primitives. For lack of space,
we leave the definition of indistinguishability obfuscation and puncturable pseu-
dorandom functions in Appendix A.

2.1 DDH Group with a DL-Solvable Subgroup

The formal definition of DDH group with an easy DL subgroup was initiated
by Castagnos and Laguillaumie [11]. We slightly modify their definition below
by adding a new assumption named sDDH which was already considered in the
context of the group Z

∗
N2 [8]. Please refer to [11] for more details.

Definition 1. We define a DDH group with a DL-solvable subgroup as a pair
of algorithms (Gen,Solve). The Gen algorithm is a group generator which takes
as input two parameters λ and μ and outputs a tuple (B,n, p, s, g, f,G, F ). The
integers B,n, p and s are such that s is a λ-bit integer, p is a μ-bit integer,
gcd(p, s) = 1, n = p · s and B is an upper bound for s. The set (G, ·) is a
cyclic group of order n generated by g, and F ⊂ G is the subgroup of G of
order p and f is a generator of F . The upper bound B is chosen such that the
distribution induced by {gr, r ← {0, . . . , Bp−1}} is statistically indistinguishable
from U(G). We assume that: The DL problem is easy in F . The Solve algorithm
is a deterministic polynomial time algorithm that solves the discrete logarithm
problem in F . Especially, the small DDH (sDDH) problem is hard in G given
access to the Solve algorithm. That is:

∣∣∣∣∣∣∣
Pr

⎡

⎢⎣
(B,n, p, s, g, f,G, F ) ← Gen(1λ, 1μ), x, z ← Zn, y ← Zp,

b = b∗ :X = gx, Y = gy, b ← {0, 1}, Z0 = gz, Z1 = gxy,

b∗ ← A(B, p, g, f,G, F,X, Y, Zb,Solve(·))

⎤

⎥⎦ − 1
2

∣∣∣∣∣∣∣

is negligible for all probabilistic polynomial time adversary A.

2.2 Identity-Based Encryption

Definition 2 (Identity-Based Encryption (IBE) [6]). An identity-based
encryption scheme with message space M consists of four algorithms
(Setup,Extract,Enc,Dec):

• Setup(1κ): outputs public parameters params and a master secret key msk.
• Extract(msk, ID): outputs the secret key dID for identity ID.
• Enc(params, ID,M): outputs a ciphertext C.
• Dec(C, dID): outputs message M encrypted in C.
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The correctness of the scheme requires that when dID = Extract(msk, ID), then
the following holds:

∀M ∈ M : Dec(Enc(params, ID,M), dID) = M

Definition 3 (IND-ID-CPA Security). We say that an IBE scheme Π is
semantically secure against an chosen plaintext attack (IND-ID-CPA) if every
PPT adversary A has an advantage negligible in κ in the following game:
Setup: A challenger runs the Setup algorithm. It gives A the resulting public
parameters params and keeps the corresponding master secret key msk.
Phase 1: A issues private key extraction queries ID1, . . . , IDm. The challenger
responds by running algorithm Extract to generate the private key di correspond-
ing to identity IDi. It sends di to A. These queries may be asked adaptively.
Challenge: A outputs two equal length messages M0,M1 and an identity ID∗

which has not been queried in Phase 1. The challenger picks a random bit b and
returns to A the challenge ciphertext C∗ = Enc(params, ID∗,Mb).
Phase 2: A issues more extraction queries IDm+1, . . . , IDn where IDi �= ID∗.
The challenger responds as in Phase 1.
Guess: Finally, A outputs a guess b′ ∈ {0, 1} and wins the experiment if b′ = b.

A selective-identity (IND-sID-CPA security) game is defined by modifying the
above definition to force the adversary to announce the challenge identity ID∗

before the Setup stage. We define the advantage of A against the IBE scheme
Π as

∣∣Pr[b′ = b] − 1
2

∣∣.

3 Background on Z
∗
N 2

The group Z
∗
N2 was introduced by Paillier to construct efficient public key

encryption schemes and digital signatures. In our setting, we need the modu-
lus to be a little different, i.e., the prime factors of N are safe primes. In this
section, we will mostly follow the notation and description from [8] except some
minor changes.

Let N = pq be an RSA modulus, and p, q are safe primes, i.e. p = 2p′ +
1, q = 2q′ + 1, where p′, q′ are also primes. Such a modulus will be called a
strong modulus in the remaining part. We will denote by λ(N) the Carmichael’s
function, i.e. λ(N) = lcm(p − 1, q − 1). We denote by SP(κ) the sets of safe
primes of length κ. Consider the subgroup QRN2 of Z∗

N2 , it’s the cyclic group
of quadratic residues modulo N2. From now on, we denote this subgroup by
G. We denote by GN the subgroup of N -th power residues of G. We have that
λ(N) = 2p′q′, and the order of group G is |G| = λ(N2)/2 = Nλ(N)/2 = pqp′q′,
the order of its subgroup GN is |GN | = p′q′.

3.1 The Partial Discrete Logarithm Problem

Let g be a generator of G. Suppose that �gλ(N)�N2 = (1 + N). We will assume
such a generator g w.l.o.g for computational simplicity in the remaining article.
Such a g can be obtained with the help of the factorization of N .
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Proposition 1 (Existence of g). For a strong modulus N , there exists a gen-
erator g of G with �gλ(N)�N2 = (1 + N).

Proof. We can sample g as g′a · (1 + N)b where g′ is a generator of GN , a ←
[p′q′] and b ∈ Z

∗
N is computed as b = �λ(N)−1�N = �(2p′q′)−1�N known the

factorization of N . Specifically, g′ can be sampled by x ← Z
∗
N2 and raising

up to �x2N�N2 . The so obtained g satisfies: �gλ(N)�N2 = �(1 + N)bλ(N)�N2 =
(1 + N)�λ(N)−1·λ(N)�N = 1 + N . �
The following assumption posits the hardness of solving the partial discrete log-
arithm [19] of an element in G without knowing the factorization of a strong
modulus N :

Definition 4 (Partial Discrete Logarithm (PDL) over Z
∗
N2). For every

probabilistic polynomial time algorithm A, there exists a negligible function
negl(·) such that:

Pr

⎡

⎣A(N, g, h) = �a�N

∣∣∣∣∣∣

p, q ← SP(κ);N = pq;
g ← G; a ← [|G|];

h = �ga�N2

⎤

⎦ = negl(κ).

Paillier illustrated a way of solving the PDL problem if the factorization of
N is provided:

Suppose we have h = ga, to extract �a�N from h, we can do:

1. Compute C = �hλ(N)�N2 = �(1 + N)a�N2 = �(1 + aN)�N2 ;
2. Return the integer (C − 1)/N .

We will use this algorithm to extract private keys in our IBE schemes.

3.2 The Decisional Diffie-Hellman Problem over Z
∗
N 2

We state the Decisional Diffie-Hellman Assumption (DDH) over group Z
∗
N2 .

Definition 5 (DDH Assumption over Z
∗
N2). For every probabilistic polyno-

mial time algorithm A, there exists a negligible function negl(·) such that:

Pr

⎡

⎢⎢⎣
A(N, g,X, Y,

Zb) = b

∣∣∣∣∣∣∣∣

p, q ← SP(κ);N = pq;
g ← G;x, y, z ← [|G|];

X = �gx�N2 ;Y = �gy�N2 ;
Z0 = �gz�N2 ;Z1 = �gxy�N2 ;

b ← {0, 1};

⎤

⎥⎥⎥⎥⎦
− 1

2
= negl(κ).
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3.3 The Small Diffie-Hellman Problem over Z
∗
N 2

Actually, we will use a variant of the Diffie-Hellman Problem proposed by
Bresson et al. [8]. That is, given a pair (A,B) = (ga, gb) when b is relatively
small (b ∈ ZN ), to distinguish C = �gab�N2 from a random element in G.

The Small Decisional Diffie-Hellman Assumption (sDDH) is formalized as
follows:

Definition 6 (Small-DDH Assumption over Z
∗
N2). For every probabilistic

polynomial time algorithm A, there exists a negligible function negl(·) such that:

Pr

⎡

⎢⎢⎣
A(N, g,X, Y,

Zb) = b

∣∣∣∣∣∣∣∣

p, q ← SP(κ);N = pq;
g ← G;x, z ← [|G|]; y ← ZN ;
X = �gx�N2 ;Y = �gy�N2 ;

Z0 = �gz�N2 ;Z1 = �gxy�N2 ;
b ← {0, 1};

⎤

⎥⎥⎥⎥⎦
− 1

2
= negl(κ).

3.4 DCR Assumption and Underlying Group Structure

Definition 7 (The Decisional Composite Residuosity (DCR) assump-
tion). Let N = pq be a strong modulus. Consider the finite sets:

P := {y = �xN�N2 | x ← Z
∗
N}

Z
∗
N2 = {z = �(1 + N)yxN�N2 | x ← Z

∗
N , y ← ZN}

The DCR assumption posits that for any probabilistic polynomial time adversary
A, the advantage

AdvDCR
A =

∣∣Pr[A(x,N) = 1 | x ← P ] − Pr[A(x,N) = 1 | x ← Z
∗
N2 ]

∣∣

is negligible.

If N is a strong modulus, we can decompose Z
∗
N2 as an internal direct product:

Z
∗
N2

∼= GN · GN ′ · G2 · T

where each group Gτ is a cyclic group of order τ , and T is the subgroup {−1, 1}.
This decomposition is unique, except for the choice of G2. Note that the element
(1+N) has order N in Z

∗
N2 , i.e. it generates GN , and that �(1+N)a�N2 = 1+aN

for 0 ≤ a < N . Observe that P = GN ′G2T, G = GNGN ′ and GN = GN ′ . So
G = GN × 〈1 + N〉.

Note that in the setting above, the DCR assumption implies that the uni-
form distributions over GN and G, are computationally indistinguishable. This
is exactly what we base the security of our second IBE scheme on.
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4 Constructions of Identity-Based Encryption

4.1 IBE Under sDDH Assumption Over Z
∗
N 2

Our first scheme can be viewed as an IBE variant of the classical ElGamal
cryptosystem. Let g be a generator of G. In the scheme, the encryptor needs
to sample a uniform randomness from the set

[|G|], but we cannot publish |G|
as it gives a way to factor modulus N . Fortunately, we could sample uniformly
from another set

[�N2/4�]. It’s easy to see that Δ
(
U(

[|G|]), U(
[�N2/4�])) =

1 − 4p′q′/pq = (p + q − 1)/pq < 1/p + 1/q = O(1/2κ). We denote Gs as the set
{g1, g2, . . . , gN−1}. We use hash function H : {0, 1}∗ → Gs that maps identities
to the subset Gs of quadratic residues. The message space is G.

– Setup(1κ) → params
1. p, q ← SP(κ), N = pq, msk = λ(N).
2. Output params = {N, g,H}, where H : IDspace → Gs is a hash function.

– Extract(msk, ID) → dID

1. Output dID = �H(ID)λ(N)�N2−1

N .
– Enc(params, ID,M) → C

1. Randomly pick r ← [�N2/4�].
2. Compute C = (�gr�N2 , �H(ID)r · M�N2).

– Dec(C, dID) → M
1. Parse C as (C1, C2).
2. Output M = C2/CdID

1 .

Possibility of Hashing into Gs. The main difficulty to implement the scheme
resides in hashing an arbitrary length bitstring into the set Gs. If the output
value of the hash function deviates from this set, the decryption algorithm of
the scheme won’t work. Here we show a possible way to hash into the target set.

Firstly, a collision-resistant hash function H : {0, 1}∗ → {0, 1}� is applied
to the identity to map into an intended length �, which is a polynomial of the
security parameter κ. Then we can embed in the Setup algorithm the following
process: pick ai,0, ai,1 ← Z	N/�� for i = 1, . . . , � and then publish gai,0 , gai,1 as
part of the description2 of the hash function H. The hash function takes as input
an arbitrary identity and is defined as: H(ID) =

∏�
i=1 gai,H(ID)i , where H(ID)i

denotes the i-th bit of an �-bit string H(ID).
Note that the above hash function perfectly maps an identity into our target

subset Gs. Also, we only give a way to hash into the target subset of the whole
group, rather than propose a candidate hash function for RO. Indeed, random
oracle model is only a heuristic way to prove the security of a scheme and it may
cause security concerns to instantiate a random oracle in the real world using
any concrete hash function [17].

Next, we study the security of this scheme.

2 Note that since � is a polynomial of the security parameter κ, but N is exponentially
large, a brute force may not be possible to retrieve ai ∈ Z�N/�� from gai . For instance,
practically � = 80, N = 21024.
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Theorem 1. The scheme above is IND-ID-CPA under the Small Decisional
Diffie-Hellman Assumption in Z

∗
N2 , in the random oracle model.

Proof. Let H : {0, 1}∗ → Gs be a hash function viewed as a random oracle.
Suppose A is an adversary attacking our scheme and has success probability ε.
We construct an algorithm B that solves the sDDH problem in Z

∗
N2 . Initially,

B is given a random tuple (N, g,X = gx, Y = gy, Z) where x ← [|G|], y ←
ZN ,Z = �gxy�N2 or Z ← G. B aims to output 1 if Z = �gxy�N2 and 0 otherwise.

1. B sets params = {N, g,H} and gives it to AExtractmsk(·),H(·). That is, A has
oracle access to Extractmsk(·) and H(·), it may issue private key extraction
and hash queries, after what it decides a target identity ID∗ to attack, and
outputs two equal-length messages M0,M1 ∈ G.

2. Upon receiving ID∗ from A:
– if H(ID∗) = Y , then

(a) Choose b ← {0, 1}, compute C∗ = (X, �Z · Mb�N2) and send it to A.
(b) AExtractmsk(·),H(·) may issue more queries, with the restriction that it

cannot ask for Extractmsk(ID∗), after what it returns its guess b′.
(c) if b′ = b, return 1; otherwise return 0.

– if H(ID∗) �= Y then return a random bit and abort.

Next, we show how B simulates answers to A’s oracle queries. B maintains a
list L[H] with a tuple of the form (·, ·, ·) per row. It is initialized to ∅. Let qH be
the number of hash queries. B chooses a random i∗ ∈ {1, 2, . . . , qH}.

Hash Queries. When A’s j-th query on some ID is requested, B checks if there
is an entry of the form (ID, h, a) in L[H]; If so, it returns h. Otherwise, if j = i∗,
define hj = Y and add entry (ID, hj ,⊥) to L[H]. Else, B chooses random aj ∈ ZN ,
and computes h = �gaj �N2 , then it appends (ID, hj , aj) to L[H] and returns hj

to A.

Extraction Queries. When A queries key extraction oracle on some ID, B
checks if there is an entry of the form (ID, h, a) in the list. If not, it calls H(ID)
so that there is an entry. If a �= ⊥, then B returns a. Otherwise, it returns ⊥.

We establish two equations to analyze the success probability of B in solving
the sDDH challenge.
We have that:

Pr[ B(N, g,X, Y, Z) = 1 |Z = �gxy�N2 ]
= Pr[ Y = H(ID∗) ] · Pr[ B(N, g,X, Y, Z) = 1 |Z = �gxy�N2 ∧ Y = H(ID∗) ]

+ Pr[ Y �= H(ID∗) ] · Pr[ B(N, g,X, Y, Z) = 1 |Z = �gxy�N2 ∧ Y �= H(ID∗) ]

=
1

qH
· ε + (1 − 1

qH
) · 1

2
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similarly,

Pr[ B(N, g,X, Y, Z) = 1 |Z ← G ]
= Pr[ Y = H(ID∗) ] · Pr[ B(N, g,X, Y, Z) = 1 |Z ← G ∧ Y = H(ID∗) ]

+ Pr[ Y �= H(ID∗) ] · Pr[ B(N, g,X, Y, Z) = 1 |Z ← G ∧ Y �= H(ID∗) ]

=
1

qH
· 1
2

+ (1 − 1
qH

) · 1
2

Thus we have:
∣
∣
∣Pr

[ B(N, g, X, Y, Z) = 1 | Z = �gxy�N2
] − Pr

[ B(N, g, X, Y, Z) = 1 | Z ← G
]
∣
∣
∣

=
1

qH

∣
∣
∣
∣
ε − 1

2

∣
∣
∣
∣

By the sDDH assumption in Z
∗
N2 , it must be negligible. Therefore |ε − 1

2 | is
negligible too, which shows that the scheme is IND-ID-CPA. �

4.2 IBE Under DCR Assumption

Next we show a more delicate scheme which can be proved secure under Paillier’s
Decisional Composite Residuosity (DCR) assumption. As far as we are concerned,
it is the first IBE scheme yielded by DCR assumption.

– Setup(1κ) → params
First sample x ← Z

∗
N2 and compute3 g = �x2N�N2 . Let h = �g(1 + N)�N2.

We denote Gs as the set {h1, h2, . . . , h
N−1

4 }. We use a hash function H :
{0, 1}∗ → Gs that maps identities to the subset Gs of quadratic residues.
Define H′(ID) := �H(ID)N�N2 . The public parameters and the master secret
key are given by:
params = {N, g,H′}, msk = {λ(N)}. The message space is ZN .

– Extract(msk, ID) → dID
Suppose hID = H(ID) = [g(1 + N)]a (a ∈ [

N−1
4

]
).

1. Compute a′ = h
λ(N)
ID = �(1 + N)aλ(N)�N2 .

2. dID = a′−1
N · �λ−1(N)�N .

That is, if H(ID) = �[g(1 + N)]a�N2 for some a ∈ [
N−1
4

]
, we extract a as dID.

– Enc(params, ID,M) → C
1. Randomly pick r ← [

N−1
4

]
.

2. Compute C = (�gNr�N2 , �H′(ID)r · (1 + N)M�N2).
– Dec(C, dID) → M

1. Parse C as (C1, C2).
2. Output M =

(
�C2/CdID

1 �N2 − 1
)

/N .

3 Observe that g generates the 2N -th power residue subgroup of Z
∗
N2 , namely GN

w.h.p: the probability that g is not a generator is p′+q′−1
p′q′ ≤ 1

p′ + 1
q′ .
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Possibility of Hashing into Gs. Like our first IBE scheme, it seems hard to even
map into the intended set Gs. We give a similar function to resolve this problem.

First, apply a collision-resistant hash function H : {0, 1}∗ → {0, 1}� to the
input identity. We embed in the Setup algorithm the following process:

Let g be a generator of GN and h = �g(1+N)�N2 . Randomly pick ai,0, ai,1 ←
Z	(N−1)/4�� for i = 1, . . . , � and then publish hai,0 , hai,1 as part of the description
of the hash function H. The hash function takes as input an identity and is
defined as: H(ID) =

∏�
i=1 hai,H(ID)i , where H(ID)i denotes the i-th bit of an �-bit

string H(ID).

Theorem 2. The scheme above is IND-ID-CPA under the Decisional Composite
Residuosity Assumption, in the random oracle model.

Proof. Let H′ : {0, 1}∗ → GN
s be a hash function viewed as a random oracle.

Suppose A is an adversary attacking our scheme and has success probability ε.
We construct an algorithm B(N,Y ) that solves the DCR problem in Z

∗
N2 . B’s

goal is to output 1 if Y ← GN and 0 if Y ← G.

1. B chooses a random element x ∈ Z
∗
N2 and computes g = �x2N�N2 . It is

easy to see that g generates GN with all but a negligible probability. It sets
params = {N, g,H′} and gives it to AExtractmsk(·),H′(·). That is, A has oracle
access to Extractmsk(·) and H′(·), it may issue extraction and hash queries,
after what it decides a target identity ID∗ to attack, and outputs two equal-
length messages M0,M1 ∈ ZN .

2. Upon receiving ID∗ from A:
– if H′(ID∗) = Y , then

(a) Choose a random bit b, r ← [N−1
4 ], compute C∗ = (�gNr�N2 , �Y r ·

(1 + N)Mb�N2) and send it to A.
(b) AExtractmsk(·),H′(·) may issue more extraction and hash queries, with the

restriction that it cannot ask for Extractmsk(ID∗), after what it returns
its guess b′.

(c) if b′ = b, return 1; otherwise return 0.
– if H′(ID∗) �= Y then return a random bit and abort.

Next, we show how B simulates answers to A’s oracle queries. B maintains a list
L[H′] with a tuple of the form (·, ·, ·) per row. It is initialized to ∅. Let qH be the
number of hash queries. B chooses a random i∗ ∈ {1, 2, . . . , qH}.

Hash Queries. When A’s j-th query on some ID is requested, B checks if there
is an entry of the form (ID, h, a) in L[H′], especially with a �= ⊥; If so, it returns
h. Otherwise, if j = i∗, define hj = Y and add entry (ID, hj ,⊥) to L[H′]. Else,
B chooses aj ← [N−1

4 ], and computes hj = �gaj �N2 , then it appends (ID, hj , aj)
to L[H′] and returns hj to A.

Extraction Queries. When A queries key extraction oracle on some ID, B
checks if there is an entry of the form (ID, ·, ·) in the list. If not, it calls H′(ID)
so that there is an entry. If aj �= ⊥ in the corresponding entry, then B returns
aj . Otherwise, it returns ⊥.
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We analyze the success probability of B in solving the DCR challenge. There are
three cases here (we omit the modulo operation for visually comfort):

– case 1: Y = H′(ID∗) ∈ GN . It’s implicit that in this case ID∗ is exactly A’s i∗-
th query to H′. Moreover, the challenge ciphertext C∗ = (gNr, Y r ·(1+N)Mb)
is perfectly simulated because H′(ID∗) ∈ GN . To summarize, B returns 1
when A wins in the IND-ID-CPA game, as long as no abort happens. That is,
Pr[ B(N,Y ) = 1 | Y ∈ GN ∧ Y = H′(ID∗) ] = ε.

– case 2: Y = H′(ID∗) ∈ G. In this case, we can represent Y as gr′
(1 +

N)r′′
where r′ ← [p′q′] and r′′ ← ZN and C∗ := (gNr, grr′

(1 + N)rr′′+Mb).
Apparently, the second part of C∗ acts like an “one-time pad” of the message
Mb, so the whole ciphertext is independent of the choice of b. Pr[ B(N,Y ) =
1 | Y ∈ G ∧ Y = H′(ID∗) ] = 1

2 .
– case 3: Y �= H′(ID∗). In this case, B guesses the wrong ID that A attempts

to attack and returns a random bit. Thus, Pr[ B(N,Y ) = 1 | Y ∈ GN ∧ Y �=
H′(ID∗) ] = Pr[ B(N,Y ) = 1 | Y ∈ G ∧ Y �= H′(ID∗) ] = 1

2 .

Therefore, we have that:

Pr[ B(N,Y ) = 1 |Y ∈ GN ]
= Pr[ Y = H′(ID∗)] · Pr[ B(N,Y ) = 1 |Y ∈ GN ∧ Y = H′(ID∗) ]

+ Pr[ Y �= H′(ID∗)] · Pr[ B(N,Y ) = 1 |Y ∈ GN ∧ Y �= H′(ID∗) ]

=
1

qH
· ε + (1 − 1

qH
) · 1

2

similarly,

Pr[ B(N,Y ) = 1 |Y ∈ G ] =
1

qH
· 1
2

+ (1 − 1
qH

) · 1
2

Thus we have:
∣
∣
∣Pr[ B(N, Y ) = 1 | Y ∈GN ] − Pr[ B(N, Y ) = 1 | Y ∈G ]

∣
∣
∣ = 1

qH

∣
∣ε − 1

2

∣
∣,

which is negligible due to the DCR assumption. This indicates that |ε − 1
2 | is

negligible too. So the scheme is IND-ID-CPA under the DCR assumption. �

5 Generic Construction of Selectively Secure IBE

Starting with a DDH group with a DL-solvable subgroup, we can build a generic
IBE scheme with the help of iO and PPRF.

– Setup(1κ):
1. Run Gen(1λ, 1μ) → (B,n, p, s, g, f,G, F ). msk := s.
2. Choose a puncturable PRF key K for F where F (K, ·) : {0, 1}�(κ) → Zp.

Then create an obfuscation of the program G1 (Fig. 1). The size of the
program is padded to be max{|G1|, |G2|}. We refer to the obfuscated
program as the hash function H : {0, 1}� → Gs. Define the DL-solvable
set as Gs := {g1, g2, . . . , gp−1}.

3. Output params = {B, p, g, f,G, F,H}, where H : IDspace → Gs is a hash
function.
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Input: Identity ID
Constants: PRF keyK,g

1. Compute a = F (K, ID).
2. Output ga.

Fig. 1. Program G1

– Extract(msk, ID):
1. First run Solve(B, p, g, f,G, F,H(ID)s) and denote by a the output.
2. Then run Solve(B, p, g, f,G, F, gs) and the output is saved as b.
3. Output dID = a · �b−1�p.

– Enc(params, ID,M):
1. Randomly pick r ← {0, . . . , Bp − 1}.
2. Compute C = (gr,H(ID)r · M).

– Dec(C, dID):
1. Parse C as (C1, C2).
2. Output M = C2/CdID

1 .

Correctness. The decryption correctness relies on the functionality of Extract
algorithm. This follows by the fact that the hash function maps an identity into
the DL-solvable set and retrieving the discrete logarithm of H(ID) through the
algorithm Extract is correct with s as an input. To elaborate, first note that
for all h ∈ Gs, hs ∈ F . By the correctness of Solve(B, p, g, f,G, F, gs) we get a
b ∈ Zp through the equation gs = f b. Suppose H(ID) = gt for an integer t < p.
Similarly, we can get a by another execution of Solve(B, p, g, f,G, F,H(ID)s)
such that gts = fa. The above indicates that f bt = fa, then t ≡ a · �b−1�p.

Input: Identity ID
Constants: Punctured PRF key K({ID∗}), ID∗ ∈ {0, 1}�, g, gy∗

where y∗ ∈ Zp

1. If ID = ID∗, output gy∗
.

2. Else output ga where a = F (K({ID∗}), ID).

Fig. 2. Program G2

Theorem 3. If the obfuscation scheme is indistinguishably secure, F is a secure
puncturable PRF, and the Small Decisional Diffie-Hellman assumption holds in
G, the IBE scheme above is IND-sID-CPA.

Proof. We give a formal proof in Appendix B. �
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6 Conclusion

In this paper, we provide two efficient IBE schemes which rely on pairing-free
number-theoretic assumptions. The ciphertext is comprised of two group ele-
ments and the main cost of an encryption operation is only 2 modular exponen-
tiations. Although the security proof relies on the random oracle techniques, the
new constructions provide a fresh idea of utilizing specific algebraic structure.
We believe that similar structures could be found in further investigations. More-
over, we provide a generic construction of selectively secure IBE in the standard
model.
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A Preliminaries (Cont’d.)

A.1 Indistinguishability Obfuscation

We present the formal definition following the syntax of Garg et al. [14]:

Definition 8 (Indistinguishability Obfuscation (iO)). A uniform PPT
machine iO is called an indistinguishability obfuscator for a circuit class {Cκ} if
the following holds:

– (Correctness:) For all security parameters κ ∈ N, C ∈ Cκ, and inputs x:

Pr[C ′(x) = C(x) : C ′ ← iO(κ,C)] = 1.

– (Indistinguishability:) For any (not necessarily uniform) PPT distin-
guisher (Samp, D), there exists a negligible function negl such that the follow-
ing holds: if Pr[∀x, C0(x) = C1(x); (C0, C1, σ) ← Samp(1κ)] ≥ 1 − negl(κ),
then:

|Pr[D(σ, iO(κ,C0)) = 1 : (C0, C1, σ) ← Samp(1κ)]
−Pr[D(σ, iO(κ,C1)) = 1 : (C0, C1, σ) ← Samp(1κ)]| ≤ negl(κ).

A.2 Puncturable Pseudorandom Functions

Below we recall the definition of puncturable PRFs, as given by Sahai et al. [20]:

Definition 9. A puncturable family of PRFs F is given by a triple of Turing
machines Key,Puncture,Eval, and a pair of computable functions n(·) and m(·),
satisfying the following conditions:
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– (Functionality preserved under puncturing). For every PPT adversary
A such that A(1λ) outputs a set S ⊆ {0, 1}n(κ), then for all x ∈ {0, 1}n(κ)

where x /∈ S, we have that:

Pr[Eval(K,x) = Eval(KS , x) : K ← Key(1κ),KS = Puncture(K,S)] = 1.

– (Pseudorandom at punctured points). For every PPT adversary
(A1,A2) such that A1(1κ) outputs a set S ⊆ {0, 1}n(κ) and x ∈ S, con-
sider an experiment where K ← Key(1κ) and KS = Puncture(K,S). Then we
have

|Pr[A2(KS , x,Eval(K,x)) = 1] − Pr[A2(KS , x, Um(κ)) = 1]| ≤ negl(κ),

where Um(κ) denotes the uniform distribution over m(κ) bits.

B Proof of Theorem 3

We begin by given a sequence of games played between a challenger and an
adversary.

– Game0:
1. The adversary selectively gives the challenger the identity ID∗.
2. The public parameters params are chosen by the challenger invoking

Gen(1κ).
3. K is chosen as a key for the PPRF.
4. The hash function H(·) is created as an obfuscation of the program G1.
5. The adversary queries the key extraction oracle a polynomial number of

times on ID �= ID∗. It receives back F (K, ID). Once this phase is end, the
adversary gives two equal length messages m0,m1.

6. The challenger chooses a random bit b ∈ {0, 1}, r ← {0, . . . , Bp − 1} and
outputs C∗ = (gr,H(ID∗)r · mb).

7. The adversary receives C∗ and could still issue key extraction queries
for polynomial times with the same restriction that ID �= ID∗, finally it
outputs b′ as its guess of b.

8. If b′ = b, the game outputs 1, else outputs 0.
– Game1: Is the same as Game0 except that y∗ = F (K, ID∗) and the hash

function H(·) is replaced by an obfuscation of the program G2 (Fig. 2).
– Game2: Is the same as Game1 except that y∗ ← Zp.
– Game3: Is the same as Game2 except that the challenge ciphertext C∗ is

computed as (gr, gr′ ·mb) where r′ ← {0, . . . , Bp−1} is chosen independently
of r.

We establish the following lemmas and they together yield Theorem 3 that
the so obtained IBE scheme is selectively secure.

Lemma 1. If the obfuscation scheme is indistinguishability secure, then the
advantage of any PPT adversary is negligibly close between Game0 and Game1.
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Proof. We set up two algorithms Samp and D:
Samp(1κ) runs the adversary to obtain ID∗ and its state τ ′. It then invokes

Gen(1κ) to obtain params and msk. It chooses K as the key for PPRF. It sets
y∗ = F (K, ID∗) and τ = (ID∗, params,msk,K, τ ′). It builds C1 as the program
for G1, and C2 as the program for G2.

D takes as input τ and an obfuscation of a circuit C1 or C2. When the
adversary makes a key extraction query on ID �= ID∗, D use the K within τ to
return F (K, ID). Once the adversary gives two equal length messages m0,m1, D
chooses a random bit b and constructs challenge ciphertext C∗ = (gr,H(ID∗)r ·
mb). Eventually, the adversary sends a bit b′ and wins the game if b′ = b. D
outputs 1 if the adversary wins.

Observe that if D receives an obfuscation of C1, the probability D outputs 1
is equal to the probability of the adversary winning in Game0. And if D receives
an obfuscation of C2, the probability D outputs 1 is equal to the probability of
the adversary winning in Game1. Then the lemma follows. �
Lemma 2. If the punctured PRF is secure, then the advantage of any PPT
adversary is negligibly close between Game1 and Game2.

Proof. In order to reduce this lemma to the property of PPRF’s pseudorandom-
ness at the punctured points, we give the algorithms A1 and A2.

A1(1κ) runs the adversary to obtain ID∗ and its state τ ′, then it outputs the
set S = {ID∗}.

A2 obtains S = {ID∗}, K({ID∗}) = Puncture(K, ID∗), and either a value
y∗ = F (K, ID∗) or a uniformly random y∗ ∈ Zp. A2 runs Gen(1κ) to obtain
params, then it can get gy∗

. This value corresponds to exactly the gy∗
value

in Game1 if y∗ = F (K, ID∗) or in Game2 if y∗ ← Zp. A2 can then obfuscate
the program G2 and answer the key extraction queries from the adversary since
it knows K({ID∗}). The obfuscated program is modeled as a hash function H.
When the adversary gives two equal length messages m0,m1, A2 chooses a bit b
uniformly at random and constructs challenge ciphertext C∗ = (gr,H(ID∗)r ·mb).
The adversary may issue more key extraction queries of ID �= ID∗, and A2 answers
them in a similar way. Eventually, the adversary sends a bit b′ and wins the game
if b′ = b. A2 outputs 1 if the adversary wins.

By our construction, the lemma follows. �
Lemma 3. If sDDH assumption holds in group G, then the advantage of any
PPT adversary is negligibly close between Game2 and Game3.

Proof. To prove this lemma, we establish a distinguisher D. D takes as input a
tuple (B, p, g, f,G, F,X, Y, Z,Solve(·)) where X = gx, Y = gy for x ← Zn, y ←
Zp. The target of D is to output 1 if Z = gxy or 0 if Z = gz, for z ← Zn.

Next the distinguisher D invokes the adversary to get ID∗, chooses a PRF key
K and computes K({ID∗}) itself. It then can obfuscate the program G2 through
its knowledge of K({ID∗}), ID∗, g, Y . The obfuscated program is modeled as a
hash function H. It sends params = {B, p, g, f,G, F,H} to the adversary. When
the adversary issues a key extraction query of ID �= ID∗, it uses K({ID∗}) to
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compute F (K({ID∗}), ID) and returns this value back. Once the adversary sends
a pair of equal length message m0,m1, it creates the ciphertext C∗ = (X,Z ·mb)
after flipping a random coin b and sends to the adversary. The adversary may
issue more key extraction queries of ID �= ID∗, and D answers them in a similar
way. By construction, there are two cases. If Z = gxy, the probability of D
outputting 1 is exactly the probability that the adversary succeeds in Game2.
On the other hand, if Z = gz for a uniformly random z ∈ Zn, the probability of
D outputting 1 is the probability that the adversary succeeds in Game3.

By sDDH assumption, the difference between these two probabilities must be
negligible. �
Lemma 4. The advantage of any PPT adversary in Game3 is negligible.

Proof. In Game3, the challenge ciphertext perfectly “hides” the message, espe-
cially regardless of choice of the bit b. The lemma follows. �
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Abstract. In this paper, we propose a new notion of multi-key homo-
morphic proxy re-encryption (MH-PRE) in which inputs of homomor-
phic evaluation are encrypted by different public keys and the evaluated
ciphertext is decrypted by a single secret key. We obtain it by adding
the re-encryption property of proxy re-encryption to multi-key homomor-
phic encryption (MHE). MHE, firstly proposed by López-Alt, Tromer and
Vaikuntanathan (STOC 2012), can perform homomorphic evaluations on
ciphertexts from different keys, but decrypting the output ciphertext of
the homomorphic evaluation requires all the secret keys associated to the
input ciphertexts. In order to decrypt the output ciphertext with a single
secret key, we introduce the notion of the re-encryption to MHE. In par-
ticular, we construct an MH-PRE scheme by applying the key switching
technique to the MHE scheme of Peikert and Shiehian (TCC 2016).

Keywords: Fully homomorphic encryption
Multi-key homomorphic encryption · Proxy re-encryption
Homomorphic Proxy Re-Encryption

1 Introduction

Fully Homomorphic Encryption (FHE) allows users to perform an arbitrary
computation on encrypted data only with public information. By using FHE,
the confidentiality of the users’ data can be maintained even if computations
are performed on an untrusted server. Such computations on encrypted data
are called homomorphic evaluation. After the breakthrough work of Gentry’s
blueprint [Gen09], many various FHE schemes have been proposed [DGHV10,
BV11a,BV11b,BGV12,GSW13]. Because of its characteristics, FHE is a useful
cryptographic concept for constructing cryptographic protocols such as outsourc-
ing computations to cloud servers without compromising privacy.

We consider the following typical situation of using FHE to outsource compu-
tations to a cloud server. Data providers upload to a cloud server their own data
encrypted by FHE. The cloud server performs a homomorphic evaluation for a
c© Springer Nature Switzerland AG 2018
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certain function on the received data, and passes the result of the evaluation to a
receiver. The receiver decrypts the ciphertext to obtain the result of the function
evaluation on the data from the data providers. This seems to be able to protect
the data providers’ private information. However, if the receiver obtains the input
ciphertexts (e.g., by colluding with or stealing the data from the server), he can
obtain the private information of the data providers by decrypting the obtained
ciphertexts. This is a serious problem in terms of confidentiality of the providers’
data. Moreover, if the receiver’s secret key leaks out, all the data encrypted by
the data providers also leaks out since all the input ciphertexts to the homomor-
phic evaluation must be under the same public key in ordinary FHE schemes.
To prevent these problems, we require an FHE scheme satisfying the following
two properties: (1) Each provider can encrypt his data under his own public key.
Even if secret keys of some providers are exposed, this property keeps the data
of other providers secret. (2) The receiver cannot decrypt providers’ original
ciphertexts. This property ensures that providers’ original data are kept secret
even though the receiver obtains the providers’ original ciphertext.

Multi-key Homomorphic Encryption (MHE) is first proposed by López-Alt
et al. [LTV12], and various schemes have been proposed [CM15,MW16,BP16,
PS16,CZW17]. MHE can perform homomorphic evaluations on ciphertexts
under different public keys. By using MHE in the situation described above,
each provider can encrypt his data with his own public key, which satisfies the
property (1), and the server can perform homomorphic evaluations on their
ciphertexts. However, to decrypt the evaluated ciphertext of MHE, we need to
know all the secret keys for the involved ciphertexts in the homomorphic evalu-
ation. Specifically, considering a ciphertext c1 and c2 under public key pk1 and
pk2 respectively, decrypting the resulting ciphertext c′ requires sk1 and sk2 cor-
responding to pk1 and pk2. To allow a receiver to know the evaluation result, the
data providers should share their secret keys with the receiver, or interactively
decrypt the evaluated ciphertext as threshold decryption protocols. As in the
case of using ordinary FHE, it is not desirable to share the secret keys since
they enable the receiver to decrypt the ciphertexts before the evaluation. In
the threshold decryption [LTV12,CM15,MW16,CZW17,BHP17], each user par-
tially decrypts every evaluated ciphertext using his own secret key and then the
receiver sums up the partial decryption results, so this increases computations
and interactions of the data providers and the receiver.

1.1 Our Results

In this paper, we propose a new notion of MHE where a resulting ciphertext from
homomorphic evaluation can be decrypted without secret keys for the involved
ciphertext in the evaluation. We call the proposed notion Multi-key Homomor-
phic Proxy Re-Encryption (MH-PRE), and obtain by adding to MHE the re-
encryption property of Proxy Re-Encryption (PRE) [ID03,AFGH06,PRSV17].
PRE can allow a proxy to re-encrypt a ciphertext encrypted under Alice’s pub-
lic key into one that can be decrypted by Bob’s secret key. The re-encryption
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requires a so-called re-encryption key generated from Alice’s secret information
and Bob’s public information.

As well as MHE, the proposed MH-PRE allows the providers to encrypt
his data with his own public key while enabling homomorphic evaluations on
the ciphertexts under the different public keys. Furthermore, by applying a re-
encryption to the evaluated ciphertext, the receiver can decrypt it only with
his own secret key. The re-encryption is done with re-encryption keys generated
by the providers and sent to the server in advance. This achieves the property
(2) described above, that is, the receiver cannot decrypt the providers original
ciphertexts since he does not know the secret keys for their ciphertexts. In addi-
tion, since the providers only generate the re-encryption keys and send them to
the cloud server, there is no interactive communication between the providers
and the receiver such as the threshold decryption.

Furthermore, we show an instantiation of MH-PRE by extending the MHE
scheme proposed by Peikert and Shiehian [PS16] and prove the IND-CPA secu-
rity defined in [PRSV17] for the proposed scheme. The extension is done by
applying the key switching technique of [BGV12], which allows us to change a key
required for decrypting a ciphertext. However, just applying the key switching
technique to the [PS16] scheme leads the flawed scheme that leaks information
on the providers’ secret keys. To avoid this problem, we add a modification to
a re-encryption algorithm so as not to leak the providers’ secret keys using the
property of decryption algorithm of [GSW13,PS16].

1.2 Technical Overview

In order to describe our scheme, consider the following situation. Let providers i
and j and a receiver k have their own key pair (pki, ski), (pkj , skj) and (pkk, skk),
respectively. The providers i and j encrypt their messages and send the cipher-
texts to a cloud server, which performs homomorphic evaluations on the cipher-
texts and re-encrypts the evaluated ciphertext to the receiver k. Before the re-
encryption begins, the provider i (resp. the provider j) generates a re-encryption
key rki→k (resp. rkj→k) from his own secret key ski (resp. skj) and the receiver’s
public key pkk, and sends the re-encryption key to the cloud server. Then, the
receiver k can decrypt the received ciphertext from the cloud server using only
his own secret key skk. The starting point of our MH-PRE scheme is the MHE
scheme of [PS16].

The MHE Scheme of [PS16]. A secret key sk of their scheme is t = (−t‖1) ∈
Z

n
q and a public key pk is B ∈ Z

n×m
q s.t. tB ≈ 0. A ciphertext is a triple of

matrices (C,F,D), which satisfies for the secret key t

tC ≈ μ(t ⊗ g), (1)

where μ is the plaintext and g := (1, 2, 4, . . . , 2�log q�−1). In order to per-
form homomorphic evaluations on ciphertexts under different public keys, C
is extended to C′ that satisfies Eq. (1) under t′ = (t‖t∗) ∈ Z

2n
q for an additional
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secret key t∗ without changing the plaintext. Here, (t‖t∗) means a concatenation
of t and t∗. In the considered situation, the ciphertexts Ci and Cj of providers i
and j are extended to C′

i and C′
j that satisfies Eq. (1) for the concatenated secret

key t′ = (ti‖tj). Then, the cloud server performs the homomorphic evaluations
on these extended ciphertexts and obtains the resulting ciphertext Cij , which
satisfies Eq. (1) for t′ = (ti‖tj).

Our MH-PRE Scheme. The provider i (resp. the provider j) generates a
re-encryption key rki→k (resp. rkj→k) from his own secret key ski = ti (resp.
skj = tj) and receiver’s public key pkk = Bk as follows:

rki→k := BkXi +
(

0(n−1)×n�

ti · (In ⊗ g)

)
.

The re-encryption key generation is the same as the generation of a key switch-
ing key in [BGV12]. If X is a random binary matrix, the re-encryption key is
considered as a ciphertext which encrypts the secret key ti under the public
key Bk. The following equation holds for the re-encryption key rki→k and the
receiver’s secret key skk = tk:

tk · rki→k ≈ ti · (In ⊗ g). (2)

This follows from the fact that the secret key satisfies tkBk ≈ 0, and its last
element is 1.

The cloud server uses rki→k and rkj→k received from each provider to re-
encrypt Cij into a ciphertext that can be decrypted only with skk. First, the
cloud concatenates the re-encryption keys to (rki→k‖rkj→k) so as to correspond
to the secret key t′ = (ti‖tj), then the following holds for (rki→k‖rkj→k) and tk:

tk(rki→k‖rkj→k) = (tkrki→k‖tkrkj→k)
≈ (ti · (In ⊗ g)‖tj · (In ⊗ g)) (from Equation (2))
= (ti‖tj) · (I2n ⊗ g).

The re-encryption is performed as follows:

C∗ := (rki→k‖rkj→k) · (I2n ⊗ g−1)[Cij ] ∈ Z
n×2n�
q .

Here, (I2n ⊗g−1) means an operation that satisfies (I2n ⊗g) · (I2n ⊗g−1)[Cij ] =
Cij . We see that C∗ is decrypted correctly only with skk = tk as:

tkC∗ = (ti‖tj) · (I2n ⊗ g) · (I2n ⊗ g−1)[Cij ]
= (ti‖tj) · Cij

≈ μ · ((ti‖tj) ⊗ g) (from Equation (1) holds for t′ and Cij).

However, this equation shows that the re-encrypted ciphertext C∗ leaks the
information on ti and tj to the receiver. In order to prevent the leakage on the
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secret keys, the server outputs the penultimate column c∗ of C∗ instead of all
columns of C∗. The MHE scheme [PS16] on which our scheme based uses only
a particular column (i.e. a penultimate column) of the ciphertext matrices to
decrypt, so it is obvious that we can decrypt correctly even if our re-encryption
algorithm only outputs c∗. By outputting only c∗ as a re-encrypted ciphertext,
it is not possible to re-encrypt any more. Therefore, our scheme can be seen
as a single-hop PRE scheme. Also for the same reason, it is not possible to
perform any homomorphic evaluation on the re-encrypted ciphertexts while it
can be performed any times before the re-encryption. However, our MH-PRE
scheme has enough functionality for the above situation since the receiver dose
not perform homomorphic evaluations on the received ciphertexts.

1.3 Related Work

Homomorphic Proxy Re-Encryption (H-PRE) [MLO16,DRS17] is a similar
notion to our MH-PRE. Our MH-PRE can be seen as the extend notion of
H-PRE. The extension is done by adding the multi-key property of MHE to
H-PRE. H-PRE also allows users to encrypt their data with their own key
and a receiver to decrypt the resulting ciphertexts from homomorphic evalu-
ations only with his secret key. It is obtained by applying PRE to FHE as
well as our scheme except we use MHE. When performing homomorphic eval-
uations, H-PRE first re-encrypts each ciphertext under different public keys to
the receiver’s public key. Then, we can perform the homomorphic evaluation
on the re-encrypted ciphertexts since the input ciphertexts of the homomorphic
evaluation are encrypted under the same public key now. In H-PRE, however,
there is a problem that the re-encryption must be done before the homomor-
phic evaluations. If we want to send a ciphertext of a computation result to
multiple receivers, we have to perform the same homomorphic evaluation on the
re-encrypted ciphertexts under each receiver’s public key.

2 Preliminaries

Notations. Let S be a set and P be a distribution over S. Then, a ← S repre-
sents that a ∈ S is chosen uniformly at random from S, and b ← P represents
that b ∈ S is sampled from P. For a function f , we say f(λ) = negl(λ) if f
is negligible in λ, and f(λ) = poly(λ) if f is polynomial in λ. PPT stands for
probabilistic polynomial time. G = (V,E) represents a graph comprising a set
V of vertices and a set E of edges.

In this paper, we use bold lower-case letters (e.g., a) to denote row vectors,
and bold upper-case letters (e.g., A) to denote matrices. We use the notation
(a‖b) to denote the concatenated vector of a and b. For an m×n matrix A, let
height(A) = m and width(A) = n.

Tensor Products. The tensor product A⊗B of an m1 × n1 matrix A and an
m2 × n2 matrix B, both over a commutative ring R, is the m1m2 × n1n2 matrix
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consisting of m2 × n2 blocks. The (i, j)-th block of the matrix A⊗B is ai,j ·B,
where ai,j denotes the (i, j)-th element of A. For any scalar r ∈ R, we have

r(A ⊗ B) = (rA) ⊗ B = A ⊗ (rB).

We use the mixed product property, which says that

(A ⊗ B) · (C ⊗ D) = (AC) ⊗ (BD)

for any matrices A,B,C and D with compatible dimensions. In particular, it
holds that

(A ⊗ B) = (A ⊗ Iheight(B)) · (Iwidth(A) ⊗ B)
= (Iheight(A) ⊗ B) · (A ⊗ Iwidth(B)).

Approximations. In this paper, we consider the noisy equations. We use the
notation ≈ to denote the equation including some additive error, and we always
show a bound on the magnitude of this error. For example,

x ≈ y (error E)

means that x = y + e for some error e ∈ [−E,E].

Learning with Errors. The Learning With Errors (LWE) assumption was
first introduced by Regev [Reg05]. The decision version of the LWE problem is
called the DLWE problem.

Definition 1 (DLWE). For a security parameter λ, let n = n(λ) be an integer
dimension, q = q(λ) ≥ 2 be a modulus and χ = χ(λ) be an error distribu-
tion over Z. The DLWEn,q,χ problem is the problem to distinguish the following
two distributions. For any s ← Z

n
q , the LWE distribution As,χ is sampled by

choosing a uniformly random a ← Z
n
q and an error term e ← χ and outputting

(a, b = 〈s,a〉 + e) ∈ Z
n+1
q . The uniform distribution Un is sampled by choosing

a uniformly random (a, b) ← Z
n+1
q . The DLWEn,q,χ assumption states that it is

hard for any PPT adversary to solve the DLWEn,q,χ problem.

Leftover Hash Lemma. We state a version of the leftover hash lemma [ILL89]
relating to matrix-vector multiplication, as it was stated in, for example, [BV11a].

Lemma 1 (Leftover Hash Lemma). Let λ, n and q be integers and m ≥
n log q +2λ. Let A ← Z

n×m
q be a uniformly random matrix, let r ← {0, 1}m and

y ← Z
n
q . Then, it holds

Δ((A,Ar), (A,y)) ≤ 2−λ,

where Δ(A,B) denotes the statistical distance between the distributions A and B.
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Gadget Matrix and Bit Decomposition. We define a gadget vector. For
simplicity, throughout this paper we use the powers of two gadget vector

g = (1, 2, 4, · · · , 2�−1) ∈ Z
�
q,

where � = �log q�. We also define the operation g−1 : Zq → {0, 1}� that takes
an input a ∈ Zq and outputs a binary column vector consisting of the binary
representation of the input a. As such, it satisfies the identity g · g−1[a] = a.

More generally, we define the operation (In ⊗ g−1)[·], which applies g−1

entrywise to a height-n vector and outputs a height-n� binary vector that satisfies
the identity

(In ⊗ g) · (In ⊗ g−1)[a] = a.

It is clear that these operations can be applied to matrices.

3 Multi-key Homomorphic Proxy Re-Encryption

In this section, we introduce a notion of multi-key homomorphic proxy re-
encryption (MH-PRE) and a security definition for MH-PRE schemes.

3.1 Syntax of MH-PRE

We define the syntax of MH-PRE by applying the concept of PRE to MHE.
Considering the notion of single-hop PRE scheme, we append the re-encryption
key generation algorithm and the re-encryption algorithm to the tuple of the
algorithms of MHE. We state the formal definition of MH-PRE below.

Definition 2 (Multi-key Homomorphic Proxy Re-Encryption). A multi-
key homomorphic proxy re-encryption (MH-PRE) scheme is a tuple of PPT
algorithms MH-PRE = (Setup,KGen,Enc,Dec,Eval,RKGen,ReEnc) having the
following properties:

– pp ← Setup(1λ, 1k, 1d) : given a security parameter λ, a bound k on the
number of keys and a bound d on the circuit depth, outputs a public parameter
pp. (All the following algorithms implicitly take pp as an input.)

– (pk, sk) ← KGen(pp) : given a public parameter pp, outputs a public key pk
and a secret key sk.

– c ← Enc(pk,m) : given a public key pk and a message m ∈ M, outputs a
ciphertext c.

– m̃ ← Dec(sk1, . . . , sks, c) : given a tuple of secret keys sk1, . . . , sks for s ≤ k,
outputs a message m̃ ∈ M.

– c∗ ← Eval(C, ({pk�}�∈I1 , c1) . . . , ({pk�}�∈Is , cs)) : given a circuit C : Ms → M
and tuples of a ciphertext and public keys ({pk�}�∈I1 , c1) . . . , ({pk�}�∈Is , cs)
for indices of the keys Ii ⊂ {1, . . . , k}, outputs a ciphertext c∗.

– rki→j ← RKGen(ski, pkj) : given a secret key ski and a public key pkj, outputs
a re-encryption key rki→j.
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– c∗ ← ReEnc({rk�→j}�∈⋃s
i=1 Ii , c) : given a tuple of re-encryption keys

{rk�→j}�∈⋃s
i=1 Ii for indices of the keys Ii ⊂ {1, . . . , k} and a ciphertext c,

outputs a ciphertext c∗.

An MH-PRE scheme should satisfy the following two properties.

Correctness. For all positive integers λ, k and d, for every circuit C : Ms → M
of depth at most d, for every j ∈ {1, . . . , k}, for every i ∈ {1, . . . , s} and for
every mi ∈ M, the following holds. Let pp ← Setup(1λ, 1k, 1d), (pkj , skj) ←
KGen(pp), ciphertexts ci such that Dec({sk�}�∈Ii , ci) = mi for indices of the keys
Ii ⊂ {1, . . . , k}, cEval ← Eval(C, ({pk�}�∈I1 , c1), . . . , ({pk�}�∈Is , cs)), rk�→j ←
RKGen(sk�, pkj) for all � ∈ ⋃s

i=1 Ii, and cReEnc ← ReEnc({rk�→j}�∈⋃s
i=1 Ii , cEval).

Then, it holds that

Pr[Dec({sk�}�∈⋃s
i=1 Ii , cEval) �= C(m1, . . . , ms)] = negl(λ),

Pr[Dec(skj , cReEnc) �= C(m1, . . . , ms)] = negl(λ).

Compactness. An MH-PRE scheme is compact if there exists a polynomial
p = poly(·, ·, ·) such that |cEval| ≤ p(λ, k, d) and |cReEnc| ≤ p(λ, k, d). In other
words, the length of cEval and cReEnc are independent of the circuit C and the
number of inputs, but can depend on λ, k and d.

3.2 Security Definition

We define the IND-CPA security for MH-PRE schemes. Our security definition
follows the IND-CPA security of Polyakov et al. [PRSV17] and one for single-hop
PRE schemes [LV08]. In the ordinary IND-CPA security for PRE schemes, an
adversary is allowed to query a re-encryption key generation between arbitrary
honest users. In the definition of [PRSV17], an adversary can only make re-
encryption key generation queries according to a re-encryption graph that is
a directed acyclic graph whose vertices correspond to honest users and edges
represent possible directions of re-encryptions.

Definition 3 (IND-CPA Security). Let MH-PRE = (Setup,KGen,Enc,Dec,
Eval,RKGen,ReEnc) be an MH-PRE scheme. We define the IND-CPA game
between an adversary A and a challenger as follows.

Phase 1:
– Setup: The challenger computes pp ← Setup(1λ, 1k, 1d) and sends pp to

A. Let E = ∅ be the set of edges of a re-encryption graph.
– Uncorrupted key generation: A sends the number of uncorrupted keys

NU to the challenger. For i ∈ {1, . . . , NU}, the challenger computes
(pki, ski) ← KGen(pp) and sends pki to A. Let ΓH be the set of the honest
public keys.
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– Corrupted key generation: A sends the number of corrupted keys NC to
the challenger. For i ∈ {1, . . . , NC}, the challenger computes (pki, ski) ←
KGen(pp) and sends (pki, ski) to A. Let ΓC be the set of the corrupted
public keys.

Phase 2: A can issue a polynomial number of these queries in arbitrary
order.
– Re-encryption key generation: A sends (i, j) to the challenger. If i, j ∈

ΓH and the graph G = (ΓH , E ∪ (i, j)) is a directed acyclic graph, the
challenger adds (i, j) to E and returns rki→j ← RKGen(ski, pkj) to A.
Otherwise the challenger sends ⊥ to A.

– Re-encryption: A sends (i1, . . . , is, j, c) to the challenger. If j ∈ ΓC and
c = c∗, then the challenger returns ⊥. Otherwise, the challenger computes
cj ← ReEnc(RKGen(ski1 , pkj), . . . ,RKGen(skis , pkj), c) and sends cj to A.

– Challenge: A sends (i∗,m0,m1) where m0,m1 ∈ M and i∗ ∈ ΓH to the
challenger. The challenger chooses a random bit b ∈ {0, 1} and returns
c∗ ← Enc(pki∗ ,mb) to A. A can make the challenge query only once.

Phase 3:
– A outputs a bit b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Adv ind-cpa
MH-PRE,A(λ) =

∣∣∣∣Pr[b′ = b] − 1
2

∣∣∣∣ .

We say that MH-PRE is IND-CPA secure if for any PPT adversary A,

Adv ind-cpa
MH-PRE,A(λ) = negl(λ)

holds.

4 Construction

In this section, we show an instantiation of MH-PRE by extending the MHE
scheme proposed by Peikert and Shiehian [PS16]. The extension is done by
applying the “key switching” [BGV12] technique, which allows us to change
a key required for decrypting a ciphertext.

4.1 Construction of [PS16]

First, we recall the construction of [PS16] scheme. Their scheme is described in
a symmetric-key setting for simplicity in [PS16]. We describe their scheme in a
public-key setting using a standard transformation since our MH-PRE scheme
requires a public key to generate a re-encryption key.
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– Setup(1λ, 1k, 1d) : let n, q and χ be the DLWE parameters. Let χ be the
standard discrete Gaussian error distribution with parameter 2

√
n. The sam-

ples produced from χ have magnitudes bounded by some E = Θ(n) except
with exponentially small probability. Let m = �2n log q�. Output a uniformly
random A ∈ Z

n×m
q as a public parameter pp.

– KGen(pp) : choose t ← χn−1 and define t = (−t‖1) ∈ Z
n. Choose e ← χm

and define

b = tA + e

≈ tA ∈ Z
m
q (error E). (3)

Output a secret key sk = t and a public key pk = b.
– Enc(pk, μ ∈ {0, 1}): define

B = A − eT
n ⊗ b,

where eT
n ∈ Z

n is the n-th standard basis vector of dimension n. Note that

tB = tA − (t ⊗ 1) · (eT
n ⊗ b) ≈ 0 (error E). (4)

Do the following and output a ciphertext c = (C,F,D).
1. Choose XC ← {0, 1}m×n� and define C = BXC ∈ Z

n×n�
q and

C = C + μ(In ⊗ g) ∈ Z
n×n�
q .

Notice that C is simply a GSW ciphertext of [GSW13] encrypting the
message μ under the secret key t, so it satisfies for t

tC = tBXC + μ(t ⊗ 1) · (In ⊗ g) ≈ μ(t ⊗ g) (error nm� · E = EC).
(5)

2. Choose a uniformly random R ← {0, 1}m×n� and define

F = AR + μ(In ⊗ g) ∈ Z
n×n�
q . (6)

3. Choose XD ← {0, 1}nm�×n� and define D = (1m�×n�⊗B)·XD ∈ Z
nm�×n�
q .

We note that

(Im� ⊗ t) · D = (Im� ⊗ t) · (1m�×n� ⊗ B) · XD ≈ 0 (error n3m2�3 · E = ED).

Define

D = D + (R ⊗ gT ⊗ eT
n ) ∈ Z

nm�×n�
q .

Therefore, we have

(Im� ⊗ t) · D = (Im� ⊗ t) · D + (Im� ⊗ t) · (R ⊗ gT ⊗ eT
n )

≈ R ⊗ gT (error ED). (7)

– Dec(sk1, . . . , sks, c): parse c = (C,F,D). Define t = (t1‖ · · · ‖ts). Let c be the
penultimate column of C and output μ̃ = �t · c/2�−2�.

– Eval(C, (pk1, (C1,F1,D1)), (pk2, (C2,F2,D2))): output the evaluated cipher-
text c∗. This algorithm works exactly the same as the scheme described in
Sect. 3 of [PS16]. We describe this in Appendix A for completeness.
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4.2 Re-Encryption Key Generation and Re-Encryption

In this section, we describe the re-encryption key generation algorithm RKGen
and the re-encryption algorithm ReEnc.

– RKGen(ski, pkj) : choose Xi ← {0, 1}m×n� and define Bj = A − eT
n ⊗ bj .

Output

rki→j = BjXi +
(

0(n−1)×n�

ti · (In ⊗ g)

)
.

– ReEnc(rk1→j , . . . , rks→j , (C,F,D)) : suppose C ∈ Z
n′×n′�
q , where n′ = ns.

Define

C∗ = (rk1→j‖ · · · ‖rks→j) · (In′ ⊗ g−1)[C]

and output the penultimate column of C∗ as a re-encrypted ciphertext c∗.

Below, we show the correctness of our re-encryption algorithm. In order to
perform homomorphic evaluations on ciphertexts under different keys, the MHE
scheme [PS16] extends the ciphertexts while satisfying Eq. (5). Specifically, the
extended ciphertext consists of

C ∈ Z
n′×n′�
q ,F ∈ Z

n×n�
q ,D ∈ Z

n′m�×n�
q ,

where n′ = ns for any positive integer s ≤ k and satisfies Eq. (5) for the con-
catenation of the secret keys t = (t1‖ · · · ‖ts) ∈ Z

n′
.

In order to decrypt the ciphertext C, we require re-encryption keys rki→j ←
RKGen(ski = ti, pkj = Bj) for i ∈ {1, . . . , s}. Each re-encryption key rki→j

satisfies the following equation for the secret key tj :

tj · rki→j = tjBjXi + (tj‖1)
(

0(n−1)×n�

ti · (In ⊗ g)

)

≈ ti · (In ⊗ g) (from Equation (4)).

Hence, the concatenation of the re-encryption keys satisfies the following equa-
tion for the concatenated the secret key t = (t1‖ · · · ‖ts):

tk · (rk1→j‖ · · · ‖rks→j) = (tk · rk1→j‖ · · · ‖tk · rks→j)

≈ (t1 · (In ⊗ g)‖ · · · ‖ts · (In ⊗ g)) (from the above equation)

= (t1‖ · · · ‖ts) · (In′ ⊗ g).

Then, for the re-encrypted ciphertext C∗ and secret key tj , it holds that

tjC∗ = (t1‖ . . . ‖ts) · (In′ ⊗ g) · (In′ ⊗ g−1)[C∗]
= (t1‖ . . . ‖ts) · C∗

≈ μ · ((t1‖ . . . ‖ts) ⊗ g) (from Equation (5) holds for t and C).
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So, as well as [PS16], we can correctly decrypt the message from the (� − 1)-th
element of tjC∗.

This equation shows that the re-encrypted ciphertext C∗ leaks the infor-
mation on t1, . . . , ts to the owner of tj . To prevent the leakage of the secret
keys, ReEnc outputs the penultimate column of C∗ as a re-encrypted cipher-
text c∗ instead of the matrix C∗ as it is. It is obvious that we can decrypt
the re-encrypted ciphertext c∗ since Dec uses only a penultimate column of the
ciphertext matrix C∗. By outputting only c∗ as a re-encrypted ciphertext, it is
not possible to re-encrypt any more. Therefore, our scheme can be seen as a
single-hop PRE scheme. Also for the same reason it is not possible to perform
homomorphic evaluation on re-encrypted ciphertexts while it can be performed
any times before re-encryption.

5 IND-CPA Security of MH-PRE

We show that our MH-PRE scheme MH-PRE = (Setup,KGen,Enc,Dec,Eval,
RKGen,ReEnc) described in Sect. 4 is IND-CPA secure in the sense of
Definition 3. Formally, we prove the following theorem.

Theorem 1. MH-PRE is IND-CPA secure assuming the hardness of the
DLWEn−1,q,χ problem.

Proof. Let A be an adversary for the IND-CPA security of MH-PRE. Then, we
consider the following sequence of games.

Game 0: This is the original IND-CPA game of MH-PRE. Without loss of gen-
erality, we can assume that ΓH = {1, . . . , N} and ΓC = {N + 1, . . . , M}.
Furthermore without loss of generality, let 1, . . . , N be the topological order
dictated by the re-encryption graph, namely there are no edges from i to j if
i < j. In other words, A can only make re-encryption key generation queries
to generate rki→j where i > j.

We consider Game k (k = 1, . . . , N) divided into Game k.1 and Game k.2.

Game k.1: Same as Game k − 1.2 expect the following. Here, let Game 0.2
denote Game 0. When A makes an uncorrupted key generation query, the
challenger generates a public key pki by choosing a random vector bi ← Z

m
q

for all i ≤ k and computes pki ← KGen(pp) for all k < i ≤ N .
Game k.2: Same as Game k.1, expect the following. When A makes a re-

encryption key generation query, the challenger generates a re-encryption key
rki→j where i > j by choosing a random matrix from Z

n×n�
q for all i, j ≤ k

and computes rki→j ← RKGen(skj , pki) for all k < i, j ≤ N .
Game final: Same as Game N.2 expect the following. When A makes a chal-

lenge query, the challenger generates a ciphertext (C,F,D) by choosing ran-
dom matrices C ← Z

n×n�
q , F ← Z

n×n�
q and D ← Z

nm�×n�
q .
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Here, let AdvGame i
A (λ) be the advantage of A in Game i. Below, for the

above sequence of the games, we estimate the differences of the advantages of A
between each game. First of all, since Game 0 is the original IND-CPA game of
MH-PRE, we have

Adv ind-cpa
MH-PRE,A(λ) = AdvGame 0

A (λ).

Next, for Game k.1 and Game k.2, we show the following lemma.

Lemma 2. |AdvGame k.1
A (λ) − AdvGame k.2

A (λ)| = negl(λ).

Proof. In Game k.1, the re-encryption keys rkk→i where i < k generated by the
challenger satisfy the following properties. In this game, rkk→i is computed by

rkk→i = BiXk +
(

0(n−1)×n�

tk · (In ⊗ g)

)
, where Xk ← {0, 1}m×n�. Since bi and A are

uniformly random for all i < k, Bi = A − eT
n ⊗ bi is also uniformly random.

Moreover, since Bi and Xk are uniformly random over Z
n×m
q and {0, 1}m×n�,

respectively, BiXk is statistically indistinguishable from a uniformly random
matrix by the leftover hash lemma. As a result, rkk→i is statistically indistin-
guishable from a uniformly random matrix and Game k.1 and Game k.2 are
statistically indistinguishable. ��

For Game k − 1.2 and Game k.1, the following lemma holds.

Lemma 3. |AdvGamek−1,2
A (λ) − AdvGamek,1

A (λ)| = negl(λ).

Proof. To prove the lemma, we construct the following PPT algorithm B by
using the adversary A. B distinguishes the LWE distribution At,χ for some
t ← χn−1 from the uniform distribution Un. B is given an arbitrary number of
vectors x sampled from the LWE distribution or the uniform distribution.

Phase 1:
– Setup: B computes A = (xT

1 ‖ · · · ‖xT
m) and chooses a random vector bk ←

Z
m
q . Then, B sets a public parameter A = A + eT

n ⊗ bk and sends it to
A.

– Uncorrupted key generation: When A makes an uncorrupted key gener-
ation query, B responds as follows.

• For i < k, B chooses a random vector bi ← Z
m
q and sets pki = bi.

• For i = k, B sets pki = bk where bk is the vector chosen in the
setup phase.
• For i > k, B computes (pki, ski) ← KGen(A).

Finally B sends pki (i ∈ {1, . . . , k}) to A.
– Corrupted key generation: When A makes a corrupted key generation

query, B computes (pki, ski) ← KGen(A) and sends (pki, ski) to A.
Phase 2:

– Re-encryption key generation: When A makes a re-encryption key gener-
ation query (i, j), B returns rki→j ∈ Z

n×n�
q chosen uniformly at random

if i < j < k, and rki←j ← RKGen(ski, pkj) if k < i < j.
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– Re-encryption: When A makes a re-encryption query (i1, . . . , is, j, c), B
returns cj ← ReEnc(rki1←j , . . . , rkis←j , c).

– Challenge: When A makes a challenge query (i∗,m0,m1), B chooses a
random bit b ∈ {0, 1} and returns c∗ ← Enc(pki∗ ,mb).

Phase 3:
– When A terminates with output b′ ∈ {0, 1}, B outputs 1 if b = b′. Oth-

erwise B outputs 0.

We see that if the input distribution to B is the LWE distribution At,χ for
some t ← χn−1, B simulates Game k − 1.2 for A. The first n − 1 rows of A
and bk are uniformly random, hence A is uniformly random by the construction.
Moreover, bk ≈ (−t‖1) ·A has the same distribution as in the real game. Finally,
since rki→j where i < j < k is replaced with a uniformly random matrix in the
previous games, B perfectly simulates Game k − 1.2 for A. By contrast, if the
input distribution is the uniform distribution Un, it is clear that B simulates
Game k.1 for A by the construction of B.

From the above arguments and the DLWE assumption, we have

|AdvGame k−1.2
A (λ) − AdvGame k.1

A (λ)| = negl(λ). ��
For Game N.2 and Game final, the following lemma holds.

Lemma 4. |AdvGame N.2
A (λ) − AdvGame final

A (λ)| = negl(λ).

Proof. In Game final, the ciphertext matrices are chosen uniformly at random.
Since the public keys bi for all i ∈ {1, . . . , N} has been replaced with the uni-
formly random vectors in the previous games, Bk computed in Enc is also uni-
formly random. Therefore since A and B are uniformly random, C, AR, D
is statistically indistinguishable from uniformly random by the leftover hash
lemma. As a result, we see that Game N.2 and Game final are statistically
indistinguishable. ��

Finally, for the advantage of B in Game final, we have

AdvGame final
A (λ) = negl(λ).

From Lemmas 2, 3 and 4, the following inequality holds.

Adv ind-cpa
MH-PRE,A(λ) ≤

N∑
k=1

|AdvGame k−1.2
A (λ) − AdvGame k.1

A (λ)|

+ |AdvGame N.2
A (λ) − AdvGame final

A (λ)| + AdvGame final
A (λ)

= negl(λ)

Since the choice of A is arbitrary, MH-PRE is IND-CPA secure. ��
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6 Conclusion

In this paper, we proposed the model of multi-key homomorphic proxy re-
encryption (MH-PRE) by applying the notion of proxy re-encryption to multi-
key homomorphic encryption (MHE). While all secret keys corresponding to an
evaluated ciphertext are necessary for decryption in ordinary MHE, an evaluated
ciphertext of our scheme can be decrypted with a specific secret key. Moreover,
we showed a concrete instantiation of MH-PRE by applying the key switching
technique of [BGV12] to the MHE scheme of [PS16] and proved the IND-CPA
security under the DLWE assumption. We will consider other instantiations
based on other MHE schemes [BP16,CZW17] as a future work.

Acknowledgment. We would like to thank the anonymous reviewers of ISC 2018 for
their careful reading and comments.

Appendix A The Description of the Eval Algorithm

For completeness, in this section, we describe the algorithm Eval of the MHE
scheme of [PS16]. This algorithm works exactly same as the scheme described
in Sect. 3 of [PS16].

Ciphertext Extending. First, in order to perform homomorphic operations
correctly in the Eval algorithm, all the input ciphertexts must correspond to
the same secret key. Therefore, when the input ciphertexts correspond to the
different secret keys, each ciphertext is expanded so that the same secret key
properly corresponds.

Consider the ciphertext c = (C,F,D) and the associated secret key t ∈
Z

n′
, where n′ = ns for some positive integer s and t is the concatenation of s

individual secret keys. Therefore the ciphertext c consists of component matrices

C ∈ Z
n′×n′�
q ,F ∈ Z

n×n�
q ,D ∈ Z

n′n�×n�
q

that satisfy Eqs. (5), (6) and (7) for some randomness R ∈ Z
m×n�. Our goal is to

extend c = (C,F,D) to a new ciphertext c′ = (C′,F′,D′) that satisfies Eqs. (5),
(6) and (7) for the concatenated secret key t′ = (t‖t∗) ∈ Z

n′+n where t∗ is an
additional secret key and some randomness R′ without changing the encrypted
message. For ciphertext extending, the public key b∗ ≈ t∗A corresponding to
the additional secret key t∗ is used. We do so as follows.

– F and the randomness is unchanged: Define F′ = F and R = R′.
– Define

D′ = (Im� ⊗
(

In′

0n×n′

)
) · D.

Then, Eq. (7) is preserved: (Im� ⊗ t′) · D′ = (Im� ⊗ t) · D ≈ R ⊗ gT .
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– Define

C′ =
(
C X

F

)
,

where X is defined as follows:

s = [−b∗](Im ⊗ g−T ) ∈ {0, 1}m�

X = (s ⊗ In′) · D ∈ Z
n′×n�
q .

Note that by the construction,

tX = (1 ⊗ t) · (s ⊗ In′) · D
= (s ⊗ t) · D
= (s ⊗ 1) · (Im� ⊗ t) · D
≈ s · (R ⊗ gt) (error m� · ED)

= [b∗](Im ⊗ g−t)(R ⊗ g)
= −b∗R.

Finally, we see that Eq. (5) is preserved:

t′C′ = t′ ·
(
C X

F

)

= (tC tX + t∗F)
≈ (μ(t ⊗ g) tX + t∗AR + μ(t∗ ⊗ g)) (error EC)
≈ (μ(t ⊗ g) tX + b∗R + μ(t∗ ⊗ g)) (error m‖R‖∞ · E)
≈ μ(t′ ⊗ g) (error m� · ED).

Homomorphic Operation. Next, we describe homomorphic addition and
multiplication. Suppose two ciphertexts c1 = (C1,F1,D1) and c2 = (C2,F2,D2)
that respectively encrypt μ1 and μ2, with the randomness R1 and R2, under a
common secret key t ∈ Z

n′
.

– Homomorphic Additions: Add the corresponding matrices,

(Cadd,Fadd,Dadd) = (C1 + C2,F1 + F2,D1 + D2).

We verify that Eqs. (5), (6) and (7) hold for the new ciphertext with the
message μ1 + μ2 and the randomness Radd = R1 + R2.

t · (C1 + C2) = t · (C1 + μ1(In ⊗ g) + C2 + μ2(In ⊗ g))
≈ (μ1 + μ2)(t ⊗ g) (error EC1 + EC2)

F1 + F2 = AR1 + μ1(In ⊗ g) + AR2 + μ2(In ⊗ g)
= ARadd + (μ1 + μ2)(In ⊗ g)
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(Im� ⊗ t) · (D1 + D2) = (Im� ⊗ t) · D1 + (Im� ⊗ t) · D2

≈ (R1 ⊗ g) + (R2 ⊗ g)
= Radd ⊗ g (error ED1 + ED2)

– Homomorphic Multiplications: Define the following matrices:

Sc = (In′ ⊗ g−1)[C2]

Sf = (In ⊗ g−1)[F2]

Sd = (In′m� ⊗ g−1)[D2]

and output the ciphertext

Cmul = C1 · Sc

Fmul = F1 · Sf

Dmul = D1 · Sf + (Im� ⊗ C1) · Sd.

The associated randomness is defined as

Rmul = R1Sf + μ1R2.

We show that the output ciphertext of the homomorphic multiplications
satisfies Eqs. (5), (6) and (7) for the secret key t, the message μ1μ2 and the
randomness Rmul. First, we can see Cmul satisfies Eq. (5):

tCmul = tC1 · Sc = tC1 · Sc + μ1(t ⊗ g) · Sc

≈ μ1(t ⊗ g) · Sc (error n′� · EC1)

= μ1(t ⊗ g) · (In′ ⊗ g−1)[C2]
= μ1tC2

≈ μ1μ2(t ⊗ g) (error μ1EC2).

Similarly, Eq. (6) is preserved by construction of Fmul:

Fmul = F1 · Sf = (AR1 + μ1(In ⊗ g)) · Sf

= AR1 · Sf + μ1(In ⊗ g) · (In ⊗ g−1)[F2]
= AR1 · Sf + μ1F2

= AR1 · Sf + μ1AR2 + μ1μ2(In ⊗ g)
= ARmul + μ1μ2(In ⊗ g).

Finally, to see that Eq. (7) holds for Dmul, first note that

(Im� ⊗ t) · D1 · Sf = ((Im� ⊗ t) · D1 + (R1 ⊗ gT )) · Sf

≈ (R1 ⊗ gT ) · (Sf ⊗ 1) (error n� · ED1)

= (R1 · Sf ) ⊗ gT .
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In addition,

(Im�⊗t) · (Im� ⊗ C1) · Sd

= (Im� ⊗ tC1) · Sd

= ((Im� ⊗ tC1) + μ1(Im� ⊗ t ⊗ g)) · Sd

≈ μ1(Im� ⊗ t ⊗ g) · Sd (error n′� · EC1)

= μ1(Im� ⊗ t ⊗ g) · (In′m� ⊗ g−1)[D2]
= μ1(Im� ⊗ t) · D2

≈ μ1(R2 ⊗ gT ) (error μ1 · ED2).

Thus, Eq. (7) holds for Dmul:

(Im� ⊗ t) · Dmul

≈ (R1 · Sf ) ⊗ gT + μ1(R2 ⊗ gT ) (error n� · ED1 + n′� · EC1 + μ1 · ED2)

= Rmul ⊗ gT .
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Abstract. Verifiable decryption allows one to prove the correct decryp-
tion of encrypted data. When the encrypted data is derived from homo-
morphic evaluations in the context of fully homomorphic encryption
(FHE), verifiable decryption will be very useful in cloud computing or
cryptographic protocols, e.g., secure medical computation, cryptograph-
ically verifiable election, etc. In this paper, we consider the problem of
proving the correct decryption of an FHE ciphertext. Namely, we are
interested in zero-knowledge proofs of knowledge of triples (m, s, c) such
that the message m is the correct decryption of a ciphertext c for a
secret key s. While analogous statements admit efficient zero-knowledge
proof protocols in the discrete logarithm setting, they have never been
addressed in FHE so far. We provide such verifiable decryption for
Brakerski-Gentry-Vaikuntanathan (BGV) scheme, since this scheme was
recognized as one of the most efficient leveled FHE schemes. Our solu-
tion is nearly “one shot”, in the sense that a single instance of the proof
already has negligible soundness error, yielding compact proofs even for
individual ciphertexts. Furthermore, to illustrate the applicability of ver-
ifiable decryption, we also give two example instantiations.

Keywords: Verifiable decryption · FHE · Zero-knowledge proofs
Secure medical computation · Cryptographically verifiable election

1 Introduction

Fully Homomorphic Encryption (FHE) [19,38], which is a very attractive cryp-
tographic primitive that enables computations of any computable functions on
encrypted data without knowing the secret key, is a powerful tool for handling
many problems in cloud computing, such as private information retrieval, SQL
query, outsourcing storage and computation, and secure multi-party computa-
tion (MPC). Since Gentry constructed the first FHE scheme and put forward
a remarkable “bootstrapping” theorem to convert any non-fully homomorphic
c© Springer Nature Switzerland AG 2018
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encryption scheme into a full fledged one (that is, FHE) in his breakthrough work
[18], a series of papers have been presented (see [1,4,6,9,14,15,20,27,39,41]),
with much progress mainly in efficiencies and well understood security
assumptions.

Among the above FHE schemes, the optimized version [22] of the Ring Learn-
ing with Errors (RLWE)-based FHE scheme proposed by Brakerski, Gentry and
Vaikuntanathan [4] (BGV) was universally accepted as one of the most efficient
leveled FHE (capable of evaluating arbitrary polynomial-depth circuits) schemes,
mainly due to the plaintexts of BGV that are polynomial ring elements. But one
obvious drawback is that BGV needs user’s “evaluation key”. In Crypto 2013,
Gentry, Sahai and Waters [20] (GSW) used two novel techniques of so-called
approximate eigenvector and flatten to construct a matrix-style leveled FHE
scheme with simpler and more directly homomorphic operations. Subsequently,
Alperin-Sheriff and Peikert [1] (GSW variant) improved the GSW by using a
“gadget matrix” G developed by Micciancio and Peikert [35]. The GSW and
GSW variant do not need user’s “evaluation key” and have an interesting prop-
erty of asymmetric noise growth, but they are only suitable for encrypting bits.
This is due to the fact that the RLWE-based version of GSW (and GSW vari-
ant) needs to implement binary decomposition on polynomial ciphertexts when
performing homomorphic multiplication, and this breaks polynomial character
of the ciphertexts. Consequently, the Fast Fourier Transform (FFT) technique
that can be used to improve polynomial operations is unavailable. Moreover, the
noise may grow exponentially because of its asymmetric growth pattern.

In some cases, it is necessary for the secret key holder to provide zero-
knowledge proofs of decryption on FHE ciphertexts. For example, as described
in [8], a number of users with secret inputs want to compute some function f
on those combined inputs, then they can use MPC if they are a small group
and are online regularly; whereas in large group or in the asynchronous setting
this will not work. But they can resort to FHE. More precisely, in the context
of FHE, they can choose some semi-trusted party who has secret key and has
published the corresponding public key. Then, based on FHE systems, all users
use the public key to encrypt their secret inputs to get the corresponding cipher-
texts and then post the ciphertexts. After that, the semi-trusted party evaluates
the function f on these ciphertexts to derive a ciphertext (we call it derived
ciphertext). Finally, the semi-trusted party decrypts the derived ciphertext and
distributes the resulting value to the users. Meanwhile, without revealing any
additional information beyond the resulting value, the semi-trusted party proves
to the users that the resulting value is the plaintext of the derived ciphertext
(i.e., the decryption was indeed done correctly). Note that the users can also
get the derived ciphertext but cannot decrypt it. An obvious realisation of this
scenario is cryptographic election, where the voters vote anonymously and the
final voting results can be verified by anyone through a zero-knowledge proof
protocol. We will give the definition of zero-knowledge proofs in Sect. 2.

From the perspective of zero-knowledge proofs, the above issue can be
regarded as a problem of verifiable decryption. In a verifiable decryption scheme,
a prover who has a secret key sk decrypts a ciphertext c = Enc(pk, x) and then
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obtains a resulting value x. Then, he/she produces a zero-knowledge proof of
knowledge π showing that the resulting value x is the plaintext of the cipher-
text c, that is, the prover provides a zero-knowledge proof of decryption on the
ciphertext c. Proving the correct decryption of the ciphertext c can be equiva-
lent to proving the knowledge of the secret key sk along with proving that this
resulting value x and the secret key sk satisfy the relation x = Dec(sk, c). In this
work, we consider an instance of BGV scheme, and construct a zero-knowledge
proof for decryption of BGV ciphertexts.

1.1 Zero-Knowledge Proofs for Decryption of FHE
Ciphertexts − Prior Work

Aiming at solving the problem of verifiable decryption, recently Carr et al.
showed in [8] a zero-knowledge proof of correct decryption on Gentry’s original
FHE ciphertexts. Carr et al. intended to use some Schnorr-like zero-knowledge
proof protocol to solve this problem. But in this setting, applying the Schnorr-
like zero-knowledge proof protocols to LWE-based FHE schemes will be very
difficult. More specific reasons about this can be found in [8]. Based on this,
they turned their attention to Gentry’s original FHE that is not based on LWE
problem. In more detail, they observed that BGV is one of the most efficient
leveled FHE schemes but they could’t construct a zero-knowledge proof of cor-
rect decryption on BGV ciphertexts; while Gentry’s original FHE is inefficient
but it seems possible to build a zero-knowledge proof of correct decryption on
its ciphertexts. Hence, they firstly presented a bootstrapping-like protocol to
switch from BGV to Gentry’s original FHE, and then they constructed a simple
“one shot” zero-knowledge proof protocol on Gentry’s original FHE ciphertexts.
However, their zero-knowledge proof protocol is only able to prove the correct
decryption of ciphertexts that are designed to encrypt message m = 0. This lim-
itation will seriously affect the practicality of verifiable decryption. By contrast,
in this work, we will provide a zero-knowledge proof protocol that can be used
to prove the correct decryption of BGV ciphertexts that are designed to encrypt
messages m ∈ R2, where R is a polynomial ring.

1.2 Our Contributions

Our Results. We consider the problem of proving the correct decryption of
BGV ciphertexts. We firstly review the BGV scheme, and then put forward an
interactive zero-knowledge proof protocol to vouch for the correctness decryption
of BGV ciphertexts. Finally, we show two example instantiations to illustrate the
applicability of verifiable decryption. The problem considered in this paper can
be described as follows: given a sequence of BGV ciphertexts c1, · · · , cN ∈ R2

q

and a function f (assume that the polynomial-depth of f is within maximum
allowable level of the given BGV scheme), anyone (e.g. a verifier) can homo-
morphically perform the function f on these ciphertexts and then obtains a
derived ciphertext c = f(c1, · · · , cN ) ∈ R2

q . The secret key holder or we say the
prover obtains a value m ∈ R2 (we call it “targeted message”) by decrypting
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the derived ciphertext c. The prover then sends the value m ∈ R2 to the ver-
ifier, and proves to the verifier that this value is the plaintext of the derived
ciphertext c, without revealing any additional information beyond the value. As
previously mentioned, this is a verifiable decryption problem. In this work, we
will transform this verifiable decryption problem into proving a linear relation
of the form As = 0.

We noted that an abstraction of Stern’s protocol [40] was suggested by Libert
et al. [25] to address a similar setting when one has to prove a number of linear
relations with a unique modulus, and Libert et al. [26] subsequently generalized
the framework in [25], so as to handle correlated witnesses across relations mod-
ulo distinct integers. But the Stern’s protocol is unfortunately very impractical
since each round of the protocol has soundness error 2/3, and therefore it needs
to be repeated 192 times to achieve 128-bit security. Alternatively, we found that
a “one shot” verifiable encryption scheme proposed by Lyubashevsky and Neven
[32] considered an analogous problem − verifiable encryption (we will introduce
it in Related Work and Sect. 3). Their approach is “one shot” − that is, with-
out repeating a protocol to amplify soundness, since a single instance of the
proof already has negligible soundness error. Hence, this is a very efficient zero-
knowledge proof protocol. Technically, the authors in [32] constructed the “one
shot” verifiable encryption scheme by combining the framework of “Fiat-Shamir
with Aborts” zero-knowledge proofs of linear relations (which we will present
in Sect. 2) with a RLWE-based encryption scheme. Analogously, we will also
combine the framework of “Fiat-Shamir with Aborts” zero-knowledge proofs
of linear relations with BGV scheme, and then construct an interactive zero-
knowledge proof protocol to solve the verifiable decryption problem effectively.
Our proposed protocol only needs one extra communication between the prover
and the verifier, and hence if we complete this communication off-line, then it is
also “one shot”.

Our Techniques. The crucial ingredient of our solution is to transform the
verifiable decryption problem into proving a linear relation. Concretely, given
N BGV ciphertexts c1, · · · , cN ∈ R2

q and a function f , both the prover and
the verifier can homomorphically evaluate the function f on these ciphertexts
and obtain a derived BGV ciphertext c = f(c1, · · · , cN ) ∈ R2

q . We assume the
derived ciphertext c (decrypting to message m ∈ R2) is valid in the sense that,
given the secret key s = (s′, 1), we have 〈s, c〉 = m mod q mod 2 (according to the
correctness of the BGV scheme, skip to Sect. 3). After the prover decrypts the
derived ciphertext c and gets the “targeted message” m ∈ R2, he/she sends the
“targeted message” to the verifier and appends a valid proof that the decryption
was indeed done correctly − that is, he/she has the secret key s satisfying the
following modular equation

〈s, c − (0,m)t〉 = 0 mod q mod 2.

But even if the prover successfully proves this modular equation, the verifier
is still not fully convinced that this vector s is the secret key. This is mainly
due to the fact that this derived ciphertext c may not be computationally
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indistinguishable from uniform in R2
q , and hence we cannot prevent a dishonest

prover from forging a valid proof. More details about this will be addressed in
Sect. 3.

Based on this, we let the verifier provide a ciphertext c̄ in advance that is
designed to encrypt message m̄ = 0 ∈ R2 and is computationally indistinguish-
able from uniform in R2

q . Then, the prover proves to the verifier that he/she has
the secret key s such that

[
c′t

c̄t

]
s = 0 mod q mod 2,

where c′ � c − (0,m)t, without revealing any additional information beyond
the “targeted message” m ∈ R2. From the above, we successfully convert this
verifiable decryption problem into proving a linear relation of the form As =
0 mod q mod 2.

1.3 Related Work

Verifiable Encryption and Proofs of Plaintext Knowledge. As described
in [32], verifiable encryption allows one to prove properties about encrypted data.
Specifically, in a verifiable encryption scheme, there is a relation RL and a lan-
guage L = {x : ∃ w s.t. RL(x,w) = 1}, where the value w is a witness to the fact
that x is in the language L. The witness w possessed by the prover is private,
while the relation RL and the element x are public. The prover then produces
an encryption t = Enc(w) as well as a zero-knowledge proof of knowledge π of
the value w = Dec(t) and that w satisfies RL(x,w) = 1. The proofs of plaintext
knowledge can be seen as a verifiable encryption scheme without a relation, or
where the relation is trivially satisfied. Roughly, in a proof of plaintext knowl-
edge, a prover who has a message m generates a ciphertext t = Enc(m) and
provides a zero-knowledge proof of knowledge π proving that he/she knows the
value of Dec(t).

On a high level, the verifiable decryption problem to be solved in this paper
is very similar to the verifiable encryption problem described above. Thus, for
better understanding the verifiable decryption and searching for solutions, it
is necessary to study some work related to the verifiable encryption. Actually,
in Crypto 2017, Baum et al. [2] proposed a new zero-knowledge proof proto-
col applicable to additively homomorphic functions that map integer vectors to
an Abelian group. This protocol demonstrates knowledge of a short preimage
and achieves amortised efficiency comparable to the approach of Cramer and
Damg̊ard [11], but gives a much tighter bound on what we can extract from
a dishonest prover. Moreover, this protocol yields improved proofs of plaintext
knowledge for (Ring-) LWE-based cryptosystems. This technique was subse-
quently refined in [12,13].

Notably, in Eurocrypt 2017, Lyubashevsky and Neven [32] presented a con-
struction of a verifiable encryption scheme, based on the hardness of the RLWE
problem in the random-oracle model, for short solutions to linear equations over
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polynomial rings. In [32], the authors combined the framework of “Fiat-Shamir
with Aborts” zero-knowledge proofs of linear relations with the RLWE based
encryption scheme in [34], and thus obtained a “one shot” verifiable encryption
scheme. This verifiable encryption scheme is “one shot”, since a single instance
of the proof already has negligible soundness error. However, it is well-known
that verifiable encryption usually guarantees that the decryption can recover a
witness for the original language, but the decryption of the “one shot” verifiable
encryption scheme can only recover a witness of a related but extended language.

1.4 Organization

The rest of the paper is organized as follows. In Sect. 2, we summarize some
notations throughout this paper, and we also introduce hardness assumptions
including RLWE and RSIS problems, the definition of interactive zero-knowledge
proofs and “Fiat-Shamir with Aborts” zero-knowledge proofs of linear rela-
tions. Section 3 simply recalls the BGV scheme and presents an interactive zero-
knowledge proof protocol for decryption of BGV ciphertexts. In Sect. 4, we give
two example instantiations for verifiable decryption. This paper ends with con-
clusion in Sect. 5.

2 Preliminaries

Notations. We say that a function is negligible, written negl(λ), if negl(λ) is
smaller than all polynomial fractions for sufficiently large λ. Let PPT denote
probabilistic polynomial-time. In this work, we will use a ring of integer R =
Z[x]/(Φm(x)), where Φm(x) is a m-th cyclotomic polynomial which has degree
n = ϕ(m), the Euler’s totient of m. For ease of use, we let [n] � {1, · · · , n}.
Moreover, for the positive integer q, we define the quotient ring Rq = R/qR =
Zq[x]/(Φm(x)), where all coefficients of polynomials in Rq are in (−q/2, q/2]. All
definitions that follow apply both to R and Rq. We denote the elements of Rq by
lowercase letters (e.g. a ∈ Rq), elements of vectors in Rk

q by bold lowercase letters
(e.g. a ∈ Rk

q ), and elements of matrices in Rk×�
q by bold uppercase letters (e.g.

A ∈ Rk×�
q ). We denote by xt (resp. AT ) the transpose of the vector x (resp. the

matrix A), and
[
at

bt

]
∈ R2×k

q the row concatenation of column vectors a,b ∈ Rk
q .

For an element a =
n−1∑
i=0

αix
i ∈ R, we define the �1, �2 and �∞ norms as follows:

||a||1 =
n−1∑
i=0

|αi|, ||a|| =

√√√√n−1∑
i=0

α2
i and ||a||∞ = max

i
(|αi|)

respectively. Then for k-dimensional vectors a = (a1, · · · , ak) ∈ Rk, we have

||a||1 =
k∑

i=1

||ai||1, ||a|| =

√
k∑

i=1

||ai||2 and ||a||∞ = max
i

(||ai||∞).
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Distribution. We let x
$← D denote that x is sampled uniformly at random

from a distribution D, and x
$← S (e.g. Rq) denote that x is uniform over a

set S. Moreover, we let �(X,Y ) denote the statistical distance between two
distributions X,Y .

Discrete Gaussians. Let L be a subset of Z
m, for any σ > 0, define the

Gaussian function on R
m centered at c ∈ R

m with parameter σ:

∀ x ∈ R
m, ρσ,c(x) = exp(−π||x − c||2/σ2).

Then the discrete Gaussian distribution over the set L with center c ∈ R
m and

parameter σ is defined as:

∀ x ∈ L, Dσ,c,L(x) =
ρσ,c(x)
ρσ,c(L)

where ρσ,c(L) =
∑
x∈L

ρσ,c(x). As noted in [32], for the special case of L = Z
m,

it holds that Pr[||x||∞ > tσ : x $← Dσ,0,Zm ] < 2me−t2/2. This implies that for
t = 6, the probability that any coefficient of x is greater than 6σ is less than
2−25m.

2.1 Hardness Assumptions

Ring Learning with Errors (RLWE) Problem. The Ring Learning with
Errors (RLWE) problem was firstly introduced by Lyubashevsky, Peikert and
Regev [33], who also gave a reduction proving that the RLWE problem is not
easier than the well-established worst-case GapSVP problem on ideal lattices.
Here we consider a simplified version of RLWE problem that is easier to work
with [4,6].

Definition 1 ([4]). For security parameter λ, let q = q(λ) ≥ 2 be an integer.
Let R = Z[x]/(Φm(x)), Rq = R/qR be polynomial rings and χ = χ(λ) be a dis-
tribution over R, where Φm(x) is a m-th cyclotomic polynomial which has degree
n = ϕ(m), the Euler’s totient of m. The RLWEn,q,χ problem is to distinguish the

following two distributions: In the first distribution, one first draws s
$← Rq uni-

formly and then samples (ai, bi) ∈ R2
q by sampling ai

$← Rq, ei
$← χ, and setting

bi = ai · s + ei. In the second distribution, one samples (ai, bi) uniformly from
R2

q. The RLWEn,q,χ assumption is that the RLWEn,q,χ problem is infeasible.

Typically, in a RLWE cryptosystem, one chooses the noise distribution χ accord-
ing to a Gaussian distribution. As remarked in [33], the Gaussian distribution
may need to be “ellipsoidal” for certain reductions to go through. Moreover, it
has been shown for RLWE problem that one can equivalently assume that the
secret ring element s is alternatively sampled from the noise distribution χ [33].

The Ring-SIS Problem. Let q, k be positive integers and β be real, and let
polynomial ring Rq = Zq[x]/(Φm(x)) of degree n = ϕ(m). Then the RSISq,k,β

problem is defined as follows.
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Definition 2 ([30]). Given k ring elements a1, · · · , ak chosen uniformly at ran-
dom from Rq, find k non-zero ring elements z1, · · · , zk ∈ Rq such that ||zi|| ≤ β
and

k∑
i=1

aizi = 0 mod q.

The RSISq,k,β problem is known to be as hard as certain worst-case problems
(e.g. GapSVP) on ideal lattices [30,31]. In this work, our solution is based on a
variant of Ring-SIS problem that we called RSISq,2,k,β problem, since it involves
two moduli, that is,

k∑
i=1

aizi = 0 mod q mod 2,

where the modulus q is an odd number.

2.2 Interactive Proof Systems

In this paper, we focus on the interactive proof system with zero knowledge.
Informally, in an interactive zero-knowledge proof, by interacting with a sceptical
verifier, an honest prover can convince the sceptical verifier that some claim is
true (and in some cases that he/she knows a proof) while revealing no other
knowledge than the fact that the claim is true; whereas it’s nearly impossible
for a cheating prover (e.g. an adversary) to convince the sceptical verifier that
some claim is true in any case.

In an interactive proof system, let P and V denote a computational
unbounded prover and a polynomial time verifier respectively, and P ∗ denote
a computational bounded cheating prover. Then, for a promise problem Π =
(ΠY ,ΠN ), where ΠY and ΠN are disjoint sets, representing YES instance and
NO instance respectively, we can define an interactive proof system as follows.

Definition 3 ([36]). (P ;V ) is an Interactive Proof System (IPS) for a promise
problem Π = (ΠY ,ΠN ), and security parameter λ if

– Completeness. For every x ∈ ΠY , Pr[(P ;V )(x, r) accepts] ≥ 1 − c(λ).
– Soundness. For every x ∈ ΠN , Pr[(P ∗;V )(x, r) accepts] ≤ s(λ).

The probabilities are taken over the choice of the random input r and the ran-
dom choices of P . The random input r is generally chosen uniformly at random
from {0, 1}p(λ) for some fixed polynomial p(λ). The function c(λ) denotes the
completeness error, and the function s(λ) denotes the soundness error. For non-
triviality, we require c(λ) + s(λ) ≤ 1 − 1/poly(λ).

By standard techniques, completeness and soundness errors can be reduced
via parallel repetition. We remark that our definition of soundness is non-
adaptive, that is, the NO instance is fixed in advance of the random input
r. Some applications may require adaptive soundness, in which there do not
exist any instance x ∈ ΠN and valid proof π, except with negligible proba-
bility over the choice of r. For proof systems, a simple argument shows that
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non-adaptive soundness implies adaptive soundness error 2−p(λ) for any desired
p(λ) = poly(λ): let B(λ) = poly(λ) be a bound on the length of any instance
in ΠN , and compose the proof system in parallel some poly(λ) times to achieve
(non-adaptive) soundness 2−p(λ)−B(λ). Then by a union bound over all x ∈ ΠN ,
the resulting proof system has adaptive soundness 2−p(λ). We feel that the sub-
tleties involved in the various definitions of soundness will only be of interest to
the zero-knowledge experts and we do not go further on this topic.

An interactive proof system also needs to satisfy an additional property of
zero-knowledge. Informally, an interactive proof system (P ;V ) is zero-knowledge
if there exists a PPT algorithm Sim, called the simulator S, such that for any x ∈
ΠY , the output of (P ;V )(x, r) and the output of Sim(x) are “indistinguishable”.
In this paper, we restrict our attention to statistical proof systems, where the
corresponding notion is that of statistical indistinguishability.

Definition 4 (Simulatability). An interactive proof system (P ;V ) for a
promise problem Π = (ΠY ,ΠN ) is statistical zero knowledge (SZK) if there
exists a PPT algorithm Sim (called a simulator) such that for all x ∈ ΠY , the
statistical distance between Sim(x) and (P ;V )(x, r) is negligible in λ:

�(Sim(x), (P ;V )(x, r)) ≤ negl(λ).

That is, Sim only gets the public input x and has no interaction with P , but still
manages to output something indistinguishable from whatever V learned in the
interaction.

2.3 “Fiat-Shamir with Aborts” Zero-Knowledge Proofs of Linear
Relations

Lyubashevsky [28,29] introduced a technique for constructing practical digital
signatures based on the hardness of lattice problems. In [28,29], the author
mainly considered a zero-knowledge proof of knowledge that, given a secret vec-
tor s ∈ Rk satisfying the relation As = t mod q, proves the knowledge of
low-norm s̄ and c̄ that satisfy As̄ = c̄t mod q. The main idea in [28,29] is to con-
struct a Σ-protocol with the main twist being that the prover does not always
output the result. In particular, the protocols use rejection sampling to tailor
the distribution so that it does not depend on the secret vector s. Moreover, this
rejection sampling was achieved by making the resulting distribution uniform
in a box by [28], or was achieved by a more efficient approach that making the
resulting distribution a discrete Gaussian by [29]. The interactive protocol is
then converted into a non-interactive one in the random-oracle model [3] using
the Fiat-Shamir technique [16]. This combined technique is sometimes referred
to as “Fiat-Shamir with Abort”. The focus of the work [28,29] was on signa-
ture schemes, while Lyubashevsky and Neven [32] formalized the approach as
a non-interactive zero-knowledge (NIZK) proof system for “relaxed” relations,
i.e., where extraction yields a witness from a different language than is used
to produce the proof. Analogously, in this paper we formalize the approach as
a non-interactive zero-knowledge (NIZK) proof system for linear relations, and
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then use this NIZK proof system to construct an interactive zero-knowledge
proof protocol for decryption of FHE ciphertexts.

Algorithm 1. “Fiat-Shamir with Aborts” zero-knowledge proof of knowl-
edge
Input: A matrix A ∈ Rk×�

q , a vector s ∈ S ⊂ R�
q and a vector t ∈ Rk

q such that
As = t mod q mod 2. Challenge domain C ⊂ Rq. Cryptographic hash
function H : {0, 1}∗ → C and a standard deviation σ ≥ 11 · max

c∈C,s∈S
||cs||.

Output: π = (z, c), such that z ∈ Dσ,0,R�
q
, c ∈ C and

c = H(A, t,Az − ct mod q mod 2).

1. y
$← Dσ,0,R�

q

2. c ← H(A, t,Ay mod q mod 2)
3. z ← c · s + y mod q

4. with probability
D

σ,0,R�
q
(z)

3·D
σ,cs,R�

q
(z)

, continue, else goto 1

5. if ||z||∞ > 6σ, goto 1
6. return π = (c, z)

Algorithm 2. “Fiat-Shamir with Aborts” verification algorithm
Input: A matrix A ∈ Rk×�

q , a vector t ∈ Rk
q and a tuple π = (c, z) ∈ C × R�

q.
Cryptographic hash function H : {0, 1}∗ → C and a positive real σ.

Output: Bit 0 or 1 corresponding to Reject/Accept.
1. if ||z||∞ > 6σ, return 0
2. if c �= H(A, t,Az − ct mod q mod 2), return 0
3. return 1

Algorithm 1 (we borrowed it from [32]) is a variation of the signing protocol
from [29]. It shows that the output z is distributed according to Dσ,0,R�

q
. In par-

ticular, the rejection sampling stem on line 4 has the effect that the distribution
of z is independent of the secret vector s and the challenge c. This algorithm
is therefore honest-verifier zero knowledge since a simulator can simply output
z $← Dσ,0,R�

q
, c

$← C and program c = H(A, t,Az− ct mod q mod 2). We remark
that the simulation soundness of the algorithm is essentially the same as that of
[32], so we refer interested readers to [32] for more details about it. Note that in
[29,32], one modular equation only contains one modulus, but the modular equa-
tions in our Algorithms 1 and 2 involves two moduli. As remarked in [32], one
does not need to use the same modulus q for every row of the modular equation,
since the modulus does not affect the “Fiat-Shamir with Aborts” zero-knowledge
proofs of knowledge, so do our moduli in the above algorithms.
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3 The Verifiable Decryption for BGV Scheme

In this section, for ease of exposition, we firstly recall the variant of BGV scheme.
Then, based on the framework of non-interactive “Fiat-Shamir with Aborts”
zero-knowledge proofs of linear relations presented in Sect. 2, we construct an
interactive zero-knowledge proof protocol for decryption of BGV ciphertexts.
Compared with non-interactive procedure, our interactive protocol only needs
one extra communication between the prover and the verifier. Actually, if we
complete this communication off-line, then our protocol can also be regarded as
non-interactive.

3.1 The BGV Scheme

We simply review the variant of BGV scheme, which was obtained by combing
the original BGV scheme [4] with a variant of RLWE-based cryptosystem. This
RLWE-based cryptosystem variant was first described in the full version of [33].
Since in this work we mainly focus on the zero-knowledge proofs of decryption,
the key switching and modulus switching techniques involved in BGV’s homo-
morphic operations will not be presented.
– BGV.Setup(1λ). Choose an odd modulus q = q(λ) and let Rq =
Zq[x]/(Φm(x)) be polynomial ring, where Φm(x) is a m-th cyclotomic polyno-
mial of degree n = ϕ(m). Let Gaussian noise distribution χ = χ(λ) be defined
over Rq with a small norm bounded by a bound B. Set params = (q, n, χ).

– BGV.KeyGen(params). Choose uniformly at random three ring elements

a
$← Rq, and e, s′ $← χ. Generate b ← −(as′ + 2e) mod q. Set the secret key

sk = s = (s′, 1) ∈ R2
q and the public key pk = (a, b) ∈ R2

q .
– BGV.Enc(pk,m). To encrypt a plaintext polynomial m ∈ R2, sample

u, r0, r1
$← χ and then compute the ciphertext

c = (c0, c1) = (au + 2r0, bu + 2r1 + m) ∈ R2
q .

– BGV.Dec(sk, c). For the ciphertext c ∈ R2
q , recover m as follows:

m = 〈s, c〉 mod q mod 2.

Correctness and Security. The ciphertext is valid as long as the noise e′ �
2s′r0 − 2eu + 2r1 does not wrap around modulo q, We prove this as follows:

〈s, c〉 = s′c0 + c1 = as′u + 2s′r0 + bu + 2r1 + m

= as′u + 2s′r0 + −(as′u + 2eu) + 2r1 + m

= 2s′r0 − 2eu + 2r1 + m = m mod q mod 2.

As for the security, under the RLWEn,q,χ assumption, the BGV scheme is IND-
CPA secure. This can be proved using a standard hybrid argument similar to
[5]. Roughly, under the RLWEn,q,χ assumption, it is easy to prove that the
public key pk = (a, b) ∈ R2

q is computationally indistinguishable from uniform
in R2

q , and then by a standard hybrid argument we can draw the conclusion that
the ciphertext c = (c0, c1) ∈ R2

q is also computationally indistinguishable from
uniform in R2

q .
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3.2 Zero-Knowledge Proofs for Decryption of BGV Ciphertexts

As described in the introduction, Lyubashevsky and Neven [32] defined veri-
fiable encryption and presented a construction of verifiable encryption scheme
based on RLWE problem in the random-oracle model. Their definition of verifi-
able encryption is borrowed from Camenisch and Shoup [7], but the soundness
defined in [7] requires that the decryption of a valid ciphertext always recov-
ers a valid witness; whereas the construction in [32] can only achieve a relaxed
property that recovers a witness for a related “extended” language that includes
the original language. This is mainly due to the fact that given the linear rela-
tion Bm = u mod p, their construction only yields a witness (m̄, c̄) with small
coefficients satisfying Bm̄ = c̄u mod p. Nevertheless, in order to prove that this
weaker property suffices for many practical applications of verifiable encryption,
Lyubashevsky and Neven gave two concrete examples − key escrow for RLWE
encryption and verifiably encrypted signatures. The core idea in [32] is to com-
bine the framework of “Fiat-Shamir with Aborts” zero-knowledge proofs of linear
relations with a RLWE based encryption scheme, and the challenge is to convert
the modular equation involved in the encryption of the RLWE based encryption
scheme into the linear relations that are compatible with “Fiat-Shamir with
Aborts” zero-knowledge proofs of linear relations. This challenge also exists in
verifiable decryption problem considered in this paper.

As for the verifiable decryption for BGV scheme, at first glance, it
can be transformed into the problem that: given a sequence of ciphertexts
c1, c2, · · · , cN ∈ R2

q and a function f , the verifier and the prover both per-
form the function f on these ciphertexts and then obtain a derived cipher-
text c = f(c1, c2, · · · , cN ) ∈ R2

q . Then, the prover sends a “targeted message”
m ∈ R2 to the verifier. Meanwhile, for the “targeted message” m ∈ R2 and the
publicly computable derived ciphertext c, the prover argues in zero-knowledge
the possession of the secret key s ∈ R2

q such that 〈s, c−(0,m)t〉 = 0 mod q mod 2
(by the correctness of the BGV scheme). However, we cannot use RSISq,2,2,β hard
problem to prevent a dishonest prover from deceiving the verifier. More precisely,
the derived ciphertext c ∈ R2

q may not be computationally indistinguishable
from uniform in R2

q , though any vector ci ∈ R2
q for i ∈ [N ] is computationally

indistinguishable from uniform in R2
q (due to the IND-CPA security of BGV

scheme). This makes the modular equation 〈s, c − (0,m)t〉 = 0 mod q mod 2
unable to connect to the RSISq,2,2,β problem (go back to The Ring-SIS Prob-
lem in Sect. 2). In other words, the implicit difficulty in the modular equation
〈s, c − (0,m)t〉 = 0 mod q mod 2 cannot be guaranteed by the RSISq,2,2,β prob-
lem. In short, assume m is the plaintext of the ciphertext c, for the message
¬m ∈ R2 claimed by the prover but m �= ¬m, we cannot reduce the probability
of the event that, the prover successfully proves to the verifier that he/she has a
vector ¬s ∈ R2

q such that 〈¬s, c − (0,¬m)t〉 = 0 mod q mod 2, to be negligible.
Note that for m �= ¬m, it does not hold that 〈s, c− (0,¬m)t〉 = 0 mod q mod 2
for the secret key s ∈ R2

q . Therefore, whether the prover has the secret key or
not, he/she may still deceive the verifier.
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To overcome the challenges mentioned above, we insert the RSISq,2,2,β prob-
lem into the verifiable decryption by providing a ciphertext c̄ ∈ R2

q and requir-
ing the prover to be able to prove that 〈s̄, c̄〉 = 0 mod q mod 2, where the
ciphertext c̄ ∈ R2

q decrypting to message 0 ∈ R2 is computationally indis-
tinguishable from uniform in R2

q . The prover cannot find a vector s̄ ∈ R2
q

such that 〈s̄, c̄〉 = 0 mod q mod 2, if he/she does not have the secret key
of the given BGV scheme. In other words, the vector s̄ ∈ R2

q satisfying
〈s̄, c̄〉 = 0 mod q mod 2 cannot be anything but the secret key. Otherwise,
the prover can solve the RSISq,2,2,β problem. Next, we will construct an inter-
active zero-knowledge proof protocol for decryption of BGV ciphertexts. We
reiterate that the N ciphertexts c1, c2, · · · , cN ∈ R2

q and the function f are pub-
licly known, and then both the prover and the verifier can compute the derived
ciphertext c = f(c1, c2, · · · , cN ) ∈ R2

q .
The interactive zero-knowledge proof protocol, between a prover P and a

verifier V, is constructed as follows.

1. After receiving the “targeted message” m ∈ R2, the verifier V encrypts a mes-
sage m̄ = 0 ∈ R2 using the given BGV scheme and obtains the corresponding
ciphertext c̄ ∈ R2

q . After that, V sends the ciphertext c̄ to the prover P. (This
is an extra communication compared with non-interactive procedure.)

2. The prover P runs Algorithm 3 and gets a triple π = (m, c, z). Then, the
prover P sends the triple π to the verifier V.

3. The verifier V runs Algorithm 4. Output 1 if the Algorithm 4 outputs 1.
Otherwise, output 0.

Algorithm 3. One-shot verifiable decryption Gen(sk, c, c̄)

Input: Two vectors c, c̄ ∈ R2
q and a witness sk = s = (s′, 1) ∈ R2

q , such

that
[
c′t

c̄t

]
s = 0 mod q mod 2, where c′ � c − (0,m)t and

m = 〈s, c〉 mod q mod 2. Challenge domain
C = {c ∈ R : ||c||∞ = 1, ||c||1 ≤ 36}. Cryptographic hash function
H : {0, 1}∗ → C and a standard deviation
σ = 11 · max

c∈C
||c||1 · √

2n(3 + γ). Values of γ less than 1.005 are

believed to achieve at least 128-bits security [17].
Output: π = (m, c, z), where z ∈ R2

q .
1. m ← 〈s, c〉 mod q mod 2 and c′ ← c − (0,m)t

2. y $← Dσ,0,R2
q

3. c ← H

( [
c′t

c̄t

]
,0,

[
c′t

c̄t

]
y mod q mod 2

)

4. z ← c · s + y mod q

5. with probability
Dσ,0,R2

q
(z)

3·Dσ,cs,R2
q
(z) , continue, else goto 2

6. if ||z||∞ > 6σ, goto 2
7. return π = (m, c, z)
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Algorithm 4. One-shot verification V(c, c̄, π)
Input: Two vectors c, c̄ ∈ R2

q , a triple π = (m, c, z), a cryptographic hash
function H and a positive real σ as in Algorithm 3.

Output: Bit 0 or 1 corresponding to Reject/Accept.
1. c′ ← c − (0, m)t

2. if ||z||∞ > 6σ, return 0

3. if c �= H

( [
c′t

c̄t

]
,0,

[
c′t

c̄t

]
z mod q mod 2

)
, return 0

4. return 1

3.3 Correctness and Security

Completeness. Completeness follows from the completeness of the proof system
of Sect. 2.3.

Soundness. Given the derived ciphertext c decrypting to message m ∈ R2

(assume that the derived ciphertext c is valid under the given BGV scheme) and
c̄ that is computationally indistinguishable from uniform in R2

q , if the prover
claims that the message ¬m ∈ R2 is the plaintext of the derived ciphertext c,
but m �= ¬m, and argues in zero-knowledge the possession of a vector s ∈ R2

q

such that [¬ct

c̄t

]
s = 0 mod q mod 2,

where ¬c � c − (0,¬m)t, then we have 〈s, c̄〉 = 0 mod q mod 2, and hence the
vector s must be the secret key. Otherwise, the prover solves the RSISq,2,2,β prob-
lem related to c̄. Since the vector s is the secret key, and the derived ciphertext
c is a valid ciphertext, it follows that m = 〈s, c〉 mod q mod 2. Rearranging, we
obtain

〈s, c − (0,m)t〉 = 0 mod q mod 2.

So that we have
〈s, c − (0,¬m)t〉 �= 0 mod q mod 2,

which proves the soundness of the interactive zero-knowledge proof protocol.

Simulatability. The simulator Sim creates a ciphertext c̃ of message m̃ = 0
using the given BGV scheme and runs the zero-knowledge simulator for the proof
system of Sect. 2.3 to create a valid-looking proof π̃ = (m̃, c̃, z̃) for (c, c̃). This
proof is indistinguishable from the real proof, due to the zero-knowledge property
of the proof system and the IND-CPA security of the given BGV scheme.

The above properties are summarized in the following theorem.

Theorem 1. Assuming the hardness of RSISq,2,2,β problem, the interactive zero-
knowledge proof protocol is a zero-knowledge proof of knowledge for the given
statement, with perfect completeness, negligible soundness error, and communi-
cation cost about 2n log q. In particular, there is an efficient simulator that, on
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input (c, c̃), outputs a valid-looking proof π̃ = (m̃, c̃, z̃) statistically close to that
generated by the real prover.

4 Applications

4.1 Secure Medical Computation

Sharing the medical records of individuals among health care providers and
researchers around the world can accelerate advances in medical research. While
the idea seems increasingly practical due to cloud data services, maintaining
patient privacy is of crucial importance. We can use some standard encryption
schemes to encrypt sensitive data so as to protect them from outside attackers,
but these encryption algorithms cannot be used to compute on this sensitive
data while being encrypted. Whether this private-preserving sensitive data can
withstand arbitrary computations is very important, since the computational
results are very useful to help researchers and clinicians to conduct research or
diagnose. Fortunately, FHE can solve this issue since it presents a very useful tool
that can compute on encrypted data without the need to decrypt it. As described
in [24], in a medical data/key-distribution system, a central medical authority
will be responsible for generating the secret and public keys. The public keys will
then be distributed, using the wide-area network, among medical laboratories
and downloaded to portable and wearable medical devices. The medical data
generated by the medical personnel in laboratories and by patients using their
devices will then be encrypted and uploaded to the cloud. All patient medical
data can be stored on the cloud servers safely as the FHE scheme is IND-CPA
secure. Administrators, researchers, analysts, or clinicians can run experiments
on the encrypted medical data without having any secret keys as the FHE scheme
supports arbitrary computations on encrypted data. In order to finally decrypt
the encrypted experiment results, they will need to gain access to the secret keys
from the key authority system using a secure channel.

However, the above procedures that clinicians (or analysts, administrators
and researchers) have to access to the secret keys from the key authority sys-
tem to decrypt the encrypted experiment results will incur many problems. For
example, if the clinicians who have gained access to the secret keys before are
corrupted, then the key authority has to remove the public keys and the secret
keys and re-generate them. Moreover, the encrypted medical data that already
existed in the system must be re-encrypted. Fortunately, we can use verifiable
decryption for FHE to avoid these problems. In details, we can let the clinicians
send the encrypted experiment results (derived ciphertexts) to the key author-
ity. Then, the key authority performs the decryption procedure on the derived
ciphertexts to get the corresponding decryption results. Finally, the key authority
sends the decryption results to the clinicians. Meanwhile, without revealing any
additional information beyond the decryption results, the key authority proves
to the clinicians that the decryption results are decrypted correctly from the
derived ciphertexts.
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4.2 Cryptographically Verifiable Election

Traditionally, the cryptosystems used in voting were additively or multiplica-
tively homomorphic [23,37] which places significant restrictions on the kind of
counting functions that can be computed. While FHE greatly expands the appli-
cability of homomorphic tallying, such as quantum-safe voting scheme with bet-
ter voter verifiability shown by Gjøsteen-Strand [21], who applied BGV scheme
to internet voting in Norway. However, Gjøsteen-Strand [21] mainly considered
the voter verifiability which is equivalent to verifiable encryption rather than
verifiable decryption considered in this paper. Specifically, in their construction,
the voter encrypts he/her ballot with a symmetric scheme, and attaches the key
encrypted by BGV scheme. (The attached key encrypted by BGV scheme is used
to check the validity of the ballot.) After that, the ballot box counts the ballots,
and then sends a receipt to the voter. Finally, the decryption service decrypts
the result submitted by the ballot box. In the process described above, however,
the decryption service does not prove the correctness of decryption. Therefore,
if the decryption service is corrupted, the voting system is not secure.

Alternatively, our proposed verifiable decryption for BGV scheme can be
used to build the following cryptographically verifiable election: voters encrypt
their ballots by the given BGV scheme and then post the encrypted ballots on
some bulletin boards. A central authority collects the encrypted ballots, and
homomorphically evaluates the election counting circuit on these encrypted bal-
lots and then obtains an encrypted result (a derived ciphertext). Note that the
encrypted votes are published on some bulletin boards by voters so that voters
can also perform the election counting circuit evaluation themselves. The central
authority proceeds to decrypt the derived ciphertext and obtains the correspond-
ing plaintext. Then the central authority posts the plaintext and appends a valid
proof that the decryption was indeed done correctly. This process of homomor-
phic tallying [10] is applicable when the counting function used in an election
can be efficiently computed on encrypted ballots. From the above, this approach
greatly simplifies public verifiability of a voting system, as correctness follows
from the homomorphic properties of BGV scheme and the correctness of our
proposed verifiable decryption for BGV scheme.

5 Conclusion

This paper presented an interactive zero-knowledge proof protocol for decryption
of BGV ciphertexts, by combining “Fiat-Shamir with Aborts” zero-knowledge
proofs of linear relations with BGV scheme. The interactive zero-knowledge
proof protocol only needs one extra communication between the prover and
the verifier. Hence, if the communication is completed off-line, then it is also
“one shot”. Furthermore, in order to illustrate the point that verifiable decryp-
tion is an important tool in a number of applications, we showed two example
instantiations − secure medical computation and cryptographically verifiable
election. The efficiency of our proposed interactive zero-knowledge proof pro-
tocol is mostly affected by the size of the modulus q and the witness s in the
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relation. The larger these values, the larger the proof and ciphertext will be. The
witness s is the secret key of the given BGV scheme, so it will be a vector of small
norm. While the modulus q depends on the security level and the homomorphic
capacity of the given BGV scheme.
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Abstract. Cryptographic techniques are employed to ensure the secu-
rity of voting systems in order to increase its wide adoption. However, in
such electronic voting systems, the public bulletin board that is hosted by
the third party for publishing and auditing the voting results should be
trusted by all participants. Recently a number of blockchain-based solu-
tions have been proposed to address this issue. However, these systems
are impractical to use due to the limitations on the voter and candidate
numbers supported, and their security framework, which highly depends
on the underlying blockchain protocol and suffers from potential attacks
(e.g., force-abstention attacks). To deal with two aforementioned issues,
we propose a practical platform-independent secure and verifiable voting
system that can be deployed on any blockchain that supports an execu-
tion of a smart contract. Verifiability is inherently provided by the under-
lying blockchain platform, whereas cryptographic techniques like Paillier
encryption, proof-of-knowledge, and linkable ring signature are employed
to provide a framework for system security and user-privacy that are
independent from the security and privacy features of the blockchain
platform. We analyse the correctness and coercion-resistance of our pro-
posed voting system. We employ Hyperledger Fabric to deploy our voting
system and analyse the performance of our deployed scheme numerically.

Keywords: Evoting · Blockchain · Ring signature
Homomorphic encryption

1 Introduction

Voting plays a significant role in a democratic society. Almost every local author-
ity allots a significant amount of budget on providing a more robust and trust-
worthy voting system. Cryptographic techniques like homomorphic encryption
and Mix-net [7] are usually applied in contemporary electronic voting systems
to achieve the voting result verifiability while preserving voters’ secrecy. How-
ever, incidents like a security flaw that has erased 197 votes from the computer
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database in the 2008 United States elections [34] and the compromise of 66,000
electronic votes in the 2015 New South Wales (NSW) state election in Aus-
tralia [30] raise the public concerns on the security of electronic voting systems.
For voting systems based on bulletin (e.g., [1,9]), one of the major concerns
is whether the voting result that is published on the bulletin can be trusted.
Blockchain with the growing popularity and remarkable success in cryptocur-
rency provides a new paradigm to achieve the public verifiability in such elec-
tronic voting systems.

Recently a number of blockchain-based electronic voting systems have been
developed by exploiting its inherent features. These systems can be classi-
fied into three broad categories. (1) Cryptocurrency based voting systems
(e.g., [21,33,43]). The ballots to a candidate are based on the payment he/she
receives from the voters; the problem with such systems are malicious voters may
refuse to “pay” the candidates to retain the money. Furthermore, a centralised
trusted party, who coordinates the payment between the candidates and voters
must exist. (2) Smart contract based voting system [28], which only supports
two candidates and the voting is restricted to limited number of participants.
Furthermore, it requires all voters to cast their ballots before reaching an agree-
ment on the voting result. (3) Using blockchain as a ballot box to maintain the
integrity of the ballots [11,35].

In summary, the security of these blockchain-based systems highly depends
on the specific cryptocurrency protocol they employed. Additionally, these voting
systems can only work with a specific blockchain platform, and support a lim-
ited number of candidates and voters. Based on our observations and studies, we
believe that any blockchain-based voting systems should have the following three
features: (1) Platform-independence — this means the changes in the underlying
blockchain protocols should not affect the voting schemes. (2) Security frame-
work — the voting system should be implemented with comprehensive security
features (the detail of security features are discussed in Sect. 5). The nature of
the blockchain allows everyone to obtain the data on it; thus, the comprehen-
sive security features have critical importance to ensure that the ballots are fully
secured on the blockchain. (3) Practical — it should be scalable, which means the
large amount of ballots casting and tallying can be finished in a reasonable time.

Our Contributions: In this paper, we propose an electronic voting (evoting)
system that supports the above identified three features as follows.

1. Our voting system does not depend on a centralised trusted party for bal-
lots tallying and result publishing. Compared with traditional voting systems,
which highly depend on a centralised trusted party to tally the ballots and
publish the result, our voting system takes the advantage of a blockchain pro-
tocol to eliminate the need for a centralised trusted party. The details of the
blockchain trustworthiness and voting system trust assumptions are discussed
in Sects. 4 and 5, respectively.

2. Our voting system is platform-independent and provides comprehensive secu-
rity assurances. Existing blockchain-based voting systems highly depend on
the underlying cryptocurrency protocols. Receipt-freeness [31] and correctness
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of the voting result are hard to achieve (we analyse the blockchain-based vot-
ing system explicitly in Sect. 2). The security of our voting system is achieved
by cryptographic techniques provided by our voting protocol itself, thus, our
voting system can be deployed on any blockchain that supports smart con-
tract. To achieve the goal of providing a comprehensive security, we employ
Paillier system to enable ballots to be counted without leaking candidature
information in the ballots. Proof-of-knowledge is employed to convince the
voting system that the ballot casted by a voter is valid without revealing the
content of the ballot. Linkable ring signature is employed to ensure that the
ballot is from one of the valid voters, while no one can trace the owner of
the ballot. The detail of security features that we achieved are discussed in
Sect. 5.

3. Our voting system is scalable and applicable. In order to support voting scal-
ability, we propose two optimised short linkable ring signature key accumula-
tion algorithms which are described in our full paper [41] to achieve a reason-
able latency in large scale voting. We evaluate our system performance with
1 million voters to show the feasibility of running a large scale voting with
the comprehensive security requirements.

The rest of the paper is organised as follows: we discuss the cryptographic
techniques applied in voting systems and analyse some typical voting systems
in Sect. 2. Cryptographic primitives and our voting protocol are presented in
Sects. 3 and 4, respectively. We analyse the correctness and security of our vot-
ing system in Sect. 5. In Sect. 6, we deploy our voting system and analyse its
performance.

2 Related Work

Secure evoting is considered as one of the most difficult problems in security
literature as it involves many security requirements. To satisfy these security
requirements, cryptographic techniques are mostly applied in constructing a
secure evoting system. In this section, we discuss the existing voting systems
based on traditional public bulletin and blockchain technology.

2.1 Public Bulletin Based Voting Systems:

In the following, we outline the key cryptographic techniques used in public
bulletin based voting systems and how such techniques address the corresponding
security requirements.

– Homomorphic encryption: Homomorphism feature allows one to oper-
ate on ciphertexts without decrypting them [13]. For a voting system, this
property allows the encrypted ballots to be counted by any third party
without leaking any information in the ballot [10,14,18]. Typical cryptosys-
tems applied in a voting system are Paillier encryption [32,40] and ElGamal
encryption [19,21].
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– Mix-net: Mix-net was proposed in 1981 by Chaum [7]. The main idea of
mix-net is to perform a re-encryption over a set of ciphertexts and shuffle the
order of those ciphertexts. Mix node only knows the node that it immediately
received the message from and the immediate destination to send the shuffled
messages to. The voting systems proposed in [1,17,20] apply mix-net to shuffle
the ballots from different voters, thus the authority cannot relate a ballot to
a voter. For the mix-net based voting systems, they need enough amount of
mix nodes and ballots to be mixed.

– Zero-knowledge proof: Zero-knowledge proof is often employed in a voting
system [9,29,39] to let the prover to prove that the statement is indeed what
it claimed without revealing any additional knowledge of the statement itself.
In a voting system, the voter should convince the authority that his ballot
is valid by proving that the ballot includes only one legitimate candidate
without revealing the candidate information.

– Blind signature and linkable ring signature: Voting systems like [12,16,
22] employ blind signature [12] to convince the tallying centre that the ballot is
from a valid voter while not revealing the owner of the ballot. Simultaneously,
the authority who signs the ballot learns nothing about the voter’s selections.
In blind signature, both voters and tallying centre must trust the signer. If the
signer is compromised, the signature scheme may stop working. Unlike blind
signature, linkable ring signature [3–5,8,23–27,36,42] is proposed to avoid the
untrusted signer. Instead, it needs a certain number of voters to participate in
the signing process. By comparing the linkability tag, the authority can easily
tell whether this voter has already voted. When the voter signs on the ballot,
he/she needs to include other voters’ public keys to make his/her signature
indistinguishable from other voters’ signatures.

2.2 Blockchain-Based Voting Systems

The blockchain-based voting systems can be discussed under three broad cate-
gories as follows.

– Voting systems using cryptocurrency: In [43], authors propose a voting
system based on Bitcoin. In their voting system, the ballot does not need
to be encrypted/decrypted as they employ the protocol for lottery. Random
numbers are used to hide the ballot that are distributed via zero-knowledge
proof. Making deposit before voting may keep the voters to comply with
the voting protocol while the malicious voters can still forfeit the voting by
refusing to vote. However, only supporting “yes/no” voting may restrict the
adoption of this voting system.

In [33], authors proposed a voting system on the Zcash payment protocol [15]
without altering the inner working of Zcash protocol. The voter’s anonymity
is ensured by the Zcash address schemes. The correctness of the voting is
guaranteed by the trusted third-party and the candidates. In this system,
the authority, who manages the Zcash and voter status database should be
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trusted. If the authority is compromised, double-voting or tracing the source
of the ballot is possible.

– Voting systems using smart contract: In [28], the authors claim that
their open voting network is the first implementation of a decentralised
and self-tallying Internet voting protocol with maximum voter privacy using
Blockchain. They employ smart contract as a public bulletin to achieve self-
tallying.1 However, their voting system can only work with two candidates
voting (yes/no voting) and the limitation of 50 voters makes it impractical
for a real large scale voting system.

– Voting systems using blockchain as a ballot box: Tivi and Fol-
lowmyvote [11,35] are commercial voting systems which employ the
blockchain as a ballot box2. They claim to achieve verifiability and accessibil-
ity anytime anywhere, while the voters’ privacy protection in these systems
is hard to evaluate.

To summarize, most traditional voting systems need a centralised trusted
party to coordinate the whole voting process. In these systems, the centralised
trusted party plays a critical role in storing the ballots, counting the ballots,
and publishing the voting result. Although the existing blockchain-based voting
systems take advantage of blockchain public verifiability, the system security and
user privacy of these systems depend on the features provided by the underlying
blockchain platform. Our proposed approach not only takes the benefits of a
decentralised trust offered by the blockchain technology to remove the need of a
centralised trusted party to do the ballots tallying, voting result decoding and
publishing, but also considers key security primitives proposed in the literature
including traditional evoting systems to build a practical platform independent
secure evoting protocol that can be deployed to any blockchain platforms that
support smart contract.

3 Cryptographic Primitives

In this section, we describe the cryptography primitives borrowed from tradi-
tional voting systems and apply in our evoting system. Note that the syntaxes,
correctness conditions, and security models of a linkable ring signature and a
public key encryption are given in Appendix A and Appendix B, respectively in
our full paper [41].

3.1 Message Encode and Decode

Before the voting starts, we must encode the candidate ID to make it suitable
for vote tallying. The encode/decode functions are defined as follows:

1 Self-tallying means that after the casting phase, voters can count the ballots
themselves.

2 The authors call the storage of the ballot as the ballot box.
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– Candidate encoding: We define ζ := Encode(m) ∈ Z as the candi-
date encoding function. For ρ candidates, each labeled with an ID from
P = {1, 2, . . . , ρ}, β = 2ρ+1 be the basis of encoding operation. We encode
the mth candidate as ζ = βm where m ∈ P. We choose 2 as the basis of
β as the division operation can be replaced by the CPU register right shift
instruction to achieve a better performance.

– Candidate decoding: Let k = ktβ
t + · · ·+knβn +kn−1β

n−1+ · · ·+k1β+k0
be the representation of k base β, k ∈ Z, then we define the right shift k
with n positions as rsh(k, n) = ktβ

t−n + kt−1β
t−n−1 + · · · + kn+1β + kn.

Let sum = sρβ
ρ−1 + sρ−1β

ρ−2 + · · · + s2β + s1 be the addition of all the
ballots where sj is the total number of ballots that the candidate jth acquires.
We define sj := Decode(sum, j) for 1 ≤ j ≤ ρ and is computed as sj =
rsh(sum, βj−1) mod β.

3.2 Paillier Encryption System [37]

Paillier Encryption system is employed to enable our voting system to tally the
encrypted ballots. In our voting system, we implement the following functions
in Paillier system and the detail of these functions are described in Appendix
B.1 in the full paper [41].

– Key Generation: (skPaillier, pkPaillier) := GenPaillier(Klen) is the function to
generate the secret key skPaillier and the corresponding public key pkPaillier with
the given key length Klen. The voting administrator invokes this function to
generate the key pair and uploads the public key pkPaillier to the blockchain.

– Encryption: CBallot ← EncPaillier(ζBallot, pkPaillier) where ζBallot ∈ Zn is the
plaintext ballot to be encrypted. Voters download the pkPaillier from the
blockchain and call this function to encrypt their ballots. This function gen-
erates the encrypted ballot CBallot.

– Decryption: ζRes := DecPaillier(CRes, skPaillier) where CRes ∈ Z
∗
n is the

encrypted voting result; the voting administrator invokes this function to
decrypt the voting result.

– Message Membership Proof of Knowledge [6]: {vj , ej , uj}j∈P :=
PoKmem(CBallot, Υ ) where CBallot is the encrypted ballot, Υ is the set of the
encoded candidates. When a voter publishes his/her ballot, he/she invokes
this function to generate the proof {vj , ej , uj}j∈P that demonstrates his/her
ballot encrypts only one of the encoded candidates in Υ .

– Decryption Correctness Proof of Knowledge: (ζRes, r) := PoK(CRes,
skPaillier), where ζRes is the plaintext and r is the random factor that generate
the encrypted voting result CRes. After publishing the voting result, the voting
administrator invokes this function to generate a unique value pair (ζRes, r)
that constructs the CRes to prove that he/she decrypts the voting result CRes

correctly.

3.3 Linkable Ring Signatures

Linkable ring signature (LRS) can be applied in our system to protect the privacy
of the voters. In practice, we apply the short linkable ring signature (SLRS) [2]
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which extends all the SLRS features to make the signature size constant with
the growth of voter numbers, it has the following features: (1) every ballot that
is accepted by the system is from one of the valid users, (2) the voter can check
whether his ballot is counted by the blockchain, (3) the size of the signature is
constant to support scalability and (4) double-voting is prevented. In our voting
system, we implement the function tuple (Setup,KeyGen,Sign,Verify, Link). The
details of these functions are explained in Appendix A.2 in the full paper [41].

– Setup: param ← Setup(λ) is a function that takes λ as the security parameter
and generates system-wide public parameters param such as the group of
quadratic residues modulo a safe prime product N (explained in Appendix
A.2 in the full paper [41]) denoted as QR(N), the length of the key, and a
random generator g̃ ∈ QR(N).

– Key Generation: (ski, pki) ← KeyGen(param) is a function to generate a
key pair for each voter i.

– Signature: σ ← Sign(Y, sk,msg) is a function to generate the signature σ
using all voters’ public keys Y = {y1, y2, . . . , yb}, the message msg to be
signed, and the voter’s secret key sk. Voters should invoke this function to
sign on his/her encrypted ballot.

– Verification: accept/reject ← Verify(σ,Y,msg); our voting system invokes
this function to test the validity of every ballot. Based on the input of the
encrypted ballot itself, the voter’s signature and all the voters’ public keys,
the blockchain accepts or rejects this ballot to be put on the chain.

– Linkability: Link(σ1, σ2) → linked/unlinked. When a voter casts his/her vote,
our voting system invokes this function to check whether this voter has already
casted his vote. If this function returns linked, our voting system rejects this
ballot; otherwise, the ballot is recorded on the chain.

4 The Voting Protocol

In this section, we first provide an overview of the whole voting protocol and
then discuss each step in details. The whole voting process can be divided into 11
steps as shown in Fig. 1(a). Except smart contract administrator, three entities
are involved: voters, smart contract, and voting administrator.

The voting system consists of one front-end smart contract and several val-
idation nodes as shown in Fig. 1(b). The role of a validation node is to repli-
cate the execution of the smart contract codes to ensure its correct execution.
For a practical voting, the validation nodes could be held by different enti-
ties/stakeholders, thus all ballots on the blockchain have been verified by differ-
ent entities/stakeholders. As all the entities/stakeholders have the agreement on
the data stored on the blockchain, the blockchain built on the servers owned by
different entities can be regarded as trustworthy.

4.1 Entities in the Voting Process

Four entities should be involved in our voting system shown in Fig. 1(a), and
details are explained as follows:
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Fig. 1. The general voting protocol and how entities are connected.

– smart contract administrator: he/she has the ability to access the smart
contract platform to deploy/terminate smart contract. In Hyperledger fabric,
this account is authorised by the membership service and a permission is
granted to deploy/terminate the Smart contract. In our voting system, we
need at least one smart contract administrator to deploy the voting smart
contract.

– voting administrator: The role of voting administrator is to organize the
vote by setting up the voting parameters and triggering the tallying and result
publishing phase. Although there are underlying mechanisms in hyperledger
to authenticate users, we use SLRS to prevent administrator from linking the
ballots with the users.

– smart contract: The role of smart contract include (1) store the encrypted
ballots. (2) verify the validity of the ballots. (3) count the encrypted ballot.
(4) verify the correctness of the voting result. (5) publish the voting result
and provide the platform for the voters to verify the voting process.

– voters: Voters are the people who have the rights to cast their vote. They
need to register into the voting system before they cast their vote.

4.2 Voting System Set Up

During the system set up, the voting administrator uploads the following three
parameters to the blockchain:

– The public key of the Paillier system pkPaillier.
– A set of encryptions of zero denoted as T , generated by the administrator’s

Paillier public key pkPaillier. For voting with 1 million voters, we suggest the set
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should contain enough elements to make the randomised pool large enough
and the detail of T is discussed in receipt-freeness analysis3.

– The SLRS scheme parameters, param.

4.3 Voter Registration

Bob must register this voting system with his identity. The registration infor-
mation could be: (1) email address with a desired password, or (2) the identity
number with a desired password, or (3) an invitation URL sent by the adminis-
trator with a desired password. After Bob passes the identity check conducted
by the smart contract, he can login with the desired password to download the
SLRS param and the administrator’s Paillier public key pkPaillier, then generates
the SLRS key pair (ski, pki) by calling KeyGen(param); Bob then uploads the
public key pki to the smart contract (Bob’s secret key is kept off-chain by him-
self). If the smart contract accepts his SLRS public key, the smart contract puts
his public key pki on the blockchain to complete his registration phase.

4.4 Vote Casting Phase

During this phase, Bob casts his vote as follows: (1) Bob chooses one of the
candidates m ∈ P and encodes it as ζ := Encode(m). (2) Bob invokes the Paillier
encryption function C ← EncPaillier(ζ, pkPaillier). (3) Bob needs to prove that C is
an encryption of an element in {ζ1, . . . , ζρ} (set of all encoded candidates) by
calling {vj , ej , uj}j∈P := PoKmem(C, Υ ); hence he sends π = {C, {vj , ej , uj}j∈P}
to the smart contract.4 (4) Upon receiving {vj , ej , uj}j∈P , the smart contract
verifies the validation of the encrypted ballot C. We denote φ as a mapping of
this transaction’s session id to T domain. If C is valid, the smart contract takes
an encryption of zero at φth position. Let ε be the addition of T [φ] and C. The
smart contract signs on ε denoted as s and sends (ε, s) back to Bob. (5) If Bob
accepts s, he invokes (v, ỹ, σ′) := Sign(ε, (pk, sk),Y) to generate the Signbob on ε
and sends (ε,Signbob) to the smart contract. (6) If the smart contract detects that
Signbob has already been recorded on the blockchain or cached in the memory,
it rejects Bob’s vote; otherwise, (ε,Signbob) is put on the blockchain.

4.5 Ballots Tallying and Result Publishing

Due to the Paillier system’s homomorphic feature, counting the vote is as simple
as fetching the encrypted ballots from the blockchain and adding them together.
The result publishing mechanism is described in the following steps: (1) Let Esum

3 To avoid requiring the administrator to upload the encryption of zero pool, coin
flipping protocol can be applied to generate the consistent encryption of zero on all
the validation nodes and this is our future work.

4 Bob can choose none of the actual candidates by casting his ballot to a dummy
candidate. When the smart contract publishes the voting result, it ignores all the
ballots that the dummy candidate gets.
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be the sum of all the encrypted votes and Signs be the signature signed by the
smart contract on Esum. The smart contract sends (Esum,Signs) to the adminis-
trator. (2) The administrator invokes sum := DecPaillier(Esum, skPaillier) to compute
plaintext sum, which encodes the ballots of each candidate. The administrator
also invokes (sum, r) := PoK(Esum, skPaillier) to calculate the random r that con-
structs this Esum, and sends (sum, r) to the smart contract. (3) The smart con-
tract verifies the correctness of (sum, r) by checking if Esum

?= gsumrn (g is one of
the elements of pkPaillier). (4) If the smart contract accepts the sum, it iteratively
invokes m := Decode(sum, i) to compute the ballots for each candidate i. Let Π
be the dictionary holding the voting result of all candidates. The smart contract
finally puts Π on the blockchain.

4.6 Ballot Verifying

After tallying ballots and before the voting administrator decrypts the tallying
result, the public can verify ballots on the blockchain to make sure the validity of
the voting process. We define two roles for people who can verify the voting. The
first one is those who have the right to access the data on the blockchain while
they do not have the right to vote. The second one is those who have both rights
to vote and access the data on the blockchain. The public verifiability to those
who have first role is as follows (1) Checking the number of ballots that were
counted and the number of people registered for this voting. (2) Checking the
correctness of the tallying result by downloading and adding all the encrypted
ballots to match with the tallying result published on the blockchain. Compared
to those who have the first role, people assigned to the second role can also
verify that his/her ballot is recorded on the blockchain by checking whether
there exists one ballot that is signed with his/her signature; This ensure his/her
vote is recorded and counted.

In practice, we suggest enhancing the trustworthiness of the blockchain by
allowing different political parties/stakeholders host their own validation nodes.
The data on the blockchain is verified by different entities/stakeholders, and it
is unlikely that these entities/stakeholders collude with each other to publish a
false voting result.

5 Correctness and Security Analysis

5.1 Correctness Analysis

The correctness of our voting system is guaranteed by the public verifiability
provided by the smart contract and the proof of knowledge provided by the cryp-
tographic schemes. More than that, the smart contract ensures the consistency
of a transaction execution. Any inconsistencies generate an error which results
in the rejection of the transaction. This means the voting participants can be
assured that every transaction on the blockchain is verified and accepted by all
participating nodes. This prevents compromised nodes from putting an invalid
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data on the blockchain unless the adversary can take control of a proportion of
the nodes in the whole blockchain network5.

5.2 Security Features of Our Voting System

– Privacy: The ballots on the public ledger are encrypted and only the voting
administrator who initiates the voting can decrypt the ballots. This ensures
that the tallying center can count the ballots without knowing the content of
the ballots.

– Anonymity: The voters, candidates, or smart contract cannot tell the public
key of the signer with a probability larger than 1/b, where b is the number of
the voters. This can be guaranteed by the anonymity property of the linkable
ring signature (LRS) scheme. Details are explained in Appendix A.2 in the
full paper [41].

– Double-voting-avoided: In our voting system, we take the advantage of
linkability provided by the short ring signature scheme. This means it is
infeasible for a voter to generate two signatures such that they are determined
to be unlinked. Our system can detect whether the signatures are from the
same voter. Hence, a voter can only sign on one ballot and cast his/her ballot
only once. This can be guaranteed by the linkable property of the LRS scheme.
Details are explained in Appendix A.2 in the full paper [41].

– Slanderability-avoided: A voter cannot generate a signature which is deter-
mined to be linked with another signature not generated by him/her. In other
words, an adversary cannot fake other voters’ signature. This can be guar-
anteed by the non-slanderability property of the LRS scheme. Details are
explained in Appendix A.2 in the full paper [41].

– Receipt-freeness: Even if an adversary obtains a voter’s secret key, the
adversary cannot prove that this voter voted for a specific candidate. This is
guaranteed by the addition of encryption of zero which provides additional
randomness to the ciphertext which is unknown to the voter. Thus, even if
the voter’s secret key is disclosed, no one can prove his casted ballot. For
our voting system, the security level of the receipt-freeness is affected by the
size of the encryption of zero pool, as the voters can collude with each other
to reconstruct the encryption of zero pool. One solution is increase the size
of zero pool thus more voters is required to reconstruct the pool. Another
solution is applying coin flipping protocol on all validation node to work out
a consistent randomness encryption of zero for each valid ballot. We have
taken the first approach in this paper with 4096 encryptions of zeros.

– Public verifiability: Anyone who has the relevant rights to access the
blockchain can verify that all the ballots are counted correctly; moreover,
voters can also verify whether their ballots have been recorded.

– Correctness: Proof-of-knowledge ensures the correctness of the voting pro-
cess. Voting participants need to prove the correctness of the interactions

5 The number of nodes to be compromised depends on the underlying consensus
protocol.
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with the blockchain. Even if some blockchain nodes are compromised, others
can still verify whether the proof is correct.

– Vote-and-Go: Compared with the voting system proposed in [31], our voting
system does not need the voter to trigger the tallying phase. Moreover, in
our system, voters can also cast their vote and quit before the voting ends,
unlike [28] which needs all voters to finish voting before tallying the ballots.

5.3 Security and Coercion-Resistance Analysis

To address the security and coercion-resistance, we make the following assump-
tions:

– The trustworthiness of the blockchain platform is achieved by allowing dif-
ferent stakeholders/entities to host the blockchain validation nodes.

– Voters cast their ballots in a secure terminal, which means it is assumed
that no one stand behind a voter or uses digital devices to record the voting
process. We do not take the physical voting environment security into our
consideration.

– The possibility of an attacker to create a blockchain and apply a social engi-
neering technique to launch a phishing attack is beyond our research scope.

– The administrator should not reveal the Paillier system secret key and the
encryption of zeros to anyone.

– Voters should cast their ballots by themselves. No one else can cast the ballot
with a voter’s identification except the voter himself.

We demonstrate the robustness of our system under two typical attacks below.

Man-in-the-Middle Attacks: Our voting system has strong resistance to this
attack. First, as the voters and the smart contract both sign their messages
and the voting data is encrypted, it is impossible for an adversary to forge the
signature or alter the data on any parties involved in the transactions. Second,
the public keys used for signature verification are all published on the blockchain,
preventing the adversary from cheating any parties by replacing the original
public key with the adversary’s public key. The encryption of the ballot also
eliminates the possibility of the ballot leakage.

Denial-of-Service (DoS) Attacks: DoS attack is feasible to launch since the net-
work service is provided in a relatively centralised way. In addition, the servers
have relatively limited processing ability for a large number of requests. Dis-
tributing the service on different nodes is one of the solutions to DoS attack as
it is almost impossible for the adversary to compromise all the servers.

Coercion-Resistance Analysis: Coercion-Resistance means it is infeasible for
the adversary to determine whether a coerced voter complies with the demand.
Our voting system security features discussed in Sect. 5.2 make it impossible
to launch the Ballots-buyer attack and Double voting attack. Additionally, our
voting system is free from randomization attack.
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For the Ballots-buyer attack, an attacker coerces a voter by requiring that
he submits a randomly composed ballot. Under such circumstances, both the
attacker and the voter have no idea about which candidate this voter casts
the ballot for. The purpose of this attack is to nullify the ballots. For our sys-
tem, it is impossible to launch this attack as the voter should prove that the
ciphertext is one out of ρ encrypted candidates by calling {vj , ej , uj}j∈P :=
PoKmem(EncPaillier(ζ, pk), Υ ). Since Υ is held by the smart contract, any ballot
that is not the encryption of any element in Υ is rejected and the voter is noti-
fied that this transaction is failed.

6 System Deployment and Experiments

6.1 System Deployment

Our voting system can be deployed in any blockchain platforms with smart con-
tract capability and achieve the same level of security. There might be some
other reasons to choose a particular platform such as voting latency and flexi-
bility requirements. Different consensus protocols have significant impact on the
blockchain network latency and node scalability [38]. If the ballots’ confirmation
latency is not a major issue for the voting system, the PoW-based blockchain
system could be a good option to achieve maximum node scalability. Otherwise,
a BFT-based blockchain platform is a better solution. In our scenario, we employ
the BFT-based blockchain platform Hyperledger Fabric and deploy our voting
system in a practical scenario.

6.2 Experiments and Performance Evaluation

We deploy our system in docker containers running on a desktop with 4 cores i5-
6500 CPU and 8 GB DDR3 memory. We conduct 1 million voters voting process
on the blockchain that consists of 4 validation nodes and 1 PBFT leader node.
Each of the validation nodes runs in one dedicated container; thus, we run five
docker containers to build our testing blockchain system. We set a voter’s public
key as 1024 and 2048 bits respectively and the Paillier key pairs as 1024 bits.
The deployment pattern is shown in Fig. 1(b). We summarize the time spent on
our employed cryptographic processes for 1 million voters’ voting in Table 1.

Voting Parameters Setting Up Time (Administrator Side): To initialise
the voting, the administrator is responsible for uploading the voting parameters
as discussed in Sect. 3. Let tcal be the time taken to generate T , and tupload be
the time spent on uploading T to the blockchain. With 1024 bits key length, the
pool size is 1 MB. According to our test, tupload is <1 s and Tcal is about 14 s.
In conclusion, under 100 MB bandwidth network, on the smart contract side,
the majority of the time is spent on bottom half key accumulation, and on the
administrator side, the most time-consuming phase is generating and uploading
T (the pool of encryption of zeros).
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Table 1. Time consumed on each step.

Step Time

Generate T 13, 560ms

Bottom half key
accumulation

<34 s

Top half key
accumulation

<23ms

Download parameters 4ms

Upload ballots ≈776ms

Tally 3, 850ms

Decode and publish <2,000ms

Fig. 2. The diagram of Algorithm 1.

SLRS Parameter Setting Up Time: Compared with LRS, SLRS enables
the size of the signature constant no matter how many signers are involved in
this signature. This feature is critical important for a large scale voting (i.e. the
number of voters > 100, 000 1024-bits keys) as the signature should be constant
to be suitable for storing on the blockchain. Compared with LRS, SLRS needs
an extra step that accumulates all the signers’ public keys. Let yi be the public
key of ith voter and ψ be the SLRS public parameter for all voters. We define
the key accumulation operation for all the voters’ SLRS public keys for the ith

voter as wi = ψy1y2...yi−1yi+1yi+2...yb . In order to make the time spent on key
accumulation acceptable, we divide the key accumulation into two halves. The
bottom half is run on smart contract and the top half is run by each voter.

Bottom Half Time Consumption (Smart Contract Side): For the bottom
half (the bottom half algorithm is shown in our full paper [41]), on the smart
contract, we divide the voter SLRS public keys into m groups and pre-calculate
the accumulation of all the public keys except the keys in the given group i
and denote this key accumulation as wsi. A diagram that shows how bottom
half algorithm works is also given in Fig. 2. We only discuss a case in which the
number of the voters is larger than 500; otherwise, the voters can generate the
key accumulation themselves within a reasonable computation time. We denote
G as the group that contains the voters’ SLRS public key pk and f the public key
accumulation function. We invoke an array operation function append to add an
element into the array. We distribute the voters’ SLRS public keys into u groups
and each group has Num of keys (except the last group). We denote the array
WS to store all ws, and gkeys to store the voters’ SLRS public keys groups. The
most time-consuming part is the multiplication of public keys for each group. In
our implementation, we calculate the WS using four threads to save time.

We evaluate the performance for 1 million voters’ voting and the result is
shown in Fig. 3(a). We find that the time spent on calculating WS decreases with
the growth of the voter numbers in one group. For example, for 1024 bits length
and 2048 bit length key accumulation, it decreases from 34 s and 171 s for the
group that contains 3000 voters to 13 s and 35 s for the group that contains 8, 000
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Fig. 3. SLRS public key accumulation and searching a block on a given blockchain in
1 million voters’ voting

voters, respectively. This is due to (1) the time spent on running the exponential
computation loop in bottom half algorithm that dominates the time spent for
the whole algorithm (2). For the 1 million voters’ public key accumulation, we
decrease the number of groups by increasing the number of the voters in a
group to decrease the time spent on the loop in bottom half execution.

Top Half Time Consumption (Voter Side Key Accumulation): For the
top half execution (The top half algorithm is shown in our full paper [41]), the
voter downloads the array WS and the key group that his key belongs to in
gkeys from the blockchain. The time spent on downloading these parameters is
acceptable because of two reasons (1) the key size and the element size in WS
are constant. (2) The number of groups is relatively small. For instance, if we
have 1 million voters and we group 5000 voters in one group, and set the public
key size as 1024 bits and N as 1024 bits, then the size of all the public keys in
this group, denoted as Y ′, is approximately 624 KB. The size of an element in
WS is restricted by SLRS parameter N ; thus with the parameters above, WS
is 256 KB. Therefore, the total size of Y ′ and WS is about 880 KB. The voter
only needs to do one exponential operation, regardless of the voting scale. From
Fig. 3(b), it can be seen that with the key size of 1024 bits, it increase from
8.48 ms for the group that contains 3000 voters to 16.35 ms for the group that
contains 8000 voters. The increase of time spent for the key accumulation on the
voter’s side can be explained as the increase of time spent in top half execution,
as it dominates the total time spent for the voter side key accumulation.
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For 1 million voter’s voting, we could set the number of voters in one group
smaller to reduce the time spent on the voter side for key accumulation. For the
key length of 1024 bits, we recommend to set each group contains about 7000
voters so that it takes 14 s and 15.48 ms on the smart contract side and the voter
side key accumulation, respectively.

Based on the above experiments, it is clear that both the increases of the block
size and chain length increase the time spent on searching one given block in
the blockchain. For 1 million voters’ voting system, the blockchain that consists
of smaller blocks has better search performance. However, the drawback of the
smaller block size is that it increases the number of searching operations (e.g.,
if we put all ballots in one block, users only searches once to get them; whereas
if we allocate all of them in 10 blocks, users have to search 10 times to get
them). Based on the experiment results shown in Fig. 3(c) and (d), in practice,
we recommend to set each block contains 640 ballots to achieve both a reasonable
search time latency and the average number of search operations.

7 Conclusion

To solve the problems that the current blockchain voting system cannot provide
the comprehensive security features, and most of them are platform dependent,
we have proposed a blockchain-based voting system that the voters’ privacy and
voting correctness are guaranteed by homomorphic encryption, linkable ring sig-
nature, and PoKs between the voter and blockchain. We analyse the correctness
and the security of our voting system. The experimental results show that our
voting system achieves a reasonable performance even in a large scale voting.
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Abstract. The advent of crowdsourcing has brought with it multiple pri-
vacy challenges. For example, essential monitoring activities, while nec-
essary and unavoidable, also potentially compromise contributor privacy.
We conducted an extensive literature review of the research related to the
privacy aspects of crowdsourcing. Our investigation revealed interesting
gender differences and also differences in terms of individual perceptions.
We conclude by suggesting a number of future research directions.
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1 Introduction

Crowdsourcing concatenates the words ‘crowd’ and ‘outsourcing’ to reflect plat-
forms that facilitate the recruiting of “crowds” to undertake tasks. The crowd-
sourcing approach has the potential to provide organizations with access to new
ideas and solutions, to engender sustained consumer engagement and opportuni-
ties. It constitutes a step change in the way many people work, hire, and market
labour [13,42].

Crowdsourced labour is not always remunerated. In particular, Wikipedia is
a widely known and used crowdsourcing platform where members donate their
time to contribute to a publicly-available online encyclopedia. The outcome is
the most inclusive encyclopedia in the world [14] that ranks as the fifth [68]
most-viewed website worldwide.

The principle of crowdsourcing is that many heads are better than one. By
recruiting a large crowd, it is possible to gather ideas, benefit from a wide variety
of skills, and encourage participation. The quality of content and idea generation
will be superior to anything produced by a solo person or small team [74].

Crowdsourcing, in addition to its positive aspects, also renders its users vul-
nerable to significant privacy risks. In this paper, we use previously-proposed
privacy dimensions to evaluate the effectiveness of high-level guidance for
enhancing privacy [27]. These include privacy categories [57,59], privacy princi-
ples [32,36,76], privacy concerns [16] and privacy enhancements [76].

c© Springer Nature Switzerland AG 2018
L. Chen et al. (Eds.): ISC 2018, LNCS 11060, pp. 387–400, 2018.
https://doi.org/10.1007/978-3-319-99136-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99136-8_21&domain=pdf


388 A. Alkharashi and K. Renaud

The contribution of this paper is to provide an overview of existing research
into crowdsourcing-related privacy concerns. Our review revealed a gender dif-
ference in terms of crowdsourcing labourers and allows us to suggest possible
future research directions.

2 Privacy

Solove [69, p. 1] defines privacy as “a concept in disarray. Nobody can articulate
what it means. Currently, privacy is a sweeping concept, encompassing (among
other things) freedom of thought, control over one’s body, solitude in one’s home,
control over personal information, freedom from surveillance, protection of one’s
reputation, and protection from searches and interrogations”.

This definition informs our discussion of privacy challenges related to crowd-
sourcing. Computational systems have often not managed the enormous amount
of data gathered by all these systems in a secure or confidential fashion. This
could result in personal data being leaked and/or compromised [1]. Most of
all, personal privacy could be sacrificed, and privacy, once lost, can never be
regained.

In this section we outline the dimensions that informed our investigation. We
will consider privacy from four distinct perspectives, and report on the interac-
tions of these in published literature. The orthogonal dimensions are:

1. three basic layers of privacy derived from Patil and Kobsa [59]: social, tech-
nical and legal.

2. five privacy principles which are typically reflected in privacy legislation and
regulations [32,36,76].

3. five privacy concerns experienced by people who give their personal data to
others [16],

4. five privacy enhancement techniques that are typically applied by those
who collect personal data in order to address specific individual concerns of
the data owners [76].

These dimensions (depicted in Fig. 1) provide the structure we used to inform
our investigation.

(1) Privacy Layers

An extended view of a layered framework [57] was adapted from Patil and
Kobsa [59] to allow us to analyze privacy risks from both user and service-
provider perspectives.

Normative/Legal: this layer emphasizes laws and policies that protect the
individual from the privacy-invasive practices engaged in by corporations, gov-
ernments, and other individuals.

Technical: this layer describes measures put in place to protect personal data
and to allow information owners to control access to their own information.
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Fig. 1. Privacy dimensions

Social: this layer concerns the management of the boundary between people’s
private and public lives. Any information people divulge happens with an under-
standing of the context within which it is shared, and privacy is lost when the
information is shared outwith that context.

We used these layers to identify the research gaps between privacy layers
from legal, social and technical perspectives to identify the factors that shape
privacy behaviours among online communities.

(2) Privacy Principles

Privacy legislation and regulations typically instantiate fundamental privacy
principles. We performed our analysis using a core set of privacy principles
that are frequently addressed in privacy laws and regulations. The principles
are briefly described below [76]:

User Awareness. This indicates the level of clarity and knowledge of privacy
when collecting or providing data [36].

Security. This concerns the reasonable security safeguards used to protect per-
sonal information and defend it against risks such as loss or unauthorized access,
destruction, use, modification or disclosure of data [32].

Collection Limitation. This concerns the limitations imposed onto the col-
lection of personal data and the fact that any such data should be obtained by
lawful and fair means [32].
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Use Limitation. This addresses the fact that personal data should not be dis-
closed, made available or otherwise used for purposes other than those specified
during collection [32].

Integrity. This addresses the need for collected personal data to be sufficiently
accurate and up-to-date to support the intended purposes. A data controller
should ensure that all corrections are propagated in a timely manner to all
parties that have received or supplied any inaccurate data that is identified [36].

(3) Privacy Concerns

Privacy concerns apply to an individual’s particular views of justice within the
context of privacy. People mostly have idiosyncratic views and interpretations
of what data it is fair to collect, and how they rank their personal information
from least to most sensitive. Campbell [16] suggests the following list of concepts
that encapsulate people’s concerns.

Anonymity. Ability to hide identity completely.

Pseudonymity. Appearances suggest identity hiding, but in reality the person
can be identified.

Unobservability. Ability to use a system or website without all such accesses
being logged.

Unlinkability. Ability for separate accesses not to be connected to each other
by a data controller.

Deniability. Ability for users to deny some of their characteristics or actions,
with the understanding that the system will not provide proof to refute such
claims.

(4) Privacy Enhancement

A number of techniques are recommended for privacy enhancement [76].

User Preference. A data controller should specify a service’s privacy practices
in line with each individual user’s preferences.

Negotiation. Systems will facilitate a negotiation between a user and a website
in terms of privacy standards.

Ease of Adoption. This principle relates to the readiness of organizations
to adopt a particular privacy protection, irrespective of the need for multiple
infrastructures or technologies.

Usability. This principle relates to the ease with which users can convey their
privacy decisions to the system.

Isolation. This principle relates to users being able to deny some of their charac-
teristics or actions, and the understanding that others will not verify the veracity
of their claims.
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3 Systematic Review

In this section, we introduce a reproducible model of the systematic literature
review process we conducted [37,85]. The process, as shown in Fig. 2, describes
main stages of the review process: (1) selection, (2) specification and (3) sum-
marizing.

Fig. 2. Systematic review process

Selection. In this process, we consider two important factors during selection.
Firstly, we choose a particular key terms related to the research scope including:
“crowdsourcing privacy”, “crowd sourcing privacy”; or “crowdsourcing privacy”
added with “social behavior”, “user awareness”, “security attacks”, “concerns”,
“data protection”, “trust”, “anonymity”, “integrity”, “collection”.

Secondly, we use multiple well-known digital library databases to collect all
resources from: Web of Science, Directory of Open Access Journals, Microsoft
Academic, Google Scholar, ProQuest, Research Gate, science Direct, IEEE
Xplore Digital Library, arXiv (Cornell library) and Wiley.

Specification. To manage our search results from a database source, we apply
two simple rules of validation: date of publication and relevance of study. We
only use papers that we can access online. We restricted our search to papers
published from 2013 to 2017. Papers also should have enough information and
must not be out of the research domain.

Summarizing: After we had filtered the papers, we recorded each paper’s ref-
erence in our summary tables, finalized our full review of findings and discussed
potential research directions.

4 Findings

Our search results on the online database delivered a total of 635 original research
papers. We retained roughly 30% (212 papers): those that specifically discussed
privacy in crowdsourcing.
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Approaches Proposed by Researchers
We selected publications within four major approaches of research that corre-
spond to crowdsourcing and privacy domains. These approaches are framework,
algorithm, model and survey. Figure 3 shows that the number of published papers
which presented model of privacy in crowdsourcing is research work (55%), algo-
rithm (6%), survey (5%) and framework (34%). This also indicates that there is a
research activity mostly in modeling and framework of privacy in crowdsourcing.

Privacy Principles
The papers were examined in terms of the privacy layers, principles, concerns
and enhancements, as detailed in Sect. 2 as shown in Tables 1, 2 and 3.
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Fig. 3. The number of crowdsourcing privacy publications by research approach.

Table 1. Summary of references dealing with privacy principles in crowdsourcing.

User awareness Security Collection limitation Use limitation Integrity

Privacy attitudes [53,58] [55,70] [17] [15,17,26] •
Trust & evaluation [81] [62] • • [28]

Intelligent applications [7] [2,25] • • [84]

Protection measures [17,72] [35] [22] • •
Authentication methods [8] [63] • • [49]
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Table 2. Summary of references related to privacy concerns in crowdsourcing.

Anonymity Pseudonymity Unobservability Unlinkability Deniability

Privacy attitudes [47,50,75] [34] [34] [34] [34]

Trust & evaluation [43,62] [71] • [77] •
Intelligent applications [23,38] • [40] • •
Protection measures [37] • • • •
Authentication methods [10,60] • [64] • •

Table 3. Summary of references relating to privacy enhancements in crowdsourcing.

User preference Negotiation Ease of adoption Usability Isolation

Privacy attitudes [73] [31] • [44] [54]

Trust & evaluation • [56] • [56] •
Intelligent applications • [41] • [20,65] [23]

Protection measures • • • [30] •
Authentication methods [4] [78] [12,24] [12] [29]

5 Discussion and Limitations

Two poorly researched areas were identified during the review: (1) Gender and
Privacy, and (2) Individual Privacy Perceptions. We were not specifically looking
for the first but it emerged during the analysis and we considered it worth
reporting.

Gender and Privacy
Many studies report a gender gap in online knowledge sharing e.g. Wikipedia [6,
33,51]. Researchers have shown that females are more concerned about online
privacy than males [67] and it is just possible that privacy concerns are discour-
aging females from contributing. It would be interesting to test social psychology
theory models in order gain a deeper understand of why this gap really exists
and to gain insights into gender-specific privacy behaviours in this context. The
main areas of gender gap revealed by reviewed literature are as follows:

Contribution. One study [51] shows that females contributed less to crowd-
sourced platforms during 2009. Only 16.1% of the 38,497 editors who
started editing on Wikipedia were female. The study examined multiple
social behaviour-related hypotheses by conducting statistical experiments when
extracting Wiki page data. Another study reported that both males and females
made the same number of revisions, and the most active female Wikipedians
make more revisions than most active male Wikipedians.

Vandalism and Trolling. Both acts have similar ultimate goals in the context of
online discussion communities. However, these terms are used interchangeably
in the research literature. Research around vandalism or trolling behaviour has
tended to be essentially qualitative, commonly involving deep case-study analy-
ses of a small number of manually-detected activities. These analyses include the
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different types of trolling that have been carried out [39], the motivations behind
doing so [66] and the different approaches in terms of responding to trolls [9,19].
Another study reports on the evolution of users’ anti-social behaviours from
initial joining to final banishment [18].

Measurement. The most common approach used by researchers when trying to
understand behaviour is to use a measurement tool. One study [5] examines how
contributor motivations affect the type of contributions made to Wikipedia by
presenting a retention rate to measure the reliability of an article written by
both registered and anonymous users. Another study has presented a machine
learning approach to detect vandalism edits on Wikipedia by using a logistic
regression model [61].

This particular finding suggests that the gender gap is an area that would
benefit from further investigation, with a particular emphasis on gender-specific
privacy-preserving behaviour in crowdsourcing.

Individual Privacy Perceptions
Understanding privacy-based perceptions can be difficult. Most studies [45,46,
48] suggest that crowd workers have similar amounts of personal information
online. Yet different cultures have differing perspectives with respect to online
anonymity and privacy [11]. The impact of culture and gender on privacy in
crowdsourcing environments is a rich avenue for future investigation.

Research Limitations
Although there is a huge intersect between the Internet of Things and crowd-
sourcing, we restricted our review analysis to papers that applied privacy prin-
ciples to the crowdsourcing context. We also included papers dealing with ubiq-
uitous computing since these were also relevant. We restricted the date range
to those published after 2014 to focus only on the most recent research. In a
quickly-changing and developing research are, such as this one, research ages
very quickly and old research is often no longer relevant in reflecting extant
status quo research.

6 Related Research

Extensive research has been carried out related to privacy protection in ubiqui-
tous computing [3,52,79]. One study [3] presents a mechanism to detect when
users access private data. The idea is to provide a crowdsourced privacy recom-
mendation engine on mobile applications to allow users to evaluate their privacy
dimensions. There is an undeniable link between security and privacy and a
number of research projects were conducted to reveal crowdsource-related secu-
rity threats [80]. These systems are mostly useful for tracking and analysing the
usage of sensitive data.

In public safety, crowdsourcing was used to study the information security
factors when data is being collected from citizens that participate in crowdsourc-
ing smart city project. [22]. In particular, it allows citizens to report unusual
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public-safety events by using mobile phone sensing applications to detect the
location of crowdsourcing participants [21].

Several survey papers were presented in the context of crowdsourcing sys-
tems in general to describe the categories and characteristics of crowdsourcing
applications [83], and to judge a crowdsourcing system to introduce solutions to
address the challenges of crowdsourcing systems [82].

This systematic review revealed some interesting areas for future research
in crowdsourcing privacy. Both privacy principles, concerns and enhancements
have been addressed, yet the idea of combining these to study the gaps in crowd-
sourcing privacy research is a new one.

7 Conclusion

Although crowdsourcing platforms seem to grow so quickly in terms of both
users and data, it is evident that privacy gaps still exist and are poorly covered
in the research literature. Having reviewed the latest research on privacy in
crowdsourcing, we plan to proceed to study editing behaviour in crowdsourcing
next.
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Abstract. In many privacy-preserving protocols, protection of the
user’s identity, called anonymity, is a desirable feature. Another issue
is that, if a signed document is leaked then anyone can be convinced of
the authenticated data, which is strictly not allowed for sensitive data,
instead the authentication only by a designated receiver is recommended.
There are many scenarios in real life, for example e-auction, where both
the functionalities– anonymity and designated verification are required
simultaneously. For such an objective, in this paper we introduce a com-
pact scheme of identity-based strong designated verifier group signature
(ID-SDVGS) by combining the good features of strong designated verifier
signature and group signature in ID-based setting. This scheme provides
anonymity to the signer of a designated verifier signature with the fea-
ture of the revocation of signer’s identity in case of misuse or dispute.
Moreover, our scheme fulfils all the security properties of the individual
components. We have obtained an ID-based instantiation of the generic
group signature given by Bellare et al. in Eurocrypt 2003, and have pro-
posed our scheme on that framework. To the best of our knowledge, this
is the first construction of ID-SDVGS.

1 Introduction

There are numerous cryptographic protocols made up by combination of different
primitives to achieve desired features for required applications. But it is impor-
tant that a scheme designed for an optimal solution should not render additional
security breaches. This work attempts to construct a cryptographic solution for
a situation where authentication is desired only by the authorized receiver while
protecting identity of the sender. In cryptography, anonymous signatures offer
the anonymity of signer, while the designated verifier signatures (DVS) offer
authorised verification with the property of non-transferability of the verifica-
tion. Achieving signer’s anonymity in a DVS is crucial in many application.
Unfortunately, this issue has not been widely addressed and this functionality
(anonymity) has not been achieved yet for such a signature (DVS) on identity
c© Springer Nature Switzerland AG 2018
L. Chen et al. (Eds.): ISC 2018, LNCS 11060, pp. 403–421, 2018.
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(ID)-based setting with achieving all the security properties. In this paper, we
come up with a secure cryptographic construction of ID-based strong designated
verifier signature which provides anonymity to the signer.

Designated verifier signatures [15] belong to special class of digital signature,
which enables the signer to sign a document for an authorised recipient. In such
signature, the verifier can validate the authenticity of the signature without
being able to transfer the conviction to a third party. Group signature [7] is a
candidate tool for construction of an anonymous signature with the property
of revocation of signer’s identity when required. In a group signature scheme
any member of the group can sign on behalf of the group and the signature can
be verified by a common public key of the group. There is a group manager
who holds an opening key by which he can open the identity of the signer,
for a given signature. However, there are situations where both the properties
i.e. authorised verification and signer’s anonymity are required together. In this
paper we present an ID-based strong designated verifier group signature (ID-
SDVGS) scheme, which fulfils both the above properties in a single compact
construction.

1.1 Related Work

Strong Designated Verifier Signature. The idea of designated verifier sig-
nature (DVS) was first introduced in 1996 by Jakobsson et al. [15]. In the DVS
schemes the property of strongness was first achieved by Saeednia et al. [23]. The
first ID-based strong designated verifier signatures (ID-SDVS) scheme is due to
Susilo et al. [24] which can be viewed as an ID-based variant of [23]. Lipmaa
et al. [19] discussed an issue of delegatablity towards the security of SDVS. To
address the issue, Zhang et al. [25] proposed a non-delegatable ID-SDVS scheme.
But Kang et al. [16] observed a security flaw in the strongness property of [25]
and proposed another scheme with security guarantees, however, it was observed
in [18] that the signature in [16] is universally forgeable. Another variant of ID-
SDVS [17] was presented to address the issue in the short ID-SDVS of [14], but
they did not address various security properties of an SDVS, moreover their
scheme has been examined to be universally forgeable in [10].

Group Signature. The idea of group signature is due to Chaum and van
Heyst [7]. In 1997, Park et al. [22] presented the first ID-based group signature
scheme. In 2000, Ateniese et al. [1] proposed first practical and provably secure
coalition-resistant construction for group signature scheme based on knowledge
proof signature. In 2003, Bellare et al. [2] analysed security properties of group
signature and proposed a generic construction of group signature. They captured
important properties including anonymity and traceability in their BMW model
of security in this paper. Bellare et al. [3] later addressed the securities also for the
dynamic group structure. Motivated by the BMW model [2] and its variant [5],
Boyen and Waters [6] proposed compact group signature in the standard model
in bilinear groups by combining provably secure hierarchical signature and the
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Non-Interactive Zero Knowledge (NIZK) proof [13]. In the existing literature, the
schemes [8,9,11] are similar in many contexts to the presented work. However, in
[8] the anonymity has been realised by the ring signature which has no provision
of identity revocation of the actual signer, also we have addressed more security
properties like strongness with compare to [8]. In contrast to the schemes [9,11],
ours is on the ID-based setting which meets all the requirements for an effective
enterprise key management system. Moreover our scheme qualifies more security
properties like unverifiability, non-transferability, strongness etc. Though the
property ‘non-transferability’ is defined in [11], we concretely show that our
scheme actually achieves it.

1.2 Contribution

Though there are signature schemes in isolation like ID-based signature, group
signature, strong designated verifier signature etc., yet for many applications,
there is need of a compact single signature which can address properties of all
these signatures in one algorithm. We provide a rigorous construction of ID-
based strong designated verifier group signature to achieve it. Security of our
construction relies on the standard assumptions, the decisional bilinear Diffie-
Hellman (DBDH) assumption and the decisional linear (DLIN) assumption. The
proposed scheme is suitable for the cloud-based electronic health record (EHR)
where patients require access to all their medical records in a fine-grained secure
way, as discussed in [9]. Our scheme also enjoys application in biometric authen-
tication and identity-management as mentioned in [11].

1.3 Outline of the Paper

In Sect. 2, we introduce some related mathematical definitions, problems and
assumptions. In Sect. 3, we present the formal definition of an ID-based strong
designated verifier group signature scheme and a formal security model for it.
Our proposed scheme is presented in Sect. 4. Lastly in Sect. 6 we briefly conclude
the outcomes of the paper presented in Sect. 4. In Sect. 5 we analyze the security
of the proposed scheme.

2 Preliminaries

In this section, we introduce the notations used in the paper, some relevant
definitions, computational problems and hardness assumptions.

A probabilistic polynomial time (PPT) algorithm is a probabilis-
tic/randomized algorithm that runs in time polynomial in the length of input.
We denote by y ← A(x) the operation of running a randomized or deterministic
algorithm A with input x and storing the output to the variable y. If X is a set,
then v

$← X denotes the operation of choosing an element v of X according to the
uniform random distribution on X. We say that a given function f : N → [0, 1]
is negligible in n if f(n) < 1/p(n) for any polynomial p for sufficiently large
n [20]. For a group G and g ∈ G, we write G = 〈g〉 if g is a generator of G.
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Definition 1 (Bilinear Map). Let G1 be an additive cyclic group with gen-
erator P and G2 be a multiplicative cyclic group. Let both the groups are of the
same prime order q. Then a map e : G1 × G1 → G2 is called a cryptographic
bilinear map if it satisfies the following properties.

Bilinearity: For all a, b ∈ Z
∗
q , e(aP, bP ) = e(P, P )ab, or equivalently, for all

Q,R, S ∈ G1, e(Q+R,S) = e(Q,S)e(R,S) and e(Q,R+S) = e(Q,R)e(Q,S).
Non-Degeneracy: There exists Q,R ∈ G1 such that e(Q,R) �= 1. Note that

since G1 and G2 are groups of prime order, this condition is equivalent to the
condition g := e(P, P ) �= 1, which again is equivalent to the condition that
g := e(P, P ) is a generator of G2.

Computability: There exists an efficient algorithm (viz. Miller’s algorithm [21])
to compute e(Q,R) ∈ G2 for all Q,R ∈ G1.

Definition 2 (Bilinear Diffie-Hellman Problem). Given a security param-
eter λ, let 〈q, e : G1 × G1 → G2, P, g〉 ← B(λ). Let BDH : G1 × G1 × G1 → G2

be a map defined by BDH(X,Y,Z) = ω where X = xP, Y = yP, Z = zP and
ω = e(P, P )xyz.

The bilinear Diffie-Hellman problem (BDHP) is to evaluate BDH(X,Y,Z)

given X,Y,Z
$← G1. (Without the knowledge of x, y, z ∈ Zq – obtaining x ∈ Zq,

given P,X ∈ G1 is solving the discrete logarithm problem (DLP)).

Definition 3 (Decisional Bilinear Diffie-Hellman Problem). Given a
security parameter λ, let 〈q, e : G1 × G1 → G2, P, g,X, Y, Z〉 ← C(λ). Let

ω
$← G2. The decisional bilinear Diffie-Hellman problem (DBDHP) is to decide if

ω = BDH(X,Y,Z).

That is, if X = xP, Y = yP, Z = zP , for some x, y, z ∈ Zq, then the DBDHP is
to decide if ω = e(P, P )xyz.

Definition 4 (Decisional Bilinear Diffie-Hellman Assumption). Given
the parameters mentioned in the above Definition 3 of DBDHP, the decisional
bilinear Diffie-Hellman assumption (DBDHA) states that, for any PPT algo-
rithm A which attempts to solve DBDHP, its advantage AdvD(A), defined as

|Pr[A(q, e : G1 × G1 → G2, P, g,X, Y, Z,BDH(X,Y,Z)) = 1]−
Pr[A(q, e : G1 × G1 → G2, P, g,X, Y, Z,ω) = 1]|

is negligible in λ.

Definition 5 (Decisional Linear Problem). Given a security parameter
λ, let the instance ρ = (q,G1, G2, P, aP, bP, arP, bsP, Yβ) ← DDLIN

β (λ). Where
a, b, r, s ∈ Fq. The decisional linear problem (DLINP) is to decide whether β = 0
or 1, where Y0 := (r + s)P , and Y1 ← G1. Thus the DLINP is to decide if

Yβ = Y0 or Yβ = Y1.
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Definition 6 (Decisional Linear Assumption). Given the parameters men-
tioned in the above Definition 5 of DLINP, the decisional linear assumption
(DLINA) states that, for any PPT algorithm A which attempts to solve DLINP,
its advantage AdvDLIN

A (λ), defined as

|Pr[A(Y0, ρ) = 1|ρ ← DDLIN
0 (λ)] − Pr[A(Y1, ρ) = 1|ρ ← DDLIN

1 (λ)]|

is negligible in λ.

2.1 Non-Interactive Zero-Knowledge Proof [12]

A Non-Interactive Zero-Knowledge (NIZK) proof [12] is a well studied system
in public key cryptography. Due to page constraint we omit the details here. In
the full version of this paper, a brief discussion on it has been mentioned.

3 Identity-Based Strong Designated Verifier Group
Signature (ID-SDVGS) Scheme

We present here the formal definition of an ID-Based Strong Designated Verifier
Group Signature (ID-SDVGS) scheme and formalise a security model for it. We
rely on the strong one-time signature (SOTS) scheme [12]. Our scheme achieves
the CMA-unforgeability i.e. secure against one-time chosen message attack, fol-
lowing the security notion of [12].

3.1 ID-SDVGS Scheme

In our ID-SDVGS scheme there is a group of n + 2 members, where i = 1, . . . , n
are the users with identity IDi who can generate signatures for a fixed designated
verifier V , there is a certificate issuing authority (CIA) who issues certificates
for the n users and assist them in joining the group. Additionally, there is a
group manager (GM) who holds a secret key and can revoke the identity of the
signer in case of dispute, without learning private keys of the users. Lastly, in
our ID-based setting there is a private key generator (PKG) who issues keys for
all the n+2 members of the group and for the designated verifier. The structure
of our ID-SDVGS scheme is as follows:

1. params ← DVGSetup(λ): On input security parameter λ, this algorithm gen-
erates the system’s public parameters params and a common reference string
(CRS) Σ. In all the algorithms from here onward, params will be considered
as an implicit input.

2. (QID, SID) ← DVGGen(ID): This is the Key Extraction algorithm run by the
PKG. On input user’s identity ID, the algorithm generates user’s (public key,
private key) pair (QID, SID).
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3. (Certi) ← DVGJoin((i, IDi),SIDK
): This algorithm is an interactive protocol

between the user, and the CIA. On input credentials (i, IDi) of the user i
and private key SIDK

of the CIA and SIDK
by SIDC

and also everywhere in
the paper, this algorithm generates user’s membership certificate Certi with
respect to its credentials.

4. σ̃ ← DVGSign(SOTS,SIDi , IDV , (i, IDi),Certi, IDGM,Σ,M): This is the Signa-
ture algorithm run by the signer. On input the SOTS [12], signer’s secret key
SIDi

, designated verifier’s identity IDV , signer’s credentials (i, IDi), signer’s
membership certificate Certi, group manager’s identity IDGM, CRS Σ and
the message M , this probabilistic algorithm finally generates an ID-SDVGS
σ̃ on message M .

5. b ← DVGVer(SOTS,SIDV ,QIDi ,M, σ̃): This is the Verification algorithm run
by the designated verifier. On input the SOTS [12], verifier’s secret key SIDV

the signer’s public key QIDi
, the message M and the ID-SDVGS σ̃, this deter-

ministic algorithm confirms whether the signature σ̃ is valid or invalid.
6. σ′ ← DVGTran(SOTS,SIDV ,QIDi ,M): This is the Transcript Simulation algo-

rithm run by the designated verifier. On input the SOTS [12], verifier’s secret
key SIDV , signer’s public keys QIDi and the message M this deterministic
algorithm outputs a valid ID-SDVGS σ̃′.

7. (i, IDi) ← DVGOpen(SOTS,SIDGM , σ̃): This is the Open algorithm run by
the group manager GM. On input SOTS, group manager’s secret key
gmsk = SIDGM , and signature σ̃ this deterministic algorithm outputs the
actual signer’s credential (i, IDi).

3.2 Security Model for ID-SDVGS Scheme

An ID-SDVGS scheme must satisfy the following security properties.

1. Correctness: The verification algorithm takes place properly for the cor-
rectly generated signature, i.e. if a signature on a message M is correctly
computed by a signer, then the designated verifier must be able to verify the
correctness of the signature, on the given message.

2. Unforgeability: It is computationally infeasible to construct a valid ID-
SDVGS signature without the knowledge of the private key of either the
signer or the designated verifier.

3. Unverifiability: It is computationally infeasible to verify the validity of an
ID-SDVGS signature without the knowledge of the private key of either the
signer or the designated verifier. We define below existential designated unver-
ifiability against an adaptive chosen message and adaptive chosen identities
attack.

Definition 7 (Unverifiability). An ID-SDVGS scheme is said to be exis-
tential designated unverifiable against adaptive chosen message and adaptive
chosen identities attack if for any security parameter λ, no PPT adversary
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A(qHi
, qJ , qE , qi, qV , εA(λ), t) which runs in time t has a non-negligible advan-

tage

AdvEDV-CID2-CMA2
ID-SDVGS,A (λ) := εA(λ) :=

|Pr[A(QID∗
i
, QID∗

V
,m∗,DVGSign(SID∗

i
,DID∗

i
,QID∗

V
,m∗)) = 1]

− Pr[A(QID∗
i
, QID∗

V
,m∗, σ∗) = 1] (1)

against the challenger B in the below security experiment:

1. Setup: B generates params for security parameter λ.
2. Oracle Queries: A may request: up to (a) qHi

, i ∈ N hash queries on its adap-
tively chosen identities and messages (b) qE key extraction queries on its
adaptively chosen identities (c) qJ join queries on its adaptively chosen identi-
ties (d) qi signature queries on its adaptively chosen messages and adaptively
chosen identities (e) qV verification queries on signatures on its adaptively
chosen messages m and adaptively chosen identities; and obtain responses for
each of its query from B who acts as a random oracle.

3. Challenge: At some point, A outputs a message m∗ and identities ID∗
i of the

signer and ID∗
V of the designated verifier on which it wishes to be challenged

such that A has never submitted ID∗
i or ID∗

V during the key extraction queries.
The challenger B responds with a “signature” σ∗ and challenges A to verify
if it is valid or not.

4. Query Phase 2 : A continues its queries as in Query Phase 1 with an additional
restriction that now it cannot submit a verification query on σ∗.

5. Output : Finally, A outputs a bit b∗ which is 1 if the signature is valid and 0
if invalid.

4. Non-transferability: Given a signature σ on message m, it is infeasible for
any PPT adversary A to decide whether σ was produced by the signer or by
the designated verifier, even if A is also given the private keys of the signer
and the designated verifier. In other words, it is impossible for the designated
verifier to prove (i.e. to convince) to an outsider that the signature is actually
generated by the signer.

Definition 8 (Non-transferability). An ID-SDVGS scheme is said to achieve
non-transferability if the signature generated by the signer is computationally
indistinguishable from that generated by the designated verifier, that is,

σ̃ ← DVGSign(SOTS,SIDi , IDV , (i, IDi),Certi, IDGM,Σ,M)
≈ σ′ ← DVGTran(SOTS,SIDV ,QIDi ,M).

5. Strongness: Let σ̃ ← DVGSign(SOTS,SIDi , IDV , (i, IDi),Certi, IDGM,Σ,M) be
a signature on a message M from a signer i to a designated verifier V . Strong-
ness requires that σ̃ could have been produced by any other third party i∗

for some designated verifier V ∗ other than V .
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Definition 9 (Strongness). An ID-SDVGS scheme is said to be strong desig-
nated if given σ̃ ← DVGSign(SOTS,SIDi , IDV , (i, IDi),Certi, IDGM,Σ,M), anyone,
say V ∗, other than the designated verifier V can produce identically distributed
transcripts that are indistinguishable from those of σ̃ from someone, say i∗,
except the signer i. That is,

σ̃ ← DVGSign(SOTS,SIDi , IDV , (i, IDi),Certi, IDGM,Σ,M)
≈ σ̃ ← DVGSign(SOTS,SID∗

i
, ID∗

V , (i∗, ID∗
i ),Cert∗i , IDGM,Σ,M).

6. Anonymity: By anonymity we mean that no one except the group man-
ager should be able to determine the identity of the original signer from the
dynamic group. The formal definition is provided as follows:

Definition 10 (Anonymity). Let Aano be an adversary against the anonymity
of our ID-based strong designated verifier group signature scheme (ID-SDVGS).
An ID-SDVGS scheme is said to be anonymous if for any security parameter λ,
no probabilistic polynomial time adversary Aano(qHi

, qJ , qE , qO, εA(λ), t) which
runs in time t has a non-negligible advantage

AdvANO
ID-SDVGS,Aano

(λ) = |Pr[ExptANO−1
ID-SDVGS,Aano

(λ) = 1]

− Pr[ExptANO−0
ID-SDVGS,Aano

(λ) = 1] (2)

in the security below security experiment:

1. Setup: On input security parameter λ, the challenger B generates the group
public key gpk, the issuing key ik and the opening key ok.

2. Oracle Queries: The adversary A may request up to (a) qHi
, i ∈ N hash

queries qE key extraction queries qJ join queries, as described in the security
experiment of the unverifiability property. Here, A is also allowed to pose
up to qChb

queries to the challenge oracle on input IDi0 , IDi1 of identities and
a message M to obtain a signature of the message under the signing key of
IDib for b ∈ {0, 1}, and up to qO open queries to the opening oracle on input
a message M and a signature σ̃ in order to obtain the output of the open
algorithm.

3. Output: At some point, A outputs a credential (i∗, ID∗
i ) of the signer.

4. Solution to DLINP : Challenger outputs a solution of DLINP.

7. Traceability: Traceability is an underlying property of group signature
schemes. The property requires that in case of malicious signature, signer’s
identity should be recoverable by the group manager. In other words, it means
that no subgroup of members, even the whole group should be able to gen-
erate a valid signature which cannot be opened by the manager in case of
misuse and cannot be traced back to the malicious signer or to a member of
the coalition.

8. Non-frameability: By Non-frameability we denote the property which
implies that an honest user cannot form a valid signature which can be opened
by the group manager and can be traced back to another user which has not
generated the signature.
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4 Proposed Scheme

In this section, we present our proposed ID-SDVGS. As described in Sect. 3, the
proposed scheme consists of the following seven algorithms: DVGSetup, DVGGen,
DVGJoin, DVGSign, DVGVer, DVGTran and DVGOpen.

DVGSetup: On input security parameter λ, this algorithm generates the sys-
tem’s public parameters params = (λ,G1, P,G2, q, e,H1,H2,H3,H4,H5,
H6,H7,H8) where G1 is an additive cyclic group of prime order q with genera-
tor P , G2 is a multiplicative cyclic group of prime order q, e : G1×G1 → G2 is
a bilinear map a defined in Sect. 2 and H1 : {0, 1}∗ → G1, H2 : {0, 1}∗×G1 →
Z

∗
q , H3 : G1 × G1 × G1 → Z

∗
q , H4 : {0, 1}∗ × G1 × G1 × G2 → Z

∗
q ,

H5 : G1×G1 → Z
∗
q , H6 : {0, 1}∗ ×G1×G1×G2 → {0, 1}λ, H7 : G2 → {0, 1}λ

and H8 : Z∗
q → {0, 1}λ are secure cryptographic hash functions. This algo-

rithm also generates a CRS following the NIZK construction [12] as:

– choose xe, ye
$← Z

∗
q ;

– compute fe = xeP, he = yeP ;
– choose rc, sc

$← Zq;
– compute c1 = Efe,he

(P ; rc, sc) = (rcfe, sche, (rc + sc)P );
– run the key generation algorithm of [12] and output commitment key

ck ← K(q,G1, G2, e, P ).

The CRS is Σ = (pk, fe, he, c1, ck). The simulated ciphertext is computed by
the simulator as c1 = Efe,he

(1; rc, sc). The simulator outputs (Σ, τ, ξ), where
τ = (sk, rc, sc) is a trapdoor key and ξ = (xe, ye) is extraction key.

DVGGen: Everyone – the group manager (GM), the CIA, the group members {i =
1, 2, . . . , n} and the designated verifier V submit their respective identities

IDGM, IDC , IDi and IDV to the PKG. The PKG chooses a random s
$← Zq, sets

Ppub = sP as system’s public value and keeps the master secret s confidential.
Further for a user with identity ID ∈ {0, 1}∗, the PKG computes

– public key as QID = H1(ID) ∈ G1 and
– corresponding private key as SID = sQID ∈ G1.

Finally, following the above extraction PKG shares the private keys to the cor-
responding users via a secure channel.

DVGJoin: To join the group, a user provide its credential (i, IDi) to the KIA.
The KIA outputs a certificate Certi, for the user i, by signing its credential
(i, IDi) as following:

– chooses t
$← Z

∗
q ; and computes

– T1 = tP ∈ G1; h2 = H2(i||IDi, T1); T2 = tPpub + h2SIDK
.

Finally, sends the Certi = (T1, T2) to the user i as its membership certificate of
the group. On receiving the certificate, the member can check its authenticity
by checking the equality e(T2, P ) = e(T1 + h2QIDK

, Ppub).
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DVGSign: Prior to sign any message for the designated verifier, the group mem-
ber runs the key generation algorithm of SOTS [12] to generate the ver-
ification and private key pair (vksots, sksots), namely ((fs, hs), (xs, ys)) ←
KeyGensots(q,G1, G2, e, P ) where vksots = (fs, hs) = (xsP, ysP ) and sksots =

(xs, ys), for xs, ys
$← Z

∗
q .

Further, using the secret key SIDi , the user with identity IDi generates a signature
on verification key vksots as follows:

– chooses x
$← Z

∗
q and computes

– V1 = xP ∈ G1;
– h(3,vksots) = H3(vksots, V1) = H3(fs, hs, V1);
– V2 = xPpub + h3,vksotsSIDi

∈ G1;
– V = e(V2, QIDV ) ∈ G2.

The signature on vksots is σ = (V1, V2, V ). The member encrypts the above
signed verification key σ along with its credential (i, IDi) and membership cer-
tificate certi = (T1, T2) motivated by the Boneh-Franklin CCA-secure encryption
scheme [4], using group manager’s public key QIDGM as follows:

– chooses γ
$← {0, 1}λ,

– computes r1 = H4(γ||i||IDi, σ) and r2 = H5(T1, T2), hσ = H6(i||IDi, σ).
– Computes the ciphertext Ct as the following tuple:

Ct = 〈A,B,C,D,E〉
=

〈
r1P, r2P, hσ ⊕ H7

(
gr1
IDGM

)
,H8(r2) ⊕ γ, γ ⊕ H7

(
gr2
IDGM

)〉

where gIDGM = e (QIDGM , Ppub) ∈ G2. Furthermore, the user provides a proof of
satisfiability of pairing product equations and the statement that (i||IDi, certi, σ)
is a plaintext of Ct corresponding to the technique in [12], such that

π ← P (Σ, Sgs(gpk, vksots, Ct),Wgs(gpk, vksots, pki, certi, σ,R))

where Sgs is a set of pairing equations which are used to verify the group signa-
ture (as used in the DVGVer below), Wgs is the witness of the NIZK proof and
R = (r1, r2) is randomness used in the encryption.

Finally the member forms a strong one-time signature (SOTS) σsots on mes-
sage M , ciphertext Ct, proof π and the key vksots using SOTS’ signing key sksots.
According to the signing algorithm of SOTS from [12], the signature is formed
as follows: Choose r ← Z

∗
q and compute

σsots = (r, s) = (r, (xs(rs − r) + ysss − H(M ||vksots||Ct||π))/ys).

where ‘H’ is some suitable hash function. The final signature is σ̃ =
(Ct,π, σsots, vksots).
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DVGVer: The verification proceeds in two steps.
1. Firstly, receiver of the signature σ̃ runs the verification algorithm of

SOTS-scheme from [12] such that

cs = H (M ||vksots||Ct||π) P + rfs + shs

2. Secondly, he runs the verification part of the NIZK proof

V (Σ, Sgs(gpk, vksots, Ct)) .

That is, he checks the satisfiability of the following bilinear equations:

e(T2, P ) = e(T1 + h2QIDK
, Ppub),

V = e(V1 + h(3,vksots)QIDi
, SIDV )

where the first equation satisfies the witness represented by the certificate and
the second equation validates the signature σ = (V1, V2, V ) of the i-th member of
the group on the verification key vksots, for designated verifier V . The correctness
of the equations are described in Sect. 5. Finally, satisfying all the above proofs
and equalities, the designated verifier validates truthfulness of the signature σ̃.

DVGTran: It can be evidenced that upon receiving a signature from the group
member i possessing identity IDi, the designated verifier V can simulate the
signature using its secret key by following the signature algorithm of the
scheme. It is sufficient here to show that a designated verifier can generate
an identical signature on vksots as follows:

– chooses x′ $← Z
∗
q and computes;

– V ′
1 = x′P ∈ G1;

– h′
(3,vksots)

= H3(vksots, V
′
1) = H3(fs, hs, V

′
1);

– V ′
2 = x′Ppub + h′

3,vksots
SIDV ∈ G1;

– V ′ = e(V ′
2 , QIDi

) ∈ G2;
– the signature tuple is (V ′

1 , V
′
2 , V

′).

It follows from the correctness of the scheme that the above simulation is identical
to the signature generated by the user i for the verifier V

V ′ = e(V ′
2 , QIDi

) = e(V ′
1 + h′

3,vksots
QIDV , SIDi

)

DVGOpen: On input group manager’s secret key gmsk, group public key gpk,
message M , signature σ̃ = (Ct,π, σsots, vksots), the group manager verifies
the signature and returns 0 if V (Σ, Sgs(gpk, vksots, Ct)) = 0. Otherwise it
decrypts Ct using his gmsk = SIDGM as follows:

– set

Ct = 〈A,B,C,D,E〉
=

〈
r1P, r2P, hσ ⊕ H7

(
gr1
IDGM

)
,H8(r2) ⊕ γ, γ ⊕ H7

(
gr2
IDGM

)〉
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– compute C ⊕ H7

(
e(SIDGM , A)

)
= hσ = H6(i||IDi||, σ),

– compute E ⊕ H7

(
e(SIDGM , B)

)
= γ,

– compute D ⊕ γ = H8(H5(T1, T2)),
– set r1 = H4(γ||i||IDi, σ), r2 = H5(T ∗

1 , T ∗
2 ),

– check A = r1P and B = r2P . If not, reject the ciphertext.

Note that, GM can compute r1 for those identities from the list of users, which
satisfy hσ = H6(i||IDi||, σ), and select (T ∗

1 , T ∗
2 ) from the list of certificates which

satisfies D ⊕ γ = H8(H5(T ∗
1 , T ∗

2 )). Further, the GM perform the decryption
and output (i||IDi, σ, certi, σsots). Finally, he runs the verification algorithm of
SOTS-scheme and output i hence the IDi.

5 Analysis of the Proposed Scheme

5.1 Correctness of the Proposed Scheme

The correctness of the scheme follows since: if (T1, T2) is a correctly generated
certificate on user’s public key, (V1, V2, V ) is a valid signature on the verification
key vksots of the underlying strong one-time signature scheme and σsots is a valid
signature on a message M from a signer with identity IDi for a designated verifier
with identity IDV , it follows from the following equalities and proof:

e(T2, P ) = e(tPpub + h2SIDK
, P ) = e(T1 + h2QIDK

, Ppub);
V = e(V2, QIDV ) = e(xPpub + h(3,vksots)SIDi

, QIDV )
= e(xP + h(3,vksots)QIDi , SIDV ) = e(V1 + h(3,vksots)QIDi , SIDV );

as by the definition of gID in the signature protocol.
Further, the correctness of the SOTS signature follows from [12]. Further-

more, to achieve perfect correctness we provide completeness of our NIZK proof
below, which together with the correctness of the signature scheme completes
the security property of perfect correctness of our ID-SDVGS scheme.

Theorem 1. The non-interactive protocol of the underlying signature schemes
is a perfectly complete non-interactive zero-knowledge proof of the statement that
a member certificate is a signature on user’s public key.

Proof. According to the proof in [12], perfect completeness of our NIZK proof
follows from the NIZK proof for commitment to zero. We remember the val-
ues defined in DVGSetup algorithm: for randomly chosen xe, ye ← Z

∗
q , set

fe = xeP, he = yeP . For random values rc, sc a relation describing commitments
to 1 is given by R1 := {c1, rc, sc|c1 = Com(1, rc, sc) = (rcfe, sche, (rc + sc)P =
(c11, c12, c13)}. The proof is given by π1 = rcP . The verification of the proof
follows on input a commitment c1 if and only if e(P, rcfe) = e(π1, fe) and
e(c12, P ) = e(he, c13 − π). The latter equation follows, since the left side of
the equation is equal to e(c12, P ) = e(sche, P ) = e(scyeP, P ) and the right side
of the equation is equal to

e(he, c13 − π) = e(yeP, (rc + sc)P − rcP ) = e(yeP, scP ) = e(scyeP, P ).
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5.2 Unforgeability

Unforgeability of our scheme relies on the one-time CMA security of the under-
lying SOTS scheme. Thus, in the following we provide security proof of the
remained security properties, namely - unverifiability, non-transferability, strong-
ness, anonymity, traceability and non-frameability.

5.3 Unverifiability

We now prove that the proposed ID-SDVGS is strongly designated. That is, any
third party other than the signer and the designated verifier, cannot verify the
validity of a signature from a signer for a designated verifier with non-negligible
probability. We show that if there exists a PPT adaptive chosen message and
adaptive chosen identity algorithm which can verify the proposed ID-SDVGS,
then there exists another PPT algorithm which can use the earlier algorithm to
solve the DBDHP. In particular, we prove the following theorem:

Theorem 2. Given a security parameter λ, if there exists a PPT adversary
A(qH1 , . . . , qH8 , qE , qJ , qi, qV , εA(λ), t) which breaks the designated unverifiability
of the proposed ID-SDVGS scheme in time t with success probability εA(λ), then
there exists a PPT adversary B(t′, εB(λ)) which solves DBDHP with success
probability at least

εB(λ) ≥
(
1 − 1

q2

)(
1 − 1

q4

)(
1 − 2

qH1

)
qE+qV+qi

(
1 − 2

qH2qH1qH3qH4qH5

)
qi

(
1 − 2

qH3

)
qi+qV

( 2
qH2qH3(1 − qH3qH2)

)( 2
qH1(qH1 − 1)

)
εA(λ)

in time at most

t′ ≤ (qH1 + qH2 + qH3 + qH4 + qH5 + qH6 + qH7 + qH8 + qE + qJ + 3qi + qV )SG1

+ (qi + qV )Pe + qiOG1 + SG1 + SG2 + Pe + t

where SG1 , SG2 , OG1 , OG2 is the time taken for one scalar multiplication in G1

(resp. G2) and OG1 (resp. OG2) is the time taken for one group operation in G1

(resp. G2), and Pe is the time taken for one pairing computation.

Proof. Let for a security parameter λ, B is challenged to solve the DBDHP for
〈q, e : G1 × G1 → G2, P, aP, bP, cP,ω〉 where G1 is an additive cyclic group of
prime order q with generator P , G2 is a multiplicative cyclic group of prime order
q with generator e(P, P ), and e : G1 × G1 → G2 is a cryptographic bilinear map

as described in Sect. 2 and ω
$← G2. a, b, c

$← Z
∗
q are unknown to B. The goal of

B is to solve DBDHP by verifying if e(P, P )abc = ω using A, the adversary who
claims to forge our proposed ID-SDVGS scheme. In order to simulate public
parameters of our ID-SDVGS scheme, B sets QIDj

= aP for j ∈ {i,V , GM}
denoting the identity either of the group member, verifier or group manager. B
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simulates the security game for unverifiability with A by running the Setup and
by responding all hash queries Hi (i = 1, 2, ..., 8), join queries, key extraction
queries, signature queries and verification queries appropriately.

Output : After A has made its queries, it finally outputs a message M∗, an
identity ID∗

S of a signer and an identity ID∗
V of a designated verifier on which it

wishes to be challenged.
If A did not make H1-query for the identities ID∗

S and ID∗
V , then the prob-

ability that verification equality holds is less than 1/q2. Thus, with probability
greater than 1 − 1/q2, both the public keys were computed using H1-oracle
and there exist indices i, j ∈ [1, qH1 ] such that ID∗

S = IDi and ID∗
V = IDj . If

{i, j} ∈ RegList of registered entities, then abort.

Solution to DBDHP : Otherwise, B chooses a random r
$← Z

∗
q and T

$← G1;
sets V1 = xP ; sets h(3,vksots) = H3(vksots, V1) = H3(fs, hs, V1); V2 = xPpub +
h(3,vksots)SIDi

∈ G1; sets V = e(V2, QIDV ) = e(bP, cP )rωh; where he sets V1 = cP
and s = b, such that SIDi

= abP and challenges A to verify the validity of
the signature (V1, V2, V ). Then, the verification holds if and only if each of the
following equations holds

e(T2, P ) = e(T1 + h(3,i)QIDK
, Ppub), V = e(V2, QIDi

) = e(V1 + h(3,vksots)QIDV
, SIDi

),

gr1
IDGM

= e(r1P, SIDGM), gr2
IDGM

= e(r2P, SIDGM).

where

σ = e(V1 + h(3,vksots)QIDV , SIDi
) = e(cP + h3,vksotsabP, bPpub)

= e(rP, bPpub)e(haP, bPpub) = e(P, bPpub)re(aP, bPpub)h

= e(bP, Ppub)re(aP, bPpub)h = e(bP, cP )re(aP, bcP )h

= e(bP, cP )r(e(P, P )abc)h = e(bP, cP )rωh

⇒ ωh = (e(P, P )abc)h ⇐⇒ ω = e(P, P )abc

Then, from the above equation, B solves the DBDHP by simply returning the
response of A to the strongness challenge.

Probability Calculation: If B does not abort during the simulation then A’s
view is identical to its view in the real attack. The responses to H1-, H2-, H3-
and H4-queries are as in the real attack, since each response is uniformly and
independently distributed in G1 or in G2 and Z

∗
q respectively. The key extraction,

signature and verification queries are answered as in the real attack.
The probability that B does not abort during the simulation is

(
1 − 2

qH1

)qE+qV+qi(
1 − 2

qH3

)qi+qV (
1 − 2

qH1qH2qH3qH4qH5

)qi
.

The probability that A did H1-query for the identities ID∗
S and ID∗

V is
(
1 − 1

q2

)

(
2

qH1 (qH1−1)

)
.
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The probability that A issued H2-query and H3-query for the identities
ID∗

i , ID
∗
K is (

1 − 1
q4

)( 2
qH2qH3(1 − qH3qH2)

)
.

Clearly B’s advantage εB(λ) for solving the BDHP, that is, the total proba-
bility that B succeeds to solve BDHP, is the product of A’s advantage εA(λ) of
forging the proposed ID-SDVGS and the above three probabilities. Hence

εB(λ) ≥
(
1 − 1

q2

)(
1 − 1

q4

)(
1 − 2

qH1

)
qE+qV+qi

(
1 − 2

qH2qH1qH3qH4qH5

)
qi

(
1 − 2

qH3

)
qi+qV

( 2
qH2qH3(1 − qH3qH2)

)( 2
qH1(qH1 − 1)

)
εA(λ)

Time Calculation: It can be observed that running time of the algorithm B is
same as that of A plus time taken to respond to the hash queries, key extraction
queries, join queries, signature queries and verification queries, qH1 +qH2 +qH3 +
qH4 + qH5 + qH6 + qH7 + qH8 + qE + qJ + qS + qV . Hence the maximum running
time required by B to solve the BDHP is

t′ ≤ (qH1 + qH2 + qH3 + qH4 + qH5 + qH6 + qH7 + qH8 + qE + qJ + 3qi + qV )SG1

+ (qi + qV )Pe + qiOG1 + OG2 + SG2 + t

as B requires to compute one scalar multiplication in G1 to respond to H1,
H2,H3 and H4 hash query, one scalar multiplication in G1 to respond to key
extraction query and join query, three scalar multiplications in G1 to respond to
signature query, one scalar multiplication in G1 to respond to verification query;
one pairing computation to respond to signature query, one pairing computa-
tion to respond to verification query, one group operation in G1 to respond to
signature query, and, one scalar multiplication in G1, one scalar multiplication
in G2 and one pairing computation to output a solution of DBDHP.

5.4 Non-transferability

As described in Sect. 3, the property of non-transferability implies that the signa-
tures simulated by the designated verifier are indistinguishable from those that
he receives from the signer. In DVGTran of Sect. 4 (proposed scheme) it has been
already shown that we achieve this property in our scheme.

5.5 Strongness

To prove this property, we will show that if the i-th signer, with identity IDi, of
the group outputs V = Sig(SIDi

, QIDV , vksots) using his private key SIDi
and the

public key QIDV of the designated verifier V with identity IDV as its signature
on the verification key vksots during the DVGSign(SOTS,QIDV ,SIDi ,m), then the
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same value V can be generated using the private key SID∗
i

of a signer with
identity ID∗

i (other than the i-th signer) and the public key QID∗
V

of a designated
verifier with identity ID∗

V (other than the verifier V ). That is, we show that
V = Sig(SID∗

i
, QID∗

V
, vksots) (where QID∗

V
and SID∗

i
are defined as in the following)

since

V = e(V2, QIDV )
= e(xPpub + h(3,vksots)SIDi , tQID∗

V
) where QIDV = tQID∗

V

= e(xtPpub + h(3,vksots)tSIDi
, QID∗

V
)

= e(xPpub + x(t−1)Ppub + h(3,vksots)tSIDi
, QID∗

V
)

= e(xPpub + x(t−1)h(3,vksots)P
′
pub + h(3,vksots)tSIDi

, QID∗
V
)

(where P ′
pub = h−1

(3,vksots)
Ppub)

= e(xPpub + h(3,vksots)(x(t−1)P ′
pub + tSIDi

), QID∗
V
)

= e(xPpub + h(3,vksots)SID∗
i
, QID∗

V
)

= e(xP + h(3,vksots)QID∗
i
, SID∗

V
)

= e(V1 + h(3,vksots)QID∗
i
, SID∗

V
).

where SID∗
i

= x(t−1)P ′
pub + tSIDi

5.6 Anonymity

Theorem 3 (Anonymity). Our ID-SDVGS described above is anonymous if
DLIN assumption holds for G1.

Proof. According to the anonymity experiment in Definition 10 an adversary
against anonymity of our ID-SDVGS scheme has access to the following oracles:
key extraction oracle, join oracle, challenge oracle and opening oracle. Further-
more, Aano can issue hash queries to the four hash oracles. According to [12] we
are applying a hybrid argument to our proof technique. The consequence of that
is that it is sufficient to consider only the challenge oracle queries in order to
prove anonymity of the scheme.

Let b ∈ {0, 1} be a bit and IDi0 , IDi1 ,M is the input for the challenge oracle
query which produces a challenge signature as σ∗ ← DVGSign(gpk, gsk[ib],M).
Furthermore, we assume that Aano has access to all the opening outputs except
the one on input (M,σ∗). It also knows all the secret keys of the group members
as well as the issuing key for the certificate generation.

We simulate first the challenge oracle on input IDi0 . Following the proof
technique from [12], we amend the oracle that we receive the simulation-extractor
which we run in the setup algorithm in order to receive the common reference
string Σ. The output by the simulation-extractor is Σ = (pk, fe, he, c1, σ) where
c1 = Efe,he

(1; rc, sc) is the ciphertext which encrypts 1. In the challenge phase,
we have to simulate the NIZK proof π for the CCA-ciphertext Ct which encrypts
(i0||IDi0 , certi0 , σi0).
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Furthermore we note that it is impossible to reuse the verification key vksots
of the strong one-time signature scheme in any of the issued opening queries,
since the signature can be used only once. This leads to the conclusion that
the tuple (gpk, vksots, σ̃), where σ̃ = (Ct,π, σsots) is different from the challenge
tuple during the challenge signature formation. Therefore for the extraction of
the plaintext (pki, certi, σ) we use the knowledge extractor of the NIZK proof
instead of the group master secret key gmsk. The extraction works as follows:
given a proof π, the extraction algorithm uses extraction key ξ = (xe, ye) to
decrypt ciphertext Ct. From the perfect soundness of the used NIZK proof we
know that Ct encrypts either a satisfying assignment (pki, certi, σ) or it encrypts
1. Since Ct does not encrypt 1 it follows that it encrypts (pki, certi, σ) which
implies that Sgs is a satisfiable set and we get opening possible with satisfying
probability.

Since we are using a CCA-secure encryption procedure motivated by the
scheme in [4], we note that adversary’s advantage in winning the anonymity
experiment in Definition 10 is the same as if the ciphertext Ct would be encrypt-
ing 1 instead of (pki, certi, σ).

The same argumentation as above we can apply to the scenario where Aano

has access to the challenge oracle on input IDi1 , where the challenge consists of
the ciphertext encrypting 1 and the corresponding simulated proof π.

5.7 Traceability

Let σ̃ = (Ct,π, σsots, vksots) be a valid group signature on a message M . From
the perfect-soundness of the NIZK proof we know that Ct encrypts either a satis-
fying assignment (pk∗, cert∗, σ∗

sots), where the designated verification algorithm
on input (cert∗, σ∗

sots) outputs 1, or it encrypts 1. After running the opening
algorithm the output i corresponds to the registered challenge verification key
vk∗, or it aborts if no registration of the key took place. Consequently, the non-
registered verification key means that no honest signature took place on that
key vk∗ and the existing signature σ∗ must be a forgery. However this is not
possible due to the CMA-security of the underlying signature scheme.

5.8 Non-frameability

Let An-fra be an adversary against non-frameability property of our ID-SDVGS
scheme. The adversary outputs a valid signature σ̃ = (C,π, σsots, vksots) on
a message M . Furthermore he succeeds in opening procedure and outputs
(i||IDi||σ, cert∗, σ∗

sots) which associates with the user i. Let σ̃′ be the signatures
generated by the group member with this revealed identity. It means that the
user formed a signature σ′

sots on the verification key vk′
sots using sk′

i. Assuming
the strong unforgeability of the underlying strong one-time signature scheme,
An-fra cannot reuse the key vk′

sots. That means An-fra needed a new vksots which
was never signed by the member with identity IDi. Consequently, σ∗

sots is a forged
signature on vksots, which contradicts to the CMA-unforgeability of the under-
lying one-time signature scheme [12].
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6 Conclusion

To realise a compact secure cryptographic construction for the situations where
signer’s anonymity is desired with the designated verification, in this paper
we have proposed an ID-based strong designated verifier group signature (ID-
SDVGS) scheme by combining the good features of ID-based strong designated
verifier signature and the group signature. The scheme is proved secure under
standard security notions. More particularly, we have considered all the security
properties of the ingredient signatures of the proposed compact signature. More
particularly, the unverifiability and the strongness are essential security proper-
ties of a SDVS, however they have not been addressed properly in the literature.
We have provided proofs for both the properties of our scheme along with other
security proofs. We have realized the proposed construction by obtaining an ID-
based instantiation of the generic group signature frame, given by Bellare et al.
in Eurocrypt 2003. To the best of our knowledge this is the first construction of
ID-based strong designated verifier group signature.
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Abstract. A signature scheme is said to be weakly unforgeable, if it is
hard to forge a signature on a message not signed before. A signature
scheme is said to be strongly unforgeable, if it is hard to forge a signa-
ture on any message. In some applications, the weak unforgeability is
not enough and the strong unforgeability is required, e.g., the Canetti,
Halevi and Katz transformation.

Leakage-resilience is a property which guarantees that even if secret
information such as the secret-key is partially leaked, the security is
maintained. Some security models with leakage-resilience have been pro-
posed. The auxiliary (input) leakage model, or hard-to-invert leakage
model, proposed by Dodis et al. in STOC’09 is especially meaningful one,
since the leakage caused by a function which information-theoretically
reveals the secret-key, e.g., one-way permutation, is considered.

In this work, we propose a generic construction of a signature scheme
strongly unforgeable and resilient to polynomially hard-to-invert leakage
which can be instantiated under standard assumptions such as the deci-
sional linear assumption. We emphasize that our signature scheme is not
only the first one resilient to polynomially hard-to-invert leakage under
standard assumptions, but also the first one which is strongly unforgeable
and has hard-to-invert leakage-resilience.

Keywords: Digital signature · Strong existential unforgeability
Leakage-resilience · Hard-to-invert leakage · Auxiliary (input) leakage

1 Introduction

Strongly Unforgeable Signature. We say that a signature scheme is weakly (exis-
tentially) unforgeable if it is hard to forge a signature on a message not signed
before. We say that a signature scheme is strongly (existentially) unforgeable if
it is hard to forge a signature on any message which can be a message signed
before. Since most of the signature schemes generate a signature randomly, there
is a gap between the weak unforgeability and strong unforgeability. Moreover,
in some applications, strongly unforgeable signature scheme is required, e.g.,
Canetti-Halevi-Katz transformation [11].
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Leakage-Resilient Cryptography. Leakage-resilience is a property which guaran-
tees that even if secret information such as the secret key is partially leaked,
the security is maintained. Any scheme whose security has been proven only in
a security model without leakage-resilience is not guaranteed to be secure when
some information about the secret information such as the secret-key are leaked.
There exist some side-channel attacks which are real threats to us, e.g., cold-boot
attack [19], so leakage-resilient cryptographic schemes are practically desirable.

In the security model considering leakage-resilience, a side-channel attack
caused by an adversary is modeled as a polynomial time computable function
f : {0, 1}|Secret| → {0, 1}∗1. The adversary is allowed to choose an arbitrary
leakage function f , query it to the leakage oracle, then learn f(Secret). If we
allow the adversary to choose the identity map as f , the adversary acquires
the secret key entirely and is able to break the security model with no failures.
Hence, we have to impose a restriction on f . Several security models in which
different restrictions are imposed on f have been proposed.

In bounded leakage (BL) model [1], the output bit-length of f is restricted.
More concretely, only f satisfying f : {0, 1}|Secret| → {0, 1}l(k) such that l(k) < k
can be chosen2. To make the output bit-length of f unbounded, noisy leakage
(NL) model [25] was invented. In NL model, only f : {0, 1}|Secret| → {0, 1}∗

such that, when we observe f(Secret), the minimum entropy of the secret key
sk drops by at most l(k) < k can be chosen. Any function which information-
theoretically reveals the secret key sk is excluded in each one of the two models.
Thus, for instance, one-way permutation cannot be chosen in each one of the
models. To remove such a restriction, auxiliary (input) leakage (AL) model [14],
or hard-to-invert leakage model, was invented. In AL model, the function f must
be a hard-to-invert function. More concretely, only f such that, given f(Secret),
no PPT algorithm can compute sk with a probability larger than μ(k) can be
chosen, where μ(·) is a negligible function such that μ(k) > 2−k. The larger
μ(k) is, the larger the function class of f is. AL model is a generalization of BL
and NL model, thus has a larger function class. Moreover, AL model is useful
in the context of the composition. There may be the case when we want to
use the same pair of public key and secret key of an auxiliary leakage-resilient
cryptographic scheme for multiple schemes. Their composition remains secure
as long as each one of the other schemes has been proven to be secure in the
standard (non-leakage-resilient) security model [12,29].

Large number of cryptographic schemes with leakage-resilience have been
proposed. For instance, public-key encryption [1,4,12,13], identity-based encryp-
tion [10,21,23,29], attribute-based encrypiton [23,31–33], identification [2,13],
and authenticated key agreement [2,13], have been proposed.

Related Works. Katz and Vaikuntanathan [22] defined that fully leakage-resilient
(FLR) signature is a signature resilient to not only the direct leakage from the

1 Secret denotes the secret information. |Secret| denotes the bit-length of Secret.
2 k denotes the minimum entropy of the secret key sk. If the secret-key is generated

uniformly at random, k is equivalent to the bit-length of the secret-key |sk|.
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secret-key, but also the leakage from the randomness used to generate the secret-
key and signatures in the signing oracle. FLR or non-FLR signature schemes
secure in the bounded-leakage model have been proposed in [2,8,22,24].

The concept of the auxiliary leakage-resilience was presented by Dodis et al.
[14]. They proposed symmetric-key encryption schemes which is IND-CPA or
IND-CCA secure and resilient to exponentially hard-to-invert leakage. In a sub-
sequent work, Dodis et al. [12] started a research on public-key encryption with
hard-to-invert leakage-resilience. They defined two leakage-function classes. The
class How(ξ(λ)) (resp. Hpkow(ξ(λ))) consists of every polynomial-time computable
function f : {0, 1}|pk|+|sk| → {0, 1}∗ such that any PPT algorithm A which is
given f(pk, sk) (resp. (pk, f(pk, sk))) as input is able to guess sk correctly only
with a probability smaller than ξ(λ), where ξ(λ) > 2−k is a negligible function
and (pk, sk) is a randomly generated key-pair. They proved that the BHHO
encryption scheme [5] and a slightly modified version of the GPV encryption
scheme [16] are IND-CPA secure in the hard-to-invert leakage-resilience model
w.r.t. the function class How(1/μ1(λ)), where μ1(λ) is a sub-exponential func-
tion. They also mentioned that a PKE scheme which is IND-CPA secure in the
hard-to-invert leakage-resilience model w.r.t. Hpkow(1/μ2(λ)), where μ2(λ) is a
polynomial function, is given in its full paper [12].

Faust et al. firstly presented a research on digital signature with hard-to-
invert leakage-resilience [15]. To construct a signature scheme secure in the AL
model, there is an obstacle whom we have to overcome. It is how to prevent the
adversary to choose the signing algorithm as the leakage-function, get a valid
signature, then output the signature as a forged signature. Faust et al. proposed
a signature scheme which is wEUF-CMA (weakly existentially unforgeability
under adaptively chosen messages attack) secure in the hard-to-invert leakage-
resilience model w.r.t. the function class Hpkow(1/μ3(λ)), where μ3(λ) is an expo-
nential function. Their solution to overcome the obstacle explained earlier is to
add a ciphertext of the secret-key sk to a signature. Specifically, their signature
scheme adopts the labeled public-key encryption (LPKE) as a building block,
and adds a ciphertext of the secret-key to a signature. Moreover, for their signa-
ture scheme, the hardness parameter 1/μ3(λ) in the leakage function class is set
as 1/μ3(λ) << 2−ldk , where ldk ∈ N denotes the bit-length of the decryption-key
dk of the LPKE scheme. This solution effectively works. The reason is as fol-
lows. Since any PPT algorithm is able to guess the decryption-key dk correctly
with probability 2−ldk , any PPT inverter in the definition of the function class
Hpkow(1/μ3(λ)) which is given a signature including a ciphertext C of the secret-
key sk is able to guess sk correctly with probability 2−ldk >> 1/μ3(λ) by guess-
ing the decryption-key dk, then decrypting the ciphertext C with the guessed
dk. Hence, the signing algorithm is excluded from the class Hpkow(1/μ3(λ)). By
the way, they showed that their signature scheme can be instantiated under
standard assumptions such as the DLIN assumption [3].

Independently of Faust et al. [15], Yuen et al. [30] also presented a research
on signature secure in the AL model. To overcome the obstacle to construct
a signature with auxiliary leakage resilience, Yuen et al. proposed an original
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security model, which is named “selective auxiliary input model”. In the security
model, the adversary is allowed to choose as the leakage-functions only functions
which are independent of the public-key. They proposed a signature scheme
secure in the security model. Their signature scheme is FLR and resilient to
polynomially hard-to-invert leakage. Here, their definition of leakage function
f being resilient to polynomially hard-to-invert leakage is as follows: any PPT
algorithm which is given (pk, S, f(state)) is able to guess sk correctly only with
a negligible probability, where (pk, sk) is a randomly generated key-pair, S is
a set of randomly generated signatures on the messages queried to the signing
oracle, and state is a set of randomnesses used to generate sk and the signatures
S. Their definition of leakage-function is undesirable since it depends on the
signatures generated on the signing oracle.

Subsequently, Wang et al. [27] proposed a signature scheme secure in the
selective auxiliary input model. Their signature scheme is FLR and resilient to
polynomially hard-to-invert leakage. Their definition for a function to be resilient
to polynomially hard-to-invert leakage is not the same as the one by Yuen et al.
[30]. It is improved as follows: any PPT algorithm which is given f(sk) is able
to identify sk only with a negligible probability. However, their scheme needs
differing input obfuscator (diO), indistinguishable obfuscator (iO), and point-
function obfuscator with auxiliary input (AIPO), each one of which has been
constructed only under strong assumptions.

Note that each one of the signature schemes with auxiliary leakage resilience
by Faust et al. Yuen et al. and Wang et al. is not strongly existentially unforge-
able, but weakly existentially unforgeable.

Boneh et al. [7] proposed a method to transform a weakly unforgeable sig-
nature scheme into a strongly unforgeable one. However, their transformation
can be applied to “partitioned” signatures only. In a subsequent work, Steinfeld
et al. [26] proposed a method to transform “any” weakly unforgeable signature
into a strongly unforgeable one. Note that each transformation by Boneh et al.
and Steinfeld et al. has a common property such that each one of the public-key,
secret-key and signature of the strongly unforgeable signature scheme becomes
each one of the public-key, secret-key and signature of the weakly unforgeable
signature whom some new elements are added to. Huang et al. [20] proposed a
transformation which no new elements are added to the public-key, secret-key
and signature.

Wang et al. [28] modified the transformation by Steinfeld et al. [26] to get
a transformation from a signature weakly existentially unforgeable and FLR in
the bounded leakage model to a strongly unforgeable one. The transformation by
Steinfeld et al. utilizes two chameleon hash functions (with no leakage-resilience).
In the transformation by Wang et al., one of the chameleon hash functions is
assumed to satisfy a property such that any PPT algorithm cannot find a strong
collision even if the algorithm is given a length-bounded information about the
secret-key.

The transformation by Wang et al. needs to add some new elements to both
the key-pair and signature. Huang et al. [18] modifies the transformation by
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Huang et al. [20] to get a method to transform a signature weakly existentially
unforgeable and FLR in the BL model into a strongly unforgeable one which no
elements are added to the signature3.

Our Results. We propose a generic construction of signature scheme which is
strongly unforgeable and resilient to polynomially hard-to-invert leakage under
standard assumptions. Specifically, we give an example of instantiation under the
decisional linear (DLIN) assumption [3]. Our security model is not the selective
auxiliary leakage model [30], so the leakage-function can be chosen dependently
on the public-key.

Our result is a desirable one because of the following two independent points.
Firstly, our signature is the first one which is resilient to polynomially hard-to-
invert leakage under standard assumptions. Secondly, our signature is the first
one which is strongly unforgeable and has hard-to-invert leakage-resilience.

Our Approach. Our result is obtained by modifying the one by Faust et al. [15].
Before explaining how the modification is done, we explain the result by Faust
et al. in detail.

Faust et al. proposed a generic construction of a signature scheme secure
in the wEUF-CMA security model w.r.t. the function class Hpkow(ξ(λ)). It con-
sists of three building blocks. They are second pre-image resistant hash function
(SPRHF), labeled PKE (LPKE) whose decryption-key dk has bit-size ldk ∈ N,
and non-interactive zero-knowledge proof (NIZK) whose trapdoor td has bit-
size ltd ∈ N. The hardness parameter of the leakage function class is set as
ξ(λ) = 2−(λ+ldk+ltd). A signature σ on a message m consists of a LPKE cipher-
text c and a NIZK proof π. Concretely, the ciphertext c is a LPKE ciphertext
encrypting the secret-key sk under the label m, and the proof π is a NIZK proof
which proves that there exists a secret-key sk′ such that the ciphertext c is a
ciphertext of sk′ on the label m and the hashed value of sk′ is equivalent to the
hashed value of the real secret-key sk which is included in the public-key pk.

Intuitively speaking, the security proof for the signature by Faust et al. is
done as follows. By modifying the initial security game several times, we get the
final game Gamefinal . In Gamefinal, for a signature σ = (c, π) on the signing
oracle, the ciphertext c is generated by encrypting 0|sk| instead of sk, and the
proof π is generated by using the trapdoor td instead of sk. In addition, the
adversary is considered to win the game, if he successfully outputs a signature
σ∗ = (c∗, π∗) and a message m∗ such that c∗ is a valid ciphertext of sk∗ on label
m∗, and π∗ is a valid proof. We prove that every PPT A wins the game only
with a negligible probability by a reduction to the hard-to-invert property of the
leakage-function f ∈ Hpkow(2−(λ+ldk+ltd)). In the reduction, a simulator S needs
both td and dk to simulate Gamefinal and decrypt the ciphertext c∗. However,
by the definition of the leakage function class Hpkow(·), S is given neither td nor
dk, so S has to guess them, and the guess succeeds with probability 2−(ldk+ltd).

3 By the transformation in [18], some new elements are added to the public-key and
secret-key.
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By the above reason, the hardness parameter for Faust et al.’s signature scheme
becomes 2−(λ+ldk+ltd).

The above is the result by Faust et al. We modify the result with three steps.
In the first step, we generalize the second pre-image resistance (SPR) prop-

erty of the SPRHF, which is one of the building blocks. Intuitively, the SPR
property is a property such that no PPTA given a key-pair (pk, sk) is able to
find a secret-key sk∗ which is not sk, but has a hashed value equivalent to the
hashed value of sk with a non-negligible probability. We generalize it to a prop-
erty such that no PPTA given (pk, sk) is able to find a secret-key sk∗ such that
a relation holds between sk∗ and sk and another relation also holds between sk∗

and pk with a non-negligible probability.
The second step is to modify the definition of the leakage-function class

Hpkow(·). In the modified definition of the function class, the PPT algorithm (or
inverter) A is given not only the public-key of the key-pair (pk, sk), but also
some variables which are generated during generation of the key-pair and are
not directly included in either pk or sk. Specifically, for our signature scheme,
the variables are the decryption-key dk and the trapdoor td. If the definition of
the leakage-function class is modified to such one, the simulator in the proof for
Gamefinal is not forced to guess dk and td with probability 2−(ldk+ltd), so the
polynomially hard-to-invert leakage-resilience security is achieved. Instantiating
the generic construction of the signature scheme, we can concretely generate the
first signature scheme (weakly unforgeable and) resilient to polynomially hard-
to-invert leakage under standard assumptions such as the DLIN assumption.

In the third step, we apply a methodology which is invented by modifying the
one by Wang et al. [28] to the weakly unforgeable signature scheme in the second
step, then get a strongly unforgeable one. Note that unlike Wang et al., we do
not propose a generic transformation from a weakly unforgeable and resilient
to hard-to-invert leakage to a strongly unforgeable one. In the transformation
by Wang et al., a chameleon hash function with strong collision-resistance in
the bounded leakage model (BLR-CHF) was used. We use a CHF with strong
collision-resistance in the auxiliary leakage model (ALR-CHF). Moreover, the
secret-key of the strongly unforgeable signature scheme obtained by the transfor-
mation by Wang et al. includes not only the “original” secret-key, i.e., the secret-
key of the weakly unforgeable signature, but also the secret-key of the BLR-CHF.
However, the secret-key of our strongly unforgeable signature includes the secret-
key of the ALR-CHF only. By instantiating the signature scheme, we obtain a
concrete construction of the first signature strongly unforgeable and resilient
to polynomially hard-to-invert leakage under standard assumptions such as the
DLIN assumption.

Paper Organization. This paper is organized as follows. In Sect. 2, we give basic
notations and the syntax and the definition of security or property of labeled
public-key encryption, non-interactive zero-knowledge proof, chameleon hash
function, and digital signature. In Sect. 3, our generic construction of signature
and its security proof are given. In Sect. 4, we show that the generic construction
of signature in Sect. 3 can be instantiated under the DLIN assumption.
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2 Preliminaries

Notation. For a, b ∈ N, [a, b] denotes {x ∈ N | a ≤ x ≤ b}. For λ ∈ N, 1λ

denotes a security parameter. G is a function which takes 1λ as input, and
randomly outputs (p,G, g), where p is a prime number whose bit-size is λ, G is
a multiplicative cyclic group whose order is p, and g is a generator of G. PPTA
means probabilistic polynomial time algorithm.

2.1 Hardness Assumptions

Discrete Logarithm (DL) Assumption. For λ ∈ N, let (p,G, g) ← G(1λ). DL
assumption holds, if for every PPTA A, the probability Pr[x ← A(p,G, g, gx) |
x

U←− Zp] is negligible in λ.

Decisional Linear (DLIN) Assumption [3]. For λ ∈ N, let (p,G, g) ← G(1λ).
DLIN assumption holds, if for every PPTA A,

∣
∣
∣Pr[1 ← A(p,G, g1, g2, g3, g

r1
1 , gr2

2 , gr1+r2
3 ) | g1, g2, g3

U←− G, r1, r2
U←− Zp]

−Pr[1 ← A(p,G, g1, g2, g3, g
r1
1 , gr2

2 , gu
3 ) | g1, g2, g3

U←− G, r1, r2, u
U←− Zp]

∣
∣
∣

is negligible in λ.

2.2 Labeled Public Key Encryption

Syntax. Labeled public key encryption (LPKE) consists of three polynomial time
algorithms {Gen,Enc,Dec}. Gen and Enc are probabilistic. Dec is deterministic.

Gen(1λ) → (ek, dk). The key generation algorithm takes 1λ as input, and out-
puts an encryption key ek, and a decryption key dk. Plaintext space M,
ciphertext space C, and label space L are uniquely determined by ek.

Enc(ek,m,L) → C. The encryption algorithm takes the encryption key ek, a
plaintext M ∈ M, and a label L ∈ L as inputs, and outpus a ciphertext C.

Dec(dk,C, L) → M / ⊥. The decryption algorithm4 takes the decryption key
dk, a ciphertext C ∈ C, and a label L ∈ L as inputs, and outputs a plaintext
M or ⊥.

A LPKE scheme must be correct. LPKE scheme ΣLPKE = {Gen,Enc,Dec} is
correct, if for every λ ∈ N, every (ek, dk) ← Gen(1λ), every M ∈ M, every
L ∈ L, and every C ← Enc(ek,M,L), it holds that M ← Dec(dk,C, L).

4 Although Dec needs the encryption-key ek as an input since ek includes information
such as the prime p , the group G, and etc., we often omit ek as the input.



Strongly Unforgeable Signature Resilient 429

Ciphertext Indistinguishability
To define weak ciphertext indistinguishability against adaptively chosen label
and ciphertexts attacks (IND-wLCCA) for a LPKE scheme ΣLPKE =
{Gen,Enc,Dec}, we use the following game which is played between an adversary
A and challenger CH.

Key-Generation. CH runs (ek, dk) ← Gen(1λ), and sends ek to A.
Query. A is allowed to use the decryption oracle Dec adaptively.

Dec(C,L): A queries a ciphertext C ∈ C and a label L ∈ L. CH returns
M / ⊥ ← Dec(dk,C, L).

Challenge(M0,M1, L
∗). A sends two plaintexts M0,M1 ∈ M, and a label L∗ ∈

L. CH sets b
U←− {0, 1}, then returns C∗ ← Enc(ek,Mb, L

∗).
Query 2. A is allowed to use the decryption oracle Dec adaptively.

Dec(C,L): A queries a ciphertext C ∈ C and a label L ∈ L such that L �= L∗.
CH returns M / ⊥ ← Dec(dk,C, L).

Guess(b′). A sends b′ ∈ {0, 1} to CH.

Definition 1. LPKE scheme ΣLPKE is IND-wLCCA secure if for any PPT
adversary A, AdvIND-wLCCAA,ΣLP KE

(λ) = |2 · Pr[b′ = b] − 1| is negligible.

2.3 Non-Interactive Zero-Knowledge Proof

Syntax. Non-interactive zero-knowledge proof (NIZK) ΠNIZK for a language L
consists of three polynomial time algorithms {Gen,Pro,Ver}. Each one of Gen
and Pro is probabilistic. Ver is deterministic. RL denotes the witness relation.

Gen(1λ) → crs. The key-generation algorithm takes 1λ as an input, and outputs
a common reference string (CRS) crs.

Pro(crs, x, w) → π. The proof-generation algorithm takes the CRS crs, a state-
ment x, and a witness w as inputs, and outputs a proof π.

Ver(crs, x, π) → 1 / 0. The proof-verification algorithm takes the CRS crs, a
statement x, and a proof π as inputs, and outputs 1 or 0.

A NIZK scheme must be correct. A NIZK scheme ΣNIZK = {Gen,Pro,Ver}
is correct if for every λ ∈ N, every crs ← Gen(1λ), every (x,w) such that
(x,w) ∈ RL, and every π ← Pro(crs, x, w), it holds that 1 ← Ver(crs, x, π).

We give the definitions of soundness and zero-knowledge for a NIZK scheme.

Definition 2. A NIZK scheme ΣNIZK = {Gen,Pro,Ver} is sound if for every
λ ∈ N, every crs ← Gen(1λ), and every PPT A,

Pr [A(crs) → (x, π) s.t. [Ver(crs, x, π) → 1] ∧ [x /∈ L]]

is negligible.
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Definition 3. A NIZK scheme ΣNIZK = {Gen,Pro,Ver} is zero-knowledge if
for every λ ∈ N and every PPT A, there exists a PPT S = (S1,S2) such that

∣
∣
∣Pr

[

AOcrs
0 (x,w)(crs) → 1 | Gen(1λ) → crs

]

−

Pr
[

AOcrs,td
1 (x,w)(crs) → 1 | S1(1λ) → (crs, td)

]∣
∣
∣

is negligible, where Ocrs
0 (x,w) returns Pro(crs, x, w) (resp. ⊥), if (x,w) ∈ RL

(resp. (x,w) /∈ RL), and Ocrs,td
1 (x,w) returns S2(crs, x, td) (resp. ⊥), if (x,

w) ∈ RL (resp. (x,w) /∈ RL).

2.4 Chameleon Hash Function

Syntax. A chameleon hash function (CHF) scheme consists of the polynomial
time algorithms {Gen,Eval,TC,SKVer,SKVer2}. Gen and TC are probabilistic,
and Eval, SKVer and SKVer2 are deterministic.

Gen(1λ) → (pk, sk). The key-generation algorithm takes a security parameter
1λ, where λ ∈ N, as an input, and outputs a public-key pk and a secret-key
(or trapdoor) sk. The message space M, randomness space R and hashed
value space H are uniquely determined by pk.

Eval(pk,m; r) → h. The evaluation algorithm takes the public-key pk and a mes-
sage m ∈ M as inputs, and outputs the hashed value h ∈ H which was
calculated under a randomness r ∈ R.

TC(pk, (m1, r1),m2) → r2. The trapdoor collision finder algorithm takes the
public-key pk, a pair of a message and randomness (m1, r1) ∈ M × R, and a
message m2 ∈ M as inputs, and outputs a randomness r2 ∈ R.

SKVer(pk, sk′) → 1 / 0. The first secret-key-verification algorithm takes the
public-key pk and a secret-key sk′ as inputs, and outputs 1 or 0.

SKVer2(pk, sk′, sk†) → 1 / 0. The second secret-key-verification algorithm
takes the public-key pk, a secret-key sk′, and a secret-key sk† as inputs,
and outputs 1 or 0. Even if the two secret-keys are inputted in the reversed
order, the output is required to be equivalent. Thus, for any λ ∈ N, any
(pk, sk) ← Gen(1λ), and any two valid secret-keys sk′ and sk†, it holds that
SKVer2(pk, sk′, sk†) = SKVer2(pk, sk†, sk′).

A CHF scheme must be correct. A CHF scheme ΣCHF = {Gen,Eval,TC,
SKVer,SKVer2} is correct, if for every λ ∈ N, every (pk, sk) ← Gen(1λ), every
m ∈ M, every m′ ∈ M, every r ∈ R, and every r′ := TC(pk, (m, r),m′),
it holds that [Eval(pk,m; r) = Eval(pk,m′; r′)] ∧ [1 ← SKVer(pk, sk)] ∧ [1 ←
SKVer2(pk, sk, sk)].

We give the definitions of two standard properties for the CHF scheme. They
are strong collision-resistance and random trapdoor collision.

Definition 4. A CHF scheme ΣCHF = {Gen,Eval,TC,SKVer,SKVer2} is
strongly collision-resistant, if for every λ ∈ N and every PPT A, it holds that

Pr[A(pk) → ((m1, r1), (m2, r2)) s.t. [(m1, r1) �= (m2, r2)]
∧[Eval(pk,m1; r1) = Eval(pk,m2; r2)]]
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is negligible, where (pk, sk) R←− Gen(1λ).

Definition 5. A CHF scheme ΣCHF = {Gen,Eval,TC,SKVer,SKVer2} is said
to have the property of random trapdoor collision, if for any λ ∈ N, any
(pk, sk) ← Gen(1λ) and any two messages m1,m2 ∈ M, a randomness
r1 chosen uniformly at random from R distributes identically with r2 :=
TC(pk, (m1, r1),m2).

We give the definition of an original property for a CHF scheme. The property
is hard-to-compute-secret-key (HtC-SK).

Definition 6. ΣCHF = {Gen,Eval,TC,SKVer,SKVer2} is said to have the prop-
erty of HtC-SK, if for every λ ∈ N, and every PPT A, it holds that

Pr [A (pk, sk) → sk∗ s.t. [1 ← SKVer(pk, sk∗)] ∧ [0 ← SKVer2(pk, sk∗, sk)]]

is negligible, where (pk, sk) R←− Gen(1λ).

Remark. The property is related to the second pre-image resistance (SPR) [13,
15]. The algorithm SKVer given pk and sk as inputs is an algorithm which verifies
whether or not a relation holds between pk and sk. The algorithm SKVer2 given
two secret-keys sk and sk† can be defined as the algorithm outputting 1 iff the
two keys are equivalent. Thus, the HtC-SK property can be the SPR property.
We can say that the HtC-SK property is a generalization of the SPR property.

2.5 Digital Signature

Syntax. Digital signature consists of the polynomial time algorithms {Gen,Sig,
Ver,SKVer,SKVer2}. Gen and Sig are probabilistic, and Ver,SKVer and SKVer2
are deterministic.

Gen(1λ) → (pk, sk). The key-generation algorithm takes 1λ, where λ ∈ N, as an
input, and outputs a public-key pk and a secret-key sk. The message space
M is uniquely determined by pk.

Sig(pk,m, sk) → σ. The signing algorithm takes the public-key pk, a message
m ∈ M, and the secret-key sk as inputs, and outputs a signature σ.

Ver(pk,m, σ) → 1 / 0. The signature-verification algorithm takes the public-key
pk, a message m ∈ M, and a signature σ as inputs, and outputs 1 or 0.

SKVer(pk, sk′) → 1 / 0. This is the same as the algorithm SKVer of the CHF
scheme.

SKVer2(pk, sk′, sk†) → 1 / 0. This is the same as the algorithm SKVer2 of the
CHF scheme.

A signature scheme must be correct. A signature scheme ΣSIG = {Gen,Sig,
Ver,SKVer,SKVer2} is correct if for every (pk, sk) ← Gen(1λ), every m ∈ M,
and every σ ← Sig(pk,m, sk), it holds that [1 ← Ver(pk,m, σ)] ∧ [1 ←
SKVer(pk, sk)] ∧ [1 ← SKVer2(pk, sk, sk)].
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Strong Existential Unforgeability in the Auxiliary Leakage Model
In this subsection, we define the strong existential unforgeability in the AL model
for a signature scheme. Specifically, we define the strong existential unforgeability
against adaptively chosen messages attacks in the auxiliary leakage model (AL-
sEUF-CMA) for a signature scheme ΣSIG = {Gen,Sig,Ver,SKVer,SKVer2}.

At first, we define a game which is played between an adversary A and
challenger CH as follows. Note that a leakage function f : {0, 1}|pk|+|sk| → {0, 1}∗

whose randomness space is denoted by R is included in a class FΣSIG(λ), i.e.,
f ∈ FΣSIG(λ)5.

Key-Generation. CH runs (pk, sk) ← SIG.Gen(1λ). CH chooses r
R←− R, then

computes f(pk, sk; r). CH sends (pk, f(pk, sk; r)) to A. CH initializes the list
LS as an empty set ∅.

Query. A is allowed to use the signing oracle Sign, adaptively.
Sign(m ∈ M): CH generates σ ← SIG.Sig(pk,m, sk), then sends σ to A.

After that, CH sets LS := LS ∪ {(m,σ)}.
Forgery(m∗, σ∗). CH receives (m∗, σ∗) sent by A.

In the above game, A is said to win the game if [1 ← SIG.Ver(pk,m∗, σ∗)] ∧
[(m∗, σ∗) /∈ LS ]. The advantage Adv

F(λ)−AL−sEUF−CMA
ΣSIG,A (λ) is defined as the

probability Pr[A wins.].

Definition 7. ΣSIG is AL-sEUF-CMA-secure with respect to the leakage-
function class FΣSIG(λ), if for every PPT A and every function f ∈ FΣSIG(λ),
Adv

F(λ)−AL−sEUF−CMA
ΣSIG,A (λ) is negligible.

Remark. Weak existential unforgeability is defined in the same manner as the
strong existential unforgeability except for the winning condition by the adver-
sary A in the security game. The adversary is said to win the game if the signa-
ture σ∗ is a valid signature on the message m∗, i.e., [1 ← SIG.Ver(pk,m∗, σ∗)],
and the message m∗ has not been queried to the signing oracle Sign.

3 Signature Strongly Existentially Unforgeable
and Resilient to Polynomially Hard-to-Invert Leakage

In Subsect. 3.1, the generic construction of our signature scheme is given. In Sub-
sect. 3.2, the signature scheme is proven to be strongly existentially unforgeable
and resilient to polynomially hard-to-invert leakage. In the next section, i.e.,
Sect. 4, we show that the signature scheme can be instantiated under the DLIN
assumption.

5 In this paper, the function class FΣSIG(λ) can be simply written as F(λ), if it is
obvious that the function class is for the signature scheme ΣSIG.
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3.1 Construction

Our generic construction of signature scheme ΣSIG = {SIG.Gen,SIG.Sig,SIG.
Ver,SIG.SKVer,SIG.SKVer2} has the following 4 building blocks: A LPKE
scheme ΣLPKE = {LPKE.Gen,LPKE.Enc,LPKE.Dec}, a NIZK scheme ΣNIZK =
{NIZK.Gen,NIZK.Pro,NIZK.Ver}, a CHF scheme ΣCHF = {CHF.Gen,
CHF.Eval,CHF.TC,CHF.SKVer,CHF.SKVer2} and a CHF scheme ΣCHF2 =
{CHF2.Gen,CHF2.Eval,CHF2.TC}.

The signature scheme ΣSIG is generically constructed as follows.

SIG.Gen(1λ): Run (ek, dk) ← LPKE.Gen(1λ), (pk1, sk1) ← CHF.Gen(1λ) and
(pk2, sk2) ← CHF2.Gen(1λ). Run (crs, td) ← S1(1λ), where S1 is the first
simulator in the definition of zero-knowledge for ΣNIZK.
RE and RE2 denote the randomness space of CHF.Eval and CHF2.Eval,
respectively. M̃, M̄, C, P and K1 denote the message space of ΣCHF, the
label space of ΣLPKE (or the hashed value space of ΣCHF2), the ciphertext
space of ΣLPKE, the proof space of ΣNIZK, and the secret-key space of ΣCHF,
respectively. M is a space satisfying M̃ = M||C||P.
Verification-key and signing-key are set as pk := (pk1, pk2, ek, crs) and
sk := sk1, respectively. Return (pk, sk). We define language L as

L :=
{

(c, m̄) ∈ C × M̄ | ∃sk1 ∈ K1 s.t. [c ← LPKE.Enc(ek, sk1, m̄)]
∧ [1 ← CHF.SKVer(pk1, sk1)]} .

SIG.Sig(pk,m ∈ M, sk): pk is parsed as (pk1, pk2, ek, crs). sk is written as sk1.
Do as follows in order.

– r′
E

U←− RE , rE2
U←− RE2, m′ U←− M, c′ U←− C, π′ U←− P, σ′ := (c′, π′).

– h := CHF.Eval(pk1,m
′||σ′; r′

E), m̄ := CHF2.Eval(pk2, h; rE2).
– c := LPKE.Enc(ek, sk1, m̄), x := (c, m̄), w := sk1, π := NIZK.Pro(crs, x, w).
– σ := (c, π), rE := CHF.TC(pk1, sk1, (m′||σ′, r′

E),m||σ).

Return σ† := (σ, rE , rE2) = (c, π, rE , rE2).

SIG.Ver(pk,m ∈ M, σ†): pk is parsed as (pk1, pk2, ek, crs). σ† is parsed as
(c, π, rE , rE2). h := CHF.Eval(pk1,m||σ; rE). m̄ := CHF2.Eval(pk2, h; rE2).
x := (c, m̄). Return NIZK.Ver(crs, x, π).

SIG.SKVer(pk, sk): pk is parsed as (pk1, pk2, ek, crs). sk is written as sk1.
Return CHF.SKVer(pk1, sk1).

SIG.SKVer2(pk, sk, sk′): pk is parsed as (pk1, pk2, ek, crs). sk and sk′ are written
as sk1 and sk′

1, respectively. Return CHF.SKVer2(pk1, sk1, sk
′
1).

3.2 Proof of Strong Unforgeability in Polynomially Hard-to-Invert
Leakage Model

Before giving the theorem for the strong unforgeability in the hard-to-invert
leakage model of the signature scheme ΣSIG, we give the definitions of the
leakage-function class FHtI

ΣSIG
(λ) for the signature scheme and the strong collision-

resistance in the auxiliary leakage model w.r.t. the function class FHtI
ΣSIG

(λ) for
the chameleon hash function ΣCHF.
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Definition 8. Function class FHtI
ΣSIG

(λ) consists of every polynomial-time com-
putable probabilistic (or deterministic) function f : {0, 1}|pk1|+|pk2|+|ek|+|crs|+|sk1|

→ {0, 1}∗ which has a randomness space R and satisfies the following condition:
for every PPT B,

Pr [B (pk1, pk2, ek, crs, sk2, dk, td, f(pk1, pk2, ek, crs, sk1; r)) → sk∗
1

s.t. [1 ← CHF.SKVer (pk1, sk
∗
1)] ∧ [1 ← CHF.SKVer2 (pk1, sk

∗
1 , sk1)]] (1)

is negligible, where (pk1, sk1)
R←− CHF.Gen(1λ), (pk2, sk2)

R←− CHF2.Gen(1λ),
(ek, dk) R←− LPKE.Gen(1λ), (crs, td) R←− S1(1λ) and r

R←− R.

Remark. If the chameleon hash function ΣCHF is a CHF with the sec-
ond pre-image resistance [13,15], the algorithm CHF.SKVer2 is defined as
the equality-checking algorithm, and the secret-key sk∗

1 which satisfies [1 ←
CHF.SKVer(pk1, sk

∗
1)] ∧ [1 ← CHF.SKVer2(pk1, sk

∗
1 , sk1)] is the original secret-

key sk1 only. So, the probability (1) is simply written as Pr[B(pk1, pk2, ek, crs,
sk2, dk, td, f(pk1, pk2, ek, crs, sk1; r)) → sk1].

Definition 9. CHF scheme ΣCHF = {CHF.Gen,CHF.Eval,CHF.TC,CHF.
SKVer,CHF.SKVer2} is strongly collision-resistant in the auxiliary leakage model
wr.t. the function class FHtI

ΣSIG
(λ), if for every PPT A and every function

f : {0, 1}|pk1|+|pk2|+|ek|+|crs|+|sk1| → {0, 1}∗ which satisfies f ∈ FHtI
ΣSIG

(λ) and
has a randomness space R,

Pr [A (pk1, pk2, ek, crs, sk2, dk, td, f(pk1, pk2, ek, crs, sk1; r)) → ((m1, r1) , (m2, r2))

s.t. [(m1, r1) �= (m2, r2)] ∧ [CHF.Eval(pk1, m1; r1) = CHF.Eval(pk1, m2; r2)]]

is negligible, where (pk1, sk1)
R←− CHF.Gen(1λ), (pk2, sk2)

R←− CHF2.Gen(1λ),
(ek, dk) R←− LPKE.Gen(1λ), (crs, td) R←− S1(1λ) and r

R←− R.

The strong unforgeability in the AL model of the signature scheme ΣSIG is
guaranteed by the following theorem.

Theorem 1. ΣSIG is AL-sEUF-CMA w.r.t. the function class FHtI
ΣSIG

(λ), if

– ΣLPKE is IND-wLCCA,
– ΣNIZK is sound and zero-knowledge,
– ΣCHF is strongly collision-resistant in the auxiliary leakage model w.r.t. the

function class FHtI
ΣSIG

(λ), random trapdoor collision, and HtC-SK, and
– ΣCHF2 is strongly collision-resistant and random trapdoor collision.

Proof of Theorem 1. Hereafter, qs ∈ N denotes the number of times that PPT
adversary A uses the signing oracle Sign. To prove Theorem 1, we use multiple
games Gamei, where i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 7|1, · · · , 7|qs}.

The first game Game0 is the normal AL-sEUF-CMA game w.r.t. the signature
scheme ΣSIG and the function class FHtI

ΣSIG
(λ). Specifically, Game0 is the following

game.
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Key-Generation. CH runs (pk1, sk1) ← CHF.Gen(1λ), (pk2, sk2) ←
CHF2.Gen(1λ), (ek, dk) ← LPKE.Gen(1λ), and (crs, td) ← S1(1λ). pk and
sk are set as pk := (pk1, pk2, ek, crs) and sk := sk1, respectively. For a func-
tion f ∈ FHtI

ΣSIG
(λ), CH chooses r

R←− R, then computes f(pk, sk; r). CH sends
(pk, f(pk, sk; r)) to A. LS is set to ∅.

Query. When A issues a message m ∈ M as a query to the signing oracle Sign,
CH generates a signature (c, π, rE , rE2) on the message as follows.

– r′
E

U←− RE , rE2
U←− RE2, m′ U←− M, c′ U←− C, π′ U←− P, σ′ := (c′, π′).

– h := CHF.Eval(pk1,m
′||σ′; r′

E), m̄ := CHF2.Eval(pk2, h; rE2).
– c := LPKE.Enc(ek, sk1, m̄), x := (c, m̄), w := sk1, π := NIZK.Pro(crs, x, w).
– σ := (c, π), rE := CHF.TC(pk1, sk1, (m′||σ′, r′

E),m||σ).

CH returns a signature (c, π, rE , rE2) to A. CH sets LS := LS ∪
{(m, c, π, rE , rE2)}.

Forgery(m∗, (c∗, π∗, r∗
E , r∗

E2)). CH is given a message m∗ ∈ M and a signature
(c∗, π∗, r∗

E , r∗
E2).

A wins the game, if [1 ← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗
E , r∗

E2) /∈ LS ],
where h∗ := CHF.Eval(pk1,m

∗||(c∗, π∗); r∗
E), m̄∗ := CHF2.Eval(pk2, h

∗; r∗
E2) and

x∗ := (c∗, m̄∗).
We define the games Gamei, where i ∈ {1, 2, 3, 4, 5, 6, 7, 7|1, · · · , 7|qs}, as fol-

lows.

Game1. Game1 is the same as Game0 except that CH generates a common reference
string crs by running crs ← NIZK.Gen(1λ) in Key-Generation.

Game2. Game2 is the same as Game1 except that A’s winning condition is
changed to the following one, where sk∗

1 := LPKE.Dec(dk, c∗, m̄∗): [1 ←
NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗

E , r∗
E2) /∈ LS ] ∧ [1 ← CHF.SKVer(pk1,

sk∗
1)].

Game3. Game3 is the same as Game2 except that A’s winning condition is changed
to the following one: [1 ← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗

E , r∗
E2) /∈

LS ] ∧ [1 ← CHF.SKVer(pk1, sk
∗
1)] ∧ [1 ← CHF.SKVer2(pk1, sk

∗
1 , sk1)].

Game4. Game4 is the same as Game3 except that A’s winning condition is
changed to the following one: [1 ← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗,
r∗
E , r∗

E2) /∈ LS ] ∧ [1 ← CHF.SKVer(pk1, sk
∗
1)] ∧ [1 ← CHF.SKVer2(pk1, sk

∗
1 ,

sk1)] ∧ [[m̄∗ /∈ {m̄1, · · · , m̄qs
}] ∨ [∃i ∈ [1, qs] s.t. [m̄∗ = m̄i] ∧ [(h∗, r∗

E2) =
(hi, rE2,i)] ∧ [(m∗, c∗, π∗, r∗

E) �= (mi, ci, πi, rE,i)]]], where, for i ∈ [1, qs], each
one of m̄i, hi, rE2,i, ci, πi and rE,i is the element which was generated when
computing the reply to the i-th signing oracle query.

Game5. Game5 is the same as Game4 except that when A issues a message m ∈ M
as a query to the signing oracle Sign, CH generates a signature (c, π, rE , rE2)
on the message as follows.

– rE , r′
E

U←− RE , r′
E2

U←− RE2, m′ U←− M, c′ U←− C, π′ U←− P, σ′ := (c′, π′).
– h′ := CHF.Eval(pk1,m

′||σ′; r′
E), m̄ := CHF2.Eval(pk2, h

′; r′
E2).
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– c := LPKE.Enc(ek, sk1, m̄), x := (c, m̄), w := sk1, π := NIZK.Pro(crs, x, w).
– σ := (c, π), h := CHF.Eval(pk1,m||σ; rE).
– rE2 := CHF2.TC(pk2, sk2, (h′, r′

E2), h).

Game6. Game6 is the same as Game5 except that the following two points. Firstly,
CH generates a common reference string crs by running (crs, td) ← S1(1λ) in
Key-Generation. Secondly, when replying to a query to Sign in Query, CH
generates a proof π by using S2, instead of NIZK.Pro, where S2 denotes the
second simulator in the definition of zero-knowledge for ΣNIZK.

Game7(= Game7|0). Game7 is the same as Game6 except that A’s winning condition
is changed to the following one: [1 ← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗,
r∗
E , r∗

E2) /∈ LS ] ∧ [1 ← CHF.SKVer(pk1, sk
∗
1)] ∧ [1 ← CHF.SKVer2(pk1, sk

∗
1 ,

sk1)] ∧ [m̄∗ /∈ {m̄1, · · · , m̄qs
}].

Game7|1, · · · , Game7|qs
. Game7|i, where i ∈ [1, qs], is the same as Game7|0 except

that when replying to the j-th signing oracle query, where j ≤ i, CH generates
the ciphertext cj by running cj ← LPKE.Enc(ek, 0|sk1|, m̄j), where 0|sk1|

denotes the bitstring of |sk1| number of 0.

Hereafter, Wi, where i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 7|1, · · · , 7|qs}, denotes the event that
A wins the game Gamei. It holds obviously that

Adv
FHtI

ΣSIG
(λ)−AL−sEUF−CMA

ΣSIG,A (λ) = Pr [W0]

≤
7∑

i=1

|Pr [Wi−1 − Wi]| +
qs∑

i=1

∣
∣Pr

[

W7|i−1

]

−Pr
[

W7|i
]∣
∣ + Pr

[

W7|qs

]

.

Theorem 1 is proven by the above inequality and the following all lemmas.

Lemma 1. |Pr[W0] − Pr[W1]| is negligible if ΣNIZK is zero-knowledge.

Lemma 2. |Pr[W1] − Pr[W2]| is negligible if ΣNIZK is sound.

Lemma 3. |Pr[W2] − Pr[W3]| is negligible if ΣCHF is HtC-SK.

Lemma 4. |Pr[W3] − Pr[W4]| is negligible if ΣCHF2 is strongly collision-
resistant.

Lemma 5. |Pr[W4] − Pr[W5]| is negligible if each one of ΣCHF and ΣCHF2 is
random trapdoor collision.

Lemma 6. |Pr[W5] − Pr[W6]| is negligible if ΣNIZK is zero-knowledge.

Lemma 7. |Pr[W6] − Pr[W7|0]| is negligible if ΣCHF is strongly collision-
resistant in the auxiliary leakage model w.r.t. the function class FHtI

ΣSIG
(λ).

Lemma 8. For any i ∈ [1, qs], |Pr[W7|i−1] − Pr[W7|i]| is negligible if ΣLPKE is
IND-wLCCA.

Lemma 9. Pr[W7|qs
] is negligible.

Proof of each lemma is given in the full version of this paper. �
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4 Instantiation Under the DLIN Assumption

As a concrete construction for the chameleon hash function ΣCHF, we adopt the
chameleon hash function ΠCHF,n given in Fig. 1 which is described in the last
page of this paper. For ΠCHF,n, we obtain Theorems 2, 3, and 4, whose proofs
are given in the full version of this paper.

Fig. 1. Construction of CHF Scheme ΠCHF,n, where J : {0, 1}∗ → Zp\{0} is a collision-
resistant hash function.

Theorem 2. For any n ∈ N, ΠCHF,n is HtC-SK under the DL assumption.

Theorem 3. For any n ∈ N, ΠCHF,n is random trapdoor collision.

Theorem 4. For any chameleon hash function ΠCHF2, any LPKE scheme
ΠLPKE, any NIZK scheme ΠNIZK, and any integer n ∈ N, ΠCHF,n is
strongly collision-resistant in the auxiliary leakage model w.r.t. the function class
FHtI

ΠSIG
(λ) under the collision-resistance of the hash function J : {0, 1}∗ → Zp\{0}

and the DL assumption, where ΠSIG denotes the instantiation of the signature
scheme ΣSIG by ΠCHF, ΠCHF2, ΠLPKE and ΠNIZK.

As a concrete construction for the chameleon hash function ΣCHF2, we adopt
the chameleon hash function ΠCHF,1 which is ΠCHF,n in Fig. 1 with n = 1. The
following corollary is obtained by Theorem 4, obviously.

Corollary 1. For any n ∈ N, ΠCHF,n is strongly collision-resistant under the
collision-resistance of the hash function J : {0, 1}∗ → Zp \ {0} and the DL
assumption.
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Fig. 2. Construction of LPKE Scheme ΠLPKE,l, where HCL : {0, 1}∗ → Zp is a
collision-resistant hash function.

Thus, the random trapdoor collision and strong collision-resistance of the CHF
scheme ΠCHF,1 are guaranteed by Theorem 3 and Corollary 1, respectively.

As a concrete construction for the LPKE scheme ΣLPKE, we adopt ΠLPKE,l

given in Fig. 2 which is described in the last page of this paper. The LPKE
scheme is a modification of the LPKE scheme by Camenisch et al. [9] which is
IND-LCCA secure6 under the DLIN assumption and the collision-resistance of
hash function. Faust et al. [15] modifies the scheme by Camenisch et al. to get
the LPKE scheme ΠLPKE,l which achieves a weaker security, i.e., IND-wLCCA,
but encrypts a plaintext of arbitrary length. Thus,

Theorem 5. For any l ∈ N, ΠLPKE,l is IND-wLCCA under the collision-
resistance of the hash function HCL : {0, 1}∗ → Zp and the DLIN assumption.

As a concrete construction for the non-interactive zero-knowledge proof
ΣNIZK, we adopt the Groth-Sahai proof ΠNIZK in [17] whose soundness and
zero-knowledge are guaranteed under the DLIN assumption.

By the schemes ΠCHF,n,ΠCHF2,ΠNIZK and ΠLPKE,nλ, where λ denotes the
integer in the security parameter 1λ of ΠCHF,n, our concrete signature scheme
ΠSIG is constructed. Hereafter, for i ∈ [1, n] and j ∈ [1, λ], the j-th bit of xi ∈ Zp

in ΠCHF,n is denoted by xij ∈ {0, 1}, and the prime and group in ΠLPKE,nλ are

6 IND-LCCA is stronger security notion than IND-wLCCA. For the details, refer to
[15].
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written as p̂ and Ĝ, respectively. By the signing algorithm of ΠSIG, a LPKE
ciphertext C and a NIZK proof π are generated as follows.

The ciphertext C is generated by running C ← LPKE.Enc(ek, (x1, · · · ,
xn), m̄), where LPKE.Enc is the encryption algorithm of ΠLPKE,nλ. The cipher-
text C is parsed as {cij}i∈[1,n],j∈[1,λ], and cij is parsed as (yij , zij ∈ Ĝ, cij ∈ Ĝ).
yij is parsed as (yij,1, yij,2, yij,3) ∈ Ĝ

3.
By using the proof-generation algorithm of the NIZK scheme ΠNIZK, we

generate the proof π. Actually, The proof π is a proof which proves that

∃{rij ∈ Zp̂, sij ∈ Zp̂, xij ∈ {0, 1}}i∈[1,n],j∈[1,λ] such that[
n∏

i=1

λ∏
j=1

g
2j−1·xij

i = y

] ∧
i∈[1,n],j∈[1,λ]

[[
ĝ

rij+sij

0 = yij,1

]
∧

[
ĝ

rij

1 = yij,2

]
∧

[
ĝ

sij

2 = yij,3

]

∧
[
h

rij

1 · h
sij

2 · g
xij

ij = zij

]
∧

[
(d1 · e

tij

1 )rij · (d2 · e
tij

2 )sij = cij

]
∧ [xij(1 − xij) = 0]

]
,

where y =
∏n

i=1 gxi
i ∈ G.
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Abstract. Group signatures are signatures providing signer anonymity
where signers can produce signatures on behalf of the group that they
belong to. Although such anonymity is quite attractive considering pri-
vacy issues, it is not trivial to check whether a signer has been revoked or
not. Thus, how to revoke the rights of signers is one of the major topics
in the research on group signatures. In particular, scalability, where the
signing and verification costs and the signature size are constant in terms
of the number of signers N , and other costs regarding signers are at most
logarithmic in N , is quite important. In this paper, we propose a revo-
cable group signature scheme which is currently more efficient compared
to previous all scalable schemes. Moreover, our revocable group signa-
ture scheme is secure under simple assumptions (in the random oracle
model), whereas all scalable schemes are secure under q-type assump-
tions. Finally, we implemented our scheme by employing the Barreto-
Lynn-Scott curves over a 455-bit prime field (BLS455), and the Barreto-
Naehrig curves over a 382-bit prime field (BN382), respectively, by using
the RELIC library. We showed that the running times of our signing
algorithm were approximately 21 ms (BLS455) and 17ms (BN382), and
those of our verification algorithm were approximately 31 ms (BLS455)
and 24ms (BN382), respectively.

1 Introduction

1.1 Revocable Group Signature

Group signatures [19] have been widely recognized as an extension of digital sig-
natures. In conventional signature schemes, a signer-specific public key is used
for verifying signatures whereas in a group signature scheme, a group public key
is used. Thus signers are anonymous since a verifier just verifies that a signer
belongs to the group. Although such anonymity is quite attractive considering
privacy issues, on the other hand, it makes it difficult to provide revocation func-
tion. Furthermore, how to revoke the rights of signers in group signatures is not
trivial. In the early stage, either the signing cost or the verification cost depend
on the number of revoked signers R. Camenisch and Lysyanskaya [18] proposed
a method to revoke users by using accumulators, where the signing algorithm
c© Springer Nature Switzerland AG 2018
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requires O(R) computations. Boneh and Shacham [15] proposed group signatures
with verifier-local revocation (VLR-GS). In VLR-GS [15,38,43,45,46], no signer
is involved to the revocation procedure. As a drawback, the verification cost
is O(R), and is not constant. In 2009, Nakanishi, Fujii, Hira, and Funabiki [44]
broke this barrier by proposing a revocable group signature scheme with constant
costs for signing and verifying. One drawback of their scheme is that the public
key size is O(

√
N) where N is the maximal number of signers. Later, Fan, Hsu,

and Manulis [29] proposed a revocable group signature scheme with not only
constant signing/verification costs but also constant size public key. However,
the size of the revocation list is O(N). Slamanig et al. [54] proposed linking-
based revocation, and gave an instantiation based on the Delerablée-Pointcheval
group signature scheme [24] by employing a generic compiler [53]. They intro-
duced a dedicated authority, which they call revocation authority (RA), that can
extract a revocation token from signatures by using a secret linking key. By using
a simple look-up operation (and cuckoo hashing), the constant-time revocation
check is realized. However, signatures are not publicly verifiable in the sense that
the revocation check requires the secret linking key. Recently, some VLR-type
schemes realized sub-linear/constant verification costs [26,37,51]. As a draw-
back, these schemes do not provide unlinkability, that is, they employed linkable
parts contained in signatures for efficiently executing verification procedure.

A major breakthrough was implemented by Libert, Peters, and Yung (LPY)
[41] in 2012. In the LPY scheme, a group manager periodically publishes a
revocation list that contains ciphertexts of broadcast encryption which will be
decrypted by non-revoked signers. A non-revoked signer proves the decryption
ability of a ciphertext. The LPY scheme is scalable in the sense that it provides
not only constant signing and verification costs, but also other costs regarding
signers are at most logarithmic in N . They gave two schemes based on the com-
plete subtree (CS) and the subset difference (SD) methods [48]. They further
improved the efficiency of the LPY schemes by proposing a revocable group
signature scheme with constant-size certification [40]. As followers of the LPY
works, revocable group signatures with compact revocation list size were pro-
posed [5,6,47,52].

1.2 Actual Efficiency of Revocable Group Signatures with
Scalability

Although the LPY scheme and other similar schemes are “asymptotically”
very efficient, these schemes are not sufficiently efficient in practice. One rea-
son for its inefficiency is that these schemes did not rely on random oracles,
but rather employed the Groth-Sahai proofs [33]. Of course, avoiding random
oracles and constructing schemes in the standard model are quite meaningful
from a theoretical point of view. However, in general, random oracles yield
efficient schemes, especially, in the group signature context. For example, the
signature size of the LPY scheme is approximately 100 group elements, and
even if we exclude revocation functionality, the signature size of the Groth
scheme [32] and the (non-revocable) Libert-Peters-Yung scheme [42], which are
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recognized as the most efficient group signature schemes in the standard model,
are approximately 50 group elements. On the other hand, we can construct (non-
revocable) group signature schemes whose signature size are less than 10 group
elements when random oracles are introduced, e.g., Boneh-Boyen-Shacham [14],
Furukawa-Imai [31], Delerablée-Pointcheval [24], Bichsel et al. [13], Pointcheval-
Sanders [50], Derler-Slamanig [25], and Libert-Mouhartem-Peters-Yung [39].

In terms of the running time of signing and verification, Begum et al. [11]
gave an implementation of the Nakanishi-Funabiki scheme [47], which is a revo-
cable group signature with scalability secure in the standard model, where the
running time of the signing algorithm and the verification algorithm are approx-
imately 500 ms and 900 ms, respectively. They employed the Barreto-Naehrig
(BN) curves [10] over a 254-bit prime field and the embedding degree is 12, and
utilized a library based on the “Cross-twisted χ-based Ate (Xt-Xate) pairing” [3].
On the other hand, Emura, Hayashi, and Ishida [27] proposed a group signature
scheme with time-bound keys secure in the random oracle model, where each
signing key is associated with an expiry time, and they showed that the running
time of their signing and verification algorithms were less than 4 ms and 12 ms,
respectively. They also employed the BN curves over a 254-bit prime field, and
utilized the RELIC library [4]. Of course we cannot directly compare these two
implementation results due to differences in the functionalities and the selection
of the underlying elliptic curves and parameters. However, these results some-
what indicate that group signature schemes in the random oracle model are
significantly more efficient than those in the standard model.

In actual usage, Intel Software Guard Extensions (SGX) [2] employs the Intel
Enhanced Privacy Identification (EPID) scheme [1,17], and the EPID scheme
builds on top of the Boneh-Boyen-Shacham group signature scheme [14] and the
Furukawa-Imai group signature scheme [31]. These group signature schemes are
secure in the random oracle model. Thus, improving efficiency of revocable group
signature schemes in the random oracle model seems meaningful for a practical
usage. To the best of our knowledge, the Ohara et al. revocable group signature
scheme [49] is the only scheme that provides scalability in the random oracle
model. The costs of the Ohara et al. scheme are asymptotically the same as
those of the CS-based LPY group signature scheme [41]. Moreover the Ohara et
al. scheme is significantly more efficient than the LPY scheme due to the random
oracle. For example, the signature size of the Ohara et al. scheme is 18 group
elements whereas that of the LPY scheme is 98 group elements. One drawback
of the Ohara et al. scheme is the underlying complexity assumptions, i.e., their
scheme relies on a q-type assumption. Due to the Cheon attack [20], employing
q-type assumption should be avoided as much as possible. Thus, proposing an
efficient revocable group signature scheme with scalability from simple assump-
tions is still an open problem.

1.3 Our Contribution

In this paper, we propose a revocable group signature scheme with scalability
from simple assumptions, and give its implementation results. Our scheme is
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Table 1. Comparison of revocable group signature schemes with scalability

Scheme Public Signature Certificate Revocation Signing Verification Std/ Assumption

key size sizea size list size cost cost ROMc

LPY1(CS) [41] O(1) O(1) (96) O(log N) O(R · log(N/R)) O(1) O(1) Std q-Type

LPY2(SD) [41] O(log N) O(1) (96) O(log3 N) O(R) O(log N)b O(1) Std q-Type

LPY3 [40] O(log N) O(1) (144) O(1) O(R) O(1) O(1) Std q-Type

AEHS [5,6] O(1) O(1) (98) O(Rmax) O(1) O(R)b O(1) Std q-Type

NF [47] O(T log N) O(1) (143) O(T ) O(R/T ) O(T )b O(1) Std q-Type

SN [52] O(T + log N) O(1) (299) O(1) O(R/T ) O(T )b O(1) Std q-Type

Ohara et al. [49] O(1) O(1) (18) O(log N) O(R · log(N/R)) O(1) O(1) ROM q-Type

Our Scheme O(1) O(1) (16) O(log N) O(R · log(N/R)) O(1) O(1) ROM Simple
N: The maximum number of group members.
R: The number of revoked signers.
Rmax: The maximum number of revoked signers.
T : The parameter of the accumulated/vector commitment value in [47,52].
a We denote the number of group elements contained in a group signature on (). This number contains both the
number of G elements and Zp elements.
b This complexity is only required at the first signature generation of each revocation epoch.
c Standard Model/Random Oracle Model

more efficient than previous all scalable schemes. We summarized the efficiency
of scalable schemes in Table 1. We employed the methodology proposed by Ohara
et al. [49], where the group manager publishes a revocation list containing signa-
tures of non-revoked signers, and a signer proves that a signature corresponding
to the signer is contained in the revocation list. In addition to this, we employed
the signature scheme proposed by Libert-Mouhartem-Peters-Yung (LMPY) [39]
which is secure under a simple assumption. The signature size of the LMPY
scheme is constant regardless of the number of message blocks due to the Kiltz-
Wee quasi-adaptive non-interactive zero-knowledge (QA-NIZK) arguments for
linear subspaces [36]. Libert et al. proposed a group signature scheme based
on the LMPY signature scheme. Since the scheme does not provide revocation
functionality, our scheme can also be seen as a modification of the Libert et al.
group signature scheme by adding revocation functionality without additional
complexity assumptions.

Finally, we implemented our scheme by employing the Barreto-Lynn-
Scott curves [9] over a 455-bit prime field (BLS455), and the Barreto-Naehrig
curves [10] over a 382-bit prime field (BN382), respectively, by using the RELIC
library. We showed that the running times of our signing algorithm were approx-
imately 21 ms (BLS455) and 17 ms (BN382), and those of our verification algo-
rithm were approximately 31 ms (BLS455) and 24 ms (BN382), respectively. These
implementation results indicate that our scheme is feasible in practical settings.

2 Preliminaries

2.1 Cryptographic Assumptions

In this subsection, we give the definitions of the Decisional Diffie-Hellman (DDH)
assumption, the Symmetric eXternal Diffie-Hellman (SXDH) assumption, and
the Symmetric Discrete Logarithm (SDL) assumption. Let λ ∈ N be a security
parameter. Let G, ̂G, and GT be groups with prime order p > 2λ, and e :
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G× ̂G → GT be a bilinear map. For g ∈ G and ̂h ∈ ̂G, e(g,̂h) �= 1GT
holds unless

g �= 1G and ̂h �= 1
̂G
.

Definition 1 (DDH Assumption). Let a, b
$← Z

∗
p and Z

$← G \ {gab}. We
say that the DDH assumption holds in G if for any probabilistic polynomial
time (PPT) adversary A, the advantage AdvDDH(λ) := |Pr[A(g, ga, gb, gab) →
true] − Pr[A(g, ga, gb, Z) → true]| is negligible.

Definition 2 (SXDH Assumption). We say that the SXDH assumption
holds if the DDH assumption holds in both G and ̂G.

Definition 3 (SDL Assumption [39]). Let a
$← Z

∗
p. We say that the SDL

assumption holds in (G, ̂G,GT ) if for any PPT adversary A, the advantage
AdvSDL(λ) := Pr[A(g, ĝ, ga, ĝa) → a] is negligible.

2.2 QA-NIZK Arguments for Linear Subspaces

In this subsection, we introduce the Kiltz-Wee QA-NIZK arguments for linear
subspaces [36] that prove membership in the row space of a matrix M. As in [39],
we assume that all algorithms take as input the description of common public
parameters cp = (G, ̂G,GT , p). In QA-NIZK proofs, the common reference string
(CRS) may depend on the language to be proved. In the Kiltz-Wee case, it
depends a matrix M. As in [39], for soundness, M is required to be witness-
samplable where the reduction has to know the discrete logarithms of the group
elements of M.

Bold capital letters, such as M, denote matrices, and bold lowercase letters,
such as v, denote vectors. For M ∈ G

t×n, we denote M = (Mi,j)i∈[1,t],j∈[1,n] =
(M 1, . . . ,M t)T where Mi,j ∈ G for i ∈ [1, t] and j ∈ [1, n] and M i = (Mi,1,Mi,2,
. . . , Mi,n) for i ∈ [1, t].

QA.KeyGen(cp,M): This CRS and trapdoor generation algorithm takes as input

cp and a matrix M where M = (Mi,j)i∈[1,t],j∈[1,n] ∈ G
t×n. Choose ĝz

$← ̂G

and a trapdoor tk = (χ1, . . . , χn) $← Z
n
p . Compute ĝj = ĝ

χj
z for all j ∈ [1, n].

Compute zi =
∏n

j=1 M
−χj

i,j for all i ∈ [1, t]. Output the common reference
string crs = ({zi}t

i=1, ĝz, {ĝj}n
j=1) ∈ G

t × ̂G
n+1 and the trapdoor tk ∈ Z

n
p .

Prove(crs,v, {ωi}t
i=1): The proof generation algorithm takes as input crs =

({zi}t
i=1, ĝz, {ĝj}n

j=1), a vector v, and witnesses {ωi}t
i=1 where v = M ω1

1 ·
M ω2

2 · · ·M ωt
t = (

∏t
i=1 Mωi

i,1, . . . ,
∏t

i=1 Mωi
i,n) holds. Output a proof π =

∏t
i=1 zωi

i which proves that v is a linear combination of the rows of M.
Sim(tk,v): The simulation algorithm takes as input tk = (χ1, . . . , χn) and v =

(v1, . . . , vn) ∈ G
n, and output a simulated proof π =

∏n
j=1 v

−χj

j .
Verify(crs,v, π): The verify algorithm takes as input crs = ({zi}t

i=1, ĝz, {ĝj}n
j=1),

v = (v1, . . . , vn), and π, and output 1 if (v1, . . . , vn) �= (1G, . . . , 1G) and
1GT

= e(π, ĝz)
∏n

j=1 e(vj , ĝj) hold, and 0 otherwise.
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As we can see,
∏n

j=1 e(vj , ĝj) =
∏n

j=1 e(vj , ĝ
χj
z ) = e(

∏n
j=1 v

χj

j , ĝz) hold. Since
π =

∏n
j=1 v

−χj

j , the equation above holds.

2.3 The LMPY Signature Scheme

In this subsection, we introduce a signature scheme proposed by Libert-
Mouhartem-Peters-Yung (LMPY) [39] which is unforgeable under the SXDH
assumption. The signature scheme can efficiently sign block messages in Z

�
p.

By employing the Kiltz-Wee QA-NIZK arguments, the signature size is con-
stant regardless of the number of blocks �. Moreover, the verification algorithm
requires just 5 pairings.

Sig.KeyGen(λ, �): The key generation algorithm takes as input a security param-
eter λ and the block size �. Choose bilinear groups cp = (G, ̂G,GT , p) where

p > 2λ and g
$← G and ĝ

$← ̂G. Choose ω, a
$← Zp and set h = gω and Ω = hω.

Choose v = (v1, . . . , v�,W ) $← G
�+1. For g ∈ G and the identity matrix I�+1,

we denote gI�+1 as the (� + 1) × (� + 1) matrix whose diagonal components
are g and other all elements are 1G. Let 1�+1 = (1G, . . . , 1G) ∈ G

�+1. Set a
matrix M ∈ G

(�+2)×(2�+4) as

M =
(

g 1�+1 1�+1 h
vT gI�+1 hI�+1 1T

�+1

)

Run QA.KeyGen(cp,M), and get crs = ({zi}�+2
i=1 , ĝz, {ĝj}2�+4

j=1 ) and tk ∈ Z
2�+4
p .

Output the signing key sk = ω, and the verification key vk = (cp, g, h, ĝ,v, Ω,
crs).

Sig.Sign(vk, sk,m = (m1, . . . , m�)): The signing algorithm takes as input vk =
(cp, g, h, ĝ,v, Ω, crs), sk = ω, and messages to be signed m = (m1, . . . , m�).

Choose s
$← Zp and compute σ1 = gω(vm1

1 · · · vm�

� · W )s, σ2 = gs, and σ3 =
hs. Set v = (σ1, σ

m1
2 , . . . , σm�

2 , σ2, σ
m1
3 , . . . , σm�

3 , σ3, Ω) ∈ G
2�+4, and run the

Prove algorithm to generate a proof π where v is in the row space of M. The
QA-NIZK proof π ∈ G is described as π = zω

1 (zm1
2 · · · z�

�+1 · z�+2)s. Output
the signature σ = (σ1, σ2, σ3, π) ∈ G

4.
Sig.Verify(vk, σ,m): The verification algorithm takes as input vk = (cp, g, h, ĝ,v,

Ω, crs), σ = (σ1, σ2, σ3, π), and m = (m1, . . . , m�). Output 1 if the following
holds, and 0 otherwise.

e(Ω, ĝ2�+4)−1

=e(π, ĝz)e(σ1, ĝ1)e(σ2, ĝ
m1
2 · · · ĝm�

�+1 · ĝ�+2)e(σ3, ĝ
m1
�+3 · · · ĝm�

2�+2 · ĝ2�+3)

The following theorem was given in [39].

Theorem 1 ([39]). The LMPY signature scheme is existentially unforgeable
under chosen-message attacks (EUF-CMA) if the SXDH assumption holds in
(G, ̂G,GT ).
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We remark that a signature is publicly re-randomizable, i.e., for a valid
signature-message pair σ = (σ1, σ2, σ3, π) and m = (m1, . . . , m�), and a ran-
domness s ∈ Zp, (σ1 · (vm1

1 · · · vm�

� · W )s, σ2 · gs, σ3 · hs, π · (zm1
2 · · · z�

�+1 · z�+2)s)
is also a valid signature on m.

2.4 Sigma Protocols

Sigma protocols are three-move honest-verifier zero-knowledge protocols. First
the prover takes as input a statement and a witness, and sends a commitment
com to the verifier. Next, the verifier, that also takes as input the statement,
sends a challenge chall to the prover. Finally, the prover sends a response resp to
the verifier. We require special soundness, where given two accepted transcripts
(com1, chall1, resp1) and (com2, chall2, resp2) with the condition com1 = com2

and chall1 �= chall2, there is an extractor Extract that takes as input a statement
s and two transcripts above, and outputs a witness ω that satisfies L(s, ω) =
1. Moreover, we also require special honest verifier zero knowledge (SHVZK),
where there is a simulator Sim that takes as input a statement s and a challenge
chall, and outputs a transcript (com, chall, resp) that is indistinguishable from
transcripts produced by the prover and the verifier as above. See [39] for the
formal definition.

Moreover, we require sigma protocols to have quasi unique responses. Infor-
mally, for a statement s, and first two moves of the protocol, com and chall,
no adversary can find responses resp and resp′ which are both accepted but
resp �= resp′. If the success probability is zero, then it is called unique responses,
or it is also known as strict soundness [55]. See [30] for the formal definition.
Faust et al. [30] proved that if a sigma protocol has quasi unique responses, then
the NIZK proof system derived via the Fiat-Shamir transformation is simulation-
sound. Simulation soundness guarantees that even after seeing accepting proofs
produced by the simulator, for both true and false statements, soundness holds.
In our group signature scheme, the underlying NIZK proof system is required to
be simulation sound for providing CCA anonymity where an adversary is allowed
to access the opening oracle.

2.5 Complete Subtree Method

In this section, we introduce the Complete Subtree (CS) method [48]. Let N be
the set of all signers, and R ⊂ N be the set of revoked signers. By using the CS
method, N \ R is divided into num disjoint sets such as N \ R = S1 ∪ · · · ∪ Snum,
and num = O(R · log(N/R)) where N = |N | and R = |R|.
Definition 4 (CS Algorithm). The CS algorithm takes as input a binary tree
BT and a set of revoked signers Rt where i ∈ Rt when a signer with index i is
revoked at time t, and outputs a set of nodes. The description of CS is given below.
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CS(BT,Rt) :
X, Y ← ∅;
∀i ∈ Rt

Add Path(i) to X;
∀x ∈ X

If xleft �∈ X then add xleft to Y;
If xright �∈ X then add xright to Y;

If |RLt| = 0 then add root to Y;
Return Y;

In our group signature scheme, a signer, who has the identity ID, and whose
path is {u0, u1, . . . , u�}, has LMPY signatures on messages (ID, uj) as certificates
for all uj ∈ {u0, u1, . . . , u�}. The revocation list at time t also contains LMPY
signatures on messages (t, u′

j) for all u′
j ∈ {u′

0, u
′
1, . . . , u

′
num} which is determined

by the CS method. If the signer is not revoked at t, then there exists a node
u such that u ∈ {u0, u1, . . . , u�} ∩ {u′

0, u
′
1, . . . , u

′
num}. The signer proves that the

knowledge of two LMPY signatures on (ID, u) and (t, u′), and u = u′. Here, the
current time t is not required to be hidden, and is not a witness.

3 Revocable Group Signatures

In this section, we give the syntax and correctness definitions of revocable group
signature. We use the LPY definitions [40,41] which are modified from the
Kiayias-Yung (KY) model [34] to match the revocation functionality.

A revocable group signature scheme R-GS consists of 6 algorithms
(Setup, Join,Revoke,Sign,Verify,Open) as follows:

Definition 5 (Revocable Group Signature).

Setup(1λ, N): The setup algorithm takes as inputs a security parameter λ ∈
N and a maximal number of members N ∈ N, and outputs a group public
key gpk, the group manager (GM) private key for revocation SGM, and the
opening authority (OA) private key for opening SOA. Moreover, the algorithm
initializes a public state St comprising a set data structure Stusers = ∅ and a
string data structure Sttrans = ε.

JoinGM,Ui : The interactive protocol for joining between GM and a signer Ui

(whose identity is IDi) involves two interactive Turing machines Juser and
JGM which execution is denoted as [Juser(gpk), JGM(St, gpk,SGM)]. Ui obtains
a membership secret seci and a membership certificate certi. We assume that
IDi is contained in seci. If the protocol is successfully done, GM updates
Stusers ← Stusers ∪ {IDi} and Sttrans ← Sttrans||〈i, transcripti〉.

Revoke(gpk,SGM, t,Rt ⊂ Stusers): The revocation algorithm takes as input gpk,
SGM, a revocation epoch t, and a set of revoked signers Rt ⊂ Stusers, and
outputs an updated revocation list RLt which contains Rt.
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Sign(gpk, t, RLt, cert, sec,M): The signing algorithm takes as input gpk, a time
t, RLt, cert, sec, and a message M to be signed, and outputs ⊥ if ID ∈ Rt,
and a group signature Σ, otherwise.

Verify(gpk, t, RLt, Σ,M): The verification algorithm takes as input gpk, t, RLt,
Σ, and M , and outputs 1 or 0 which mean valid or invalid, respectively.

Open(gpk,SOA, t, Σ,M, St): The opening algorithm takes as input gpk, SOA, t,
Σ, M , and St := (Stusers, Sttrans), and outputs ⊥ if the opening is failure, and
i such that IDi ∈ Stusers ∪ {⊥}, otherwise.

Next, we define correctness. Let St be a public state, and St is said to be valid
if it can be reached from St = (∅, ε) by a Turing machine having oracle access
to JGM. A state St′ is said to be extended another state St if it can be reached
from St. As in [34,40,41] we use the notation certi �gpk seci to express that
there exist coin tosses � for JGM and Juser such that, for some valid state St′, the
execution of [Juser(gpk), JGM(St, gpk,SGM)](�) provides Juser with 〈i, certi, seci〉.
Definition 6 (Correctness). We say that a revocable group signature scheme
R-GS is correct if:

1. In a valid state St = (Stusers, Sttrans), the condition |Stusers| = |Sttrans| holds,
and no two entries of Sttrans can contain certificates with the same tag.

2. If [Juser(gpk), JGM(St, gpk,SGM)] is honestly run by both parties and
〈i, certi, seci〉 is obtained by Juser, then certi �gpk seci holds.

3. For each t and any 〈i, certi, seci〉 satisfying condition 2, Verify(gpk, t, RLt,Sign
(gpk, t, RLt, cert, sec,M),M) = 1 holds if i �∈ Rt.

4. For any 〈i, certi, seci〉 resulting from the interaction [Juser(·, ·), JGM(·, St, ·, ·)]
for some valid state St, any t s.t. i �∈ Rt, Open(gpk,SOA, t, Σ,M, St) = i
holds where Σ ← Sign(gpk, t, RLt, cert, sec,M).

Three security definitions, misidentification, non-frameability, and anonymity
[41] are given in the full version of this paper.

4 Proposed Revocable Group Signature Scheme

In this section, we give our proposed revocable group signature scheme. In our
group signature scheme, two LMPY signature schemes with � = 2 are setup.
Let sk = ω and vk = (cp, g, h, ĝ,v, Ω, crs), where crs = ({zi}4i=1, ĝz, {ĝj}8j=1),
are for the first scheme, and sk′ = ω′ and vk′ = (cp, g′, h′, ĝ′,v′, Ω′, crs′), where
crs′ = ({z′

i}4i=1, ĝ
′
z, {ĝ′

j}8j=1), are for the second scheme. The first scheme signs
m = (ID, u) where ID is the identity of a signer, and u is a node of the binary
tree. Let (σ1, σ2, σ3, π) be its signature. The second scheme signs m′ = (t, u)
where t is the current time and u is a node of the binary tree. Let (σ′

1, σ
′
2, σ

′
3, π

′)
be its signature.

In the signing algorithm, first, the signer re-randomizes (σ1, σ2, σ3, π) and
(σ′

1, σ
′
2, σ

′
3, π

′), and let σ̃ = (σ̃1, σ̃2, σ̃3, π̃) and σ̃′ = (σ̃′
1, σ̃

′
2, σ̃

′
3, π̃

′) be the signa-
tures after re-randomization. Then, (σ̃2, σ̃3) and (σ̃′

2, σ̃
′
3) are independent from
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the signed messages and other signatures. Thus, these can be directly included in
a group signature. Informally, for the NP language LLMPY induced by the relation
RLMPY(vk, vk′, (σ̃,m), (σ̃′,m′)) = 1 iff Sig.Verify(vk, σ̃,m) = 1, Sig.Verify(vk′,
σ̃′,m′) = 1, and m2 = m′

2(= u), the verifier accepts if LLMPY(s, (σ̃,m),
(σ̃′,m′)) = 1 where the statement s here is the verification equation of the LMPY
scheme, and ((σ̃1, π̃), (ID, u)) and ((σ̃′

1, π̃
′), u) are witnesses. We convert the sigma

protocol via the Fiat-Shamir transformation. To hide the other part, the signer
encrypts (σ̃1, π̃) and (σ̃′

1, π̃
′) via the Cramer-Shoup encryption scheme [23] by

using the public key of the group manager. We remark that, in the original
Cramer-Shoup scheme, designated verifier NIZK proofs are employed for the
validity check of ciphertexts. That is, the validity of ciphertexts can be checked
by the decryptor who has the decryption key. Since group signatures are required
to be publicly verifiable, as in [39,49] we employ publicly verifiable NIZK proofs
constructed from sigma protocols via the Fiat-Shamir transformation for the
validity check. Moreover, for efficiency purposes, we employ the Cramer-Shoup
encryption scheme with a randomness-reuse variant [12], and a randomness θ
is re-used for encrypting plural messages. In addition to these LMPY signa-
tures, the signer also encrypts VID = vID

1 and Vu = vu
2 . The former is required

to search the corresponding certificate certi = (i,Path(i), VID, {(σj,1, σj,2, σj,3,

πj , V
(j)
u )}uj∈Path(i)) from joining transcripts in the open algorithm. The latter is

also required to search j such that Vu = V
(j)
u = v

uj

2 for obtaining uj ∈ Path(i)
in the open algorithm. Finally, the signer proves the knowledge of ID, u, and θ,
and also proves that two LMPY signatures sign on the same node u.

We give our revocable group signature scheme as follows.

Setup(1λ, N): Choose bilinear groups cp = (G, ̂G,GT , p) where p > 2λ and

g
$← G and ĝ

$← ̂G. Choose g′ $← G and ĝ′ $← ̂G. Choose a hash function
H : {0, 1}∗ → Zp which is modeled as a random oracle.
1. Generate Two Key Pairs of the LMPY Scheme: Choose v =

(v1, v2,W ) $← G
3 and v′ = (v′

1, v
′
2,W

′) $← G
3. Choose a, a′ $← Zp, and

compute h = ga and h′ = g′a′
. Set � = 2 in the LMPY signature scheme,

and set matrices M and M′ as follows.

M =

⎛

⎜

⎜

⎝

g 1G 1G 1G 1G 1G 1G h
v1 g 1G 1G h 1G 1G 1G
v2 1G g 1G 1G h 1G 1G
W 1G 1G g 1G 1G h 1G

⎞

⎟

⎟

⎠

, M′ =

⎛

⎜

⎜

⎝

g′ 1G 1G 1G 1G 1G 1G h′

v′
1 g′ 1G 1G h′ 1G 1G 1G

v′
2 1G g′ 1G 1G h′ 1G 1G

W ′ 1G 1G g′ 1G 1G h′ 1G

⎞

⎟

⎟

⎠

Run QA.KeyGen(cp,M) and QA.KeyGen(cp,M′) of the QA-NIZK argu-
ment, and get crs = ({zi}4i=1, ĝz, {ĝj}8j=1) and crs′ = ({z′

i}4i=1, ĝ
′
z,

{ĝ′
j}8j=1). Set sk = ω, vk = (cp, g, h, ĝ,v, Ω = hω, crs), sk′ = ω′, and

vk′ = (cp, g′, h′, ĝ′,v′, Ω′ = h′ω′
, crs′).



452 K. Emura and T. Hayashi

2. Generate a Key Pair of the Cramer-Shoup Scheme (with a Randomness-

reuse Variant): Choose xz, yz, xσ, yσ, xID, yID, xu, yu, x′
z, y

′
z, x

′
σ, y′

σ
$← Zp

and compute Xz = gxzhyz , Xσ = gxσhyσ , XID = gxIDhyID , Xu =
gxuhyu , X ′

z = gx′
zhy′

z , and X ′
σ = gx′

σhy′
σ .

3. Output gpk = (vk, vk′,Xz,Xσ,XID,Xu,X ′
z,X

′
σ), SGM = (sk, sk′), and

SOA = (xz, yz, xσ, yσ, xID, yID, xu, yu, x′
z, y

′
z, x

′
σ, y′

σ).
JoinGM,Ui : A signer Ui and GM run the following interactive protocol.

1. Ui chooses IDi
$← Zp, computes VID = vIDi

1 , ZID = zIDi
2 , ̂G2,ID = ĝIDi

2 , and
̂G5,ID = ĝIDi

5 , and sends (VID, ZID, ̂G2,ID, ̂G5,ID) to GM.
2. If VID has been appeared in transcripts of St, then GM aborts. Otherwise,

GM checks the following equations hold.

e(VID, ĝ2) = e(v1, ̂G2,ID), e(ZID, ĝ2) = e(z2, ̂G2,ID)

e(VID, ĝ5) = e(v1, ̂G5,ID),

If all tests pass, GM samples a fresh index i ∈ Zp and a fresh leaf node
(then Path(i) is fixed), and sends i to Ui. Otherwise, GM aborts.

3. Prove the Knowledge of IDi: Ui runs an interactive zero-knowledge proof
of knowledge of IDi = logv1

(VID) in interaction with GM. We employ the
Cramer-Damg̊ard-MacKenzie transformation [22] which converts a sigma
protocol into a perfect zero-knowledge proof of knowledge. Let πK(ID) be
the interaction transcript.

4. Generate LMPY Signatures as a Certificate: For all uj ∈ Path(i), GM

chooses sj
$← Zp and computes a LMPY signature on messages (IDi, uj)

by using sk = ω such that compute V
(j)
u = v

uj

2 and σj,1 = gω(VID · V
(j)
u ·

W )sj , σj,2 = gsj , σj,3 = hsj , and πj = zω
1 (ZID · z

uj

3 · z4)sj . Finally, GM
sends certi = (i,Path(i), VID, {(σj,1, σj,2, σj,3, πj , V

(j)
u )}uj∈Path(i)) to Ui.

5. Finally, GM stores transcripti = ((ZID, ̂G2,ID, ̂G5,ID), πK(ID), certi) and Ui

stores (certi, seci) where seci = IDi.
Revoke(gpk,SGM, t,Rt ⊂ Stusers): Run Y ← CS(BT,Rt). For all uj ∈ Y , GM

chooses sj
$← Zp and computes a LMPY signature on messages (t, uj) by using

sk′ = ω′ such that σ′
j,1 = g′ω′

(v′
1
t · v′

2
uj · W ′)sj , σ′

j,2 = g′sj , σ′
j,3 = h′sj , and

π′
j = z′

1
ω′

(z′
2
t · z′

3
uj · z′

4)
sj . Output RLt = (t, Y, {(σ′

j,1, σ
′
j,2, σ

′
j,3, π

′
j , uj)}uj∈Y ).

Sign(gpk, t, RLt, certi, seci,M): Let u be a node where u ∈ Path(i) ∩ Y . If u
does not exist, then output ⊥. Let (σ1, σ2, σ3, π) be a LMPY signature on
(IDi, u) contained in certi, and let (σ′

1, σ
′
2, σ

′
3, π

′) be a LMPY signature on

(t, u) contained in RLt. Choose s, s′ $← Zp and re-randomize signatures as
follows.

σ̃1 = σ1 · (vIDi
1 · vu

2 · W )s, σ̃2 = σ2 · gs, σ̃3 = σ3 · hs, π̃ = π · (zIDi
2 · zu

3 · z4)s

σ̃′
1 = σ′

1 · (v′
1
t · v′

2
u · W ′)s′

, σ̃′
2 = σ′

2 · g′s′
, σ̃′

3 = σ′
3 · h′s′

, π̃′ = π′ · (z′
2
t · z′

3
u · z′

4)
s′

Choose θ
$← Zp and compute a ciphertext of the Cramer-Shoup encryption

CCS = (C1, C2, Cz, Cσ, CID, Cu, C ′
z, C

′
σ) such that C1 = gθ, C2 = hθ, Cz =
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π̃ · Xθ
z , Cσ = σ̃1 · Xθ

σ, CID = vIDi
1 · Xθ

ID, Cu = vu
2 · Xθ

u, C ′
z = π̃′ · X ′

z
θ, and

C ′
σ = σ̃′

1 ·X ′
σ

θ. Here, the randomness θ is re-used. Then, prove the knowledge

of (IDi, θ, u). Namely, choose rID, rθ, ru
$← Zp, and compute R1 = grθ , R2 =

hrθ , R3 = vrID
1 · Xrθ

ID , R4 = v2
ru · Xu

rθ , and R5 and R6 such that

R5 =
(

e(Xz, ĝz)e(Xσ, ĝ1)
)rθ

(

e(σ̃2, ĝ2)e(σ̃3, ĝ5)
)−rID

(

e(σ̃2, ĝ3)e(σ̃3, ĝ6)
)−ru

R6 =
(

e(X ′
z, ĝ

′
z)e(X

′
σ, ĝ′

1)
)rθ

(

e(σ̃′
2, ĝ

′
3)e(σ̃

′
3, ĝ

′
6)

)−ru

Compute c ← H(gpk, CCS, σ̃2, σ̃3, σ̃
′
2, σ̃

′
3, R1, . . . , R6,M), sID = rID + c · IDi,

sθ = rθ + c · θ, and su = ru + c · u.1

Output a group signature Σ = (CCS, σ̃2, σ̃3, σ̃
′
2, σ̃

′
3, c, sID, sθ, su) ∈ G

12 × Z
4
p.

Verify(gpk, t, RLt, Σ,M): Compute R̄1 = gsθ · C−c
1 , R̄2 = hsθ · C−c

2 , R̄3 = vsID
1 ·

Xsθ

ID · C−c
ID, R̄4 = v2

su · Xu
sθ · C−c

u , and R̄5 and R̄6 such that

R̄5 =
(

e(Xz, ĝz)e(Xσ, ĝ1)
)sθ

(

e(σ̃2, ĝ2)e(σ̃3, ĝ5)
)−sID

(

e(σ̃2, ĝ3)e(σ̃3, ĝ6)
)−su

× (

e(Cz, ĝz)e(Cσ, ĝ1)e(σ̃2, ĝ4)e(σ̃3, ĝ7)e(Ω, ĝ8)
)−c

R̄6 =
(

e(X ′
z, ĝ

′
z)e(X

′
σ, ĝ′

1)
)sθ

(

e(σ̃′
2, ĝ

′
3)e(σ̃

′
3, ĝ

′
6)

)−su

× (

e(C ′
z, ĝ

′
z)e(C

′
σ, ĝ′

1)e(σ̃
′
2, ĝ

′ t
2 · ĝ′

4)e(σ̃
′
3, ĝ

′ t
5 · ĝ′

7)e(Ω
′, ĝ′

8)
)−c

Output 1 if c = H(gpk, CCS, σ̃2, σ̃3, σ̃
′
2, σ̃

′
3, R̄1, . . . , R̄6,M) and 0 otherwise.

Open(gpk,SOA, t, Σ,M, St):
1. If Verify(gpk, t, RLt, Σ,M) = 0, then output ⊥.
2. Otherwise, decrypt (C1, C2, Cz, Cσ, CID, Cu, C ′

z, C
′
σ) by using (xz, yz, xσ,

yσ, xID, yID, xu, yu, x′
z, y

′
z, x

′
σ, y′

σ) such that σ1 = Cσ · C−xσ
1 · C−yσ

2 , π =
Cz · C−xz

1 · C−yz

2 , VID = CID · C−xID
1 · C−yID

2 , Vu = Cu · C−xu
1 · C−yu

2 ,
σ′
1 = C ′

σ · C
−x′

σ
1 · C

−y′
σ

2 , and π′ = C ′
z · C

−x′
z

1 · C
−y′

z
2 .

3. Search VID from in the database of joining transcripts and get
( ̂G2,ID, ̂G5,ID). If there is no such entry, then output ⊥.

4. Let VID be contained in certi where certi = (i,Path(i), VID, {(σj,1, σj,2,

σj,3, πj , V
(j)
u )}uj∈Path(i)). Search j such that Vu = V

(j)
u and obtain uj ∈

Path(i). If there is no such j, then output ⊥.
5. Check whether (σ1, σ̃2, σ̃3, π) and (σ′

1, σ̃
′
2, σ̃

′
3, π

′) are valid LMPY signa-
tures as follows.

e(Ω, ĝ8)−1 = e(π, ĝz)e(σ1, ĝ1)e(σ̃2, ̂G2,ID · ĝ
uj

3 · ĝ4)e(σ̃3, ̂G5,ID · ĝ
uj

6 · ĝ7)

e(Ω′, ĝ′
8)

−1 = e(π′, ĝ′
z)e(σ

′
1, ĝ

′
1)e(σ̃

′
2, ĝ

′ t
2 · ĝ

′ uj

3 · ĝ′
4)e(σ̃

′
3, ĝ

′ t
5 · ĝ

′ uj

6 · ĝ′
7)

1 We can easily see that the underlying sigma protocol has unique responses. Let all
values, except resp = (sID, sθ, su), be fixed. Then, assume that an accepted response

(s′
ID, s

′
θ, s

′
u) �= (sID, sθ, su) exists. Then, from gsθ ·C−c

1 = gs′
θ ·C−c

1 , sθ = s′
θ holds. From

vsID
1 ·Xsθ

ID ·C−c
ID = v

s′
ID

1 ·Xs′
θ

ID ·C−c
ID and sθ = s′

θ, sID = s′
ID holds. From v2

su ·Xu
sθ ·C−c

u =

v2
s′

u · Xu
s′

θ · C−c
u and sθ = s′

θ, su = s′
u holds. Thus, (s′

ID, s
′
θ, s

′
u) = (sID, sθ, su) holds

and this shows that the sigma protocol has unique responses, and the NIZK proof
system converted by the Fiat-Shamir transformation is simulation sound.
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If the above equations hold, then output i and ⊥ otherwise.

Security Analysis. Intuitively, security against misidentification attacks hold
as follows. Due to revocation functionality the winning condition of the adversary
is changed from i∗ �∈ Ua to i∗ �∈ Ua \ Rt∗ where i∗ is the opening result of the
group signature output by the adversary at time t∗, Ua is the set of signers
who joined via Qa-join queries, and Rt∗ is the set of revoked signers at time t∗.
Remark that i may be ⊥. We divide the condition i∗ �∈ Ua \ Rt∗ to (1) i∗ �∈ Ua

and (2) i∗ ∈ Rt∗ . The first case is the same as that of the proof given by Libert
et al. [39], i.e., the adversary produces a valid group signature whose opening
result is in outside of the set of adversarially-controlled signers. This case is
reduced to the unforgeability of the LMPY signature scheme on some (ID, u)
where ID was not chosen in interactions between the adversary and the Qa-join

oracle. The second case is that the adversary can produce a valid group signature
whose opening result is in the set of revoked signers. This case is also reduced
to the unforgeability of the LMPY signature scheme on some (t∗, u) where u is
a node and the signature is not contained in the revocation list RLt∗ . Since the
LMPY signature is unforgeable under the SXDH assumption, Theorem2 holds.
For security against framing attacks, in the join protocol, a signer chooses ID and
it is unknown to the group manager. Thus, from a forged signature output by the
adversary of framing attacks, we can construct an algorithm that extracts such
an unknown identity and uses it to solve the SDL problem. Moreover, due to
the soundness of the QA-NIZK argument and the CCA security of the Cramer-
Shoup encryption scheme, our scheme is anonymous. We give the security proofs
of following theorems in the full version of this paper.

Theorem 2. The proposed group signature scheme is secure against misiden-
tification attacks if the SXDH assumption holds in (G, ̂G,GT ) in the random
oracle model.

Theorem 3. The proposed group signature scheme is secure against framing
attacks under the SDL assumption in the random oracle model.

Theorem 4. The proposed group signature scheme is anonymous in the random
oracle model if the SXDH assumption holds in (G, ̂G,GT ).

5 Implementation

In this section, we give our implementation results of the proposed scheme. We
implemented our scheme by employing the Barreto-Lynn-Scott (BLS) curves [9]
over a 455-bit prime field (BLS455), which has around 128-bit security due
to Barbulescu-Duquesne’s security estimation [7,8]. We also implemented by
employing the Barreto-Naehrig (BN) curves [10] over a 382-bit prime field
(BN382). Although BN382 cannot ensure 128-bit security from the security esti-
mation, we also give the results of BN382 because of its small size of signature,
actually we will show that the signature size is smaller than that of Ohara et al.



A Revocable Group Signature Scheme with Scalability 455

scheme. Remark that, since our proposed scheme is based on the SXDH prob-
lem, we need to employ elliptic curves which have type 3 pairings, such as BN
and BLS curves. Our implementation environment was as follows: CPU: Core
i7-7700K(4.20 GHz), and gcc 6.3.0. We employed the RELIC library [4].

Table 2 summarizes benchmarks of elliptic curve and pairing operations on
the BLS455 and BN382 in our environment. Here, Mul(G1,Type), Mul(G2,Type),
and Exp(GT ,Type) are scalar multiplication in G1 and G2, and exponentiation in
GT , respectively. If a base point is previously known and fixed, then Type is set
as K, and U otherwise. We note that we always use Type U for exponentiations
in GT since the RELIC library does not support Type K in GT .

Table 2. Benchmarks of group operations

Operation Time (µsec) BLS455 / BN382

Mul(G1,U) 248.729/209.145

Mul(G1,K) 131.631/109.539

Mul(G2,K) 326.377/264.513

Exp(GT ,U) 743.482/632.369

Miller loop 669.451/577.744

Pairing final exp. 779.022/418.154

Total 1448.473/995.898

Table 3 shows that the running times of our scheme. Here, we set N = 8192,
and assumed that 10% of users are revoked (R = 819). In the Sign, Verify,
and Open algorithms, since some values are fixed and unnecessary to recompute
during time t, these values are firstly precomputed then used at Sign/Verify/Open
in our implementation. In the Table 3, “Precompute” rows show timings of the
precomputation phase, and “Online” rows show the actual Sign/Verify/Open
timings after the precomputation. Remark that the Open algorithm calls the
Verify algorithm, and thus the running times of the Open algorithm contains
those of the Verify algorithm.

Next, we evaluated the signature size in Table 4. In our scheme, a signature
contains 16 group elements (12 elements in G and 4 elements in Zp) whereas
in the Ohara et al. scheme, a signature contains 18 group elements (5 elements
in G and 13 elements in Zp). When the BLS455 is employed, the sizes of the
scalar value in Zp, an element in G, an element in ̂G, and an element in GT

were 39 bytes, 58 bytes, 115 bytes, and 456 bytes, respectively. Then, the actual
signature size of our scheme is slightly larger than that of the Ohara et al. scheme,
our signature size is 852 bytes whereas that of the Ohara et al. scheme is 797
bytes. This is because, the signature of our scheme contains many elements in G

compared to that of Ohara et al. scheme, and the size of element in G is slightly
but significantly larger than that of a value in Zp on BLS455. On the other hand,
when the BN382 is employed, the size of a value in Zp is almost the same as
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Table 3. Implementation Results

Algorithm Time (msec)

BLS455/BN382

Setup 21.217/18.011

Join GM 39.212/32.185

User 6.701/5.611

Total 45.913/37.796

Sign Precompute 10.660/8.540

Online 10.667/8.443

Verify Precompute 15.195/11.745

Online 15.380/12.532

Revoke 16.508/13.755

Open Precompute 15.182/11.734

Online 28.732/23.403

that of an element in G, indeed, the sizes of a scalar value in Zp, an element
in G, an element in ̂G, and an element in GT are 48 bytes, 49 bytes, 97 bytes,
and 384 bytes, respectively. In this case, our signature size is 780 bytes whereas
that of the Ohara et al. scheme is 869 bytes. Remark that, as mentioned in the
beginning of this section, the BN382 seems to have less than 128-bit security.
Therefore, we can say that, if such a slightly lower-level security is accepted, our
signature size is smaller than that of the Ohara et al. scheme.

Table 4. Signature size

Scheme G Zp Signature Size (Bytes)

Ohara et al. [49] 5 13 797 (BLS455)/869 (BN382)

Our scheme 12 4 852 (BLS455)/780 (BN382)

6 Conclusion

In this paper, we proposed a revocable group signature scheme with scalability
secure under simple assumptions in the random oracle model. We implemented
our scheme, and showed that our scheme is feasible in practice. In addition to
further reduce the signature size, we can consider the following as future works.
Bootle et al. [16] considered full dynamicity where signers can join and leave a
group at any time, and mentioned that the LPY model is not fully dynamic.
Moreover, Emura et al. [28] considered hiding the number of revoked signers
since if the number is revealed then one may guess the reason behind such
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circumstances, and it may lead to harmful rumors. Kiayias and Zhou [35] and
Chow et al. [21] proposed hidden identity-based signatures where the opening
just requires the secret key of the OA, and does not require any other secret
members list. Thus, the membership list can be hidden from the OA. Considering
these improvements is left as an important open problem in this paper.
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Abstract. In the last decade, the use of fast flux technique has become
established as a common practice to organise botnets in Fast Flux Ser-
vice Networks (FFSNs), which are platforms able to sustain illegal online
services with very high availability. In this paper, we report on an effec-
tive fast flux detection algorithm based on the passive analysis of the
Domain Name System (DNS) traffic of a corporate network. The pro-
posed method is based on the near-real-time identification of different
metrics that measure a wide range of fast flux key features; the metrics
are combined via a simple but effective mathematical and data min-
ing approach. The proposed solution has been evaluated in a one-month
experiment over an enterprise network, with the injection of pcaps asso-
ciated with different malware campaigns, that leverage FFSNs and cover
a wide variety of attack scenarios. An in-depth analysis of a list of fast
flux domains confirmed the reliability of the metrics used in the proposed
algorithm and allowed for the identification of many IPs that turned out
to be part of two notorious FFSNs, namely Dark Cloud and SandiFlux,
to the description of which we therefore contribute. All the fast flux
domains were detected with a very low false positive rate; a compari-
son of performance indicators with previous works show a remarkable
improvement.
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1 Introduction

During the last few years, the number of cyberattacks with relevant financial
impact and media coverage has been constantly growing. As a result, many
companies and organizations have been reinforcing investment to protect their
networks, with a resultant increase in the research on this topic [1].

Over the last two decades, botnets have represented one of the most promi-
nent sources of threats on the internet: they are networks of compromised com-
puters (popularly referred to as zombies or bots), which are controlled by a
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remote attacker (bot herder). Botnets provide the bot herder with massive
resources (bandwidth, storage, processing power), allowing for the implemen-
tation of a wide range of malicious and illegal activities, like spam, distributed
denial-of-service attacks, spreading of malware (such as ransomware, exploit kits,
banking trojans, etc.) [16,18–20,22].

A common practice for bot herders is to organise their bots in Fast Flux Ser-
vice Networks (FFSNs): some bots, chosen from a pool of controlled machines,
are used as front-end proxies that relay data between a (possibly unaware) user
and a protected hidden server. The technique behind these structures is the
fast flux, i.e., the rapid and repeated changing of an internet host and/or name
server resource record in a Domain Name System (DNS) zone, resulting in rapid
changes of the IP addresses to which the domain resolves. FFSNs make the
tracing and the recovery of all the infected components extremely difficult, thus
allowing for a very high availability for illegal online services related to phish-
ing, dumps stores, and distribution of ransomware, info stealers, and click fraud
[21,26,28,32,33,35].

FFSNs have been known to cybersecurity experts for more than one decade
[22,32], but in the last few years it has been obtaining a spotlight [17,18,20,24,
31,34]. The renewed interest is related to the studies of large botnets (e.g., Dark
Cloud, also known as Zbot network, and the most recent SandiFlux) which make
massive usage of fast flux [2,21,25]. The standard approach to FFSNs detection is
via the so-called active DNS analysis, i.e., by actively querying some domains and
by collecting and analysing the answers: this strategy has been widely explored
and allows for extensive analyses of botnets [17,22–29].

Instead, the algorithm described in the present work relies on passive analy-
sis of the DNS traffic of a single network: it detects the fast flux domains with-
out interaction with the network traffic, thus making the algorithm completely
transparent inside and outside the monitored network; in particular, it cannot
be uncovered by the attackers, who often control the authoritative name servers
responsible for responding to DNS queries about their fast flux domains [30]. The
proposed detection approach has been evaluated in a 30-day-long experimental
session over the network described in Sect. 5. The performance is much higher
compared to a state-of-the-art analogous method [33]. Moreover, the analysis
was performed near-real-time: the average execution time of the algorithm was
25 s, while the average time between two subsequent runs of the algorithm was
3 min (see Sect. 3 for more details), meaning that the average detection time for
fast flux domains was less than 2 min.

As an additional test of the proposed approach, we examined the IPs —
collected via active DNS analysis — associated with a list of fast flux domains
gathered from [3–6]. This investigation confirmed the reliability of the metrics
used in the fast flux detection method proposed herein and allowed for the
identification of more than 10000 IPs, some of which are likely associated with
compromised hosts, which turned out to be part of two notorious botnets, namely
Dark Cloud and SandiFlux, to the description of which we therefore contribute.
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The paper is structured as follows. In Sect. 2, we discuss the most relevant
features of FFSNs, with an outline of related works. In Sect. 3, we briefly describe
aramis, the monitoring platform that contains the fast flux detection method
which is the focus of this paper and which is described thoroughly in Sect. 4.
Section 5 comprises a detailed discussion of the experimental results of the test
of the proposed algorithm, while Sect. 6 contains further investigations on the
FFSNs underlying some fast flux domains. Finally, we discuss possible future
developments in Sect. 7.

2 Background and Related Work

One of the first works providing an overview of the fast flux attacks was the
Honeynet project [32]. In order to explain hidden operations executed by botnets,
authors gave examples of both single and double fast flux mechanisms: while the
first rapidly changes the A records of domains, the latter frequently changes
both the A records and the NS records of a domain. The interested reader can
find a review and a classification of fast flux attacks in [35].

Content Delivery Network (CDN) and Round-Robin DNS (RRDNS) are
legitimate techniques which are used by large websites to distribute the load
of incoming requests to several servers. The response to a DNS query is evalu-
ated by an algorithm which chooses a pool of IPs from a large list of available
servers whose number can be of the order of thousands (see Sect. 6 for some
examples). As a result, the behaviour in terms of DNS traffic is very similar to
the one of a FFSN, and indeed CDNs and RRDNSs represent the typical false
positives in fast flux detection algorithms [22,26,33].

A large number of approaches have been proposed to detect FFSNs and
to distinguish them from legitimate CDNs and RRDNSs. Most of them rely on
active DNS analysis, which allows for the collection of a large number of IPs asso-
ciated with a domain, thus simplifying the FFSNs detection, but they require
the resolutions of domains that may be associated with malicious activities
[20,22,24,26,28]. These methods, despite being appropriate for a deep analysis of
FFSNs, have relevant drawbacks in implementations oriented to the monitoring
of corporate networks [30,33].

Some FFSN detection methods based on passive DNS analysis have been
proposed. Some of them analyse the DNS traffic of a whole Internet Service
Provider (ISP), thus taking in input the DNS traffic generated by many differ-
ent networks. Perdisci et al. [30], in particular, performed a large-scale passive
analysis of DNS traffic. They extract some relevant features from the DNS traffic
and classified the domains via a C4.5 decision tree classifier. Berger et al. [18]
and Stevanovic et al. [34] proposed two other approaches to analyse the DNS
traffic of an ISP. Both methods are based on a tool called DNSMap and classify
the bipartite graphs formed by the collected fully qualified domain names and
the associated IPs. The first method searches for generic malicious usage of DNS,
while the latter focuses on FFSNs.

Soltanaghaei and Kharrazi [33], finally, proposed a method for passive DNS
analysis of a network which requires a history for each domain to be evaluated
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and achieved 94.44% detection rate and 0.001% false positive rate in their best
experiment. Our algorithm employs a similar approach, but, with a more careful
choice of the metrics achieves better results, while performing a near-real-time
analysis (see Sects. 4 and 5 for details).

3 aramis

The proposed fast flux detection technique is included in a commercially avail-
able network security monitoring platform called aramis (Aizoon Research for
Advanced Malware Identification System) [7,19]. This software automatically
identifies different types of malware and attacks in near-real-time, it is provided
with dedicated hardware1, and its structure can be outlined in four phases:

1. Collection: sensors located in different nodes of the network gather data,
preprocess them in real-time and send the results to a NoSQL database.

2. Enrichment: data are enriched in the NoSQL database using the informa-
tion obtained from the aramis Cloud Service, which collects intelligence from
various open-source intelligence sources and from internally managed sources.

3. Analysis: stored data are processed by means of two types of analysis: (i)
advanced cybersecurity analytics which highlight specific patterns of attacks,
among which Domain Generation Algorithms (DGAs) [19] and fast flux, and
(ii) a machine learning engine which spots deviations from the usual behaviour
of each node of the network.

4. Visualization: results are presented in dashboards to highlight anomalies.

The cycle of the four phases restarts after a time Δt which slightly depends
on the traffic flow analysed and amounts to 182± 36 s on the network described
in Sect. 5. A time Δt of this magnitude is the best trade-off between the near-
real-time requirement and the need of a large amount of data in order to have
statistically significant results.

4 Detection Method

The aim of the proposed detection method is the near-real-time identification
of malicious fast flux via the passive monitoring of the DNS traffic of a sin-
gle network. To this purpose, the method is composed of three steps of analysis.
(i) Filtering: queries which are known to be non-malicious (e.g., popular domains,
known CDNs, local domains, etc.) are removed. (ii) Metrics identification: some
key indicators are calculated over the queries remaining after filters. (iii) Identi-
fication: the metrics are used to identify malicious fast flux among the queries.

The three steps have been constructed by combining information on the
FFSNs — acquired from the literature — with a simple but effective mathemat-
ical and data mining approach. The parameters of the model have been estimated
over a validation set formed by 30-days of DNS traffic captured from the net-
work described in Table 1, and by 12 pcaps associated with different malware
campaigns that leverage FFSNs, collected from the public repository [8].
1 E5-2690 2.9 GHz × 2 (2 sockets × 16 cores) 16 x 8GB RAM, 1.1TB HDD.
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Table 1. Validation-network description

30-days total One-hour average

N. of machines 261 -

N. of connections 80 M 111 k

N. of resolved A-type DNS queries 12 M 17 k

N. of unique resolved A-type DNS queries 381 k 527

4.1 Filters

The algorithm receives resolved DNS requests of type A (which return 32-bits
IPv4 addresses, in accordance with [9]) collected near-real-time from the mon-
itored network. The first step consists in the application of the filters reported
in Table 2 to the retrieved queries.

Table 2. Filters description

Type Description

White list domains Domains known to be trusted, e.g., the ones associated with crypto
currencies (if their use is allowed in the network): the underlying
peer-to-peer networks are, in many respects, similar to botnets

Popular domains Top 100 domains collected inside the network under analysis, web
URLs of the 500 world biggest companies provided by Forbes [10] and
top 10000 domains in the world provided by Alexa [11]

Configuration
words

Domains containing certain substrings (e.g., related to network system
and structure) represent congenital traffic

Overloaded DNS In order to provide anti-spam or anti-malware techniques, DNS queries
are sometimes overloaded, thus causing possible noise

Local and
corporate domains

These domains represent a high percentages of the legitimate DNS
traffic in a corporate network.

CDNs and
RRDNSs

These are the most common sources of false positives in fast flux
detection algorithms; aramis (see Sect. 3) includes a function (with a
structure similar to that of the proposed fast flux detection algorithm)
which periodically updates a white list with the main CDNs and
RRDNSs detected in the monitored network, thus allowing for a
substantial speed up

Queries with large
TTL

According to the literature, malicious fast flux are characterised by a
short TTL [22,28,33], therefore queries with a TTL larger than 1800 s
are filtered

4.2 Metrics Identification

The DNS requests that survive the filters described in Sect. 4.1 are integrated
with the history of the previous 30 days, saved locally. This allows for a more
accurate evaluation of the behaviour of the domains, however an assessment is
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already possible when the first answer is received. Among the remaining domains
there are many new emerging CDNs2 and, in order to distinguish them from
the FFSNs — which is the main challenge in malicious fast flux detection — we
identified some key indicators. Some of these indicators can be already evaluated
after a single query (we call them static metrics), while others need a certain
history (history-based metrics). The information regarding Autonomous Systems
(ASs) and public networks used in the following metrics are retrieved from [12].

Static Metrics. The metrics described in this section are evaluated over all
the IPs collected.

Maximum Answer Length. A relevant metric for the detection of malicious
fast flux is the number of IPs returned in a single A query. In particular, we
consider the maximum mal of such value: a malicious fast flux is believed to
typically have a mal larger than a legitimate fast flux [22,35].

Cumulative Number of IPs. Malicious fast flux typically employ a larger num-
ber of IPs (nIP) compared with CDNs, due to the lower reliability of each single
node [33].

Cumulative Number of Public Networks. Since the botnet underlying a mali-
cious fast flux contains infected machines which are typically distributed quite
randomly in different networks, the same is expected to be true for the IPs
retrieved by the related queries [22,35]. For this reason a malicious fast flux
typically has a number of public networks (nnet) larger than a legitimate CDN.

Cumulative Number of ASs. For the same reason described above, FFSNs
typically have a number of ASs (nAS) larger than legitimate CDNs.

AS-Fraction. The analysis of some preliminary fast flux pcaps revealed that,
despite being in general very useful, in some cases the absolute number of AS
was not a distinctive feature, while its ratio with the number of IPs was more
appropriate. For this reason we defined the metric

fAS =
nAS − 1

nIP
, (1)

which quantifies the degree to which the IPs are dispersed in different AS. This
quantity takes values from fAS = 0 (when all the IPs are in the same AS) to
fAS ∼ 1 (when each IP is in a different AS and the number of IPs is large).
In order to preserve these properties and to encode the additional information
about the typical scales associated with nAS for CDNs and FFSNs respectively,
we rescaled fAS as described below. The first rescaling is3

x −→ θ(nAS − n0)
[
1 − e−(nAS−n0

s )2
]
x, (2)

where x = fAS, θ(t) is the Heaviside step function (i.e., θ(t) is 1 for positive
t and 0 otherwise), s is a scale representing the average number of ASs in a
2 The filter mentioned in Table 2 detects a CDN only when it has a sufficient history.
3 Hereafter, the left and right hand sides of the arrow represent the quantity before

and after the rescaling respectively.
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typical CDN and n0 is a threshold for nAS below which the behaviour is not
suspicious from the viewpoint of the number of ASs.4 The rescaling in Eq. 2
reduces fAS when its value is comparable with the nAS expected in a CDN. The
second rescaling applies Eq. 2 to the quantity x = 1 − fAS and reduces it (i.e.,
increases fAS) when nAS is comparable with that of a typical FFSNs. In this
case the scale s represents the average number of ASs in a typical malicious fast
flux, while n0 is a threshold for nAS below which we do not increase fAS.5

IP-Dispersion. The analysis of the distribution of the retrieved IPs is another
way to understand to which degree the structure underlying FFSN is random
and chaotic. We transform the set of the n IPs associated with each query into
the corresponding positions in the 32-bits IPv4 address space x1, ...xn,6 and we
define

dIP =
1
ln

median(Δx), (3)

where Δx = {xi − xi−1}ni=2, the {xi} have been ordered so that xi ≥ xi−1, and
ln is the average distance if the n IPs were uniformly distributed in the whole
public IPs address space. The IP-dispersion takes value from dIP = 1 (i.e., when
the IPs are uniformely distributed) to dIP = 0 (i.e., when the IPs are clearly
subdivided into a few clusters of close addresses). A similar idea was used by
Nazario et al. [28], who evaluated the average distance among the {xi}, but their
metric is more sensitive to outliers and it is not normalised in the interval [0,1],
which is crucial to combine it with the other metrics, as described in Sect. 4.3.
The FFSNs analysis described in Sect. 6 confirmed that the indicator in Eq. 3 is
able to catch the key distribution properties of IPs in a FFSN.

History-Based Metrics. The history is constructed by subdividing the queries
retrieved from the monitored network in subsequent chunks: each chunk contains
at least 10 queries and spans a time interval of at least one hour; these two con-
ditions are the minimal requirements to make the metric definitions meaningful
from a statistical point of view. The metrics described in this section are evalu-
ated only if it is possible to construct at least two chunks.

Change in the Set of IPs. It is a common belief that, while a CDN typically
returns IPs taken from a stable IP-pool, a malicious fast flux employs the avail-
able nodes in the FFSN, which often evolves quickly, and therefore its IP-pool
changes from time to time [22,35]. We defined a metric which measures in a very
simple way the change in the IP-pool:

cIP =
nIP

nc
IP

− 1, (4)

4 We set s = 2.5 and n0 = 3; the first is the average nAS for the top 4 largest CDNs
detected in the validation set, while the latter is half the minimum of nAS detected
for a fast flux in the validation set.

5 We set s = 40 in agreement with Ref. [35], which states that a typical FFSN has a
set of IPs distributed among 30–60 ASs, and n0 = 5, which is the maximum number
of ASs detected for a CDN in the validation set.

6 To each IP n1.n2.n3.n4 we associated x = 2563 n1 + 2562 n2 + 256n3 + n4.
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where nc
IP is the number of unique IPs present in the chunk averaged over all

chunks, while nIP has been defined in Sect. 4.2. This quantity takes the value
cIP = 0 when all the IPs are found in each chunk, i.e., when the IP-pool is stable
and it is explored completely in each chunk (and therefore nc

IP = nIP). On the
other hand, if the IP-pool changes substantially from one chunk to the other,
the total number of IPs nIP is much larger than the average number of IPs nc

IP

found in a chunk, and therefore cIP becomes large (it is unbounded above). The
same considerations apply to all the following metrics.

Change in the Set of Public Networks. While CDNs typically use IPs taken
from the same few public networks, malicious fast flux frequently introduce IPs
from new networks [22,35]. We measure the change in the set of public networks
by means of cnet = nnet/nc

net − 1, where nc
net is the network-analogous of nc

IP.
Change in the Set of ASs. The generalisation of the previous argument to

the next aggregation level brings us to the analysis of the changes in the number
of AS involved. We introduce therefore cAS = nAS/nc

AS − 1, where nc
AS is the

AS-analogous of nc
IP.

Change in the Answer Length. Another relevant indicator is the change in
the number of IPs retrieved in each query [22,35]. We measure this change by
means of cal = mal/mc

al − 1, where mc
al is the mal-analogous of nc

IP.

4.3 Fast Flux Domains Identification

A preliminary step for fast flux domains identification is the filtering of the
queries with dIP = 0, because this removes many false positives with no loss
in terms of true positives. The next step is the use of the metrics defined in
Sect. 4.2 to discriminate among malicious fast flux and CDN. Instead of using a
machine learning ‘black box’ classifier, we combine the indicators in a controlled
way, in order to encode some other domain knowledge and to allow for an easier
interpretation of the results. Foremost we aggregate the static and history-based
metrics separately, and finally we combine them into a single anomaly indicator
A, which can straightforwardly be used to classify the queries between fast flux
and legit domains.

Aggregation of the Static Metrics. We normalised the metrics nIP, nnet,
nAS, and mal in the interval [0,1], so that for all of them the value 0 corresponds
to a typical CDN, while 1 corresponds to the expected behaviour of a malicious
fast flux. This is achieved by means of a square-exponential scaling of the form

x −→ 1 − e−( x−x0
s )2 , (5)

where x0 = 1 is the minimum value for the metric before the rescaling, s is
different for each metric and represents an intermediate scale between a typical
CDN behaviour and a behaviour clearly ascribed to a malicious fast flux.7 Eq. 5
7 The values of s were set based on information retrieved from the literature ([35]

and references therein) and the validation set. More in detail, we chose sIP = 24,
snet = 12, sAS = 6, and sal = 10.
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rescales x = x0 (i.e., the smallest possible value for x), x = s + x0 (i.e., a
value intermediate between the typical CDN behaviour and the typical malicious
behaviour), and x � s (i.e., a value much larger than the scale s) to 0, 1/2, and
1 respectively.

After the scaling, all the quantities nIP, nnet, nAS, mal, fAS, and dIP are com-
parable: they take values in the interval [0,1] and for each of them a value close
to 0 denotes a typical CDN behaviour, while a value close to 1 indicates a very
suspicious behaviour. We combined these indicators with a weighted arithmetic
mean in a unique static index8

Astat = wIPnIP + wnetnnet + wASnAS + walmal + wffAS + wddIP. (6)

In order to avoid the evaluation of misleading indicators due to lack of data, the
metrics fAS and dIP are evaluated only if a minimum number of IPs is collected,
while mal is evaluated only if at least one answer contains more than one IP.
When one metric is absent, its value is set to 0 (in the absence of data we apply
a sort of ‘presumption of innocence’, to reduce false positives), its weight in the
evaluation of Astat is decreased by a factor 20 (because the innocence assessment
is only due to the absence of data), and the other weights are proportionally
rescaled so that

∑
i wi = 1.

Aggregation of the History-Based Metrics. As already mentioned, the
metrics cIP, cnet, cAS, and cal defined in Sect. 4.2 are unbounded above. We
normalise them in the interval [0,1] by means of Eq. 5 with x0 = 0 (as the
minimum value for these metrics before the rescaling is 0).9 After the rescaling,
all the metrics take values in the interval [0,1] and for each of them a value close
to 0 corresponds to a very stable behaviour, while a value close to 1 indicates a
behaviour with high variability over time. We combine then in a unique indicator
three of the history-based metrics (the fourth, i.e., cal is instead used in Eq. 8)
with a weighted arithmetic mean10

Adyn = w′
IPcIP + w′

netcnet + w′
AScAS. (7)

Final Aggregation. We combine the indicators Astat, Adyn, and cal into a
single anomaly indicator A, which should be used to classify the queries between
fast flux and legit domains. In order to reduce false positives, we differentiate on
the basis of the quantity fAS, and we define

A =
{∑

i wiAi if fAS ≥ 0.5∏
i(Ai)wi if fAS < 0.5 , (8)

8 The weights reflect the importance of the corresponding metric in the correct classi-
fication in the validation set; the optimal values are wIP = wnet = 0.03, wAS = 0.13,
wal = 0.09, wf = 0.54, and wd = 0.18.

9 The values of s were set based on information retrieved from the literature and the
validation set. More in detail, we chose sIP = snet = 1 and sAS = sal = 0.5.

10 The weights reflect the importance of the corresponding metric in the validation set;
the optimal values are w′

IP = 0.07, w′
net = 0.23, and w′

AS = 0.7.
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where {Ai} = {Astat, Adyn, cal} and {wi} are the related weights.11 Analogously
to the averages in Eqs. 6 and 7, when one metric is absent, its value Ai is set
to 0 (not anomalous), its weigth wi is decreased by a factor 20, and the other
weights are proportionally rescaled so that

∑
j wj = 1.

Note that in Eq. 8 a (weighted) arithmetic mean is used when the AS-fraction
is large, while a (weighted) geometric mean is used when the AS-fraction is small;
this implies that in the latter case a value close to 0 for one of the indicators Ai

gives a stronger penalty to A.
The detection of malicious fast flux has thus been reduced to a very simple

one-dimension classification problem: only queries with A > Ath are labeled as
fast flux, where the optimal threshold (Ath = 0.25) has been found by maximiz-
ing the performance on the validation set. In order to increase the readability of
the results, we applied a sigmoid-shaped rescaling which maps A = 0 and A = 1
onto themselves and Ath onto 0.5.

5 Experimental Evaluation

The fast flux detection algorithm described in Sect. 4 was evaluated over a test
set comprising 30 days of ordinary traffic of the network described in Table 3
with the injection of fast flux traffic which covers all the most relevant fast flux
attack scenarios (see Table 4 for a complete list).

Table 3. Test-network description

30-days total One-hour average

N. of machines 391 -

N. of client machines 286 -

N. of connections 398 M 552 k

N. of resolved A-type DNS queries 75 M 104 k

N. of unique resolved A-type DNS queries 1.3 M 1.9 k

The fast flux traffic has been injected in the network via 47 pcaps — collected
from the public repositories [3–5] — which are associated with 9 different mal-
ware campaigns. Table 4 provides a brief description of each malware campaign
with the following information:

– the category, i.e., the malware type associated with the campaign
– the name of the campaign
– the list of the domains present in each pcap of the campaign, with the anomaly

indicator A associated by the algorithm to each of them
– the average value of A for each campaign.

11 An optimisation procedure on the validation set produced similar weight for the
three quantities: wstat = 0.27, wdyn = 0.38, and wal = 0.35.
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In order to rule out overfitting, we used the test set (i.e., the network traffic
described in Table 3 and the pcaps described in Table 4) only to test the per-
formance of the algorithm, while we used another set (see Sect. 4) to define the
algorithm and the values of its parameters.

Table 4. Malware description (the underlined domains are farther analysed in Sect. 6)

Category Campaign Domains (A) 〈A〉
Banking
Trojan

ZBOT miscapoerasun.ws (0.85) 0.85

Banking
Trojan

Dreambot rahmatulahh.at (0.89); ardshinbank.at (0.92) 0.91

Banking
Trojan

Ursnif widmwdndghdk.com (0.90);
bnvmcnjghkeht.com (0.85); qqweerr.com (0.85)

0.87

VBA
Dropper

Doc
Dropper
Agenta

aassmcncnnc.com (0.90); iiieeejrjrjr.com (0.87);
ghmchdkenee.com (0.88)

0.88

Ransomware Locky thedarkpvp.net (0.83); nsaflow.info (0.91);
mrscrowe.net (0.93); sherylbro.net (0.87);
scottfranch.org (0.90); gdiscoun.org (0.90)

0.89

Ransomware Nymaim iqbppddvjq.com (0.91); danrnysvp.com (0.91);
pmjpdwys.com (0.93); vqmfcxo.com (0.86);
gbfeiseis.com (0.91); iuzngzhl.com (0.97);
vpvqskazjvco.com (0.84); jauudedqnm.com
(0.93); dtybgsb.com (0.93); tuzhohg.com
(0.93); sxrhysqdpx.com (0.86); arlfbqcc.com
(0.93); danrnysvp.com (0.87)

0.90

Banking
Trojan

Zeus Panda farvictor.co (0.89); fardunkan.co (0.89);
bozem.co (0.84); farmacyan.co (0.87);
fargugo.co (0.90); manfam.co (0.85)

0.87

Banking
Trojan

GOZI ISFB qdkngijbqnwehiqwrbzudwe.com (0.80);
jnossidjfnweqrfew.com (0.90);
zxciuniqhweizsds.com (0.86);
huwikacjajsneqwe.com (0.92);
efoijowufjaowudawd.com (0.92);
onlyplacesattributionthe.net (0.90);
nvvnfjvnfjcdnj.net (0.86); popoiuiuntnt.net
(0.89); zzzzmmmsnsns.net (0.80);
popooosneneee.net (0.83);
liceindividualshall.net (0.87);
roborobonsnsnn.net (0.93)

0.87

Ransomware GandCrab zonealarm.bit (0.90) 0.90
a Doc.Dropper.Agent-6332127-0 [13].

Table 4 clearly shows that the proposed method successfully detected all the
fast flux domains with a high anomaly indicator. In fact the value of A averaged
over all campaigns is equal to 0.89.
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Table 5. Results

A > 0 A > 0.5

True Positives (TP ) 47 (100%) 47 (100%)

False Negatives (FN) 0 (0%) 0 (0%)

False Positives (FP ) 6 (<0.001%) 4 (<0.001%)

In Table 5 we summarise the performance of the algorithm: in the second
column we consider the total number of outputs of the algorithm (i.e., the
number of domains with A > 0) while in the third column we report the number
of outputs labeled as fast flux (i.e., the number of domains with A > 0.5). On
the rows we report the following quantities

– True Positives rate (TP ): the number of unique fast flux domains detected;
– False Negatives rate (FN ): the number of unique fast flux domains incorrectly

labeled as legit;
– False Positives rate (FP ): the number of unique legit domains incorrectly

labeled as fast flux.

All rates are given as absolute values and as percentages for each type on the
corresponding number of unique domains in input.

A remarkable result is the absence of false negatives: this determines indeed
a 100% recall, also known as detection rate, R = TP /(TP + FN ). In order
to evaluate the algorithm also with a metric that takes into account the
false positives rate FP , we computed the F-score F = 2P R/(P + R) (where
P = TP /(TP + FP )), obtaining F = 95.9%.

As a comparison, [33] obtained R = 94.4% and F = 89.5% in their best
experimental result. We can therefore conclude that the proposed method is able
to detect queries to fast flux domains in a corporate network in near-real-time
and with high anomaly indicators, limiting false positives at the same time.

6 Fast Flux Service Networks Analysis

As an in-depth analysis of the algorithm described in Sect. 4, we examined the
IPs associated to a list of fast flux domains. The IPs were collected via active
DNS analysis and precisely with an FFSN-spanner which resolved systematically
domains taken from a list of malicious domains; these domains were gathered via
a scouting activity from the public repositories [3–6]. With the purpose of hiding
the FFSN-spanner activity from the bot herders, we randomized the sequence of
the queries and the waiting times among two subsequent queries, while imple-
menting an anonymization technique based on the use of the Tor network. In
order to overcome a limitation of the DNSPort resolver [14], which returns only
the first answer for domain lookup, we adopted ttdnsd, the Tor TCP DNS Dae-
mon. This solution allows for making arbitrary DNS requests by converting any
UDP request into a TCP connection, which is given to Tor through the SOCKS
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port. The request is then forwarded anonymously through the Tor network and
reaches one of the ‘open’ recursive name servers via the Tor Exit node.

Fig. 1. Bipartite graph representing the IPs (small red circles) associated with each
domain (large green circle) in the pre-migration scenario. An arc indicates that the IP
has been given in answer to a query resolving the domain. (Color figure online)

Over the period 09.03.2018–19.04.2018, we collected 10747 IPs associated
with 55 domains12: 7640 are fictitious IPs, related to the Nymaim campaign,
while the remaining 3017 IPs are likely associated with compromised hosts. The
IPs of the first group (Nymaim-fake-IPs), which are translated into real IPs13

by the decoder algorithm in the malware that use them [15], are strictly related
to the C&C Network described in [25]. The IPs of the latter group (real IPs)
showed instead a relevant change in the behaviour on the 26.03.2018: this was
probably the last part of the migration described in [2].

The pre-migration scenario is described in Fig. 1: it can be noted that different
domains (large green circles) share some IPs (small red circles). In Fig. 2 we

12 Some domains are reported in Table 4, others in Fig. 2; the remaining domains
are odqndpqowdnqwpodn.com, moncompte-carrefour.org, 0768.ru, allianzbank.org,
commerzb.co, db-ag.co, druhok.com, form.xbeginner.org, ihalbom.com, ingdi-
rectverifica.com, lloyds-personal.com, mein-advanzia.info, point.charitablex.org,
postofficegreat.com, ransomware.bit, redluck0.com, safe.bintrust.org, sunyst.co,
dfplajngru.com, mer.arintrueed.org, www.ico-teleqram.net, clo.arotamarid.org,
www.translationdoor.com, vr-b.co, vr-b.cc.

13 An analysis on some pcaps associated with iuzngzhl.com, arlfbqcc.com, and
vpvqskazjvco.com revealed that the corresponding real IPs are based on the San-
diFlux FFSN described below.
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represent the overlap Oij among all the pairs (i, j) of the top 16 domains observed
before the migration (excluded the ones associated with the Nymain campaign),
defined as

Oij =
|Xi ∩ Xj |
|Xi ∪ Xj | , (9)

where Xi is the pool of IPs associated with the i-th domain and |X| is the the
cardinality of X.
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Fig. 2. Overlap representation Oij (defined in Eq. 9) among all the pairs (i, j) of the
top 16 domains (for number of retrieved IPs) in the pre-migration scenario. Darker
tones represent larger overlaps.

Both Figs. 1 and 2 show a clear subdivision of the domains in two indepen-
dent clusters. The analysis of the fast flux domains revealed that the clusters
correspond to two large FFSNs, namely Dark Cloud (on the left in Figs. 1 and 2)
and SandiFlux (on the right). Indeed, in the first cluster we recognised domains
associated with Dumps Stores that leverage Dark Cloud [21], while in the lat-
ter we found domains associated with the GandCrab campaigns, which leverage
SandiFlux [2]. It is worth noting that the sets of IPs in the two FFSNs that we
identified are highly overlapped, but no IP is shared among the two groups.

The pre-migration subdivision in two different FFSNs is reflected in the dif-
ferent geolocation of the relative IPs: Fig. 3 shows that, while the IPs retrieved
from SandiFlux are mainly localised in central-east Europe, the ones retrieved
from Dark Cloud are based in eastern Europe and Russia.

After the migration all the domains appeared to leverage a unique FFSN,
which we recognised as SandiFlux. In Fig. 4 we further investigate the top 5
countries represented before the migration (on the left) and after (on the right):
Ukraine and Russia confirmed to be the most represented countries in Dark
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Fig. 3. Geolocation of the IPs retrieved for the FFSNs before the migration

Cloud [21], while SandiFlux’s IPs are found mainly in Romania and Bulgaria
both before and after the migration. Figures 3 and 4 are based on the IP-geoloc
tables downloaded from Maxmind [12].

The FFSNs described above are a good testing ground for the metrics intro-
duced in Sect. 4.2: in Table 6 we report a summary of some of these metrics
evaluated over the FFSNs and three large CDNs. Note that two of the CDNs
we observed (namely, www.nationalgeographic.it and cdn.wetransfer.net) have a
very large number of IPs, making thus nIP a misleading indicator in these cases.
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This is not a problem for the proposed algorithm, since, as explained in Sect. 4,
nIP is used in combination with many other metrics.

Table 6. Summary of some relevant metrics

nIP nAS nresc
IP nresc

AS crescAS f resc
AS dIP

Dark Cloud 1276 221 1 1 1 1 1.1 10−3

SandiFlux 1831 354 1 1 1 1 1.3 10−3

Nymaim-fake-IPs 7640 1767 1 1 1 1 0.77

www.nationalgeographic.it 2589 1 1 0 0 0 2.8 10−6

cdn.wetransfer.net 2852 1 1 0 0 0 3.1 10−6

neo4j.com 33 1 0.83 0 0 0 5.8 10−4
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Fig. 5. Histogram of the frequencies of the first byte in the IP-pool associated with
two groups of fast flux domains and with one large CDN (bin-size = 2)

In Fig. 5 we represent the histogram of the frequencies of the first byte in the
IP-pool of SandiFlux and Nymaim-fake-IPs and one medium-size CDN. A clear
difference between botnets can be noticed, in particular among the Nymaim-fake-
IPs, where the IP-distribution is not so far from a uniform random distribution
and the CDN ‘imap.gmail.com’, where the IP-distribution has a few high peaks.
Figure 5 clearly shows that simple indicators as the mean and the variance (rep-
resented by the corresponding Gaussian distribution) do not catch the nature of
the distribution, while the metric dIP defined in Eq. 3 is much more appropriate.
In particular dIP = 1.3 10−3 for SandiFlux and dIP = 0.77 for Nymaim-fake-IPS,
while the CDN ‘imap.gmail.com’ has dIP = 5.0 10−8. Note that the encoding of
the IPs is not a problem for the detection algorithm: in fact it increases the IP
dispersion, thus fastening the detection.

7 Conclusions

In this paper, we proposed a fast flux detection method based on the passive
analysis of the DNS traffic of a corporate network. The analysis is based on
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aramis security monitoring system. The proposed solution has been evaluated
over the LAN of a company, with the injection of 47 pcaps associated with 9
different malware campaigns that leverage FFSNs and cover a wide variety of
attack scenarios. All the fast flux domains were detected with a very low false
positive rate and the comparison of performance indicators with a state-of-the-
art work shows a remarkable improvement. An in-depth active analysis of a list
of malicious fast flux domains confirmed the reliability of the metrics used in the
proposed algorithm and allowed for the identification of more than 10000 IPs,
some of which are likely associated with compromised hosts. These IPs turned
out to be part of two notorious botnets, namely Dark Cloud and SandiFlux, to
the description of which we therefore contribute.

As a future development, we plan to introduce in the algorithm a metric
related to the use of reserved IPs, which we observed to be extensively present
in SandiFlux. Another planned development is the inspection of the overlap in
terms of IPs among the most suspicious domains, as we saw that many IPs are
shared among domains in the same FFSN.
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Abstract. Browser fingerprinting is a relatively new method of
uniquely identifying browsers that can be used to track web users. In
some ways it is more privacy-threatening than tracking via cookies, as
users have no direct control over it. A number of authors have considered
the wide variety of techniques that can be used to fingerprint browsers;
however, relatively little information is available on how widespread
browser fingerprinting is, and what information is collected to create
these fingerprints in the real world. To help address this gap, we crawled
the 10,000 most popular websites; this gave insights into the number of
websites that are using the technique, which websites are collecting fin-
gerprinting information, and exactly what information is being retrieved.
We found that approximately 69% of websites are, potentially, involved in
first-party or third-party browser fingerprinting. We further found that
third-party browser fingerprinting, which is potentially more privacy-
damaging, appears to be predominant in practice. We also describe Fin-
gerprintAlert, a freely available browser add-on we developed that detects
and, optionally, blocks fingerprinting attempts by visited websites.

Keywords: Browser fingerprinting · Online tracking · Privacy

1 Introduction

A number of authors have discussed the very wide variety of readily available
attributes collectable by websites from a visiting browser, enabling websites to
uniquely identify browsers and potentially track them; this is known as browser
fingerprinting [1,9,24,31]. Although the range of retrievable attributes, as well
as methods for retrieving them, have been widely discussed, relatively little has
been published regarding the real-world prevalence of browser fingerprinting,
who is deploying it, and the types of attributes collected to achieve it. This issue
clearly merits further investigation, and has motivated the work described.

Browser fingerprinting is becoming an increasingly serious privacy con-
cern despite some apparently benign applications (see Sect. 2.2). Its virtually
c© Springer Nature Switzerland AG 2018
L. Chen et al. (Eds.): ISC 2018, LNCS 11060, pp. 481–501, 2018.
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permanent nature1 is something that might be subject to future regulation,
much as the use of cookies has recently received the attention of regulators in
Europe. Its use is virtually invisible to users and there is no direct way of pre-
venting it. Moreover, we found that the four browsers used by more than 88% of
web users2 (i.e. Chrome, Internet Explorer, Firefox and Edge) do almost nothing
to help mitigate fingerprinting3, alert the user to its occurrence, or even provide
information about it in user help documents.

We examined the fingerprinting behaviour of the 10,000 most visited web-
sites. We aimed to discover how many websites deploy browser fingerprinting,
whether directly or through third-parties. We also examined which attributes are
collected. Further, to help raise awareness of this issue, we developed a browser
add-on that alerts users whenever a visited website attempts to fingerprint their
browser; users can also opt to enable a fingerprinting blocking feature.

The remainder of the paper is organized as follows. Section 2 describes track-
ing and browser fingerprinting, and reviews relevant prior art. In Sect. 3 the
collection of data from 10,000 websites is described; the results obtained are
reported in Sect. 4 and analysed in Sect. 5. In Sect. 6 we discuss the relation-
ship with the prior art. Section 7 describes the FingerprintAlert add-on, and the
paper ends with discussion and conclusions in Sect. 8.

2 Background

2.1 Online Tracking

Online tracking (or web tracking) is the process of monitoring a user’s online
activities; entities that perform tracking are known as trackers [22]. The method-
ology used in our study, like that of many other studies, cannot conclusively
determine if a website is actually tracking users; we simply observe whether they
collect attributes from browsers that would allow them to track via browser fin-
gerprinting. In line with common usage, we refer to recipients of fingerprintable
data (whether first- or third-party) as trackers.

In practice, the most common motive for online tracking is to enable online
behavioural advertising. This describes the practice by web advertising com-
panies of tracking users’ online activities in order to display personalised and
targeted advertisements [40]. Additionally, tracking is used as a tool for mar-
ket research [24]. There are two main approaches to online tracking—stateful
tracking involving the use of cookies4, and stateless tracking, including the use
1 Some browser attributes change over time (e.g. browser version) but uniquely iden-

tifying browsers is usually still possible [41], and uniquely identifying the hosting
platform is also possible if a different browser is used [8].

2 The most commonly used browser data was retrieved from https://www.
netmarketshare.com/browser-market-share.aspx [accessed on 01/07/2018].

3 Firefox has a limited set of options to thwart fingerprinting.
4 A web cookie is a small amount of data sent by a website as part of an HTTP

response and then stored by the browser. The browser then provides the contents of
the cookie back to the same server in subsequent HTTP requests [6].

https://www.netmarketshare.com/browser-market-share.aspx
https://www.netmarketshare.com/browser-market-share.aspx
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of browser fingerprinting [24] as defined in Sect. 2.2. In this paper, following the
seminal work of Eckersley [9], we focus on the latter.

In some ways, browser fingerprinting is a more reliable method of track-
ing than the use of cookies [23], and it appears that browser fingerprinting is
increasingly being used for this purpose. Unlike browser fingerprinting, cook-
ies are stored on user devices and so can be controlled or deleted by users. In
particular, the use of a private browsing mode5 as provided by many browsers,
whilst limiting the use of cookies does very little to protect users against browser
fingerprinting [4]. Furthermore, while modern browsers provide a user-selectable
Do Not Track option, this apparently does not prevent widespread tracking [2].

2.2 Browser Fingerprinting

Browser fingerprinting enables user web activity to be tracked. It relies on learn-
ing properties of a browser and its host platform, including both hardware prop-
erties and software state (cf. the term device fingerprinting [18]). Browser fin-
gerprinting typically involves a web server performing some combination of: (a)
collecting and analysing information contained in HTTP request headers, and
(b) downloading JavaScript to the browser which collects and sends back infor-
mation gathered from browser APIs. Examples of collected information include:
screen resolution, CPU/GPU model, and names of installed fonts6. As in these
examples, collectable attributes relate to both browser and host platform.

Tracking web users has long been possible by using cookies. However, the
absence of a cookie (e.g. because it has been deleted by the user) means that the
device can no longer be tracked [9]. By contrast, browser fingerprinting requires
no files to be stored on the user’s device, its effectiveness partly depends on the
browser, and users have virtually no control over it [4]. It can be used for tracking
web users by creating a unique ID derived by combining collected attributes [20].

Four widely discussed uses of browser fingerprinting are: targeted advertising
[2,22]; social media sharing [22,33]; analytics services [2,22]; and web security
[2,38]. Of course, browser fingerprinting has other uses, e.g. to act as a second
layer of authentication [9] or to enhance the effectiveness of CAPTCHAs [3].
However, even in these cases the server gets the benefit, and the user is often
not informed that fingerprinting is in use [43]. Determining the exact reason(s)
why a website deploys browser fingerprinting is extremely difficult.

Browser fingerprinting websites perform it either as a first-party or a third-
party (or both). That is, a website may download JavaScript to the browser,
which can send the collected attributes back to either its own site (first-party
fingerprinting) or to a third-party site (third-party fingerprinting) [35]. It is even
possible that some website operators are not aware that a third-party is perform-
ing browser fingerprinting via their website [10]. This could arise because third-
party fingerprinting sites typically provide client websites with the JavaScript
5 Modes of this type, which have various names, are intended to enhance the privacy

properties of the browser [42].
6 A demonstration of the wide range of information collectable from any browser is

available at https://fingerprintable.org/test.

https://fingerprintable.org/test
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which collects and sends the attributes used for fingerprinting and in return, the
third-party site provides a range of services to the client website (e.g. data ana-
lytics or social plugins). As a result, some website operators may not know what
data the third-party JavaScript collects from user browsers, or what it might be
used for.

In the context of tracking, first-party fingerprinting gives relatively little
information to a website—it merely enables multiple visits by the same browser
to be linked, and gives no information about other visited websites. If the user
identity is known by other means (e.g. because the user logs in) it can also indi-
cate when this user is employing multiple devices [2]. Third-party fingerprinting,
on the other hand, is much more privacy-damaging in that it enables browsers
(and hence users) to be tracked across multiple websites. Later in this paper we
report on the websites that perform the majority of third-party tracking.

2.3 Previous Work

Back in 2010, Eckersley [9] first described how the collection of a range of appar-
ently trivial and readily-available browser attributes, such as time zone, screen
resolution, set of installed plugins, and operating system version, could be com-
bined to uniquely identify a browser; he gave this process the name browser
fingerprinting. Since then, many other authors, including Mowery et al. [27,28],
Boda et al. [7], Olejnik et al. [32], Fifield et al. [16], Takei et al. [36] and
Mulazzani et al. [29], have described a range of ways of enhancing its effective-
ness. In parallel, and motivated by the threat to user privacy posed by browser
fingerprinting, a number of authors, e.g. Nikiforakis et al. [30], Fiore et al. [17]
and FaizKhademi et al. [11] have proposed ways of limiting its effectiveness.

The BrowserLeaks website (https://www.browserleaks.com) and Alaca et al.
[5] catalogue a wide range of types of information that could be used for browser
fingerprinting. Upathilake et al. [39] have also classified some of the most widely
used methods for fingerprinting. Browser fingerprinting is clearly very effective;
for example, in a large-scale study, Laperdrix et al. [20] observed that an average
of 86% of desktop and mobile browsers possess a unique fingerprint; other studies
[9,27] have reported similar results (80–90%). It is important to note that some
of the attributes that can be used for fingerprinting vary between desktop and
mobile platforms; as a result the efficiency of fingerprinting also varies between
platform types [20]. For example, a device model name can be retrieved from a
mobile browser user agent but not from its desktop counterpart.

We conclude this brief review of the prior art by summarising previous work
with a similar scope to that of this paper, namely examining the prevalence and
nature of browser fingerprinting. In 2015, Libert [23] published the results of
a study of third-party HTTP requests utilized for browser fingerprinting. Acar
et al. [2] performed a large-scale study of fingerprinting focussing mainly on
detection by whether a site examined the set of installed fonts. More recently,
Le et al. [21] followed a similar approach, but based detection on use of the can-
vas API rather than the installed fonts. Englehard et al. [10] performed one of
the most comprehensive studies in this area, although they focussed on tracking

https://www.browserleaks.com
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in general and not just on stateless (fingerprinting-based) tracking. Englehardt
et al. examined the JavaScript downloaded by websites to browsers, a poten-
tially rich source of information, using their own tool, OpenWPM. According
to the authors, this tool performs better than many other similar tools such as
FPDetective [2]. However, the use of automated tools to examine JavaScript has
limitations, in that tools can only look for scripts they are programmed to iden-
tify, regardless of the nature of data collected by a tracker. Metwalley et al. [26]
also examined the prevalence of tracking; however, they looked at a relatively
limited number of websites (500) and aimed to detect all types of online tracking
via passive measurements rather than looking specifically at fingerprinting.

2.4 Motivation

Despite the fact that browser fingerprinting has been extensively studied, rel-
atively little information has appeared on its prevalence and the browser
attributes that are collected in practice. To the authors’ knowledge, no other
study has listed all the browser fingerprinting attributes that are collected by a
large set of real-world websites. This observation motivates the work described
in the sequel, in which we describe a study of the fingerprinting behaviour of the
10,000 most popular websites. Unlike the work of Englehardt et al. [10] and Acar
et al. [2], we chose not to examine the JavaScript itself, but instead monitor the
data that is actually transferred back from the browser. While adopting a some-
what similar method, the scale of the study is more than an order of magnitude
larger than the study of Metwalley et al. [26].

One important motive for understanding better the prevalence and nature of
browser fingerprinting is to help in developing tools that inform the user about
fingerprinting, and also enable users to exert control over the degree to which
fingerprinting is possible. To this latter end, in Sect. 7 we describe Fingerprint-
Alert, a browser add-on developed as part of the study, which makes users aware
whenever a website is collecting information usable for browser fingerprinting.
It also allows all detected fingerprinting to be blocked.

3 Data Collection Methodology

3.1 Data Gathering

The main objectives of the data collection exercise were to assess the number
of websites performing browser fingerprinting, and what types of data are being
collected for this purpose. To achieve our objectives, we decided to crawl a large
number of well-used websites and to test their data gathering behaviour. We
chose 10,000 sites, as this seemed both sufficiently many to generate representa-
tive results, and also a manageable number so we could analyse the considerable
volumes of data generated. We only looked at the data transmitted, rather than
analysing the downloaded JavaScript, for two main reasons: manual analysis of
JavaScript on this scale was infeasible, and automated analysis, as noted above,
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has limitations. Moreover, the data that is sent was the key issue of concern for
us, not so much how it is gathered.

We used a simple method to decide whether a web server is performing
browser fingerprinting. To try to “normalize” web server behaviour, we looked
only at the interactions that occur when a browser initially visits the homepage of
the website, rather than other information gathering exercises that might occur
(e.g. when a user tries to log in). So, a website that sends any fingerprinting
browser attributes back to its, or a third-party, server at a first visit has been
deemed to be engaged in browser fingerprinting; the precise criterion used to
decide whether a site is fingerprinting is given in Sect. 3.3.

3.2 Experimental Set Up

In order to select which websites to crawl, we retrieved the top 10,000 websites
from the freely available Majestic list of the one million most visited websites7.
We wrote a program to crawl the homepages of these websites to discover if
they employ browser fingerprinting techniques at the point when the website is
first loaded (i.e. prior to any interaction). This of course means that we missed
websites that employ interaction-triggered fingerprinting. The crawler was cre-
ated using Selenium WebDriver8, a Python script, the FingerprintAlert add-on,
and the Chrome browser (details of the crawler software components and the
device used can found in Appendices A.2 and A.3). The Python script instructs
Selenium to visit the 10,000 websites in the list, wait for each to fully load, and
then wait for a further short period before moving to the next website.

The delay is included because, in preparatory work, we manually visited 50
websites on the list and found that some only relayed information after a delay
ranging from one second to several minutes following the full loading of the
page. Such waits seem likely to be both to allow the various elements of the web
page to be loaded and executed and to take account of dynamic content being
continuously loaded (e.g. advertisements). We set the short delay to 3 s; this
was a fairly arbitrary choice, although it was long enough to cause a number of
websites to transmit data, although not sufficiently long to make the crawling
process significantly more time consuming.

The add-on collects and stores all data that is relayed from the browser to
one or more web servers using the GET, POST or HEAD HTTP methods9 [15],
i.e. the commonly used means by which information, including attributes used
for fingerprinting, is relayed from browser to server. Whether or not the data
was sent SSL/TLS-protected, i.e. using HTTPS [34], was also recorded.

7 Majestic is a website specializing in web usage statistics, and provides a daily-
updated list of the top one million websites, https://majestic.com/reports/majestic-
million [accessed on 09/10/2017].

8 Selenium is open-source software used to automate browsers for testing purposes—
see https://www.seleniumhq.org.

9 The quantity of data that can be relayed using GET or HEAD is very limited,
whereas POST allows the transmission of very large volumes (megabytes) of data.

https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million
https://www.seleniumhq.org
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The crawling process took approximately 300 h to complete. It took this long
for several reasons, including that some websites took several minutes to fully
load, and that Selenium occasionally crashed. In such cases, the crawler was
restarted manually, where we re-crawled websites after a crash to ensure we did
not miss any data.

3.3 Data Processing

Prior to the full crawling process we initially crawled a smaller sample (approx-
imately 1,000 of the websites) to test the crawler. In this process we indiscrimi-
nately collected all data sent (if any) from the browser to web servers. Manual
examination of the collected data revealed it included information unrelated to
the visiting device or the browser (e.g. the URLs of displayed advertisements),
i.e. of no interest to this study. Most importantly for our purposes, we were able
identify fingerprinting attributes that had unique formats or values (e.g. screen
resolution: 1920× 1080) that made automatic detection possible. Using these
preliminary findings, we programmed our crawler to automatically detect a set
of 17 attributes (as listed in Appendix A.1). The crawler used regular expressions
to examine relayed data and match them with the prepopulated attributes.

The presence of one or more of these attributes in data returned by the
browser was used to determine whether or not a website was engaged in finger-
printing. This set of 17 attribute types includes many of the attributes whose
use for fingerprinting is most widely discussed, so we believe that the presence or
absence of an attribute of one of these types is a reasonable indicator of whether
fingerprinting is being performed.

However, other attributes are much more complex, and hence are difficult to
automatically identify. In subsequent manual analysis of the recorded data, we
were able to identify many additional attributes because they were labelled by
name in the captured data. To perform this task automatically would have been
extremely difficult because some sections of the recorded data were not parsed,
and the substrings of the data that were parsed varied in format (unsurprisingly
given the absence of any standards for data formats for transferred attributes).

In order to manually identify fingerprinting attributes in the collected data,
we first used publicly available scripts to retrieve a large set of fingerprinting
attributes from the browser that was used to run the experiments (the scripts we
used can be found at https://github.com/fingerprintable). We then attempted
to match these values with the values in the collected data. Once we completed
the matching, we manually inspected the matches found; this was necessary to
ensure that the matches found were genuine and not coincidental similarities in
strings or numbers. In most cases the match was confirmed by finding labels
followed by the expected values in the collected data.

3.4 Challenges Addressed

We faced a number of challenges in both implementing crawling and process-
ing the collected data. First, websites are unlikely to admit use of browser

https://github.com/fingerprintable
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fingerprinting, and so we can only attempt to judge their behaviour based on the
types of information retrieved from the browser, and when it was collected. As
mentioned earlier, there is a wide range of attributes that, when put together,
can be used to create a unique device fingerprint. Identifying and monitoring all
such attributes is very challenging, especially since new attributes seem to arise
frequently (given continuously evolving browser functionality). Moreover, many
websites cause the browser to send a series of data strings back to the server;
automatically, or even manually, identifying what these data represent is highly
non-trivial. It was not always possible to parse the data sent since there is no
standard for such data transmissions; indeed, some websites may deliberately
obfuscate the data they send. It was therefore impossible to fully interpret all
the data. Fortunately, there are certain attributes that are easily identifiable
because of their special format and range of values, such as screen resolution
(e.g. 1920× 1080), fonts (e.g. Arial), or geolocation coordinates (e.g. 51.4167,
−0.5667).

It is very difficult to determine the minimum number of attributes needed to
produce a unique fingerprint. Fingerprint uniqueness depends on many factors,
including the range of values of an attribute, how often it changes, and how
different it is between one browser/platform and another. As a result, we made
the simplifying assumption that a website is deemed a tracker if it causes a
browser to send at least one of the 17 attributes given in Appendix A.1.

As our crawler was Selenium-based, it suffered from the known crashing
problem [10] on certain websites, e.g. when it was unable to fully load all the
elements of a website. In such cases the crawler had to be manually restarted. On
average, Selenium crashed once in every 155 visited websites. Moreover, Chrome
add-ons are limited to 5 MB of storage and so, to ensure that the collected
data did not reach that limit, we programmed the crawler to stop after every
200 visited websites, yielding an average of 3 MB of collected data. However,
Selenium usually crashed before reaching the 200-website limit.

The 10,000 websites took an average of 19 s to fully load. Our tests were
performed using an Internet connection with a minimum bandwidth of 40 mbps,
and so connection limitations are unlikely to be the reason for the loading delays.
The time to load a website noticeably increased as we went through the list of
crawled websites, i.e. the less popular websites loaded more slowly. So, in future
similar experiments, we would recommend that crawlers should not timeout until
at least 20 s have elapsed.

4 Results

The data collected in this study, as well as the tools we used for data collection
and analysis, are available at https://github.com/fingerprintable. The dataset
includes the contents of all HTTP messages sent by and to the crawled websites
that attempted fingerprinting. This includes the data retrieved from the visiting
device (i.e. the device used for data gathering), as well as the domain names of
the sender and receiver of the data. Figure 1 shows a sample of a complete block
of data from amongst those collected in our study.

https://github.com/fingerprintable
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Fig. 1. Excerpt of collected data

Using a combination of automated parsing and manual inspection, we
detected the transmission of 284 different attribute types. We further detected
1,914 distinct fingerprinters. 70 websites (i.e. 0.7%) timed out (e.g. because the
website did not respond) during the crawling process and thus were fully, or par-
tially, excluded from our findings. Overall, 6,876 (68.8%) of the crawled websites
collected data from visiting browsers (as first- or third-parties) that could be
used for browser fingerprinting. We refer to such websites as fingerprinting web-
sites; of course, despite the name, the fingerprinting websites might not actually
be using the collected data for fingerprinting.

Fingerprinting is most commonly performed by third-party sites; 84.5% of
the 6,876 sites collecting data sent it only to third-parties. Of the rest, 2.4% were
exclusively first-party fingerprinters, with the other 13.1% using both first- and
third-party data collection. Over the 6,876 fingerprinting websites, data was sent
to an average of 3.42 domains. The largest number of different data-collecting
websites to which data was sent for a single visited website was 42.

Fingerprinting websites collected an average of 1.75 KB of data. The third-
party websites that collected the most data were yandex (2.9 MB), optimizely
(2.8 MB) and casalemedia (2.1 MB). Figure 2 shows the top 10 third-party web-
sites in terms of collected data volume for a single visiting browser.

Of the attributes we can automatically detect, the three most frequently
collected were: screen/browser resolution, language, and charset (i.e. charac-
ter encoding). We found that fingerprinters collected, on average, 5 of the 17
pre-populated attributes. Figure 3 summarises the 10 most frequently collected
attribute types. The most widely used fingerprinting third-party was google-
analytics10 (see https://github.com/fingerprintable for a complete list of finger-
printing third-parties); google-analytics provides web analytics as well as other
web-based services to websites. DoubleClick11 (Google’s online advertising ser-
vice) was the website that collected the largest volume of data overall.

As noted above, amongst the collected data we were able to identify 284
fingerprinting attributes, which we divided into six categories (see Table 1). The
full list of 284 attributes can be found in Appendix B.

10 https://analytics.google.com.
11 https://www.doubleclickbygoogle.com.

https://github.com/fingerprintable
https://analytics.google.com
https://www.doubleclickbygoogle.com
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Fig. 2. Top 10 fingerprinters in terms of collected data volume per browser

Table 1. Summary of identified fingerprinting attributes

Attribute type WebGL Features Media Miscellaneous Input/Output Network Total

Count 114 64 41 35 20 10 284

Fig. 3. Top 10 collected attributes

5 Analysis

Processing Collected Data. The crawler logged every website that relayed
data if one, or more, of the 17 pre-programmed attributes were detected. We
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examined random samples of the collected data to identify the presence of any
false positives. We found some HTTP messages that contained data that were
incorrectly matched with one of the 17 attributes. We wrote a script to remove
such records (e.g. if the string 1280088.jpeg matched with the screen resolution
width 1280). This filtering reduced the number of false positives. However, in
general, identifying false positives (if any) in the filtered data is non-trivial since
the ability to fingerprint browsers typically depends on both the number and type
of collected attributes. For example, Mowery et al. [28] have demonstrated that
the canvas API alone could be enough to fingerprint a browser, and Laperdrix
et al. [20] demonstrated a seemingly successful method of fingerprinting based
on a specific set of just 17 attributes.

Undetected Fingerprinting. As noted in Sect. 3.2, the crawler only visited
the homepages of the 10,000 websites. Websites we reported as not deploying
browser fingerprinting might nevertheless still be doing so on other pages. More-
over, the attribute collection reported here was unprompted (i.e. no clicking,
cursor movements or typing was involved) except for loading of the web page.
Through manual visits to selected websites, we found that some websites only
cause the browser to send fingerprinting attributes when there are further inter-
actions. Moreover, some websites only retrieved attributes when a user submits
a form or logs in, and such cases would be too complex (if not impossible)
to capture automatically. The focus of this study is fingerprinting that targets
everyone, including those engaged in casual browsing.

Prevalence of Fingerprinting. Our study confirms the findings of Englehardt
and Narayanan [10] that fingerprinting is commonplace, at least by widely-used
websites, and yet there are a relatively small number of entities actually collect-
ing and processing attributes (mainly third-party trackers). Indeed, the top five
third-party fingerprinting domains (see Fig. 4) are all part of a single company,
Google Inc. This finding is consistent with Libert [23], who found that 78.07%
of the top one million websites send data to a Google-owned domain.

We found that 68.8% of the top 10,000 websites are potentially engaged
in fingerprinting, although previous studies yielded rather different results. For
example, in 2013, Nikiforakis et al. [31] found that only 0.4% of the top 10,000
websites deployed fingerprinting. A year later, Acar et al. [1] reported that 5% of
the top 100,000 websites deployed browser fingerprinting using the canvas API.
It thus seems likely that both the prevalence of browser fingerprinting and the
number of attributes being collected for this purpose have significantly increased.

Fingerprinting Attributes. We attempted to find the fingerprinting
attributes reported by Alaca et al. [5] and the BrowserLeaks website in the col-
lected data, including attributes not in the list of 17 attribute types detectable
by the crawler. This gave us an indication of the range of attributes that are
collected in the real world, as opposed to those discussed in the literature, and
also helped us improve the functioning of the add-on described in the Sect. 7.
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Fig. 4. Top third-party fingerprinting domains

As reported above, we were able to identify the collection of 284 attributes,
a much larger number than those reported by previous studies. This is partly
explained by the fact that previous studies have searched for a smaller number
of attributes; for example Eckersley [9] and Cao et al. [8] looked for just 10 and
53 respectively. The significantly higher number we found also seems likely to be
a result of the growing use of browser fingerprinting [2,31], and the fact that we
monitored the HTTP messages transmitted between visited websites and poten-
tial trackers as opposed to detecting the presence of pre-identified fingerprinting
scripts, as previously widely performed. Most of the attributes we were able
to identify are collectable by BrowserLeaks.com. However, BrowserLeaks can
also collect many attributes that we did not find any websites to be collecting,
including many of the browser features collectable by Modernizr12.

Deployment of HTTPS. Some fingerprinting websites do not use HTTPS to
send the fingerprinting attributes which are thus transmitted in plaintext; this is
a potentially significant user privacy threat. Of the 1,914 distinct fingerprinters
we detected, as many as 683 used only HTTP for attribute transmission, 274
mixed use of HTTP and HTTPS, and the remaining 957 used only HTTPS.
That is, 50% of the fingerprinting websites used HTTP at least in some cases
for transmitting what could be construed as personally identifiable informa-
tion. Seemingly, the use of HTTP is more common in less popular websites, as
Merzdovnik et al. [25] reported that as many as 60% of the top 100,000 websites
performing fingerprinting used HTTP. We identified a fingerprinting website that

12 A JavaScript library that help websites detect the availability of css and html5
features in a visitor’s browser https://modernizr.com.

https://modernizr.com
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used the WebSocket protocol13 as well as HTTP. These results apply only to the
use of HTTP/HTTPS for transmitting browser attributes, not to whether or not
the visited website uses HTTPS.

Fingerprint IDs. Some websites cause a browser to send a value that is explic-
itly labelled fingerprint or fp, along with fingerprinting attributes. These values
are typically strings of alphanumerics that appear to function as platform/user
identifiers. Evidently, some first- and third-party trackers share such user iden-
tifiers [12], allowing them to compile extensive profiles of users. This also means
that a website or a tracker could acquire user- or platform-related information
without any prior interaction with that user. Such ID-sharing practices clearly
make browser fingerprinting-based tracking more privacy-threatening.

6 Relationship to the Prior Art

Our study, like that of Libert [23], examined HTTP requests; however, whereas
Libert examined only third-party tracking, we also considered first-party track-
ing, i.e. by the visited website itself. Moreover, we focussed on browser fin-
gerprinting and not on tracking via cookies, a topic that has been extensively
examined in the prior art (e.g. Felten et al. [13], Krishnamurthy et al. [19] and
Mayer et al. [24]). A further difference between the work described here and
several previous studies, including that of Englehardt et al. [10], is that they
examined the fingerprinting scripts while we examined the data relayed back to
server via HTTP. Most significantly, and as discussed in Sect. 5, we detected a
much higher level of browser fingerprinting than previously reported; indeed, our
results suggest that fingerprinting is becoming ubiquitous.

Given that this is a rapidly changing and evolving area, it is important to
repeat studies frequently, and so one contribution of our work is to reveal the
current state of the art. We do not claim that the approach we have adopted
is better than other approaches, but it does have the advantage of being based
purely on the data itself, and not on the many and various scripts that might
be used to fingerprint browsers. Our study has enabled us to give an up to date,
fairly comprehensive, and large-scale list of the attributes being used in practice
for browser fingerprinting.

7 Browser Add-on

Overview. As part of the research described here, we developed Fingerprint-
Alert14, a browser add-on compatible with desktop versions of Chrome and Fire-
fox for both Windows and macOS. Based on the preliminary crawling described
in Sect. 3.3, we programmed the add-on to detect the same 17 attributes. It is
13 It is a relatively new full-duplex TCP communication protocol [14].
14 https://chrome.google.com/webstore/detail/ielakmofegkdlpnlppfikmkbceajdofo

https://addons.mozilla.org/en-US/firefox/addon/fingerprintalert.

https://chrome.google.com/webstore/detail/ielakmofegkdlpnlppfikmkbceajdofo
https://addons.mozilla.org/en-US/firefox/addon/fingerprintalert
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activated whenever a web page is loaded, and checks whether any of these pre-
specified attributes are being relayed back to a web server. If the add-on detects
such activity, it displays an alert that includes both the sending and receiving
URLs. The add-on also provides a detailed report of detected activities, includ-
ing data relayed and the corresponding destination(s). Finally, the add-on offers
a user-selectable option to automatically block detected fingerprinting attempts.
If selected, an HTTP message including any of the monitored attributes will be
blocked from being relayed back to a remote server. Despite only detecting 17
attributes, these attributes are typically transmitted alongside other attributes
which are also blocked, given that they are in the same HTTP message.

Blocking Feature. Websites typically send collected data in a series of HTTP
messages, and FingerprintAlert blocks those messages that contain at least one
the 17 attributes. We found that these attributes are typically transmitted in
the same HTTP message as a large number of other fingerprinting attributes,
which are also blocked as a result.

As with any add-on that interferes with browser behaviour, the blocking
feature of FingerprintAlert might cause unexpected results or even break some
websites. To ensure it does not cause significant usability issues, we tested it on
the 50 most visited websites from our list. We enabled the blocking feature, and
spent around two minutes on each website performing actions such as signing
up, logging in and clicking on links. During the tests we did not observe any
unexpected behaviour or errors except for some glitches on two websites (e.g.
unable to load support chat window). Nonetheless, in the unlikely event that
the add-on damages a user’s experience at a website, the blocking option or the
notifications option can easily be disabled. The add-on will continue to record
detected fingerprinting attempts even if both these options are disabled.

Challenges. Detecting newer or obscure fingerprinting attributes is an obstacle
that faces all privacy add-ons [10]. Moreover, websites could choose to conceal
transmitted attributes, e.g. using encryption, or use fingerprinting attributes
that are not publicly known. Additionally, it is difficult to automatically detect
all fingerprinting attribute values, as they may be similar to other data or have
no specific set of values. On the other hand, detecting and examining scripts
executed on websites is likely to be hindered by changes in code, syntax and
execution. For that reason, the add-on notifies the user if any HTTP message
sent to a server is found to contain one or more of the selected set of 17 attributes.

Other Add-ons and Future Improvements. The add-on complements,
rather than replaces, other add-ons that mitigate fingerprinting, such as
those that monitor and block fingerprinting scripts (e.g. Ghoesrty15 and Pri-
vacy Badger16). The main purpose of our add-on is to make users aware of
15 https://www.ghostery.com.
16 https://www.eff.org/privacybadger.

https://www.ghostery.com
https://www.eff.org/privacybadger
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fingerprinting attempts as they happen and the identity of domains collecting the
fingerprinting data, and as a result increase their awareness of how widespread
such practices are. The results of our study could also help in developing new
tools designed to thwart fingerprinting. In the future, we aim to improve Fin-
gerprintAlert by increasing the number of automatically-detectable attributes.
This can be achieved by further in-depth examination of the formats and val-
ues of attributes that are currently undetectable. Since the crawler is based
on the add-on, any future crawls would also be made more effective by such
improvements.

8 Discussion and Conclusions

Cookies are familiar to many users, especially with the introduction of regula-
tions on their use, such as the so-called cookie law17 covering tracking whether
using cookies or any other technology. These regulations have caused many web-
sites to announce the use of cookies. However, while users can disable local stor-
age of cookies, cookies can be selectively deleted, and cookies expire, browser
fingerprinting is virtually outside of user control and is much more permanent;
it is thus significantly more threatening to user privacy.

Many authors, e.g. Nikiforakis et al. [30] and Torres et al. [37], have described
means of reducing the effectiveness of fingerprinting through browser add-ons
or by adjusting user-configurable browser settings. Previously described add-
ons typically either hide certain attributes or fabricate their values. While such
add-ons can be helpful, they also have well-known limitations; exhibiting an
unrealistic set of attributes values is also fingerprintable [31] and could negatively
affect the browsing experience (e.g. if screen resolution values are manipulated).

We have shown that browser fingerprinting is being conducted on a signifi-
cantly larger scale than previously reported, involving the transmission of large
volumes of browser and device-specific data to trackers. We also reported on
the large number of fingerprinting attributes collected. As other authors have
described, browser fingerprinting has significant negative implications for user
privacy, and it is therefore important that the web user community is made
aware of its prevalence and potential effectiveness. To this end we have devel-
oped FingerprintAlert, that informs users when fingerprinting is occurring and
can also block it. If web user privacy is to be preserved, fingerprinting technol-
ogy needs to be made user-controllable so users can limit the degree to which
they are tracked. Our browser add-on contributes to this by providing users
with the option to block browser fingerprinting. In the longer term it may be
necessary for regulators to examine ways of limiting the degree to which users
are tracked using fingerprinting, and/or for browser manufacturers to find ways
of developing browsers that limit how easily one user can be distinguished from
another.

17 http://ec.europa.eu/ipg/basics/legal/cookies/index en.htm [accessed on 14/04/
2018].

http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm
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Ethical Issues. Clearly any experiment involving real world websites raises
potential ethical issues. However, no data relating to individuals were accessed,
no vulnerabilities in websites were discovered or exploited, and all websites were
accessed as intended by their providers. Websites were crawled only once, except
in cases of a crawler crash where an additional visit was required. All the results
are publicly available, as described in Sect. 4.

Appendix

A Crawling Components and Environment

A.1 Prepopulated List of Attributes

Resolution, OS, OS Version, User-Agent, Browser Name, Browser Version,
WebGL Renderer, WebGL Vendor, WebGL Version, GPU, GPU Vendor,
Installed Plugins, Language, Geolocation, City, IP Addresses, and Charset.

A.2 Crawler Software Components

Component Details

Browser add-on FingerprintAlert 1.0

Programming language Phython 3.6.3

Automation tool Selenium 3.8.1

A.3 Computing Environment

Component Details

Device MacBook Pro (10.1.1)

OS MacOS Sierra 12.1

Browser Chrome 62.0.3202.94

B Attributes Collected by Fingerprinters

B.1 WebGL

aliased line width range, aliased point size range, alpha bits, angle instanced
arrays, antialiasing, blue bits, depth bits, experimental-webgl, ext blend min
max, ext disjoint timer query, ext frag depth, ext shader texture lod, ext srgb, ext
texture filter anisotropic, fragment shader high float precision, fragment shader
high float precision range max, fragment shader high float precision range min,
fragment shader high int precision, fragment shader high int precision range
max, fragment shader high int precision range min, fragment shader low float
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precision, fragment shader low float precision range max, fragment shader low
float precision range min, fragment shader low int precision, fragment shader
low int precision range max, fragment shader low int precision range min, frag-
ment shader medium float precision, fragment shader medium float precision
range max, fragment shader medium float precision range min, fragment shader
medium int precision, fragment shader medium int precision range max, frag-
ment shader medium int precision range min, green bits, max 3d texture size,
max anisotropy, max array texture layers, max color attachments, max com-
bined fragment uniform components, max combined texture image units, max
combined vertex uniform components, max cube map texture size, max draw
buffers, max fragment input components, max fragment uniform blocks, max
fragment uniform components, max fragment uniform vectors, max program
texel offset, max render buffer size, max samples, max texture image units, max
texture lodbias, max texture size, max transform feedback interleaved compo-
nents, max transform feedback separate attribs, max transform feedback sep-
arate components, max uniform block size, max uniform buffer bindings, max
varying components, max varying vectors, max vertex attribs, max vertex output
components, max vertex texture image units, max vertex uniform blocks, max
vertex uniform components, max vertex uniform vectors, max view port dims,
min program texel offset, oes element index uint, oes standard derivatives, oes
texture float, oes texture float linear, oes texture half float, oes texture half float
linear, oes vertex array object, performance caveat, red bits, renderer, shading
language version, stencil bits, unmasked renderer webgl, unmasked vendor webgl,
vendor, version, vertex shader high float precision, vertex shader high float preci-
sion range max, vertex shader high float precision range min, vertex shader high
int precision, vertex shader high int precision range max, vertex shader high int
precision range min, vertex shader low float precision, vertex shader low float
precision range max, vertex shader low float precision range min, vertex shader
low int precision, vertex shader low int precision range max, vertex shader low
int precision range min, vertex shader medium float precision, vertex shader
medium float precision range max, vertex shader medium float precision range
min, vertex shader medium int precision, vertex shader medium int precision
range max, vertex shader medium int precision range min, webgl, webgl com-
pressed texture s3tc, webgl compressed texture s3tc srgb, webgl debug renderer
info, webgl debug shaders, webgl depth texture, webgl draw buffers, webgl lose
context, webgl2, webkit ext texture filter anisotropic, webkit webgl compressed
texture s3tc, webkit webgl depth texture, webkit webgl lose context.

B.2 Features

adblock, application cache, background size, blending, bluetooth, border image,
border radius, box shadow, budget, canvas winding, credentials, css animations,
css columns, css gradients, css reflections, css transforms, css transforms 3dc, css
transitions, drag and drop, flex box, flex box legacy, font face, generated content,
get battery, get game pads, get user media, hash change, history, hsla, img hash,
inline svg, installed fonts, installed plugins, java enabled, js, media devices, mime
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types, multiple bgs, opacity, permissions, post message, presentation, register
protocol handler, request media key system access, request midi access, rgba,
send beacon, service worker, shockwave flash, smil, svg, svg clip paths, text
shadow, towebp, unregister protocol handler, usb, vibrate, web sql database,
web workers, webkit get user media, webkit persistent storage, webkit temporary
storage, webrtc, websockets.

B.3 Media

ac-base latency, ac-channel count, ac-channel count mode, ac-channel inter-
pretation, ac-max channel count, ac-number of inputs, ac-number of outputs,
ac-sampler ate, ac-state, an-channel count, an-channel count mode, an-channel
interpretation, an-fft size, an-frequency bin count, an-max decibels, an-min deci-
bels, an-number of inputs, an-number of outputs, an-smoothing time constant,
audio ogg, avc1.42c00d, avc1.42e01e (mp4a.40.2), codecs1, dynamiccompressor,
h264, hybridoscillator, mp3, mp4a.40.2, mpeg, opus, oscillator, theora, video
mp4, video ogg, vorbis (ogg), vorbis (vp8), vorbis (vp9), vorbis (wav), wav,
webm, wm4a.

B.4 Miscellaneous

app code name, battery level, charging, charging time, charset, collect time,
cookie enabled, cpu cores, discharging time, do not track, geolocation, graphics
card vendor, hardware concurrency, has timezone mismatch, incognito, indexed
db, js heap size limit, languages, local storage, navigator, online, open data base,
platform, product, product sub, referrer, renderer, session storage, timestamp,
timezone, total js heap size, used js heap size, user agent, vendor, vendor sub.

B.5 Network

downlink, effectivetype, is proxied, is tor, is using tor exit node, local ip,
onchange, public ipv4, public ipv6, rtt.

References

1. Acar, G., Eubank, C., Englehardt, S., Juárez, M., Narayanan, A., Dı́az, C.: The
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Abstract. Continuous risk monitoring is considered in the context of
cybersecurity management for the Industrial Internet-of-Thing. Cyber-
risk management best practice is for security controls to be deployed and
configured in order to bring down risk exposure to an acceptable level.
However, threats and known vulnerabilities are subject to change, and
estimates of risk are subject to many uncertainties, so it is important
to review risk assessments and update controls when required. Risks are
typically reviewed periodically (e.g. once per month), but the accelerat-
ing pace of change means that this approach is not sustainable, and there
is a requirement for continuous monitoring of cybersecurity risks. The
method described in this paper aims to alert security staff of significant
changes or trends in estimated risk exposure to facilitate rational and
timely decisions. Additionally, it helps predict the success and impact
of a nascent security breach allowing better prioritisation of threats and
selection of appropriate responses. The method is illustrated using a sce-
nario based on environmental control in a data centre.

Keywords: Internet of Things · Industrial IoT
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Risk analysis

1 Introduction

The US National Institute for Standards and Technology (NIST) defines risk
monitoring as “maintaining ongoing awareness of an organisation’s risk envi-
ronment, risk management program, and associated activities to support risk
decisions” [6]. Nevertheless, it is not unusual for risk monitoring to be done as a
discrete activity, once over a period of one, or even several, months with a low
level of integration with the operational processes.

The Industrial Internet of Things (IIoT) present important concerns regard-
ing cyber security including risks where consequences go beyond the realm of
information systems to interact with the physical world. Therefore, it is advan-
tageous to have timely information about the possible development of a threat
scenario.
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Suspicious events that can be detected during operation occur frequently and
can overload Security Operations Centre (SOC) personnel with data. Introduc-
ing a risk-based approach to automated threat detection would allow prioritising
security resources and improve decision making. Many methods fail to do this
by focusing only on the threat and on the direct consequences, detaching the
analysis from the operational impacts, and from the business context. The solu-
tion proposed in this research contributes to improving IoT cyber security by
monitoring risks continuously. The main idea is to provide a holistic view of the
potential impacts of an attack considering how the consequences at an opera-
tional level can affect business processes and strategic objectives. The aim of
developing this method is to provide relevant, accurate and timely information
about cyber-security risks in IoT systems.

While the focus of the method is to adjust risk indicators in near real time,
it is necessary to have a good level of understanding about the variables that
will be used in the calculations.

The method considers a variety of inputs divided in two groups: dynamic
and static. Dynamic inputs will provide (near) real time information about the
state of the system to a risk calculation engine that will update the key risk
indicators. This should shorten response times for allocation and adjustment of
security controls. Continuous updates to the risk treatment plan will procure a
better integration between operational processes, risk management, and security
processes.

As one of the main “blind-spots” in IoT security is the physical layer, it is
proposed to use anomaly detection techniques to monitor variables that can be
correlated with possible security issues. Examples are electricity consumption,
server performance, and other side-channel information. Establishing direct cor-
relations between an anomaly and its root cause will be challenging and in many
cases it will require the involvement of an expert. Also, it may be more difficult
to obtain these data compared with other dynamic inputs such as software and
network monitoring, because not all of them will be necessarily provided by
already available detection tools. Addressing this is among the main challenges
that this research project will face.

At the current stage of this research, a conceptual model has been developed
with the potential to be adapted to different sorts of IoT systems. Section 2 of
this paper explains the problem and current gaps that are addressed. Section 3
gives an example of a use case to provide a setting for explaining the method.
Section 4 gives a the general description of the method. Section 5 provides a
threat scenario based on the case described in Sect. 3 and explains how the
method would work in this case. Section 6 mentions relevant considerations and
future challenges of this project and Sect. 7 provides the conclusions.

2 Outline of the Problem

Although there are many expectations about introducing new technologies in
the industrial control system domain there are also many legacy systems that
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cannot be easily replaced. These systems are still widely used and deployed and
will need to coexist with the concept of Industry 4.0. One important concern
is that their original design did not consider security sufficiently for the current
levels of connectivity. Industrial Control Systems (ICS) is closely related to IoT
in the sense that they both fit within the definition of an “ecosystem of inter-
connected devices and services that exchange and process data” [9]. Throughout
this paper, the term IoT will be used under the understanding that Industrial
Control Systems fit among this definition. Some authors will refer to these sys-
tems as Industrial IoT (IIoT). Examples of use cases in IoT can be found but
are not restricted to the following industries [21]:

– Transportation
– Health-care
– Government
– Public safety and military
– Retail and hospitality
– Food and farming
– Manufacturing and heavy industry
– Entertainment and sports
– Energy and utilities
– Finance and banking
– Education
– Information and communications technology

In most of these industries, performance, time to market and cost pressures
have been a priority over cyber-security [21]. The lack of standards and regula-
tions, and poor security awareness of manufacturers and users has not helped
to improve this situation. In the past (and in some cases, still in the present)
electro-mechanical or cyber-physical systems based their security mostly on iso-
lation and perimeter security. The circumstances have changed and the vulnera-
bility of these systems has increased. Even critical systems that are isolated from
public networks present risks. For example, the malware Stuxnet, discovered in
2010, was allegedly infiltrated to an Iranian nuclear plant through an USB drive
connected to one of the computer terminals. This terminal was connected to the
control system and was used as foothold to spread the malware to the Siemens
PLCs of the plant. This is an example of the “air gap myth” which proves that
isolation by itself is insufficient.

Although attacks on IoT systems are nothing new, the amount of connected
IoT systems currently exceeds the human population [10,14], giving more oppor-
tunities to attackers. An industrial report released this year based on the study of
different attack vectors in industries reveals that in 82% of the cases an internal
attacker could have penetrated the industrial system from the corporate net-
work. Significant flaws in network segmentation and separation of privilege were
also found, among many other vulnerabilities [25]. Attacks on Symantec’s IoT
honeypots almost doubled in less than a year [29]. According to Cisco, no indus-
try vertical is safe from cyber-attacks [3] and it is believed that IoT devices
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“are becoming the attack infrastructure of the future” [1]. Cyber-crime has
become to be known as a profitable business and cyber-weapons also have started
to be commonly used by nations for surveillance and national intelligence. Smart
TV’s have already been known to be part of plans to develop tools for espi-
onage, and successful cases of sabotage of national critical infrastructure have
been attributed to nation states.

Because IoT systems are based, in part, on computer and network systems,
they inherits all their security issues, as well as presenting additional cyber-risks.
Their complex architecture increases their attack-surface [16,21] by the addi-
tion of devices that interact with the physical world. The variety of hardware
involved will have distinctive requirements and constraints which makes security
more challenging. In many cases, typical security mechanisms could be not fea-
sible or be insufficient [26]. Limitations in memory and processing capabilities,
as well as real time response requirements present constraints to encryption and
authentication processes. Also, special attention regarding physical security is
required as often the systems have components distributed in a wide area. The
use of wireless communications has an inherent risk enhanced by the variety
of protocols and enabling technologies. There are fewer standards, regulations,
and overall less experience in IoT security [21] and manufacturers tend to have
less knowledge in the matter than professionals from the software development
world [4]. Whereas in information systems the main concern usually is related to
confidentiality, in IoT systems implications of a cyber attack go beyond informa-
tion theft. Risks can include also damage of physical assets, and even threat to
human life [26]. For example by compromising the integrity or availability of crit-
ical systems such as life support equipment or systems working in safety-critical
environments.

Currently, an important amount of available literature proposes solutions for
particular aspects of IoT security such as authentication, secure communica-
tions, and attack modelling. These solutions are relevant, but not sufficient by
themselves to provide acceptable levels of security. Security issues of one layer
of an IoT system cannot be solved in another [16]. This means that different
solutions need to be integrated and effectiveness monitored in the context of the
overall system.

Security should be implemented as a combination of processes, technology,
and people [6] so it is important to consider all these factors in the equa-
tion. Automated tools can help to deal with big data and recognise patterns
of behaviour, but these patterns need to be put in the context of the operational
and business processes and their objectives. The input of experts is essential to
achieve this.

Several methods have been developed for IoT cyber security risk assessments
based on existing techniques, including game theory [28], fuzzy logic [17], and
Bayesian Networks [31]. Some of these methods are general and others focus on
specific type of system. A review of 24 existing cyber security risk assessment
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methods applied for SCADA systems was done in [2] where the main opportu-
nities of improvement that were found are the following:

1. Addressing context establishment
2. Overcoming attack or failure orientation1

3. Accounting for the human factor
4. Capture and formalisation of expert opinion
5. Improvement of the reliability of probabilistic data
6. Evaluation and validation
7. Tool support

Risk analysis continues to be understood as a discrete activity, often done
using spreadsheets or other tools which are not integrated with operations and
are fed manually with data. Nevertheless, the NIST recommends transitioning
to near real time risk management [7]. With new threats and vulnerabilities
been discovered on a regular basis, it is likely that many of the data used in
a risk assessment would expire in a short period of time. This would make the
results irrelevant. Very little academic work has been done related to real time
or continuous risk evaluation.

A limited amount of research proposing dynamic or real time cyber security
risk evaluation methods has been published [12,13] but most of them are not
specific for IoT or IIoT. Other models for real time risk assessment reviewed
were mainly focused on threat and anomaly detection and did not consider the
impacts. Anomaly detection can be useful to detect threats in an IoT system
by comparing variables with a model of their expected behaviour. However, the
picture will be incomplete if this information is detached from its context. Several
publications about anomaly detection in IoT, Industrial Control, and SCADA
systems propose techniques such as machine learning [11,17,20], data mining
[24], statistical analysis [8,32], and hybrid methods [19]. The work published
by Zhang et al. [33] on incident prediction and risk assessment for industrial
control systems considers both real time processing and asset valuation, but, it
only provides proof of concept through simulation experiments on a single type
of system. In conclusion, there is a lack of risk assessment methods for IoT that
are both holistic and dynamic and that have been tested in different scenarios.

3 Example of a Risk Scenario in IoT System

A simplified temperature control system will be used to illustrate the method.
Temperature control is use case that can be found in domestic, commercial,
and industrial environments. Nevertheless, in different domains the system will
typically present different characteristics, types of technology, and architectures.
This research, rather than in IoT domestic or consumer devices, is focused on
Industrial Systems. Temperature control can have different purposes in indus-
tries. For example, avoiding products such as food and chemicals to decompose

1 This means basing the analysis only on known attack mechanisms and failure modes.
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Fig. 1. Diagram of temperature control system

or degrade, or allowing different process to perform in optimal conditions. A tem-
perature control malfunction will have different consequences depending on the
business processes involved. Understanding these consequences is crucial when
assessing risks, and also a key part of finding possible signals of compromise.

The scenario developed in this example corresponds to the temperature con-
trol system for a Data Centre, and is shown in Fig. 1. The scenario was validated
with an engineer that works in a consultancy in Chile who has over ten years
of work experience in configuration, installation, and maintenance of Industrial
Control Systems.

A data centre, ideally should operate in an environment with a temperature
between 24 and 27 ◦C [23]. This includes a margin of error, as servers typically
can tolerate up to 30 ◦C. At higher temperatures, servers do not achieve their best
performance, and their fans will need to spin at their maximum rate, increasing
power consumption. To avoid the temperature surpassing an established limit,
Direct Digital Control (DDC) devices are used which are connected directly to
temperature sensors and to the control valves for the heating and cooling sys-
tems. The controllers communicate with a Building Management System (BMS)
that runs in an application server. A local PC located in the same premises is
in charge to run the control and monitoring software interface. The BMS sends
alerts via email and SMS messages when an event requires attention.

Figure 2 shows a diagram from the Industrial Internet Reference Architecture
(IIRA) [18] that will be used to describe the system based on the definition of
three tiers. The edge tier collects data from the real world through the proximity
network where sensors and actuators are connected. The platform tier exchanges,
consolidates, and processes data from the other tiers. This can include commands
generated in the enterprise tier to control variables in the edge tier. The enter-
prise tier implements domain-specific applications and provides user interfaces.
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Fig. 2. Three tier architecture pattern from the IIRA implementation viewpoint

The following specification represents the system “as is”, before applying any
risk treatment:

Edge Tier: comprises sensors, actuators and DDCs. The sensors and actuators
are hard wired to the controllers providing inherent trust. They use electrical
signals to communicate. Thus, they are not “smart”. The DDCs have a keyboard
allowing authentication through a 4 digit security code. In the perimeter network,
the protocol used by the controllers is Modbus (other protocols commonly used
in these systems are Bacnet and Lonworks). The controllers are connected to a
gateway that converts the signals to a standard internet protocol (TCP/IP) and
connects to a Local Area Network (LAN).

Platform Tier: comprises the BMS software installed in an application server
that processes operational data. The access network which connects the Platform
tier to the Edge Tier is the same as the service network, corresponding to the
LAN. The system is insulated from other networks for security reasons, except
for the connection to an email server that allows sending alerts to operators in
case of certain events and the connection to a service that sends SMS alerts.
There are no firewalls or any network monitoring and detection mechanisms in
place. The network server has separate cards for the LAN and other networks.

Enterprise Tier: comprises a monitoring and control software running in a PC
terminal. Authentication is done through user and password without enforcing
a secure credentials. There are no defences against brute force attacks in place.
Privilege separation options include user, administrator and engineer roles. There
is no remote connection, therefore the software only can be accessed within the
perimeter. Remote monitoring is based only on the alerts sent by the BMS
system.

Physical Security: authorised personnel is authenticated through an ID card,
a 4 digit password, and their digital print. Special authorisation is required
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for visitors and contractors which need to register. Although they should be
accompanied by an authorised member of staff at all times, some contractors
might be left alone for small periods of time, as sometimes they require to work
there for several hours. The hardware of the control systems has often physical
ports open. Personnel only visit the data centre when it is necessary, but there
is nobody permanently in the area.

Cyber-security policies and practices: before the risk assessment, the BMS
was considered in the cyber-security policies of the data centre. Some isolated
cyber-security controls were in place, such as some degree of authentication, and
the control for physical access described. There is not a clear differentiation of
roles and privileges and most users just share credentials. This includes contrac-
tors. Network security is based only on isolation, and for this reason malware
detection is not considered important. At the enterprise platform level the soft-
ware registers and stores event logs but they are not monitored. Regarding the
configuration of the temperature control settings, there is no registration of any
changes or events and there are no configuration management policies in place.
Backups of the system are done every six months, but there are no assurance
processes to audit this or any other cyber-security practice.

4 Description of the Method Proposed

This project aims to make use of different sources of data to analyse cyber-risks
in a continuous basis, integrating this activity with the operational process. The
objective of the method is to generate useful and meaningful information for
decision makers. A “decision maker” is any actor that is in position to make
a decision that can affect security. These decisions can be related to business
operations that can cause collateral effects in security or to security management
itself. Figure 3 shows a general view of the method. The Security Operations
Centre (SOC) which is the area that monitors and deals with security issues
on an organisation will be provided with a more comprehensive view of attack
vectors, by including IoT and operation technologies (industrial systems) in their
scope. They will also be able to establish priorities for alerts regarding to the level
of risk involved. The risk analysts will be allowed to monitor risks continuously,
evaluating the effectiveness of security measures and control, and providing up-
to-date inputs to decision making processes that involve or affect security.

While the whole purpose of risk management is to improve decision making,
the landscape changes too quickly to have a picture of the situation without

Fig. 3. Illustration of the method
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expecting it to vary in a short time. Different internal and external factors, will
continuously shape the degree of risk. New information can modify the levels
of uncertainty regarding occurrence of an event, and also internal and external
changes can affect risks factors. This means that security plans based on previous
evaluations may become quickly obsolete. In the case of IoT and IIoT, there
are more attack vectors and less visibility of the system from end-to-end in
comparison with IT systems. Thus, analysing, monitoring and managing risks is
critical.

Figure 4 shows a conceptual model describing the main building blocks of
the method proposed. The idea is that the results should generate decisions that
affect the risk treatment plan of the organisation, modifying the situation of the
security levels of the IIoT system. The inputs for the risk calculations will come
from three main sources: detection tools, system’s variables, and a knowledge
base. The first two type of sources are categorised as “dynamic inputs” and
would be transmitted in a continuous stream. The data that is stored in the
knowledge base is categorised as “static inputs” which either remains unchanged
or is subject to eventual updates. The risk calculation engine will process the
information about threats, vulnerabilities and impacts and issue alerts in the
event of any condition that might change the risk scores.

Fig. 4. Building blocks of the method

4.1 Dynamic Inputs

These inputs are captured in run time from tools for malware detection, intrusion
detection, network traffic analysis, and logs monitoring, and threat intelligence
sharing. An anomaly detection tool is in charge of analysing data that can reveal
signs of threats, including operational data. A module based on a SIEM software
will be used to process the dynamic inputs that will feed the risk calculation
engine. The anomaly detection tool will help detecting issues related to the
edge tier.

Currently, there are existent commercial tools for anomaly detection based
on machine learning. While normal operation conditions of the system and
business rules could, in theory, eventually be learned by artificial intelligence
(AI), this will need a training period and stable conditions over time. There-
fore, known business rules and thresholds should be previously set. Also it is
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necessary to include expert’s knowledge regarding other variables like depen-
dencies between processes, impacts at different levels, regulations and strategic
decisions. Therefore, while machine learning and AI techniques will contribute
to anomaly detection, it is proposed to combine it with other methods. It is not
aimed in this project to work with tools that work following a 100% unsupervised
dynamic. The human factor and experts’ knowledge are elements that require
to be acknowledged in risk management [2].

4.2 Static Inputs

Static inputs correspond to the data that cannot be collected online. The reasons
could be that there are no tools available to collect this information on real time
or, that the data just does not change continuously. For example, the valuation
of an asset, quantification of impacts, and risk acceptance criteria. These inputs
will be provided during the set up process of the tool. The data will be stored in
a knowledge base and updated in a periodic basis or after events. An example of
such events is a change in the risk appetite of the organisation. The provenance
of this data will be diverse, some inputs will be loaded from tools or data bases
and others manually. Examples of inputs stored in the knowledge base are: asset
inventory, asset and impact valuation, initial threat quantification, traceability
between threats and assets, and between processes and business objectives, and
definition of normal and abnormal states of operation.

4.3 Risk Calculation Engine

The risk calculation engine would be in charge to process the inputs and gen-
erate the results. This engine will be implemented in a software tool. The
risk calculation engine would be based on different standards to quantify vul-
nerabilities, threats, and impacts, the three variables that define a cyber-risk.
The FAIR method (Factor analysis of information Risks) [30] is a useful start
point to understand the different factors that are involved in a cyber-risk. This
method defines the vulnerability as a combination of the “threat capability”,
the resourcefulness of the threat agents to act against an asset, and the “con-
trol strengths”, the probability that the current controls resist the attack. While
this definition is conceptually useful, the quantification of these two factors, as
defined by this method can present problems. Both are defined according to
their position within a probabilistic distribution of the threat population, mean-
ing that it is necessary to be able to make plausible assumptions about the
possible threat agents. The Common Vulnerability Scoring System (CVSS) [5],
provides a score from zero to ten depending on eight variables which are related
to the vulnerability. These variables are: attack vector, attack complexity, privi-
leges required, user interaction, scope, confidentiality, integrity, and availability.
Additionally, temporal and environmental metrics help giving a score are used
for more accuracy within an specific context.

Different methods were reviewed for quantification of threats. Some methods
base the probability of a threat event in the frequency of occurrence [15,30].
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This approach can be plausible in environments that maintain similar conditions
over time. Nevertheless, in cyber-security assuming that threats will behave in
the future following the same trend they have done in the past is dangerous. It has
to be considered that often new attack mechanisms and zero-day vulnerabilities
appear. The model proposed by SANDIA [22] analyses and scores threats by
building a profile according to seven different attributes: intensity, stealth, time,
technical personnel, cyber-knowledge, kinetic knowledge, and access. Different
combinations of this attributes are used to describe 8 different threat profiles,
where 1 represents the highest level of threat and 8 the lowest.

To calculate the impact, it is common transforming every consequence into
monetary values, because it is an useful way to add up and compare impacts
of diverse nature, such as time loss and reputation damage, among others. As
a mean of normalising this value, it will be suggested within this method to
use a ratio between the total impact of a risk and a referential budget that the
organisation will define according to its risk appetite.

The quantification of risks done in the initial assessment would be subject
to continuous updates during operation mode. This updates will be related to
the threat analysis, which is the factor that presents the higher levels of uncer-
tainty. The threat value then, is the risk component that will be subject to change
dynamically according to the information provided by the dynamic inputs. When
events that imply possible threats are detected, they will have an effect of mod-
ifying the quantification of the corresponding threat values, and therefore, the
risk scores.

4.4 Results

Continuous re-calculations of Key Risk Indicators (KRI) will be performed in
run time for monitoring purposes, and stored in a data base for ex-post anal-
ysis. The risk analyst and SOC operator will have different views of the KRI
according to their roles. The risk analyst will be more interested in monitoring
the behaviour of the risks and evaluating the effectiveness of current controls, as
a mean to make better informed security-related decisions. The SOC operator
will be more focused on alerts and any indicator of an attack developing in any
of its stages. This is explained through an example in Sect. 5. Risks are based on
uncertainty. Thus, in the cases of an imminent attack, this is not considered a
risk but an issue. In most occasions a cyber-attack will not take place in a single
instance but it will follow a sequence of stages. Detection of an issue such as an
unauthorised access or malware presence, can help to avoid the risk of an attack
progressing into further stages, like privilege escalation, maintaining foothold,
and establishing command and control capabilities.

4.5 Initial Risk Assessment and Continuous Monitoring Dynamic

The method will consider two stages: the initial risk assessment and the continu-
ous risk assessment. In the first stage the initial KRI are calculated and the risk
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monitoring tool is configured according to the context. This activity will con-
dition the success of the continuous risk assessment. Therefore, it is crucial to
develop a good understanding of the likelihood and impacts of a breach. Different
forms and questionnaires based on standards (e.g. ISO 27005) will be developed
to capture expert’s opinion and guide the set-up process of the tool in a way
that cyber risks can be mapped with their impacts at all levels of the organi-
sation, including the business point of view. The second stage is the continuous
risk assessment which consists in the recalculation of risk scores according to the
information provided by the detection tools.

5 Demonstration of the Method Through the Example

To demonstrate how the continuous risk assessment method would work, a threat
scenario was built using the example of Sect. 3. The initial risk assessment and
tool configuration stage will consist in evaluating the system “as is”. After this,
a risk treatment plan is developed, incorporating controls to mitigate risks and
residual risks are formally accepted. Then, the continuous risk assessment process
starts.

5.1 Initial Risk Assessment and Tool Configuration

In this stage risks are identified, quantified and evaluated. It is expected that
after this assessment a risk treatment plan will be developed, incorporating con-
trols. The next stage will provide the means to monitor the effectiveness of these
measures in a continuous basis. The risk management approach will follow the
process described by the ISO27005 standard shown in Fig. 5.

Fig. 5. Overview of the risk management process, ISO27005

Context Establishment. In this stage it is defined the scope, including assets
that need protection. To illustrate the method some of the attack vectors related
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to the temperature control system will be reviewed. The assets considered in the
assessment belong to both the data centre domain and the company business
domain, because the temperature control system can be used as a bridge to other
systems. Other control systems in the data centre such as CCTV, fire alarm
system, electrical supply and UPS, as well as servers and network equipment are
included in the monitoring. Their dependencies with the temperature control
system need to be established at this point. Operational and business processes,
as well as support processes such as IT, finance, and human resources should
be considered. To quantify impacts, a series of possible consequences were listed
including damages to assets implying replacement or reparation, effort spent in
recovery, downtime, fines, and compensations to customers and third parties,
and damage in brand reputation. This last can be reflected in loss of revenue
or need to expend in marketing strategies to recover the trust of the customers.
All the impacts are quantified in monetary values. To put this value in context
according to its significance to the organisation, an impact indicator is calculated
to evaluate the impact in terms of the monthly budget that the company assigns
for cybersecurity.

The risk acceptance criteria is established to define a risk frontier depending
on the organisation’s risk appetite. Once established this frontier, any risk that is
out of limits is reviewed and included in the risk treatment plan. The decision of
retaining any risk outside of these limits needs to be formally approved by senior
management. We will suppose this company defined that any risk that is rated
medium or higher or whose potential impact exceeds a predefined value should
be reviewed. The roles involved in this risk assessment were: risk analyst, GRC
manager, SOC analyst, Security manager, data centre manager and operators,
the asset owners of all assets identified in the assessment, and senior management
(CSO, CIO, CEO).

Risk Assessment. In this stage, risks are identified, analysed, and evaluated.
The analysis process consist in understanding possible attack paths, and con-
sequences of a breach, and making plausible assumptions that allow identifying
and quantifying threats, vulnerabilities, and potential impacts. Threats and vul-
nerabilities are linked with possible assets compromised and impacts at different
levels. The likelihood is estimated based on the threat and vulnerability lev-
els, and the total impact is quantified considering the effects on the operational
processes as well as in the business.

From the analysis of the system “as is”, it was found possible that internal
personnel or a contractor could download malicious code in the computer ter-
minal using a USB drive. Thus, bridging the air-gap. The motivations of the
attacker which could be many, for example, been bribed by a competitor to
sabotage the servers. The malicious code could have different purposes, which
means that there are different risks. The present example will focus on two risks:
Risk 1 will correspond to the manipulation of the temperature to increase failure
rates of the servers and Risk 2 is related to the use of the BMS as a bridge to
access the business networks. Each of the two risks is analysed independently.
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Risk 1 was analysed obtaining a low level of vulnerability and a low level
of threat. The impact was also considered low, since the system could be easily
reset and reconfigured in the case of been compromised. As a result, this risk
was rated as low. Risk 2 was rated as medium, because, although the threat
and vulnerability were also considered low, the impact was considered high as
critical processes and data could be compromised. Both risks were evaluated by
comparing them with the risk acceptance criteria (risk frontier) concluding that
only Risk 2 needed to be included in the risk treatment plan.

Risk Treatment. After the risk assessment, a risk treatment plan is developed,
to address all the risks that exceeded the risk frontier choosing from a set of three
possible actions: reduce, avoid, or share. A fourth possible action is retaining the
risk, which can be consider under senior management approval. In the case of
Risk 2, using the BMS to access other networks, it was decided to reduce the
risk by introducing an firewall in the local network.

Tool Configuration. Residual risks are analysed and evaluated after the risk
treatment plan is put in action. The information is loaded in the knowledge
base, including the scores of all the risks identified. As Risk 2 was reduced, it is
re-evaluated and defined as low which means that it is within acceptable limits.
At this point, all the risk scores should be below the risk frontier. There could
be two reasons why some risks might not meet this condition. One is that the
control defined in the risk treatment plan has not been fully implemented yet,
and the other is that there is a formal authorisation of senior management to
retain certain risk. Each risk is linked with the events that might change the
current scores in order to start the continuous monitoring process.

5.2 Continuous Risk Assessment

In the previous stage, an initial iteration of the information security risk manage-
ment process was done. The following step consists in monitoring the risks and
perform subsequent iterations of the whole process. Through the continuous risk
assessment, it is intended that these iterations will be repeated in short intervals
of time and whenever a certain development of events requires it, rather than in
a periodic basis.

For the current example, we will imagine that a contractor introduces mali-
cious code through an USB drive in the computer terminal to change the tem-
perature control settings. The malware will work in a similar way as Stuxnet,
changing temperature setting of the DDCs and disguising this action by dis-
playing the original set values of temperature. Therefore, there will not be any
condition that triggers an alert directly related to overheating. For example, the
set value is 25 ◦C, and all the instances of the system display 25◦, but the tem-
perature will really be 50 ◦C. The malicious actions are scheduled to take place
at hours where is more unlikely to be staff on site to notice this, allowing persis-
tence of the attack and increasing the potential damage. But, while the malware
might remain unnoticed, the anomaly detection system will detect an unusual
behaviour in other processes which are linked to this. The fans of the servers will
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spin faster, increasing the electrical power consumption and the servers might
not perform in their best capacity. Considerable outliers in the energy consump-
tion levels and in the performance of the servers will trigger an alert by the
anomaly detection system. The risk calculation engine will process this informa-
tion and modify the risk indicators of all the risks that can be related to this
event, including Risk 1. An alert will be sent to the SOC operator to investigate
the situation and call for action. In parallel, another alert will be sent to the
risk analyst indicating that Risk 1 has now been rated as high. The risk analyst
will also have the information about the processes that the affected servers are
running and how they impact the business.

The previous example shows how a risk that was initially considered low
changes to a higher value dynamically, through the development of events. The
threat score is amplified when suspicious events are detected resulting in a higher
risk value. It has to be noticed that this would lead to two courses of action. First,
the SOC operator can generate an immediate response regarding remediation
and recovery actions. Second, the risk analyst will generate all the necessary
actions to develop a risk treatment plan to establish controls to avoid this risk
becoming again an issue in the future. Examples of these actions are blocking all
unused physical ports by default, restricting the privileges to download software,
and adding malware detection and stricter regulations regarding not leaving any
third party unattended in the perimeter.

6 Considerations and Challenges

The development of this method will not be exempt of challenges. There are still
unsolved issues in this project which need to be tackled in future stages of this
project for the method and tool to have a practical application.

Because IoT and IIoT systems are very heterogeneous, the method only can
be tested in a limited amount of systems. Tailoring guidelines can be provided
for adapting the method to different use cases, and it would be a matter of
further research to confirm its applicability in different contexts and scenarios.
Big data issues including processing, storage and retrieval of information will
also be a challenge, as well as the development of interfaces between tools and
normalisation of the data.

As much as there might be a lot of ground in common with regular IT
systems, this project aims to tackle the particular requirements of IIoT. One of
the challenges of this is that the amount of processes, stakeholders, dependencies
with other systems, and assets involved is bigger. Also, there might be more
expectation for these systems to have automated security controls. Nevertheless,
it must be recognised that the autonomy of any system will always be within
certain limits. Establishing these limits, mapping all the processes affected, as
well as providing appropriate rules and training mechanisms to the anomaly
detection system is part of the challenge.

False positives is a known problem of detection tools which would affect, as
well this method. It is necessary to find solutions that do not undermine the
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ability of the method to alert when there is a real threat. The user will has
the mission of calibrating the tool by identifying and giving feedback about any
misinterpretation of the data. A case management system would be a possible
alternative to support a continuous improvement mechanism for the method.
Overall, it is important to understand the data in order to avoid providing
misleading results. An example of this is the huge amount of “noise” that failed
attack attempts can cause which may lead to think that there is a developing
threat when actually according to [22] one attribute that increases the threat is,
precisely, stealth. Attacks that are easy to detect and stop might not be a threat
at all!

Another aspect is to distinguish cyber-attacks from other issues such as phys-
ical attacks or malfunctions of the system. It is considered on the best interest of
an organisation to know about any potential threat even if it is not caused by a
cyber-attack. Therefore, the detection of an issue whose causes end to be from a
different nature, rather than been dismissed, should be reported to the relevant
stakeholders. Although the scope of the method is to monitor cyber-risks, from
the risk management point of view, other types of risk can also be of interest.
For example, in [27] it is argued that physical attacks and cyber-attacks should
not be treated separately proposing 4 types of attacks: physical-only, cyber only,
cyber-enabled physical and physical-enabled cyber.

7 Conclusions

The presence of IoT in several industries and the increasing amount of cyber
threats predicts a growth in the demand for cyber security solutions. Developing
methods to maintain cyber-situational awareness through a continuous risk mon-
itoring process can support rational and well informed decisions. The approach
proposed takes into account the context of the system, as well as the business
objectives and priorities. By linking the potential threats with the impacts and
vulnerabilities it is possible to do a better prioritisation of security resources.
Shorter iterations for risk assessments will make it possible to react in a more
timely manner to changes in the environment. The underlying principle is that
risk management should not be detached from the system’s operations, it should
be integrated, since both processes serve as input to each other.

Currently there are not widely used and tested solutions to evaluate IIoT
cyber security risks in run time that include an holistic perspective of the system.
The present paper gives a general description of a solution that has the potential
of addressing several gaps of existent risk assessment approaches. Considering
the context establishment and capturing expert’s opinion is addressed on the
initial assessment and tool configuration, and subject to updates. The feedback
loop of the system requires experts to be involved in the process as well as to give
input to calibrate the method. The method also goes beyond attack or failure
orientation because it is not limited to known attack mechanisms. By including
anomaly detection and other tools it allows issuing alerts under any event that
diverts the system’s behaviour from what is consider normal. This is relevant,
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because it is not feasible to analyse all the possible attack mechanisms. The
combination of different tools to support this method, as well as the development
of the risk calculation engine as an automated tool, will allow the method to be
implemented in a practical and effective way. If decision makers are well informed
of cyber-security risks, this will allow better application of policies and control
mechanisms, improving the overall security of the system.
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