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Abstract. SafeCap is a modern toolkit for modelling, simulation and
formal verification of railway networks. This paper discusses the use of
SafeCap for formal analysis and fully-automated scalable safety verifi-
cation of solid state interlocking (SSI) programs – a technology at the
heart of many railway signalling solutions. The focus of the work is on
making it easy for signalling engineers to use the developed technology
and thus to help with its smooth industrial deployment. In this paper we
explain the formal foundations of the proposed method, its tool support,
and their application to real life railway verification problems.

1 Introduction

Effective signalling is essential to the safe and efficient operation of a railway
network. It enables trains to travel at high speeds, run close together, and serve
multiple destinations. Whether by mechanical semaphores, colour lights or elec-
tronic messages, signalling only allows trains to move when it is safe for them to
do so. Signalling locks moveable infrastructure, such as the points that form rail-
way junctions, before trains travel over it. Furthermore, signalling often actively
prevents trains travelling further or faster than it is safe and sometimes even
drives the trains. At the heart of any signalling system there are one or more
interlockings. These devices constrain authorisation of train movements as well
as movements of the infrastructure to prevent unsafe situations arising.

The increasing complexity of modern digital interlockings, both in terms of
the geographical coverage and that of their functionality, poses a major challenge
to ensuring railway safety. Even though formal methods have been successfully
used in the railway domain (e.g. [2,3]), their industry application is scarce. In
spite of a large body of academic studies addressing issues of formal verification of
railway systems, they typically remain an academic exercise due to a prohibitive
cost of initial investment for their industrial deployment. The following are some
of the reasons. First, signalling engineers need to learn mathematical notations
to apply them. Second, the tools often cannot be applied for analysing large real
stations due to their poor scalability. Third, the companies need to drastically
change the existing development processes in order to use them.
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This paper proposes a formal tool-based approach that addresses these issues
by (i) verifying the signalling programs and layouts developed by signalling engi-
neers in the ways they are developed by industry, (ii) ensuring fully-automated
verification of safety properties using a family of the state of the art verification
techniques (in particular, automated theorem provers and solvers), and (iii) pro-
viding diagnostics in terms of the notations used by the engineers. All together,
this affirms that the developed methods and tools can be easily deployed to aug-
ment the existing development process in order to provide extra guarantees of
the railway safety.

The paper is structured as follows. Section 2 presents the work background
by overviewing the SafeCap toolkit, the role of SSI programs in railway sig-
nalling, and the key safety principles that these programs must follow. In Sect. 3
we discuss the SafeCap verification core, including its underlying modelling lan-
guage and essential verification techniques. The proposed verification method is
illustrated by a case study of a real railway station in Sect. 4. Finally, Sect. 5
concludes the paper by summarising the achieved results.

2 Background

SafeCap Platform. The SafeCap platform is a toolkit for modelling railway
capacity and verifying railway network safety [11]. It allows signalling engineers
to design stations and junctions relying on the provided domain specific lan-
guage (SafeCap DSL), as well as to check their safety properties and evaluate
potential improvements of capacity by using a combination of theorem prov-
ing, SMT solving and model checking [12]. The platform has been substantially
extended by adding new simulators, solvers and provers, as well as the support
for representing a wide range of the existing signalling frameworks [14,15].

This paper also takes our work on SafeCap further by developing a set of new
tools for importing, analysing and proving safety of railway data in standard SSI
and SSI-based technologies such as Smartlock1 by Alstom and WESTLOCK2 by
Siemens. The overall SafeCap architecture is presented in Fig. 1. Verification of
SSI is our first experience with constructing and verifying large (i.e., containing
tens of thousands of state transitions) models of the system dynamic behaviour.
Previously, our industrial experience was concerned solely with verification of
static data. The current work extends the SafeCap framework with advanced
capabilities for reasoning about dynamic (i.e., transition-based) systems.

The developed SafeCap verification and proof back-ends enable automated
reasoning about static and dynamic properties of railways or their signalling
data. Our two principal verification routes are the built-in symbolic prover
backed by a SAT solver, a range of external provers provided via the Why3
framework [4], and the ProB model checker [17] (used just as a constraint solver).
1 For more details, see https://www.mobility.siemens.com/mobility/global/en/

interurban-mobility/rail-solutions/rail-automation/electronic-interlockings/pages/
electronic-interlockings.aspx.

2 For more details, see http://www.alstom.com/products-services/product-catalogue/
rail-systems/signalling/products/smartlock-interlocking-products/.

https://www.mobility.siemens.com/mobility/global/en/interurban-mobility/rail-solutions/rail-automation/electronic-interlockings/pages/electronic-interlockings.aspx
https://www.mobility.siemens.com/mobility/global/en/interurban-mobility/rail-solutions/rail-automation/electronic-interlockings/pages/electronic-interlockings.aspx
https://www.mobility.siemens.com/mobility/global/en/interurban-mobility/rail-solutions/rail-automation/electronic-interlockings/pages/electronic-interlockings.aspx
http://www.alstom.com/products-services/product-catalogue/rail-systems/signalling/products/smartlock-interlocking-products/
http://www.alstom.com/products-services/product-catalogue/rail-systems/signalling/products/smartlock-interlocking-products/
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Fig. 1. SafeCap architecture

The SafeCap DSL provides a formal, graph oriented way to capturing railway
schemas and some aspects of signalling [13]. In the DSL, a railway schema is a
mathematical object consisting of data structure definitions (namely, types and
constants) as well as required logical constraints on the defined data (axioms and
lemmata). We can distinguish two main parts of the SafeCap DSL – the Core and
its various extensions. The Core provides means to mathematically describe the
physical topology of a railway schema (or, in fact, any graph-based structures).
Its first-class concepts are graphs and subgraphs. These typically represent track
topology, track circuits, routes or axle counters. As such, a model of a railway
schema in the SafeCap DSL Core is independent of any given signalling solution.

Once a railway schema model is created (or imported from an external for-
mat) in the Core, it is checked for its validity or well-definedness. For that, a
number of graph theoretical statements are automatically generated and verified,
including isomorphism properties between constituent subgraphs, path validity
within a given graph, connectivity, acyclicity, node degree and so on.

Various concepts of a railway schema such as signals and signalling solutions,
speed limits, stopping points and so on can be incorporated into via DSL exten-
sion plug-ins. Such plug-ins introduce new data (as custom annotations) and
supporting logic (as additional logical constraints or relationships). Such a tool
architecture allows us not to commit to any regional technology and thus to offer
a broadly similar approach for a range of legacy and current technologies.

In this paper we focus on the fixed-block signalling prevalent in the UK and
common to many other countries. In doing that, we rely on a dedicated SafeCap
DSL plug-in for incorporating this type of signalling data.

Computerised Signalling and SSI. The first signalling interlockings were
mechanical devices that constrained the movement of levers, were connected to
points and semaphore arms, and were contained in mechanical signalling boxes.
During the twentieth century these devices were superseded by electrical relay-
based interlockings that switched electrical current to motorised points, colour
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light signals and other lineside devices. The safety conditions applied by relay
interlockings included tests of track circuits or axle counters – the devices that
automatically determine whether a section of line has a train on it. The advent
of computer technology brought the opportunity to replicate and build on the
relay interlocking functionality within a computer based interlocking.

)M(B711Retuorrofkcolbtseuqeretuor/)M(B711RQ*
if R117B(M) a / route R117B(M) is available

USD-CA f,OSC-BA f,OSV-BA f / sub-route and sub-overlaps are free
then if OSL-AC l, / sub-overlap is OSL-AC locked

P223 fr , P224 fr / points P223, P224 free to move reverse
then @P223QR \ / call subroutine P223QR

if OSD-BC f / sub-overlap is OSD-BC is free
LTR04 xs / latch (boolean flag) not set (false)
P224 crf / point P224 commanded reverse or free to move reverse

then R117B(M) s / set route set flag for R117B(M)
USD-AC l , USC-AB l , USB-AB l , OSA-AB l / set sub-routes/overlaps
P224 cr / command point P224 reverse
LARR xs / clear latch LARR
S117 clear bpull / clear signal button pull flag
if P223 xcr , P223 rf then / check point states
@P223QR / point command subroutine

EP230 = 0 \ / reset timer EP230

Fig. 2. SSI example: route request code for route R117B(M) in the PRR module

One of the earliest forms of computer based interlocking was the Solid State
Interlocking (SSI), developed in the UK in the 1980s through an agreement
between British Rail (the then nationalised railway operator) and two signalling
supply companies. Running on bespoke hardware, SSI software consists of a core
application (common to all signalling schemes) and site specific geographic data.
The original SSI has now been superseded by more powerful, modern hardware
platforms running software developed in accordance with modern standards for
safety critical software. Nonetheless, the functionalities of the core application
and the Geographic Data Language (GDL) remain largely unchanged.

SSI GDL data configures a signalling area by defining site specific rules, con-
cerning the signalling equipment as well as internal latches and timers that the
interlocking must obey. Despite being referred to as data, a GDL configuration
resembles a program in a procedural programming language. The configuration
is iteratively executed in three major stages: reception of input state messages
from signalling equipment, followed by execution of rules, followed by construc-
tion and transmission of output command messages to the signalling equipment.

There are two main modules defining the signalling behaviour – the route and
point request (the PRR module) and formation of output telegrams (the OPT
module). An example of route request code (a part of logic that reacts to an
external route request) is given in Fig. 2. Notice that the parts between if and
then are atomic predicates combined with implicit conjunction, while everything
between then and a slash character is a command (made of a sequence of atomic
commands). For instance, USD-CA f stands for test that subroute USD-CA f is
free, while USD-CA l commands the subroute to be freed.
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Safety Principles. There are two main safety principles shared by all sig-
nalling operations that employ the SSI technology. From these a large number
of operational constraints can be derived, that consequently become verification
conditions to check against given signalling data.

A schema must be free from collisions. A collision happens, potentially, when
two trains may occupy the same part of a track at the same time. In route-
based as well as speed-based signalling, the principal mechanism to address this
property is that of route locking and holding. A train is given permission to
enter an area of a railway, once there is a continuous and safe path through
the area assigned exclusively to this train. Such a path is normally called a
route and is delineated by signals – either physical track-side signals with lamps
or conceptual signals displayed to a driver on a computer screen. The extent
between successive signals defines the smallest train separation.

For a route to be locked, all the movable equipment such as points or level
crossings must be set and detected in a position that would let a train safely
travel on its desired route. They must remain locked in such a state and their
position must be positively confirmed before a train enters the route.

A schema must be free from derailments. A derailment may happen when
a train moves over a point that is not set in any specific direction and thus
may move under a train. To avoid this, a point must be positively confirmed
to be locked before a train may travel over it. Typically, a signaller must define
conditions under which point reconfiguration is considered safe.

Related Work. There have been a number of studies focusing on formal ver-
ification of SSI programs. The majority of works (e.g., [10,16,20]) use various
forms of model-checking in an attempt to verify safety of train run scenarios,
with interlocking rules derived manually or via an automated translation from
SSI data. With few exceptions, the proposed techniques actually scale up to only
toy examples, or cover a small subset of functionalities, or both. For instance, the
approach presented in [10] uses NuSMV to model check a small subset of safety
properties for a selected subset of SSI data based on real-life signalling data.
In the face of sheer number of train run scenarios, one way to avoid the state
explosion problem might be statistical simulation of train runs [6]. However, this
approach has non-trivial implications on result interpretation.

We see a fundamental flaw in all such scenario exploration techniques: by
introducing train runs and assuming certain traffic patterns they cannot find,
even if they were to scale up, serious signalling mistakes that do exist in real-life
implementations and only manifest themselves when a combination of several
rare conditions happen [8]. Our approach does not suffer from this limitation as
we do not need consider train runs (and thus limit verification to few assumed
possibilities). Instead we check the worst case safety implications for all possible
train run scenarios. Another problem with these solutions is their poor diagnos-
tics, where the feedback on safety violations is not given in terms that signalling
engineers could understand (i.e., SSI and the schema language).

In [5] the authors build a model of railway operation constrained by imported
signalling data. A model checker automatically explores train movement
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scenarios (i.e., model states) and reports on violation of safety properties. The
technique does not support generic safety properties (which have to be written
separately for a specific layout) and the reported result indicate it is unlikely
to scale to the industrial scale. In cases where a track graph can be cut with a
very spectral ratio (i.e., two stations connected by a straight graph), it is sound
to conduct verification of subparts separately [18,19]. This is not often found in
practice as SSI is traditionally limited to 64 or 256 controlled pieces of equipment
and it is impractical to wire equipment at significant distance from a control box.

Verification and validation of a fragment of safety logic for European Railways
Train Management System (ERTMS), ensuring also interoperabilty of different
signalling solutions, is described in [7]. ERTMS specifications (written in a struc-
tured programming language) are automatically translated into formats of the
employed external verification tools. Paper [9] presents an ongoing work on auto-
matic model generation and verification of Railway Markup Language (RailML)
formatted data, which also include route tables and interlocking information.
Interlocking programs are defined in RailML using route scheduling and route
automata. Neither of these approaches however could be applied for verification
of SSI programs. Moreover, contrary to our work, they heavily rely on model
checking techniques and tools for verification of railway safety properties.

3 Modelling and Verification in SafeCap

In this section we present our main contribution – the integrated generic frame-
work for modelling and verification in SafeCap that we rely on to verify safety
properties of railway signalling.

3.1 SafeCap Data Analytics

In our earlier works [12,14,15] we have proposed a formal model to capture and
verify concrete signalling constraints by enforcing a certain standard of input
data representation. However, industrial applications do not easily fit into the
proposed view and there is a wide variation in the kind, rigour and comprehen-
siveness of the data defining existing signalling designs.

To be able to deal with varying forms of signalling input data, we comple-
ment SafeCap DSL with a generic modelling framework. The framework, called
SafeCap Data Analytics (SDA), offers modelling concepts similar to that of a
state-based modelling language. It is not meant to be used by an end user but
rather as an intermediary tool bridging signalling input data and generated ver-
ification conditions. The SDA approach allows us to incorporate any extensions
that require non-trivial reasoning (in particular, specific signalling solutions)
with the DSL Core in an uniform and mathematically consistent way.

An SDA model comprises the static part, defining model constants, axioms,
as well as verification statements (called conjectures), and the dynamic part,
defining state transitions over model variables and thus expressing possible state
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evolution. Overall, it can be seen as a characterisation of a state transition sys-
tem with discrete time (SSI timers are seen purely as integer counters enabling
causation reasoning) and state transitions are assumed to fire in an atomic fash-
ion. As the focus is exclusively on static proof, we only define the proof semantics
and do not consider construction of model states or traces.

We employ first-order logic equipped with the Zermelo-Fraenkel version of set
theory and arithmetics to write predicates defining system axioms, conjectures as
well as pre- and post-conditions of state transitions. Relational and functional
model structures are expressed as special kinds of sets (i.e., sets of mappings
between associated elements) and variable values can be drawn from finite or
infinite sets. There are also the predefined sets of integers, booleans and reals.
The notation and underlying formal semantics of a transition system (a variation
of the weakest precondition semantics) are adopted from the B Method [1].

In relation to the railway domain, for each format of input data representing
signalling data, there is a dedicated importing plug-in translating it into an
SDA model: a collection of constants, axioms and state transitions. The number
of such formal elements for a real life example is quite large – from several
thousands to tens of thousands. The resulting formal model is a solid foundation
for formal reasoning about the properties, in particular operational safety, of a
chosen signalling design. At the moment SafeCap supports two schema formats
– LDL (proprietary) and RailML – and two signalling data formats – SSI and
XML-based (a proprietary schema).

There are three main classes of signalling models distinguished by the mix
of axioms (static constraints) and state transitions (system dynamics):

– a purely static model reasoning about data with no model variables or state
transitions. An example is a model derived from a set of control tables –
signalling design data represented in a tabular form. For a verification tool,
its is a collection of conjectures (lemmata) expressing data properties;

– a purely dynamic model where signalling is defined by state transitions. An
example is SSI signalling data that we see as piece of code to be transformed
into a state transition system. Such models are verified via safety invariants;

– a mixture of the two. An example is verification of equivalence between a
control table and its implementation SSI data.

Next we consider how verification of signalling data differs depending on the
class of a considered SDA model.

3.2 SDA Verification: A Static Model

For a static SDA model, its verification involves proving a set of logical con-
jectures expressing the required data consistency properties. By a conjecture
we understand a predicate (logical condition) constraining the model constants.
Such a conjecture must be proven in the context of model axioms, i.e.:

ctx(c) � conj(c), (1)
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where c are model constants. Here ctx(x) represents a set of axioms from the
DSL Core such as the railway topology data definitions as well as all incorporated
extensions. Predicate conj(c) stands for an expected data property or a constraint
to be implied by such core definitions.

As one example, we might wish to check that a route setting control table
includes all the points necessary to be set reverse to enable the given path of the
route. This statements translates into the following conjecture:

∀r ∈ Route · r ∈ dom(Routes.Point)
Node.base[schema.reversepoints[{r}]] ⊆

(Points.base[(Points.base−1[{r}] ∩ ran(Routes.Point[{r}]))])
(2)

Here schema.reversepoints[{r}] is the topology derived set of points to be set
reverse to enable the route r, while Routes.Point[{r}] defines an ordered list
of required points. The (topology-derived) constant relations Node.base and
Points.base map between the physical and logical points and between the point
names and the point states respectively. Finally, [·] and (·)−1 are relational image
and inverse operators. For more details on the used notation, see [1].

Depending on the kind and form of ctx(c), a property ctx(c) � conj(c) can be
handled by a constraint solver, a symbolic prover (SMT solver), or a satisfiability
(SAT) solver. There are several provers available within SafeCap, such as Why3,
ProB, or Minisat. In the production version of the tool, a conjecture is always
checked by at least two distinct provers, one of which must be external.

There are a number of requirements to satisfy for a conjecture to be deemed
logically meaningful and well-formed. Overall, a conjecture must not be a con-
tradiction or tautology. The reason for these checks is to avoid conjectures that
are logically inconsistent or those that are true or false irrespectively of a verified
schema or signalling data. The latter cases, while logically consistent, in practice
indicate serious mistakes in the formulation of a conjecture predicate.

3.3 SDA Verification: A Dynamic Model

For a dynamic SDA model, its verification boils down to proving an inductive
system invariant expressed as set of predicates. For simplicity, we refer to each
such a predicate as a safety invariant. A safety invariant represents a property
on the system state (variables) to be maintained during the system functioning.
Safety invariants formalise the established principles of interlocking operation.
They are formulated manually with the help of domain experts and translated
into a formal notation. This is done once for any given technology (e.g., SSI).

To show that an invariant property is indeed preserved by the system, one
must prove a logical sequent (theorem) of the following form:

ctx(c) ∧ inv(c, s) ∧ τ(c, s, s′) � inv(c, s′), (3)

where ctx(c) are all the defined axioms constraining the model constants c,
inv(c, s) is a safety invariant over the constants c and the current state (variables)
s, and τ(c, s, s′) is some state transition producing a new state s′. τ(c, s, s′) is
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usually defined by a conjunction of transition pre- and post-conditions: pre(c, s)∧
post(c, s, s′). Finally, inv(c, s′) is an invariant over the new state s′.

It is convenient to generalise the above statement to also account for some
historic (previous) model state. We refer to such a state as s h and understand
it as the state observed prior to the current state s:

ctx(c) ∧ inv(c, s, s h) ∧ τ(c, s, s′) � inv(c, s′, s) (4)

Historic states are not manipulated in state transitions. The only source of
information about a historic state is the invariant inv. Conceptually, when a
transition happens, the old state (s) takes the place of the historic state (s h)
and the new state s′ replaces the old state s. Since we are doing symbolic proof,
this is all we need to know about historic states. The principle can be generalised
to arbitrary deep historic trace although we did not encounter a need for this.

As an example, the following concrete invariant checks that the minimal
conditions of point switching are met:

∀p ∈ Node · point c(p) �= point c h(p) ⇒
schema.pointcleartracks[Node.base−1[Node.base(p)]] ∩ track o = ∅

(5)

Here model variables are given in italic, while all the other identifiers are
constants originating from the underlying model railway schema. The model
variable point c h is a historic version of the current-state variable point c.

The verification conditions for such a model are generated by instantiating
model invariants. Namely, a separate verification condition (proof obligation) is
created for each pair of invariant inv(c, s, p) and state transition τ(c, s, s′). Thus,
for 10 invariants and 2000 transitions, there are up to 20000 conditions to prove.

Transition system proofs are not as well suited for constraint solving as con-
jectures about control tables. The primary reason is the abundance of complex
abstract relations. Off the shelf provers, such as E, SPASS, Z3, have proven
themselves capable but are unable to return any valuable feedback on failed
proofs and are generally quite slow (typically about 20 s per proof obligation)
and memory demanding (some proofs require up to 64 GB memory). To address
this, we have developed a custom symbolic prover, which is described next.

The built-in SafeCap symbolic prover is used as the primary means for verify-
ing safety invariants. Unlike conjectures for a static SDA model that are typically
proven for concrete constant values, generated safety invariant proof obligations
are stated over all permissible state values. The complexity of constraints and,
to much less degree, the scale of state space make it an inordinately difficult
verification task for a constraint solver.

The symbolic prover starts with the invariant statement as the top goal and
tries to simplify, split or rewrite this goal until it becomes trivially true. It relies
on a number of tactics – functions that implement goal transformations (like
splitting a conjunctive goal into several subgoals).

Since the prover is supposed to be used fully automatically, a special attention
in its implementation is given to the cases when it fails to prove its goal. The
prover is designed to stop in a state best suited to the subsequent interpretation.
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Fig. 3. Case study railway schema (an excerpt).

To achieve this, once the prover detects a failed proof branch (due to a time out,
an absence of applicable tactics, etc.), it backtracks while looking for a historic
undischarged goal matching one of the predefined templates. For each of these
templates, there is its defined interpretation in a natural language to be shown
to an engineer to assist with the understanding of the nature of an error.

The symbolic prover is not designed to be ever used interactively or even
outside of SafeCap. However, it is possible to write dedicated tactic scripts for
each safety invariant. Such scripts can reorder, remove and parametrise proof
tactics as well as define different proof branches using applicability tests. In
particular, the form and nature of SSI data allows us to easily recognise repeating
patterns in the usage of SSI commands and, even without seeing a specific SSI
data instance, we are able define efficient tactics to support a safety invariant.

We use two complementary techniques to demonstrate that the built-in
prover is sound. First, all the rewrite rules are known to be valid lemmata in first
order logic and set theory3. Second, for each instance of a rewrite rule, SafeCap
can generate many thousands of theorems originating from successful or failed
proof obligation and check them in an external prover. This technique is a form
of automated mass testing to guard against programming mistakes. It can also
be used to automatically recheck all proof scripts for extra reassurance.

Much attention is given to the presentation of verification results. It is imper-
ative that the formal verification core operates autonomously and presents its
findings in a clear and useful manner. To achieve this, together with every static
or invariant verification condition one must write one or more reporting tem-
plates that define the mapping of verification output into a report coherent to a
domain expert. The examples of such templates are given in Sect. 4.

4 Case Study

As a case study, we consider a railway schema and the accompanying SSI sig-
nalling program for a real medium-size station. The SSI data for the case study
were developed by an industrial company using the existing process. Verifica-
tion was conducted against the properties mandated by the national railway
authority (Network Rail).
3 With the unfortunate exception of arithmetics that is handled as a black-box rewrite.
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pre
LTR04 /∈ latch s ∧ OSD-BC /∈ overlap l ∧ R117B(M) ∈ route a
OSC-BA /∈ overlap l ∧ OSV-BA /∈ overlap l ∧ USD-CA /∈ subroute l
LTR117 /∈ latch s ∧ LTR119 /∈ latch s
(REVERSE = point c(P224)) ∨ ((TSD /∈ track o) ∧ (USD-BC /∈ subroute l) ∧ . . .
request = QR117B(M)
post
route s ′ = route s ∪ {R117B(M)}

Fig. 4. An example of a translated SSI transition: route locking

A small part of a diagrammatic (not to scale) representation of its layout
is given in Fig. 3. To give a sense of its actual size, the area consists of 117
train detection track circuits, 12 points and 42 routes. The labels in the diagram
had to be obfuscated for the purposes of this publication. The signalling data
(following the SSI standard) are defined in 14 separate modules, summing up to
274 KB of disk space. The modules contain plain text source of SSI signalling in
the SSI format described above.

The case study data were loaded into SafeCap in two stages. First, the railway
schema was imported and represented in the SafeCap DSL Core. Second, the
SSI signalling program was added (using the dedicated plug-in) as a DSL Core
extension based on the SafeCap SDA. When a digital version of a railway schema
exists, it can be imported directly into SafeCap. If it is only available as a paper
or digital scan representation, it has to be manually drawn in the SafeCap schema
editor. This takes about half a day for an experienced railway engineer.

A railway schema typically contains the track topology, track joints and sig-
nals. From this, the platform generates the necessary derived information (such
as track circuits, points, routes, subroutes, overlaps, etc.) that is represented and
stored in the SafeCap DSL. SafeCap also attempts to automatically decode route
names to match paths on the schema. For instance, R117B(M) would normally
refer to a route starting from the signal S117 and taking the path B.

We treat SSI signalling data as a program made of large number of inde-
pendent units (essentially event handlers). Furthermore, every such unit can be
translated into a number of state transitions (one per each command). The result
is a completely flat structure made of thousands of individual state transitions.

Figure 4 illustrates one such translated state transition. The transition
describe route setting resulting from the route request presented (in SSI GDL)
in annotated Fig. 2. The route set update is specified in the transition postcon-
dition. All the transition preconditions (apart from the last two) can be traced
directly to the conditions of respective if blocks. The penultimate precondition is
the result of expanding the SSI GDL expression P224 crf, testing whether point
P224 is already commanded reverse or is free to move into the reverse position.
The last precondition associates this transition with the specific request type.

To conduct verification of an SSI data set, the underlying schema model and
the generated dynamic SDA model (transition system) are integrated together.
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Additionally, the overall system model also includes safety invariants to be ver-
ified against the schema data and system state transitions.

The following is one example of a safety invariant. The invariant is concerned
with route setting protocol. In particular, it ensures that the conflicting routes
going in opposite directions cannot be set at the same time, which can formulated
as specific conditions on the current free and locking subroutes.

∀ra ∈ Route · ra ∈ route s ∧ ra /∈ route s h ⇒
∀rb ∈ Route · rb ∈ routeopposing[{ra}] ∧ routedir(ra) �= routedir(rb) ∧

routelast(rb) ∈ ran(routetracks[{ra}]) ⇒
subroute l ∩ LastSubRoute[{rb}] = ∅

(6)

In the above, route s is a model variable of type P(Route), representing a
set of routes. route s h is its historic counterpart. The identifiers routeopposing,
routedir, routelast, routetracks are schema-derived constant relations. Specifically,
the above invariant requires that, for any route ra and its opposing route rb such
that the rb exit is within the ra extent (routelast(rb) ∈ ran(routetracks[{ra}])),
the last shared sub-route of rb must be checked free.

Overall, for route setting alone, we define 14 different invariants correspond-
ing to 6 distinct safety principles. There are more invariants addressing telegram
formation, flag operations and point commanding. Currently, we do not check
timeliness conditions (on system reactions within a certain number of cycles).
We also do not consider any liveness conditions as progress and the absence of
livelocks and deadlocks is not part of interlocking safety requirements.

(the model constants and axioms (implied))
(the safety invariant INV6)
∀ra ∈ Route · ra ∈ route s ∧ ra /∈ route s h ⇒ . . .
(the transition preconditions)
LTR04 /∈ latch s ∧ OSD-BC /∈ overlap l
(REVERSE = point c(P224)) ∨ ((TSD /∈ track o) ∧ (USD-BC /∈ subroute l) ∧ . . .
R117B(M) ∈ route a
(and the remaining preconditions)
. . .
(the transition postcondition defining a new state)
route s ′ = route s ∪ {R117B(M)}
�
(the safety invariant over the new state)
∀ra ∈ Route · ra ∈ route s ′ ∧ ra /∈ route s ⇒ . . .

Fig. 5. An example of an invariant preservation proof obligation

The verification process consists of generating verification goals to be proved
(proof obligations) and attempting to dispatch them. The hypothesis list of the
generated proof obligation combines declarations of the model constants and
axioms, the current state version of the verified invariant as well as the pre- and
post-conditions of the verified transition, while its goal states that the invariant
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in question must be preserved in any resulting transition state. Figure 5 shows an
abbreviated example of the invariant preservation proof obligation, generated for
the route locking state transition (see Fig. 4) and the invariant presented above.

Once all obligations are generated, the built-in symbolic prover attempts to
discharge every one of them. Each failed case is reported as a potential error in
signalling data. By design, there is no provision to assist with automatic proof.

Table 1 gives SSI data verification summary of the conducted case study. Here
transitions are all the state transitions derived from the data, while invariants are
formalisations of various safety principles. Non-trivial p.o.’s (proof obligations)
is the overall number of proof obligations after ignoring trivially correct ones
(e.g., when a transition does not involve the variables mentioned in an invariant).
Failed proof obligations indicate potential problems. Note that we do not attempt
to distinguish between properties that are too hard to prove and those genuinely
incorrect – they are all reported as potential errors. Finally, Rejected is the
number of error reports rejected as false positives after manual inspection of a
generated error report.

Table 1. Verification statistics

Transitions Invariants All p.o.’sa Failed p.o.’s Unique errors Rejected

2248 9 1451 46 12 0
aExcluding trivial proof obligations

In addition to the built-in symbolic prover, the framework supports discharg-
ing a proof obligation via a number of different external provers. In practice they
turned out to be much slower and not as capable overall. Below Table 2 gives the
performance times for discharging all the proof obligations of the case study for
different external tools. The external prover Why3 [4] is relying on the integrated
Alt-Ergo and CVC3 SMT solvers4 and eventually arrives at exactly the same
result as the built-in prover albeit it takes several hours. Moreover, it turns out
to be very sensitive to the available amount of RAM, e.g., restricting RAM to
only 8 GB leads to 52 undischarged proof obligations. The built-in SAT solver is
unable to discharge a number of proof obligations proven by the symbolic prover
but agrees on the set of proven conditions. It is fast and can be used to confirm
the result of the symbolic prover in a production setting. Finally, ProB [17] (run
in the constraint solver mode) leaves a number of additional proof obligations
undischarged and takes rather long time to complete the proof.

The experiments were conducted on Intel I7-4790K @ 4.0 Ghz with 64 Gb
RAM. The built-in prover has used a number of custom tactic scripts tuned
to the invariants defined. The end result of a verification exercise in SafeCap
is an automatically generated verification report in a PDF format. A sample
subsection of such a report is given in Fig. 6. A report briefly describes the
nature of the failed conditions, points to the problem source code location, and,
if applicable, generates a part of the schema diagram with the key elements
4 For more details, see http://alt-ergo.lri.fr/ and https://cs.nyu.edu/acsys/cvc3/.

http://alt-ergo.lri.fr/
https://cs.nyu.edu/acsys/cvc3/
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Fig. 6. Verification report sample

related to the failed proof. In the case of the displayed report in Fig. 6 the
problem is a missing sub-route test and the diagram shows the offending route
location.

Table 2. Prover comparison

Prover Run time Undischarged
proof obligations

Built-in symbolic 12 s 46

Built-in SAT 12 m 207

Why3 + Alt-ergo + CVC3 4 h 15 m 46

ProB 2 h 46 m 101

From the user perspective, the whole process consists of only two steps –
providing input data and analysing the generated output. The actual model
construction, generation of proof obligations and proving of them: all this hap-
pen behind the scenes. Invariant construction is perhaps the most intricate and
demanding part of the process that we are going to discuss in our future papers.

5 Conclusions

In this paper we presented the SafeCap approach to verifying railway signalling,
in particular, signalling data with program-like representation called SSI. As
a number of attempted case studies have demonstrated, the approach proved
to scale well. Moreover, although only a subset of safety principles is currently
encoded, we are confident that the approach is capable to effectively capture and
formalise different formats of signalling data as well as required safety properties.
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While SSI is a rather simple notation, it is still liable to state explosion. With
all possible modules defining controllers for equipment such as signals and points
connected, the state space grows to about 101204 states. Also, one should notice
that in industry safety principles are not designed or discussed in terms of train
movements – something we commonly see in research papers applying simulation
or state exploration techniques – but rather as constraints on signalling rules.

A combination of set theory and first order logic as the underlying mathe-
matical language is the result of experiments over the course of several years.
It appears to deliver the optimal combination of a terse, efficient notation
for expressing conjectures and safety invariants, while, at the same time, also
enabling effective symbolic automated proofs. Two other alternatives we have
also explored are pure predicate logic and first order logic with functions and
equality.

A custom made symbolic prover might seem a dangerous direction to take for
an industry-oriented tool. Indeed, the prover we have developed is not anywhere
as powerful or comprehensive as many state-of-the-art provers. However, it has a
decisive advantage of being highly customisable via per-invariant tactic scripts.
At such a level of fine-tuning it showed to be able to outrun any competition. The
prover is also carefully designed to backtrack and terminate in a state facilitating
helpful end user feedback.

The approach developed offers immediate industry benefits as it can be used
within the existing SSI GDL production processes. The rapid, automated ver-
ification that it offers enables errors to be identified earlier in these processes,
thereby reducing time consuming and expensive re-work. Furthermore, the Safe-
Cap formal approach to verification provides additional assurance over the sce-
nario based testing that is traditionally used in railway signalling. As the safety
case underpinning SafeCap develops, and the range of safety properties that it
verifies expands, further industry benefits become possible as the manual testing
and checking activities are replaced by automated verification by SafeCap.
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