l‘)

Check for
updates

Big Data Analytics: Exploring Graphs
with Optimized SQL Queries

Sikder Tahsin Al-Amin'®) Carlos Ordonez', and Ladjel Bellatreche?

! University of Houston, Houston, USA
sal-amin2@uh.edu
2 LIAS/ISAE-ENSMA, Poitiers, France

Abstract. Nowadays there is an abundance of tools and systems to
analyze large graphs. In general, the goal is to summarize the graph and
discover interesting patterns hidden in the graph. On the other hand,
there is a lot of data stored on DBMSs that can be potentially ana-
lyzed as graphs. External graph data sets can be quickly loaded. It is
feasible to load data quickly and that SQL can help prepare graph data
sets from raw data. In this paper, we show SQL queries on a graph
stored in relational form as triples can reveal many interesting properties
and patterns on the graph in a more flexible manner and efficient than
existing systems. We explain many interesting statistics on the graph
can be derived with queries combining joins and aggregations. On the
other hand, linearly recursive queries can summarize interesting patterns
including reachability, paths, and connected components. We experimen-
tally show exploratory queries can be efficiently evaluated based on the
input edges and it performs better than Spark. We also show that skewed
degree vertices, cycles and cliques are the main reason exploratory queries
become slow.

Keywords: Graph - Parallel DBMS - SQL

1 Introduction

Within big data analytics graph problems are particularly difficult given the
size of data sets, the complex structure of the graph (density, shape) and the
mathematical nature of computations (i.e. graph algorithms). In graphs ana-
lytics, the goal is to obtain insight and understanding of complex relationships
that are present in the graph. Large-scale graphs have been widely applied in
many emerging areas. Graphs can be represented in terms of database perspec-
tive. However, processing large graphs in large scale distributed system has not
received much attention in DBMS using relational queries. Recent works on
graphs offer vertex-centric query interface to express many graph queries [5],
compares columnar, row and array DBMSs for recursive queries [13]. There are
some libraries [9,17] available for large graph processing. Also, it has been estab-
lished that columnar DBMS perform better than array DBMS or GraphX for
certain kind of graph queries [4].

© Springer Nature Switzerland AG 2018

M. Elloumi et al. (Eds.): DEXA 2018 Workshops, CCIS 903, pp. 838-100, 2018.
https://doi.org/10.1007/978-3-319-99133-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99133-7_7&domain=pdf

Big Data Analytics: Exploring Graphs with Optimized SQL Queries 89

Relational database systems remain the most common technology to store
transactions and analytical data, due to optimized I/O, robustness and secu-
rity control. Even though, the common understanding is that RDBMSs cannot
handle demanding graph problems, because relational queries are not sufficient
to express important graphs algorithms and a poor performance of database
engines in the context of graph analytics. Consequently, several graph databases
and graphs analytics systems have emerged, targeting large data sets, especially
under the Hadoop/MapReduce platform. First, we analyze graphs stored on a
DBMS. Using SQL query, we can reveal many interesting properties from the
graph like indegree and outdegree, highly connected components, potential paths,
isolated vertices, triangles and so on. Then we focus on the evaluation of queries
with linear recursion, which solve a broad class of difficult problems. Using recur-
sion, we can answer questions like reachability, detecting cycles, adjacency matrix
multiplication, paths and so on. We perform our experiments on columnar par-
allel DBMS with shared nothing architecture. While our queries can work in
any DBMS, it is experimentally that proven that columnar and array DBMSs
present performance substantially better than row DBMSs for graphs analysis
[13]. Also, parallel database systems have a significant performance advantage
over Hadoop MR in executing a variety of data-intensive analysis benchmarks
[14].

2 Definitions

This is a reference section which introduces definition of a graph from mathe-
matical and database perspective, recursive queries and our problem definition.
Each subsection can be skipped by a reader familiar with the material.

2.1 Graph

Let G = (V, E) be a directed graph with n = |V/| vertices and m = |E| edges.
An edge in F links two vertices in V' and has a direction. Our definition allows
the presence of cycles and cliques in graphs. A cycle is a path which starts and
ends at the same vertex. A clique is a complete subgraph of G. The adjacency
matrix of G is a n X n matrix such that the cell 7,j holds a 1 when exists an
edge from vertex i to vertex j.

From database perspective, graph G is stored in relation (table) E as a list
of edges (adjacency list). Let, relation E be defined as E(i,j,v) with primary
key (i,7) representing the source and destination vertices and v representing a
numeric value e.g. cost/distance. A row from relation F represents the existence
of an edge. In summary, from a mathematical point of view FE is a sparse matrix
and from a database perspective, E is a long and narrow table having one edge
per row. For example, if we have city names as graphs, then ¢ and j will be city
names and v can be the distance or travel cost between them. However, if we
have phone calls as a graph, then E will have edges per person pair, not one
edge per phone call or message.

90 S. T. Al-Amin et al.

2.2 Recursive Queries

Recursive queries are used here to analyze graphs. Let, relation E is the input for
a recursive query using columns ¢ and j to join £ with itself multiple times. Let
R be the resulting relation returned by a recursive query, defined as R(d, 1, j,v)
with primary key (d,1,j), where d represents recursion depth, ¢ and j identify
an edge at some recursion depth and v represents the numeric value. We include
v in both E and R to have consistent definitions and queries. We study queries
of the form: R = RU(R X E) , where the result of R X E gets added to R itself.

2.3 Problem Definition

In this paper, we study how to express the computation of several graph algo-
rithms with queries and how we can optimize those queries. We solve from sim-
pler to harder graph problems with relational queries.

3 Exploring Graphs

In this section, we discuss the main contribution of our work. First we discuss
how we can optimize relational queries and then use the optimized queries to
solve from simpler to harder graph problems.

3.1 Optimizing Recursive Queries

Pushing GROUP-BY and Duplicate Elimination: First, we review our
previous optimization technique to optimize recursive queries [13]. This opti-
mization corresponds to the classical graph problem (reachability). F X E may
produce duplicate vertex pairs. We can compute a GROUP BY aggregation on
E, grouping rows by edge with the grouping key i, j. A byproduct of a GROUP
BY aggregation is that duplicates get eliminated in each intermediate table.
Therefore, a SELECT DISTINCT query represents a simpler case of a GROUP
BY query.

In recursive queries, the fundamental question is to know if it is convenient
to wait until the end of recursion to evaluate the GROUP BY or it is better to
evaluate the GROUP BY during recursion. Considering that a GROUP BY
aggregation is a generalization of the 7 operator extended with aggregation
functions, this optimization is equivalent to pushing 7 through the query tree,
like a traditional SPJ query. In relational algebra terms, the unoptimized query
is S = T4 j sum(v)(R). And the optimized query is given below. Therefore, it is
unnecessary to perform a GROUP BY or DISTINCT in the final S. Hence, the
GROUP BY we used in queries discussed later, they all follow the optimized
version.

S = T1,i,5,sum(v) (Rl) U T2,i,5,sum(v) (RZ) U... (1)

Big Data Analytics: Exploring Graphs with Optimized SQL Queries 91

Partitioning and Maintaining Duplicate Table E: While performing self
joins (E X E), it is more feasible to maintain a duplicate copy of E (Eg). As
we are self joining on E.j = F.i, we can maintain a duplicate version of F and
partition one E by ¢ column and other F by j column to optimize the join com-
putation. Partitioning capability of a DBMS divides one large table into smaller
pieces based on values in one or more columns. Partitions can improve paral-
lelism during query execution and enable some other optimizations. The graph
should be partitioned in such a way that uneven data distribution and costly
data movement across the network is avoided. The latter is possible when the
parallel join occurs locally on each worker node. Partitioning provides oppor-
tunities for parallelism during query processing. There is a distinction between
partitioning at the table level and segmenting a projection. Table partitioning
segregates data on each node for fast data purges and query performance. And
segmenting distributes projection data across multiple nodes in a cluster. Hence,
the join query will have better performance.

Here, we perform the partitioning by vertex. All the neighbors of a vertex
are stored on the same machine. Our assumption is that there is not one high
degree vertex but there are a few high degree vertices. This number is greater
than the number of machines in the cluster. If high degree vertices are less than
the number of machines, queries will be slow.

Encoding: This optimization method is limited to columnar DBMS only. There
are many encoding types in columnar databases. The default encoding is ideal
for sorted, many-valued columns such as primary keys. It is also suitable for
general purpose applications for which no other encoding or compression scheme
is applicable. Encoding options in DBMS include run length encoding (RLE),
which replaces sequences (runs) of identical values in a column with a set of pairs,
where each pair represents the number of contiguous occurrences for a given
value: (occurrences, value). RLE is generally applicable to a column with low-
cardinality, and where identical values are contiguous. However, the storage for
RLE and AUTO encoding of CHAR/VARCHAR and BINARY/VARBINARY
is always the same.

3.2 Building Graph Summaries with Queries

Finding Indegree and Outdegree: The outdegree of a vertex v is the number
of outgoing edges of v and the indegree of v is the number of incoming edges of
v. We can get the indegree and outdegree of each vertices from a graph. This can
help to answer queries like which is the most visited page on the web or who
is the most popular person in a social network. The following two SQL queries
find the indegree and outdegree respectively. These queries are 1 * E and E * 1
meaning matrix-vector multiplication.

SELECT j AS nodes, COUNT(j) AS indegree
FROM E
GROUP BY j;

92 S. T. Al-Amin et al.

SELECT i AS nodes, COUNT(i) as outdegree
FROM E
GROUP BY 1i;

Using these, we can also detect the source-only or destination-only vertices. That
is, the vertices with 0 as indegree are source-only and vertices with 0 as outdegree
are destination-only vertices. However, the above queries only select the vertices
who have indegree or outdegree. To get source-only or destination-only vertices
we have to find indegree and outdegree for all vertices.

Counting and Enumerating Triangles: As triangles are subsets of cliques,
it is fundamental to understand connectivity. For instance, triangle count in a
network is used to compute transitivity, an important property for understand-
ing graph evolution over time. Triangles are also used for various other tasks
completed for real-life networks, including community discovery, link prediction,
and spam filtering. It is possible to detect and count how many triangles are
presented in the graph using relational queries. We can detect the number of
triangles by performing join operations on E (E X E X E) where each join uses
E.j=FE.i. Here, we are performing a self-join twice. It is a very costly operation
and makes the queries slower. As discussed above, we can optimize the query
performance by maintaining a duplicate version of E and partition them based
on vertices. Then, if Ep is the duplicate version of E, the join operation will be
EXEpXE.

Exploring Paths:

(a) Potential Number of Paths: We can get the potential number of paths from a
graph. We can use the information from indegree and outdegree discussed above.
The number of paths (P) passing through a certain vertex is the multiplication
of its indegree and outdegree. The Eq. 2 gives all the paths that can be generated
from a graph including cycles. However, if we use GROUP BY or DISTINCT
to eliminate duplicate vertex pairs, the number of paths generated will be much
less than the one generated by this equation. And paths may also represent
connections, for instance, chemical compounds, or subparts of a part, that is,
not necessarily distances/cost.

potential P = Z(indegree(%) x outdegree(Vi)) @)

where indegree; = outdegree;

(b) Top K Connectivity Vertices: Highly connected vertices mean the vertices to
which most edges are connected. In other words, these vertices are responsible to
generate more paths. Therefore, we can get them from indegree and outdegree.
The highest connected vertex will be maz(indegree(i) x outdegree(i)). And the
vertices whose both indegree and outdegree are 0 are isolated vertices in the
graph. We can also get top K highest or lowest connected vertices in such way.

Big Data Analytics: Exploring Graphs with Optimized SQL Queries 93

(¢) Ezploring Paths: We can find all the vertices starting from vertex u or
check if there exists a path between vertex v and v. To find all the reachable
vertices starting from wu, we can first filter E on FE.i =w and store the vertices on
another table/relation P. Then to find the reachable vertices, we can perform
join P X FE on P.j= E.i. This will give reachable vertices of path length 3. To
get all the reachable vertices with different path lengths we can repeatedly set
P to PU (P X E) on the same Join condition as mentioned before. The union
operation will keep only the identical vertex pairs. We can also check if there is
a connection between two vertices u and v with this method until a row with
P.j = v arrives. As we are filtering rows at first, P is much smaller than F, this
bound to have benefits in query time. Also, we can apply the pushing GROUP
BY optimization as discussed earlier and eliminate duplicates at each round.

Using this method, we can also find the vertices where distance is
below/above a certain value. We only populate P where the value of v column
is below/above a threshold value.

Finding Connected Components: A weakly connected component of a
directed graph G is a subgraph G’ such that for any vertices u,v € G, exists
an un-directed path between them. We can compute with the SPJA query for
matrix-vector multiplication (join between two tables and aggregation). This
is an improvement of HCC, an iterative algorithm proposed in [7]. In contrast
with this, we avoid the second join, necessary to find the minimum value for
each entry of the new and the previous vector. We propose inserting an artificial
self loop in every vertex; by setting E(i,i) = 1, for every i. At each iteration, the
resulting vector will compute Sg < Tj.min(B.vx5.0) (£ M= Sg—1). The algorithm
stops when the current vector is equal to the second. The relational query is
presented below.

INSERT INTO S1

SELECT E.i, min (SO.v*1)v
FROM E JOIN SO on S0.i=E.]
GROUP BY E.i;

Adjacency Matrix Multiplication: In our work, we multiply adjaceny matrix
to get the transitive closure of a graph using recursive queries. The standard and
most widely used algorithm to evaluate a recursive query comes from deductive
databases and it is called Seminaive [2,3]. Let Ry represent a partial output
relation (table) obtained from k — 1 self-joins with E (input relation) as operand
k times, up to a given maximum recursion depth k: Ry = E X E... X E. Here,
each join uses E.j = F.i and is a matrix-matrix multiplication. The general form
of recursive join is Rgy1 = Rq Mg, j=g.. £, where the join condition R4.j = E.i
links a source vertex with a destination vertex if there are two edges connected
by an intermediate vertex. Assuming graph F mentioned in Sect.2 as input, the
m computes d=d+ 1, i = Ry.i, j = E.j and v = R4.v + F.v at each iteration.

Ray1 = Taijo(Ra XR, j=p.i E) (3)

94 S. T. Al-Amin et al.

The final result is the union of all the partial results: R = Ry U Ry U ... U Ry,
for recursive depth k. This query evaluation stops when R; becomes empty at
some iteration because there are no rows to satisfy the condition then. Apply-
ing pushing GROUP BY optimization as discussed earlier helps this query to
perform faster as we are eliminating duplicates at each round.

4 Experimental Evaluation

In this section, we provide an overview of how we conducted our experiments
and our findings. First, we discuss how we set up the experimental parameters
and then we discuss our experimental outcome. We perform comparisons of our
queries with Spark in parallel machines and present the results.

4.1 Experimental Setup

DBMS Software and Hardware: We conducted experiments on an eight
node cluster each with Intel Pentium(R) Quadcore CPU running at 1.60 GHz,
8 GB RAM, 1TB disk, 224 KB L1 cache, 2MB L2 cache and Linux Ubuntu
14.04 operating system. So for parallel computation, total RAM size is 64 GB
and total disk space is 8 TB and 32 cores. We used Vertica [8], a columnar
DBMS supporting ANSI SQL to execute the queries. However, our queries are
standard SPJ queries and will work on other RDBMSs too. We used Python
as the host language to generate SQL queries and submit the queries to the
databases/systems as it is faster than JDBC. We compared our results with
Spark-GraphX which is used for graph-parallel computation in Spark.

Data Sets: We used both synthetic and real graph data sets summarized in
Table 1. For synthetic graph data sets, we generated graphs with varying com-
plexity. We generated graphs with varying clique sizes using uniform distribution
where clique sizes increase either linearly (cliqueLinear) or geometrically (clique-
Geometric). For cliqueLinear data set, we generate the cliques with sizes 2, 3,4...
and for cliqueGeometric data set we generated the graphs with sizes 2,4 ,8.. and
so on. For real data sets we used from the Stanford SNAP repository. Both real
data sets have a significant number of cliques and medium diameter. All the
time measurements are taken as the average of running each query five times
and excluding the maximum and minimum value.

4.2 Parallel Graph Summarization

In DBMS, we calculate the indegree for each vertex using the relational query
mentioned above. Spark-GraphX includes in its library an implementation of
indegree as graph operators. It also includes an implementation to find the max
indegree. Table 2 shows that Spark takes a lot of time to calculate the indegree
for all data sets. As the relational query in DBMS is very simple and does not
require any join or costly operations, it is very fast and executes within seconds.

Big Data Analytics: Exploring Graphs with Optimized SQL Queries 95

Table 1. Data sets.

Name Type n m Density
treelOm Synthetic | 10M | 10M | Sparse
wiki-vote Real 8k 103.6k | Sparse

cliqueLinear Synthetic | 48.5k | 10M | Dense
cliqueGeometric | Synthetic | 2047 | 1.5M | Dense
web-Google Real 875k | 5.1M | Dense

For counting triangles, we perform experiments both with and without opti-
mization. As we are performing self-join while counting triangles using relational
queries, we can accelerate the performance with the optimizations discussed
above. Hence we used maintaining duplicate E' while partitioning both tables
based on columns and encode using RLE. Spark-GraphX includes in its library
an implementation of counting triangles. Table 3 shows the results of counting
triangles using relational queries in DBMS with and without optimization and
in Spark. Spark loses to DBMS whether we perform the optimization or not.
However, with our optimized method, it takes almost half the time in DBMS
than the normal method. Partitioning and maintaining duplicate E' speeds up
the performance of join operation and the queries execute faster.

In Table4, we see the results of what happens when we eliminate duplicate
results from each step of recursive queries. We try to find all the reachable
vertices from a particular vertex up to path length 6. Using GROUP BY at each
recursive step eliminates the duplicates and thus accelerates the performance.
However, for treelOm data set, it performs better when we do not eliminate the
duplicates. Here, the total number of paths generated in both methods are same
for this data set, so doing an extra GROUP BY operation in each recursive step is
taking time. As for other methods, if we perform the optimization with GROUP
BY, it works better. The number of paths in each recursive step grows when there
are many duplicate paths. We stop the program each time after 10 min and put
“Stop” on the table. We see the other methods could not finish calculating all
the paths when there is no GROUP BY optimization. Also, storage requirements
can grow exponentially for dense graphs. However, Spark performs better in this
cases. Path reachability requires a union operation at each iteration. As Spark
computes the union operation in main memory, it has a significant advantage
over DBMS to perform this kind of operations.

We also perform finding the connected components in both DBMS and Spark.
For DBMS, we used recursive relational queries as mentioned in the previous
section. For Spark-Graphx, it includes in its library an implementation of Con-
nected Components similar to HCC, propagating minimum vertex-ids through
the graph. From Table5, we see the time it takes for both systems. Dataset
treelOm takes most time for both systems as it does not have any connected
component. So the program iteratively checks for connected components until
there are no vertices left. However, for all data sets, DBMS performs better than
Spark.

96 S. T. Al-Amin et al.

Table 2. Time to compute indegree (in seconds).

Data set DBMS | Spark
treelOm 1.4 8.4
wiki-vote 0.1 6.1
cliqueLinear 0.1 7.5
cliqueGeometric | 0.2 8.5
webGoogle 0.6 20.4

Table 3. Time to enumerate triangles (in seconds).

Data set DBMS (no optimization) | DBMS (with optimization) | Spark
treel0m 6.5 3.1 59.2
wiki-vote 0.9 0.4 16.4
cliqueLinear 5.1 2.3 27.9
cliqueGeometric | 41.8 22.9 51.7
webGoogle 7.0 2.1 142.7

Table 4. Path reachability for path length 6:

pushing GROUP BY (in seconds).

Data set Not pushing Total paths | pushing Total paths | Spark
GROUP BY GROUP BY

treelOm 11.7 126 48.9 126 2.8

wiki-vote Stop - 2.3 2316 2.0

cliqueLinear Stop - 3.4 145 14

cliqueGeometric | Stop - 4.0 1025 1.7

webGoogle 39.4 2898192 12.3 7083 2.3

Table 5. Time to compute connected components (in seconds).

Data set DBMS | Spark
treelOm 45.1 649.7
wiki-vote 4.3 12.9
cliqueLinear 2.2 21.7
cliqueGeometric | 2.5 22.4
webGoogle 30.2 60.3

Big Data Analytics: Exploring Graphs with Optimized SQL Queries 97

For adjacency matrix multiplication, we performed all the optimization tech-
niques. As it is a matrix-matrix multiplication, the result will also be a matrix.
Table 6 shows the results of performing the multiplication using relational queries
in DBMS and Spark-GraphX. We can accelerate the performance using opti-
mizations discussed above. When we multiply consecutively, the time difference
between two methods become more significant. Using GROUP BY eliminates
duplicates from next multiplication and matrix size becomes smaller. Also, par-
titioning based on columns improves the join performance. For Spark-GraphX,
we slightly modify the implementation of transitive closure in its library to per-
form the multiplication as many times as we need. DBMS performs better than
Spark-GraphX in every cases. We stop the program each time after 10 min.

Table 7 shows output for some queries discussed above. For each data set,
it shows the maximum indegree and expected number of paths to be gener-
ated. Fig.1 shows the maximum number of indegree and outdegree generated
per recursion depth of recursive queries while calculating the adjacency matrix
multiplication.

Table 6. Adjacency matrix multiplication time (in seconds).

Data set Multiply once Multiply 2 times

Without With Spark | Without With Spark

optimization | optimization optimization | optimization
treel0m 6.7 7.2 181.1 | 12.2 18.4 408.3
wiki-vote 2.3 1.9 25.9 |68.5 8.9 68.3
cliqueLinear 31.7 3.9 73.8 | Stop 7.6 138.2
cliqueGeometric | 358.1 18.2 486.4 | Stop 36.3 Stop
webGoogle 26.1 23.2 535.2 | 286.9 120.5 Stop

Table 7. Exploring graphs.

Data set Edges | Max Indegree | Expected paths
treelOm oM |1 10M

wiki-vote 103.6k | 457 4.54M
cliqueLinear 10M | 311 2333.79M
cliqueGeometric | 1.5M | 1024 1224.34M
webGoogle 5.1M | 6326 60.68M

98 S. T. Al-Amin et al.

For wiki-vote

—— indegree
4000 { —-- outdegree
[
2
o
8 20001 = _LeeTTTTTTTT
1 2 3 4 5
depth
For webGoogle
800001 —— indegree ~

——- outdegree ’

Fig. 1. Maximum number of indegree and outdegree per adjacency matrix multiplica-
tion for webGoogle and wiki-vote data sets

5 Related Work

Research on recursive queries and parallel computation is extensive, especially in
the context of deductive databases [1,3,18,21,23] or adapting deductive database
techniques to relational databases [11,12,22]. There is significant theoretical
work on recursive query computation in the Datalog language [10,16]. More
recently, [18] proposed a hybrid approach to query graphs with a language simi-
lar to SPARQL, maintaining data structures with graph topology in main mem-
ory and storing graph edges as relational tables like we do. This work considers
reachability queries (i.e. transitive closure), but not their optimization on modern
DBMSs. There is research [13] on comparing row, columnar and array DBMSs
for higher data volume that shows columnar DBMS has advantage over row and
array DBMSs in many cases.

Although numerous applications are related to graphs, querying from large
graphs using relational queries stored on a DBMS has not received much atten-
tion. In [24], the authors revisited the issue of how RDBMS can support graph
processing at the SQL level. To support graph processing, they proposed new
relational algebra operations. Another recent work have focused on retrieving
paths using a path query language from a network graph where they present
the Nepal query language [6]. In [20], they presented a formalization of graph
pattern matching for Gremlin queries. Gremlin [15] is a graph traversal language
and machine, provides a common platform for supporting any graph computing
system. The Boost Graph Library (BGL) [17] provides some general purpose
graph classes. The graph algorithms in BGL [17] includes most popular graph
searching and shortest path algorithms. Stanford Network Analysis Platform

Big Data Analytics: Exploring Graphs with Optimized SQL Queries 99

(SNAP) [9] is a general purpose, high-performance system, and graph mining
library that easily scales to massive networks with billions of nodes and edges.
Other recent works on graphs offer vertex-centric query interface to express
many graph queries [5] and study compression techniques for indexing regular
path queries in graph languages [19].

6 Conclusions

We can perform many queries in a very short time on a graph stored on a DBMS.
Large-scale graphs can be quickly loaded and analyzed in parallel systems within
a very short time. We represented the graph in terms of database perspective and
stored them as a form of triplets. SQL queries are good enough for common graph
problems like reachability, vertex degree, triangles, isolated vertices, expected
paths from the graph, adjacency matrix multiplication, and so on. The queries
reveal many interesting properties and patterns from the graph. We proposed
several optimization methods on the queries. Optimizing the query performance
helps to execute the queries faster than usual. Our experimental results show that
our queries perform better than Spark-GraphX in most cases. However, there
are some graph problems that cannot be solved with SQL queries like detecting
planarity, traveling salesman problem, finding all cliques and hierarchical graph
summarization.

For future work we have the following: detecting shortest cycles from a graph,
counting maximal cliques meaning the highest number of vertices connected each
other, showing actual paths when possible (for low number of paths), parallel
speed up meaning how the queries perform when we vary the number of machines
and discovering more complex patterns beyond paths. Moreover, we also plan to
optimize the algorithms in Spark.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases : The Logical Level,
Facsimile edn. Pearson Education POD, Boston (1994)

2. Agrawal, R., Dar, S., Jagadish, H.: Direct and transitive closure algorithms: design
and performance evaluation. ACM TODS 15(3), 427-458 (1990)

3. Bancilhon, F., Ramakrishnan, R.: An amateur’s introduction to recursive query
processing strategies. In: Proceedings of ACM SIGMOD Conference, pp. 16-52
(1986)

4. Cabrera, W., Ordonez, C.: Scalable parallel graph algorithms with matrix—vector
multiplication evaluated with queries. Distrib. Parallel Databases 35(3-4), 335-362
(2017)

5. Jindal, A., Rawlani, P., Wu, E., Madden, S., Deshpande, A., Stonebraker, M.:
VERTEXICA: your relational friend for graph analytics!. Proc. VLDB Endow.
7(13), 1669-1672 (2014)

6. Johnson, T., Kanza, Y., Lakshmanan, L..V.S., Shkapenyuk, V.: Nepal: a path query
language for communication networks. In: Proceedings of the 1st ACM SIGMOD
Workshop on Network Data Analytics, NDA 2016, pp. 6:1-6:8 (2016)

100

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

S. T. Al-Amin et al.

Kang, U., Tsourakakis, C.E., Faloutsos, C.: PEGASUS: a peta-scale graph mining
system implementation and observations. In: Proceedings of the 2009 Ninth IEEE
International Conference on Data Mining, ICDM 2009, pp. 229-238 (2009)
Lamb, A., et al.: The Vertica analytic database: C-store 7 years later. Proc. VLDB
Endow. 5, 1790-1801 (2012)

. Leskovec, J., Krevl, A.: SNAP datasets: stanford large network dataset collection,

June 2014. http://snap.stanford.edu/data

Libkin, L., Wong, L.: Incremental recomputation of recursive queries with nested
sets and aggregate functions. In: Cluet, S., Hull, R. (eds.) DBPL 1997. LNCS,
vol. 1369, pp. 222-238. Springer, Heidelberg (1998). https://doi.org/10.1007/3-
540-64823-2_13

Mumick, I., Finkelstein, S., Pirahesh, H., Ramakrishnan, R.: Magic Conditions.
ACM TODS 21(1), 107-155 (1996)

Mumick, I., Pirahesh, H.: Implementation of magic-sets in a relational database
system. In: ACM SIGMOD, pp. 103-114 (1994)

Ordonez, C., Cabrera, W., Gurram, A.: Comparing columnar, row and array
DBMSs to process recursive queries on graphs. Inf. Syst. 63, 66-79 (2016)

Pavlo, A., et al.: A comparison of approaches to large-scale data analysis. In:
Proceedings of ACM SIGMOD Conference, pp. 165-178 (2009)

Rodriguez, M.A.: The Gremlin graph traversal machine and language (invited
talk). In: Proceedings of the 15th Symposium on Database Programming Lan-
guages, DBPL 2015, pp. 1-10 (2015)

Seshadri, S., Naughton, J.: On the expected size of recursive Datalog queries. In:
Proceedings of ACM PODS Conference, pp. 268-279 (1991)

Siek, J., Lee, L.Q., Lumsdaine, A.: Boost c++ libraries. https://www.boost.org/

Sakr, S., Elnikety, S., He, Y.: Hybrid query execution engine for large attributed
graphs. Inf. Syst. 41, 45-73 (2014)

Tetzel, F., Voigt, H., Paradies, M., Lehner, W.: An analysis of the feasibility of
graph compression techniques for indexing regular path queries. In: Proceedings
of the Fifth International Workshop on Graph Data-management Experiences &
Systems, GRADES 2017, pp. 11:1-11:6 (2017)

Thakkar, H., Punjani, D., Auer, S., Vidal, M.-E.: Towards an integrated graph
algebra for graph pattern matching with Gremlin. In: Benslimane, D., Damiani,
E., Grosky, W.I., Hameurlain, A., Sheth, A., Wagner, R.R. (eds.) DEXA 2017 Part
I. LNCS, vol. 10438, pp. 81-91. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-64468-4_6

Ullman, J.: Implementation of logical query languages for databases. ACM Trans.
Database Syst. 10(3), 289-321 (1985)

Valduriez, P., Boral, H.: Evaluation of recursive queries using join indices. In:
Expert Database Systems, pp. 271-293 (1986)

Youn, C., Kim, H., Henschen, L., Han, J.: Classification and compilation of linear
recursive queries in deductive databases. IEEE TKDE 4(1), 52-67 (1992)

Zhao, K., Yu, J.X.: All-in-one: graph processing in RDBMSs revisited. In: Proceed-
ings of the 2017 ACM International Conference on Management of Data, SIGMOD,
pp- 1165-1180 (2017)

http://snap.stanford.edu/data
https://doi.org/10.1007/3-540-64823-2_13
https://doi.org/10.1007/3-540-64823-2_13
https://www.boost.org/
https://doi.org/10.1007/978-3-319-64468-4_6
https://doi.org/10.1007/978-3-319-64468-4_6

	Big Data Analytics: Exploring Graphs with Optimized SQL Queries
	1 Introduction
	2 Definitions
	2.1 Graph
	2.2 Recursive Queries
	2.3 Problem Definition

	3 Exploring Graphs
	3.1 Optimizing Recursive Queries
	3.2 Building Graph Summaries with Queries

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Parallel Graph Summarization

	5 Related Work
	6 Conclusions
	References

