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Preface

This volume contains the proceedings of the 37th International Conference on Com-
puter Safety, Reliability and Security (SAFECOMP 2018) held during September
19–21, 2018, in Västerås, Sweden. Since 1979, when the conference was established
by the European Workshop on Industrial Computer Systems, Technical Committee 7
on Reliability, Safety and Security (EWICS TC7), it has contributed to the state of the
art through knowledge dissemination and discussions of important aspects of computer
systems of our everyday life. With the proliferation of embedded systems, the
omnipresence of the Internet of Things, and the commodity of advanced real-time
control systems, our dependence on safe and correct behavior is increasing. Currently,
we are witnessing the beginning of the area of truly autonomous systems, perhaps with
driverless cars as the most well-known example to the non-specialist, where the safety
and correctness of their computer systems are already being discussed in the mainstream
media. In this context, it is clear that the relevance of the SAFECOMP conference series
is increasing.

The international Program Committee (PC), consisting of 56 members from 15
countries, received 63 papers from 24 nations. Of these, 20 papers were selected to be
presented at the conference resulting in an acceptance rate of 31.7%. The review
process was thorough with at least three reviewers, which ensured independency, and
20 of these reviewers met in person in Munich, Germany in April 2018 for the final
discussion and selection. Our warm thanks go to reviewers who offered their time and
competence in the PC work. We are grateful for the support we received from the PC
member Mario Trapp, Fraunhofer ESK, who generously hosted the PC meeting.

The conference featured three keynotes: “Software Engineering for Safety in
Molecular Programmed Systems” by Robyn Lutz, Professor of Computer Science at
Iowa State University; “Reviews?! We Do That! Cross-Domain Reuse of Engineering
Knowledge and Evidence” by Uma Ferrell, Software and Airborne Electronic Hard-
ware Designated Engineering Representative for the US Federal Aviation Adminis-
tration; “Experiences from the Industry, Design and Application of a Control System
Platform for Safety of Machinery” by Richard Hendeberg, Specialist in Functional
Safety at Epiroc Rock Drills AB.

As in the previous years, the conference was organized as a single-track conference,
allowing intensive networking during breaks and social events, and participation in all
presentations and discussions. The conference also included a fast abstracts session,
giving the opportunity for new ideas and work in progress to bloom in a fertile soil. The
Fast Abstracts proceedings are published in the HAL repository.

Finally, the conference also included a panel session, focusing on stimulating an
interactive discussion with the audience around the main theme of SAFECOMP 2018,
i.e., “Cross- and Intra-Domain Reuse of Engineering and Certification Artefacts:
Challenges and Opportunities.”



As has been the tradition for many years, the day before the main track of the
conference was dedicated to five regular workshops: DECSoS, ASSURE, SASSUR,
STRIVE, WAISE. Papers from these workshops are published in a separate LNCS
volume (11094).

We would like to express our gratitude to the many people who helped with the
preparations and running of the conference, especially Friedemann Bitsch as publica-
tion chair, Erwin Schoitsch as workshop chair, Jérémie Guiochet as fast abstracts chair,
Alexander Romanovsky as publicity chair, and not to be forgotten the local organi-
zation and support staff, Irfan Sljivo, Lena Jonsson, Martina Pettersson, Elena Rivani,
Linda Claesson, and Gunnar Widforss.

For its support, we wish to thank Mälardalen University, represented by the School
of Innovation, Design, and Engineering and, more specifically, by the research group
Certifiable Evidences and Justification Engineering. We also wish to thank all other
supporting institutions.

Without the support from the EWICS TC7 headed by Francesca Saglietti, this event
could not have happened. We wish the EWICS TC7 organization continued success,
and we are looking forward to being part of this in the future.

Finally, the most important people to whom we want to express our gratitude are the
authors and participants. Your dedication, effort, and knowledge are the foundation
of the scientific progress. We hope you had fruitful discussions, gained new insights,
and had a memorable time in Västerås.

September 2018 Barbara Gallina
Amund Skavhaug
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Software Engineering for Safety
in Programmed Molecular Systems

Robyn R. Lutz

Iowa State University, Ames, IA 50011, USA
rlutz@iastate.edu

Abstract. Molecular programming uses the computational power of DNA and
other biomolecules to create nanoscale systems. Many of these envisioned
nano-systems are safety-critical, such as diagnostic biosensors that detect con-
taminants, drug capsules that dispense medicine when they encounter diseased
cells, and configurable nano-robots. Challenges to the safety engineering of the
nano-systems include their probabilistic behavior, their very small size, the very
large number of them that execute at once, and the dynamic environment in
which they operate. Designs need to assure safe outcomes from highly
fault-prone devices, hampered by the difficulty of defining the limits of their safe
operation.
I organize the talk around our interdisciplinary team’s development of an
essential safety building block for programmed molecular systems – an
embeddable, reusable, molecular Runtime Fault Detector. I describe how we
harnessed goal-oriented requirements and risk analyses, reaction network
modeling, and probabilistic model checking to specify, analyze, and verify the
safety requirements and design for this new nano-system. Finally, I suggest that
a similar approach also may be helpful in the safety engineering of
non-molecular systems composed of highly distributed, autonomous,
fault-prone components operating in dynamic environments.

Keywords: Software safety � Molecular programming � Software engineering
Chemical reaction networks
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Reviews?! We do that! Cross-Domain Reuse
of Engineering Knowledge and Evidence

Uma Ferrell

MITRE Corporation, 7515 Colshire Drive, McLean VA 22102, USA

Abstract. Both industry and certification authorities have reason to be excited
about the benefits and opportunities of reusing and building products for more
than one domain such as aviation and automobiles. Cross-domain reuse in an
increasingly complex world can inject novel technologies to conventional
domains to increase safety. Such opportunities come with social and ethical
responsibilities for the safe use of a product in the target environment, not just
whether the product and evidence are acceptable to certification authorities. The
evidence may be wrongly presented based only on the equivalency in the use of
expected language in pertinent standards. The evidence should be based on the
actual accomplishments met and whether those accomplishments are applicable
towards design assurance and safety in the target domain and environment.
Cross-domain reuse has many considerations. This talk is focused only on safety
and security. Obviously, consideration of reuse must include functionality, use
of standards in that domain, and certification concerns. All these considerations
have undercurrents of safety as well as security. Let us focus further on three
topics:

• Derivation of risk: Derivation of risk depends on the target domain and the
human/system use of the product. Also, the acceptable level of risk tolerance
is inherently different in different domains. Aviation is one of the few domains
where safety risk tolerance is codified. As stewards of safety in this society,
we need to be aware of the real idea behind certification, and promulgate a
safety culture to take responsibility for safe cross-domain use of the product
throughout the product life.

• Appropriate use of evidence: While acceptability for certification is
important, the knowledge and evidence for why a product is acceptable is
even more important. Evidence may have been produced in a previous
domain that appears to be usable in a target domain. Only the basis for that
evidence may have a different interpretation and implication in the target
domain because the terminology for even simple terms such as “reviews” may
not have the same meaning in different domains. Further, the same func-
tionality may be used in diverse ways in the two domains.

• Importance of systems engineering: There are certainly considerations that
may be codified and delegated to checklists. But blind use of checklists makes
a poor substitute for domain knowledge and engineering. Cross-domain use
does not just mean that one could deploy a product. Continued safe use of the
product in the target domain has specific implications for maintenance of the
product as well as maintenance of the system of which the product is just one
component. For example, an electro-mechanical system may need adjustments



to maintenance cycles depending on the characteristics of the component
commanding the mechanical actions. In general, we must make sure that
component engineering is within the context of system safety and security.

Opportunities of cross-domain reuse indeed come with responsibilities to
understand, analyze, and engineer the product. Appropriate reuse considered in
the system context can be a powerful tool to introduce newer technologies to
solve complex problems.

Reviews?! We do that! Cross-Domain Reuse of Engineering XVII



Experiences from the Industry, Design
and Application of a Control System Platform

for Safety of Machinery

Richard Hendeberg

Epiroc Rock Drills AB, Örebro, Sweden
richard.hendeberg@epiroc.com

Abstract. Epiroc Rock Drills AB is a global manufacturer of mining and
construction machinery. These highly automated machines operates in an
incredibly harsh environment where reliability and availability is paramount. In
this talk, the focus is on Epiroc’s control systems platform and work with safety
of machinery. How a modular design, componentization of software and stan-
dardization on hardware modules has led to an efficient reuse of engineering
efforts and an automation platform, which is used throughout Epiroc’s entire
range of machinery. In this talk, it is also given an overview of Epiroc’s journey
with safety of control systems, leading up to the integration of safety functions
into the existing control system platform. The challenges of designing safety
functions for a harsh environment and why availability of the machine might be
as important for the safety of the operator as the reliability of the safety function.

Keywords: Mining machinery � Construction machinery � Safety of machinery
Hardware component reuse
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Practical Experience Report: Automotive
Safety Practices vs. Accepted Principles

Philip Koopman(&)

Carnegie Mellon University, Pittsburgh, PA 15217, USA
koopman@cmu.edu

Abstract. This paper documents the state of automotive computer-based sys-
tem safety practices based on experiences with unintended acceleration litigation
spanning multiple vehicle makers. There is a wide gulf between some observed
automotive practices and established principles for safety critical system engi-
neering. While some companies strive to do better, at least some car makers in
the 2002–2010 era took a test-centric approach to safety that discounted non-
reproducible and “unrealistic” faults, instead blaming driver error for mishaps.
Regulators still follow policies from the pre-software safety assurance era. Eight
general areas of contrast between accepted safety principles and observed
automotive safety practices are identified. While the advent of ISO 26262
promises some progress, deployment of highly autonomous vehicles in a non-
regulatory environment threatens to undermine safety engineering rigor.

Keywords: Software safety � Automotive � Unintended acceleration

1 Introduction

Innocent people have died, been severely injured, or gone to jail because of defects or
potential defects in computer-based automotive systems. With the deployment of self-
driving cars, it is more important than ever to understand the gaps between theory and
practice in automotive computer-based system safety.

This paper is based on the author’s personal experiences with unintended accel-
eration (UA) litigation against car makers (Original Equipment Manufacturers, or
OEMs) for 2000–2010 model year vehicles, and additional experiences with multiple
recent military and commercial self-driving car (Autonomous Vehicle, or AV) safety
assurance projects. These experiences include access to extensive sets of engineering
documents, analysis of Electronic Throttle Control (ETC) source code, and vehicle
testing to confirm identified safety vulnerabilities. These experiences have revealed
common threads that encompass technical, business, regulatory, and litigation aspects
of safety. While regulatory environments vary in other countries, the significant role
that the United States (US) car industry and US legal system play in the automotive
domain ensure that these factors will influence many cars produced worldwide.

Unlike other domains, conformance to international computer-based system safety
standards is voluntary for US-sold vehicle OEMs and suppliers. Moreover, some
OEMs have not followed industry-specific guidelines such as the MISRA Software
Guidelines [1], including vehicles that are the subject of two class action lawsuits. [2] at

© Springer Nature Switzerland AG 2018
B. Gallina et al. (Eds.): SAFECOMP 2018, LNCS 11093, pp. 3–11, 2018.
https://doi.org/10.1007/978-3-319-99130-6_1
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30:21–25 and [3] at 78:15–79:15. (Note that [2] is a transcript from a death and injury
case involving a vehicle of a type included in the corresponding class action lawsuit).

The US permits OEMs to deploy vehicles that are self-certified to meet provisions
of the US Federal Motor Vehicle Safety Standards (FMVSS). FMVSS regulations take
the form of a test procedure approach originally intended to ensure that the normal
safety-relevant functionality of pre-computer vehicles, such as braking capability, was
adequate. While some simplistic failure modes such as detecting the complete loss of a
functional subsystem are included, the test procedures are not intended to achieve any
defined amount of software testing coverage, are not designed to detect non-
deterministic faults, and do not demonstrate fault recovery from non-trivial computa-
tional faults. While vehicles commonly use some basic fault tolerance patterns such
redundant CPUs for life-critical functions, it can be the case that redundancy and other
fault tolerant computing techniques not used in accordance with accepted practices,
such as dual-CPU designs with a single point of failure [4].

At least one death has been officially declared to be due to automotive computer
system malfunction [4], and there have been approximately 500 settlements for death
and injury alleged to also be due to defective vehicle designs by the same OEM [5].
Another class action against a second OEM alleges similar issues [3]. Additionally,
there are instances in which individuals have faced civil or criminal penalties for
mishaps they claim were caused by vehicle malfunctions (e.g., [6]). Now that com-
puters have life critical control authority, they must be considered as a credible
potential cause of severe mishaps.

Electrified vehicles present additional risks because regenerative braking tends to
disable the direct hydraulic connection between the brake pedal and friction-based
brake pads [7]. (If this weren’t the case, energy could be lost due to friction instead of
being used to recharge the battery.) Some drivers have reported loss of brake effec-
tiveness with these vehicles (e.g., [8]) which could potentially be caused by a software
defect. Some litigation has involved reported symptoms consistent with such a defect.
Increasing levels of autonomy raise the stakes further.

Table 1 identifies areas in which some observed OEM practices do not necessarily
correspond with accepted safety principles. The scope of this table deals with vehicles
produced with ETC in the 2002–2010 era from some Asia, US and European OEMs

Table 1. Contrasting areas of safety principles and observed automotive practices.

Accepted safety principle Observed automotive safety practice

Evidence required to show safety Evidence required to show defect
Safety argument System-level functional test
Arbitrary failures “Realistic” failures
Random failures expected Non-reproducible failures are discounted
Blaming humans is a last resort Driver error presumed
Engineering rigor and integrity level All unsafe defects identified and fixed
Independent assessment Self-certification
ALARP, etc. Cost effective regulation

4 P. Koopman



selling into the US market. It should be emphasized that some OEMs claim to follow
accepted safety practices. And to be clear, the listed OEM practices should not be
considered industry-accepted practices for making safe vehicles, but rather should be
seen as areas in which some OEMs’ observed practices fell short of meeting accepted
safety practices. Based on personal experience in a variety of venues, it is clear that
portions of the OEM and supplier ecosystem were still stuck in the pre-software safety
engineering era at least up until the creation of ISO 26262 [9], and that adoption of that
new standard is taking time.

2 Safety Principles vs. Automotive Safety Practices

2.1 Safety Arguments Aren’t Specifically Required by Regulators

A general safety principle is that a system is not presumed to be safe until a mishap
occurs, but rather must be demonstrated to be safe before deployment. Approaches to
demonstrating safety are typically based on some sort of safety argument. That argu-
ment might be explicit (e.g., a GSN argumentation structure [10]), implicit in the form
of having followed a suitable set of safety practices (e.g., [1]), or some mixture of the
two. Common codified safety practices include the generic notions of a Safety Integrity
Level (SIL), Design Assurance Level (DAL), or other risk-based approach to identi-
fying and requiring a defined level of engineering rigor.

The US legal system, on the other hand, tends to emphasize the identification of
defects. OEMs can attempt to defend themselves simply by asserting that their vehicle
is safe because no bugs have been identified that lead to UA [11] at 47:3–10. Injured
parties and their experts typically must search for relevant bugs or other design defects
such as single points of failure to support a vehicle defect argument.

US regulations do not require vehicles to have a safety argument beyond FMVSS
compliance, although using one is not precluded. However, lack of following accepted
engineering practices can be a contributing factor to legal outcomes, especially when
considering negligence. Additionally, a pattern of mishaps can lead to a mandatory
vehicle recall in some cases.

Some European vehicles in the 2000s adopted the E-Gas approach for electronic
throttle control ([12] is a newer, publicly available description). In general, the
approach involves a primary functional unit that performs control, and monitoring/
checking units that disable engine power if a fault is detected. The suitability of this
approach for life-critical applications depends upon adequate isolation between
doer/checker levels and appropriate fault coverage. In some cases, independent UA
mitigation is required, such as a vacuum pump to boost braking force independent of
throttle position. The specification also describes required fault handling functionality.

2.2 Argumentation vs. Testing

While general safety principles require some sort of argument based in part on engi-
neering analysis and rigor, the US regulatory system and much common practice is
heavily based on vehicle-level testing. It is common for OEMs to practice
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non-software-specific techniques for fault analysis such as DFMEAs [13]. However,
use of more advanced computer-based system safety techniques is uneven.

As previously discussed, the centerpiece of US automotive safety regulation is the
suite of Federal Motor Vehicle Safety Standards (FMVSS). While some testing con-
templates simplistic component fault models, FMVSS criteria generally do not involve
design processes, code quality, or other accepted computer-based system safety con-
siderations. For example, FMVSS 138 [14] fault injection covers a silent malfunction
due to loss of component power in a tire pressure monitoring system. Similarly, US
National Highway Traffic Safety Administration (NHTSA) investigations involve
vehicle level testing and discussions with the OEM, but emphasize driver error as a
cause of UA. For example, [15] blames the driver rather than the ETC for data samples
showing a doubling of engine RPM and vehicle speed with unchanged accelerator
pedal input.

2.3 Arbitrary vs. “Realistic” Faults and Failures

For safety critical systems, even a single bit flip or other small fault has the potential to
cause a catastrophic mishap if not sufficiently mitigated. Well defined and expansive
fault models such as transient faults and single event upsets are well known in the areas
of safety and fault tolerant computing research. Arbitrary failures of computer-based
system components must be considered when designing life-critical systems [16].
Moreover, there is an increasing body of confirmed reports of Byzantine (e.g., two-
faced) faults occurring in real systems [17]. However, some OEMs do not embrace
these accepted fault and failure models.

Automotive OEM safety analysis is often concerned with simplistic fault models
such as electrical wires shorted to power supply voltages, open circuits, or computer
crashes. Faults that are subjectively judged not to be “realistic” by designers are often
dismissed. However, research has documented subtle real world faults and failures that
defy designer intuition about fault realism [18].

Any redundancy often relies upon self-diagnosis and simplistic fault detection
mechanisms such as watchdog timers, heartbeats, and input port sanity checks [4].
Such simplistic redundancy management approaches offer only partial fault coverage,
and permit dangerous fail-active behaviors [19].

2.4 Failure Reproducibility

Transient faults and resulting failures are generally not reproducible upon demand in
ordinary system operation, because the underlying causes can be comparatively
infrequent, randomly occurring events. Fault injection experiments reveal vulnerabil-
ities, but are routinely criticized in litigation for involving minor instrumentation
modifications to vehicle software such as inclusion of a subroutine to flip memory bits
upon command. Such modifications are then claimed to render fault injection results
invalid due to involving a variation from the exact software image that would be in a
production vehicle, or otherwise not being “realistic” [11] at 84:14–24.

Diagnostic gaps and undiagnosed failures are common. In some – but not all –
cases, Trouble Not Identified (TNI) incidents can eventually be traced to systematic
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causes with sufficient detective work [20]. Despite less than complete diagnostic
coverage, and substantial TNI rates, ETC malfunction is often inappropriately ruled out
by OEMs or investigators when no Diagnostic Trouble Code (DTC) has been recorded.
This is especially true when problems cannot be reproduced with the subject vehicle –
even when a report is made by a source that many would consider credible, such as a
dealership employee or police officer [3] at 86:10–87:24.

Automotive safety struggles with non-reproducible faults. NHTSA tends to close
investigations of non-reproducible faults rather than investigating potential software
defects as root causes of mishaps. Similarly, OEMs can emphasize reproducible faults
and undeniable trends of field data, rather than perceived “one-off” events, in part to
avoid putting “the company out of business” [21].

2.5 The Driver Error Narrative

It is well known that humans are imperfect. It follows that the heart and soul of a
typical UA legal defense is a claim of driver error, typically in the form of pressing the
accelerator pedal instead of the brake pedal. Many publications, including those from
NHTSA, repeat the refrain of driver error causing UA events [22]. However, these
reports fail to consider computer system defects. Rather, reports conclude that in the
absence of mechanical defects or concrete physical evidence of a vehicle malfunction
the cause of a mishap must be drive error. Situations that provide truly compelling
evidence to rule out drive error tend to be attributed to “unknown” causes.

While OEMs and NHTSA typically cite various reports in support of the pedal
misapplication narrative, what data can be found on that specific failure mode tends to
tell a different story. A pre-ETC analysis of 997 “reasons/excuses” for crashes found
only one instance of “hit gas pedal instead of brake” – but 29 instances of “vehicle
failure” [23] pp. 293, 296. Thus, contrary to the typical human error narrative, available
data provides support for a finding that vehicles malfunction more often than humans
press the wrong pedal.

Revisiting the Audi 5000 investigation report reveals that even the veritable poster
child of human error producing UA provides incomplete support for the pedal misap-
plication narrative. Audi vehicle malfunctions produced up to 0.3 g of un-commanded
acceleration, having nothing to do with driver error. However, when such a UA event
startled the driver, sometimes the driver would press the wrong pedal, resulting in a
collision before there was time to self-correct in a tight-quarters situation [24].

Pedal misapplication issues are complicated by problems with data recording
strategies, such as potentially missing driver actions due to under-sampling [15].
Moreover, data recordings can be untrustworthy to the extent they rely upon suspect
data being provided by the same computer that is potentially causing the UA.

2.6 Engineering Rigor

Developing naked, undocumented code with no substantive safety process can rea-
sonably be expected to result in defects that could cause a catastrophic loss event for
life critical systems. This can create a fear that developers will be criticized for the
smallest of imperfections. However, the remedy for this fear is well understood: use an
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accepted safety approach. If nothing else, a successful independent assessment pro-
vides an argument in defense of allegations of negligence. However, a negative
assessor report can appear to be adverse in litigation [3] at 78:15–78:21.

Some automotive designers adopted model-based design during the 2000–2010
timeframe. This type of approach can provide tool support for certified code generation
and formal proofs of correctness for some aspects of system operation. However, more
than this is required for safety, and use of this type of tooling does not by itself ensure
good design quality. The two class action cases discussed in this paper did not make
any apparent use model based design for the code in question.

2.7 Certification and Deployment of Autonomous Vehicles

Independent assessment of safety standard conformance has been possible for many
years in the automotive industry. However, current automotive regulations only require
assessment against FMVSS test regimes. The future of AVs currently promises more of
the same. A first draft AV policy [25] encouraged some level of accountability for
safety arguments via a self-certification signature sheet. However, a later version takes
a “non-regulatory” approach to safety, making even self-certification entirely optional
for AVs [26]. Current US federal regulatory efforts emphasize modifications or waivers
of FMVSS test regimes to accommodate AVs.

Of significant concern in AV deployment is the usual argument for doing so:
human drivers make avoidable mistakes; computers won’t make those mistakes;
therefore computers will be safer drivers than humans. There is insufficient field data
and no robust technical public safety argument upon which to base an assertion that
AVs have even achieved safety parity with an “average” human driver (whatever that
might actually mean, noting that impaired drivers are part of the human driver popu-
lation). Perhaps AVs will simply make different mistakes. Ensuring AV safety is
complicated by the use of novel technologies such as machine learning [27].

Two vendors have commendably published safety brochures [28, 29]. No vendors
currently claim rigorous, independently assessed safety arguments.

3 Regulatory and Litigation Considerations

3.1 Cost Effectiveness of Safety Assessment

Accepted safety practices require reducing risk to an acceptably low level, e.g., As Low
as Reasonably Practicable (ALARP). However, US government agencies are required
to justify that all new regulations, including safety regulations, are cost effective. The
existing pedal misapplication narrative surrounding UA makes it difficult to introduce
new software safety regulations to avoid software defects, because such defects have
not been officially blamed for many mishaps. If there is no apparent carnage from
unsafe software, it is difficult to cost-justify improving software safety. However, new
laws can create stronger safety requirements without cost justification.

The litigation aspect of cost effectiveness is a bit different. Generally, the questions
asked are whether accepted engineering practices were followed, and whether a
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reasonable alternative design approach would have prevented a mishap from occurring.
However, a defect must first be identified before those questions are asked, and gen-
erally some sort of loss or legal violation must occur before legal action can be taken.

3.2 Source Code Availability

Source code is generally unavailable for inspection unless a very large litigation effort
is mounted. Government regulators do not have access to source code, nor do any
outside assessors unless the OEM decides to voluntarily grant access. Even if litigation
source code access is granted, it is often done under onerous conditions such as via a
dedicated non-networked secure room with a metal detector wanding procedure before
entrance. In one case, a judge found that OEM “misrepresentations caused Plaintiffs to
incur unnecessary costs” due to requiring overly burdensome source code security
measures [30]. All things considered, source code analysis can easily turn into a
million-dollar-plus effort including the cost of litigating to gain access, the cost of
operating a secure room, and expert witness costs. This makes source code analysis
impractical for most litigation, especially criminal defense, unless it can piggy-back on
a class action lawsuit that has deep pockets financial backing.

The expense and difficulty of source code analysis provides a perverse incentive for
poor code quality, skimpy design information, and opaque configuration management
practices. The more difficult to understand the software system is, the more difficult and
expensive it will be for experts to access it and identify specific defects that could have
caused UA or other dangerous vehicle behaviors.

3.3 The Importance of Academic Rigor in Publication

Academics need to be aware that litigation uses peer-reviewed academic papers as
evidence to support expert testimony. Even a well-intentioned paper that reaches a
flawed or poorly stated conclusion can do significant damage to practical safety if a
lawyer can find a way to interpret it as providing protective cover for an unsafe system.
Researchers and reviewers should be mindful of ways in which a paper might be used
to support an opinion that accepted safety practices are deficient unless that is truly the
finding of the research data. A particularly important point is that old techniques should
not be identified as defective simply because new techniques are better. Studies should
disclose threats to validity so that conclusions are not applied in inappropriate situa-
tions. Finally, reviewers and editors should ensure that authors who attempt to discredit
previous publications fully disclose potential conflicts of interest that might potentially
result in bias, such as involvement in pending litigation adverse to the previous pub-
lication’s findings or authors [31].

4 Conclusions

Automotive-specific safety guidelines and standards have existed for more than two
decades. Yet adoption is not required, and not is universal. Recent findings of industry
cover-ups regarding sticky gas pedals, floor mats, ignition switches, air bags, and
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emission defeat devices do not inspire confidence. One can hope that the significant
costs paid by OEMs for these transgressions will motivate better behavior in the future.
Litigation historical outcomes notwithstanding, it remains to be seen whether AV
designers will adopt robust safety engineering practices, or will succumb to pressure
and take shortcuts in the rush to market.

While it would be best if all OEMs actually adopted well understood accepted
safety practices, a more pragmatic approach is to perform research that will meet the
automotive industry where it is instead of where it should be. To that end, additional
work on the following topics could help improve practical automotive safety (this list
should not be interpreted as criticism of currently accepted safety practices):

• Studies that explicitly differentiate between driver error and computer faults
• Studies that measure how well specific safety techniques reduce mishap risk
• Fault injection techniques tailored to production vehicle deployment
• System-level testing approaches that validate safety
• Safety measurement approaches suitable for FMVSS test procedure codification
• Forensically valid automotive data recorders
• AV-specific safety validation (e.g., machine learning safety validation)
• Better understanding of the factors that support a robust safety culture.

More generally, anything that the safety community can do help educate regulators,
lawmakers, and non-specialist automotive practitioners appreciate the importance of
adopting safety techniques proven in other domains can also help.

Threats to Validity: Reported experiences are based on previous-generation vehicle
designs due to the retrospective nature of the litigation and regulatory system. There is
a significant variation in OEM attitudes and practice of safety, and certainly some
OEMs try hard to adopt and even go beyond basic accepted safety practices.

Disclosure: The author is involved in ongoing litigation concerning multiple
OEMs, including Toyota and Ford, and is a principle in an autonomous vehicle safety
company. He is not a lawyer. No external support funded this research.
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Abstract. Automotive Safety Integrity Level (ASIL) decomposition is a
technique presented in the ISO 26262: Road Vehicles - Functional Safety
standard. Its purpose is to satisfy safety-critical requirements by decom-
posing them into less critical ones. This procedure requires a system-level
validation, and the elements of the architecture to which the decomposed
requirements are allocated must be analyzed in terms of Common-Cause
Faults (CCF). In this work, we present a generic method for a bottom-
up ASIL decomposition, which can be used during the development of a
new product. The system architecture is described in a three-layer model,
from which fault trees are generated, formed by the application, resource,
and physical layers and their mappings. A CCF analysis is performed on
the fault trees to verify the absence of possible common faults between
the redundant elements and to validate the ASIL decomposition.

Keywords: ADAS · ASIL decomposition · Automotive architecture
Common-Cause fault analysis · Fault trees · Functional safety
ISO 26262

1 Introduction

Automotive Safety Integrity Level (ASIL) decomposition is a standardized prac-
tice presented in ISO 26262: Road Vehicles - Functional Safety [8]. This tech-
nique is used to reduce the criticality of safety requirements. It is generally
applied during the allocation of the ASIL values to the safety requirements. The
ASIL value of a requirement corresponds to a minimum ASIL that the system,
which consists of a given mapping of applications, resources, and locations, must
be able to achieve. When sufficiently independent architectural elements are
present, the safety requirements can be split into less critical ones and mapped
to the independent elements.

Figure 1 shows an example of a simple application and its mapping to the
resources (Fig. 1a) and a corresponding version in which the processing part proc
is implemented by two different functional nodes, proc1 and proc2, and executed
by different processors, ecu1 and ecu2 (Fig. 1b). The split and merge nodes
provide the safety mechanisms to obtain the correct application functionality
c© Springer Nature Switzerland AG 2018
B. Gallina et al. (Eds.): SAFECOMP 2018, LNCS 11093, pp. 12–26, 2018.
https://doi.org/10.1007/978-3-319-99130-6_2
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with high reliability. They are implemented in this example by the sensor and the
actuator respectively. The application layer contains the ASIL related to a safety
requirement, while the resource layer has ASIL specifications that must satisfy
the application requirements. The implementation resources are then mapped
to the physical layer.
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Fig. 1. Example application mapped on a resource graph (1a) with redundancy (1b).
The ASIL requirements for the application are shown above the application nodes. The
notation X(Y) refers to a decomposed requirement in which X is the new value and Y
the original.

To validate the ASIL decomposition shown in Fig. 1, according to the ISO
26262 standard, the redundant elements must be independent, meaning that
they cannot have Common-Cause Faults (CCFs) that could result in a system
failure [8]. The independence must be analyzed in terms of software and hard-
ware design and implementation, failures of adjacent elements, environmental
factors, failure of common external resources, etc. The ASIL decomposition can
be approved only after the analysis of the CCFs.

In this paper we approach the ASIL decomposition in a bottom-up fashion.
Compared to a top-down approach, where the ASIL requirements are allocated
to an existing architecture, we modify the architecture introducing independent
elements on which the redundant requirements can be allocated.

To this end, we present a three-layer model of automotive Electrical and
Electronic (E/E) architectures. It is used to analyze the system with automated
tools, validate the ASIL requirements from the mapping of the applications, and
introduce system redundancy by modifying the structure of the architecture.
From the architecture model we generate fault trees for each application that is
executed in the vehicle. We use application, resource, and physical space model to
analyze the independence of the redundant parts of the system. A model imple-
mented since the early stages of the development phase helps the system archi-
tects to maintain proper documentation and to trace the requirements on the
implementation. When comparing different solutions, a model-based approach
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helps in making the trade-offs between safety, availability of the products, costs,
and performance of the implementation.

An inspection of the fault trees allows the detection of a CCF that will cause
breaks in the modules’s independence assumptions, exposing the situations in
which the ASIL decomposition would not be valid.

The novel contribution of this work is:

– A three-layer model that consists of application, resource, physical layers,
and their mappings, that explicitly expresses redundancy with specific appli-
cation and resources elements, to perform the ASIL tailoring process on the
implementation level;

– Automated fault trees generation from the model, which are used in the CCF
analysis. This validates the independence of redundant elements, as required
by the ASIL decomposition process described in the ISO 26262 standard;

– Model transformations to modify the degree of redundancy of the system and
lower the ASIL requirements for single elements, while maintaining the ASIL
of the system as a whole.

The rest of the paper is organized as follows: Sect. 2 provides an overview
of the ISO 26262 safety standard. Section 3 describes the architecture model
that is used in this work, and Sect. 4 discusses redundancy in terms of model
transformations. Section 5 introduces fault trees and the generation algorithm
to synthesize them from the architecture model. Section 6 presents the related
work and Sect. 7 concludes the paper by summarizing our results.

2 ISO 26262: Road Vehicles - Functional Safety

The ISO 26262: Road Vehicles - Functional Safety standard, published in 2011,
addresses the safety aspects of automotive E/E architectures, considering both
random and systematic system failures. It is an automotive-specific adaptation
of the IEC 61508 standard [7], which focuses on functional safety of general
electronic systems.

The ISO 26262 standard is divided into 10 parts, analyzing safety require-
ments during all the product life-cycle. It provides guidelines on the management
of safety requirements, as well as which safety requirements are necessary for the
concept phase of the product, its hardware and software development, the pro-
duction and the validation of the system. Moreover, it provides guidance on
ASIL-oriented requirements and decomposition. A second edition of the stan-
dard will be published in 2018 focusing on motorbikes and providing guidance
on the application of the standard and ASIL definition to hardware components.

2.1 Automotive Safety and Integrity Level

Safety can be measured with the Automotive Safety Integrity Level (ASIL)
concept, which is similar to the Safety Integrity Level (SIL) of IEC 61508.
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The ASIL system uses a risk-based approach that takes into account the Severity,
Exposure, and Controllability of a potential harm. There are five possible levels:
from the most critical ASIL D to the least critical ASIL A and a QM (quality
management) level that refers to non-safety-critical items. Figure 2 shows how
the ASIL values are calculated based on the three risk parameters. The highest
level D corresponds to all the risk parameters being at their maximum: S3 corre-
sponds to life-threatening or fatal injuries, E4 to a high probability of exposure
and C3 to a difficult to control or uncontrollable risk.

2.2 Requirement Decomposition

The ISO 26262 standard “provide(s) rules and guidance for decomposing the
safety requirements into redundant safety requirements to allow ASIL tailoring
at the next level of detail” [8]. Lower ASIL requirements for the implementation
resources on which the application nodes are mapped on could be necessary for
three main reasons during the product development:

1. Elements with the maximum criticality level are not available. Creating
ASIL D compliant devices is a difficult task, and often the highest safety level
can be achieved only by exploiting the knowledge of the application that
the device will support. This is not possible for general purpose elements or
resources that are shared by many applications.

2. High-ASIL software is difficult and expensive to develop and test. The same
holds for the software development tools used;

3. The production process used to create a safety-critical component is expen-
sive. Decomposing the system into less-critical elements may be the most
cost-efficient solution.

C1 C2 C3
E1 QM QM QM
E2 QM QM QM
E3 QM QM A
E4 QM A B
E1 QM QM QM
E2 QM QM A
E3 QM A B
E4 A B C
E1 QM QM A
E2 QM A B
E3 A B C
E4 B C D

S1

S2

S3

Fig. 2. ASIL determination table
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Fig. 3. Possible decomposition schemes

Figure 3 shows the acceptable ASIL decomposition schemes defined by the
standard, which follow the rule of Eq. 1. To the ASIL values, QM to D, we assign
a number from 0 to 4, and the following relation must be satisfied:
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ASILorig ≤
∑

ASILdecomp (1)

The standard uses the notation ASILdecomp(ASILorig) to mark which ele-
ments have been decomposed and trace the original requirement. Additional
procedures must be carried out when decomposing ASIL D requirements, for
example, the test and the integration of each decomposed element shall be imple-
mented in compliance with ASIL C. In particular, when a requirement is decom-
posed into redundant elements, it is necessary to establish independence between
them for the original safety requirement to be correctly satisfied. For example,
the redundant elements should not depend on a common resource, such as a
shared battery, that could cause them to fail simultaneously, i.e. a CCF.

3 Three-Layer Architecture Model

When describing Advanced Driving Assistance Sytems (ADAS) or Autonomous
Driving (AD) related applications, the sense-think-act paradigm is generally
used. It is a common concept used in Robotics, which separates an application
into three main domains:

(a) Sense: an application will always start by collecting information about the
surrounding environment or the vehicle status from one or more sensors.

(b) Think: the collected data is then processed. Different design approaches
can be used to determine if it will happen, for example, in a centralized
architecture, where a single module will analyze the data, or in a distributed
fashion, in which multiple modules will analyze the different sensor data.

(c) Act: the final part of an application involves the actuators, which modify
the status of the vehicle.

In this work we assume that all applications follow this paradigm, and in the
application graph a path from each actuator to at least one sensor always exists.

3.1 Model Description

Modeling the automotive E/E architecture is necessary to analyze the system.
To validate ASIL decomposition it is necessary to include both the descriptions
of the applications, the implementation resources used, and the physical space
of the vehicle.

A three-layer approach is used: the architecture is described in terms of
application, resource, and physical layers. The application layer contains disjoint
application graphs, while the resource and physical layers contain one graph.

The application layer can contain multiple graphs, each describing a different
application. Each application is related to a specific safety requirement, for exam-
ple availability of the system for a certain task, derived from the safety goals,
analyzed during the Hazard Assessment and Risk Analysis (HARA) phase. The
application layer describes the functional architecture of the vehicle by defin-
ing the relationships between the software nodes via a directed cyclic graph
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G = (N,E) for each application, where N is the set of software nodes and E is
the set of edges that connect the nodes. Each node has an ASIL requirement,
which is originally inherited from the initial safety requirement, but can be low-
ered by the ASIL decomposition procedure. The edges indicate information flow
between the nodes, but do not have any capacity or timing properties, which are
expressed by explicit communication nodes. Each node has a specific type:

(a) Functional: the computational aspects of an application;
(b) Communication: the communication aspects of an application;
(c) Sensor: the data source of an application;
(d) Actuator: the data sink of an application;
(e) Splitter: node that replicates the input data to its output ports;
(f) Merger: node that compares the redundant inputs and ensures only correct

outputs are forwarded.

Note that the splitter and merger nodes are necessary to describe the redun-
dant elements of the system, and will be discussed in the following sections.

The resource layer describes the implementation architecture of the vehicle,
comprising of hardware and software elements. The resources are expressed with
a directed cyclic graph H = (R,L), in which R is the set of resources and L
is the set of links that connect them. Each resource can provide multiple types
e.g.:

(a) Functional: a resource on which the application functional nodes can be
mapped on, like a processor or a controller;

(b) Communication: resources that represent the different types of automotive
networks (LIN, CAN, FlexRay, MOST, Ethernet) or direct connections;

(c) Sensor: a resource that collects data, like a camera or a wireless receiver;
(d) Actuator: a resource that interacts with the physical environment by exe-

cuting the desired operations, for example the braking actuator;
(e) Splitter: a resource capable of forwarding the data received on an input ports

to multiple output ports;
(f) Merger: a resource capable of deciding which input data is correct and for-

wards it to its output ports.

We model generic resource-resource dependencies in the resource layer. To
show one example, we use the power supply, but any other shared resource can
be modeled in the same way and included in the CCF analysis.

(g) Power Source: a resource that provides the power supply for other resources,
for example a battery;

(h) Power Line: a resource that distributes the power supply to other resources.

Each resource has a set of types, and the application nodes with that type can
be mapped on that resource. Hybrid resources can be described properly by the
model, for example a gateway would be both a Functional and a Communication
resource, and might have Splitter or Merger capabilities too. Each resource has
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an ASIL value, representing the maximum ASIL value that it can satisfy for a
specific safety requirement, usually referred to as a ASIL-X ready resource.

The physical layer is described similarly by a cyclic graph F = (P,C), where
P is the set of physical locations and C the set of connections. The description
of the physical space is inspired by [10], in which the authors focus on the
study of the wiring costs in an E/E architecture and they model the system
to analyze wire routing and splice allocations. In our proposed approach, the
physical locations can describe: the areas of the vehicle in which the ECUs and
hardware components can be placed, which have a limited available space, and
the paths in which the communication wires can be positioned and their length.

The interconnections between the different graphs show the mapping of the
applications to the hardware resources, and of the hardware resources to the
physical locations of the vehicle. Figure 1 is an example of the first two graphs
and the relationships between them; it does not show the physical graph to which
the resources would be mapped.

4 Model Transformations

Reducing the criticality of each module as much as possible apparently lowers
the cost of the product while maintaining high safety. In practice more compli-
cations are introduced in the design: safety mechanisms must ensure that the
proper functionality is preserved, new communication interfaces are added to
the architecture, and a system-level analysis must be performed to ensure that
the redundant elements are sufficiently independent.

As a base example, Fig. 4 shows the new elements that are introduced in the
architecture after the duplication of a single node n, which has only one input
and one output for simplicity’s sake:

– ns has a splitter type, it collects the inputs and redirects them to the redun-
dant paths;

– c1a and c1b are the new communication nodes that describe the channels
between the splitter and the functional nodes;

– n1 and n2 are the redundant functional nodes;
– c2a and c2b are the new communication nodes that describe the channels

between the two functional nodes and the merger;
– nm has a merger type, it checks the input correctness of the data from the

redundant paths and forwards only correct data.

Both the splitter and the merger nodes are single points of failure for the
applications, which means that they will be safety-critical elements that must
have at least the same ASIL requirements as the original node n. They perform
generic operations on the inputs and outputs of the redundant blocks, for exam-
ple a merger could be a comparator of a classic k-out-of-n model [1] or part
of an health monitoring system which decides which output to use. The other
elements of the two branches instead follow the rule presented in Eq. 1.
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n ns
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n1

c1b

nm

c2bc2a

n2

Fig. 4. Node duplication

A transformation of the resources can be applied in a similar way. High
reliable splitter and a merger resources will manage the redundant independent
resources. The replicated application nodes do not always have a one-to-one rela-
tionship with the transformed resources. In a bottom-up approach, the designer
will make this kind of transformations to the applications and resources layers
to create redundant architectures.

Even from a simple transformation, it is clear that replication will intro-
duce a lot of complexity in the system. From a single safety-critical node we
introduce at least two nodes, the splitter and the merger, with the same ASIL
value as the original one. In this case, since their functionality is very specific,
it is possible to obtain these elements with contained costs compared to a more
generic safety-critical one. Moreover, new connections are created and additional
latency is introduced by the extra communication and the splitter and merger
functionality. New constraints for the design are introduced to meet the indepen-
dence requirements: redundant application nodes must be mapped on indepen-
dent resources, and independent resources must be positioned in independent
locations. In this work we consider only the safety aspect of these modifications.

5 Common-Cause Fault Analysis for ASIL Validation

The information provided by the application, resource, and physical layers allows
us to compute the ASIL value obtained with the implementation of each appli-
cation. If the obtained value is lower than the requirements, it means that the
resources cannot satisfy them, and either a different mapping or a different imple-
mentation must be used.

The computed ASIL value requires a Common-Cause Fault analysis per-
formed on the three layers of the model to be valid. This analysis can either be
manual or automated.

In this work, we generate a fault tree for each application, which is used for
an automatic CCF analysis. This analysis recognizes redundancy in the model
by searching for splitter-merger combinations, and uses the nodes and resources
dependencies to determine any possible CCF.

This analysis can also be used to validate a new model after a transformation.
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5.1 Fault Trees in Automotive Systems

Fault Tree Analysis (FTA) is a common top-down Safety Analysis, in which an
undesired top-level event is identified and then its causes are considered.

In this work we consider as the top-level event the failure of an application
for a specific safety goal, for example the system availability, that manifests itself
through the failure of at least one of the actuators. Each node, starting from the
actuators, can fail because of different reasons:

– Internal failure of the hardware resource on which the application node is
mapped or of the software component that implements the functionality;

– Failure of the location on which the used resource is mapped;
– Dependent resource failure. The resource on which the application node is

mapped may depend on other resources, such as the power supply;
– Input Failure. Failure of node A that provides data to node B leads to the

failure of the node B.

Figure 5 shows the fault tree generated for each node. The same structure is
generated for each input application node, until the final sensors are reached,
according to the assumption of sense-think-act applications. This type of fault
tree is based on [6], in which the authors use Dynamic Fault Trees to describe
ADAS related applications and perform a FTA.

Node 
Failure

Location 
Fail 

Input Fail
Power 

Supply Fail

...
Power 
Source 

Fail

Previous 
Node 1 Fail

Previous 
Node N Fail

Power Line 
Fail

Internal Fail

HW FailSW Fail

Fig. 5. Subtree for each application node

The internal failure base event could be further developed as in [6], where
the hardware and the safety mechanisms implemented in the resources are con-
sidered.

5.2 Fault Tree Generation

The fault tree generation algorithm is based on [11]. We assume that the failure
of a safety requirement corresponds to the failure of at least one of the related
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application’s actuators. All the actuators are assumed to have the same impor-
tance for the success of each application. Assuming a sense-think-act paradigm,
we can always expect to find a path from an actuator to a sensor.

Algorithm 1 accepts an application graph G and the top-level event eT as
inputs, and then calls the recursive procedure DevelopSubTree for each of the
application actuators. The function MappedResource returns the resource on
which an application node is mapped, while the function MappedLocation returns
the physical location on which the resource is positioned.

For each node, a top fault event is created, to which the four possible fault
events described previously in this section are connected via an OR gate. The
function Predecessor finds all the inputs of an element in its graph. It is used
to find all the inputs of the current application graph node, for which a new
sub-tree will be generated with the DevelopSubTree procedure and connected
to the input failure event of the parent node. In case of a merger type node,
this connection is made through an AND gate, meaning that an input failure is
acquired only when all the different input branches of a redundant part of an
application fail. In case of a sensor type node, no input nodes can be found,
the input failure event is deleted and the sub-tree is returned. For all the other
nodes, a failure of any of its input leads to a fault, so they are connected with
an OR gate.

The power supply event is developed in the DevelopResourceSubTree proce-
dure, which is similar to DevelopSubTree, but works on the resource and physical
layers only. This procedure is generic for resource-resource dependencies, and in
this example we use it to generate the power supply fault tree. Each resource can
be connected to one or more power source via power lines, which are modeled as
resources in the graph. This recursive function travels through the graph, from
a resource to each of its power supply, instantiating three types of events: a fault
in the power line or power source resource, a fault in the physical location and
a fault from the parent power supply resource.

Each element of the fault tree graph is related to the relevant architecture
node. The fault trees are saved as graphs, but also exported in the text based
Galileo format [5], which is a generic format supported by commercial FTA tools.
By adding to the graph information related to the fault rates of each element
and the fault probabilities of external events, it is possible to analyze them with
the commercial tools and compute reliability metrics for the design.

5.3 Example Scenarios

In this section we discuss three possible scenarios in which our analysis can pro-
vide important information to the system architect. In Fig. 6a we see the appli-
cation showed previously in Fig. 1b, its mapping to the hardware resources and
their positioning in the physical space. The redundant communication resources
are correctly placed in different parts of the vehicle so that they will not suf-
fer from CCF related to the environment, while ecu1 and ecu2 are placed in
the same location f2. This is an example in which a CCF related to a common
location is found, and a warning is issued to the designer by our analysis tools.
Note that in this situation, proc1 and proc2 are two different function. If, for
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Algorithm 1. Fault Tree Generation
Inputs: Application graph G, Resource graph H, Physical graph P , Top-Level
Event eT
Output: Fault Tree F

1: procedure GenerateFT(G, eT )
2: for ni ∈ N s.t. NodeType(ni) = actuator do

3: ei = DevelopSubTree(ni)

4: CreateGateOR(eT , ∀ei)
5: procedure DevelopSubTree(n)
6: Fsub = CreateNodeEvent(n)

7: r = MappedResource(n)
8: p = MappedLocation(r)
9: e1 = CreateResourceBasicEvent(r)
10: if NodeType(n) != sensor then e2 = CreateInputFaultEvent(n)

11: e3 = CreatePowerSupplyEvent(r)
12: e4 CreateLocationBasicEvent(p)
13: CreateGateOR(Fsub, (e1, e2, e3, e4))
14: if NodeType(n) = sensor then Return Fsub

15: for nj ∈ Predecessor(n) do

16: ej = DevelopSubTree(nj)

17: for sk ∈ Supply(r) do

18: ek = DevelopResourceSubTree(rj, powerSource, powerLine)

19: CreateGateOR(e3, ∀ek)
20: if NodeType(nj) = merger then

21: CreateGateAND(e2, ej)
22: else

23: CreateGateOR(e2, ej)

24: Return Fsub

25: procedure DevelopResourceSubTree(r, types)

26: FresSub = CreateResourceDependencyEvent(r)

27: p = MappedLocation(r)
28: e1 = CreateResourceBasicEvent(r)
29: e2 = CreateLocationBasicEvent(p)
30: if ((Predecessor(r) != NULL) and (ResourceType(Predecessor(r)) ∈

types)) then e3 = CreateResourceInputEvent(r)

31: CreateGateOR(FresSub, e1, e2, e3)
32: if Predecessor(r) = NULL then Return FresSub

33: for rj ∈ Predecessor(r) do

34: if ResourceType(r) ∈ types then

35: DevelopResourceSubTree(rj)

36: CreateGateOR(e3, ∀rj)
37: Return FresSub

example, the function proc1 was used in both redundant branches, then the
possibility of a CCF derived from a systematic fault in the function would have
been highlighted by the tool.
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Fig. 6. Example of different scenarios and the CCF analysis results

A second scenario in which a CCF is found is shown in Fig. 6c. Two different
power supplies are used for the redundant paths of the first example. Since both
the power lines are connected to elements of both the branches, a failure of a
single supply will lead to a system failure. The designer is again warned about
the possible CCF, which invalidates the ASIL decomposition.

Figure 6d shows an example in which two applications have redundant ele-
ments. Since the two applications are independent from each other, it is possi-
ble to map them on the same independent resources. The ASIL decomposition
assumptions will be valid, in this scenario no CCFs are present.

Figure 6b shows the generated fault tree for the first scenario, when consid-
ering a single power line and a battery to supply all the resources. The base
events marked in red represent the CCF related to the placement of the redun-
dant ECUs to the same locations and their common power supply. For this
simple illustrative scenario the fault tree contains 59 events, 32 OR gates and
one AND gate. In a realistic automotive system the number of nodes for each
safety requirement is higher, and in combination with the high number of safety
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requirements the resulting graph will contain thousands of nodes. Without an
automated framework, the safety engineers would have to manually create and
maintain those graphs, resulting in a more time consuming safety analysis and
validation of the system, with possibilities for human errors.

6 Related Work

In [12] the authors present a method to allocate the Safety Integrity Levels (SIL)
in a top-down automated process, supported by the commercial tool HiP-HOPS.
The system architecture is analyzed to find which elements affect the different
safety requirements and a top-down allocation of the minimum SIL values is
performed. Our approach differs from theirs since we modify the architecture
with model transformations in order to satisfy redundant safety requirements
with new independent resources. However, the two methods can be used in com-
bination during different phases of the design to validate each other’s results.

Additional information about ASIL decomposition are given in [4,17], where
it is made clear that introducing redundancy in safety-critical systems is a dif-
ficult task and must be taken care of by making appropriate considerations:
adding an additional resource without considering its position inside the system
and its dependencies is not enough for a valid decomposition.

In [6] Dynamic Fault Trees and their analysis are used to provide information
about the reliability of automotive systems using the STORM tool. Since our
fault trees are generated in the common Galileo format, they can be analyzed
with commercial or open-source tools like STORM to obtain parameters such
as the Mean Time To Failure of the system. An equivalent model that can be
used for the safety analysis instead of the Fault Tree is the Reliability Block
Diagram [3], but we decided to use Fault Trees to focus on the failure of the
safety requirement.

In [10] the authors introduce a model for the wires used in an automotive
system, optimizing the wire routing to minimize the harness expenses. This
model contains more details related to these than our model, and could be used
to describe the physical connections in a more refined way.

The authors in [14] describe an approach that supports the mapping of
software elements to hardware resources, using the AutoFocus3 tool, in an
AUTOSAR and ISO 26262 context. We currently perform the mapping step
manually. A similar Design Space Exploration that considers tasks scheduling,
latency, and costs is necessary to automate this process.

The work presented in [16] takes a step into the direction of a generalized
functional architecture for autonomous vehicles: currently there is no standard
Autonomous Driving system, but a step towards a common solution is neces-
sary to speed up the development and validation parts, included the safety case
analysis. With our work provide an environment that allows a system archi-
tect to describe generic automotive systems to compare them and decide on the
most efficient solutions. It will help determine which will be the trends and most
appropriate decisions for the future automotive systems. For example, the dis-
cussion between Centralized [15] versus Distributed [9] architecture design, but
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also more types of architectures like Domain-based [13] or more recent ideas like
Zonal [2], makes more sense when compared on a real system. They all have their
pros and cons. By modeling the system and compare the same applications with
different topologies it is possible to determine the efficiency of each solution.

7 Conclusions

In this work we presented a system-level analysis that validates an ASIL decom-
position according to the ISO 26262 standard. We focus on the validation of
the decomposition applied on a transformed system architecture, in which the
designer has introduced redundancy via specific elements, hence a bottom-up
method for the development of the redundant parts of the system.

Our validation is based on a CCF analysis performed on fault trees generated
from the system architecture model. The model describes the system in terms of
applications, resources, and physical layers and their mappings. The model, the
fault tree generation, and the CCF analysis are implemented in Python, using
the graph-tool library.

Our results show how a structured method to the ASIL decomposition process
is necessary for a formal validation of the redundant system. We have seen that,
even for a simple and artificial scenario, the generated fault trees contain a high
number of events, making the CCF analysis a complex task to perform manually.
By automating part of the safety analysis, the development of a safety-critical
product becomes faster and less prone to human error.
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Abstract. The usage of complex Microcontroller Units (MCUs) in
avionics systems constitutes a challenge in assuring their safety. They are
not always developed according to the assurance requirements accepted
by the aerospace industry. These Commercial off-the-shelf (COTS) hard-
ware components usually target other domains like the telecommunica-
tion branch, because of the volume of sales and reduced liability. In the
last years MCUs developed in compliance to the ISO 26262 have been
released on the market for safety-related automotive applications. The
avionics market could profit taking credit for some of the activities con-
ducted in developing these MCUs. In this paper we present evaluation
results based on comparing assurance activities from ISO 26262 that
could be considered for compliance to relevant assurance guidance for
COTS MCU in avionics.

Keywords: Microcontroller · DO-254 · Assurance · Reuse · Avionics
ISO 26262 · COTS

1 Introduction

COTS hardware components are ubiquitous in Airborne Electronic Hardware
(AEH) designs as execution platform for airborne software. In safety-critical
avionics systems this task is dominantly performed by Microprocessor Units
(MPUs). Due to the high demand for more integrated semiconductor products
the market share of “pure” MPUs went down in favour of MCUs solutions. Thus
avionics system suppliers are encouraged to embed MCUs today.

In contrast to MPUs, MCUs predetermine many features like memory, bus
architecture or peripherals that were formerly designed by the AEH manu-
facturer in a rigorous manner adequate for the quality and safety needs in
the aviation industry. This process-based and product-based approach is called
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Development Assurance (DA) and for AEH it is described in the guidance doc-
ument RTCA/DO-254 [1] released in 2000, which should be used within the
context of SAE ARP4754A safety considerations. This industry consensus stan-
dard was devoted to address all kinds of complex hardware: Line Replaceable
Units (LRUs), Circuit Board Assemblies (CBAs), Programmable Logic Devices
(PLDs), Application-Specific Integrated Circuits (ASICs) and COTS compo-
nents. This resulted in a very abstract description of process objectives which
enables a broad spectrum of interpretation in industrial practise. Therefore, the
Federal Aviation Administration (FAA) reduced the scope of the RTCA/DO-
254 to PLDs or ASICs and concentrated their guidance on this topic [2]. As
more AEH manufacturers envisaged to embed complex COTS components as
Multi Core Processors (MCPs), Graphics Processing Units (GPUs) and highly
integrated MCUs, Certification Authorities (CAs) also published guidance to
emphasize aspects for considerations to clarify their usage in safety-critical air-
craft functions [3–5]. This approach is called COTS hardware component assur-
ance.

The DA of AEH described in RTCA/DO-2541 and the COTS hardware
component assurance have the same objective, which is to assure that a hard-
ware safely performs as intended in its operational context. But the method is
inevitably distinct because of the nature that COTS hardware components may
not have been developed according to the RTCA/DO-254 or that COTS man-
ufacturers do not disclose required development artefacts to be able to demon-
strate compliance afterwards. So process-based evidence of the design life cycle
could not be claimed as aircraft systems concerns may not have been regarded
during the development of the COTS product.

Avionic manufacturers already employ COTS components actually intended
for other domains. Hardware is requested with a long market availability and
operable under harsh environmental conditions. These component properties are
characteristic for the automotive domain. Functional safety is at least since 2011,
when the ISO 26262 standard [6] has been released, a major concern for Original
Equipment Manufacturers (OEMs) and also for many suppliers of automotive
parts like integrated circuits. MCUs developed in compliance with ISO 26262
are designed for safety-critical applications. AEH manufacturers want to utilize
the fact that safety plays an essential role in the automotive domain [7].

In a previous work [8] we evaluated in an objective by objective compari-
son between the domain standards RTCA/DO-254 and ISO 26262 their design
integrity. The initial purpose was to examine similarities of both standards in
order to enable an AEH manufacturer to argue about the omission of already sat-
isfied RTCA/DO-254 objectives by the semiconductor manufacturer. But during
the evaluation it became obvious that determined gaps in the ISO 26262 can-
not be closed by the AEH manufacturer. Further access to detailed design data
would be necessary to accomplish the DA activities and to conduct a safety
analysis since failure consequences within the context of system operation could

1 Including CA recommendations that supplement this DA approach.
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be different in different domains. However, the identified similarities justified
further research.

In this article we present an analysis that shifts the focus from examining
the DA of the ISO 26262 to how the ISO 26262 compliance statement of an
MCU can be beneficial in the COTS hardware assurance process. In order to
increase the relevance of this research for safety-critical avionics, only MCUs are
considered that targeted the highest Automotive Safety Integrity Level (ASIL)2

and operates in Lock-Step Mode (LSM). The European Aviation Safety Agency
(EASA) Certification Memorandum (CM) section nine [5] currently describes
in the greatest extent which COTS assurance activities for MCUs shall be con-
ducted. Some of these activities are inherited from RTCA/DO-254. EASA’s CM
therefore serves as analysis basis to identify aspects of the ISO 26262 compliance
statement that can be beneficially reused. In addition, some artefacts required
for MCUs being compliant to ISO 26262 overlap with compliance results required
for RTCA/DO-254, and as such may be reused for aviation purposes.

This paper is structured as following: Sect. 2 describes how assurance is
achieved for avionics systems in general and how it differs if complex MCUs
shall be embedded. The application of CA documents are discussed in detail
in Sect. 2.2. Evaluation of ISO 26262 compliant MCU benefits in COTS hard-
ware component assurance is performed in Sect. 3. Conclusions together with
limitations of the reuse argument are given in the last section.

2 Assurance Methods for Avionics

The term assurance methods is currently often used in the avionics domain
[9–11]. In general, assurance can be defined as the actions that provide appropri-
ate confidence and evidence that a product or process meets its requirements [12].
It delivers reasons why the confidence on achieving a claim is so justifiable [13].
Most assurance activities are conducted to establish a convincing confidence [14].
So assurance intends to reduce the uncertainty about the correct realisation of
the product. In a requirements-based product development this means, that
the requirements specification meets the real-world needs (validation of require-
ments)3 and that the product is a correct implementation of the requirements
specification (verification of requirements).

For avionics systems the airworthiness requirements are on the top of their
requirements specification. Summarized, it has to be assured that the avionics
system design is appropriate for the intended function and that its function is
provided as defined in its operational context (environmental and operating con-
ditions of the aeroplane). These are for example prerequisites to ensure that it
is extremely improbable that safety-critical AEH contributes to a catastrophic

2 This should not imply an equivalence or comparability between ASIL and Develop-
ment Assurance Level (DAL).

3 Including all derived requirements that have to be validated to ensure that they not
cause any hazardous condition.
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failure condition at aircraft level that harms human life. For safety-critical sys-
tems, assurance methods are necessary to deliver enough credit to justifiably
state that the system is safe in its context.

The assurance approach varies depending on the context and which aspects
should be assured. The first approach is DA and can be applied for avionics
systems that mainly comprise components manufactured alongside the avionics
development life cycle see Sect. 2.1. The second approach is COTS hardware
assurance and shall be used if already developed components like complex MCUs
shall be used in AEH see Sect. 2.2. Both approaches have to be coordinated
with each other to enable e.g. an safety assured integration of an MCU in self-
developed CBA.

2.1 Development Assurance

Modern avionics systems are too complex in order to provide the requested level
of confidence by exhaustive tests which fully characterise the system. Hence,
the method of Development Assurance was defined to cope with this issue in
different areas, system (ARP4754A, ARP4761), software (RTCA/DO-178C) and
hardware development [1]. These DA areas aim to accomplish the development
in a sufficiently rigorous and disciplined way so that development errors do not
impact safety. DA is characterised by techniques that are applied during the
whole development process in order to identify and correct errors that could
occur at various steps within the development life cycle.

The DA approach described in the RTCA/DO-254 is connected to the DA
approach of the system development. To ensure safety, a strong collaboration
has been established between aircraft system designer and hardware level devel-
opers, where information such as requirements are exchanged and validated.
System engineers need to understand correlations and consequences of hardware
properties on system level. With this approach, AEH provides the functionality
or behaviour as specifically requested for the selected aircraft type. The princi-
ple is a stringent requirements-driven work flow down to detailed design tightly
connected to the system development process. This allows the visibility of the
hardware design for all participants (engineers and CAs) and beside this, a dili-
gent planning or control of processes shall assure that the design is a correct
implementation of the requirements describing the system level objectives about
safety and other product attributes.

For AEH embedded MCUs, DA on device level cannot be claimed or used as
assurance method [15]. The reason is that most DA techniques are based on an
ongoing development and the accessibility of development-time artefacts down
to a level detailed enough to realize the hardware component and to assure its
safety aspects on device level. For MCUs this is not possible as the develop-
ment has already been accomplished and detailed development-time artefacts
are not available. Thus, other assurance methods have to be determined which
can reduce uncertainty in a similar magnitude creditable by the CAs.
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2.2 MCU COTS Hardware Component Assurance

In case of DA, a component is developed as part of a certain system in contrast
to COTS component that is created without a dedicated system in mind. This
fact together with the broad variety of COTS components makes it a challenging
task to create a guidance for COTS hardware component assurance [16]. Such
guidance shall support the industry in realization of certifiable AEH, embedded
with COTS components, in a practical way so that certification costs do not
explode and safety can be sufficiently assured.

The latest initiatives for MCU COTS assurance by CAs in this direction
resulted in the following documents4 and reflect the status quo:

– CAST 5:
• CAST-32A: Multi-core Processors [3].
• CAST-29: Use of COTS Graphical Processors (CGP) in Airborne Display

Systems [4].
– EASA:

• Certification memorandum CM SWCEH-001: Development Assurance of
Airborne Electronic Hardware [5].

This document represents the current attitude of the EASA about several
certification aspects of AEH and in Sect. 9 especially to COTS MCUs. The
content is based on experience in COTS hardware component assurance in
many certification projects gathered in the years before and funded research
activities as [17].

– FAA:
• Commercial Off-The-Shelf Airborne Electronic Hardware Assurance

Methods - Phase 3 - Embedded Controllers [9].
• Assurance of Multicore Processors in Airborne Systems [18].

These technical reports are the results of funded research by the FAA to
develop proposals for assurance approaches for different COTS hardware.

Notable is that for different hardware component categories the assurance
methods were separately considered. This faces the fact, that each technology
has its own issues which shall be incorporated to provide methods that are useful
in practice. Especially small companies and market newcomers are interested in
guidelines as concrete as possible [19].

Guidance provided by the CAST working group describes considerations that
should be followed in a COTS hardware component assurance process if a MCP
or GPU is part of an MCU. In [3] the interface to the software assurance pro-
cess and in [4] specific hazards for display applications are explained. They are
important aspects in an assurance process but are not sufficient for MCUs assur-
ance activities. Further for the case study in this paper, all ISO 26262 developed
4 None of these listed documents are binding guidance material (unless so specified by

CA for the project), although they are usually used by CAs to query the safety of
COTS usage before approvals are granted.

5 In the Certification Authorities Software Team (CAST) working group representa-
tives from EASA and FAA working together.



32 A. Schwierz and H. Forsberg

MCUs must be run in LSM for safety-critical applications. Dual cores that are
synchronized and operating in LSM are excluded as stated in [3]. A GPU is also
not integrated in examined MCUs so [4] is not further respected.

The reports [5,9,17,18] share one similarity: COTS assurance should be man-
aged from system level in parallel or within the AEH design process6. However,
they lack in formulating a framework that brings them all together in a coherent
approach that can be related as an deployable COTS hardware component assur-
ance process. From these reports, the EASA CM [5] can be considered as most
relevant to identify necessary COTS assurance tasks for MCUs. It represents
the current position of a CA and defines assurance activities as an Electronic
Component Management Plan (ECMP)7 extension.

FAAs research report [9] does not explicitly cover activities but has identified
issues to keep track of during assurance. Also, findings and recommendations can
be found in this research report. Some similar to the activities in EASAs CM,
e.g. usage domain analysis, integration aspects, errata handling, and configura-
tion management, and some similar to typical ISO 26262 implementations, e.g.
robustness verification. These issues, findings and recommendations have been
analysed but were not identified as obvious COTS assurance tasks and therefore
not included in this paper. In addition, the other FAA research report [18] con-
cerns MCPs and is therefore excluded as explained for the CAST document [3]
before.

The CM contains sixteen recommended activities, numbered with brackets
from 1 to 16 (e.g. Activity [1]). These activities are referenced in this article with
the same numbering but are emphasized in round brackets instead to avoid con-
fusion with other references in the article. These activities should be considered
depending on the DAL associated by a higher level safety assessment, the mag-
nitude of Product Service Experience (PSE) traceable from different domains
and the complexity of the MCU. In the subsequent text, activities are discussed
for DAL A which apply for components with the highest possible safety impact.
This will extend the value of scope of this article, because targeting DAL A
means that all activities have to be conducted if the PSE is inadequate. The
argumentation behind these additional assurance activities is not further stated
in the document but is essential for the understanding on how they contribute
to COTS hardware component assurance. Thus the assumed argumentation was
reconstructed. Two top arguments were extracted that have to be assured:

Argument 1. The component performs as described by the manufacturer
without anomalous behaviour.
Argument 2. The component as used satisfies the AEH requirements
assigned within the system context.

It has to be differentiated between those arguments as the MCU was not devel-
oped according to the requirements of the AEH. How these arguments can be
6 Recommended also by RTCA/DO-254.
7 The term ECMP in the CM is misleading because typically such a process does not

perform profound functional assurance activities.
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supported depends on the complexity of the COTS component. For MCUs with
a functional architecture classified as simple, the arguments can be fulfilled as
following:

– Argument 1
• Verification of component behaviour on device level as specified by the

manufacturer.
The simplicity of the COTS component allows to verify all requirements
on the physical device.

• Substantiate the confidence of a design free from anomalous behaviour
by demonstrating device maturity or quality.
Most of the confidence on device quality is already supported by the
comprehensive verification effort. However, additional errata management
in activity (6) and (7) shall be considered to state that the device design
is stable enough. This can be demonstrated by errata decreasing over
the service time on the market. Also the errata publishing policy of the
manufacturer shall be adequate to be always informed about revealed
problems and to achieve that errata with potential safety impacts can be
handled.

– Argument 2
• Verification of AEH requirements on LRU or CBA level during equipment

design.
• As requested by certification requirements, no single point of failure

should lead to a catastrophic failure condition. This is also valid for COTS
components in general. Activity (15) requests the implementation of an
adequate architectural mitigation technique like dissimilar redundancy or
monitoring.

• An ECMP e.g. as described in IEC TS62239.

Most of the available MCUs on the market are complex or even highly com-
plex components. For these devices, exhaustive tests on device level can not
be achieved to adequately substantiate argument 1 as for simple components.
Therefore additional activities for complex or highly complex hardware are nec-
essary, which are depicted as following for arguments 1 and 2:

– Argument 1
• Verification of component behaviour on device level as specified by the

manufacturer.
The concept of usage domain as described in activity (4) resp. (5.1) sug-
gest to bound the scope of device level verification only on component
behaviour that is relied on or is really used by the AEH manufacturer8.
The determined usage domain (4) consists of requirements from the avion-
ics manufacturer that are compliant to the COTS component specification
and verified in activity (5.1) on device level. In this activity all technical

8 We separated the activity (5) in (5.1) usage domain verification and usage domain
validation (5.2).
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aspects have to be substantiated like deterministic behaviour e.g. worst
case execution time, shared resources in case of MCPs or performance
requirements. If the MCU is part of a partitioning concept, an analysis
has to be performed as described in activity (16) to claim the robustness
of this mechanism at device level9.

• Substantiate the confidence of a design free from anomalous behaviour
by demonstrating device maturity or quality.
The verification on device level limited to usage domain aspects is not
enough to mainly support argument 1. In comparison to simple COTS
components, the correct behaviour assumption of complex hardware is
more based on other activities like:
∗ COTS manufacturer quality management and production process has

to be assessed in activity (3).
∗ Errata management as for simple components in activity (6) and (7).

Additionally, activity (8) requests that the AEH manufacturer has to
document own made experience with the hardware during the devel-
opment (e.g. errata workarounds).

∗ COTS manufacturers configuration management including a change
process has to be assessed in activity (9) to make sure that changes
are appropriately controlled and communicated. Activity (10) addi-
tionally requests a change impact analysis to identify potential extra
verification effort.

∗ The PSE has to be documented by activity (13) in order to determine
if it is sufficient10 to omit certain assurance activities. PSE should
be used conservatively for dissimilar domain treatments of accident
investigations. Specifically for DAL A and B, a minimum amount of
PSE has to be reported in order to exclude really novel designs to be
embedded in AEH systems. Usually it is very difficult to use PSE at
DAL A and B. Also, it is a good idea to use PSE as supplemental
argument in addition to conducting the necessary verification and
validation activities within the target system. Activity (14) further
increases the confidence on the maturity and stability of the MCU by
requesting evidence on the rate and fact of past modifications.

– Argument 2
• Usage domain validation in activity (5.2) ensures that the usage domain

is consistent to system, software and hardware requirements.
• For complex COTS it is not adequate to verify requirements allocated

to the MCU at equipment level as for simple components. Activity (11)
requests verification and validation of these requirements coming from
other hardware or software components on device level in order to get
confidence about its correct integration.

9 Actually, we consider partitioning aspects as a specific part of the usage domain
analysis, because MCU properties shall be verified on device level.

10 The metric to determine a PSE as sufficient is also defined in the CM.
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• For highly complex MCUs activity (12) has to be conducted to have a
clear understanding of possible device failure modes and rates depending
on its configuration. Descriptions in [20] provides support for this task.

• Architectural mitigation technique external to the MCU as requested by
activity (15) shall also be applied.

• An ECMP e.g. as described in IEC TS 62239.
Activity (1) and (2) were not mapped to a top argument, since determining or
classifying the MCU characteristic (1) and archiving public available device
data (2) are required for both top arguments. It does not matter if the MCU
is classified as simple, complex or highly complex.

All these explained assurance activities of the CM are only applicable for the
peripheral subsystem and other functions which are not part of the processing
core. The DA of the processing core is based on the software development pro-
cess compliant to RTCA/DO-178C that includes software testing on the target
hardware platform. This separation is based on the assumption that other MCU
functions do not interfere with the software execution on the processing core [9].

The explanations about complex COTS hardware component assurance
established the basis on which in the next section the potential benefits from
ISO 26262 compliant complex MCUs can be examined.

3 Benefits from ISO 26262 Compliant MCUs in AEH
COTS Assurance

Derived from the introduction the following research question is asked: How can
the avionics industry benefit from ISO 26262 compliant MCUs in the course
of COTS hardware components assurance? Before starting to evaluate an ISO
26262 compliant MCU against the assurance approach from Sect. 2.2, the dif-
ferences to other MCUs on the market have to be identified first. What makes
these MCUs so special? These are the aspects on which COTS assurance can
probably profit in comparison to other MCUs e.g. from the telecommunication
domain.

3.1 Determination of ISO 26262 Specifics for Reuse

The special characteristics of interest come from the development approach
defined by the process requirements from ISO 26262. During previous research
we made a comparison between the DA method of RTCA/DO-254 and ISO
26262-511, which concludes that the ISO 26262 does not reach the same level
of design integrity [8]12. The reason is that only safety requirements are consid-
ered in the development life cycle of the MCU, whereas the traceability down
to detailed design level is not required. For manufacturers the main focus is on
11 Part five of the standard is about product development at the hardware level.
12 This demonstrates reasonableness of a dedicated COTS assurance process see

Sect. 2.2.
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the safety architecture to handle random hardware failures by adequate safety
mechanisms to achieve the targeted diagnostic coverage and to be able to enter a
safe state if necessary or indicate failures to external components. On the device
level the characteristic of a very high diagnostic coverage makes these products
something special on the market and manufacturers are very encouraged in the
realization and verification of the MCU’s safety architecture.

The MCU development approach has to adhere to ISO 26262-5 and refer-
enced parts. ISO 26262-10:2012 does not define conformance requirements but
gives guidance especially on MCU development. It explains the safety element
out of context method and describes in appendix A how it can be applied for
MCUs. This concept allows the realization of a component like an MCU which
is deployable to different application contexts: it is built for reuse. Therefore the
manufacturer first assumes the safety requirements that could be allocated from
the system level and architecture around the component. These assumptions are
necessary to develop the MCU internal safety architecture. The system integrator
has to follow the manufacturers assumptions and recommendations to preserve
the integrity of the MCU safety architecture in the final system context. For
ISO 26262 compliant MCUs typically an additional document type is released in
order to inform the integrator about the ISO 26262 related information essential
for system integration activities: the safety manual or safety application note.
In ISO 26262-10:2012 section A.3.10 an example on the content of the safety
manual is given.

As only suggestions for the safety manual content is provided, it is still worth
to examine which aspects have been realized in published documents. In order to
assess the potential benefits of the safety manual in an avionics COTS component
assurance process, the content of a representative probe of three manuals from
three different vendors was analysed. The selected MCUs target ISO 26262 ASIL
D. They have been chosen to increase the value of the scope of this article and
not if they are really suitable for the avionics industry. Thus, no analysis has
been performed to check the suitability of these devices for avionics due to e.g.
cosmic radiation or other environmental or functional issues such as correct set of
interfaces. Together with a performance analysis these aspects should be checked
early in the project during a selection and evaluation process before investigating
a lot of effort in the other COTS assurance actives. The selected MCUs with
respective safety manuals are: NXP MPC5744P [21], ST SPC56ELx [22] and
TI TMS570LC4x [23]. The content analysis of these manuals resulted in the
following two major topics of interest that can be found in each of the examined
safety manual in different level of detail:

– MCU safety architecture: It describes how random hardware fault manage-
ment is separated between internal hardware diagnostics and additional soft-
ware diagnostics. The examined MCUs employ a three layered approach:
1. All hardware blocks required for software execution are equipped with

the highest degree of diagnostic coverage by hardware safety mechanisms.
Two cores operate in delayed lock step and data transfers between mem-
ory and the processing cores are protected by end-to-end error-correcting
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code. This shall assure, that the software execution is not impacted by
random hardware faults.

2. Based on the integrity of software execution, peripheral functions are
mainly assured by software safety mechanism e.g. informational redun-
dancy on application layer protocols.

3. Debug functions should not be used in an operational safety-related sys-
tem, thus no diagnostics are provided and recommended respectively.

Worst case fault recognition times of hardware diagnostics are stated together
with the failure indication and handling by entering safe states of the MCU.

– Hardware and software requirements on system level: Here the assumptions
are explained which have to be followed by the system integrator. Hardware
requirements define the functionality of external hardware safety mechanism
like supervision of the power supply. Software requirements describe the cor-
rect way to utilize the internal hardware safety mechanisms and how software
can improve the diagnostic coverage depending on the used MCU hardware
functions in the safety-related system.

The avionics manufacturer could benefit from the same aspects as the auto-
motive system integrator: At first from the ISO 26262 certified development
process of the manufacturer and the process-requirements documented in the
ISO 26262 respectively. At second, the additional information from the safety
manual may be used. It can be assumed that the AEH supplier may get fur-
ther support from the MCU manufacturer only in a limited scope, if necessary.
However, these are the only public available information that can be addition-
ally reused in particular for ISO 26262 compliant MCUs in the COTS assurance
evaluation process described in the next section.

3.2 Evaluation of COTS Component Assurance Benefits by ISO
26262 Compliant MCUs

In Sect. 2.2, COTS assurance activities were outlined on the basis of recommen-
dations from [5] for simple and complex/highly complex MCUs. The presented
selection of ISO 26262 compliant MCUs in Sect. 3.1 cannot be classified as sim-
ple13 and MCUs aiming at an even lower ASIL level like ASIL A or B are often
based on more complex architectures. For that reason and to examine all benefits
from the ISO 26262 compliance statement for every assurance activity, a classifi-
cation of highly complex is assumed. The COTS component assurance activities
have to be conducted by the AEH supplier and some of them are achievable with
minimal or no additional support by the MCU manufacturer. These activities
have to be excluded from the evaluation because they can be accomplished with
MCUs in general and to claim these as ISO 26262 specific benefits would fal-
sify the assessment results. Even if some activities can be performed without a
special support of the MCU manufacturer, establishing a partnership with him

13 It is assumed that the full functional scope of the MCU is used and in that case it
will be not practical to verify it on that extent on device level.
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is meaningful to prevent misunderstandings and facilitate the assurance tasks.
Thus the following activities were omitted from the evaluation:

– (1) Describing the COTS component characteristics in order to classify the
MCU as simple/complex/highly complex is feasible on basis of the usual
public available hardware documentation.

– (2) Archiving of collected device data like errata notes or user manuals.
– (5.2) For usage domain validation the avionics system developer is responsible.

Validation in this context means, that a determined usage domain has to
be checked such it does not contradict any higher level requirements from
system/hardware/software. It is like requirements validation, to check if a
low level requirement is a valid refinement of a higher level requirement.

– (8) Documentation of past experience made with the MCU during the AEH
development shall substantiate the robustness and maturity in the field.

– (15) Architectural mitigation techniques addressing MCU common modes on
system level. These are means external to the MCU on a higher level and
have to be implemented during system development. They are also known
under the term safety net.

Table 1 gives an overview of the evaluation results. The considered assurance
activities can make use of additional MCU artefacts in particular. They are
assigned according to the identified top level arguments of Sect. 2.2 and arranged
in two groups resp.: Yes if a COTS component assurance activity benefits from
the ISO 26262 compliance statement and no if that is not the case.

Table 1. Evaluation results overview

Top level argument Assurance activity Benefits by
ISO 26262

1. The component performs
as described by the
manufacturer without
anomalous behaviour

(3): Quality management and production No

(13), (14): PSE

(4), (5.1), (16)a: Usage domain Yes

(6), (7): Errata management

(9), (10): Configuration management

2. The component as used
satisfies the AEH
requirements assigned
within the system context

(11), (12): Integration Yes

aPartitioning considerations were allocated to the usage domain analysis.

For top level argument 1 no benefits can be directly asserted for activities
(3), (13) and (14). Quality management and production process requirements in
(3) can not be claimed to be defined by the ISO 26262 for MCUs. However, in
a comprehensive ISO 26262 assessment process by a third party these aspects
should also be checked.



Assurance Benefits of ISO 26262 Compliant Microcontrollers 39

Activities (13) and (14) require the documentation of the PSE and assur-
ance that the PSE is considered similarly in the tow domains. The ISO 26262
also introduces a proven in use argument to claim a sufficient safety integrity,
but no activities are defined that the MCU manufacturer has to document the
usage of their products in the automotive field. In [5] it is mentioned that also
PSE is creditable from the safety-critical automotive sector if it can be ade-
quately demonstrated. To gain credit for usage experience from applications in
this domain is a debatable point, because in contrast to the avionics industry
there is no regulated approach that objectively examines the causes of every acci-
dent. So the exposer of design errors by automotive field experience is therefore
not guaranteed and weakens this argument. In general PSE should be demon-
strated as part of the assurance process, but credit should be mainly based on
the other activities.

The determination (4) and verification (5.1) of the usage domain profits
from detailed data descriptions in the safety manuals including disabling on chip
functions, test of activated functions, implementation hints, mandatory require-
ments, assumptions, and initial configurations. Safety mechanisms described in
the safety manual can also be utilized in usage domain verification tasks. Taking
into account errata documents during system integration is demanded in the
examined safety manual [21–23]. They are published and sufficiently prepared
in order to allow the system integrator to determine possible safety implica-
tions. Therefore, the errata management activities (6) and (7) should have an
advantage by using a ISO 26262 compliant MCU. Assurance activities (9) and
(10) request an adequate configuration management or change description app-
roach by the MCU manufacturer and additional change impact analysis by the
AEH developer. According to ISO 26262 part 8 a configuration management and
change management plan shall be provided by the MCU manufacturer. In the
safety manuals or errata documents the applicable device revision or product
configurations are clearly stated. It is therefore assumed that COTS manufac-
turers configuration management is available and in good shape.

Top level argument 2 in Table 1 shows that only two assurance activities can
benefit from an ISO 26262 compliant MCU. Actually, most AEH requirements
are already determined and verified on device level in activities (4) and (5.1).
Usage domain determination is a mapping of AEH requirements on basis of
the adequate configuration and usage of the MCU. So the actual function and
properties on device level designed by the manufacturer are reused as AEH
requirements. In activity (11) AEH requirements from a higher level like LRU or
CBA level allocated to the COTS component have to be verified and validated
in avionics system context. The device level description in the safety manual
for I/O functions and software requirements may support in the validation and
verification process for correct integration of the MCU in an AEH. The assurance
activity (12) demands a clear understanding of possible device failure modes
and rates depending on its configuration. The safety manuals will help in this
activity. Several failure scenarios are covered in these documents and failure rate
calculations are one of the main topic of ISO 26262 hardware development. Note,
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however if a COTS component has previously been approved with specific safety
architectures to mitigate propagation of faults from its failures, its reuse in a new
system may not have the same benefits of protection.

4 Conclusion

In this article, we presented the differences of assurance approaches for AEH
including complex COTS MCUs. We examined which COTS assurance activi-
ties in the avionics domain benefit from using an ISO 26262 compliant MCU.
To understand the advantages of selecting such a cross-domain COTS compo-
nent is helpful for an AEH developer. Based on [5] a new structured overview
was presented for the COTS hardware component assurance activities. Cur-
rently, no industry consensus standard or recommendation from CAs is avail-
able that brings all necessary COTS assurance aspects together in an integrated
approach [16]. Therefore the presented assurance activities are supposedly not
complete. However, the selected assurance tasks provide an adequate foundation
for the evaluation of possible benefits of ISO 26262 compliant MCUs during the
assurance process. Specifics of ISO 26262 compliant MCUs were described to
identify the aspects that can be reused. It was demonstrated where further sup-
port by the MCU manufacturer is required even in the case that the MCU was
developed according to ISO 26262. The evaluation concentrates on assurance
activities where additional support by the MCU manufacturer is most helpful.
It could be demonstrated that an ISO 26262 compliant MCU is beneficial in
the execution of certain assurance activities. This information can be used by
AEH manufacturers to better plan the required COTS assurance activities and
to estimate their required effort or possible savings.

However, the reuse analysis result does not allow to make a generic state-
ment that the ISO 26262 approaches are in any case transferable to the avionic
domain. An MCU developed according ISO 26262 should be treated like any
COTS component in the assurance process. No activity should be skipped even
if it was demonstrated in this article that a benefit from the ISO 26262 statement
is expected. The AEH manufacturer has to go more into detail by selecting a cer-
tain MCU and perform the assurance activities in a specific system context. On
that level it is possible to show which aspects can be reused. The manufacturer
has to agree with the CA on that approach.
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Abstract. The validation of highly automated driving vehicles is an
important challenge to the automotive industry, since even if the system
is free from internal faults, its behaviour might still vary from the origi-
nal intent. Reasons for these deviations from the intended functionality
can be found in the unpredictability of environmental conditions as well
the intrinsic uncertainties of the Machine Learning (ML) functions used
to make sense of this complex input space.

In this paper, we propose a safety assurance case for a pedes-
trian detection function, a safety-relevant baseline functionality for an
automated driving system. Our safety assurance case is presented in
the graphical structuring notation (GSN) and combines our arguments
against the problems of underspecification [9], the semantic gap [3], and
the deductive gap [16].

Keywords: Safety · Intended functionality · Functional insufficiency
Nominal performance · Automated driving · Machine learning
Assurance case · GSN

1 Introduction

Highly automated driving vehicles will potentially ease the daily life of millions
of commuters, increase the mobility of elderly and disabled people, and enable
numerous new business cases. A highly automated driving system can be defined
as a vehicle that monitors its driving environment and executes steering, accel-
eration and deceleration without permanent human monitoring or intervention.

In order to achieve the safety goals of a highly automated driving system, e.g.,
do not harm pedestrians, the propagation of internal faults must be prevented as
is standard in today’s automotive systems. However, we must additionally deal
with situations where the automated driving system is free from internal faults
but behaves in a manner that nevertheless leads to a hazard. For example, a cold
and foggy environment can result in blurred camera images and the radar sensors
becoming iced such that a safe automated driving operation cannot be ensured
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and the probability of the system violating its safety goals is unacceptably high.
In contrast to today’s driver assistance systems, an immediate non-technical fall-
back solution reliant on a human driver is not an option for highly automated
driving.

In the following, we refer to such deviations from the intended functional-
ity of a system as functional insufficiencies. Note that functional insufficiencies
are also known as performance limitations. We also like to point out that if a
functional insufficiency occurs, no guarantees about the behaviour of the system
can be made. In other words, there is a remaining probability that a functional
insufficiency causes the violation of safety goals. Therefore, we regard functional
insufficiencies as contributions to system hazards.

In order to prevent functional insufficiencies, the specification of the system
must reflect its intended functionality. Furthermore, the system’s specification
must be appropriate for any environment within which the system potentially
operates. We consider it an insufficient validation strategy to simply drive a
specific distance in automated driving mode, since a safely driven route does
not necessarily include all environmental conditions and hence does not indi-
cate the absence of failures. Instead, we consider this test driving approach only
as supplementary for a structured and validated specification of the intended
functionality of the system in all potential environments. In other words, we
argue that the absence of unreasonable risk due to hazards caused by functional
insufficiencies has to be achieved by a rigorous overall development approach -
from the specification of intended functionality, through derivation of subsystem
functionality, the implementation and integration of functions and runtime mon-
itoring with the possibility for updates to improve the system based on real-world
observations.

In addition to the inherent uncertainty and complexity of the environment,
functional insufficiencies can stem from intrinsic uncertainty within the func-
tional implementation itself. Machine learning (ML) is a prominent example for
a function with an intrinsic uncertainties, since ML has the ability of learning
without being explicitly programmed [15]. A highly automated driving system
may contain various ML functions, e.g., for detecting objects from video images.

In order to analyse functions with intrinsic uncertainties, their intended func-
tionality has to be well understood and specified. However, to correctly specify
functions with an intrinsic uncertainty, we require either expert knowledge about
the conditions under which they usually tend to fail or we need a ground truth
reference from which we can determine remaining uncertainty. In the context
of ML applied to automated driving (AD), we argue that neither the expert
knowledge nor the ground truth reference is perfect.

In order to able to nevertheless build safe systems with ML functions, we
are interested in how the potentially unknown functional insufficiencies at the
system level can be mitigated despite this intrinsic uncertainty. This includes the
question which validation targets have to be achieved to demonstrate that a ML
function fulfils its intended functionality. Furthermore, it requires the ability to
argue about the validity of these specification and validation targets themselves.
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Different challenges in AD development have been already described: under-
specification [9], semantic gap [3] and deductive gap [16]. In this paper we review
these contributions by means of an ML-specific case study for the safety relevant
function “pedestrian detection”. Based on this case study, we propose approaches
to answer the following questions: (i) Underspecification: What is the intended
functionality and what are its limits? (ii) Semantic gap: How can the intended
functionality be described? (iii) Deductive gap: Which requirements on the func-
tional layer (here: ML) can be deduced?

We present a safety assurance case that supports the argument of the absence
of unreasonable risk due to hazards caused by functional insufficiencies by struc-
turing the validation targets. Our safety assurance case broadens the approach
of Burton et al. [4] and is visualised by a graphical notation, namely the goals
structuring notation (GSN).

The remainder of this paper is structured as follows: In Sect. 2, we detail the
function pedestrian detection of our case study and derive validation targets for
it. In Sect. 3, we present the safety assurance case of the pedestrian detection
function. In Sect. 4, we summarize our results, discuss our approach, and present
future work.

2 Validation Targets for Pedestrian Detection

In this section, we first introduce the pedestrian detection function and present
its functional specification. Then we discuss reducing the risk of hazards caused
by underspecification and semantic gap. Finally, we discuss the deductive gap
and propose functional modifications to achieve the intended functionality.

2.1 The Pedestrian Detecting Function

A typical automated driving system is comprised of the following parts: sensors,
perception, behaviour and trajectory planning, trajectory control, and actuators.
The perception part acquires and processes data from sensors, e.g., cameras,
lidars, and radar sensors, and other data sources, e.g., car2X-communication,
and creates an environmental model of the surroundings of the vehicle. For our
case study, we focus on the ML function that detects pedestrians based on video
analysis.

This pedestrian detection function is typically realized by a Convolutional
Neural Network (CNN), since CNNs are regarded to have a high potential for
classification tasks [10]. CNNs are a class of feed-forward neural networks (NN)
that consist of a large number of connected neurons - computational units that
calculate a weighted sum of their inputs and apply a nonlinear activation function
on this sum. The weights are determined by minimizing a loss function of the
network over a given set of training data (labelled images) and backpropagating
the respective error terms through the network. In this manner, CNNs allow a
classification annotated with a confidence level for each class and a localisation
of an object within a given image (e.g., frames of a video).
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Incorrect functioning of the pedestrian detection function can cause hazards
such as “unnecessary emergency breaking or steering” and “too late or no emer-
gency braking when necessary”. These hazards potentially violate the safety goal
“do not harm pedestrians” of the automated driving system. Thus, we consider
the pedestrian detection function as safety relevant. In the following, we con-
sider the general safety goal “ML function meets its intended functionality” as
the overall safety goal for the pedestrian detection function.

2.2 Functional Specification

In this case study the pedestrian detection function is divided into two subtasks:
1. classification and 2. localisation of the pedestrian. The specification of each
task is derived from the driving task (e.g., ego speed, distance to object) and
system boundaries (e.g., braking distance). For example, for the first subtask,
the specification is derived from the need to detect persons of a minimum height
from a particular distance travelling with a maximum relative velocity which
results in a minimum amount of pixels inhabited by the object within a single
image frame from the camera.

We propose the following requirements for the first subtask to be defined for
each pedestrian class:

– Pedestrian of height (X1 pixels) and of width (X2 pixels) are classified.
– Pedestrians are detected if Y % of the person is concealed.
– There are less than W1 False Positives per 1000 frames.
– There are less than W2 False Negatives per 1000 frames.
– There are less than B1 misclassified detections.
– Confidence level shall reflect the actual uncertainty of correctness of a classi-

fication.

Both subtasks are required for an adaptation of behaviour and trajectory
planning. If the confidence level is not high enough to result in an unambiguous
decision, defensive measures are taken (e.g., increased safety distance). This
results in the following additional requirements:

– Vertical deviation less than C1 pixels to ground truth.
– Horizontal deviation less than C2 pixels to ground truth.

The validation data used to confirm these requirements must cover those
characteristics of the environment relevant to the task and hence be represen-
tative of real-world situations. Note, this does not necessarily mean that the
validation data is representative in terms of the frequency of occurrence of cer-
tain situations. Critical situations may occur only rarely but must be adequately
trained and tested. Furthermore, the validation data must include sufficient vari-
ants of pedestrians. The data must also allow for targeted validation of certain
attributes, such as non-discrimination between age, gender or race. This requires
that these attributes are represented and labelled in the validation data.

In this paper, known challenges of automated driving, in particular when
applying ML, are reviewed as sources of functional insufficiencies. These sources
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are structured into validation targets, so that a systematic approach is intro-
duced to arguing the goal “ML functions meets its intended functionality”.
A cumulative argumentation based on a diverse set of validation targets and
statistical evaluation (here formulated as sub-goals of a safety assurance case)
including the associated evidence must be discussed. In the following, a thorough
investigation is made into how to analyse the intended functionality and how to
set the validation targets. This approach is later used to build a safety assurance
case.

First of all, the risk due to hazards caused by two sources of functional
insufficiencies shall be reduced: underspecification and semantic gap. Later the
implementation specific deductive gap will be reviewed. These validation targets
must be determined iteratively during development.

2.3 Reduction of Risk Due to Hazards Caused by Underspecification

Underspecification might occur if the intended functionality is more diverse than
what is specified [9]. Consequently, defined use cases are only part of the intended
functionality. Addressing underspecification by means of a generalization can
lead to a inadequately defined safety requirements. In order to reduce risk of
underspecification, we suggest the following validation targets. Note that this
list might need to be extended and evaluated for each specific task.

– Environment is sufficiently well known.
⇒ Evidence: The hazard analysis and risk assessment (HARA) in the scope
of ISO 26262 should be extended to determine properties of the environment
that lead to critical situations, e.g., low-angled sunlight, fog and reflective sur-
faces, etc. Systems safety approaches such STAMP [11,12]) can be beneficial
here. While specifying the intended functionality, unintended use cases must
be excluded explicitly in order to highlight the system boundaries. Assump-
tions on the environment shall be made explicit in order that they can be
validated through review, analysis and monitoring.

– Task is sufficiently well known.
⇒ Evidence: Requirements shall be specified including task specific
attributes. In the case of generalization abilities, attributes such as colour
invariances and translations invariances might be required.

– Sensitivity against unpredictable or unspecified impact of environmental
attributes is sufficiently low.
⇒ Evidence: Sensitivity to environmental changes shall be investigated. More-
over, influence due to distributional shift over time or due to geographic
changes shall be reviewed. Requirements on invariance and generalization
attributes shall be reviewed according their appropriateness to the intended
functionality. Run-time monitoring of assumptions and field-based validation
shall be used to investigate discrepancies between the real environment and
the assumptions as well as sensitivity to these changes. Moreover, statistical
extrapolation shall be used generalise the results of acquired data.
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2.4 Reduction of Risk Due to Hazards Caused by Semantic Gap

Semantic gap refers to using implicit knowledge on the satisfaction of Safety
Goals [3]. In the context of ML, semantic gap refers to making claims on the
relevance of references used for training, test and validation data sets. We pro-
pose the following sub-goals to support the argument of “Reduction of risk due
to semantic gap”. Note that these might have to be extended and evaluated:

– Pedestrian classes are sufficiently accurately described.
⇒ Evidence: Functional specification of several validation data sub-sets shall
include all variants of classes that can be derived from the environment.
Moreover, safety requirements shall be transferred into task specific require-
ments, e.g. informal textual specifications shall be transferred into formal
specifications as far as it is possible, at least for safety-relevant requirements.
Evaluation of specific influences and appropriate object variations shall be
specified beyond statistical evaluation.

– Location accuracy is sufficiently well described.
⇒ Evidence: Training and validation data shall be specified. Evaluation of
specific influences shall be specified. Additionally, evaluation of compliance
with tolerances, of size and of location variation shall be specified.

– Discrepancy between real and described environment is sufficiently small.
⇒ Evidence: Evaluation of similarity between reality and specification of
validation data shall be specified. Functional modifications, such as run-time
monitoring, degradation modes, pre-processing of ML input etc., shall be
specified and documented.

Although systems engineering approaches to ensure a rigorous and complete
derivation of the requirements reduce the risk due to hazards caused by under-
specification and semantic gap, further evidence must be collected through tar-
geted field-based observations and used to iteratively improve the specifications.

2.5 Reduction of Risk Due to Hazards Caused by Deductive Gap

Deductive gap refers to using invalid assumptions on different abstraction levels
causing an unintended functionality [16]. In the context of ML, features might
be wrongly learnt or erroneously implemented. The deductive gap for ML differs
from the deductive gap for non ML functions due to its intrinsic uncertainty.
Note that reduction of underspecification and semantic gap is a prerequisite for
the implementation of the intended function and as important as the avoidance
of deductive gap.

The following validation targets can be defined for reducing the risk due to
hazards caused by deductive gap before and during training:

– Data set is sufficient for the intended functionality.
⇒ Evidence: Transfer of system-level requirements to ML-specific require-
ments as well as the attribute distribution within training, test and validation
data sets shall be evaluated. Moreover, independence from unintended object
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relations shall be highlighted. For example, synthesised data can be used to
broaden recorded data by special attributes.

– Overfitting is sufficiently reduced.
⇒ Evidence: Overfitting measures, such as pretraining on diverse data set,
regularisation methods, Dropout or DropConnect, data augmentation shall
be documented and evaluated.

– Underfitting is sufficiently reduced.
⇒ Evidence: Underfitting measures (e.g., a minimum amount of training data
for each class variant) shall be documented and evaluated.

Self-learning algorithms are difficult to understand, since parameters are set
not by an engineer, but by the learning method, e.g., back propagation. More-
over, the learnt features do not have to represent physical properties, but may
occur arbitrarily. within the data To achieve the following validation targets, it
is essential not only to consider ML in a black box manner (as it is handled
during statistical analysis) but also to understand the essential influences for
deviation from the intended functionality. In order to evaluate weaknesses of the
ML function, the following methods are currently known:

Feature Visualization. One possibility of uncovering features which have acti-
vated a class is to visualise the part of the image that contributed to the
classification result. Saliency methods belong to such techniques. Zeiler and
Fergus [17] present a visualisation technique mapping various layers of a CNN
to an image. The pixels within the image can be highlighted according to the
scale of influence on each layer. Visualizing features might help to understand
which patterns of the training set activates the feature map.

Structuring of the Input Space. By annotating known attributes of the
images that are independent from the classification task (e.g., weather con-
ditions, light conditions, contrast), the input space can be further structured
for training and validation purposes. Either these additional attributes are
chosen by developers or appropriate clusters are identified by algorithms.
Equally, sub-classes of task classifications and their properties can be defined
manually or automated and offers opportunities to further optimize the classi-
fication process [13]. Then, task-specific misclassification and mislocalisation
are investigated (e.g., correlations are visible in confusion matrices [1]). If
correlations exist, either training data can be broadened appropriately or the
confidence level can be adapted appropriately during post-processing.

Formal Verification. Under certain conditions, some functions allow the
application of formal verification to investigate whether certain constraints
are met across the complete input space.
One approach based on formal verification that is applied on a neural network
is provided by [7]. The investigated neural network makes flight control deci-
sions. Katz et al. investigate a fully connected neural network. After rewriting
inputs and outputs as Boolean formula, a linear real arithmetic, the authors
proof with the help of an Satisfiability Modulo Theories (SMT) solver that
the formula is satisfiable in the sense of SMT.
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Nevertheless, in our case study, a formal verification of CNNs is not real-
istically feasible, since it is difficult to describe the input and output space
(images with all kinds of variations in appearance etc.) or to formulate linear
real arithmetic for this purpose.

Uncertainty. The confidence level of each class output does not express a prob-
ability of existence of the object itself. Therefore, uncertainty calculation
might be used to measure the reliability of the classification result. Uncer-
tainty quantification can be used for further measures (e.g., in plausibility
checks and sensor fusion algorithms [8]), thus improving the overall robust-
ness and reliability of the subsequent trajectory planning tasks [14].

With the help of these methods, the following validation targets must be
proven in order to reduce the risk of hazards caused by deductive gap. We
suggest the following incomplete list of evidences:

– Essential influences on the ML function are sufficiently understood.
⇒ Evidence: The application of feature visualization, adaptation of confidence
level and uncertainty calculation shall be documented. Furthermore, correla-
tions of errors to features shall be investigated and reduced by appropriate
training. Evaluation of these correlations shall be documented.

– ML function is sufficiently robust.
⇒ Evidence: Tolerance against distributional shift, adversarial and faulty
input shall be evaluated. Statistical evaluation shall be documented. An
integrity test of ML function shall be documented.

– Learnt features are sufficient for function.
⇒ Evidence: Learnt features and correlations between these and detection
results shall be analysed and documented (e.g., by feature visualization).

A well-known weakness of ML functions is the sensitivity to adversarial
attacks. In this case an object, e.g., a road sign [5,6], is slightly modified such that
a human would not recognize a manipulation but it is misclassified with a high
confidence by a machine learning function. ML functions trained with different
data subsets or with adversarial examples are more robust against adversarial
attacks but unfortunately, to the best of our knowledge, there is no general solu-
tion to avoid adversarial attacks as of today. Hence, special caution is necessary
while system engineering and when creating validation targets for adversarial
attacks.

Furthermore, the following validations targets regarding any changes made
during the development of the system (e.g., in its parameters or in the computing
platform) must be proven.
– Changes to parameters do not inviolate safety requirements.

⇒ Evidence: Verification specification for any changes shall be documented.
– Differences between the training and target platforms do not lead to a viola-

tion of the safety requirements.
⇒ Evidence: Verification specification for any changes shall be documented.

– Changes in target platform comply with safety requirements.
⇒ Evidence: Verification specification for any changes in target platform shall
be documented.



Structuring Validation Targets of ML Applied to Automated Driving 53

2.6 Functional Modifications to Achieve the Intended Functionality

The validations targets for the deductive gap defined in the previous section can-
not guarantee that hazards at a system level will not occur. In the following, we
provide a brief overview of potential safety measures to reduce the risk induced
by functional insufficiencies at a functional and system level.

Measures at the Functional Level. Besides demonstrating the performance
of the ML functions themselves the following measures can be introduced to
reduce the risk associated with functional insufficiencies:

– Pre-processing of ML-input might be conducted according to known factors
that significantly influence performance. If the performance of the ML func-
tion, for example, is decreased for pictures with very low contrast, a classifi-
cation might be suspended if such conditions are detected.

– Post-processing of the ML-output might include adjustment of confidence lev-
els based on factors known to influence performance, so that decisions about
driving behaviour and trajectory planning are adapted to the reliability of the
perception function. Influences might include object size (due to resolution
problems), ego travel velocity (due to blurring effect) or image quality e.g.,
contrast and light conditions.

Measures at the System Level. To reduce the propagation of errors through-
out the system and therefore to reduce the risk of hazards induced by functional
insufficiencies at the system level should be identified by applying rigorous sys-
tems engineering approaches. This can include the introduction of the following
measures:

– Diverse redundancy increases the dependability of a function. For pedestrian
detection, several possibilities exist, e.g., Lidar, Radar and traditional com-
puter vision algorithms.

– Operating modes, also called degradation modes, depend on the vehicle’s
environmental model. As long as the environmental model is reliable, deci-
sions are taken within a wider range of possible trajectories. In contrast a
degradation mode is chosen according to a cautious and defensive driving
strategy, if an object is detected with a low confidence level.

– Transition between operating modes ensures a continuous driving behaviour.
– Run-time monitoring of assumptions allows the validation of whether assumed

attributes about environment are still valid. The detection of discrepancies
between distribution of environmental attributes and design assumptions at
run-time could indicate either errors in the trained function or that the system
is operating within an environment for which it was not adequately trained.

– Established driver assistance systems (e.g., Emergency brake assist) applied
to AD must be reviewed from a system engineering perspective. It must be
clarified to what extent measures must be taken at the system level to reduce
the integrity requirements on the individual functional components.



54 L. Gauerhof et al.

3 Safety Assurance Case for Pedestrian Detection

The previous section introduced validation targets that must be addressed during
development. Nevertheless, the argumentation that a ML function meets its
intended functionality has to be summarised and structured. In this section we
propose a safety assurance case using the goal structuring notation (GSN) that
structures the presented validation targets and associated evidence. The aim of
our safety assurance case is to argue the safety of ML with respect to the absence
of unreasonable risk due to hazards caused by functional insufficiencies.

The safety assurance case includes all validation targets as sub-goals and
evidence of mitigating against weaknesses in the ML function at the system as
well as functional level. An evaluation of the validation targets is not conducted
in this paper, since it is not representative for a general validation approach due
to environmental-, task-, and system-specific dependencies. Instead we propose
and discuss an approach to structure validation targets for a safety relevant
ML function applied to automated driving and to combine diverse sources of
evidence.

Figure 1 graphically represents our approach to arguing that the ML function
meets its intended functionality. In order to support the goal “Machine Learning
function meets all of its functional requirements”, the strategy “Argument over
sufficient reduction of root causes of functional insufficiencies” is given. This
argument is associated with the three sub-goals to reduce risk due to under-
specification, semantic gap and deductive gap. Their sub-goals in turn are not
depicted, but stated in the following.

In the right upper context symbol all information about the ML function, its
tasks, requirements and the CNN are stated (usually as a link to an appropriate
document). The use of a CNN for the task is argued by the statement that CNNs
are currently the most successful classifier (right lower context symbol) and this
statement is justified by the contests that are won by CNNs [10]. Therefore,
this justification also depends on the assumption that classification performance
from benchmark contests are transferable and therefore highlight the potential
of CNNs for classification in general.

The goal “ML function meets its intended functionality” is stated within the
context “Pedestrian detection is a safety-relevant function, so that this ML func-
tion is also safety-relevant.” which might be linked to a hazard and risk analysis.
Furthermore, the assumptions on the environment are also stated (usually linked
to an appropriate document).

The strategy to achieve the main goal “ML function meets its intended func-
tionality” is argued by a sufficient reduction of root causes of functional insuf-
ficiencies. This argument is reflected in the three sub-goals reducing risk due
to underspecification, semantic gap and deductive gap with the arguments over
appropriate specification, description, deduction. Note that the justification that
these three sub-goals are sufficient is missing here, but shall be stated in general.

In Fig. 2, the GSN is refined for the two arguments over appropriate speci-
fication and description. The sub-goal “Reduction of risk due to semantic gap”
is achievable for the given specification that reflects the sub-goal “Reduction of



Structuring Validation Targets of ML Applied to Automated Driving 55

Argument over 
appropriate deduction

Reduction of risk due 
to underspecification

ML function meets its 
intended functionality

Argument over 
appropriate deduction

Assumptions on 
the environment

ML function is
implemented using a CNN

Argument over appropriate 
implementation

Argument over 
appropriate deduction

Pedestrian detection is a 
safety-relevant function, 

so that this ML function is
also safety-relevant

CNN is currently the most
successfull classifier

Classification
contests are

won by CNNs

Classification
performance from
benchmark contest

highlights the
potential of CNNs 
for classification in 

general. 
Reduction of risk due 
to sematic gap

Reduction of risk due 
to deductive gap

A

A

J

Fig. 1. GSN for the goal machine learning function meets its intended functionality.
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Fig. 2. GSN for the Goal: “Reduction of risk due to underspecification and seman-
tic gap”. The following evidence is suggested to support the claims: (1) hazard and
risk analysis, (2) accident database, (3) explicit exclusion of unintended use cases, (4)
explicit assumptions on environment, (5) requirements specification (colour invariances,
translations invariances), (6) documentation of functional modifications, (7) sensitiv-
ity investigation, (8) review of distributional shift, (9) specification of invariance and
generalization attributes, (10) run-time monitoring, (11) specification of training and
validation data, (12) evaluation of specific influences, (13) evaluation of appropriate
object variations, (14) evaluation of compliance with tolerances, of size and location
variation, (15) evaluation of similarity between reality and specification of validation
data, (16) degradation modes, (17) pre-processing of ML input, (18) field-based vali-
dation, (19) statistical extrapolation
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risk due to underspecification”. Moreover, all validation targets reducing the risk
associated with underspecification and semantic gap lead to a refined specifica-
tion that is task-specific, but not implementation-specific.

Figure 3 depicts the sub-goal “Reduction of risk due to deductive gap” focus-
ing on the implemented function. Its refined specification is stated in the context
element. The specification holds, since it is assumed that intended functionality
is well understood and described. A justification is missing here, but shall be
stated in general.

Especially the first validation target “Data set is sufficient for intended func-
tion” of the argument over appropriate implementation points out that the data
set (that is the basis for training, test and validation data set) shall reflect the
goals “Reduction of risk due to underspecification” and “Reduction of risk due
to semantic gap”. Here the dependencies between all three goals become clear. If
underspecification or a semantic gap increases the risk of unintended function-
ality, then this will also affect the data set. For example, if a firefighter was not
explicitly included in the specification, the data set might also lack this kind of
variant of a person. Consequently, a ML function is not trained properly and
might not be able to recognize the firefighter.

Reduction of risk due 
to deductive gap

Argument over appropriate implementation

Data set is sufficient 
for intended function.

Overfitting is 
sufficiently reduced. 

Underfitting is 
sufficiently reduced. 

Essential influences on ML-function 
are sufficiently understood. 

ML-function is 
sufficiently robust. 

Learnt features are 
sufficient for function.

Changes to parameters do not 
inviolate safety requirements. 

Differences between the training and 
target platforms do not lead to a 
violation of the safety requirements. 

Changes in target platform 
fulfil safety requirements. 

Intended
functionality is

well understood
and described. 

(Refined) Specification

20 21 22 … …

23 … … … …

24 … … … …

25 26 27 28 …

29 30 32 33 …

25 26 … … …

34 … … … …

34 … … … …

34 … … … …

A

Measures at the system 
and functional level

Fig. 3. GSN for the Goal Reduction of risk due to deductive gap. The following evi-
dence is suggested to support the claims: (20) evaluation of transfer of requirements to
ML-specific requirements, (21) evaluation of attribute distribution within training, test
and validation data sets, (22) independence from unintended object relations, (23) over-
fitting measures (pretraining on diverse data set, regularisation methods, Dropout or
DropConnect, data augmentation), (24) underfitting measures, (25) feature visualiza-
tion, (26) correlations to features, (27) adaptation of confidence level, (28) uncertainty
calculation, (29) evaluation of tolerance against distributional shift, (30) adversarial
attacks, (31) integrity test of ML function, (32) statistical evaluation, (33) evaluation
of faulty inputs, (34) verification specification for any changes
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Additionally, the refined specification must also approach the integrity
requirements on the individual functions. The awareness of attributes that might
be adverse to the intended functionality under particular conditions, might be
used to introduce a data fusion with further information processing methods
and/or redundant information sources (e.g., sensors, digital maps, server). There-
fore, the deductive gap might be mitigated by other measures than within the
function itself. These measures are stated in the context element on the left hand
side (usually linked to an appropriate document).

4 Conclusion and Future Work

We investigated sources of functional insufficiencies and derived validation tar-
gets in order to demonstrate the intended functionality of a machine learning
(ML) function in an automated driving system, namely the pedestrian detection
function. Our approach is based on the reduction of the well-known root causes
of functional insufficiencies: underspecification [9], the semantic gap [3], and the
deductive gap [16]. From the validation targets we outlined a safety assurance
case in GSN for the safety goal “Machine learning function meets its intended
functionality” of the pedestrian detection function.

When we derived and structured the validation targets for our case study we
included well-known methods and measures. While statistical evaluation offers
a good basis to investigate improvements at a functional and system level, other
methods, such as feature visualization, are used for analysis and for reaching a
better overall understanding of the learnt functionality. However, the effective-
ness of these methods and measures must still be evaluated in detail. There-
fore, further research on the contribution of each method and measure to the
validation targets of automated driving is necessary. We argue that only with
an industry consensus on an established set of methods, can a convincing and
accepted argument for the safety of automated driving be made. This includes
an agreement on a sufficient “weight of evidence” and abort criteria for each
validation activity, which has not yet been reached [2]. As part of future work
we aim to systematically evaluate the effectiveness and contribution of methods
and measures discussed in this paper to derive and structure validation targets
and evidence for series development projects. This includes the question how
the effectiveness of the individual methods and measures can be measured and
demonstrated based on quantifiable key performance indicators.
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Abstract. Highly automated and autonomous driving is a major trend
and vast amounts of effort and resources are presently being invested in
the development of corresponding solutions. However, safety assurance is
a concern, as established safety engineering standards and methodologies
are not sufficient in this context. In this paper, we elaborate the funda-
mental safety engineering steps that are necessary to create safe vehicles
of higher automation levels. Furthermore, we map these steps to the guid-
ance presently available in existing (e.g., ISO26262) and upcoming (e.g.,
ISO PAS 21448) standards and point out open gaps. We then outline an
approach for overcoming the identified deficiencies by integrating three
different safety engineering disciplines. This includes (1) creating a safe
nominal behavior specification; (2) dealing with functional insufficien-
cies, and (3) assuring the related performance wrt. functional safety. We
exemplify our proposed methodology with a case study from industry.

1 Introduction

In many embedded systems domains we presently see a trend towards higher
levels of automation up to the point of autonomy. Highly automated and
autonomous driving, for instance, is a major trend, and vast amounts of effort
and resources are presently being invested in the development of correspond-
ing solutions. Significant progress has already been made and results have been
very promising; for instance, numerous demonstrator vehicles have impressively
shown the technical feasibility of advanced automated driving features up to the
point of fully autonomous driving. However, before such features can become
actual products, it is absolutely mandatory to ensure that they do not introduce
unacceptable levels of risk. This is the domain of safety engineering, where we
presently face major challenges due to the insufficiency of established methods
and standards, which are mostly designed with respect to aspects of functional
safety, omitting other aspects that are now gradually moving into the limelight.
c© Springer Nature Switzerland AG 2018
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Considering only functional safety is not enough because systems are no
longer fully controlled by human operators; rather, they increasingly incorpo-
rate their own extended perception, reasoning, and decision capabilities. In the
automotive domain, this trend manifests in the introduction of vehicles with
increasing levels of automation. According to the SAE classification [9], the cur-
rently available Advanced Driver Assistance Systems (ADAS) can be classified
as level 2 or partially automated systems. However, Audi is the first manufac-
turer [2] claiming to be technically ready for automation level 3 as soon as the
corresponding regulations are available. The transition from automation level
2 to automation level 3 is a remarkable change, especially from a safety point
of view. This is due to the fact that starting from level 3, the system is actu-
ally responsible for rendering safe nominal behavior. In contrast to that, for
lower automation levels, it is still the driver who is responsible for guaranteeing
safe system behavior and the safety scope is consequently limited to functional
safety, i.e., to hazards caused by (random and systematic) faults. This change in
responsibility changes the way we need to perform the overall engineering and
especially the safety engineering of those systems.

Thus, for lower automation levels, the driver is responsible for choosing
an appropriate vehicle behavior in a given driving situation and the vehicle
is responsible for supporting the driver in terms of situation awareness and cor-
rect implementation of the driving decisions. Any electric or (programmable)
electronic system (E/E system) that affects controllability by the driver is con-
sequently considered safety-critical. This obviously includes also ADAS, as the
goal of any ADAS is to assist the driver and contribute to his ability to control
the vehicle. The topic of safety assurance of such E/E systems is well studied and
corresponding guidance is provided by the existing safety standard ISO 26262
and the upcoming safety standard ISO PAS 21448 “Road vehicles - Safety of the
intended functionality” (SOTIF). ISO 26262 focuses on functional safety, which
means managing risks emerging from malfunctioning behavior (due to random
hardware failures or systematic failures) of E/E systems. It does not, however,
cover safety issues emerging from functional insufficiencies. This means that it
assumes that the performance limits of all functions are specified in a reason-
able and safe manner, so that it is sufficient to focus on critical deviations of
the specified functionality. Particularly for ADAS, with their complex situation
awareness, this assumption becomes very difficult to handle and hence leads to a
gap in the established field of safety assurance. The upcoming SOTIF standard
is meant to close this gap. For example, a camera without a night filter can only
work during daytime or a LIDAR sensor might not work in heavy snowfall or
even in rain. Thus, any creation of situation awareness based on these sensors
will fail in these respective critical situations. SOTIF addresses this problem by
supporting the systematic selection of an appropriate sensor concept.

However, the basis for conceiving an adequate sensor concept and related
performance limits is knowing which situations need to be detected with which
level of confidence. Furthermore, it is necessary to define appropriate responses if
the current situation cannot be determined/classified at all or not with sufficient
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confidence. In the case of automation levels 1 and 2 and partly also in the case
of level 3, the response can be a shutdown of the functionality and transition
to manual driving. This strategy is not applicable at automation level 4, as any
fallback to manual driving is excluded by definition.

However, even if we assume that the correct detection of situations is not a
problem, we still have to deal with a huge number of driving situations if we
want to define which vehicle behavior is appropriate in which situation. We use
the term safe nominal behavior specification to refer to such a specifica-
tion that describes which driving behavior is safe in which situation and that
abstracts from all technological challenges of situation awareness. Existing stan-
dards, including the upcoming SOTIF, provide no guidance for engineering such
a safe specification even though the name SOTIF seems to indicate at least some
support in this regard.

We think that being aware of these different dimensions within the overall
notion of safety is very important to foster a structured discussion and to orga-
nize further research in these important fields. Furthermore, it helps to avoid
over- or misinterpretations of existing safety standards in the context of safety
engineering for higher automation levels.

The remaining article is structured as follows: Sect. 2 highlights the contri-
bution of this paper and places it in the context of related work. Section 3 gives
a brief overview of the solution and points out some of its risks and limitations.
Section 4 presents the proposed solution and a holistic approach that achieves the
above-mentioned goals. Section 5 relates this process to SOTIF and other safety
standards. Section 6 exemplifies the proposed solution before Sect. 7 concludes
the paper.

2 Related Work

To the best of the authors knowledge, the state of the art is still lacking wrt.
precise identification and characterization of the gaps in current safety methods
and standardization regarding highly automated and autonomous driving (and
systems in general). Existing work in this field rather provides experience reports
on the usage of ISO 26262 for vehicles of higher automation levels, for exam-
ple in [10] Spanfelner et al. identify insufficient models as the major problem of
using ISO 26262 for driver assistance systems. We agree with this line of argu-
mentation and add a contribution to their work, as we additionally consider the
ISO PAS 21448 “Safety of the Intended Functionality” standard and propose
a holistic process that goes beyond ISO 26262 instead of enforcing the use of
existing standards (which clearly have not been designed for highly automated
or autonomous systems). Higher-level thoughts on the topic of safety for vehi-
cles of higher automation levels can be found, for example, in [4]. In this work,
Koopman and Wagner also mention the shortcomings of ISO 26262, but do not
provide clear concepts or methods on how to overcome these problems.

In contrast to this, one major aspect of our work in this paper is the identifi-
cation of the need to specify safe system behavior, i.e., to create a safe nominal
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behavior specification. Although we propose the usage of state machines to this
end, we do not intend to argue that this is the best way to do it. We argue that
the non-existence of dedicated methods and standards for this aspect indicates
that there is currently no commonly accepted best practice, and it will be the
task of future experience to find such a practice. In earlier work, Leveson also
used state machines to describe the higher-level behavior of a safety-critical sys-
tem [7]. In more recent work, Leveson uses control structure diagrams in the
Systems-Theoretic Accident Model and Processes (STAMP) [5] and the related
Systems-Theoretic Process Analysis (STPA) [6] approach for hazard identifica-
tion. These approaches build on a systems engineering foundation for analysis
and, just like ISO 26262 and the SOTIF standard, focus on deviations from
this specification of the intended behavior, which is assumed to be safe. Some
earlier work developed at Fraunhofer IESE is systematizing and automating haz-
ard and risk analysis [3]. This might also help in analyzing highly automated
or autonomous systems, where degrees of freedom and uncertainties lead to a
very high complexity, which is generally hard to tackle without systematic, tool-
supported and ideally (semi-) automated approaches.

3 Safety Aspects Relevant to Autonomous Systems

As illustrated in Fig. 1, we argue that guidance (by means of methods, tech-
niques and maybe explicit standardization) is required for the creation of a safe
behavior. The aspect of creating a safe nominal behavior specification has been
out of scope for existing safety standards and ongoing activities in standard
creation initiatives (e.g., SOTIF), but is becoming very important for highly
automated and autonomous systems. The safe nominal behavior specification
defines which behavior is safe in which situation and is therefore the basis for
reasoning about functional performance limits and which limits are sufficient
and which are insufficient.

Fig. 1. Elements to reach safe behavior: standard coverage

The second layer provides guidance for dealing with functional insufficiencies,
which is likewise the focus of the upcoming SOTIF standard. The performance
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limits in the SOTIF wording are of a more technical nature than the functional
performance limits that we consider as part of the safe nominal behavior spec-
ification. Both functional and technical performance limits are a prerequisite
to reasoning about functional safety and considering violations with respect to
these performance limits.

The third important safety aspect for autonomous systems is functional
safety, which is the predominant aspect considered in the engineering of todays
(more or less) operator controlled systems. Consequently, there is already a broad
established and proven range of techniques, methods, standards and tools avail-
able which can be used (or be at least a starting point) also for autonomous
systems. Of course, all three relevant safety aspects should be integrated and
harmonized on a conceptual and methodological level and corresponding stan-
dardization shall be tightly interlinked as it is, for instance, already the case for
the ISO 26262 and the ISO PAS 21448.

The three safety aspects elaborated above can be further illustrated in map-
ping them to the standard architecture of embedded systems (Monitor - Plan -
Actuate). Doing this leads to the following observation: The SOTIF safety aspect
(and thus the ISO PAS 21448) focuses on the monitoring part and provides guid-
ance for creating a safe situation awareness. The functional safety aspect (and
thus the functional safety standard ISO 26262) focuses on random and system-
atic software and hardware failures that might impact any element of the cycle,
i.e. monitoring, planning, and actuation. A significant gap exists regarding the
assurance of safety with respect to automated or autonomous planning. The
planning determines which vehicle maneuvers and trajectories are safe in which
(perceived) situations. It is thus closely related to what we call the aspect of safe
nominal behavior specification in this article. The planning needs to implement
the safe specification as well as possible, particularly considering the uncertain-
ties that are dynamically induced by the monitoring element due to inherent
challenges in assessing the current context situation.

In summary, we argue that the engineering of a safe highly automated or
autonomous system requires the consideration of functional safety, functional
insufficiencies, and a safe nominal behavior specification. Today, only the first
aspect of functional safety is well understood, supported by established methods,
techniques and tools and addressed by an existing and established standard: the
ISO 26262. So it is known only for this aspect what is considered necessary to
claim sufficient coverage, i.e. to be able to argue a sufficient level of functional
safety to release a (non-automated) car as a product. For the topic of functional
insufficiencies, a draft version of an upcoming standard, ISO PAS 21448 “Road
vehicles - safety of the intended functionality”, was used as input for deriving the
recommendations in this article. The requirements concerning this topic might
change in the future; best practices are not known yet and need to be estab-
lished over time. The current draft version of the SOTIF standard is explicitly
only intended to cover vehicles up to automation level 2. On top of the aspects
considered by SOTIF and ISO 26262, the aspect of how to create a safe nom-
inal behavior specification needs to be addressed for higher automation levels.
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At the time of this writing, this aspect is not being considered yet at all by
existing standards or by standard creation initiatives. One reason for that might
be, that in non-automated system a safe nominal behavior is typically pretty
straight forward and commonly agreed upon. In case of a car, it is clear how the
user interface looks like and how a driver operates it. And it is also clear, that
monitoring and planning are tasks of the driver and the driver is thus responsi-
ble for the driving behavior, leaving only functional safety as important safety
aspect. Now, given the trend towards ever higher levels of automation across
domains, this area requires more consideration in the future to allow the devel-
opment and also validation (i.e. creation of sufficient evidence wrt. safety) of safe
autonomous vehicles.

4 Multi-aspect Safety Engineering for Autonomous
Systems

The proposed approach still generally aligns with the established principles of
how safety engineering works and interacts with “normal” system engineering.
Safety engineering builds upon the initial results from system engineering and
analyzes them with respect to safety. Based on the analysis results, safety require-
ments are elicited, a safety concept is compiled, corresponding safety measures
are selected, implemented and validated and a related safety argumentation is
created. This procedure (or at least parts thereof) occurs at different develop-
ment stages (or abstraction levels) in parallel (and interaction) with the system
engineering activities. However, compared to the established approach focused
on functional safety, the boundaries between safety engineering and “normal”
system engineering, i.e. the engineering of the nominal system behavior, are soft-
ened. In particular with respect to the engineering of a safe nominal behavior
(of the automated behavior) we obviously have a tighter integration between the
disciplines.

As illustrated in Fig. 2, we consider three (horizontal) abstraction layers that
directly relate to the three safety aspects identified in the previous section.

The System in Its Usage Context layer is related to the aspect of defin-
ing a safe nominal behavior specification. It represents an abstraction layer on
which high-level concepts of the system and the requirements on the system are
described independent of their technical realization.

The System Realization Concept layer is related to the aspect of handling
functional insufficiencies. It contains first technical information on the future
system, such as sensor concept and algorithms.

Finally, the System Functional View layer is related to the aspect that
addresses functional safety. It represents the more detailed functional view on
the system and describes how the requirements are functionally realized by the
system. It is the basis for conducting safety analyses and deriving a functional
safety concept in terms of ISO 26262.

The first fundamental research question concerns the notations and modeling
languages used for representing the system at the different abstraction layers.
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Fig. 2. Multi-aspect safety engineering process

At the highest level of abstraction, we aim at a definition of the vehicle motion.
In a variety of industry projects, we have observed that this is often specified
via images showing trajectories of the ego-vehicle in a certain driving situation.
The problem with this approach is the assurance of completeness. All possible
sequences of valid trajectories need to be specified. To solve this completeness
problem, we propose state machines, as state machines are a common notation
for specifying complete sets of sequences. Furthermore, this specification tech-
nique supports modeling the activation, deactivation, and degradation of the
automation functions. At the more detailed abstraction level, we recommend
using the familiar notation of functional architectures. However, creating these
system representations is not within the actual scope of safety engineering and
should be performed, or at least strongly assisted, by domain and system engi-
neering experts.

The safety analysis is conducted on the basis of the system representation.
At the requirements level, this is done by analyzing the behavior of the system
and deriving possible hazards of that behavior independent of the technical real-
ization. The next layer, the System Realization Concept layer, already contains
initial information on the technical realization and considers this information in
the safety analysis. The SOTIF analysis additionally and explicitly takes into
account functional insufficiencies of the technology used. More details on how to
perform the safety analysis in these two top layers will be given with the example
in Sect. 6. At the functional level, we propose using component-integrated fault
trees (CFT) to refine high-level safety goals into more detailed functional safety
requirements. CFTs have proven their benefit in multiple industry projects and
are an accepted approach for systematic and model-driven safety analysis [1].
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The Safety Argumentation layer is the bonding element among the three
abstraction layers. The safety argumentation can also be considered as a safety
documentation as it stores the refinement of top-level safety goals into safety
requirements and provides a structured argument regarding how the fulfillment
of low-level requirements implies fulfillment of top-level goals. As a notation, we
recommend the Goal-Structuring Notation (GSN) for this activity [8].

The order for the outlined activities in the previous section depends on their
dependencies. Activities at higher levels of abstraction depend on activities at
lower levels of abstraction and vice versa. Furthermore, safety analyses depend
on the engineering of the system representation being analyzed, and the selection
of safety measures along with the related safety argumentation depends on the
safety analyses. Any process that take these dependencies into account is valid.
We assume the following waterfall-like process:

1. Model high-level system concept
– Output: State machine model of the behavior of the system independent

of any implementation details
2. Consider the high-level system behavior and possible hazards of this behavior

– Output: Safe system specification including safety goals derived by a sys-
tematic state space analysis

3. Provide information on the sensor and algorithmic concept
– Output: Sensor and algorithmic concept as a basis for SOTIF analysis

4. Conduct analysis of system limitations and functional insufficiencies
– Output: Safe system specification extended with consideration of system

limitations and functional insufficiencies and their derived safety goals
5. Model functional architecture consistent with safe system specification and

realization concepts
– Output: System functional view as a basis for ISO 26262 analysis

6. Perform ISO 26262 analysis to investigate the contribution of component
failures to the violation of safety goals

– Output: Functional safety requirements assigned to components in the
architecture.

Steps 1 and 2 take place at the highest abstraction levels and are independent
of any implementation details. Steps 3 and 4 take place at the SOTIF level
and consider realization concepts. Steps 5 and 6 take place at the ISO 26262
functional safety level.

5 Relation to SOTIF and Other Standards

In the following, we relate the six steps of the solution proposed in the previous
section to the current world of safety standardization. To this end, we look at
the scope definition in the current draft of the SOTIF standard. This scope
definition considers different causal factors of hazards, providing the relation to
SOTIF and other standards for each factor. The casual factors are as follows:
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1. E/E system failures
2. Unintended behavior without fault or failure (including E/E system perfor-

mance limit)
3. Foreseeable user misuses
4. Security violation
5. Impact from active infrastructure and/or vehicle to vehicle communication
6. Impact from car surroundings
7. Unsafe nominal behavior specification.

We enhanced this overview with respect to the safe nominal behavior specifi-
cation and structured it using the Goal Structuring Notation (GSN). Due to
space limitations, we cannot show the full GSN here. From the top-level goal
“Perform such safety engineering activities that guarantee the absence of unrea-
sonable risk for the automation level 4 driving system”, we derived “the safe
specification” by creating subgoals related to the aforementioned causal factors
in the SOTIF scope and the scope of this work. The defined safety goals were
then defined as “Perform such safety engineering activities that guarantee the
absence of unreasonable risk for the automation level 4 driving system caused
by [element from the enumeration before]”.

The second level of refinement argues over existing safety standards for the
particular source of unreasonable risk. For security violations (safety goal 5),
the “Cybersecurity Guidebook for Cyber-Physical Vehicle Systems” (J3061) has
been an initial step (which is presently being integrated in other activities), and
for vehicle-to-infrastructure and vehicle-to-vehicle communication (safety goal
6), the “Road Vehicle - Extended Vehicle” ISO 20077 standard is about to be
published. Performing safety engineering activities according to the recommen-
dations in these standards leads to an absence of unreasonable risk caused by
the particular aspect addressed by this standard. In the project we conducted,
it was assumed that the vehicle is not connected to its environment. Because of
that, both causes were out of scope in the conducted project and there was no
further refinement of the goals to perform safety engineering activities according
to the safety standard.

The cause of E/E system failures (safety goal 1) is addressed by the ISO
26262 standard. The SOTIF standard claims to address the causes of unintended
behavior without fault or failure, foreseeable user misuse, and impact from car
surroundings (safety goals 2–4).

The final level of refinement contains the steps of the proposed solution in
Sect. 4. The performance of activities belonging to the concept phase from ISO
26262 and the SOTIF standard is given as the goals at this refinement. The
activities of the standard are mapped to the activities in the solution. Note
that not every step in the suggested process can be mapped to an existing
standard. This is due to the fact that no standards are currently available for the
development of systems with higher automation levels. Even the SOTIF standard
is only suited up to automation level 2 to date. Considering this background,
the suggested process might need to be revised once appropriate standards have
been established.
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6 Methodology Example

This section exemplifies the solution presented in Sect. 4 for a highway assistant
system. The system under consideration is classified as SAE automation level 4
and shall operate without interruption and without relying on a human driver
as fallback performance of the dynamic driving task but with the limited system
capability to operate on highways only. This system will be used as an ongoing
example in this section.

6.1 Model High-Level System Concept

The first step in the proposed process is the modeling of the high-level sys-
tem concept. The goal of this step is to capture the system concept at a high
abstraction level. This includes the concept for activation, deactivation, degra-
dation (e.g., from level 4 to level 3), and for handling emergency situations.
In addition, it includes the general vehicle behavior in these different cases. As
mentioned above, we propose using state charts to represent these high-level con-
cepts. In the conducted project, we created such a state chart for an automation
level 4 highway assistant system.

6.2 Consider the High-Level System Behavior and Possible Hazards
of This Behavior

After the system’s behavior has been captured at a high abstraction level, it
can be analyzed regarding its safety in different driving situations. Whether a
behavior is safe or appropriate depends on the current situation. For example,
the operating mode “passing” is a type of behavior that is not safe or unsafe
independent of the situation. It is a safe and appropriate behavior if there is a
slower vehicle in front and the left lane is free; but it is an unsafe behavior if a
vehicle is currently approaching on the left lane. This analysis of the safety of
behavior in different situations has to be conducted for systems of higher automa-
tion levels. For each operating mode, i.e., for each state in the above state chart,
one needs to argue on the preconditions that must be fulfilled to enter a mode
and the circumstances under which a mode needs to be deactivated. A mode
shall only be activated if the risk of this mode in the current driving
situation is acceptable; if the risk of the mode becomes unacceptable,
the mode needs to be deactivated. Deactivation obviously requires us to
define a mode that is less risky. If there is no other alternative how the vehicle
can drive “safer” in the considered situation and if this “safest” solution is not
acceptable, then we have to think about external measures that can serve to
avoid the occurrence of the situation (e.g., external infrastructure, new driving
laws, etc.). As the introduction of external measures goes beyond the scope of
this report, we focus on patterns for annotating the operating modes with safety
conditions and assumptions.
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This general line of thought directly gives us a pattern for deriving a safe
nominal behavior specification. To make this step systematic, we recommend per-
forming a systematic analysis of the state space that the system can encounter.
A possible way to do this is the usage of tables describing environmental factors
and possible values for these factors. For each value or combination of these
values, a classification is performed as to whether it is acceptable to allow the
operating mode or whether the situation requires deactivation of this mode.

For the operating mode “Passing” of the AL 4 driving system, an analysis
of the behavior in different situations has been conducted. An excerpt of this
analysis shows that it may yield the following safety goals for passing:

– Passing must not be performed at an intersection (merge) area of a highway
– Passing must not be performed if there is a vehicle on the adjacent left lane.

6.3 Provide Information on the Sensor and Algorithmic Concept

Up to this point, the process steps have abstracted from the implementation
concepts. To conduct the SOTIF analysis, these concepts need to be added to
the information available about the developed system. In particular, the stan-
dard focuses on sensors and algorithms for the creation of situation awareness.
Concepts about this part of the system are necessary to perform an analysis on
the limitations of situation awareness. In its current version, the SOTIF stan-
dard mainly focuses on functional insufficiencies: situations in which sensors and
algorithms are operating outside their intended state space. It needs to be spec-
ified how the sensors are used to create the needed situation awareness. Which
situations the system needs to be aware of from a safety perspective can be
derived from the analysis conducted in the step before. From the safety goals
derived above for the operating mode “Passing”, the following requirements on
situation awareness can be derived:

– Detect intersection (merge) area of a highway
– Detect vehicle on the adjacent left lane.

The resulting sensor concept for the automation level 4 system might state that
the intersection (merge) area of a highway shall be detected with GNSS and 3D
maps and the presence of vehicles on the adjacent left lane shall be detected
with radar, lidar and camera.

6.4 Analysis of Limitations and Functional Insufficiencies

Based on the sensing concept, the performance limits are derived. This shall be
done for each sensor used. Reaching the performance limits of a sensor can again
trigger a transition in the system’s functional concept. An example is the usage
of lidar in situations where there is heavy snowfall. Under such conditions, a
lidar sensor usually does not work anymore. If the lidar sensor is the only way to
determine the distance to objects in front of the vehicle, then this automation
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level 4 functionality cannot be provided without this sensor. Thus, the environ-
mental situation of heavy snowfall demands the deactivation of the AL 4 driving
mode. This step refines the step of creating a safe system specification by adding
implementation-specific information to the system specification.

Above, we derived a sensor concept from the safety goals related to the
operating mode of “Passing”. As part of the system limitations and functional
insufficiencies analysis, we will detail this sensor concept. Let us assume that the
sensors that are used come with the following limitations:

– Camera: Limited performance during nighttime
– Lidar: Limited performance in heavy rain and snow
– Radar: Limited performance in heavy snow
– 3D Maps: Information is usually delayed by at least 10 min
– GNSS: Limited performance inside tunnels.

Table 1 gives resulting limitations from the sensor concept.

Table 1. Sensor concept limitations table

Situation Sensor concept Resulting limitation

Intersection
(merge) area of
a highway

GNSS + 3D maps Not possible to detect if currently at an
intersection (merge) if currently driving
in a tunnel due to missing GNSS
reception

Vehicle on the
adjacent left
lane

Radar + lidar + camera Not possible to detect vehicle on the
adjacent left lane during nighttime with
heavy snow due to sensor limitations

From the resulting limitations, we can derive the following functional
improvements:

– Passing must not be performed while driving in a tunnel (not able to detect
if currently at intersection (merge) area of a highway)

– Passing must not be performed during nighttime with heavy snow (not able
to detect vehicle on the adjacent left lane or tail vehicle at traffic jam or
obstacles on the road).

These safety goals become part of the safe nominal behavior specification.

6.5 Model Functional Architecture Consistent with Safe Nominal
Behavior Specification and Realization Concepts

After the system behavior has been defined in a safe nominal behavior speci-
fication containing both implementation-independent information from steps 1
and 2 of the suggested solution in Sect. 4 and implementation-specific informa-
tion from steps 3 and 4, this specification shall be translated into a functional
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architecture as a basis for ISO 26262 analysis. Again, we do not see this step as
a genuine safety engineering step but as a step to be conducted as part of the
engineering process. The functional architecture shall use hierarchy and make
intensive use of ports. In industry, components are often modeled only with one
input- and one output-port. This is not enough to support component-integrated
fault tree analysis. The information that is exchanged between the functions in
the functional architecture needs to be defined in more detail. For every infor-
mation with a unique character, a special port has to be created.

6.6 Perform ISO 26262 Analysis to Investigate the Contribution of
Component Failures to the Violation of Safety Goals

In order to achieve the requirements of functional safety, which is of course still
important for systems with a high automation level, the ISO 26262 standard
is the corresponding reference in the automotive domain. This step is already
standardized and mature methodologies exist to support it. We argue that the
problems encountered when applying the standard to higher automation levels,
which are mentioned in other publications, originate mainly from the imprecise
definition of the intended function. If the steps recommended in this work are
followed and a functional architecture is created that realizes a safe nominal
behavior specification, ISO 26262 can be applied.

7 Conclusion

In the automotive domain, as well as in other domains of embedded systems, we
see a significant trend towards ever higher levels of automation up to the point of
autonomy. The economical and societal potential is huge, but several challenges
need to be tackled before such systems can actually become products and a
business success. One important challenge is ensuring safety, whereas established
methods and standards have been designed with manually controlled systems in
mind and need to be augmented to actually cover all relevant aspects for highly
automated and autonomous systems.

Accordingly, in practice, safety engineering is currently mainly concerned
with ensuring functional safety and the corresponding fulfillment of norma-
tive requirements from standards and regulations. Regarding systems with high
automation levels, this limitation of safety engineering is not appropriate any-
more. In this paper, we propose a multi-aspect safety engineering approach for
highly automated driving which incorporates additional relevant safety aspects
beyond functional safety and thus beyond established methods and standardiza-
tion. Most importantly, we introduce the additional aspect of engineering a safe
nominal behavior specification with the help of state machines and a systematic
state space analysis. This puts an additional layer on top of the safety aspects
tackled by ISO PAS 21448 and ISO 26262, i.e. safety of the intended functional-
ity (actually focused on functional insufficiencies and assuming the availability
of a specification of safe nominal behavior as a starting point) and functional
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safety. The overall approach has been illustrated based on an industrial case
study of an advanced driver assistance system. I.e. we briefly described how
the safe nominal behavior specification was created, how it has been used as a
starting point for the analysis of causes and consequences of deviations from the
intended functionality as per the SOTIF standard and, finally, how functional
safety can be tackled.

We see the core contribution of this paper in the discussion of the necessary
safety considerations for highly automated systems and the explicit identification
of the three required safety aspects. In doing so, we point out the current gaps in
the established safety engineering state of the practice and standardization. The
proposed solution is in its details still relatively premature and has only been
applied in few occasions. However, the experiences made have been promising
and we think that the described approach can contribute as a basis for discussion
and be a starting point for further work to facilitate systematic engineering of
safe highly automated and autonomous systems.
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Abstract. Identifying and mitigating possible failure propagation from one
safety-critical application to another through common infrastructural compo-
nents is a challenging task. Examples of such dependencies across software-
stack layers (e.g., between application and middleware layer) are common
causes and failure propagation scenarios in which a failure of one software
component propagates to another software component through shared services
and/or common computational resources. To account for this, safety standards
demand freedom from interference in order to control failure propagation
between mixed-critical software components. Safety analysis is typically
focused on one abstraction layer, while robustness tests try to find failure
propagation paths across abstraction layers. To this end, this paper presents a
model-based failure propagation analysis combining failure propagation within
and across abstraction layers. A classification of dependencies in combination
with fault trees is used to perform a model-based dependency analysis. In
addition, a novel modeling technique for integrating failure propagation aspects
resulting from shared services and resources is presented. The analysis was used
to carry out an early safety assessment of a real-world automotive redundancy
mechanism within an integrated architecture. The results show that the method
improved reusability and modularity, and made it easier to estimate failure
propagation issues, including possible violations of freedom from interference
within an integrated system.

Keywords: Software and system safety � Interferences � Safety analysis

1 Introduction

Today’s cars are equipped with up to 100 Electronic Control Units (ECUs). The
continuous growth of electronics in safety-critical systems of automotive vehicles,
however, means that the trend is now towards architectures with only 8–12 very
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powerful ECUs or Domain Controllers instead of today’s 80–100 federated ECUs [1].
Such an integrated architecture allows multiple software applications to share services
provided by theses centralized platforms. Consequently, such an integrated architecture
increases deployment flexibility and reduces weight, size, power consumption, and
costs.

However, a major disadvantage of such an integrated system is its lack of “inherent
fault containment barriers” between different vehicle functionalities, which is a side
effect of using federated ECU architectures with several ECUs for several function-
alities [2]. Within an integrated system with only a few ECUs, each hosting many
applications, a failure can propagate from one software component to another through a
shared service or resource. Examples of such failure propagation paths, which are also
called interference paths, are potential CPU contentions and memory corruptions.

Safety assessment assigns different safety integrity levels through a safety-critical
system’s functionality. In order to avoid safety-critical interferences across integrity
boundaries, existing standards such as ISO 26262 [3], IEC 61508 [4], or DO-178C [5]
demand ‘freedom from interference’ or ‘robust partitioning’, respectively. To this end,
modern real-time operating systems such as PikeOS [6], QNX [7], or AUTOSAR OS
[8] provide protection features ranging from execution time monitoring and memory
protection to hypervisors. As these concepts are domain-independent, we only discuss
approaches from automotive and the approach presented in this paper is applied to an
example from the automotive domain.

A safety engineer has to show that a safety-critical integrated system is free from
interference. Particularly, the decomposition of a component’s safety requirement into
multiple safety requirements for redundant components with lower safety integrity
levels (following the idea of ASIL decomposition of ISO 26262) requires independence
of the components implementing these requirements, and thus freedom from interfer-
ence even within the same ASIL level. Simulation and fault injection experiments, e.g.,
with FAIL* [9], generate robustness evidences to support an independence claim. Lists
of known issues such as those described in [3, 10, 11] and systematic interference
analysis for new types of shared resources as proposed by us in [12] provide guidance
for identifying interferences and arguing freedom from interference.

Neither current analysis nor robustness tests can answer the question of whether or
not an integrated system setup provides sufficient protection against interference. This
is because the application and configuration setup of a system is beyond the scope of
current analysis, and testing can only show the absence of the tested failure. In order to
enable getting more complete results, we must consider testing the dependencies across
abstraction layers (e.g., between application and middleware layer) in a multidirectional
analysis together with the dependencies within an abstraction layer (e.g., sensor-
actuator layer) in addition. This will tell us whether an interference is safety-critical and
has to be mitigated.

To this end, this paper presents a failure propagation analysis that combines our
analysis from [12] with our multidirectional contract-based system description
approach from [13]. We applied the analysis to an early safety assessment of a real-
world automotive redundancy mechanism within an integrated multi-layer architecture.
The results show that our method improved the reusability, modularity, and com-
pleteness of the dependency analysis. In addition, it enables safety engineers to identify
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dependent failures before the system is implemented or complex simulation models are
built. Thus, the presented method is a solution for a dependent failure analysis in the
context of the trend towards more powerful ECUs. The contribution of this paper is a
model-based analysis of dependencies across abstraction layers. In detail, the contri-
bution is three-fold: (1) We present a dependency classification that guides safety
analysts in identifying concrete dependent failures. The classification can be used
separately from the presented method. (2) The proposed component-based approach
modularizes the composition of components across abstraction layers, and thus enables
reuse of analysis artifacts within an integrated system with shared services. (3) We
propose a novel modeling technique for platform services that are part of the platform
infrastructure and support the development of application software, e.g., an actuator
driver or a communication service. The modeling technique aims to simplify failure
propagation analyses compared to a traditional fault tree for, e.g., a communication
service and is complete with respect to the defined classification.

This paper is structured as follows: In Sect. 2, we provide a basic overview of
related embedded software modeling and corresponding safety analysis methods, as
well as related approaches. Section 3 introduces the dependency classification, which is
the basis for the actual analysis method presented in Sect. 4. Before concluding the
paper in Sect. 6, we perform and illustrate an example analysis in Sect. 5.

2 Related Work

In this section, we will provide a short introduction to model-based embedded software
engineering along with corresponding component-oriented safety analysis methods. In
the field of software engineering, several model-based description languages have
evolved over time. A well-known language is the Unified Modeling Language (UML).
In embedded software engineering, the Systems Modeling Language (SysML) provides
language elements for considering the technical system as a whole [14]. UML and
SysML do not cover safety as a quality attribute. The Vertical Safety Interface Lan-
guage (VerSaI) [15] and Conditional Safety Certificates (ConSerts) [16] are contract-
based and component-oriented languages used for annotation by safety aspects. They
define a system as a composition of components that exchange information, energy,
and/or mass flow at their interfaces. The contracts allow the formulation of black-box
specifications of the corresponding components. VerSaI provides language elements
for describing the dependencies of an application’s safety demands and the safety
guarantees of the platform on which it is designated to run. ConSerts defines a system
as a hierarchical composition of application components. The contracts are post-
certification artifacts equipped with variation points bound to formalized external
dependencies that are meant to be resolved at runtime. The Architecture Analysis &
Design Language (AADL) [17] from the avionics domain and EAST-ADL [18] from
the automotive domain cover the embedded domain from real-time software to hard-
ware. Both AADL and EAST-ADL focus on system design and real-time aspects. Error
annexes available as a kind of extension partly cover safety aspects. Current research
such as [19] focuses on optimizing the mapping from software to hardware resources in
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the context of a safety-critical system. However, the aspect of safety analysis within an
integrated system is yet to be covered systematically.

The error annex of EAST AADL provides a logic for describing a known case of
failure propagation using state machines. Hierarchically Performed Hazard Origin and
Propagation Studies (HiP-HOPS) [20] and Component-Integrated Component Fault
Trees C2FTs [21] combine component-based design with fault tree failure propagation
analysis. The authors of [22] extend the approach of component-based analysis with
formal contract-based design. Failure propagation via infrastructural services is the
focus of [23]. The authors present the worst-case assumption of combining all the basic
events from a shared device into one software component. The focus of the approach is
on common causes. The effect of temporal interferences known at an early stage of
design time can be analyzed with the approach presented in [24]. The authors model
the system across several abstraction layers, from the functionality layer to the physical
layer. The paper [25] presents a dependency check based on ASIL consistency over all
modeled components. The authors of [26] describe a formal specification of an inter-
ference and derived rules for achieving freedom from interference. Systematic guidance
and an analysis covering failure propagation within and across abstraction layers,
which would support safety engineers and enable comprehensive dependency analyses,
is still missing. As a contribution to this end, a dependency classification and a novel
analysis approach will be proposed in the following section.

3 Dependency Classification

The related work shows a trend towards model-based safety analysis to achieve
alignment between nominal behavior and safety aspects, and towards support for the
usage of commercial-off-the shelf components or reuse of components. However,
current analyses focus on failure propagation within one abstraction layer of a model.
For instance, a component-based fault tree analysis focuses on a sensor, a controller,
and an actuator component, or on the underlying realization components (DMA, CPU,
memory). It is important to note that failure propagation caused by interference is an
unavoidable challenge in an integrated system. The chaining within an interference is a
failure propagation between shared service users via the components that realize the
service. In addition, the realization components can trigger further interferences that
affect further services. Consequently, dependencies within and across abstraction layers
are important for an integrated system.

As a contribution towards mastering this challenge, we will first provide a
description of the types of dependencies between multiple users of a shared service and
the dependencies that a model-based safety analysis can address. Then we will present
a classification for dependencies within an abstraction layer. The classification is an
extension of the one we presented in [12] and provides systematic guidance for manual
interference analysis of shared services. In [12], we focused on hardware resources
such as DMA. With the classification of this paper, we expand the focus to cover
dependencies across abstraction layers in general, i.e., between an application and the
application infrastructure software.

76 C. Dropmann et al.



The classification focuses on multi-user failure propagation to support model-based
analysis at design time. Propagation along other dependencies, caused, e.g., by design
processes or tools, are out of scope and covered by diversity measures. For the scope of
failure propagation along modeled dependencies, the well-known keywords from
Hazard and Operability Studies [27] generally provide high-level guidance. These
keywords are omission failure, commission failure, time failure, and value failure. As a
result, a modeler will define failure type demands along usage relations within an
abstraction layer, e.g., “A 250 ms delay of signal X must be avoided with ASIL B for a
specific safety goal”. ASIL B is the automotive safety integrity level B. An ASIL
defines acceptable failure rates as well as techniques and safety mechanisms that
engineers should apply to achieve a given safety goal. In short, the ASIL represents the
tolerable likelihood that the announced failure type (250 ms delay of signal X) will
contribute to the related safety goal violation. In contrast to propagation along usage
relations, propagation along hidden dependencies is caused by the services that realize
a user’s functionality; for example, a shared communication service that realizes the
signal flow between components. The concept of hidden dependencies is described in
[28], where the authors label them as pseudo functionality. We distinguish between two
different kinds of hidden dependencies: (1) failure propagation via dependencies that
are not modeled. Robustness evidences, generated, e.g., with fault injection or simu-
lation, support independence guarantees that focus on such dependencies that are not
modeled; (2) failure propagation via invisible dependencies across abstraction layers.
The dependencies are invisible because in model-based safety analysis, e.g., in C2FTs,
there is no view that indicates these dependencies. The dependencies are defined within
mappings between hardware and software components, deployments, sometimes called
bindings.

The classification presented in Fig. 1 guides safety engineers through a logical
interference analysis to identify invisible dependencies across abstraction layers. We
distinguish between three main classes: failure propagation via replicated services
parts, respectively via copied model components: failure propagation via shared service
parts, respectively interferences; and failure propagation via service feature interaction.

Dependencies 
Across Abstraction 

Layer

Propagation via 
Replicated Service 

Parts (Common Causes)

Propagation via 
Shared Service 

Parts (Interference)

Propagation via 
Service Feature 

Interaction

Spatially
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Temporally
Assigned

Behaviourally
Adjustable

Entity 
Corruption

Entity Over 
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Arbitration 
Violation
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Inter Arrival 
Time too Short

Utilization 
Time too Long

Arrival Rate 
too High

Performance 
Mode

Mode
Corruption

Contention 
Delay

Operational 
Mode

Others, e.g. 
Address Mode

Integrity 
Inversion

Sequence 
Violation

Fig. 1. Dependency classes across abstraction layers
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Replicated service parts invalidate the independence of the replicated failure causes
(called basic event within a component fault tree). If one cause occurs, the replicated
ones may occur in addition. In other words, failure propagation via replicated service
parts refers to common causes. In the case of an integrated system, this is essential if,
for instance, the modeler copies the component that represents a task including the
failure model (e.g., C2FT). The classification for shared service parts (Fig. 1) is based
on our classification presented in [12].

The proposed services, i.e. spatially partitioned, temporally assigned, and behav-
iorally adjustable, deal with the question of whether, when, and how a service part
could be accessed by a given service user. This tripartite interference classification
divides the temporal interferences of the traditional interference classification from [10]
into temporal and behavioral aspects in order to support more fine-grained guidance for
safety engineers ([10] subsumes within the temporal aspect all temporal effects and not
only the accessibility of a service). The subclasses of the spatial, temporal, and
behavioral aspects are depicted in Fig. 1. The feature interaction class is the last aspect
that a safety engineer should investigate for a multi-user service, especially in the case
of users with different integrity levels. This class covers the propagation along the
usage relations between services and within a service itself. The presented classification
is the basis for the model-based dependency analysis presented in the next section.

4 Dependency Analysis

This section presents a system model covering dependencies within and across
abstraction layers that forms the basis for the analysis. In addition, this section intro-
duces a novel modeling technique for platform services that supports application
development. Based on the modeling technique, we will explain our analysis procedure
using an example in the next section. The concept of dependencies within and across
abstraction layers is inspired by the interface type definition of [15], where the authors
distinguish between the vertical interface between the application and the underlying
platform, and the horizontal interface between applications. In contrast to [15], our aim
is a failure propagation analysis instead of a modular requirements description for semi-
automated integration (Fig. 2).

Component Model
Horizontal Output: 

Provide Data/Information
Horizontal Input:

Require Data/Information
Horizontal Input:

Require Data/Information
Horizontal Output: 

Provide Data/Information

Failure Model
Horizontal Output: 

Output Failure Mode
Horizontal Input:

Input Failure Mode
Horizontal Input:

Input Failure Mode
Horizontal Output: 

Output Failure Mode

Fig. 2. Horizontal dependency model
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4.1 Dependencies Within an Abstraction Layer

As stated in the related work section, there are established methods, such as C2FTs and
HiP-HOPS, for specifying a modular failure logic within an abstraction layer. There-
fore, our solution uses the established method of C2FTs. Based on a component-
integrated component fault tree (C2FT), failure rates and cut sets (combinations of
component failures that can cause a system failure) can be calculated. The modules,
e.g., sensor, controller, and actuator, can be structured hierarchically, e.g., a controller
can contain several sub-controllers. However, a shared service or resource, such as a
computation unit that is used by two components, e.g., by a sensor component to scale
its signal and by a PID controller to calculate a set value, is out of scope. Yet this is a
relevant scenario for an integrated architecture. Therefore, we propose developing the
relations between the components within an abstraction layer along its data and
information dependencies. In addition, we propose modeling the realization depen-
dencies that come with the challenge of shared services within another abstraction
layer. Finally, we propose connecting the abstraction layers. The next paragraph dis-
cusses this connection.

4.2 Dependencies Across Abstraction Layers

The dependencies across abstraction layers are a generalization of the dependencies
within an abstraction layer. We define dependency across abstraction layers along
required and provided services. Such a service can be information, similar to a
dependency within an abstraction layer, e.g., if an application is required to ‘send a
signal’, but it can also be an operating system service, like a demand for memory or
execution time.

The authors of [29] distinguish between application services and basic services. An
application service can be experienced by the user, whereas a basic service realizes the
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application service. Please note that we consider humans, software services, and
hardware services as users. Based on this distinction, we call the upper-layer compo-
nent Application Component and the lower one Service Packet Component.

The vertical interface has a direct influence on the performance of the application
since it realizes the application. Consequently, as shown in Fig. 3, a vertical interface
consists of a Required and Provided Service in combination with a Service Budget. The
Integrity, e.g., ASIL C, of the Vertical Application Interface is inherited from the
Horizontal Output that the Vertical Application Interface is realizing. Please note that
we focus on dependency across abstraction layers, which is why the Horizontal Output
is not depicted in detail (it should also contain an integrity level and a link to the safety
goal that it satisfies). A Vertical Output is an option for specifying a requirement from a
Service Packet Component to an Application Component. Conservative embedded
systems do not need this option. Consequently, vertical description languages, such as
VerSaI, do not contain any Vertical Output. However, a modern system based, e.g., on
POSIX, will need this option; for example, dynamic memory management with the
malloc()-service requires correct use of the free()-service, or a waiting service
requires correct passive waiting. Additionally, in order to require a service, the vertical
interface allows specification of detection and reaction mechanisms for handling and
detecting failures. This option comes with Reaction Budget and Integrity, e.g., diag-
nostic coverage (DC) and Failure in Time Rate (FIT). Mapping links the Vertical
Application Interface with the Vertical Service Interface. Please note that a Vertical
Output mapped to multiple inputs indicates a sharing intention (if one Service Packet
Component Output is used by multiple Application Components) or a systematic
common cause (if an Application Component does not provide correct behavior to
multiple Service Packet Components).

4.3 Dependencies Within the Platform Service Domain

In this paragraph, we will describe the elements of our novel modeling approach for
platform services. When we applied C2FTs to a POSIX-based system including the
platform services, we concluded that the C2FTs approach is not directly applicable. The
reason is that the complexity (the number of dependencies and failure mode trans-
formations within and between the services) results in a large and confusing set of fault
trees. Consequently, reviewing and reusing are hard to achieve. Therefore, we iden-
tified the design components of platform services that are needed to provide interfer-
ence analysis and automated fault tree generation. Please note that our intention is not
to come up with an additional modeling approach for service design. Instead, we
propose modeling with the minimum of information needed for a safety engineer to
perform a dependency analysis and create a fault tree.

Typical platform service packets are actuator drivers, operating system services,
memory management services, timing and interrupt services, and communication ser-
vices [15, 28]. Each service packet consists of various services. [30] defines a service as
the behavior of the provider as its users perceive it. The behavior is described by internal
and external states. In our case, the service packet is the provider and the perceived
behavior is the service action. An example of such a service action (service for short) is a
thread wake-up service (the implementation could be, for example, sending a
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corresponding POSIX signal) from a thread-handling packet (e.g., a library or a mod-
ule). An internal or external state manipulation of a service is, for example, the
manipulation of a running queue (from where a scheduler fetches the next thread to
schedule) or the data structure with the process context information. Figure 4 presents
our modeling elements for platform services. The two central elements are the Service
(as a service above) and the Entity (which can be used to model the objects for the state
information, e.g., a data object). Both elements, Service and Entity, as well as the service
packet component can contain themselves in a hierarchy. For reasons of legibility, we
skipped the composite pattern in Fig. 4. The Entity can be a User Entity if it represents
an object for an external state, or a Management Entity if it represents an object for an
internal state. The relations between Vertical Service Interface, Services, and Entities
allow transformation into a fault tree and interference traces. We created the failure
modes of the Vertical Output manually. However, [31] has shown that failure types can
be generated automatically via a predefined failure type taxonomy for a domain.

In addition, we integrated the interference aspects for dependencies across
abstraction layers (Fig. 1) within a meta-model (Fig. 4). This allows identifying failure
propagation via shared service parts. Please note that a simple and automated com-
parison of modeled elements can be used to identify replicated service parts and that the
propagation via service interaction is solved via the Horizontal Service Interface or the
proposed fault tree generation.

The meta-model contains the interference aspects as follows: A potential corruption
of a User Entity (if it is not a Service) is a Spatial Partition violation, e.g., a message
corruption. A potential corruption of a Limit is an Over-Allocation in the case of an
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allocation Limit, e.g., limited memory allocation size, and a Behavioral Mode Cor-
ruption in the case of a wear-out Limit, e.g., a limited number of write accesses to a
flash memory before it precipitates. A potential Management Entity Corruption rep-
resents an unwanted Behavioral Adjustment and a delayed Synchro Start/End repre-
sents a temporal time-slot violation, while an Asynchrony Start/End that demanded is
too frequently represents a Contention Delay. To find out whether an interference exists
or not, the traces are evaluated via the relations depicted in Fig. 4. An interference
potentially exists if there is a trace from one user (application component) via the
Vertical Service Interface to another user.

Another concretization of the Service Design is the Realization of the Service. Each
Entity has to be bound to aMemory Partition. Please note that a Service is a specialization
of an Entity. In addition, each Service has to be bound to a Time Partition.Memory- and
Time Partitions belong to a device that needs a Clock and Power. A similar Realization
view can, for example, be found in [32], namely a hardware-software meta-model to
support performance analysis. The Realization allows more modularity for the Service
Packets and thus the Service Design, as well as a common cause analysis. More modu-
larity is achieved because the basic events that represent random hardware failures can be
shifted from the Service Design to a Device. Common causes can be found because a
shared Partition, Device, Clock, or Power is a random common hardware cause.

5 Example Analysis

Following the presentation of the dependency analysis method in Sect. 4, this section
shows parts of the execution of the method for an example application with corre-
sponding services. The example is a power window application that the authors of [33]
described for a timing benchmark. We deploy an example power window application
on a POSIX-based multicore system with a software-based redundancy mechanism in-
between as a service packet.
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The analysis process summarizes the previous chapter and contains six steps. First,
the application components and the application interfaces should be modeled along the
data/information flow. The starting point is the application component that provides the
data/information that meets the safety goal. Second, the failure propagation within the
horizontal application layer should be modeled, e.g. with C2FTs. Figure 5 depicts these
two steps. The application is a power window. It can be automatically raised and
lowered by pressing a button via the PSG Power Window Control. Pinch Protection
detects whether an obstacle is present between the top of the passenger window frame
and the glass pane when the window closes. Control Exclusion assigns lower priority to
the passenger when control inputs come from the driver (DRV) and the passenger
(PSG) simultaneously. DRV Debounce and PSG Debounce rebound the mechanical
button when it is pushed [33]. In this example, the requirement “Provide power
window command without pinching, ASIL A” fulfills the safety goal “Unintentional
closing of windows must be avoided, ASIL A”.

However, if, for instance, Control Exclusion shares infrastructure with other
application components and should be reused, the basic event ‘Internal Failure’ has to
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be adapted in order to guarantee probabilistic independence. Furthermore, due to the
different integrity levels (QM and ASIL A), an interference analysis is needed. To this
end, we concretize the system across the abstraction with the remaining four analysis
procedure steps. In the third step, the engineer models the vertical interface for the
application component. This is exemplified in Fig. 6 for the PSG Window Control
component. Please note that vertical inputs realize horizontal outputs and replace
internal-failure basic events. In the fourth step, an engineer can then select or define the
service components with their interfaces and map them to the application interfaces (in
Fig. 6, a Software Redundancy Packet of a Body Control Unit (BCU) is illustrated).
The fifth step is the creation of the service design (left part of Fig. 6). The example
shows a mechanism that provides redundant execution via two replicas, including
comparison, cross-comparison, and monitoring. The illustrated relations describe how
the services influence the data objects (entities). In the case of a ‘collaborative mod-
ification of’-relation, the collaborating services can only modify the entity together.
This results in a logical AND-gate within the fault tree. In the case of a ‘modification
of’-relation, the service can always modify the corresponding entity. This results in a
logic OR-gate within the fault tree. The ‘controlled via’-relation indicates that an entity
influences the entity by which a service makes the modification. This relation is used to
get the traces to create the fault tree and the interferences. The ‘asynchronous start’-and
‘synchronous start’-relations are used for temporal traces within the interference
analysis and for fault tree generation (see, e.g., the Late execution failure mode in
Fig. 6).

In the case of a composition, the containing entities get all the relations of the
superordinate component. This improves clarity (see, e.g., cross-comparison in Fig. 6).
Finally, with the sixth step, the result is created. The right part of Fig. 6 shows what a
generated fault tree would look like. The fault tree is then enriched with two manually
integrated protection mechanisms, “MMU Protection Fails” and “Keep-Alive Message
Commission”. However, these mechanisms could also be integrated via a service and a
corresponding device. The modeling technique allows automated generation of the
fault tree (named gates and their relations). Safety mechanisms, e.g., MMU or keep-
alive messages, as well as the description of the failure modes have to be added
manually in the current version.

The interference analysis results are failure propagation scenarios listed in a table
similar to what we presented in [12]. An example is, in case of a wrong assignment of
the setDefaultSigna-service to set the Default Signal Message:

‘The application Control Exclusion overrides the Default Signal Message via the
service setDefaultSignal. ! The Default Signal of the service packet software
redundancy is corrupted. ! The application PSG Power Window Control receives a
wrong Default Signal Message provided by the application Control Exclusion. ! The
application PSG Power Window Control receives a wrong window command. ! The
safety goal is violated.’

The modeling technique shown in Fig. 6 allows creating compositions and hier-
archies via sub-services and sub-entities and can thus be applied for larger systems.
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6 Conclusion

In this paper, we presented an approach for model-based safety analysis across
abstraction layers. The analysis is based on modeling the dependencies within and
across abstraction layers. Through the application of our new method, we achieved
improved reusability compared to component-based safety analyses like C2FTs, which
focus only on one abstraction layer. The method achieves completeness for the
dependency analysis since all dependency aspects are covered for a given system
model. However, robustness tests are still required to check the implementation. In
addition, a safety engineer can perform a dependent failure analysis of the design
before the system is implemented or complex simulation models are built. Our meta-
model enables automated generation of fault trees and thus facilitates the safety analysis
and its auditability. We applied the analysis to a real-world automotive redundancy
mechanism within an integrated architecture. In this paper, we demonstrated our
approach with a simplified example. During the application of our method, we also
detected limitations of this method. Modeling the complete system with our approach
results in nearly the same effort as creating a fault tree analysis. However, our approach
detects common causes via shared devices and interference via platform services in
addition to fault trees. We identify common causes iterating over modeled devices
(Fig. 4) and interferences via modeled dependencies from the classification (Fig. 1).
A second limitation is that fault tree analysis always considers the worst case of a
temporal dependence. Yet our model and existing design languages contain temporal
information. Currently, we are using temporal information only to identify interference
sequences. In future work, we will develop a better representation for the interference
results or use other techniques, e.g., Markov Chains, instead of fault trees. To reduce
the effort for the analysis, we will work on integration of our language into SysML in
order to automate as many steps of the model generation as possible. Another area of
potential future work is to combine our analysis systematically with fault injection
analysis and experiments.
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Abstract. SafeCap is a modern toolkit for modelling, simulation and
formal verification of railway networks. This paper discusses the use of
SafeCap for formal analysis and fully-automated scalable safety verifi-
cation of solid state interlocking (SSI) programs – a technology at the
heart of many railway signalling solutions. The focus of the work is on
making it easy for signalling engineers to use the developed technology
and thus to help with its smooth industrial deployment. In this paper we
explain the formal foundations of the proposed method, its tool support,
and their application to real life railway verification problems.

1 Introduction

Effective signalling is essential to the safe and efficient operation of a railway
network. It enables trains to travel at high speeds, run close together, and serve
multiple destinations. Whether by mechanical semaphores, colour lights or elec-
tronic messages, signalling only allows trains to move when it is safe for them to
do so. Signalling locks moveable infrastructure, such as the points that form rail-
way junctions, before trains travel over it. Furthermore, signalling often actively
prevents trains travelling further or faster than it is safe and sometimes even
drives the trains. At the heart of any signalling system there are one or more
interlockings. These devices constrain authorisation of train movements as well
as movements of the infrastructure to prevent unsafe situations arising.

The increasing complexity of modern digital interlockings, both in terms of
the geographical coverage and that of their functionality, poses a major challenge
to ensuring railway safety. Even though formal methods have been successfully
used in the railway domain (e.g. [2,3]), their industry application is scarce. In
spite of a large body of academic studies addressing issues of formal verification of
railway systems, they typically remain an academic exercise due to a prohibitive
cost of initial investment for their industrial deployment. The following are some
of the reasons. First, signalling engineers need to learn mathematical notations
to apply them. Second, the tools often cannot be applied for analysing large real
stations due to their poor scalability. Third, the companies need to drastically
change the existing development processes in order to use them.
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This paper proposes a formal tool-based approach that addresses these issues
by (i) verifying the signalling programs and layouts developed by signalling engi-
neers in the ways they are developed by industry, (ii) ensuring fully-automated
verification of safety properties using a family of the state of the art verification
techniques (in particular, automated theorem provers and solvers), and (iii) pro-
viding diagnostics in terms of the notations used by the engineers. All together,
this affirms that the developed methods and tools can be easily deployed to aug-
ment the existing development process in order to provide extra guarantees of
the railway safety.

The paper is structured as follows. Section 2 presents the work background
by overviewing the SafeCap toolkit, the role of SSI programs in railway sig-
nalling, and the key safety principles that these programs must follow. In Sect. 3
we discuss the SafeCap verification core, including its underlying modelling lan-
guage and essential verification techniques. The proposed verification method is
illustrated by a case study of a real railway station in Sect. 4. Finally, Sect. 5
concludes the paper by summarising the achieved results.

2 Background

SafeCap Platform. The SafeCap platform is a toolkit for modelling railway
capacity and verifying railway network safety [11]. It allows signalling engineers
to design stations and junctions relying on the provided domain specific lan-
guage (SafeCap DSL), as well as to check their safety properties and evaluate
potential improvements of capacity by using a combination of theorem prov-
ing, SMT solving and model checking [12]. The platform has been substantially
extended by adding new simulators, solvers and provers, as well as the support
for representing a wide range of the existing signalling frameworks [14,15].

This paper also takes our work on SafeCap further by developing a set of new
tools for importing, analysing and proving safety of railway data in standard SSI
and SSI-based technologies such as Smartlock1 by Alstom and WESTLOCK2 by
Siemens. The overall SafeCap architecture is presented in Fig. 1. Verification of
SSI is our first experience with constructing and verifying large (i.e., containing
tens of thousands of state transitions) models of the system dynamic behaviour.
Previously, our industrial experience was concerned solely with verification of
static data. The current work extends the SafeCap framework with advanced
capabilities for reasoning about dynamic (i.e., transition-based) systems.

The developed SafeCap verification and proof back-ends enable automated
reasoning about static and dynamic properties of railways or their signalling
data. Our two principal verification routes are the built-in symbolic prover
backed by a SAT solver, a range of external provers provided via the Why3
framework [4], and the ProB model checker [17] (used just as a constraint solver).
1 For more details, see https://www.mobility.siemens.com/mobility/global/en/

interurban-mobility/rail-solutions/rail-automation/electronic-interlockings/pages/
electronic-interlockings.aspx.

2 For more details, see http://www.alstom.com/products-services/product-catalogue/
rail-systems/signalling/products/smartlock-interlocking-products/.

https://www.mobility.siemens.com/mobility/global/en/interurban-mobility/rail-solutions/rail-automation/electronic-interlockings/pages/electronic-interlockings.aspx
https://www.mobility.siemens.com/mobility/global/en/interurban-mobility/rail-solutions/rail-automation/electronic-interlockings/pages/electronic-interlockings.aspx
https://www.mobility.siemens.com/mobility/global/en/interurban-mobility/rail-solutions/rail-automation/electronic-interlockings/pages/electronic-interlockings.aspx
http://www.alstom.com/products-services/product-catalogue/rail-systems/signalling/products/smartlock-interlocking-products/
http://www.alstom.com/products-services/product-catalogue/rail-systems/signalling/products/smartlock-interlocking-products/
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Fig. 1. SafeCap architecture

The SafeCap DSL provides a formal, graph oriented way to capturing railway
schemas and some aspects of signalling [13]. In the DSL, a railway schema is a
mathematical object consisting of data structure definitions (namely, types and
constants) as well as required logical constraints on the defined data (axioms and
lemmata). We can distinguish two main parts of the SafeCap DSL – the Core and
its various extensions. The Core provides means to mathematically describe the
physical topology of a railway schema (or, in fact, any graph-based structures).
Its first-class concepts are graphs and subgraphs. These typically represent track
topology, track circuits, routes or axle counters. As such, a model of a railway
schema in the SafeCap DSL Core is independent of any given signalling solution.

Once a railway schema model is created (or imported from an external for-
mat) in the Core, it is checked for its validity or well-definedness. For that, a
number of graph theoretical statements are automatically generated and verified,
including isomorphism properties between constituent subgraphs, path validity
within a given graph, connectivity, acyclicity, node degree and so on.

Various concepts of a railway schema such as signals and signalling solutions,
speed limits, stopping points and so on can be incorporated into via DSL exten-
sion plug-ins. Such plug-ins introduce new data (as custom annotations) and
supporting logic (as additional logical constraints or relationships). Such a tool
architecture allows us not to commit to any regional technology and thus to offer
a broadly similar approach for a range of legacy and current technologies.

In this paper we focus on the fixed-block signalling prevalent in the UK and
common to many other countries. In doing that, we rely on a dedicated SafeCap
DSL plug-in for incorporating this type of signalling data.

Computerised Signalling and SSI. The first signalling interlockings were
mechanical devices that constrained the movement of levers, were connected to
points and semaphore arms, and were contained in mechanical signalling boxes.
During the twentieth century these devices were superseded by electrical relay-
based interlockings that switched electrical current to motorised points, colour
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light signals and other lineside devices. The safety conditions applied by relay
interlockings included tests of track circuits or axle counters – the devices that
automatically determine whether a section of line has a train on it. The advent
of computer technology brought the opportunity to replicate and build on the
relay interlocking functionality within a computer based interlocking.

)M(B711Retuorrofkcolbtseuqeretuor/)M(B711RQ*
if R117B(M) a / route R117B(M) is available

USD-CA f,OSC-BA f,OSV-BA f / sub-route and sub-overlaps are free
then if OSL-AC l, / sub-overlap is OSL-AC locked

P223 fr , P224 fr / points P223, P224 free to move reverse
then @P223QR \ / call subroutine P223QR

if OSD-BC f / sub-overlap is OSD-BC is free
LTR04 xs / latch (boolean flag) not set (false)
P224 crf / point P224 commanded reverse or free to move reverse

then R117B(M) s / set route set flag for R117B(M)
USD-AC l , USC-AB l , USB-AB l , OSA-AB l / set sub-routes/overlaps
P224 cr / command point P224 reverse
LARR xs / clear latch LARR
S117 clear bpull / clear signal button pull flag
if P223 xcr , P223 rf then / check point states
@P223QR / point command subroutine

EP230 = 0 \ / reset timer EP230

Fig. 2. SSI example: route request code for route R117B(M) in the PRR module

One of the earliest forms of computer based interlocking was the Solid State
Interlocking (SSI), developed in the UK in the 1980s through an agreement
between British Rail (the then nationalised railway operator) and two signalling
supply companies. Running on bespoke hardware, SSI software consists of a core
application (common to all signalling schemes) and site specific geographic data.
The original SSI has now been superseded by more powerful, modern hardware
platforms running software developed in accordance with modern standards for
safety critical software. Nonetheless, the functionalities of the core application
and the Geographic Data Language (GDL) remain largely unchanged.

SSI GDL data configures a signalling area by defining site specific rules, con-
cerning the signalling equipment as well as internal latches and timers that the
interlocking must obey. Despite being referred to as data, a GDL configuration
resembles a program in a procedural programming language. The configuration
is iteratively executed in three major stages: reception of input state messages
from signalling equipment, followed by execution of rules, followed by construc-
tion and transmission of output command messages to the signalling equipment.

There are two main modules defining the signalling behaviour – the route and
point request (the PRR module) and formation of output telegrams (the OPT
module). An example of route request code (a part of logic that reacts to an
external route request) is given in Fig. 2. Notice that the parts between if and
then are atomic predicates combined with implicit conjunction, while everything
between then and a slash character is a command (made of a sequence of atomic
commands). For instance, USD-CA f stands for test that subroute USD-CA f is
free, while USD-CA l commands the subroute to be freed.
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Safety Principles. There are two main safety principles shared by all sig-
nalling operations that employ the SSI technology. From these a large number
of operational constraints can be derived, that consequently become verification
conditions to check against given signalling data.

A schema must be free from collisions. A collision happens, potentially, when
two trains may occupy the same part of a track at the same time. In route-
based as well as speed-based signalling, the principal mechanism to address this
property is that of route locking and holding. A train is given permission to
enter an area of a railway, once there is a continuous and safe path through
the area assigned exclusively to this train. Such a path is normally called a
route and is delineated by signals – either physical track-side signals with lamps
or conceptual signals displayed to a driver on a computer screen. The extent
between successive signals defines the smallest train separation.

For a route to be locked, all the movable equipment such as points or level
crossings must be set and detected in a position that would let a train safely
travel on its desired route. They must remain locked in such a state and their
position must be positively confirmed before a train enters the route.

A schema must be free from derailments. A derailment may happen when
a train moves over a point that is not set in any specific direction and thus
may move under a train. To avoid this, a point must be positively confirmed
to be locked before a train may travel over it. Typically, a signaller must define
conditions under which point reconfiguration is considered safe.

Related Work. There have been a number of studies focusing on formal ver-
ification of SSI programs. The majority of works (e.g., [10,16,20]) use various
forms of model-checking in an attempt to verify safety of train run scenarios,
with interlocking rules derived manually or via an automated translation from
SSI data. With few exceptions, the proposed techniques actually scale up to only
toy examples, or cover a small subset of functionalities, or both. For instance, the
approach presented in [10] uses NuSMV to model check a small subset of safety
properties for a selected subset of SSI data based on real-life signalling data.
In the face of sheer number of train run scenarios, one way to avoid the state
explosion problem might be statistical simulation of train runs [6]. However, this
approach has non-trivial implications on result interpretation.

We see a fundamental flaw in all such scenario exploration techniques: by
introducing train runs and assuming certain traffic patterns they cannot find,
even if they were to scale up, serious signalling mistakes that do exist in real-life
implementations and only manifest themselves when a combination of several
rare conditions happen [8]. Our approach does not suffer from this limitation as
we do not need consider train runs (and thus limit verification to few assumed
possibilities). Instead we check the worst case safety implications for all possible
train run scenarios. Another problem with these solutions is their poor diagnos-
tics, where the feedback on safety violations is not given in terms that signalling
engineers could understand (i.e., SSI and the schema language).

In [5] the authors build a model of railway operation constrained by imported
signalling data. A model checker automatically explores train movement
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scenarios (i.e., model states) and reports on violation of safety properties. The
technique does not support generic safety properties (which have to be written
separately for a specific layout) and the reported result indicate it is unlikely
to scale to the industrial scale. In cases where a track graph can be cut with a
very spectral ratio (i.e., two stations connected by a straight graph), it is sound
to conduct verification of subparts separately [18,19]. This is not often found in
practice as SSI is traditionally limited to 64 or 256 controlled pieces of equipment
and it is impractical to wire equipment at significant distance from a control box.

Verification and validation of a fragment of safety logic for European Railways
Train Management System (ERTMS), ensuring also interoperabilty of different
signalling solutions, is described in [7]. ERTMS specifications (written in a struc-
tured programming language) are automatically translated into formats of the
employed external verification tools. Paper [9] presents an ongoing work on auto-
matic model generation and verification of Railway Markup Language (RailML)
formatted data, which also include route tables and interlocking information.
Interlocking programs are defined in RailML using route scheduling and route
automata. Neither of these approaches however could be applied for verification
of SSI programs. Moreover, contrary to our work, they heavily rely on model
checking techniques and tools for verification of railway safety properties.

3 Modelling and Verification in SafeCap

In this section we present our main contribution – the integrated generic frame-
work for modelling and verification in SafeCap that we rely on to verify safety
properties of railway signalling.

3.1 SafeCap Data Analytics

In our earlier works [12,14,15] we have proposed a formal model to capture and
verify concrete signalling constraints by enforcing a certain standard of input
data representation. However, industrial applications do not easily fit into the
proposed view and there is a wide variation in the kind, rigour and comprehen-
siveness of the data defining existing signalling designs.

To be able to deal with varying forms of signalling input data, we comple-
ment SafeCap DSL with a generic modelling framework. The framework, called
SafeCap Data Analytics (SDA), offers modelling concepts similar to that of a
state-based modelling language. It is not meant to be used by an end user but
rather as an intermediary tool bridging signalling input data and generated ver-
ification conditions. The SDA approach allows us to incorporate any extensions
that require non-trivial reasoning (in particular, specific signalling solutions)
with the DSL Core in an uniform and mathematically consistent way.

An SDA model comprises the static part, defining model constants, axioms,
as well as verification statements (called conjectures), and the dynamic part,
defining state transitions over model variables and thus expressing possible state
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evolution. Overall, it can be seen as a characterisation of a state transition sys-
tem with discrete time (SSI timers are seen purely as integer counters enabling
causation reasoning) and state transitions are assumed to fire in an atomic fash-
ion. As the focus is exclusively on static proof, we only define the proof semantics
and do not consider construction of model states or traces.

We employ first-order logic equipped with the Zermelo-Fraenkel version of set
theory and arithmetics to write predicates defining system axioms, conjectures as
well as pre- and post-conditions of state transitions. Relational and functional
model structures are expressed as special kinds of sets (i.e., sets of mappings
between associated elements) and variable values can be drawn from finite or
infinite sets. There are also the predefined sets of integers, booleans and reals.
The notation and underlying formal semantics of a transition system (a variation
of the weakest precondition semantics) are adopted from the B Method [1].

In relation to the railway domain, for each format of input data representing
signalling data, there is a dedicated importing plug-in translating it into an
SDA model: a collection of constants, axioms and state transitions. The number
of such formal elements for a real life example is quite large – from several
thousands to tens of thousands. The resulting formal model is a solid foundation
for formal reasoning about the properties, in particular operational safety, of a
chosen signalling design. At the moment SafeCap supports two schema formats
– LDL (proprietary) and RailML – and two signalling data formats – SSI and
XML-based (a proprietary schema).

There are three main classes of signalling models distinguished by the mix
of axioms (static constraints) and state transitions (system dynamics):

– a purely static model reasoning about data with no model variables or state
transitions. An example is a model derived from a set of control tables –
signalling design data represented in a tabular form. For a verification tool,
its is a collection of conjectures (lemmata) expressing data properties;

– a purely dynamic model where signalling is defined by state transitions. An
example is SSI signalling data that we see as piece of code to be transformed
into a state transition system. Such models are verified via safety invariants;

– a mixture of the two. An example is verification of equivalence between a
control table and its implementation SSI data.

Next we consider how verification of signalling data differs depending on the
class of a considered SDA model.

3.2 SDA Verification: A Static Model

For a static SDA model, its verification involves proving a set of logical con-
jectures expressing the required data consistency properties. By a conjecture
we understand a predicate (logical condition) constraining the model constants.
Such a conjecture must be proven in the context of model axioms, i.e.:

ctx(c) � conj(c), (1)
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where c are model constants. Here ctx(x) represents a set of axioms from the
DSL Core such as the railway topology data definitions as well as all incorporated
extensions. Predicate conj(c) stands for an expected data property or a constraint
to be implied by such core definitions.

As one example, we might wish to check that a route setting control table
includes all the points necessary to be set reverse to enable the given path of the
route. This statements translates into the following conjecture:

∀r ∈ Route · r ∈ dom(Routes.Point)
Node.base[schema.reversepoints[{r}]] ⊆

(Points.base[(Points.base−1[{r}] ∩ ran(Routes.Point[{r}]))])
(2)

Here schema.reversepoints[{r}] is the topology derived set of points to be set
reverse to enable the route r, while Routes.Point[{r}] defines an ordered list
of required points. The (topology-derived) constant relations Node.base and
Points.base map between the physical and logical points and between the point
names and the point states respectively. Finally, [·] and (·)−1 are relational image
and inverse operators. For more details on the used notation, see [1].

Depending on the kind and form of ctx(c), a property ctx(c) � conj(c) can be
handled by a constraint solver, a symbolic prover (SMT solver), or a satisfiability
(SAT) solver. There are several provers available within SafeCap, such as Why3,
ProB, or Minisat. In the production version of the tool, a conjecture is always
checked by at least two distinct provers, one of which must be external.

There are a number of requirements to satisfy for a conjecture to be deemed
logically meaningful and well-formed. Overall, a conjecture must not be a con-
tradiction or tautology. The reason for these checks is to avoid conjectures that
are logically inconsistent or those that are true or false irrespectively of a verified
schema or signalling data. The latter cases, while logically consistent, in practice
indicate serious mistakes in the formulation of a conjecture predicate.

3.3 SDA Verification: A Dynamic Model

For a dynamic SDA model, its verification boils down to proving an inductive
system invariant expressed as set of predicates. For simplicity, we refer to each
such a predicate as a safety invariant. A safety invariant represents a property
on the system state (variables) to be maintained during the system functioning.
Safety invariants formalise the established principles of interlocking operation.
They are formulated manually with the help of domain experts and translated
into a formal notation. This is done once for any given technology (e.g., SSI).

To show that an invariant property is indeed preserved by the system, one
must prove a logical sequent (theorem) of the following form:

ctx(c) ∧ inv(c, s) ∧ τ(c, s, s′) � inv(c, s′), (3)

where ctx(c) are all the defined axioms constraining the model constants c,
inv(c, s) is a safety invariant over the constants c and the current state (variables)
s, and τ(c, s, s′) is some state transition producing a new state s′. τ(c, s, s′) is
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usually defined by a conjunction of transition pre- and post-conditions: pre(c, s)∧
post(c, s, s′). Finally, inv(c, s′) is an invariant over the new state s′.

It is convenient to generalise the above statement to also account for some
historic (previous) model state. We refer to such a state as s h and understand
it as the state observed prior to the current state s:

ctx(c) ∧ inv(c, s, s h) ∧ τ(c, s, s′) � inv(c, s′, s) (4)

Historic states are not manipulated in state transitions. The only source of
information about a historic state is the invariant inv. Conceptually, when a
transition happens, the old state (s) takes the place of the historic state (s h)
and the new state s′ replaces the old state s. Since we are doing symbolic proof,
this is all we need to know about historic states. The principle can be generalised
to arbitrary deep historic trace although we did not encounter a need for this.

As an example, the following concrete invariant checks that the minimal
conditions of point switching are met:

∀p ∈ Node · point c(p) �= point c h(p) ⇒
schema.pointcleartracks[Node.base−1[Node.base(p)]] ∩ track o = ∅

(5)

Here model variables are given in italic, while all the other identifiers are
constants originating from the underlying model railway schema. The model
variable point c h is a historic version of the current-state variable point c.

The verification conditions for such a model are generated by instantiating
model invariants. Namely, a separate verification condition (proof obligation) is
created for each pair of invariant inv(c, s, p) and state transition τ(c, s, s′). Thus,
for 10 invariants and 2000 transitions, there are up to 20000 conditions to prove.

Transition system proofs are not as well suited for constraint solving as con-
jectures about control tables. The primary reason is the abundance of complex
abstract relations. Off the shelf provers, such as E, SPASS, Z3, have proven
themselves capable but are unable to return any valuable feedback on failed
proofs and are generally quite slow (typically about 20 s per proof obligation)
and memory demanding (some proofs require up to 64 GB memory). To address
this, we have developed a custom symbolic prover, which is described next.

The built-in SafeCap symbolic prover is used as the primary means for verify-
ing safety invariants. Unlike conjectures for a static SDA model that are typically
proven for concrete constant values, generated safety invariant proof obligations
are stated over all permissible state values. The complexity of constraints and,
to much less degree, the scale of state space make it an inordinately difficult
verification task for a constraint solver.

The symbolic prover starts with the invariant statement as the top goal and
tries to simplify, split or rewrite this goal until it becomes trivially true. It relies
on a number of tactics – functions that implement goal transformations (like
splitting a conjunctive goal into several subgoals).

Since the prover is supposed to be used fully automatically, a special attention
in its implementation is given to the cases when it fails to prove its goal. The
prover is designed to stop in a state best suited to the subsequent interpretation.
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Fig. 3. Case study railway schema (an excerpt).

To achieve this, once the prover detects a failed proof branch (due to a time out,
an absence of applicable tactics, etc.), it backtracks while looking for a historic
undischarged goal matching one of the predefined templates. For each of these
templates, there is its defined interpretation in a natural language to be shown
to an engineer to assist with the understanding of the nature of an error.

The symbolic prover is not designed to be ever used interactively or even
outside of SafeCap. However, it is possible to write dedicated tactic scripts for
each safety invariant. Such scripts can reorder, remove and parametrise proof
tactics as well as define different proof branches using applicability tests. In
particular, the form and nature of SSI data allows us to easily recognise repeating
patterns in the usage of SSI commands and, even without seeing a specific SSI
data instance, we are able define efficient tactics to support a safety invariant.

We use two complementary techniques to demonstrate that the built-in
prover is sound. First, all the rewrite rules are known to be valid lemmata in first
order logic and set theory3. Second, for each instance of a rewrite rule, SafeCap
can generate many thousands of theorems originating from successful or failed
proof obligation and check them in an external prover. This technique is a form
of automated mass testing to guard against programming mistakes. It can also
be used to automatically recheck all proof scripts for extra reassurance.

Much attention is given to the presentation of verification results. It is imper-
ative that the formal verification core operates autonomously and presents its
findings in a clear and useful manner. To achieve this, together with every static
or invariant verification condition one must write one or more reporting tem-
plates that define the mapping of verification output into a report coherent to a
domain expert. The examples of such templates are given in Sect. 4.

4 Case Study

As a case study, we consider a railway schema and the accompanying SSI sig-
nalling program for a real medium-size station. The SSI data for the case study
were developed by an industrial company using the existing process. Verifica-
tion was conducted against the properties mandated by the national railway
authority (Network Rail).
3 With the unfortunate exception of arithmetics that is handled as a black-box rewrite.
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pre
LTR04 /∈ latch s ∧ OSD-BC /∈ overlap l ∧ R117B(M) ∈ route a
OSC-BA /∈ overlap l ∧ OSV-BA /∈ overlap l ∧ USD-CA /∈ subroute l
LTR117 /∈ latch s ∧ LTR119 /∈ latch s
(REVERSE = point c(P224)) ∨ ((TSD /∈ track o) ∧ (USD-BC /∈ subroute l) ∧ . . .
request = QR117B(M)
post
route s ′ = route s ∪ {R117B(M)}

Fig. 4. An example of a translated SSI transition: route locking

A small part of a diagrammatic (not to scale) representation of its layout
is given in Fig. 3. To give a sense of its actual size, the area consists of 117
train detection track circuits, 12 points and 42 routes. The labels in the diagram
had to be obfuscated for the purposes of this publication. The signalling data
(following the SSI standard) are defined in 14 separate modules, summing up to
274 KB of disk space. The modules contain plain text source of SSI signalling in
the SSI format described above.

The case study data were loaded into SafeCap in two stages. First, the railway
schema was imported and represented in the SafeCap DSL Core. Second, the
SSI signalling program was added (using the dedicated plug-in) as a DSL Core
extension based on the SafeCap SDA. When a digital version of a railway schema
exists, it can be imported directly into SafeCap. If it is only available as a paper
or digital scan representation, it has to be manually drawn in the SafeCap schema
editor. This takes about half a day for an experienced railway engineer.

A railway schema typically contains the track topology, track joints and sig-
nals. From this, the platform generates the necessary derived information (such
as track circuits, points, routes, subroutes, overlaps, etc.) that is represented and
stored in the SafeCap DSL. SafeCap also attempts to automatically decode route
names to match paths on the schema. For instance, R117B(M) would normally
refer to a route starting from the signal S117 and taking the path B.

We treat SSI signalling data as a program made of large number of inde-
pendent units (essentially event handlers). Furthermore, every such unit can be
translated into a number of state transitions (one per each command). The result
is a completely flat structure made of thousands of individual state transitions.

Figure 4 illustrates one such translated state transition. The transition
describe route setting resulting from the route request presented (in SSI GDL)
in annotated Fig. 2. The route set update is specified in the transition postcon-
dition. All the transition preconditions (apart from the last two) can be traced
directly to the conditions of respective if blocks. The penultimate precondition is
the result of expanding the SSI GDL expression P224 crf, testing whether point
P224 is already commanded reverse or is free to move into the reverse position.
The last precondition associates this transition with the specific request type.

To conduct verification of an SSI data set, the underlying schema model and
the generated dynamic SDA model (transition system) are integrated together.
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Additionally, the overall system model also includes safety invariants to be ver-
ified against the schema data and system state transitions.

The following is one example of a safety invariant. The invariant is concerned
with route setting protocol. In particular, it ensures that the conflicting routes
going in opposite directions cannot be set at the same time, which can formulated
as specific conditions on the current free and locking subroutes.

∀ra ∈ Route · ra ∈ route s ∧ ra /∈ route s h ⇒
∀rb ∈ Route · rb ∈ routeopposing[{ra}] ∧ routedir(ra) �= routedir(rb) ∧

routelast(rb) ∈ ran(routetracks[{ra}]) ⇒
subroute l ∩ LastSubRoute[{rb}] = ∅

(6)

In the above, route s is a model variable of type P(Route), representing a
set of routes. route s h is its historic counterpart. The identifiers routeopposing,
routedir, routelast, routetracks are schema-derived constant relations. Specifically,
the above invariant requires that, for any route ra and its opposing route rb such
that the rb exit is within the ra extent (routelast(rb) ∈ ran(routetracks[{ra}])),
the last shared sub-route of rb must be checked free.

Overall, for route setting alone, we define 14 different invariants correspond-
ing to 6 distinct safety principles. There are more invariants addressing telegram
formation, flag operations and point commanding. Currently, we do not check
timeliness conditions (on system reactions within a certain number of cycles).
We also do not consider any liveness conditions as progress and the absence of
livelocks and deadlocks is not part of interlocking safety requirements.

(the model constants and axioms (implied))
(the safety invariant INV6)
∀ra ∈ Route · ra ∈ route s ∧ ra /∈ route s h ⇒ . . .
(the transition preconditions)
LTR04 /∈ latch s ∧ OSD-BC /∈ overlap l
(REVERSE = point c(P224)) ∨ ((TSD /∈ track o) ∧ (USD-BC /∈ subroute l) ∧ . . .
R117B(M) ∈ route a
(and the remaining preconditions)
. . .
(the transition postcondition defining a new state)
route s ′ = route s ∪ {R117B(M)}
�
(the safety invariant over the new state)
∀ra ∈ Route · ra ∈ route s ′ ∧ ra /∈ route s ⇒ . . .

Fig. 5. An example of an invariant preservation proof obligation

The verification process consists of generating verification goals to be proved
(proof obligations) and attempting to dispatch them. The hypothesis list of the
generated proof obligation combines declarations of the model constants and
axioms, the current state version of the verified invariant as well as the pre- and
post-conditions of the verified transition, while its goal states that the invariant
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in question must be preserved in any resulting transition state. Figure 5 shows an
abbreviated example of the invariant preservation proof obligation, generated for
the route locking state transition (see Fig. 4) and the invariant presented above.

Once all obligations are generated, the built-in symbolic prover attempts to
discharge every one of them. Each failed case is reported as a potential error in
signalling data. By design, there is no provision to assist with automatic proof.

Table 1 gives SSI data verification summary of the conducted case study. Here
transitions are all the state transitions derived from the data, while invariants are
formalisations of various safety principles. Non-trivial p.o.’s (proof obligations)
is the overall number of proof obligations after ignoring trivially correct ones
(e.g., when a transition does not involve the variables mentioned in an invariant).
Failed proof obligations indicate potential problems. Note that we do not attempt
to distinguish between properties that are too hard to prove and those genuinely
incorrect – they are all reported as potential errors. Finally, Rejected is the
number of error reports rejected as false positives after manual inspection of a
generated error report.

Table 1. Verification statistics

Transitions Invariants All p.o.’sa Failed p.o.’s Unique errors Rejected

2248 9 1451 46 12 0
aExcluding trivial proof obligations

In addition to the built-in symbolic prover, the framework supports discharg-
ing a proof obligation via a number of different external provers. In practice they
turned out to be much slower and not as capable overall. Below Table 2 gives the
performance times for discharging all the proof obligations of the case study for
different external tools. The external prover Why3 [4] is relying on the integrated
Alt-Ergo and CVC3 SMT solvers4 and eventually arrives at exactly the same
result as the built-in prover albeit it takes several hours. Moreover, it turns out
to be very sensitive to the available amount of RAM, e.g., restricting RAM to
only 8 GB leads to 52 undischarged proof obligations. The built-in SAT solver is
unable to discharge a number of proof obligations proven by the symbolic prover
but agrees on the set of proven conditions. It is fast and can be used to confirm
the result of the symbolic prover in a production setting. Finally, ProB [17] (run
in the constraint solver mode) leaves a number of additional proof obligations
undischarged and takes rather long time to complete the proof.

The experiments were conducted on Intel I7-4790K @ 4.0 Ghz with 64 Gb
RAM. The built-in prover has used a number of custom tactic scripts tuned
to the invariants defined. The end result of a verification exercise in SafeCap
is an automatically generated verification report in a PDF format. A sample
subsection of such a report is given in Fig. 6. A report briefly describes the
nature of the failed conditions, points to the problem source code location, and,
if applicable, generates a part of the schema diagram with the key elements
4 For more details, see http://alt-ergo.lri.fr/ and https://cs.nyu.edu/acsys/cvc3/.

http://alt-ergo.lri.fr/
https://cs.nyu.edu/acsys/cvc3/
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Fig. 6. Verification report sample

related to the failed proof. In the case of the displayed report in Fig. 6 the
problem is a missing sub-route test and the diagram shows the offending route
location.

Table 2. Prover comparison

Prover Run time Undischarged
proof obligations

Built-in symbolic 12 s 46

Built-in SAT 12 m 207

Why3 + Alt-ergo + CVC3 4 h 15m 46

ProB 2 h 46m 101

From the user perspective, the whole process consists of only two steps –
providing input data and analysing the generated output. The actual model
construction, generation of proof obligations and proving of them: all this hap-
pen behind the scenes. Invariant construction is perhaps the most intricate and
demanding part of the process that we are going to discuss in our future papers.

5 Conclusions

In this paper we presented the SafeCap approach to verifying railway signalling,
in particular, signalling data with program-like representation called SSI. As
a number of attempted case studies have demonstrated, the approach proved
to scale well. Moreover, although only a subset of safety principles is currently
encoded, we are confident that the approach is capable to effectively capture and
formalise different formats of signalling data as well as required safety properties.
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While SSI is a rather simple notation, it is still liable to state explosion. With
all possible modules defining controllers for equipment such as signals and points
connected, the state space grows to about 101204 states. Also, one should notice
that in industry safety principles are not designed or discussed in terms of train
movements – something we commonly see in research papers applying simulation
or state exploration techniques – but rather as constraints on signalling rules.

A combination of set theory and first order logic as the underlying mathe-
matical language is the result of experiments over the course of several years.
It appears to deliver the optimal combination of a terse, efficient notation
for expressing conjectures and safety invariants, while, at the same time, also
enabling effective symbolic automated proofs. Two other alternatives we have
also explored are pure predicate logic and first order logic with functions and
equality.

A custom made symbolic prover might seem a dangerous direction to take for
an industry-oriented tool. Indeed, the prover we have developed is not anywhere
as powerful or comprehensive as many state-of-the-art provers. However, it has a
decisive advantage of being highly customisable via per-invariant tactic scripts.
At such a level of fine-tuning it showed to be able to outrun any competition. The
prover is also carefully designed to backtrack and terminate in a state facilitating
helpful end user feedback.

The approach developed offers immediate industry benefits as it can be used
within the existing SSI GDL production processes. The rapid, automated ver-
ification that it offers enables errors to be identified earlier in these processes,
thereby reducing time consuming and expensive re-work. Furthermore, the Safe-
Cap formal approach to verification provides additional assurance over the sce-
nario based testing that is traditionally used in railway signalling. As the safety
case underpinning SafeCap develops, and the range of safety properties that it
verifies expands, further industry benefits become possible as the manual testing
and checking activities are replaced by automated verification by SafeCap.
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Abstract. Safety-critical control systems become increasingly open and
interconnected. However, there is still a lack of the techniques that enable
an integrated analysis of safety and security requirements. In this paper,
we propose an approach that allows the designers to derive and for-
malise safety and security requirements in a structured systematic way.
To elicit both types of the requirements, we adapt and integrate tradi-
tional safety and security analysis techniques. To formally specify and
verify them, we rely on Event-B framework. The framework allows us
to develop a complex specification of system behaviour in presence of
both accidental faults and security attacks and analyse mutual interde-
pendencies between safety and security requirements.

Keywords: Formal modelling · Safety analysis · Data flow
Event-B · Refinement · Safety-critical systems · Security

1 Introduction

Modern control systems increasing rely on networking technologies. While offer-
ing greater flexibility and possibility to provide richer functionality, the increased
system openness also introduces security threats. Security vulnerabilities can be
exploited to undermine safety, e.g., by tampering with sensor data or hijacking
the controlling functions. To ensure safety, we have to integrate the mecha-
nisms for coping with both accidental component failures and malicious security
attacks. However, since traditionally safety and security engineering have been
considered to be two different disciplines, there is a lack of approaches supporting
an integrated analysis of safety and security requirements.

In this paper, we propose an integrated approach to deriving safety and
security requirements by applying safety analysis to the systems data flow. To
analyse the intricate interdependencies between the requirements, we rely on
formal modelling in Event-B [1]. Event-B is a rigorous approach to correct-by-
construction system development by refinement. Development typically starts
c© Springer Nature Switzerland AG 2018
B. Gallina et al. (Eds.): SAFECOMP 2018, LNCS 11093, pp. 107–122, 2018.
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Fig. 1. Generic architecture of a control system

from an abstract specification that models the most essential system functional-
ity. In the refinement process, the abstract model is transformed into a detailed
specification. While refining the system model, we can explicitly represent both
nominal and failure behaviour of the system components as well as define the
mechanisms for error detection and recovery. Moreover, we can also explicitly
represent the effect of security vulnerabilities such as tampering, spoofing and
denial-of-service attacks and analyse their impact on system safety.

The formal specification mimics the data flow. The security failures are mod-
elled by their effect on the system – altering or blocking messages sent over the
communication channels. Formal modelling allows us also to understand the lim-
its of programmable means of achieving safety and suggest the corresponding
modification of the system architecture. The proposed approach is illustrated by
a case study – a battery charging system.

We believe that the proposed approach facilitates an integration of the secu-
rity consideration into the safety-driven design of control systems. It allows us
to capture the dynamic nature of safety and security interplay, i.e., analyse the
impact of deploying the security mechanisms on safety assurance and vice versa.

2 Safety-Critical Networked Control Systems

Currently safety-critical systems – the systems whose failures might cause loss
of human lives or environmental damage [10] – are increasingly relying on net-
worked technologies in their functioning. In this section, we analyse a generic
architecture of a networked control system and discuss the problem of assuring
system safety in a security-aware way.

Figure 1 depicts a generic architecture of a control system. The aim of the
system is to control a certain physical process. Lets assume that the state of the
process is characterised by some physical value p real. While the system is oper-
ational, the physical value should be maintained within certain safe boundaries,
i.e., we can define the following safety invariant over the operational states:

Safety op = p real ∈ [min safe threshold, max safe threshold]

In this paper, we focus on the analysis of failsafe systems, i.e., the systems
that can be put into a safe non-operational state if safety in an operational mode
can no longer be maintained. Formally, it can be described as follows:

Safety nonop = shutdown = TRUE



Deriving and Formalising Safety and Security Requirements 109

Fig. 2. A data flow diagram

Overall system safety is a disjunction of two invariants:

Safety = Safety op ∨ Safety nonop

The value of the physical parameter is measured by a (physical or logical) sensor.
The sensor has a certain imprecision or might experience failures, i.e., the read-
ings p sen produced by the sensor are in general do not exactly match p real.

Since we consider a networked control system, sensing can be remote, i.e.,
the sensor transmits its readings to the controller via the channel s c chan. In
general, due to random channel failures or malicious attacks, the transmission
is unreliable. Therefore, the value p in received by the controller can also be
different from the sensed value.

Upon receiving p in, the controller performs error detection, i.e., evaluates
veracity of p in, and either adopts it as the current estimate of the process state
or ignores and relies on other alternative means to evaluate the state of the
process. Then the controller computes to which state the actuator should be put
to achieve the desired functional behaviour and guarantee safety and issues the
corresponding command cmd.

The commands issued by the controller are sent to the actuator over the
channel c a chan. Similarly, to s c chan, the channel c a chan is considered to be
unreliable (due to the random faults or attacks). Hence, the command cmd trans
received by the actuator might differ from the command cmd issued by the
controller. Finally, the actuator itself might fail and hence cmd imp – the impact
produced by the actuator on the process – might also deviate from the one
associated with the command cmd.

The system behaviour is cyclic. At each cycle, the system goes through the
sequence of steps as represented by a data flow diagram (DFD) shown in Fig. 2.
DFDs give a graphical representation of the flow of information for a given system
[3]. They are often used as a basis for the security analysis. Since at each cycle
the overall control system alternates between the control actions and physical
process reaction, the physical process constitutes the source and the sink of the
data flow. Rectangles depict the system components and the communication
channels that consume and produce data attributes shown by the corresponding
incoming/outgoing arrows.
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To analyse the impact of the various failure modes and security attacks, we
need to rely on a systematic analysis process that would allow us to consider
safety and security in an integrated way. Traditionally, security analysis is data
flow oriented, while safety analysis often focuses on determining the impact of
component failures on safety-related functions.

In this paper, we propose to combine these views by integrating HAZOP [12]
and data flow analysis as we explain next.

3 Deriving Safety and Security Requirements

To analyse safety-security interplay, we adopt a systems theoretical model [25]
shown in Fig. 3. It guides us in defining the main goals of our integrated analysis.
Namely, we should ensure that

G1: The feedback allows the controller to build a sufficiently accurate process
model.

G2: The intended control actions ensure safety.
G3: An implementation of control actions preserves safety.

Fig. 3. Abstract system representation

Let us informally analyse the implications that the high-level safety goals have
on the data flow of the system given in Fig. 2. Essentially, the goal G1 postulates
that the part of the data flow that produces the input to the controller either
does not alter the information about the process state or the alterations are
detectable. The goal G2 implies two subgoals. Firstly, the controller’s estimate
of the current process state is sufficiently accurate, i.e., either the feedback is
sufficiently precise or the deviations in the feedback are detected and alternative
means to evaluate process state are employed. Secondly, the computed control
commands guarantee safety, i.e., safety can be maintained in a programmable
way. Finally, G3 implies that the intended control actions are properly imple-
mented or alternative non-programmable actions are enabled to enforce safety.

The informal analysis above shows that we need to establish a systematic
way to study the causes of deviations in the systems data flow. To achieve this,
we propose to tailor the well-known safety analysis technique HAZOP [12] and
integrate it with the data flow analysis.
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Fig. 4. Interpretation of standard HAZOP guidewords

HAZOP – HAZard and OPerability Analysis [12] systematically identifies
the possible causes and consequences of deviations within the system to analyse
their impact on safety. The analysis is performed using a set of guidewords and
attributes. The original set of guidewords includes no, more, less, as well as,
part of, reverse, other than, early, late, before and after. The guidewords are
applied to the system attributes, which allows a team of experts to identify
the deviations that might affect safety. HAZOP has been extensively used in
safety-critical domain and extended to specifically target security vulnerabilities
[24]. However, to the best of our knowledge, an integrated analysis of safety and
security interdependencies with DFDs and HAZOP has not yet been attempted.

To facilitate an integrated derivation of safety and security requirements,
we need to rely on a well-structured description of the system and a systematic
procedure for selecting the attributes to be analysed. To describe the system and
identify the attributes, we propose to use DFDs. Indeed, DFD clearly defines the
relationships between the system components and the data that they produce
and consume. The analysed attributes are the data attributes defined in DFD. To
achieve a seamless integration of DFD and HAZOP, we propose an interpretation
of standard HAZOP guidewords presented in Fig. 4.

The majority of the guidewords are self-explanatory. The guidewords
REVERSE/INSTEAD represent the deviations over the discrete data types.
If they are applied to booleans then REVERSE would represent replacements
of TRUE by FALSE and vice versa; if they are applied to sets then INSTEAD
would represent replacing one constant of the set with another (e.g., ON by
OFF ).

HAZOP performed over the data attributes defined in DFD provides us with
a structured methodology to analyse causes and consequences of the possible
deviations of the data attributes. Per se, it enables a compositional integrated
analysis of the impact of accidental and malicious failures on system safety. The
methodology, that we propose, consists of the following steps:

– Select a data attribute and identify the component(s) responsible for produc-
ing or modifying the selected attribute

– Apply relevant guidewords and identify possible deviations
– For each deviation identify the causes by analysing failure modes (accidental

and malicious) of the associated components
– Analyse the impact on system safety.

The cause-consequence analysis performed over the data attributes using
HAZOP results in building cause-consequence trees for each data attribute in
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Fig. 5. Analysing the attribute p sen and cmd trans

the data flow. It allows us to systematically derive both safety and security
constraints that should be fulfilled to guarantee safety. Figure 5 presents a few
examples of applying the proposed approach.

For the deviation “The value p sen is greater (or smaller) than the value
p real”, we can define the requirements addressing the causes of this deviations
as follows: “Controlling software should check reasonableness of received input
data and use indirect data or calculated predicted value if the received data is
outside of reasonable range”.

For the deviation “No command received by the actuator” it is clear that we
need to rely on a non-programmable means to achieve safety. Hence, we will need
to augment system architecture with a reliable non-programmable channel that
shuts down the system to achieve safety. For the deviation “Actuator receives
opposite command” we need to install a secure gateway for the channel c a chan
to prevent the attacks on it.

The proposed methodology allows us to derive safety and security require-
ments for controlling software and overall system architecture. However, often
such requirements are mutually interdependent. For instance, while introducing
a secure gateway for the controller-actuator channel, we also introduce a delay in
transmitting the control commands. Such a delay should be taken into account
while calculating the state of the actuator.

4 Modelling and Refinement in Event-B

Formal modelling and verification allow us to systematically analyse the inter-
dependencies between the requirements and provides us with the mathematical
evidences – proofs – of system safety. Event-B [1] is a state-based framework
that promotes the correct-by-construction approach to system development and
formal verification by theorem proving.

In Event-B, a system model is specified using the notion of an abstract state
machine [1]. An abstract state machine encapsulates the model state, represented
as a collection of variables, and defines operations on the state, i.e., it describes
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the dynamic behaviour of a modelled system. A machine also has an accompa-
nying component, called context, which includes user-defined sets, constants and
their properties given as model axioms.

The dynamic behaviour of the system is defined by a set of atomic events.
Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, the guard Ge is a pred-
icate over the local variables of the event and the state variables of the system.
The body of an event is defined by a multiple (possibly nondeterministic) assign-
ment over the system variables. The guard defines the conditions under which
the event is enabled, i.e., its body can be executed. If several events are enabled
at the same time, any of them can be chosen for execution nondeterministically.

The consistency of Event-B models, i.e., verification of well-formedness and
invariant preservation as well as correctness of refinement steps, is demonstrated
by discharging a number of verification conditions – proof obligations. The Rodin
platform [14] provides an automated support for formal modelling and verifica-
tion in Event-B. In particular, it automatically generates the required proof obli-
gations and attempts to discharge (prove) them automatically. It also provides
a support for an interactive proving.

Event-B employs a top-down refinement-based approach to system develop-
ment. Development typically starts from an abstract specification that nonde-
terministically models the most essential functional requirements. In a sequence
of refinement steps, we gradually reduce nondeterminism and introduce detailed
design decisions.

In the next section, we demonstrate how to use Event-B framework to for-
malise the derived safety and security requirements by refinement.

5 Refinement of Safety-Critical Networked Systems

Let us start by describing the strategy of the refinement process. In our
refinement-based development, we aim at gradually unfolding the system data
flow according to DFD. Our initial specification non-deterministically models
the behaviour of the controlled physical process and abstractly represents the
data flow by specifying the input and output of the controller and the applied
control actions.

The overall data flow is modelled as a sequence of phases – at each phase
a component produces or modifies a corresponding data attribute (its output
in DFD). The refinement steps capture these phases and model the impact of
nominal and off-nominal behaviour on the data attributes. We rely on the pro-
posed HAZOP analysis to identify the possible deviations. The refined model also
introduce the specifications of the error detection and recovery procedures that
allow us to eventually prove the desired safety invariant, i.e., to demonstrate that
the system safety can be guaranteed in the presence of the identified accidental
faults and security attacks – the causes of the deviations of data attributes.
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Machine CS Abs
Variables phase, cmd, p in, p real, failsafe

Invariants phase ∈ PHASES ∧ cmd ∈ CMD ∧ p in ∈ N ∧ p real ∈ N ∧ failsafe ∈ BOOL ∧ ...
Events ...
Process =̂
when phase=ENV ∧ failsafe=FALSE
then p real :∈ N || phase:=EST end

Inp estimation =̂
when phase=EST ∧ failsafe=FALSE
then p in :∈ N || phase:=CONT end

CONT act =̂
when phase=CONT ∧ failsafe=FALSE
then cmd :∈ {ON, OFF} || phase:=OUTPUT end

...

Fig. 6. A generic structure of the abstract specification

The general structure of the abstract specification is shown in Fig. 6. The
specification abstractly models the control cycle. In the phase ENV , the process
non-deterministically changes its state, i.e., produces p real. In the phase EST ,
we model the part of the data flow that is responsible for sensing the state of the
process and transmitting it to the controller, i.e., producing p in. In the phase
CONT , the controller computes the control action cmd, which is then applied
(probably altered) to the process in the consequence phase OUTPUT .

Since in our specification we focus on defining the programmable means of
ensuring safety, the flag failsafe is set to FALSE. An event SHUTDOWN can
change the flag to TRUE to model that non-programmable means are deployed
to ensure safety.

Our consequent refinement steps focus on unfolding the phases of the data
flow and making the specification progressively more deterministic and detailed.
To facilitate an identification of all possible deviations of the corresponding data
attributes, we use HAZOP, as described in the previous section.

We propose the following steps to represent the requirements derived via
HAZOP in Event-B:

– Select a data attribute in the data flow and apply one of the relevant guide-
words, to define the deviation and the causes

– In the formal specification, perform a refinement step that introduces the
variable representing the attribute and events modelling the deviation and
corresponding error detection and recovery mechanisms

– By defining the corresponding invariants, establish the relationships between
the more abstract representation of the data flow and its refined (unfolded)
specification

– Iteratively repeat the process for the other guidewords and all other
attributes.

For instance, the analysis of the attribute p sen, shown in Fig. 5 defines the
consequence “the value of p sen is smaller than the value p real” and a cause of
this “a sensor failure stuck at low”. In our formal specification, such a behaviour
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can be modelled by introducing the variables p sen and sensorfailure. An event
modelling a non-deterministic occurrence of sensor failures can change the value
of the variable sensorfailure to model failure occurrence. Correspondingly, the
event modelling the sensor reading phase, would result is assigning p sen the
value representing the saturated low. In case of cause “sensor lost precision”,
the value p sen would be assigned a value smaller or greater than p real.

Correspondingly, in the specification of the controller behaviour, we will
introduce the variable modelling the predicted state of the process. Moreover, we
introduce the events modelling error detection (checking validity of the input)
and events modelling error recovery (using alternative means of assessing the
state of the process).

To model the consequence “Data is missing”, we add a constant NIL to the
definition of the types of the corresponding variables. An occurrence of such
a deviation, i.e., caused by the denial-of-service (DOS) attack on the channel
transmitting the corresponding data, is represented by assigning the variable
modelling the corresponding data attribute the value NIL. This allows us to
formally model that the corresponding phase of the data flow has not produced
the expected data.

To demonstrate an application of the proposed methodology, in the next
section, we present a case study – a battery charging system.

6 Case Study: Battery Charging System

A battery charging system [16] controls charging of a battery of an electric car.
Figure 7 shows the main system components: the battery, the battery manage-
ment system, the Controller Area Network (CAN bus), the charging station
(with the associated charging interface and the external charging unit). When
the charging station detects that an electrical vehicle got connected to its exter-
nal charging unit, it starts the charging procedure. While charging, the battery
management system (BMS) – the controlling software of the system, monitors
the measurements received from the battery and issues the signal to the charging
station to continue or stop charging. BMS and the charging station communi-
cate via the CAN bus. The system behaviour is cyclic: at each cycle the charging
station receives the command from BMS to continue or stop charging. Corre-
spondingly, it either continues or stops to supply the energy to the car battery.

The main hazard associated with the system is overcharging of the car’s
battery, which might result in an explosion. Hence, the top-level safety goal of
the system is to keep a battery level bl real within the safe boundaries, i.e.,
the system safety goal can be formulated as follows: 0 ≤ bl real ≤ bl max crit,
where 0 and bl max crit denote the lowest and highest boundaries.

The battery charging system is a typical example of a control system dis-
cussed in Sect. 2. Indeed, the BMS acts as a controller, the charging station
(with its associated charger unit) – as an actuator and the battery unit as the
process that the system controls. The battery level parameter can be directly
measured by the sensor of BMS or computed on the basis of the alternative



116 E. Troubitsyna and I. Vistbakka

Fig. 7. Architecture of battery charging system

measurements obtained from the battery. At each cycle, BMS assesses the value
of the battery level and sends the corresponding control command.

The charging station and in-car CAN bus are linked by the corresponding
communication channel that could be possibly vulnerable to the security attacks.
In particular, the attacker can use the in-car charging interface as an entry
point by compromising the external charger interface or tampering with the
communication between the interfaces to inject a malicious content into the
CAN bus. Therefore, while reasoning about the behaviour of such a system, we
should also reason about the impact of security threats on its safety.

The analysis presented in Sect. 3 shows that safety cannot be guaranteed by
the programmable means when the controller-actuator channel is attacked or the
actuator fails to execute the required control actions. Thus, the battery charging
system should include an additional hardware component – a non-programmable
channel – that should be installed in the car to break the charging circuit if the
battery charge level becomes dangerously high. Such a non-programmable switch
can put the system in the failsafe state to guarantee safety.

Next we present an abstract Event-B specification of our case study that
focuses on modelling programmable means.

Abstract Specification. We follow the methodology outlined in Sect. 5, i.e., in
the initial Event-B specification BatteryCharging Abs, we introduce an abstract
representation of the control cycle.

We introduce the variable phase, where phase ∈ PHASES. Here the set
PHASES = {BAT, EST, BMS, TRANSM, CHARGST}. The variable phase is
used to enforce the pre-defined cyclic execution of the data flow:

Battery → BMS estim → BMS act → CAN bus → ChargStation → Battery → ...

The event Battery (see Fig. 8) models the changes of the battery parameter
bl real while charging. The event BMS estim models the BMS estimation of this
parameter (that is defined by bl variable). The event BMS act specifies the BMS
actions (i.e., sending the signal to continue or stop charging) and the event
CAN bus models transmission of the corresponding command to the charging
station. Finally, the event ChargStation models the required actions from the
charging station upon receiving the signal from BMS.

In addition to modelling the control cycle, we also define the event Connect
that represents the beginning of the charging procedure (i.e., when a vehicle
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Fig. 8. The machine BatteryCharging Abs

connects to the charging station) and the event ChargingComplete that models
its completion.

Let us note that the BMS estimate of the battery level value bl is not neces-
sarily equal to the measurements produced by the battery sensor that monitors
bl real. In our model, bl is an abstraction representing the input to BMS, i.e.,
it accounts for any possible deviations (e.g., due to the sensor imprecision or
failure) from bl real, as we explained in Sect. 5. The value bl real is updated in
the event Battery, while bl is estimated in the event BMS estim.

Finally, the transition into a safe but non-operational state is modelled by
the event FailSafe. An execution of this event results in an immediate aborting
of charging, which is modelled by assigning the variable status the value IDLE.

Refinement Steps. In a sequence of model refinements, we aim at unfolding
the detailed data flow. Our first refinement step (Fig. 9) aims at introducing a
detailed specification of the BMS logic. We define the control algorithm, i.e.,
model the behaviour of the controller. The controller calculates the commands
to be send to the charging station using the current estimate of the battery
level. Moreover, at this refinement step, we also elaborate on the dynamics of
the controlled process, i.e., define the changes in the real battery level bl real
and model different cases of the behaviour of the charging station.

At each control cycle, the controller receives the current estimate of the
battery level from the sensor. The controller checks whether the battery is still
not fully charged and it is safe to continue to charge it or charging should be
stopped. The decision to continue to charge can be made only if the controller
verifies that the battery level at the end of the next cycle will still be in the
safe range [0...bl max crit]. The event BMS estim modelling estimation of the
battery parameter made by the BMS is refined. We perform HAZOP and model
the impact of sensor imprecision of the data flow. Consequently, the variable
bl gets any value from the range (bl real - bl delta .. bl real + bl delta), where
bl delta is the maximal imprecision value for the battery sensor introduced as a
constant in the model context.



118 E. Troubitsyna and I. Vistbakka

We also refine the abstract event BMS act to represent different alternatives.
The first alternative defines a reaction to the monitored parameter exceeding
bl max. The second alternative models continuing the charge when the moni-
tored parameter is in the completely safe range [0..bl max). Note that the mon-
itored value bl that BMS relies on here is different from the actual value of the
physical process (bl real) updated by the event Battery.

We can formulate correctness of the BMS logic by the following invariants:

phase = TRANSM ∧ bl ≥ bl max ⇒ signal=STOP
phase = TRANSM ∧ bl < bl max ⇒ signal=CONT.

The invariants postulate that the BMS issues the signal to stop when the param-
eter bl is approaching the critically high value (bl max crit), and vice versa. To
give the system a time to react, BMS sends the stopping command to the station
whenever the value bl breaches the predefined value bl max.

Fig. 9. The machine BatteryCharging M1

Moreover, in this refinement step, we elaborate on the behaviour of the charg-
ing station. Upon receiving the command from BMS, the charging station either
deactivates the charging unit or continues to supply energy to the battery. Such
a behaviour is defined by the refined event ChargStation (see Fig. 9).

To represent the fact that the charging station reads the signal from the
CAN bus, which might be attacked, at the next refinement step we add several
new events and new variables into the refined system specification (see Fig. 10).
Firstly, we introduce a new event Attack to model a possible attack on the
system. The attack can happen anytime while transmitting the signal to the
charging interface. The variable attack ∈ BOOL indicates whether the system
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is under attack. If the event Attack is triggered, the value of attack becomes
TRUE, otherwise it equals to FALSE.

Secondly, we introduce a new event SecurityGateway and a new variable
charg in that specifies the input buffer of the charging interface. It might obtain
values from the set of possible signals, i.e., charg in ∈ SIGNALS. If no attack
happens, then signal transmission results in copying the signal from one-place
output buffer of the CAN bus (represented by bus out variable) to the input
buffer charg in of the charging interface. If a security failure occurred (e.g., the
system has been under attack) then the output signal would differ from the sent
signal. The DOS attack (or in general channel unavailability) results in no values
being transmitted over the channel. For the sake of simplicity, we model it by
introducing the DOS constant that the input buffer of the charging interface will
get in this case. However, we also could have modelled it by defining a behaviour
of a watchdog process triggering the timeout signal.

Machine BatteryCharging M2 refines BatteryCharging M1 Sees BatteryCharging c2
Variables phase, signal, bl, bl real, status, failsafe, attack, bus out, charg in

Invariants ... (phase = CHARG ∧ bl ≥ bl max ⇒ bus out=STOP)∧
(phase = CHARG ∧ bl < bl max ⇒ bus out=CONT)∧
(attack = FALSE ∧ phase = CHARG ∧ bus out=STOP ⇒ signal=STOP)∧
(attack = FALSE ∧ phase = CHARG ∧ bus out=CONT ⇒ signal=CONT)∧
(phase=BAT ∧ status=CHARGING ⇒ bl real ≤ bl max + bl delta)∧
(bl real ∈ 0 .. bl max crit) ∧ ...

Events ...
SecurityGateway =̂
when phase=CHARG ∧ failsafe=FALSE ∧ charg in=S0
then charg in : | (attack=FALSE ⇒ charg in’=bus out)∨

(attack=TRUE ⇒ charg in’=DOS)
end

ChargStation stop =̂ refines ChargStation
when phase=CHARG ∧ charg in=STOP ∧ failsafe=FALSE
with sg=STOP
then status := CHARGED || phase := BAT || charg in:=S0
end

...

Fig. 10. The machine BatteryCharging M2

As a result of this refinement step, we arrive at a sufficiently detailed speci-
fication to define and prove the desired safety invariant:

bl real ∈ 0..bl max crit.

7 Related Work and Conclusions

Related Work. The problem of safety and security interactions has recently
received a significant research attention [22,23]. It has been recognised that there
is a clear need for the approaches facilitating an integrated analysis of safety
and security [15,22,23,25]. This issue has been addressed by several techniques
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demonstrating how to adapt traditional safety techniques like FMECA and fault
trees to perform a security-informed safety analysis [6,15]. The techniques aim at
providing the engineers with a structured way to discover and analyse security
vulnerabilities that have safety implications. Since the use of such techniques
facilitates a systematic analysis of failure modes and results in discovering safety
and security requirements, these approaches provide a valuable input for our
modelling.

There are several works that address formal analysis of safety and security
requirements interactions [2,8]. Majority of that works demonstrate how to find
conflicts between them. In our approach, we treat the problem of safety-security
interplay at a more detailed level, i.e., we analyse the system architecture, inves-
tigate the impact of security failures on safe implementation of system functions
and demonstrate how fault tolerance required for safety leads to discovery of
additional security requirements. Such an approach allows us to analyse the
dynamic nature of safety-security interactions.

The distributed MILS approach [4,5] employs a number of advanced mod-
elling techniques to create a platform for a formal architectural analysis of safety
and security. The approach supports a powerful analysis of the properties of the
data flow using model checking and facilitates derivation of security contracts.
Since our approach enables incremental construction of complex distributed
architectures, it would be interesting to combine these techniques to support
an integrated safety-security analysis throughout the entire formal model-based
system development.

The work presented in this paper, adopts the approach to explicit modelling
of failure behaviour in formal specification proposed in [9,11,17,21]. Such an
approach allows us to analyse the impact of failures on the system safety defined
by its safety invariant. By relying on the extensions of Event-B proposed in
[7,18–20], we can also model the impact of accidental and malicious faults on
system reliability and real-time behaviour.

Conclusions. In this paper, we have proposed a novel integrated approach
to deriving and formalising safety and security requirements. To derive the
requirements, we have combined data flow analysis, traditionally used in secu-
rity domain, and HAZOP – a widely used safety analysis technique. HAZOP
applied to data flow allowed us to identify possible deviations that are caused
by accidental failures and security attacks.

To formalise complex requirements derived through an integrated analysis,
we relied on modelling and refinement in Event-B. Our approach supported
an analysis of interdependencies between the architectural patterns and mecha-
nisms required for safety and security assurance. Instead of separating the safety
and security requirements, we have considered them as the interdependent con-
straints required for achieving safety of a networked control system.

As a future work, we are planning to build a domain-specific framework
that would allow us to analyse and visualise the impact of accidental failures
and security attacks on the overall system architecture. Moreover, we will also
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demonstrate how to generate an integrated safety case from formal models by
extending the approach proposed in [13].
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Abstract. Boolean expressions occur frequently in descriptions of com-
puter systems, but they tend to be complex and error-prone in complex
systems. The modified condition decision coverage (MCDC) criterion in
system testing is an important testing technique for Boolean expression,
as its usage mandated by safety standards such as DO-178 [1] (avionics)
and ISO26262 [2] (automotive). In this paper, we develop an algorithm
to generate optimal MCDC test suites for Boolean expressions. Our algo-
rithm is based on SAT solving and generates minimal MCDC test suites.
Experiments on a real-world avionics system confirm that the technique
can construct minimal MCDC test suites within reasonable times, and
improves significantly upon prior techniques.

1 Introduction

Boolean expressions occur frequently in descriptions of computer systems, and
are prevalent in software and hardware artifacts, such as programs, specifications,
and hardware descriptions. On the other hand, they tend to be complicated and
thus error-prone. Boolean expression testing is a technique to effectively test
such complicated Boolean expressions. Modified Condition Decision Coverage
(MCDC), a.k.a., Active Clause Coverage (ACC), is one of main coverage cri-
teria for testing Boolean expressions. The MCDC criterion requires that each
condition in a decision is shown by execution to independently affect the out-
come of the decision, where “decision” means “Boolean expression” [3].
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Table 1. A MCDC test suite for
φ1 = s ∧ (t ∨ u).

No. s t u φ1

1 1 1 0 1
2 1 0 0 0
3 0 1 0 0
4 1 0 1 1

To demonstrate the notion, take the fol-
lowing Boolean expression:

φ1 = s ∧ (t ∨ u). (1)

The test suite in Table 1 consisting of the
four test cases satisfies the MCDC criterion
for this Boolean expression. Observe that,
for example, the pair of the first and third
test cases confirms that condition s independently affects the outcome of the
expression: the value of condition s changes the value of φ1 while the values of
the other conditions, i.e. t and u, remain unchanged. Observe similarly that the
first and second test cases confirm that for t, and the second and fourth confirm
that for u. Boolean expressions such as (1) often represent abstract versions of
actual logical expressions used in software artifacts; e.g., the following logical
expression, (z > 1) ∧ (f(x) ∨ (x < y + 1)), can be represented by (1), where
the conditions (z > 1), f(x), and (x < y + 1) are abstracted by s, t, and u
respectively.

The usage of the MCDC criterion is motivated by several rationales.

1. MCDC can detect an erroneous use of and for or (or vice versa) in a Boolean
expression; this is called “Operator Reference Fault (ORF)” [4].

2. MCDC is a stricter form of decision coverage than decision coverage, which
stipulates each decision must evaluate to true and false.

3. The size of a test suite to satisfy the MCDC criterion (MCDC test suite, for
short) is reasonably small, and hence testing with MCDC incurs a reasonable
test cost. For a Boolean expression φ with n conditions, the size of its minimal
MCDC test suite is n + 1 (e.g., [4–6]), instead of 2n required for exhaustive
testing. (This will be explained more in details in Sect. 2.2.)

Thus, MCDC effectively detects faults at reasonable cost. Due to such practi-
cal rationales, MCDC has been widely used. Various safety standards mandate
its use in testing safety-critical components, such as DO-178 [1] (avionics) and
ISO26262 [2] (automotive).

Driven by such industrial demands, MCDC has been actively studied from
various aspects, e.g., development of variants of MCDC [4,7], model-based test-
ing with MCDC [7], coverage-driven test generation (a.k.a., CDTG) for program
codes [8], empirical studies on its effectiveness [9–11], and testing Deep Neu-
ral Networks (DNNs) with MCDC [12]. Among them, test case generation for
MCDC for Boolean expressions, which, given a Boolean expression, to find its
MCDC test suite, is a basic function for such testing techniques with MCDC,
and thus has been an important subject. Jones and Harrold developed algo-
rithms for MCDC test reduction [13]. Arcaini et al. [14] developed a Boolean
expression testing framework to construct a small test suite including MCDC.
Bloem et al. [7] proposed yet another approach for MCDC test generation in
developing a model based testing technique using MCDC.

In this paper, we develop an algorithm to construct small or even minimum
MCDC test suites; i.e., given a Boolean expression φ with n conditions, generate
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an MCDC test suite whose size is equal to or smaller than n+1. To realize such
an algorithm, we use SAT solving as the key technique. To evaluate the proposed
technique, we conduct experiments where we apply it to a real-world avionics
system in comparison with state-of-the-art techniques. The experiments confirm
that the technique can construct minimal MCDC test suites within reasonable
times, and improves significantly upon prior techniques.

This paper is organized as follows. The next section states the problem
that we tackle. Section 3 describes technical details of the proposed technique.
Section 4 reports our evaluation of the proposed technique via experimental
results. Section 5 states the significance of the work w.r.t., existing studies.
Section 6 mentions possible future directions of this work.

2 Preliminaries

2.1 Definitions and Problem Formulations

In this subsection, we define the notion of ACC more formally. It is important to
note that there have been proposed several variants of ACC, including General
Active Clause Coverage (GACC), Restricted Active Clause Coverage (RACC),
Correlated Active Clause Coverage (CACC), General Inactive Clause Coverage
(GICC), Restricted Inactive Clause Coverage (RICC) [4,15], Reinforced Con-
dition Decision Coverage (RCDC) [11,16], and Observable Modified Condition
Decision Coverage (OMCDC) [17].

RACC is the classical and traditional form of ACC testing. On the other
hand, recently, CACC has become known to be more practical in industrial
usage. In this paper, we thus focus on RACC and CACC, but note that our
proposed techniques in this paper can be applied to the other variants of ACC.

In the following, we define RACC and CACC. First, as in this paper we
aim to develop ACC test generation techniques, we handle logical formulas as
the target object that our techniques process; however, we mainly deal with
them in the form of Boolean expressions by abstracting conditions in logical
formulas by Boolean variables. This is as exemplified by the example in Sect. 1.
We call Boolean variables in Boolean expressions conditions. We also use the
term predicate as a shorthand for Boolean expression.

Next we introduce the notion of determination:

Definition 1 (Determination). Let φ be a predicate and c be a condition of
φ. We say that condition c determines φ, if all the other conditions in φ have
values so that changing the truth value of c changes the truth value of φ.

ACC stipulates that each condition of predicate φ independently determines
the result of φ. Thus, it is convenient to name the condition on which we are
focusing as the major condition, and all of the other conditions are minor con-
ditions. Formally, for a predicate φ with n conditions c1, c2, · · · , cn, and a con-
dition ci in φ, i.e., i ∈ {1 · · · n} called the major condition, conditions cj such
that j ∈ {1 · · · n} ∧ (i �= j) are called minor conditions.
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Definitions of test cases and test suites are also provided as follows:

Definition 2 (Test case and Test suite). A test case of a predicate φ is a
possible truth assignment for all the conditions in φ. A test suite is a set of test
cases.

The definitions of RACC and CACC are now ready as follows:

Definition 3 [RACC and CACC]. Let φ be a predicate and T be a test suite. A
CACC pair of a condition c of φ is a pair of test cases of φ, satisfying that (1)
condition c determines φ as the major condition in both test cases and (2) the
values of c are different. An RACC pair is a CACC pair such that the values
for the minor conditions are same in the two test cases. We say that T covers a
condition of φ in RACC (resp. CACC), if it includes an RACC (resp. CACC)
pair of the condition. The test requirement of RACC (resp. CACC) for φ is that
T should cover all the conditions of φ. RACC (resp. CACC) is a measure to
describe the degree to which test requirements of RACC (resp. CACC), i.e., how
many conditions, are covered by T .

Note that RACC only differs from CACC in that the former requires the
minor conditions of a test case pair have to have the same values, while the
latter does not. Therefore, we can say RACC is stricter criterion than CACC;
i.e., a RACC test suite for a predicate φ is also a CACC for it, but not vice
versa. We call a test suite satisfying RACC (resp. CACC) test requirements a
RACC (CACC) test suite.

2.2 Sizes of Minimum ACC Test Suites

The size of a test suite often plays a critical factor for the feasibility and success of
real-world (software and hardware) system testing, and has been a main concern
in theory and practice of testing techniques. A main reason for it is that “full
automation” of test case execution, despite of a large body of research on it,
is still largely limited in practice due to problems such as the oracle problem.1

Another reason is that execution of one test case, even if automated, is often too
expensive for allowed time and/or financial constraints; and thus the number of
test cases that can be executed is limited.

Regarding properties on the ACC test suite size, it is often mentioned in
literature that the size of a minimum ACC test suite is “around” n + 1, for a
predicate with n conditions:

1. “Achieving MCDC requires, in general, a minimum of n + 1 test cases for a
decision with n inputs.”, by Hayhurst et al. [5], where “decision” here means
“predicate” in our setting.

1 The challenge of distinguishing the corresponding desired and correct behavior from
potentially incorrect behavior given a test case for a system under test.
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2. “MCDC requires for n input variables a test suite at least of size n + 1.”, by
Felbinger et al. [6], where ‘variables’ here mean ‘conditions’ in our setting.

3. “It turns out that for a predicate with n clauses, n + 1 distinct test require-
ments, rather than the 2n one might expect, are sufficient to satisfy active
clause coverage.”, by Amman and Offutt [4], where ‘clause’ here means ‘con-
dition’ in our setting.

These claims are similar but not equivalent: the first two claims state that at
least n+1 test cases are required to for an ACC test suite for a predicate with n
conditions, while the third one states n + 1 test cases are sufficient. Although it
can be conjectured from these that the minimum sizes of ACC test suites exist
around n + 1, according to our best knowledge, a formal proof of this property
is still an open problem.

2.3 Boolean Satisfiability Problem (SAT) and SAT Solvers

The Boolean satisfiability problem (SAT), known to be an NP-complete problem,
is the problem of determining if there exists an interpretation, a.k.a., model, that
satisfies a given Boolean expression. SAT solvers are software tools that auto-
matically solve SAT problems. As many NP-complete problems can be reduced
to SAT, the development of efficient SAT solvers is an important and active
research subject. We use SAT solvers for our ACC test generation.

3 Algorithm for Optimal MCDC Test Generation

In this section, we develop an algorithm for generating an optimal test suite for
MCDC. We explain our algorithm by first introducing the notion of Predicate
Determining Condition (PDC), based upon which we develop our algorithm.

3.1 Predicate Determining Condition (PDC)

We explain the notion of predicate determining condition (PDC), introduced
in [4], which we use in developing our ACC test generation algorithm.

Definition 1 provided the definition of determination. PDC, given the target
predicate φ and the major condition of φ, provides the condition, as a logical
formula for minor conditions, under which the major condition c determines φ.

Definition 4 (Predicate determining condition: PDC). Let φ be a pred-
icate φ and c be a condition in φ. The predicate determining condition (PDC)
of a predicate φ and a condition c, denoted by φc, is a predicate under which the
value of c determines that of φ.

Since a predicate expresses a set of test cases, the PDC of condition c can be
also interpreted as all test cases for which c determines φ.
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An advantage of PDCs is that we can compute them. Given a predicate φ
and a condition c, the PDC is computed as follows:

Proposition 1. Let φc=True (and φc=False) represent the predicate φ with every
occurrence of c replaced by ‘True’ (and ‘False’), respectively. Neither φc=True

nor φc=False has any occurrences of condition c. The PDC of condition c for a
predicate φ is obtained by connecting the two expression with exclusive-or:

φc = φc=True ⊕ φc=False (2)

This proposition holds, as the requirement that condition c independently affects
the outcome of predicate φ can be described as the following formula, which
corresponds to (2): (φc=True ∧ ¬φc=False) ∨ (¬φc=True ∧ φc=False).

Example 1. Let φ be φ1 = s ∧ (t ∨ u) of Boolean expression (1). The PDC of
predicate φ and condition s, i.e., φs, can be derived as follows:

φs = φs=True ⊕ φs=False (3)
= (True ∧ (t ∨ u)) ⊕ (False ∧ (t ∨ u)) (4)
= (t ∨ u) ⊕ False (5)
= (t ∨ u) (6)

This means that for the major condition s to determine predicate φ, there are
three choices for truth assignments, (t, u), (t,¬u), and (¬t,¬u).

We remark that if the PDC of a predicate and a condition is not satisfi-
able, then this means that it is not feasible to create an ACC test pair for that
condition. We call such a condition an infeasible condition.

3.2 SAT-encoding

The key device to develop our algorithm is the SAT-encoding of the following
problem: “For a predicate φ and the number of test cases k, is it possible to
construct an ACC test suite?”. We explain about the SAT-encoding of this
problem in this subsection. The encoding uses a matrix model with p columns
and n rows as Boolean conditions xn

p to encode the test suite, as follows:

X =

⎛
⎜⎝

x1
1 . . . x1

p
...

...
xk
1 . . . xk

p

⎞
⎟⎠ (7)

This matrix model of a test suite expresses that the i-th row represents the i-
th test case, and the p-th column of the row represents the value of the p-th
parameter of the i-th test case.
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Using the matrix model to represent a test suite, we construct the SAT
encoding to construct an ACC test suite with the size k, as follows:

encode(φ, condsφ, k) =
∧

c∈condsφ
(1)

k∨
i=1

(
(xi

c ∧ φi
c)

(2)

∧

k∨
j=1,i �=j

(
(¬xj

c ∧ φj
c)

(3)

∧
∧

d∈condsφ s.t. c �=d

(xi
d ⇔ xj

d)

(4)

))
(8)

where φi
c is PDC of condition c whose Boolean conditions are those in the i-th

row of the matrix model, and condsφ is a set of feasible conditions in φ. This SAT-
encoding specifies the following: Sub-formula (2) specifies that for a condition of
the predicate, say c, in at least one row of the matrix table, i.e., in one test case
of the test suite, the value of the condition in the test case, xc, must be ‘True’,
while the PDC of the condition c must be also true. On the other hand, sub-
formula (3) specifies that the same condition must be ‘False’, while the PDC of
c must be ‘True’, in at least one test case. The i �= j in formula (3) clarifies that
the value of condition c cannot be ‘True’ and ‘False’ in the same row. This sub-
formula can be omitted, but carefully placed redundant SAT formula can speed
up the solving process. The outermost conjunction (1) indexed by conditions of
φ imposes that the above sub-formulas (2) and (3) are to be applied to all the
conditions in the predicate under test φ.

Sub-formulas (1), (2), and (3) are encoding for CACC, since sub-formulas (2)
and (3) together satisfy condition (1) and (2) of Definition 3, and sub-formula
(1) guarantees it for all the conditions. Sub-formula (4) specifies the condition
for RACC that stipulates that values of all the minor conditions are equivalent.
For RACC, we may also omit φj

c in (2); this is possible, since if constraints (2)
and (4) hold and xj

c = False, then the i-th test case and the j-th test case differ
only in the value of xc so that φj

c and φi
c should be equivalent.

The encoding for a given test suite size induces a SAT formula, such that
‘SAT’ for the evaluation of the formula entails the existence of an ACC test suite
with that size; in that case, the solution contains all the information on the ACC
test suite. On the other hand, ‘UNSAT’ means the refutation of the existence of
such a test suite.

Example 2. The following snippet of SAT-formula is the SAT-encoding of
Boolean expression φ1 with the test suite size 4. The sub-formulas (i), (ii), and
(iii), respectively, express that conditions s, t and u are confirmed to indepen-
dently affect the outcome of the predicate.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(s1 ∧ φ1
s) ∧

((
(¬s2 ∧ φ2

s) ∧ (t1 ⇔ t2) ∧ (u1 ⇔ u2)
)∨

(
(¬s3 ∧ φ3

s) ∧ (t1 ⇔ t3) ∧ (u1 ⇔ u3)
) ∨ (

(¬s4 ∧ φ4
s) ∧ (t1 ⇔ t4) ∧ (u1 ⇔ u4)

))

.

.

.

∨ (s4 ∧ φ4
s) ∧

((
(¬s1 ∧ φ1

s) ∧ (t4 ⇔ t1) ∧ (u4 ⇔ u1)
)∨

(
(¬s2 ∧ φ2

s) ∧ (t4 ⇔ t2) ∧ (u4 ⇔ u2)
) ∨ (

(¬s3 ∧ φ3
s) ∧ (t4 ⇔ t3) ∧ (u4 ⇔ u3)

))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(i)

∧

⎛
⎜⎜⎜⎜⎜⎝

(t1 ∧ φ1
t ) ∧

((
(¬t2 ∧ φ2

t ) ∧ (s1 ⇔ s2) ∧ (u1 ⇔ u2)
)∨

(
(¬s3 ∧ φ3

s) ∧ (t1 ⇔ t3) ∧ (u1 ⇔ u3)
) ∨ (

(¬s4 ∧ φ4
s) ∧ (t1 ⇔ t4) ∧ (u1 ⇔ u4)

))

.

.

.

⎞
⎟⎟⎟⎟⎟⎠

(ii)∧ (
(u1 ∧ φ1

u) ∧ · · · )
(iii)

(9)

3.3 Algorithm

We proceed with the actual algorithm on how to find a smaller ACC test suite
using SAT-encoding. For the discussion, we first argue about properties on the
size of ACC test suites. From our literature review in Sect. 2.2, we conjecture
that the minimum size of ACC test suites should be around n+1 for a predicate
with n conditions. However, because no formal proof for this lower bound exists
yet, we use the following proposition, which is a weaker form of the conjecture,
but which can be proved easily:

Proposition 2. For a predicate with n conditions, the minimum size of a
CACC/RACC test suite is at most 2n.

Proof. From Definition 3, an RACC test suite should include at least one RACC
pair for each condition in φ. Since we can make an RACC pair with two test
cases, 2n is enough for the size of an RACC test suite for φ with n conditions.
Since a RACC test suite is also an CACC one, this property also holds for CACC.

Using Proposition 2, the algorithm is designed as in Algorithm 1. The algo-
rithm, at the beginning (in Line 1), computes feasible conditions of φ. Computing
all the feasible conditions can be done by collecting conditions whose PDCs are
satisfiable (possibly, using a SAT solver). Based on the computed feasible con-
ditions (condsφ) and their number (|condsφ|), the algorithm starts searching for
a minimum test suite. It iteratively attempts to generate an ACC test suite by
decrementing the size of a test suite by one, starting from 2 ∗ |condsφ|. In each
iteration, the algorithm applies the SAT-encoding of the current test size, and
applies a SAT solver to the encoded formula. The decremental iteration contin-
ues while the encoded formula is satisfiable, and terminates when it encounters
‘unsatisfiable (UNSAT)’ (Line 6). The test suite found in the last satisfying iter-
ation is minimal. Line 2 handles a corner case, where no feasible conditions are
contained in φ, by throwing an exception.
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Algorithm 1. The main part of our algorithm for CACC
Input: A Boolean Expression (φ)
Output: A CACC test suite

1 Compute the feasible conditions of φ, and store them in condsφ;
2 if(|condsφ| == 0) return (“Exception: No feasible conditions exist.”);
3 Set size ← 2 ∗ |condsφ|, for the initial test size;
4 while true do
5 (isSAT,model) ← checkSat(encode(φ, condsφ, size));
6 if(isSAT == UNSAT) return suite;
7 Make test suite from model;
8 size ← size − 1

9 end

The encoded formula in each iteration is a SAT problem over Boolean vari-
ables, and the test size. The size starts at ‘2 ∗ |condsφ|’ and is reduced by one
in each iteration. Thus, the algorithm is guaranteed to terminate with a mini-
mum ACC test suite, in principle. In practice, however, limited computational
resources may prevent us from finding the minimum one. The SAT solver may
take a lot of time and/or a lot of memory, as the attempted search approaches the
optimal size. Thus, a concern is scalability of the algorithm, which we examine
by experiments in Sect. 5.

The algorithm uses 2n for the initial test size based on Proposition 2. We
have two main reasons to adopt this proposition, instead of the conjecture for
n+1. First, our algorithm is certainly correct using the proved proposition with
2n, instead of using the (unproved) conjecture with n+1. Second, our algorithm
with 2n for the initial size performs well in practice, outperforming existing
techniques, as shown in Sect. 5. Moreover, if the worst-case bound of n + 1 is
proven in the future, we can easily adapt that result in our algorithm, by setting
n + 1 as the initial size.

4 Related Work

Test suite reduction and minimization is one of central subjects in software
testing. To the best of our knowledge, the earliest work which discusses the test
suite sizes in MCDC testing is by Jones and Harrold [13]. They develop a test
suite reduction technique for MCDC, which, given a predicate φ and an MCDC
test suite T , finds an MCDC test suite T ′ such that T ′ ⊂ T . The basic approach
of the technique is to construct such an MCDC test suite T ′, by iteratively
choosing or removing one test case from the given MCDC test suite T based
on the contribution weight computed for each test case in T . For example, their
‘build-up’ approach constructs an MCDC test suite by iteratively adding a test
case in T with the highest contribution weight to T ′, starting from the empty
set as the initial test suite of T ′. Note that the JH-algorithm is a test reduction
technique, rather than MCDC test generation; however, by complementing the
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Table 2. The benchmark set consists of 20 logical expressions, retrieved from “Traffic
Collision Avoidance System (TCAS)“ of an avionics system [8]. The logical expressions
in the benchmark set contain 5 to 15 (feasible and infeasible) conditions, as indicated
by #conds. The table also shows the infeasible conditions (I.C.) for each benchmark;
ACC pairs cannot be made for such infeasible conditions.

No Boolean expression #conds I.C.

1 a(!b+!c)d+ e 5

2 !(ab)(d!e!f+!de!f+!d!e!f)((ac(d+ e)h) + (a(d+ e)!h) + (b(e+ f))) 7

3 !(cd)(!ef !g!a(bc+!bd)) 7

4 ac(d+ e)h+ a(d+ e)!h+ b(e+ f) 7

5 !ef !g!a(bc+!bd) 7

6 (!ab+ a!b)!(cd)!(gh)((ac+ bd)e(fg+!fh)) 8

7 (ac+ bd)e(fg+!fh) 8

8 (a((c+ d+ e)g + af + c(f + g + h+ i)) +
(a+ b)(c+ d+ e)i)!(ab)!(cd)!(ce)!(de)!(fg)!(fh)!(fi)!(gh)!(hi)

9

9 a(!b+!c+ bc!(!fgh!i+!ghi)!(!fglk+!g!ik)) + f 9

10 a((c+ d+ e)g + af + c(f + g + h+ i))(a+ b)(c+ d+ e)i 9 b, h

11 (ac+ bd)e(i+!g!k+!j(!h+!k)) 10

12 (ac+ bd)e(i+!g!k+!j(!h+!k))(ac+ bd)e(i+!g!k+!j(!h+!k)) 10

13 (!ab+ a!b)!(cd)(f !g!h+!fg!h+!f !g!h)!(jk)((ac+ bd)e(f + (i(gj + hk)))) 11

14 (ac+ bd)e(f + (i(gj + hk))) 11

15 (a(!d+!e+ de!(!fgh!i+!ghi)!(!fglk+!g!ik)) +
!(!fgh!i+!ghi)!(!fglk+!g!ik)(b+ c!m+ f))(a!b!c+!ab!c+!a!bc)

12

16 a+ b+ c+!c!def !g!h+ i(j + k)l 12

17 a(!d+!e+de!(!fgh!i+!ghi)!(!fglk+!g!i!k))+
!(fgh!i+!ghi)!(!fglk+!g!ik)(b+ c!m+ f)

12

18 a!b!c!d!ef(g+!g(h+ i))!(jk+!jl+m) 13

19 a!b!c(!f(g+!f(h+ i))) + f(g+!g(h+ i)!d!e)!(jk+!jl!m) 13

20 a!b!c(f(g+!g(h+ i)))(!e!n+ d)+!n(jk+!jl!m) 14

algorithm with a function to prepare initial MCDC test suites, it can be used as
a test generation technique for MCDC.

Arcaini et al. [14] developed a general framework for test generation for
Boolean expression testing with various coverage criteria, including MCDC. The
technique constructs an MCDC test suite with the basic approach of accumu-
lating an MCDC pair (a pair of test cases) for each condition in turn. Offutt
et al. [18], in developing a model-based testing technique with MCDC testing,
discuss a similar technique to construct an MCDC test suite. However, both
techniques require a test suite of size 2n for a predicate with n conditions, which
is usually larger than the test suites that our algorithm generates.

Bloem et al. [19] devised an algorithm to construct MCDC test suites, also
in developing their model-based testing technique using MCDC. The technique
is similar to those by Arcaini et al. [14] and Offutt et al. [18], in the respect
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that its basic procedure is to accumulate an MCDC pair for each condition in
turn; however, they apply an improvement to this basic approach to reduce the
size of generated test suites. The improvement is that the algorithm, for every
condition, checks if the current test suite already includes an MCDC pair for the
condition, when adding an MCDC pair for each condition. If the MCDC pair
already exists in the test suite, the algorithm skips adding an MCDC pair for
that condition. They also use SAT-solving to realize the technique.

Our algorithm is inspired by the SAT-based test generation technique for
combinatorial interaction testing (CIT) by Hnich et al. [20]. The key of their
technique is a SAT-encoding of the problem of finding a CIT test suite with a
specified size. It is confirmed that the technique can construct CIT test suites
with reasonably small sizes, compared with other approaches. Due to the signif-
icance, this work is followed by a number of studies for extension or acceleration
(e.g., [21]). Our work in this paper thus can be seen as a new application direc-
tion of the SAT-based test generation technique to MCDC testing, and also as
an import of new technical element to MCDC testing field.

5 Experimental Evaluation

In this section, we conduct experiments to evaluate our proposed technique. Due
to the space limitation, we only evaluate the proposed algorithm for the CACC
case, as it is the most basic, practical, and interesting case among ACC variants.
To clarify the purpose of the experiments and evaluation, we set the following
research questions:

– RQ1: Does our algorithm perform better than existing techniques, with
respect to the sizes of generated test suites and computation times?

– RQ2: Can our algorithm find minimal CACC test suites?

For investigating these RQs, we implemented our algorithm in Scala. Also
to conduct the experiments, we prepared a benchmark set of logical expressions
retrieved from “Traffic Collision Avoidance System (TCAS)” of a real-world
avionics system [8]. The details about benchmark data are shown in Table 2.

For RQ1, we also implemented the MCDC test generation technique based
on the JH-algorithm and the technique by Bloem et al., as the the state-of-the-
art techniques by ourselves, since implementations of these techniques are not
available. Since JH-algorithm is an MCDC test reduction technique instead of
test generation, we complemented it with the function to randomly generate
MCDC test suites so that JH-algorithm can reduce them as initial test suites.
The function is realized to randomly generate m ACC pairs for each condition
of a given formula. Therefore, the most basic form of m = 1 means 2n test
cases, where n is the number of conditions in the given formula. We prepared
several variants that vary in the sizes of initial MCDC test suites, as follows:
m = 1, 50, 200, and 400, respectively denoted by JH 1, JH 50, JH 200, and JH 400.
Also for RQ1, the timeout is set to 60 s for our algorithm for a proper comparison
and evaluation.
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Table 3. The results of our experiments. This table shows the sizes of the generated
CACC test suites (‘#tests’) and the computation times in seconds (‘time’) of the
algorithms (JH1, JH50, JH200, JH400, by Bloem et al., and our algorithm) for the
benchmark set in Table 2. To properly answer RQ1 and RQ2, we use two timeout
settings for our algorithm, 60 s (time<60), and 1800 s (time<1800). A ‘—’ in columns
‘time<1800’ means a minimum test suites is found within in 60 s, and the time is given in
column ‘time<60’. The bold font in the columns for ‘#tests’ denote instances in which
the test suite size is smaller than or equal to those found by other algorithms, while
that in the columns for ‘time’ means the algorithms returned the test suite within 60 s.
For columns of our algorithms, a ‘*’ denotes a minimal test suite is found with the
guarantee of finding ‘UNSAT’ by the SAT solver. ‘#wins’ denotes the number of cases
where the algorithm generates the smallest test suite among all algorithms within 60 s;
multiple winners may exist for each benchmark data. ‘impr(%)’ denotes the reduction
rate on the test suite size by our algorithm compared with that by the corresponding
algorithm of the column; e.g., the test suite size by our algorithm is smaller than that
by JH400 by 19.7% in total. The experiments were performed on a machine with a
Quad-Core Intel Xeon E5 3.7 GHz and 64 GB Memory running on Mac OS High Sierra
10.13.3. For running the programs, Scala option “-Xmx8g -Xms1024m” is used. As the
back-end SAT solver, we used SMT solver Z3 [22].

No JH1 JH50 JH200 JH400 Bloem et al.Our algorithm (2n for the initial size)

#tests time#tests time #tests time #tests time #tests time #tests time<60 #tests time<1800

1 6 0.9 6 4.2 6 10.4 6 10.8 6 0.9 6* 0.5 —

2 9 1.7 8 11.1 8 11.3 8 12.1 8 1.5 5* 1.3 —

3 7 1.6 7 2.9 7 2.8 7 2.9 7 1.3 6* 1.0 —

4 12 1.7 7 18.1 6 52.5 6 98.4 9 1.4 6* 0.9 —

5 9 1.4 8 5.1 8 5.1 8 5.0 9 1.4 8* 0.9 —

6 9 1.8 8 13.7 7 49.5 7 118.6 9 1.7 3* 1.5 —

7 10 1.7 8 20.7 7 69.4 7 89.0 10 1.7 7* 1.0 —

8 15 2.7 12 24.712 96.9 10 208.6 11 2.5 4* 2.6 —

9 11 2.6 10 16.910 27.210 44.511 2.2 9* 3.0 —

10 9 2.1 8 18.8 7 71.7 7 138.1 9 1.8 7* 1.0 —

11 12 2.6 10 27.310 125.5 9 290.0 12 2.5 8* 1.8 —

12 12 2.6 10 27.410 126.7 9 289.1 12 2.5 8* 2.5 —

13 15 3.8 13 27.012 99.0 13 243.4 13 3.6 9* 3.5 —

14 12 3.3 13 30.8 12 148.7 12 369.9 13 3.0 9* 1.8 —

15 18 4.4 17 34.5 16 150.6 16 414.1 17 4.3 9* 5.8 —

16 13 3.5 13 35.4 12 142.8 11 304.3 13 3.2 11* 2.0 —

17 18 4.9 15 35.9 13 165.6 13 435.5 16 4.4 11 4.6 11* 80.7

18 15 4.1 13 37.9 13 127.4 13 286.7 14 3.8 13 2.6 13 >1800

19 20 4.2 18 38.2 16 175.0 16 481.1 14 4.0 12 3.3 12* 197.7

20 18 4.6 18 42.0 16 194.8 15 540.5 16 4.4 12 3.6 12* 167.3

#wins 2 3 4 3 2 20 —

impr(%)32.0 23.4 18.2 16.2 25.7 — —

For RQ2, we measure the time required for our algorithm to find minimal
test suites by finding UNSAT for the benchmark set, thus proving that no test
suite smaller than the previously found satisfiable assignment exists. For this,
the timeout is set to 1800 s for our algorithm.

Table 3 shows the experimental results. We answer the research questions, by
observing the experimental results, in the following.
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Answer to RQ1. From the experimental results, we conclude that our algorithm
performs better than the state-of-the-art techniques in both the size of generated
test suites and computation times. First, our algorithm wins against the other
algorithms for all the benchmark data. On other hand, the algorithm variants
based on the JH-algorithm or the technique by Bloem et al., only perform equally
well to ours only in a couple of cases. Moreover, our algorithm can build such
smaller test suites fairly quickly, i.e., within a few seconds for all the benchmark
data, which is much faster than the other techniques. The improvement rate
achieved by our algorithm is also significant; it can generate test suites that are
from 16.2% up to 32.0% smaller than the the other techniques.

Answer to RQ2. From the experiments, we confirm that the resulting test suite
is of size equal or less than n + 1 in 17 out of 20 cases. We can also confirm
that in 19 cases our algorithm can find the guaranteed minimum sizes by finding
‘UNSAT’ within 1800 s. For the case where the algorithm cannot guarantee the
minimum size of the test suite (i.e., for benchmark #18), there may exist a
smaller CACC test suite.

6 Conclusion and Future Work

We believe our algorithm to construct small or even the minimum MCDC test
suites will play a significant role broadly in the software testing field, since (1)
MCDC has become a de-facto standard coverage criterion in testing safety-
critical systems, and (2) the technique, as a basic testing technique, can be
used in combination with other testing techniques, such as model-based testing
and program-code-level testing.

Model-based testing, a sub-discipline of model-based development (MBD), is
another key technique in safety-critical domains such as in avionics and auto-
motive. A number of studies have attempted to introduce MCDC testing in
model-based testing techniques, to enhance the accountability as well as its bug-
detecting ability [7,18,23,24]; also see Sect. 4. Generally, these techniques deal
with state transition systems as models, and regard a sequence of states as a test
case. To derive effective test cases, these techniques apply the MCDC criterion
to the transition guards, which specify as a logical formula the conditions for
transitions to take place. This approach is reasonable since real-world transition
systems often become complex and error-prone, however, their test generation
components are not efficient w.r.t. the test suite size and computation time. Our
algorithm can complement such model-based testing techniques.

Another application area of our algorithm is Coverage-Directed Test case
Generation (CDG/CDTG). CDTG is a white-box testing technique, working at
program code level to generate test cases, to achieve a higher code coverage.
CDTG and its adaptation for MCDC have been actively studied [25–27]. Such
CDTG techniques targeting MCDC analyze the structure of the given program,
especially logical formulas embedded in the program, and try to find test inputs
that reach each logical formula in the program. Although these techniques differ
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in several dimensions such as search techniques (e.g., dynamic symbolic exe-
cution [25], model checking [26], search-based optimization [27]), they have in
common that they prepare MCDC test suites for embedded logical formulas
before starting the search. Similar to the situation of model-based testing, our
proposed algorithms can effectively complement such CDTG techniques.

We consider several directions for future work. One direction is to extend our
algorithm to deal with general logical formulas, e.g., x = 0 ∧ (x > 0 ∨ y = 0),
instead of their abstracted forms in Boolean expressions, i.e., s∧(t∨u). It is since
our algorithm may produce unusable tests for such an abstracted predicate. For
example, recall Table 1 is an MCDC test suite for s ∧ (t ∨ u). Note, however,
that the first test case, i.e., {s = True, t = True, u = False}, is unusable if
s ∧ (t ∨ u) originates from x = 0 ∧ (x > 0 ∨ y = 0) by abstraction, since there is
no assignment that makes s = True (i.e., x = 0) and t = True (i.e., x > 0) at
the same time. One approach for this would be to impose additional constraints
among abstracted variables, to specify hidden relations between s and t. In the
example, a constraint like ¬(s ∧ t) would encode that. The PDC of s for this
predicate would be constructed as follows: φs=True⊕φs=False∧¬(s∧ t). We need
careful investigations on this approach including how to specify such additional
constraints automatically and how it affects the size of test suite.

Another direction is to further accelerate or scale our algorithm. Although
it was shown by the experiments that our algorithm works fairly well for a real-
world system in the avionics domain, it may need to be prepared for larger
and more complex systems. Toward this technical improvement, we think the
technique using incremental SAT solving [21] can be effectively applied. Thirdly,
we consider to apply our technique to other ACC variants explained in Sect. 2.
We are also interested in applying it to improve the testing technique for Deep
Neural Networks based on MCDC proposed by [12].

Acknowledgment. We thank Hélène Waeselynck and anonymous reviewers whose
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Abstract. We address the question of feasibility of tests to verify highly
automated driving functions by optimizing the trade-off between virtual
tests for verifying safety properties and physical tests for validating the
models used for such verification. We follow a quantitative approach
based on a probabilistic treatment of the different quantities in question.
That is, we quantify the accuracy of a model in terms of its probabilistic
prediction ability. Similarly, we quantify the compliance of a system with
its requirements in terms of the probability of satisfying these require-
ments. Depending on the costs of an individual virtual and physical test
we are then able to calculate an optimal trade-off between physical and
virtual tests, yet guaranteeing a probability of satisfying all requirements.

Keywords: Verification · Simulation · Highly automated driving
Statistical verification · Testing · Advanced driver assistant systems
Optimal trade-off

1 Introduction

Advanced driver assistant systems (ADAS) and highly automated driving func-
tions (HAD) are increasingly complex and their dependency on the environ-
mental situation is increasing. An important step in bringing such systems into
the market is to guarantee their safe operation. To this end, the reaction of
these systems to all potential inputs needs to be verified. Due to their com-
plexity not only individual inputs but sequences of inputs need to be checked.
An analytical verification which exhaustively checks all input combinations and
sequences is infeasible1. Therefore, it is not only important to develop these
functions in a safe way but also use testing for their verification. During testing
the system is probed at specific points (input sequences) from which the safety
1 Besides the prohibitively large computational complexity, this also requires an accu-

rate, formal description of possible environments.

c© Springer Nature Switzerland AG 2018
B. Gallina et al. (Eds.): SAFECOMP 2018, LNCS 11093, pp. 139–153, 2018.
https://doi.org/10.1007/978-3-319-99130-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99130-6_10&domain=pdf


140 E. Böde et al.

of the system, or more generally the compliance of the system with the elicited
requirements, can be inferred. Using statistical arguments, one can estimate the
necessary number of tests (number of test-kilometers to drive) in order to guar-
antee a level of safety which is most likely as high as the level to be achieved
without the ADAS under test [1]. For HAD this number will presumably be
even higher. As determined in [1,2] the scale of such physical tests is also pro-
hibitively large as the costs for such tests (which need to be performed with
every newly developed ADAS) amount to the order of hundreds of millions of
Euros. Thus, on the one hand, the complexity of the systems forces one to use
tests but, on the other hand, physical tests are not sufficiently cost-efficient. A
potential solution to this dilemma is to replace physical components with vir-
tual ones mimicking the behavior of their physical counterparts denoted Virtual
Integration. Depending on which part is replaced with a virtual substitute, these
test are called for instance model-in-the-loop (MIL), software-in-the-loop (SIL),
hardware-in-the-loop (HIL), or vehicle-in-the-loop (VIL), see [3] or [4]. Such a
virtual setup can not only be used for safety assessment, but also for early-phase
development, thereby achieving a much more cost-efficient development cycle.
However, when replacing parts of a real operational environment with virtual
components one has to guarantee a sufficiently realistic behavior of the virtual
components such that results obtained from a simulation can be transferred to
a non-virtual situation.

Although physical tests are again necessary to estimate the accuracy of the
models used, such validation of models would only need to be performed once
for each model. Hence, the overall costs for virtual and physical tests could still
be feasible. In this paper, we address the question of feasibility by optimizing the
trade-off between virtual tests for verifying safety properties of highly automated
driver assistant systems and the physical tests for validating the models used
for such verification. To this end, we follow a quantitative approach based on
a probabilistic treatment of the different quantities in question. That is, we
quantify the accuracy of a model in terms of its probabilistic prediction ability.
Similarly, we quantify the compliance of a system with its requirements in terms
of the probability of satisfying these requirements—obtained as an average across
all possible uncertainties. As these probabilities are often unknown but have
to be estimated based on the finite amount of test-samples, we additionally
account for the statistical estimation uncertainty. Depending on the costs of an
individual virtual and physical test we are then able to calculate an optimal
trade-off between physical and virtual tests, yet guaranteeing a probability of
satisfying all requirements.

Note that such a probabilistic treatment is mainly for practical reasons, simi-
lar to the arguments in [1]. We expect a human driver (one of several other traffic
participants, from the perspective of a system-under-test) to be subject to ran-
domness. That is, even if the initial situation is identical, the reaction of a traffic
participant can be different between repetitions. In order to still quantify the
level of compliance with the requirements we merely require the system to sat-
isfy the requirement up to a pre-specified confidence level. For the same reasons
we also can only measure the current level of safety with a similar uncertainty,
see [1].
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The results presented in this paper are meant to be of a generic nature i.e.,
applicable from a test-process perspective in general. As such, we do not analyse
particular test instances, but investigate more the general conditions in which
such a framework is applicable. Furthermore we are using an abstract notion
of validity, thus we are not giving concrete checkpoints that would allow a test
engineer to decide whether a given model is a valid replacement of the real
world. Despite this, it allows us to make predictions about the test processes
that have a practical impact. In particular, we illustrate how many tests would
be needed (both physical and virtual) under the assumptions of an optimal split.
Additionally, we can directly calculate the potential savings in costs compared
to a pure physical test as illustrated by Winner et al. [1] while achieving the
same quantitative guarantee of safety (see Sect. 3.5).

2 Related Work

To use simulation for the verification of ADAS/HAD is a commonly proposed
solution for the problems stated above. There are serveral approaches that offer
ideas on how to integrate simulation and test in the verification process.

Virtual Integration. In [5] an overview of virtual integration methods with their
current use in practice, as well their limitations is given. Already for ADAS with
environmental perception safety cannot be shown economically only by real test
drives due to the high complexity of the systems and tests. Finding the right
balance between real test drives and virtual integration tests can be considered as
an optimization problem with respect to the effort of building and parameterizing
simulation models and the efficiency gain won by simulation techniques. Beside
the repeatability and efficiency the additional value of simulation techniques
is in particular the possibility to perform tests of the whole system already in
early design phases. With regard to the V-model the four virtual integration
techniques relevant for the development of ADAS are MIL, HIL, SIL and VIL,
also compare [4]. The current limitations of virtual integration are stated as the
simulation models a) do not always meet the necessary realism or b) do not have
the real-time capability needed for virtual integration methods (or both).

Taxonomy for Testing of Advanced Driver Assistance Systems. In the survey
[3] a taxonomy of approaches for testing advanced driver assistance systems
is presented. This concerns different characterizations of test criteria and met-
rics to quantify the quality of observations or models. Further, different meth-
ods to determine the test reference (ground truth) are discussed i.e. either
measurement-based, by simulation or by a mixture of both. Finally, the defini-
tion of test scenarios is regarded where actual tests are performed to be checked
against the reference. In the present paper, we follow the suggested approach by
comparing the virtual model with a reference, similar to [6], where the special
case of vision based systems is considered.

Combining Design Time Testing and Runtime Monitoring. In [7] a scenario-
based approach is presented that combines testing at design time and monitoring
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during runtime of an ADAS. This allows to identify the set of relevant scenar-
ios by simulation and thus reducing field testing to these instead of testing all
possible scenarios, which would be infeasible for complex ADAS systems. Fur-
thermore, missing scenarios identified at field tests may be fed back into the set
of scenarios for design time simulation to improve test coverage.

Assigning Test Cases to Test Methods. A method for assigning test cases for
automated driving functions to X-in-the-Loop test methods is proposed in [8].
The authors make use of their virtual modular test kit, which is a concept
to systematically test automated driving functions in virtual environments. Its
goal is to reduce the overall number of necessary tests by a systematic test case
generation while keeping the test coverage at the same level. Depending on the
test case different requirements arise concerning the set of applicable X-in-the-
loop methods. The assignment method has two steps. First, the X-in-the-loop
methods are characterized by a Kiviat diagram. On the z-axis of the diagram
different assessment scales are plotted like quality of results, operational costs,
etc. Second, the requirements of the test cases to the X-in-the-loop methods
are represented in a Kiviat diagram as well. By matching the diagrams the set
of applicable X-in-the-loop methods can be determined. By defining assessment
functions describing the quality of the models, operational costs, etc. the best
rated method with respect to the defined assessment functions can be identified.

3 Stochastic Methods for Splitting Simulation and
Testing

Although simulation offers a thorough investigation and verification of a system
under test, testing real components against real environments will always be part
of the verification process to guarantee the possibility of a transfer of results
obtained in a simulation environment to the deployment phase. To optimize
the cost efficiency of the overall verification process reducing and shifting effort
towards virtual simulation is of major interest. In this chapter we will present the
quantitative basis for an optimal trade-off between real world tests and virtual
simulations to achieve a desired level of dependability.

3.1 Preliminaries

As mentioned in the introduction, our approach relies on a probabilistic argu-
ment which aims at quantifying the degree to which we can guarantee that the
system requirements are fulfilled by the system across all possible situations the
system under test might encounter throughout its lifetime. As shown by Winner
et al. [1], such guarantee can be obtained with purely physical tests. However,
these physical tests can also be used to validate a surrogate model of the reality,
which in turn can then also be used to verify a system against this model of
reality. Before going into details of the approach we first fix the notation of the
stochastic variables that we will use in the following.
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By the real system under test (Sr) we understand the system under test
as it will be implemented. Analogously to the virtual model (Sv) it receives an
input (which could be either provided by a model or the real world) and generates
a corresponding response. The reality or ground truth world model (W)
is considered to be the desired environment for the system under test. The real-
ity can be observed via measurements from a reference system, which provides
sequences of measurements. These traces (sequences of measurements) can be
compared with the sequences of the simulation model (M) which can generate
traces of virtual inputs for a system under test. Based on the generated traces,
two models or a model and its real-world counterpart can be exchangeable. In
that case we say the model M is a valid model of the real world W, denoted
by M ≡R W to check whether a system under test fulfills some requirements
(R). These are a set of logical formulae, which should be satisfied (�) for all
relevant situations of real world scenes in which the system under test operates.

Furthermore, we are looking at samples drawn from the reality (Xw).
These are discrete sequences of measurements taken from a system equipped
with a reference sensor system. This reference system is able to provide sequences
of accurate measurements comparable to samples generated from the co-
simulation of the models (Xs) which are sequences of virtual measurements
of the co-simulation of the virtual environment and the system model.

Definition 1. We write SW = (Sr,W) for the real system under test with input
from the real world.. Analogously we write SM = (Sv,M) for the virtual model
with input generated from a simulation model.

Thus read e.g., P (SW � R) as: the probability that the real system under
tests satisfies a set of requirements. If a quantity cannot be directly assessed but
has to be inferred from other observations or measurements we annotate this
with a hat symbol. For example, if we have no access to a probability p, but
have a method to estimate this probability, we denote the estimate by p̂.

For the verification of a system under design, we are interested in the proba-
bility that the designed system will satisfy all requirements when facing environ-
ments generated from reality, i.e., the true world model. This probability can be
written in terms of conditional probabilities assuming a particular model used
for simulation and the probability that this model is an accurate description of
the real world. With the law of total probability we arrive at:

P (SW � R) = P (SW � R | SM ≡R SW ) P (SM ≡R SW)
+ P (SW � R | SM �≡R SW ) P (SM �≡R SW)

≥P (SW � R | SM ≡R SW ) P (SM ≡R SW)
≈P (SM � R | SM ≡R SW ) P (SM ≡R SW) .

(1)

That is, we first split the probability that the real system under test in its desired
environment will satisfy the requirements into two cases depending on whether
composition of the model and the virtual environment can be regarded as a
valid replacement. If this is indeed the case, we can replace the pair SW with
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its virtual counterpart. As a result we have split the overall verification effort
into a part which can be evaluated purely in a virtual environment (first term
in Eq. (1)) and a part which evaluates the validity of the virtual model.

3.2 Validity of a Virtual Model

Validating a virtual model against its real counterpart is a challenging task (see
[3]). In Eq. (1), we deduced from the validity of a model that we can use the model
as a replacement for the real system within the satisfaction of the requirements.
However, there are different notions of validity. We could classify a model to be
valid with respect to a particular environment, if such replacement is allowed for
a particular requirement. The latter interpretation, for example, is the basis for
determining a test-method (including the selection of a virtual model) according
to the method described in [8]. In the present paper we would like to follow a
more generic approach. That is, we would like to define a notion of validity such
that the replacement of the virtual model is valid for all requirements.

For this to hold, we have to at least ensure that all sequences of measurements
from the real world Xw could be generated within the virtual environment, i.e.,
finding corresponding Xs. Please note that we assume all traces to be discrete. To
avoid that the virtual model dominantly explores part of its sample space, which
are not possible to observe in the real world, a stronger notion of validity would
also require that for all traces in the virtual model, there exists a corresponding
trace (sequence of measurements) in the real world. Even if traces are possible
to generate for both systems, virtual model and real world, it could happen
that different kinds of traces are differently favoured. That is some traces might
be more likely to be generated in the real world compared to the likelihood
of generating them using the virtual model. To summarise, we have the three
(increasingly stronger) notions of validity:

1. All sequences of real world observations are also possible within the virtual
model

2. Additionally, for each possible sequence within the virtual model, there exists
an identical sequence of measurements within the real world

3. For each sequence of measurements there exists an identical sequence within
the respective other model. Additionally, the likelihood of generating such
sequence is also equal.

For simplicity, we only consider the first notion of validity within this paper.
It should also be noted that all notions can be further relaxed by not requiring
the existence of an identical sequence, but the existence of a sequence which is
close to the required one.

3.3 Splitting Simulation and Testing for Ubiquitous Requirements

Given these notations, we can formulate the following properties as conditional
probabilities. These are modeled as probabilities as the models used to describe
the environment and potentially for the system model as well are likely to contain
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stochastic variables and hence the satisfaction of requirements is potentially also
subject to this encoded variability. For example, with the abbreviations intro-
duced above, we can write down the probability that the system model satisfies
the requirements, given that the simulation model is an accurate description
of the (needed aspects of the) true world model. Note that in this section we
assume that the requirements can be validated both via simulation as well as via
physical testing. That is, we assume that the environmental model used for sim-
ulation provides all necessary information to evaluate whether a single sample
generated from the model satisfies the requirements.

Definition 2 (Satisfaction of requirements for a given simulation
model). Let SM denote the virtual model of the system under test with input
generated from a virtual model M and R denote the requirements we would like
the system to satisfy. We write the conditional probability of the system satisfy-
ing the requirements under the assumption that the simulation model M is an
accurate description of the real world W as:

PM
� := P (SM � R | SM ≡R SW ) . (2)

Due to the potential stochastic variability encoded into the simulation model,
this probability is a property of the simulation model. As simulation models are
typically too complex to be analyzed symbolically, this probability cannot be
calculated exactly but can be approximated or bounded by means of a statistical
analysis. To this end, samples from the simulation model can be generated and
estimates of the probability can be obtained. This is the main goal of simulation
based verification. In order to rigorously quantify the level of certainty associated
with such a verification process it is important to keep track of the sample
uncertainty incurred by the simulation based verification.

Assume we have generated m samples Xs
1 , . . . , Xs

m using the simulation
model. For each of these samples we can test whether the requirements are
satisfied for the particular trace, Xs

i � R. Based on these results, we can, for
example, estimate the probability (2) by the relative frequency of the samples
satisfying the requirements (ideally, all traces satisfy the requirements, i.e., the
relative frequency will be 1). If we denote this estimate P̂M

� , we can statistically
bound the probability that this estimate will deviate from the true probability
PM

� by more than any given εs. The resulting bound on the probability depends
on three variables: the confidence δs, the accuracy εs and the number of samples
m used for this estimate. If two of these are given the others can usually be
calculated based on the other two (see below for some specific examples).

PXs
1 ,...,X

s
m

(∣∣∣P̂M
� − PM

�
∣∣∣ ≥ εs(δs,m)

)
≤ δs. (3)

In words, such a formula bounds the likelihood of the results being a fluke (judged
by the estimation being further than εS(δS ,m) from the true value apart) as a
result of unlucky observed data. Here, we have written εS(δS ,m) to stress the
fact that the accuracy ε can be calculated from the other two parameters δS ,m.

Now we have to combine this probability with the probability that the model
represents the relevant information sufficiently well. Here, we assume that we
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represent all relevant information which is needed to answer whether the specified
requirements are satisfied on a single trace basis. In other words, we say that the
simulation model represents the ground truth model if a trace of observations
of the real world is considered possible in the simulation model and testing this
trace with respect to the requirements on both models leads to the same answer.

P≡R := P (SM ≡R SW) . (4)

As we do not have access to the mathematical description of the world model, we
need to estimate this probability based on observations of the real world, similar
as we have estimated (2) via sampling from the model. Again, we need to keep
track of the residual uncertainty associated with such an empirical estimation
procedure. Specifically, for n observations Xw

1 , . . . , Xw
n of the real world, we have:

PXw
1 ,...,Xw

n

(∣∣∣P̂≡R − P≡R

∣∣∣ ≥ εw(δw, n)
)

≤ δw. (5)

These different estimates can be used to bound the overall probability of interest
(see Eq. (1)). In fact, for the first term in Eq. (1), as we have no access to the
true probabilities, we can use their sample-based estimates from Eqs. (3) and (5)
to obtain:

P (SW � R) ≥
(
P̂M

� − εs

)(
P̂≡R − εw

)
with P ≥ (1 − δs)(1 − δw). (6)

If all physical tests, i.e., observations of the behavior of the system, satisfy the
requirements and could also have been generated by the simulation model both
estimates P̂M

� , P̂≡R are 1. In this case the equation simplifies to:

P (SW � R) ≥ (1 − εs) (1 − εw) ≥ 1 − εs − εw

with P ≥ (1 − δs)(1 − δw).
(7)

For simplicity, we have omitted the dependence of δs, δw,m, n on the accuracies
εw, εs. The above equation suggests that the effort to spend on either simu-
lation or physical tests amount to the same contribution to the overall safety
guarantee (satisfaction of the requirements). However, due to the multiplication
of residual uncertainties, i.e., confidences δs, δw, we might want to allow for a
smaller confidence in the simulation model thereby requiring a larger confidence
in the simulation analysis while obtaining the same level of overall confidence
and safety estimate. In other words, we can achieve the same safety guarantee
with different splits between physical and simulation tests. This degree of free-
dom can therefore be exploited to obtain an optimal trade-off with respect to
the resulting costs.

Assuming a fixed cost cs for each simulation run and cw for each physical test
to validate the simulation model, we therefore can solve the following constrained
optimization problem for a given overall confidence level X and a safety level Y :

min
n,m

(csm + cwn) s.t.

(1 − δs)(1 − δw) ≥ X and (1 − εs(δs,m))(1 − εw(δw, n)) ≥ Y.
(8)
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Although we optimize the costs within the above optimization problem, we only
do so under the constraint that a certain level of safety has to be guaranteed.
Such optimization problem can be solved (at least numerically) if the estimation
accuracy functions εw, εs are given. For the particular situation in which we
are aiming at estimating a probability - which is specified in terms of a binary
indicator variable (satisfaction of the requirements) - we can use a Bernoulli
bound to obtain a specific form of the accuracy functions, for example a Clopper-
Pearson bound (see [9] and Sect. 3.5).

If the simulation model is only used for generating the environment of the
system under test and is therefore independent of the system under test the
physical tests to validate that model need be performed only once for a model.
The model in turn can be used to verify more than one system without requiring
additional physical tests for model validation provided that the samples that were
generated from the model were generated for each system under test. However,
if the model is allowed to change or adapt to the physical test data that has
been acquired, validation of the model corresponds to bounding the prediction
performance of a learning system, as the model learns from the physical test data.
Although this is possible, the calculations are more involved and we therefore
postpone this discussion.

3.4 Splitting Simulation and Testing Based on Type of
Requirements

In the previous section, we assumed that all requirements can be tested either
using simulation or physical tests. Additionally, we also measured the quality
of a simulation model based on its ability to generate traces and leading to the
same answer regarding the satisfaction of the requirements. In practice, there are
certain requirements which are outside the scope of the simulation model. For
instance, the model might not include certain variables within its representation
that are relevant for some requirements. That is, we might have a model of the
vehicle dynamics at hand, but would like to test a requirement which specifies
how a route-planning component should work. In these situation Schuldt et al.
[8] proposed a method to judge which type of test-method (for example HIL
or MIL should be applied. In particular, they also suggested that the quality
of the provided simulation model should be taken into account when selecting
a suitable test-method. Using the results from the previous sections, we can
provide a quantitative measure which supports their method.

Also, we can use similar calculations as above to provide an overall measure in
satisfying the desired requirement. Specifically, assume we have given two types
of requirements R1,R2 each of which specifies the desired behaviour for different
parts of the system under test. Assume further that we have two simulation
models M1 and M2, each modelling the respective part of the system under
test and their respective inputs. Then we can write the overall probability of
satisfying the requirements as
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P (SW � R1 ∧ SW � R2) = P (SW � R1|SW � R2) P (SW � R2)
ind.= P (SW � R1) P (SW � R2) .

(9)

Here we have assumed that the satisfaction of the second requirement does not
affect the satisfaction of the first one. If both requirements restrict different parts
of the system under test, this might be reasonable, however, it should be noted
that all components within the system under test are likely to be connected via
a certain computation path. Therefore, the independence assumption might be
too strong. Similar to Eq. (1), we can now resolve each of the remaining terms
in Eq. (9) using the respective models.

If for one of the requirements there is no model available, we can simply
perform physical tests to estimate the corresponding probability. In this case,
assuming all tests have been passed, we can rewrite Eq. (7) to obtain

P (SW � R1 ∧ SW � R2) ≥ (
1 − ε1s

) (
1 − ε1w

) (
1 − ε2w

)

with P ≥ (1 − δ1s)(1 − δ1w)(1 − δ2w).
(10)

For the first requirement, we have
(
1 − ε1s

) (
1 − ε1w

)
representing the accuracy of

checking the satisfaction of the requirement times the probability of the model
being valid. For the second requirement, we can omit the model validation prob-
ability, as we assume to perform real-world tests. Using such formulation, we
can again optimise the costs under safety constraints. In the above formulation,
we perform real-world tests for checking the validity of the model and checking
the satisfaction of R2. However, we can re-use the same real-world test for both
objectives. Therefore, the number n of real-world tests within (8), can be used
for both ε1w and ε2w.

3.5 Practical Considerations

In this section we investigate the potential of the approach as outlined in the
previous sections from a more practical perspective. Applying the procedure
outline in the previous section, one has to first set up a model for simulation
then collecting independent observations of the real world, which allows to check
whether these observations can also be generated by the simulation model, and
finally performing the simulation-based tests. We therefore use the real-world
observations only for validating the model here, although a double use, i.e.,
validating the model and checking requirements would be possible as well and
would further strengthen the guarantees.

Validating a simulation model using a reference sensor system. In the previous
sections we assumed that the validity of the simulation model can be checked
on a single observation basis. In the simplest case, this can be achieved by
verifying that a (sequence of) measurements can be reproduced within the virtual
environment used as a simulation model. For example, the simulation model
could consist of several modules integrated into a co-simulation platform. To
be able to generate a simulation run, further parameters such as road topology,
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behavior of traffic participants, etc., have to be specified within the co-simulation
platform. By choosing a suitable set of these parameters, one can try to mimic
the sequence of measurements. If the observed sequence can be reproduced,
the necessary check can be considered passed. If all measurement data can be
reproduced, the corresponding estimate of the probability that the virtual model
is an accurate description of the real world P̂≡R in Eqs. (5) and (7) is 1.

More precisely, one has shown that the virtual model is capable of reproduc-
ing the sensor measurements of the (potentially inaccurate) sensor setup used
for recording. Therefore, if one aims at validating a system which should serve
as a generator of ground truth data, one should use a sensor setup which can
act as a reference, i.e., has the desired accuracy. With the help of an applied
co-simulation platform, one could measure the (relative) positions of all objects
and then reproduce the trajectories of all detected objects within the simulation.
If the measurements also contain a visual component, one needs to show that
the rendering procedure is capable of generating the recorded video sequence.

It should be noted, that the same procedure can also be used to validate
components, such as sensor models, against their hardware counterparts. To
this end, one would discretely measure pairs of signals, input and output signal,
where input signals could be obtained via a reference sensor system and the
output would be measured from the sensor one would like to model. To validate
the virtual model of the sensor it would be checked whether it can reproduce
all observed sequence of input-output pairs. In fact, having validated a sensor
model would also mean that all inaccuracies of the sensor are captured within the
model. By combining different validated models for components, one can then
also conclude that the combined model is validated. However, the confidence in
the combined model is reduced as the overall confidence is given by the product
of the confidences for the individual components.

Exemplary Optimization for a Cost-Efficient Trade-Off. To evaluate the prac-
tical impact and associated costs (savings) we calculate the optimal trade-off
between simulation and tests as outlined in Eq. (8). To this end, we assume
that both physical tests as well as simulation based tests have not revealed any
violation of the requirements and model validation, respectively. Otherwise we
assume that the underlying problem has been addressed and the corresponding
tests have been successfully repeated. For the costs of a physical test we assume
here 10 D

km . Relative to these costs we assume a virtual kilometer within a simu-
lation environment to cost a fraction of 0.01, that is here 0.1 D

km . Note that these
values are only illustrative figures, but are easily replaceable by more accurate
values. For the desired overall confidence we are using 0.99 and our desired accu-
racy is set at 1 − 1.375 10−7 which roughly corresponds to half of the current
empirical probability of no accident per km2.

As mentioned in Sect. 3.3, we can use the Clopper-Pearson confidence interval
to determine the accuracy εW , εS for the simulation and physical test specific
accuracies. Specifically, we have for both εW , εS :

2 www.adac.de/ mmm/pdf/statistik 7 1 unfallrisiko 42782.pdf.

www.adac.de/_mmm/pdf/statistik_7_1_unfallrisiko_42782.pdf
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εW (δW , k) = 1 − (δW )
1
k , εS(δS , k) = 1 − (δS)

1
k . (11)

Therefore, in the case of no violations of any requirements, we have:

min
n,m

(cSm + cWn) s.t.

(1 − δS)(1 − δW ) ≥ 0.99 ∧ (δS)
1
m (δW )

1
n ≥ 1 − 1.375 · 10−7.

(12)

As the costs for simulation and physical tests might vary between different sys-
tems, models, and companies, we illustrate the achievable trade-off for a range
of possible costs. We plotted the results in Fig. 1.

Fig. 1. The achievable trade-off between simulation-based and physical tests.

Here the upper two three dimensional diagrams belong together, meaning
that if you choose a fixed cost for a physical test and a fixed cost per simulation
you can estimate the number of needed simulations (left diagram) and physical
tests (right diagram) for an optimal trade-off from the color depicted in the
diagrams. In the lower two diagrams we each fix one dimension of the diagrams
above to observe how the needed number of simulations/physical tests changes
compared to the cost per simulation/physical test. The intersection with the
straight lines drawn into the diagram thus mark the optimal trade-off from the
example given above.

It can be seen from the lower panel in Fig. 1 that if a physical test is more
costly the optimisation procedure will increase the number of simulations, as
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expected. However, the overall number of tests (both physical and virtual) is still
quite high, which is due to the high safety targets and no additional assumptions.

Comparison with Purely Physical Testing. We also investigated the potential
savings in costs using this approach compared to a setting using only purely
physical tests. In Fig. 2 we plotted the relative savings in Euros when comparing
a setting in which only real-world tests are performed to check the requirements
to an optimal split. Thus this diagram does not say anything about the amount
of tests necessary but only about the relative savings of performing an optimal
split compared to pure physical tests. Although we only use real-world observa-
tions for model validation and not for testing requirements, the potential savings
amount to over 90% of the costs associated with the several hundred million kilo-
meters that were estimated to be sufficient using only real-world testing [1]. The
savings are particularly dramatic in settings where the costs of a physical test
are much higher than for an individual virtual test (upper left corner in Fig. 2).

Fig. 2. Comparison of the optimal split and a purely physical testing setting.

4 Conclusion

In this paper, we focused on the foundations for a quantitative analysis of split-
ting test-cases into virtual and physical tests, thereby taking into account the



152 E. Böde et al.

difference in costs for these two types. Although we did not use any further
assumptions on the regularity of tests (e.g., nearby scenarios are more likely to
produce similar satisfaction results with respect to requirements), the results
show that the total savings in costs can be quite substantial ( ≈90% in the
given example) when compared to the setting of testing all requirements purely
in real situations. Additionally, such savings are likely to be multiplied, as the
models used for simulations can be re-used, once they have been validated using
the physical tests. Even when we have made slight changes in the simulation
model we could include a prior belief about the quality of the simulation into
our approach. With the help of a prior quality belief we could reduce the needed
real-world observations even further.

As mentioned in the introduction, the results presented in this paper are
meant to be of generic nature. In fact, from a very abstract perspective, the
overall test-process is unchanged, but incorporates the quality metric as proposed
by Winner et al. [1] and can be integrated into methods for selecting appropriate
test-methods such as [8]. Once a decomposition of the system (e.g. via [10]) has
been identified in terms of which parts of the system can be safely replaced by
virtual counterparts, this also provides guidance for a X-in-the-loop test setup.
Furthermore, if one can identify critical scenarios either as done in PEGASUS3

or simulation based as in [11] one can further reduce the overall needed effort.
The main challenge for our approach to hold is that a tool for model vali-

dation is missing. Given a model: how can we find out whether a sequence of
measurements could be reproduced with this given model? This becomes even
more difficult if we assume a different notion of validity as discussed in Sect. 3.2.
To use simulation for the verification of highly automated driving functions we
need to be able to decide how valid the simulation is. What are the impor-
tant aspects? Which deviations from reality are allowed? Thus, rigorous model
validation is needed to bring such systems into the market.

Moreover, we have seen that a substantial amount of simulation is necessary.
Such simulations have a high computational complexity. Thus one would wish for
possibilities to further reduce the simulation effort, e.g. with the use of Multilevel
Monte Carlo Methods [12].

Although the results presented in this paper are of quite general nature,
we believe that the quantification and necessary formalisation of the different
aspects might lead to not only a more efficient test process but also to a safer
overall system.

Acknowledgments. This study was partially supported and financed by Opel Auto-
mobile within the context of PEGASUS (Project for the Establishment of Generally
Accepted quality criteria, tools and methods as well as Scenarios and Situations for
the release of highly-automated driving functions), a project funded by the German
Federal Ministry for Economic Affairs and Energy.

3 https://www.pegasusprojekt.de/en/about-PEGASUS.
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Abstract. With various advances in technology, cars evolved to highly
interconnected and complex Cyber-Physical Systems. Due to this devel-
opment, the security of involved components and systems needs to be
addressed in a rigorous way. The resulting necessity of combining safety
and security aspects during the development processes has proven to be
non-trivial due to the high interference between these aspects and their
respective treatment. This paper discusses the results of an exploratory
survey on how organizations from the automotive industry in the Eurore-
gion tackle the challenge of integrating safety and security aspects during
system development. The observed state of practice shows that there are
significant deficits in the integration of both domains. The results of the
exploratory survey enabled us to identify the most common challenges
of realizing an integrated approach in a practical setting and discuss
implications for future research.

Keywords: Automotive · Cyber-Physical Systems · Safety · Security
Integration · Industrial survey

1 Introduction

The upcoming generation of Cyber-Physical Systems (CPSs) will be character-
ized by fragmentation, heterogeneity, short release cycles, cross-organizational
nature and safety criticality [6]. Due to technological advances, safety-critical
CPSs like modern vehicles become security-sensitive, with high interference
between safety and security requirements that need to be addressed [1,17,22].
These – and many more – new conditions pose a specific challenge for the devel-
opment and ongoing operation of CPSs: The integrated treatment of safety and
security aspects [10]. Within this paper, the definition of safety and security is in
accordance with [7], that is, safety is concerned with protecting valuable assets
c© Springer Nature Switzerland AG 2018
B. Gallina et al. (Eds.): SAFECOMP 2018, LNCS 11093, pp. 157–171, 2018.
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by preventing, detecting and properly reacting to accidental harm. Security,
in contrast, is concerned with protecting these assets by preventing, detecting
and properly reacting to malicious harm [7]. The automotive domain is partic-
ularly affected, since innovation-related challenges are transforming the tradi-
tional automotive industry [11]. Unlike the nuclear or avionics industry, where
certification of products or systems usually follows a process-oriented approach
(i.e., a system is considered safe when developed in accordance to processes man-
dated by industry standards), manufacturers in the automotive industry need
to show that they achieved certain safety objectives using safety assurance cases
as required by the ISO 26262 [12] standard. Assurance cases are an established
method within certification processes of embedded systems. They trace safety
goals down to safety solutions and provide arguments supported by evidence for
the satisfaction of relevant types of system properties within a certain context
and under certain assumptions [3,14]. When assurance cases offer argumentation
and evidence for the correct implementation of a system’s safety requirements,
they are called safety cases.

In recent years, a considerable amount of research has been done on safety
and security assurance in the automotive domain [10,19,27]. To the best of our
knowledge, the perspective of industry regarding this matter has hardly been
investigated. In order to address this gap, we explored how industry deals with
potentially interrelated safety and security aspects during development of CPSs
and components.

We conducted an exploratory survey in the automotive domain with organi-
zations which have their headquarter in the Euroregion. By means of in-depth
interviews with system development experts, we were able to observe the current
state of practice and prevalent challenges. In addition, we evaluated our previ-
ously proposed conceptual model [4] for safety and security aspects of CPSs.

The remainder of this paper is structured as follows: Sect. 2 describes the
applied research methodology. Section 3 presents the results of the survey and
discusses threats to validity. Section 4 presents key findings from the survey,
their implications for future research and motivates the use of a holistic model.
Section 5 presents related work. Finally, Sect. 6 concludes the paper and provides
an outlook on future work.

2 Research Methodology

The main goal of our research is to better understand how the challenge of
treating safety and security assurance in an integrated manner during the devel-
opment and operation of CPSs is confronted by the automotive domain. Our
research objective is to analyze the current real-world difficulties of realizing an
integrated approach in order to elicit challenges that occur in practical settings.
In the pursuit of achieving this objective, we investigate the current state of
practice by answering the following research questions:

RQ1: What is the state of practice to unify or synchronize methods and pro-
cesses of the safety and security domain?
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RQ2: How is the safety and security domain differentiated regarding definitions,
requirements, processes and utilized tools?

RQ3: How are interdependencies between the safety and security domain iden-
tified and treated?

The remainder of this section is dedicated to the design of the conducted
exploratory survey, the applied procedure for data collection and a thorough
description of survey participants and their selection procedure.

2.1 Survey Design

A survey is a comprehensive research method for collecting information to
describe, compare, or explain knowledge and behavior [15]. In order to observe
the relevant aspects regarding the safety and security assurance of CPSs in a
practical setting, we followed the paradigm of exploratory research. We col-
lected data using expert interviews. This allowed for a flexible research design
and quick adaptation to changes in the observed phenomenon [30].

The survey design followed a three-step process with (1) an initial survey
design proposal, (2) a subsequent refinement of central questions and finally,
(3) a pilot interview to validate the survey design in a practical setting. In
order to structure and define the initial survey design, we utilized a conceptual
model which was previously developed to document security and safety require-
ments in an integrated manner to support certification processes during design
and run-time phases of CPSs [4]. This model unifies relevant documentation
artifacts from four main domains: Requirements Engineering, System Model-
ing, Risk Assessment, and Evidence Documentation. Requirements are modeled
in a hierarchical fashion distinguishing between functional and non-functional
requirements (primarily concerning safety and security aspects). System Mod-
eling is represented as the interrelated composition of hardware and software
components. Risk Assessment is primarily derived from vulnerabilities and cor-
responding threats. Evidence Documentation is modeled based on various kinds
of assurance artifacts.

Guided by the structure of this model, we derived questions for the survey
that aligned with our research questions. The initial proposal, as well as the final
survey, comprised a single key question and three sets of additional structural
questions to guide the interview process. All questions were formulated in Ger-
man and later translated into English for interviewees not speaking German.
The key question was closely related to our research objective and formulated to
approach the subject as broadly as possible in order to prevent the introduction
of an initial bias to the interview. Subsequently we defined the following key
question:

“What are the three main challenges for an integrated consideration of
security and safety aspects in the development and operation of cyber-
physical systems in the automotive domain?”
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All structural questions were intended to pinpoint and further refine our
understanding of the participants’ response to the key question and helped us
answer our research questions (i.e., RQ1, RQ2 and RQ3). The aforementioned
conceptual model was used as a basis for the structural questions and as a
visual representation of potentially relevant structures, processes, and interfaces
in order to encourage discussions during the interviews. Figure 1 illustrates the
final survey design and all relevant documentation artifacts that were prepared.

Fig. 1. Structure of the survey

The first set of structural questions covered the four areas of the concep-
tual model independently, addressing activities involving requirements engineer-
ing, system development, risk management, and evidence documentation. These
questions were aimed at identifying involved stakeholders, utilized tools, rele-
vant data sources and the most prominent challenges occurring in the respective
area. For each of the four areas, the same set of questions was used. For exam-
ple, we asked “What tools are used for requirements engineering?” and “What
stakeholders are involved in the assessment of risks?”.

The second set of structural questions was concerned with the relationships
between the different areas of the conceptual model considering exchanged infor-
mation, nature of communication, utilized tools, methods, processes and the
most prominent challenges. For example, we asked “How is information between
stakeholders performing risk analysis and stakeholders responsible for require-
ments engineering exchanged?” and “Do you use any software solutions to facil-
itate this communication?”.
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The third set of structural questions were aimed at understanding the respec-
tive organization’s differentiation between safety and security requirements con-
cerning definition, methods, processes, tools, their identification, assessment and
implementation including interactions with stakeholders. For example, we asked
“How do you differentiate between safety and security requirements?” and “Do
you use different methods/processes/tools for the identification of safety and
security requirements?”.

An initial pilot interview was used to test and validate our survey design with
an expert from the automotive industry. The expert was contacted within the
context of the research project SALSA1 and its industrial network. Criteria for
the selection of the expert are described in Sect. 2.4. In a follow-up meeting the
pilot expert gave feedback regarding the content and structure of the interview
and its delivery. The pilot expert confirmed the alignment of the survey with
our research objective. Subsequent changes to the survey design involved time
management only.

2.2 Data Collection

All interviews were conducted face-to-face, allowing for a more complex interac-
tion between the interviewers and the participants. Each of the interviews was
conducted by two researchers – one taking notes and one interviewing the partic-
ipants as depicted in Fig. 1. After an initial presentation of the general procedure,
purpose, and specific goal of the survey, the participants were asked if they con-
sented to the recording of the interview in audio format. With participants who
did not give consent, the process of documenting the interview was conducted
in a handwritten format only. This was followed by collecting quantitative data
about the participants, their roles and organizations. Finally, the key question
was discussed with the help of the aforementioned structural questions and the
conceptual model. All questions and illustrations of the model were available in
printed format, logically grouped and presented as needed during the interviews.
If the interviewee was able to directly respond to the key question, the interviewer
chose to discuss and analyze challenges with the appropriate sets of structural
questions and the conceptual model in order to gain a detailed understanding.
If the interviewee was unable to directly state any challenges, the interviewer
presented the conceptual model and followed the first set of structural questions
in order to detect problematic areas through deviating data sources, responsi-
bilities, tools or processes. The time required for individual interviews averaged
60 min with only minor deviations. The study was conducted within a time frame
of 8 months, starting in February 2017 and ending in September 2017.

2.3 Analysis Procedure

Directly after conducting the interview, the two researchers discussed and doc-
umented the obtained data during a debriefing followed by writing a summary

1 https://salsa.q-e.at/ (Accessed: 02/12/2018).

https://salsa.q-e.at/
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for each interview. Audio recordings were transcribed and all produced docu-
mentation was further analyzed. We followed the guidelines set out by Mayring
et al. [21] to produce qualitative summaries from the collected data in order to
extract the facets relevant to our research questions [5]. We grouped the results
inductively by reducing, paraphrasing, and generalizing relevant text passages.

2.4 Participants

In the context of the research project SALSA and its industrial network, the
participants were contacted by e-mail and provided with a brief summary of the
survey goals and procedure. Criteria for the selection of participants were (1)
employment in a leading role in development and operation of CPSs in the auto-
motive domain or a closely related safety-critical domain, (2) at least 4 years
of professional experience and (3) employment at a company with at least 150
employees. Upon agreement to an appointment, the interviews were conducted
on site. All participants offered to take part in the interview voluntarily. An
overview of all participants is presented in Table 1. The majority of participants
held a degree in Computer Science or another engineering discipline. The encoun-
tered roles of the participants within the organizations were predominantly titled
Safety Team Leader or Safety Manager with an average of 17 years of experi-
ence in their field. All participants represented companies based in, or having
their headquarters in the Euroregion. While the majority of these companies
were active in the automotive domain, one was active in avionics. Three of these
companies were considered small companies with 150 to 1000 employees and the
remainder large companies with more than 1000 employees.

Table 1. Participants of the survey

ID Operational role Education Experience Type of
organization

# Employees

A Safety team leader University 25 years Supplier 150–1000

B Expert SW University 10 years OEM >1000

C Safety manager University 4 years Supplier 150–1000

D System engineer Technical
apprentice-
ship

24 years Consulting >1000

E Director safety
management

University 25 years Supplier >1000

F Safety team leader University 11 years Supplier >1000

G Team leader University 21 years Supplier 150–1000

H Chief expert safety,
security, reliability,
availability

University 22 years OEM and
supplier

>1000
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3 Results

In this section we present the results of our survey by addressing the research
questions depicted in Sect. 2. Subsequently, we highlight identified challenges
and discuss threats to validity.

3.1 State of Practice Regarding the Unification of the Safety and
Security Domain

We encountered three distinct cases concerning the integration of the safety and
security domains. Interviewees G and H followed an (1) integrated approach
where both domains were considered from the beginning of the system life cycle.
All remaining interviewees A-F either (2) treated security as an afterthought,
where existing concepts, functionalities, and components were analyzed for their
security relevance or (3) did not consider the security domain.

Participants G and H stated that their companies treat security and safety
requirements in an integrated way. The company interviewee G works for
employs dedicated security teams. The company follows a system development
process which involves these security teams from initial phases. Furthermore,
there exists a set of internal security guidelines and specifications, however,
their source, content, and application, as well as the security teams’ interac-
tions with the safety processes or other entities during development or operation
were kept confidential by the interviewee. There are dedicated security teams
in the company participant H works for also. Processes like HAZOP [16] in
the safety domain and threat analysis in the security domain were said to be
executed in parallel with defined points of synchronization to treat interdepen-
dencies between both domains. Participant H mentioned the organization’s app-
roach to be in an early stage, thus, when and how to synchronize both domains
was not clearly stated. The approach addresses economical interests by keeping
adaptations or changes to established processes of the safety domain to a mini-
mum with processes of the security domain being decoupled, at least during the
elicitation of requirements.

When treating security as an afterthought only, a truly bidirectional consid-
eration of the influences of the safety and security domains of the System Under
Development (SUD), including treatment, is only possible with considerable and
often economically unviable effort, as stated by participant A and D. In case of
occurring conflicts between both domains, late treatments might entail costly
changes to prevalent system designs. As stated by participant D, this is due to
the potential of the safety and security considerations to influence the architec-
ture of a system. Participant A compared this situation to requirements which
are supplied by the customer in a late phase of the system life cycle and require
changes to the prevalent system design. This circumstance was stated to not
be economically desirable. However, participant A and H pointed out that in
some cases knowledge of the system which is only available in later phases of the
system life cycle or only within the context of the system of a subordinate orga-
nization of the supply chain is required. The statement emphasizes the necessity
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to synchronize the safety and security life cycles within the overall system life
cycle and to proper orchestrate, distribute and communicate safety and security
objectives which span multiple organizations of a supply chain.

Classical software engineering problems were observed as a challenge com-
plicating the integration of security aspects. Mastering the current complexity
of existing work flows was a frequently mentioned problem. The amount of arti-
facts accumulating during development processes (for example processes com-
pliant with the V-model XT [8]) were stated to be difficult to manage. Artifacts
explicitly named by the participants were: Process documents required by ISO
26262 [12] which are necessary for subsequent processes and the establishment of
evidence traces through assurance procedures. Requirements, imposed on devel-
opment processes and the SUD which originate from standards, internal docu-
ments, and customers. The volume and complex structure of these artifacts were
stated to result in difficulties in traceability, a recognized problem in software
engineering [13].

The problem to establish links and traces throughout the aforementioned
artifacts is further exacerbated by the heterogeneous and diverse tool land-
scape, as stated by all participants. Besides popular software solutions, like IBM
Rational DOORS and PTC-Integrity for e.g. requirements engineering purposes,
Enterprise Architect and Visio for e.g. system development and Microsoft Word
and Microsoft Excel for e.g. risk management and assurance purposes, all par-
ticipants use a variety of proprietary tools developed by the companies. Their
purpose is to accommodate for missing functionalities, provide adaptations in
highly customized processes and to support intercommunication between dif-
ferent tools. The result is a complex tool chain, sometimes unique to even a
particular project within an organization. This has consequences for the inte-
gration of safety and security as well due to rigid and time intensive change
management. Participant G stated a case of obsolescence management where
the removal of a tool from the tool chain made subsequent changes or any kind
of maintenance impossible.

Another frequently mentioned challenge were economical aspects. It is well
known that the costs of software engineering projects may rapidly escalate [2].
As stated by all participants, the amount and quality of treating security prop-
erties will always be limited by available resources within a project’s budget and
prioritized by the severity of consequences.

3.2 Differences Between the Safety and Security Domain

All interviewees exhibited a uniform understanding of the distinction between
the two types of system qualities, citing generally accepted definitions for the
safety and security domains [7], respectively. However, concerning the require-
ments engineering domain, we observed no distinction between safety and secu-
rity requirements in conducted processes or utilized software solutions for par-
ticipants A-F, who treat security as an afterthought. As an example, interviewee
A described the combined administration of safety and security requirements in
the software solution PTC Integrity where security requirements are assigned
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the Automotive Safety Integrity Level (ASIL) of Quality Management (QM).
This is normally used to declare the risk associated with a safety requirement
as not being unreasonable and therefore would not require any dedicated safety
treatment as declared in the ISO 26262 standard [12]. The definition of safety
requirements was stated to be conducted in accordance with the ISO 26262 stan-
dard, whereas the origin of security requirements was limited to requirements
imposed by customers. As for the combined approach depicted by interviewee
H, there was no distinction between requirements from both domains after their
definition, except for testing procedures. The definition of security requirements
was conducted within a threat analysis which was decoupled from the definition
of safety requirements.

Regarding risk assessment, no safety and security co-analysis was mentioned
to be applied by participants A–H. Furthermore, all interviewees acknowledged
the fact that while they are able to rely on years of experience, standards, and
guidelines in the safety domain, they are unable to do so in the security domain.
This holds especially true for risk assessment, as stated by many participants.
Interviewees A, C, and F stated that they are not obliged to comply with any
security standard and thus security problems are only dealt with if the customer
demands it and if it is within the limit of the project budget.

The difference between both domains on a process level was stressed by par-
ticipants A, E, and G. One example given by interviewee A was that while tasks
concerning the safety assurance of a vehicle are completed by the Start Of Pro-
duction (SOP), the scope of the security domain extends into the operational
phase where new security incidents have to be dealt with until decommission.
Furthermore, due to the nature of security, the time frame in which a secu-
rity measure remains effective is unpredictable. This contradicts the scope and
resource allocation of the classical safety domain. Interviewees A, E, and G gave
this circumstance as a reason for why prevalent safety processes are unfit to deal
with security properties of a system.

Interviewees A, C, and E mentioned that there are no dedicated employees
for the security domain, even when security issues are taken into account and
addressed. These responsibilities are integrated into roles like safety managers,
system engineers, or system architects.

3.3 Elicitation and Treatment of Interdependencies Between the
Safety and Security Domain

We encountered two organizations, G and H, that follow an integrated approach.
Both representatives of these organizations described the classification of occur-
ring interdependencies between the safety and security domain as published in
[18], namely: conditional, reinforcement, antagonism, and independence. Due to
confidentiality concerns, we are unable to provide details about the integrated
approach followed by participant G. As for participant H, the elicitation and
treatment of interdependencies between safety and security requirements is con-
ducted within defined points in the system life cycle, where both domains were
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synchronized. The interviewee stated the approach to be in an early stage. Chal-
lenges were said to be (1) the meaningful definition of points in the system life
cycle where it makes sense to jointly consider artifacts of both domains and
(2) develop efficient, holistic and systematic approaches for the elicitation and
resolution of these interdependencies within the points of synchronization. Par-
ticipant H stated that their approach utilizes the concept of risk as a common
ground between the safety and security domains in order to harmonize processes
for the mitigation of risk. In order to improve the maturity of their approach,
processes and methods within these synchronization points were stated to be the
main focus of current internal research.

Participant E treats conflicting safety and security requirements by conduct-
ing risk assessments in order to determine and prioritize requirements which have
more severe consequences. No further method for the elicitation or treatment of
interdependencies between the safety and security domain were encountered in
the course of the survey.

3.4 Identified Challenges

Concerning our research objective, we identified the following challenges for an
integrated consideration of security and safety aspects in the development and
operation of CPSs in the automotive domain: (1) Coping with the complexity
of prevalent development processes and overcoming traceability issues to enable
appropriate change management and thus timely responses to security incidents.
(2) Dealing with economic limitations regarding the increased complexity due
to interdependencies between domains, the extended time frame in which secu-
rity has to be treated and the possibly, timely restricted, viability of measures
taken. (3) Dealing with the current lack of experience, standards, and guidelines
concerning the combination of the safety and the security domain.

3.5 Threats to Validity

Our survey might be limited by certain threats to validity that we are aware of
and, to the best of our knowledge, counteracted. The following argumentation
is based on the guidelines set out by Runeson et al. [26].

Concerning construct validity, a major objective of the survey was to under-
stand the participants’ respective understanding and practice of the subject
under investigation. We argue that the nature of our survey inherently coun-
ters threats to construct validity. Furthermore, in order to overcome limitations
regarding language barriers, we offered interviews in English and German lan-
guage. The interviews were always moderated by a researcher proficient in the
interview language, all handouts, interview guidelines, and questions have been
carefully translated and double-checked by native speakers.

Threats to internal validity were avoided by peer debriefing. Concerning
external validity, our survey is highly focused and can not be generalized to
other domains without considering potential differences.
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In order to counter threats to reliability, we avoided influences of moderators
through a predefined protocol including a preset pool of questions and dedicated
interview guidelines. Moreover, all interviews were conducted by two researchers
with fixed roles which were asking the participant questions and documenting
the course of the interview, respectively. We further avoided influencing the
participants before interviews by only providing broadly formulated contextual
informations beforehand.

In order to counteract a biased selection of study participants, we selected
interviewees based on criteria as described in Sect. 2.4. Finally, limitations from
biased opinion of interviewees were avoided by comparing the transcripts and
results of different interviews.

4 Discussion

In this section we derive four key findings from the previously presented answers
to the research questions alongside their implications for future research. The
section concludes by motivating the use of a holistic model.

We observed that (KF1) the majority of organizations not actively take inter-
dependencies between safety and security requirements into account. The major-
ity of participants stated that they do not follow an integrated approach and
treat security only if explicitly requested. The current state of practice was
claimed to be due to the novelty of the security domain within the automotive
industry, lack of standards, guidance and experience, and economic limitations.
Further research is necessary in order to be able to synchronize the safety and
security life cycle, facilitating efficient and holistic elicitation and treatment of
interdependencies.

In addition, (KF2) prevalent problems concerning complexity, traceability,
change management and availability of recourses complicate the integration of
security. The most common consequences inherent to the complexity faced in
prevalent development processes are difficulties in traceability and the resulting
inefficient change management. The average time to re-certify a system as a
consequence of applied changes, due to a security incident, was stated to be too
long for the volatile security domain. Future research needs to investigate how
to reduce and/or manage the complexity of prevalent development processes in
order to facilitate traceability and change management which is applicable for
the security domain. Economic limitations further hamper the integration of
security, especially maintaining traceability for effective change management is
expensive [13]. Developed approaches need to be economically viable, despite
the extended time frame in which security has to be treated, the elicitation and
resolution of conflicts between requirements and the possibly time-restricted
viability of measures taken to mitigate risks.

Participants stated that (KF3) objectives of the security domain, as well as
the safety domain span across multiple organizations. Further research needs
to investigate how to orchestrate, distribute and communicate responsibilities
concerning these objectives within an inter-organizational context in order to
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facilitate synchronization of the safety and security life cycle regarding processes
and process artifacts within the system life cycle of a single organization.

We observed a (KF4) uniform understanding and general awareness con-
cerning the differences between the safety and security domain. All interviewees
cited generally accepted definitions for the safety and security domain, according
to [24]. Participants following an integrated approach described the classifica-
tion of occurring interdependencies between the safety and security domain as
published in [18].

The challenges identified in Sect. 3.4 and the key findings presented above
emphasize the necessity for a holistic model which unifies documentation arti-
facts, e.g. process documents of the system life cycle, in order to reduce complex-
ity and facilitate efficient change management. Our conceptual model [4], which
was validated during the course of the survey, was perceived as correct and suit-
able by interview partners. The model unifies relevant documentation artifacts
from requirements engineering, system modeling, risk assessment and evidence
documentation. It further establishes dependencies between documentation arti-
facts of different areas (e.g., between individual requirements, the system com-
ponents they are defined for, the associated risks and available evidence showing
the correct implementation of said requirements). The model constitutes a base
for future research by enabling cross-domain documentation of safety and secu-
rity requirements, and unifying design- and runtime aspects while supporting
(re-)certification in accordance with prevalent security and safety standards.

5 Related Work

In recent years, the integrated handling of safety and security has gained more
and more interest in the research community. While the research community is
concerned with the importance of integrating safety and security and proposes
various approaches [18], there are no insights into how this problem is currently
treated in industrial practice. To the best of our knowledge, no survey has been
performed regarding the integrated consideration of safety and security for CPSs
in the automotive industry.

Kriaa et al. [18] provide an overview of a number of industry reports on
approaches integrating safety and security treatment. While their work shows
that various industries are interested in an integrated treatment of the safety
and security domains, our survey focuses on the automotive industry and identi-
fies real world challenges which prohibit a trivial integration of these approaches
into prevalent development processes. Glas et al. [10] investigate the integra-
tion of the safety and security domain by discussing conflicts between safety
and security mechanisms, whereas we explore the perspective of the industry
in order to elicit challenges emerging from the current state of practice as per-
ceived by representatives of organizations from the automotive industry. An
industrial survey conducted in the area of safety engineering by Jose Luis de
la Vara et al. [29] gives an overview on practices for safety evidence change
impact analysis. Notander et al. [23] report on a survey regarding challenges in
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the development of safety-critical systems. Martins et al. [20] conducted expert
interviews and studied literature concerning requirements engineering for safety-
critical systems. Ray et al. [25] discuss the current state of practice in automotive
security architecture, investigating trade-offs between security countermeasures,
real-time requirements, and in-field configurability needs. Sojka et al. [28] con-
ducted a case study on testing and validating safety- and security-related prop-
erties of control software in the AUTOSAR [9] architecture. They show that
the combination of procedures from the safety and security domain can bring
economic benefits.

6 Conclusion

We conducted a survey of experts in the automotive domain in order to gain
an understanding of real-world challenges occurring when combining safety and
security for CPSs during development and operation. We observed significant
deficiencies in the integration of both domains. Identified challenges are: (1)
Coping with the complexity of prevalent development processes and its conse-
quences, (2) dealing with economic limitations and (3) the current lack of expe-
rience, standards and guidelines concerning the combination of the safety and
the security domains. We conclude that the utilization of a conceptual model
unifying relevant documentation artifacts from requirements engineering, sys-
tem modeling, risk assessment and evidence documentation can address these
issues. Future research will be conducted in alignment with derived criteria in
order to investigate how change management can be facilitated by introduc-
ing state-machine based automation capabilities to this model. Means to enable
state propagation, the definition of accommodating work flows and a prototyp-
ical implementation is planned for the near future. A quality and cost model
will be developed to assess the economic viability of our approach addressing
aforementioned concerns of interviewees.
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30. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-642-39259-7_23
https://doi.org/10.1007/978-3-319-20855-8_20
https://doi.org/10.1007/978-3-319-20855-8_20
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2


Safe and Secure Automotive Over-the-Air
Updates

Thomas Chowdhury1(B), Eric Lesiuta1, Kerianne Rikley1, Chung-Wei Lin2,
Eunsuk Kang2, BaekGyu Kim2, Shinichi Shiraishi3, Mark Lawford1,

and Alan Wassyng1

1 McMaster Centre for Software Certification,
Department of Computing and Software, McMaster University,

Hamilton, ON, Canada
{chowdt2,lesiutej,rikleykn,lawford,wassyng}@mcmaster.ca

2 Systems and Software Division, Toyota InfoTechnology Center U.S.A. Inc.,
Mountain View, CA, USA

{cwlin,ekang,bkim}@us.toyota-itc.com
3 Software Systems Group, System Architecture Research Division,

Toyota InfoTechnology Center Co., Ltd., Tokyo, Japan
sshiraishi@jp.toyota-itc.com

Abstract. Over-the-air updates have been used for years in the soft-
ware industry, allowing bug fixes and enhancements to desktop, laptop,
and mobile operating systems and applications. Automotive vehicles now
depend on software to the extent that manufacturers are turning to over-
the-air updates for critical vehicle functionality. History shows that our
software systems are most vulnerable to lapses in safety and depend-
ability when they undergo change, and performing an update over a
communication channel adds a significant security concern. This paper
presents our ideas on assuring integrated safety and security of over-the-
air updates through assurance case templates that comply with both
ISO 26262 (functional safety) and SAE J3061 (cyber-security). Wisely,
the authors of SAE J3061 structured the guidebook so that it meshes
well with ISO 26262, and we have been able to use principles we devel-
oped for deriving an assurance case template from ISO 26262, to help
include compliance with SAE J3061 in the template. The paper also
demonstrates how a specialization of the template helps guide us to
pre-emptively mitigate against potential vulnerabilities in over-the-air
update implementations.

1 Introduction

The original motivation for over-the-air (OTA) updates to automotive software
seems to have been a realization that customers view a trip to the dealership to
install a software patch, as an avoidable waste of their time. This is true even
when the patch introduces a new feature that they are pleased to install. An
update can take place without the presence of the owner. Whether the update
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is installed automatically or needs approval before driving depends on the criti-
cality of the update. For example, if the update is for parts of the infotainment
system, perhaps it can be installed automatically. If the update is for a critical
component of the vehicle then it may be necessary to have driver approval. In
all cases, the update will be installed when the car is at home and is stopped
in park mode. In addition, original equipment manufacturers (OEMs) hope that
OTA Updates will be a lot more cost effective than paying dealerships to install
the updates.

However, with the implementation of OTA firmware updates come new entry
points for hackers to tamper with a vehicle’s software. Not only do we introduce
the potential for hacking, but we also remove a trained technician from the
process. These trained professionals help validate that the installation of the
new firmware is successful, and ensure that there are no safety hazards resulting
from the update. For example, even a simple update to an infotainment system
caused cycles of rebooting the heads-up display, accompanied by distracting
bright purple flashes, thus resulting in a serious safety concern [4].

It is important to note that we are primarily interested in the final safety of
the vehicle. To this end we have to consider the safety aspects of OTA Updates,
independent of security concerns, as well as the effect of security issues on vehicle
safety – and even the adverse effect of safety mitigation on security. Most current
research seems to be heavily focused on security, as though it is an end in itself,
although we are starting to see significant work on the interplay between safety
and security.

The primary contribution of the paper is the development of an Assurance
Case Template (ACT) that applies to OTA Updates. Our template complies with
both ISO 26262 [10] and SAE J3061 [24], and applies in general to functional
safety (we have not always prefixed safety by “functional”, but that is the focus of
this paper) and cybersecurity of the “connected car”. An important contribution
is the demonstration that the template for OTA Updates can be used to guide
development (not just to document assurance after/during development) in a
way that helps to avoid/mitigate OTA Update vulnerabilities. The scope of
cybersecurity in this paper is limited to protecting the download of the updates.
We believe that not protecting such downloads is equivalent to a systematic
design fault, and is thus of importance to functional safety. Cybersecurity also
deals with financial loss, personal identity theft, data loss, etc. These concerns do
not have immediate functional safety implications and are thus not considered
in this paper.

This paper is organized as follow. A brief introduction to concepts discussed
in the paper is provided in Sect. 2. This includes an introduction to relevant
standards, assurance cases, and ACTs. This is followed by a brief discussion on
relevant literature in Sect. 3. Section 4 is the heart of the paper. It presents an
overview of the methodology we used to arrive at an ACT that assures both
safety and security for vehicles that may be maintained using OTA Updates.
This section extends earlier work [7], in which we developed and used principles
for transforming clauses in ISO 26262 into claims and evidence in an ACT.
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We have now used those same principles applied to SAE J3061, to develop
an ACT that integrates safety and security for the connected car. The section
includes a very brief description of threats and threat analysis that we need to
include OTA-specific assurance. We added this OTA assurance to the template,
based on an open source OTA Update design, Uptane [13,15]. In Sect. 5 we
show how this template can be used by examining a potential vulnerability in
an implementation of Uptane, that was discovered by instantiation of the ACT.
Finally, we present our conclusions and future work in Sect. 6.

2 Preliminaries

2.1 Relevant Standards

There are two standards that are specifically relevant to this work. The first is
ISO 26262 which has become the de facto functional safety standard for electric
and software components in automotive vehicles. The second is a newer “stan-
dard”, SAE J3061, which is an SAE guidebook specifically targeting automotive
security. It is intended as a companion standard to ISO 26262, and has been
organized to mesh well with ISO 26262, but its written structure differs signifi-
cantly from ISO 26262. There is an unpublished standard ISO/SAE 21434 [11]
for cybersecurity of automotive vehicles. The standard defines requirements for
cybersecurity risk management for road vehicles throughout the development
process [3]. The standard is currently under development.

2.2 Assurance Cases

An assurance case is a living document assuring a system’s critical properties.
According to Bloomfield et al., “An assurance case is a documented body of
evidence that provides a convincing and valid argument that a specified set of
critical claims about a system’s properties are adequately justified for a given
application in a given environment” [5]. An assurance case starts with a top-
level claim which is decomposed into sub-claims supported by other sub-claims
or evidence. Each (sub-)claim must be supported by its sub-claims and/or evi-
dence. The argument (reasoning) should be explicit. Other artifacts are used in
the assurance case to provide context, assumptions, justification, etc. There are
various notations for documenting assurance cases, the most popular one cur-
rently being Goal Structuring Notation (GSN) developed by Kelly [14]. We have
used a GSN tool to draw the assurance cases used in this paper.

2.3 Assurance Case Templates

An ACT provides the structure for a family of assurance cases for a particular
product-line. Given a specific product in that product line, one instantiates the
ACT to create a complete assurance case for that product.An ACT is a complete
assurance case for a particular product-line. The template consists of optional
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argument paths corresponding to various features of different products from a
specific product-line. A major benefit of templates is that they are developed
before the systems/products are built, and thus an evidence node in the template
contains a guideline for the specific evidence required to support a sub-claim,
along with acceptance criteria for that evidence [29]. The original motivation for
a product-specific ACT was that if every assurance case uses a unique structure
and argument, regulators will be overwhelmed by the task of evaluating these
assurance cases [30]. Another motivating factor was the work by Graydon, Knight
and Strunk on Assurance Based Development [9].

Making these templates specific to a product line may yield the following
additional benefits:

• Facilitation of incremental certification;
• Robustness with respect to likely changes (reminiscent of information hiding);
• Playing the role of a safety plan with regard to what needs to be produced,

for example:
◦ Directing developers as to what evidence should be provided to support

specific sub-claims, as well as acceptance criteria for that evidence;
◦ Structured using arguments built by people with appropriate expertise;
◦ Avoiding confirmation bias, due to the template being constructed before

development begins; and
◦ Providing a publicly accessible example of an assurance case argument

and structure.

A skeleton for the claims, sub-claims and evidence in an ACT is shown in
Fig. 1.
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on-exclusive O
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Claim or sub-claim
Acceptance criteria
on required evidence

A B A: Claim
B: Premise

Fig. 1. Basic structure of an ACT [7]

2.4 Principles for Developing the ACT

The starting point in developing the ACT is the decision to make it compliant
with ISO 26262 and SAE J3061. We previously developed and published prin-
ciples for constructing an ACT from a standard such as ISO 26262 [7]. The 10
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Table 1. Principles for developing an ACT from a standard

Id Principle Description

1 Model the standard Understand terms, relationships & requirements

2 Model system variability Model detailed enough to guide development

3 Flip-It Reverse process flow for claim dependency

4 Conjunctive claims Multiple claims support a parent claim

5 Optional pattern Standard defined alternative processes

6 Evidence acceptance criteria Standard specifies attributes/characteristics

7 Evidence classification Determines type of evidence required

8 Completeness Arguments that depend on completeness

9 Argument options Optional paths motivated by alternative arguments

10 Feature options Optional paths motivated by alternative features

principles are shown in Table 1. We originally used these principles to build an
ACT that assures safety and is compliant with ISO 26262. We have now used
these principles to include security in the ACT, compliant with SAE J3061.
Although SAE J3061 is not written in the style of ISO 26262, we did manage
to apply those principles sufficiently well to help in the derivation of the new
ACT. We supplemented compliance with the standards with our knowledge of
safety and software engineering principles. More detail about this process is in
Sect. 4.2.

3 Related Work

Various threat analysis methods are described in [17–19,25,31]. OTA Update
specific security is discussed in [13,15,26]. In particular, the Uptane Project [13,
15] defines an open source software security system with a flexible design, allow-
ing it to be adapted easily to various systems. The Uptane project presents a
comprehensive look at common types of attacks that an unsecured vehicle will be
vulnerable to, specifically when updated remotely. The attacks described in [13]
are: Read Attacks, Replay Attacks, Denial-of-Service (DoS) Attacks (including
Drop Attacks, Slow Retrieval Attacks, Flood Attacks, Freeze Attacks), Roll-
back Attacks, Modify Attacks (including Partial Bundle Attacks, Mixed Bundle
Attacks, Mix-and-match Attacks), Spoof Attacks and Control Attacks.

Long-term, we believe that the best way of integrating safety and security is
to use an integrated hazard/threat analysis and risk management. Implementing
safety and security requirements derived separately from independent hazard
analysis and threat analysis may lead to conflicting requirements which result in
new hazards and/or vulnerabilities, and also may miss hazards/threats resulting
from combined security/safety concerns. There are some early attempts at this in
the literature. Unfortunately, this is not yet a common approach, simply because
the relevant “standards” ISO 26262 and SAE J3061 deal with the two aspects
separately in order to limit their scope during their initial development. Our
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own work currently is based on compliance with ISO 26262 and SAE J3061.
However, we suggest more comprehensive integration in our section on “Future
Work” (Sect. 6.1). In the meantime, we have included a brief look at the literature
on integrated hazard and threat analysis in this section.

Systems-Theoretic Process Analysis (STPA), developed by Nancy Leveson,
is a well-regarded hazard analysis technique that is focused strictly on ensuring
safety [16]. STPA-Sec [32] developed by Leveson and Young, is a derivative of
STPA in the security domain. STPA-Sec is an extension of STPA considering
security aspects in a top-down fashion. However, in striving to integrate safety
and security analysis, separate analysis of safety and security does not seem to
adequately cover the integrated effects of safety and security. Another method,
STPA-SafeSec [8] based on STPA, proposes a more unified analysis technique
for safety and security. To support the unified approach, STPA-SafeSec defines
the component layer diagram and extends the causal factors of security domains.
This method considers the cyberattacks on integrity and availability at the com-
ponent layer. The authors do not show the relationship between safety and secu-
rity, and how conflicts can be resolved is not explicitly defined.

In [23], the authors developed a method called SAFE (Systematic Analysis
of Faults and Errors). In order to combine safety and security, SAFE considers
a semantic framework of error “effect” that integrates an adversary model used
in security analysis with fault/error categorization used in hazard analysis. This
method is a heavily modified form of STPA. Safety and security analysis are
also combined in [22]; namely, STPA and NIST SP800-30 [2] are considered to
derive the safety constraints and security constraints respectively. The authors
use an automatic scheme to detect conflicts and reinforcement. However, they
do not define the automatic scheme precisely which is the key mechanism in
detecting conflicts. In [17], the SAHARA (Security Aware Hazard Analysis and
Risk Assessment) method derives a measure of the security impact on the “Auto-
motive Safety Integrity Levels” (ASILs). This approach uses STRIDE (Spoofing
identity, Tampering with data, Repudiation, Information disclosure, Denial of
service, Elevation of privilege) to derive “Security Levels” to combine with the
ASILs based on ISO 26262 ’s HARA (Hazard analysis and risk assessment).
Amorim et al. [1] use patterns to interlink safety and security in the develop-
ment process. Some of the authors of that paper were also involved in creating
SAHARA, described above.

4 An ACT for Safety and Security of OTA Updates

The primary aim of this work was to develop an ACT that can be used in
general to assure safety and security for automotive vehicles, and especially to
deal adequately with OTA Updates. We divided the task into two:

1. Step 1 – Develop an ACT for safety and security of automotive vehicles,
compliant with both ISO 26262 and SAE J3061 ;

2. Step 2 – Specialize the previously developed ACT, to include assurance when
maintenance is performed using OTA Updates.
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This approach was used since both of the relevant standards do not include
specific guidance for OTA Updates, and we believe that there is some general
guidance we can provide that covers both maintenance implemented at a deal-
ership, or through OTA Updates.

4.1 Assurance of Integrated Safety and Security

Generally, security and safety are considered separate disciplines because of their
own regulations, standards and methodologies [6]. A concept is gaining momen-
tum that security and safety are closely interconnected. Nowadays it is not
acceptable to assume that a cyber-physical system is immune to threats and
it is not feasible to assure the safety of the cyber-physical system independent
of security. In this regard, a safety case is incomplete and unconvincing without
consideration of the impact of security. In [6], the authors emphasize that the
impact of security on the safety case should be explicitly mentioned to make
the system safe and secure. In [21], the authors describe a layered assurance
approach that combines safety and security.

4.2 Step 1 – An Automotive ACT for Safety and Security

Figure 2 shows the top-level of a security informed safety ACT for “<X> con-
sidered as an ISO 26262 item/SAE J3061 feature, delivers the behaviour required
and does not adversely affect the safety of the vehicle, nor does it create secu-
rity vulnerabilities in the vehicle, over its expected lifetime in its intended envi-
ronment”. (We have not included “context”, “assumptions” and the content of
“strategy” nodes in the diagrams, in the interest of saving space.) Six sub-claims
support the top level claim. All six sub-claims deal with safety and security issues
together with consistent interaction. The tabs on the top left of a claim node
indicate that this is a module, and the remainder of that argument path can be
seen by “opening” that module (in the tool we use, achieved by double click-
ing the tab). The relevant ISO and SAE clauses/sections are indicated inside a
smaller text box within the claim. In terms of software engineering, four argu-
ment paths could be shown to adequately support a top claim of safety of a
specific system. An informal description of the four top level claims supported
by these arguments, would be:

1. The system’s requirements are “correct” [GS in Fig. 2].
2. The system is implemented to meet its requirements [GR in Fig. 2].
3. The system is safe even when maintenance is performed [GPM in Fig. 2].
4. The system is operated within its operational assumptions [GA in Fig. 2].

ISO 26262 and SAE J3061 take a similar approach, and add two more claims:

5. Compliance with configuration management requirements [GC in Fig. 2].
6. Compliance with change management requirements [GCM in Fig. 2].
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Fig. 2. Top-level of a safety and security ACT

Roughly, the argument that the conjunction of 1, 2, 3, 4 implies safe and secure,
follows from the fact that we can think of these claims as:

1. validation,
2. verification,
3. safe/robust with respect to change,
4. operated within known bounds, respectively.

Of particular interest in this template is the argument path leading off the
claim “GPM” in Fig. 2. This path shows how we, through compliance with the
standards, argue the safety of maintenance throughout the life of the vehicle.
Part 7 of ISO 26262 and Sect. 6 of SAE J3061 define maintenance require-
ments on production, and operation. We have highlighted this path because it
is of central importance in arguing the safety and security of OTA Updates.
Figure 3 shows a slice of “GPM” developed from ISO 26262 and SAE J3061.
The structure is largely dictated by the structure of the standards. For exam-
ple, the safety argument is contained in the GPM1 branch, and the security
argument in the GPM2 branch. ISO 26262 describes requirements on produc-
tion, maintenance, and decommissioning. One option would have been to split
these at the sub-claim level shown in Fig. 2. We chose to combine them in a single
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claim, and so the premises for GPM1 are GPM1.1 (production), GPM1.2 (main-
tenance) and GPM1.3 (decommissioning). Similarly, the premises for GPM2 are
GPM2.1 (production), GPM2.2 (maintenance) and GPM2.3 (decommissioning).
The decommissioning claim (in module-GPM2.3) was further decomposed into
several sub-claims to assure the required cybersecurity properties during decom-
missioning. They are not shown in the diagram as they are not relevant within
the context of this paper. There are no decommissioning aspects related to cyber-
security. Figure 3 shows compliance with the ISO and SAE standards before any
specialization for OTA Updates. It is reasonably obvious that OTA Updates will
affect claim GPM1.2 and its argument path (safety) and claim GPM2.2 and its
argument path (cyber-security) – primarily the GPM2.2.1 argument path.

4.3 Step 2 – An Automotive ACT for Safety and Security that
Includes OTA Updates

In order to include OTA Updates explicitly in the ACT, we have to analyze
exactly what is different between traditional at the dealership maintenance, and
OTA Update maintenance. This involves both hazard and threat analyses. OTA
Updates introduce both safety and security vulnerabilities. In terms of safety,
OTA Updates are performed remotely, without the aid of a knowledgeable tech-
nician who would be responsible for testing the update. Clearly, the update will
have been thoroughly tested by the manufacturer, but there are significant issues
of completeness that complicate this task. An obvious example is the malfunc-
tioning heads-up display discussed in the Introduction. In terms of security, SAE
J3061 describes in general how to protect the vehicle from cyber-security attacks.
The guidebook does not explicitly consider what is necessary when maintenance
is performed OTA. We want to include the option of OTA Updates in our ACT.
To do this, we used the work reported in the design of Uptane [13,15] as the basis
of the OTA-specific arguments in the ACT, as far as security is concerned. Once
we have a design in mind (and Uptane is sufficiently generic in terms of identifi-
cation of communication channels), we are in a position to generate threats and
mitigations that can be used as a base for the assurance case argument.

When analyzing OTA Updates, not only must the security of data be consid-
ered, but the protocols that handle this data must also be considered. We note
that relevant attacks consistently target and exploit weaknesses of four main
security properties: confidentiality, integrity, availability, and authenticity [26].
By adequately protecting these four main properties, which have been at the
root of all known attacks, it is possible to provide security assurance for the
system.

The first three of these properties are widely considered to be the most crucial
components of information security [27], and are known as the CIA triad, and
CIA is currently being used to analyze the security requirements of more than
one hundred use cases of the connected vehicle proposed by the ARC-IT project
funded by the U.S. Department of Transportation [28].

Confidentiality: Confidentiality of communicated information is put at risk by
read attacks. Data encryption is suggested to mitigate these attacks [26].
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Fig. 3. Extract of assurance case for maintenance of automotive vehicles (GPM)
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Integrity: The integrity of data can be protected through the use of hashing,
cyclic redundancy checks (CRC) and signatures, preferably used in combination.

Availability: A comprehensive backup strategy, anomaly detection, and time-
outs are recommended to mitigate these attacks [26].

Although the CIA triad are considered the most crucial components of infor-
mation security, they are not enough to completely secure the system. The
STRIDE Threat Model from Microsoft [19] recommends protection of Authen-
ticity, Authorization, and Non-repudiation.

Authenticity: Authenticity ensures that the data received comes from a trust-
worthy source. This protects against man in the middle (MITM) and spoofing
attacks [26].

Authorization: Authorization prevents unprivileged parties gaining access [31].

Non-repudiation: Maintaining secure logs of activities and the entities to
which they are attributed protects non-repudiation scenarios [31].

We also need to consider two generic security measures – private key pro-
tection and version control. Private key protection can help prevent “key
extraction” [26], and version control is essential in general, but can also help
protect against installation of an older version of software.

There exist a number of tools and methodologies for classifying and managing
security related threats. Many of these are outlined in SAE J3061. We chose
to use Microsoft’s threat modelling tool which performs threat analysis using
STRIDE [19] and a data flow diagram of the system [18]. STRIDE classifies
attacks (threats) into six categories – Spoofing identity, Tampering with data,
Repudiation, Information disclosure, Denial of service, and Elevation of privilege.

For each type of threat presented by STRIDE, Microsoft suggests a security
property countermeasure.

The NCC group [20] created a customized template for the automotive
domain to perform threat analysis using STRIDE, and we created a data flow
diagram that describes the communication flow as input to STRIDE. We mod-
elled our data flow diagram on an Uptane design (Fig. 1 in [13]). Our data flow
diagram of a partial vehicle network illustrating OTA Updates is shown in Fig. 4.
We used the NCC template together with the data flow diagram in Fig. 4 to ana-
lyze OTA Updates for the connected car, to generate threats and corresponding
mitigations to include in our ACT.

A slice of GPM specialized for OTA Updates using the results from the
STRIDE analysis, is shown in Fig. 5.

5 Example Usage of the ACT for OTA Updates

We used this slice of the ACT to explore what we would need to do to develop
a safe and secure OTA Update design. Thanks to the extensive work in the
Uptane project, we could use their design and a python implementation as an
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Fig. 4. Data flow diagram of a partial vehicle network based on uptane [13]

example. We found that part of the implementation did not satisfy one of the
threat mitigation requirements in the acceptance criteria of the ACT (see Fig. 5).

In particular, Threat 2 in EPM 2.2.1.1.1.a.2.1 refers to a MITM threat. This
may lead to a vulnerability in the Uptane implementation. The suggested mit-
igation strategy is that communication must be secured (using TLS or crypto-
graphically signed). In the sample implementation, requests from the primary
ECU to the OEM’s time server for an updated timestamp are sent as unsigned
plain text. (The OEM time server is included in the OEM Update Server in
Fig. 4). Although the communication is just a pseudorandom nonce from each
secondary ECU, this allows MITM agents to alter the communication as they
see fit, and force the system into an unexpected state. Depending on a vendor’s
implementation, attacks such as a buffer overflow could be possible. In this case,
editing the packet to contain no nonces, then allowing it to go through, causes
the primary ECU to ignore the updated time. However, it will then make its
next request to the time server without sending any nonces, at which point the
MITM can inject a subset of the previously blocked nonces, and the primary
ECU will accept the reply from the time server. The primary ECU will then
pass the message from the time server along to all the secondary ECUs, but
since the MITM manipulated the exchange to only contain a subset of nonces,
only secondary ECUs in this selected sub set will accept the updated time. If
a vendor decides to implement a check for a recent timestamp from the time
server on each secondary ECU before installing an update, a Mixed Bundle
Attack could be possible. The ACT suggests mitigating this vulnerability by
signing the packet of nonces from the primary ECU to the time server. If the
developer does this, this specific MITM attack can be mitigated.
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6 Conclusion

We have demonstrated that ACTs can be designed to integrate functional safety
and security for automotive vehicles. As a basis for such a template, we start with
claims and evidence derived from ISO 26262 and SAE J3061 using principles
we developed for just such a process. We then integrate into that ACT, claims
and evidence based on our knowledge and derived from additional analyses.
In particular, we specialized the ACT to include specific arguments that apply
when maintenance is performed using OTA Updates. To illustrate the value of
using these templates in automotive development, we used the OTA specific
template to show that it may help developers mitigate security threats, during
development of the vehicle.

6.1 Future Work

We are exploring how to better integrate functional safety and security. As men-
tioned earlier, one of the best ways is to integrate the hazard and threat anal-
yses. If we achieve this, we will then re-evaluate the argument in the assurance
case. This should eventually result in changes to ISO 26262 and SAE J3061 –
or even better, the integration of cyber-security into ISO 26262. We intend to
derive more examples of evidence, and especially acceptance criteria for that evi-
dence. In this paper we only considered the integration of security of OTA and
functional safety in a combined ACT. Currently ISO is developing a new stan-
dard, ISO 21448, on “Road vehicles – Safety of the intended functionality” [12].
Rather than the safety of the system in the presence of failures, this standard
concerns itself with the safety of systems when they are functioning correctly.
Once the standard becomes available we intend to develop an explicit ACT for
it applying the same method used for ISO 26262 [7]. We could then integrate
the SOTIF ACT with the ACT proposed in this paper. Finally, although we
have made quite a lot of progress in working out how to develop these ACTs,
we believe there is still more work to be done in this regard, and we are starting
to look at syntax and semantics for ACTs in order to build effective tools.
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Abstract. Avionics Full Duplex Switched Ethernet (AFDX) is an implemen-
tation of the ARINC 664 specification, which defines the electrical and protocol
specifications for data exchange between Computer Systems. AFDX imple-
ments extensions on standard Ethernet to achieve a deterministic and fault-
tolerant network, which is demonstrated through its frame management design.
AFDX, like other emerging time-critical Ethernet-based standards, has potential
for use in other critical industries, such as nuclear power plants. This would
provide an additional option by which industry players can leverage the speed
and ubiquity of Ethernet, with the added benefit of services to support highest
safety requirements. However, considering that the nuclear industry continues to
be a prime target for advanced security threats, it is imperative to demonstrate
what protection AFDX offers, as well as what additional attack surface it may
introduce. For this paper, the basic taxonomy of dependable and secure com-
puting is used to conduct a dependability analysis of the AFDX frame man-
agement design. An OMNeT++ model simulation of an AFDX network is used
to demonstrate potential attacks. Considerations for solutions for a robust AFDX
specification are proposed for future research.

Keywords: AFDX � Deterministic � Critical industries
Dependable and secure computing

1 Introduction

ARINC 664 is a multi-part specification that defines a network that provides deter-
ministic, secure and reliable communications data exchange, with redundancy man-
agement [1, 2]. AFDX is an implementation of ARINC 664, as defined in part 7 of this
specification, and specifically addresses the electrical and protocol conditions for data
exchange between Avionics Computer Systems. AFDX is based on commercial
10/100 Mbit switched Ethernet, but with extensions to support determinism and fault-
tolerance [1, 2]. There are three components of an AFDX network, namely, the Avionics
Subsystem, the End System, and the AFDX Interconnect (Fig. 1) [1, 3, 4]. The core
services are provided by the End System and the AFDX Interconnect, each having
subcomponents to support their functions. For instance, Virtual Links (VLs) are
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subcomponents of the AFDX Interconnect. These VLs are logical, unidirectional paths
from one source End-System to one or more destination End-Systems and are used to
reserve link capacity and to guarantee reliable and deterministic transmissions [1, 3]. As
surmised from [1], the functioning of an AFDX network relies on static, pre-defined
configurations, which are implemented by the system integrator. In fact, the specification
of AFDX only defines the required network performance without stipulating the methods
by which to achieve this performance. Configurations implemented at the discretion of
the system integrator include the VL routes for frame transmission, the transmission rate
allowances for the VLs, and the size of the receiving and forwarding buffers in the AFDX
switch. Determinism is then guaranteed through sufficient queuing capacities and the
static routes of reserved link capacity. Fault-tolerance is achieved through redundant
AFDX switches and through the Redundancy Manager (RM) of the End System.

Comparable counterparts to AFDX are the Time-Triggered Ethernet (TTE), defined
in SAE AS6802; and Audio Video Transport Protocol (AVTP), defined in IEEE 1722-
2016. Like AFDX, TTE and AVTP are all based on standard Ethernet, with services
added to provide deterministic and fault-tolerant data exchange [1, 5, 6]. The differ-
ences among the three are observed in how they achieve determinism. However, each
has the capacity for use in critical infrastructures. On one hand, TTE and AVTP use
services that support flexible performance. For instance, AVTP uses the Generalized
Precision Time Protocol (IEEE 802.1 AS), for time synchronization; the Stream
Reservation Protocol (IEEE 802.1Q), for bandwidth reservation; and the Forwarding
and Queueing Enhancements for Time-Sensitive Streams (IEEE 802.1 qAV), for for-
warding time-critical data [5]. Such implementations allow TTE and AVTP networks
to be dynamic, allowing on-the-fly route reservation for data exchange. On the other
hand, AFDX uses preset configurations to create static routes with fixed link capacity,
which achieves determinism in terms of quality of service (QoS), and not necessarily in
terms of deterministic transmission. Through these fixed configurations, an AFDX
network can be regarded as a dependable system. In that, upon verification of its initial
configuration, an AFDX network should reliably route frames, prevent the intrusion of
unverified systems/routes, and ensure conformance to network allowances. However,

Fig. 1. Typical AFDX network with redundant switch [1, 3]
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whilst these highlight quantifiable strengths of an AFDX network, weaknesses arise
from the fact that AFDX offers no mechanism to detect or prevent unauthorized or
unfavorable manipulations of these configurations. Therefore, the dependability of the
data exchange is debatable.

The original definition of dependability states that it is the ability to deliver service
that can justifiably be trusted; whilst the alternate definition offers that the dependability
of a system is the ability to avoid service failures that are more frequent and more
severe than is acceptable [7]. A service failure refers to an event that occurs when the
delivered service deviates from the correct service [7]. Therefore, to be truly
dependable, an AFDX network must deliver service that can be justifiably trusted and
is resilient to the effects of threats that can result in frequent and/or severe service
failures. This paper ascertains the dependability of AFDX in relation to its intrinsic
protection against attacks and in relation to its vulnerable points. Discussions of future
research highlight prospective solutions and the considerations for their effect on the
deterministic property of AFDX. The paper is organized as follows: Sect. 2 addresses
related works; whilst Sect. 3 provides a summary of the AFDX frame management
design, with an analysis against the basic taxonomy of dependable and secure com-
puting [7]. Section 4 uses the AFDX OMNeT++ model to demonstrate the results of
three attack test cases. Section 5 discusses the perspective and considerations of future
research, and Sect. 6 summarizes the main points of the paper.

2 Related Work

Both references [8, 9] use a model of an AFDX network to provide a reliability analysis
of its frame management design. Frame management is used to refer to the flow of
messages from the source End System to the destination End System and the sup-
porting processes for a dependable message exchange. As presented in these works, the
reliability analyses concerned delivery of sound frames and the reliable (QoS-
compliant) delivery of the same. References [8, 9] indicate that the AFDX frame
management is vulnerable to the effects of a babbling End System and network or
channel errors that can result in dropped frames and unexpected End System resets.
Reference [8] proposes a modification of the original frame management design to
include a priority queue at the receiver for storing the frames, which would allow the
identification of babbled frames. An additional proposal was to communicate redun-
dant copies of the reset message to prevent unwarranted resets from a babbled reset
frame or from a channel error. As indicated in [9], these solutions will induce unfa-
vorable delays at the destination End System in its delivery of frames to the upper
layers of the protocol stack, as well as increased delay before the destination End
System reset. In response, [9] suggests the introduction of a new field in the AFDX
frame, which will hold the signature (hash value) of the frame sequence number.
Message authentication is performed by the destination End System to verify the frame
legitimacy. A second proposal includes the implementation of a queue at the desti-
nation End System, and the use of a variable psn (previous sequence number). These
are used together to determine the legitimacy of incoming frames.
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Whilst the proposals from [9] are seemingly more suitable compared to [8], neither
paper addresses the reliability of the system from the perspective of maintaining
trustworthy configurations. In that, like the original AFDX design, the proposed
extensions accepted frames based solely on their sequence number, whilst also making
additional allowances to accept delayed frames. This paper considers the dependability
of the frame design, rather than simply the reliability, which is just one attribute of
dependability.

3 AFDX Dependability Analysis

3.1 AFDX Frame Management

Traffic transmitted between Avionics Computer Systems is shaped and policed by the
End System and the AFDX switch. The End System is supported by its subcompo-
nents: the integrity checker, the Redundancy Manager, and the VL Scheduler (com-
prised of bandwidth allocation gap (BAG) regulators and a multiplexer (MUX)). For
the AFDX switch, its subcomponents are the receiving (Rx) and transmitting
(Tx) buffers, memory bus, CPU, and the forwarding network table [1].

A simplified overview of the AFDX frame management design is as follows. The
sending Avionics Subsystem communicates a message through a predetermined AFDX
communication port to its connected End System. The End System encapsulates the
message in an Ethernet frame, in preparation for transmission on an also pre-defined VL.
The VLs have three properties. The BAG, which, despite its name, is not a measurement
of bandwidth, but is a time measurement to represent the minimal interval (milliseconds)
between frames transmitted on the virtual link. This value ranges in powers of 2 from 1
to 128 ms [1]. The second is the Lmax, which is the largest Ethernet frame, in bytes, that
can be transmitted on the virtual link. The third is the limit of the data transmission rate,
which is a function of Lmax and BAG, and represents the maximum transmission/link
capacity for a given VL. These properties are enforced by the VL Scheduler, which
selects frames for transmission, based on the implemented scheduling algorithm. Once a
frame is scheduled, a sequence number is appended to the frame. Inside the VL
Scheduler, the BAG regulator paces the frames from the VL queues to create zero-jitter
output streams, whilst the MUX multiplexes the BAG regulator outputs into the
Redundancy Manager for replication and transmission on to the physical links. The
primary frame and the replicated frame are transmitted on different networks towards an
AFDX switch. Not all frames are accepted at the AFDX switch, as its policing function
checks for and drops non-conformant frames (based on the VL properties). The AFDX
switch uses a store-and-forward approach in delivering the frames in a First-in-First-Out
(FIFO) order [1]. Incoming frames arrive at the Rx buffers and wait to be transferred to
the output ports Tx buffers. The switch CPU uses the VL identifier (VLID) found in the
frame header, in conjunction with the forwarding table of the switch, to retrieve the pre-
defined destination(s) for the frame. Once the route is retrieved, the frame is copied from
Rx buffer to Tx buffer, through the memory bus, then transmitted in a FIFO order on the
outgoing link to the destination End System(s) or to another switch. Once received at the
destination End System(s), the primary and replicated frames go through integrity
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checking, which is done by the Integrity Checker. The sequence number of a frame is
used to determine its validity. Valid frames are submitted to the Redundancy Manager of
the destination End System, which accepts the first correct frame and drops any
duplicates [1]. The frame is now transmitted to the receiving Avionics Subsystem(s).
Figure 2 provides a summary of this message flow [10].

3.2 Dependable and Secure System

The correct functioning of an AFDX network relies on the configurations implemented
by the system integrator, as such, there is an inherent dependence on these configu-
rations being trustworthy. The AFDX switch is the central point of this dependence –

the End Systems trust that the switch will: (1) reliably route their messages, (2) detect
and prevent non-conformance, and (3) prevent transmissions from unauthorized sys-
tems. Therefore, transmission from the AFDX switch is perceived as trustworthy,
which brings into question the dependability of the frame management design.

Reliability, safety, maintainability, availability and integrity are all attributes of
dependability. In addition to confidentiality, availability and integrity are also con-
sidered as attributes of security. However, whilst dependability and security share
similar attributes, these are associated with different objectives, as expressed in [7]. The
dependability and security specification of a system is a function of the requirements
and the use environment, and as such, not all attributes may be required [7]. For
instance, given that AFDX is built to support determinism and fault-tolerance, the most
relevant attributes are availability (readiness for correct service; available for autho-
rized actions only), reliability (continuity of correct service) and integrity (absence of
improper system alterations; absence of unauthorized alterations) [7]. The bracketed
objectives correspond to dependability (in italics) and security.

Reference [7] postulates four major categories of means by which the attributes of
dependability and security can be attained. These are summarized in Table 1 along
with example mechanisms used by AFDX [1, 7]. As gleaned from Table 1, AFDX
offers at least one protection mechanism in each category. These mechanisms suggest

Fig. 2. The AFDX network simulation system [10]
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that AFDX can negate some network attack vectors, such as packet injection, system
intrusion, and network enumeration. For instance, network enumeration and system
intrusion are made more difficult with the static paths – the pre-configured forwarding
table in the switch negates the simplicity of an attacker attaching a device on the
network and being able to communicate on the network or interact with any trusted
system. However, the threat of an insider can reduce the strength of these intrinsic
protection mechanisms – a common threat in all IT and OT environments.

Table 1. Means for achieving dependability and security, with AFDX example mechanisms.

Means Definition AFDX mechanisms

Fault
prevention

Means to prevent the occurrence or
introduction of faults

The AFDX specification provides a
number of mathematical formulae for
reference by the system integrator, to
ensure that the configurations are
conducive to an effective
implementation
By using static routes, unintended
and/or unauthorized communication
paths or unintended trust relationships
between systems can be avoided

Fault
tolerance

Means to avoid service failures in the
presence of faults

In the event of a babbling end system,
traffic policing and shaping services
ensure that the switch is not flooded
with babbled frames
Redundancy management provides
communication continuity, in the
presence of a faulty communication
link

Fault
removal

Means to reduce the number and
severity of faults

AFDX specifies services at the Switch
to verify the legitimacy of incoming
messages, to prevent the introduction
and proliferation of malformed or
malicious data. This filtering process
includes an integrity check, frame size
inspection, and traffic policing
Filter services are also provided at the
receiving End Systems, to prevent the
proliferation of faulty or replicated
data

Fault
forecasting

Means to estimate the present
number, the future incidence, and the
likely consequences of faults

A Management Information Base
(MIB) is implemented in each AFDX
component, to store information
about the same. MIB objects use fault
indicators to signal errors in these
components. Users are responsible for
deriving the future incidence and
likely consequences of the signaled
fault(s)
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3.3 Attack Path Analysis

As previously mentioned, the main dependability and security attributes of the AFDX
frame management design include availability, reliability and integrity. As such attack
path analysis should consider the vulnerabilities in the mechanisms used by AFDX to
prevent, tolerate, remove and forecast faults. The inside attacker point-of-view is used
in this attack path analysis, as research continues to show that insiders are one of the
biggest threats to cybersecurity. In their analysis of the insider, some writers have
chosen to distinguish the level of knowledge and the level of awareness as even greater
factors in determining the extent of the threat posed by an insider [11–14]. For this
paper, the insider model as proposed by Saglietti et al. [14] will be referenced (Fig. 3),
as this work considers a similar context, that is, a critical infrastructure environment.

To address the insider threat issue, it is useful to determine the threat potential of
the insider. Factors to determine this includes the degree of knowledge the insider
possesses and the role of the insider (i.e. the level of privileged access). In their paper,
Saglietti et al. [14] categorized levels of knowledge of an insider as low, high and full.
This paper is written from a network security perspective and concerns the develop-
ment and operation phase of a power plant. ‘Lowly informed’ insiders are then
described as having enough knowledge to locate network cables and to perceive bit
streams and access protocol metadata [14]. ‘Highly informed’ insiders have a more
technical knowledge of plant applications and can interpret, remove, change and insert
messages sent over the network. Whereas, ‘fully informed’ insiders possess even fur-
ther knowledge, such as of the underlying code, which could have been obtained from
their involvement in the system platform development phase or the automation and
electrical systems engineering phase. After classification of the insider, the next step is
to define the possible faults in the target network and formulate example attack trees to
realize these paths.

Fig. 3. Levels of knowledge with corresponding domains of knowledge [14]
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Using the fault taxonomy as presented in [7], two classes of faults have been
identified as suitable for the context of the AFDX network. These are interaction faults
and malicious faults. Both are human-made faults, but whilst malicious faults can occur
during the development and the operation phases, interaction faults occur in the
operation phase. Additionally, whilst both can result in similar service failures, mali-
cious faults are goal-based, and interaction faults are considered as unintentional.
Malicious faults can be classified as malicious logic faults – involve the use of mali-
cious code (worms, virus, logic bombs); or intrusion attempts – involve privilege
escalation attacks by internal or external attacker. Interaction faults arise from the
elements of the use environment interacting with the system. This includes configu-
ration faults (e.g. wrong parameter settings) and reconfiguration faults (occurs during
configuration changes, upgrade and maintenance) [7]. Referring the model in Fig. 3, it
can then be said that the aforementioned faults can only be realized in an AFDX
network by medium to highly informed insiders. With this, the identified fault cate-
gories can be used to create an attack tree for an AFDX network, where the resultant
service failure is a denial of service (DoS) event (Fig. 4). The actions in the blue boxes
can be intentional (malicious fault) or unintentional (interaction fault). The attack tree
considers an attack on the configuration settings of the AFDX switch (the core of the
system dependability). As indicated by the attack tree, erroneous changes to VL
information (network allowances), forwarding table (traffic routes), and Rx and Tx
buffers (queue size), can result in a DoS event.

Fig. 4. AFDX DoS attack tree model example (Color figure online)
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4 Attack Analysis with OMNeT++ Model of AFDX

As concluded by reference [15], the use of the AFDX network design based on the
OMNeT++ TTE model, as well as the simulation approach, provided results that
indicate that both “present a constructive tool and a great value in AFDX network
evaluation, particularly on real-time network performance analysis and design veri-
fication”. Furthermore, [15] states that this OMNeT++ simulator represents the only
open source simulator of use and is advantageous in facilitating modeling complex case
studies. These validate the use of the OMNeT++ simulator for this paper, the source
code of which was retrieved from reference [16]. The AFDX network layout used is
seen in Fig. 5 [16]. This simulator uses the process modeling library, as described by
OMNEST, which is the commercial version of OMNeT++ [17]. The process modelling
library is suitable for building queueing and resource reservation models, such as an
AFDX network. Models built using this library can be used in testing system perfor-
mance, as well as in serving as the foundation for the execution of further simulations
[18]. The modules of this library are described in reference [18].

Using the attack tree model as guidance, this OMNeT++ model is modified to test
and demonstrate the three security events at the AFDX switch: (1) erroneous VL
properties, (2) erroneous routes in the forwarding table, and (3) erroneous buffer sizes.
To simulate these events, specific variables of the OMNeT++ model were manipulated,
the results of which are discussed below.

4.1 Erroneous VL Properties

As mentioned, traffic policing function is conducted at the AFDX switch. Incoming
frames are checked for conformance based on their VLID, which indicates their BAG,
Lmax and transmission capacity properties. For this test case, the paper considers an
unchecked/unverified event where the corresponding VL information is modified at the

Fig. 5. AFDX network layout in OMNeT++ model

196 V. Watson and M. Bejiga



switch – the VLs are conformant, however, the information used to confirm this at the
switch is incorrect. It is expected then that the switch will drop these frames.
A screenshot of the OMNeT++ simulator log depicts the result of this event (Fig. 6).
As observed, a frame is dropped as it is “too old”, to indicate that it has exceeded its
overall time on the network – a measure based on inconsistent VL properties at the
switch. If left unchecked, sound frames will continue to be dropped, causing a DoS
event, which, based on the attack tree (Fig. 4), can cause the intended message
recipient(s) to go into safety shutdown, as it is being denied updated data.

4.2 Erroneous Routes in the Forwarding Table of the Switch

The modules for the switch contain parameters for the allowed routes, which are
represented in the format:

ES0.ethPortA <--> Eth100 <--> switchA.ethPort[0] 
ES2.ethPortA <--> Eth100 <--> switchA.ethPort[0] 
ES0.ethPortB <--> Eth100 <--> switchB.ethPort[1] 
ES2.ethPortB <--> Eth100 <--> switchB.ethPort[1] 

This example represents the valid paths from End System zero (ES0) to End system
two (ES2). Essentially, the paths displayed can be assumed as extracts of the for-
warding table in the OMNeT++ model, and a boolean variable, “isPathOK”, is used to
determine the validity of the route for incoming packets at the switch. If a connected
path/route cannot be detected, then the frame is dropped at the switch. This is observed
in Fig. 7, which displays a screenshot of the simulator log depicting the results of an
event where a connected path is not found. For this test case, the allowed routes were
replaced with invalid ones. As observed, frames are dropped because a route cannot be
determined based on the forwarding table at the switch. If left unchecked, this can
cause the intended message recipient(s) to go into safety shutdown, as it is being denied
up-to-date data.

Fig. 6. Simulator log showing dropped packets at the switch due to perceived non-conformance

Fig. 7. Simulator log showing dropped packet at the switch due to erroneous routes
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4.3 Erroneous Buffer Size at the Switch

The modules for the switch Tx and Rx buffer queues have a “capacity” integer variable,
which denotes the queue size. Where, if the capacity is greater than or equal to zero
AND the queue length is greater than or equal to the “capacity”, the queue becomes
full. All incoming packets are dropped until the queue has space for storing frames.
This capacity was reduced significantly to simulate the effect of an insufficient buffer
size. A screenshot of the simulator log depicts the results of this event (Fig. 8). As
observed, the queue is detected as full, as such, frames are dropped at the switch. If left
unchecked, the resulting service failure is as described in the previous cases.

4.4 Limitations of the OMNeT++ Model

Although the OMNeT++ model provided a useful environment for testing the per-
formance of the AFDX network under the three test cases, it was found to have the
following limitations. Not all the variables were initialized in a manner to generate the
test cases. For instance, even though the logs show traffic being assigned parameters
such as a VLID, changing this value does not have any effect on the simulation.
Additionally, a single variable was used for more than one component. For example,
changing the queue size “capacity” variable affected both switches instead of one, as
this variable was a single instance that was shared by both. This restricted the extent to
which the test cases reflected true events, as the manipulation on one switch should be
an independent action. However, it must be noted that it is declared in the model
documentation that the simulator does not implement the entire AFDX protocol, only
the MAC layer, as such, some limitations are to be expected.

Fig. 8. Simulator log showing dropped packets at the switch due to flooding

198 V. Watson and M. Bejiga



5 Considerations for Future Improvements AFDX

To remain a trustworthy system, AFDX networks require additional controls on the
network or integrated as a part of the specification. However, as AFDX is used in
critical Avionics industry and is being considered for further critical industries, con-
sideration must be given to the safety requirements of these industries. For instance, the
time-sensitivity of the message delivery must not be negatively impacted by the con-
trol. As such, resource-intensive controls are not feasible.

This paper describes a scenario where the integrity of the AFDX network is to be
preserved as a prime means by which to ensure a dependable network. One example
from the nuclear industry that focuses on this requirement is observed with OPA-
NASec® from AREVA. OPANASec® is implemented as a network component that
seamlessly integrates with and protects the integrity of programmable logic controllers
(PLCs), through access control and integrity monitoring [19]. Of special note is that
OPANASec® is a real-time solution, which provides an additional advantage of also
preserving availability. Changes to the PLCs are identified through checksums of the
monitored data, and once detected, are stored in a non-volatile diagnostics buffer. An
alert (normally a signal light for the operators) is then created [19]. Further examples
are observed with industrial switches that have built-in security modules that provide
detective and preventive controls to protect unauthorized network events.

However, additional requirements are necessary for AFDX, as the solution must
address security on a network-wide basis, and not per-system. Integrity controls must
seek to ensure:

• known and authorized communication paths and trust relationships between
systems

• known and authorized data frame properties (e.g. BAG, Lmax, etc.)
• observation of delay bounds, as prescribed by the formulae in the AFDX specifi-

cation, Eqs. (1) and (2) [1].

max jitter� 40 lsþ
P

j2 set of VLsf g ð20þ Lmaxj
� �� 8Þ
Nbw

ð1Þ

max jitter� 500 ls ð2Þ

As such, a small subset of controls is suitable for use with AFDX. However, this does
not eliminate all categories of controls. For instance, cryptographic controls are con-
sidered resource intensive, and are usually not considered for use in critical industries.
In fact, controls for confidentiality (primarily cryptography) are typically excluded
from such industries. Nevertheless, with the introduction of and continued efforts to
standardize light-weight cryptographic solutions, such as seen with IEC 29192 Infor-
mation technology – Security techniques – Lightweight cryptography, cryptography is
becoming a viable option for time-sensitive infrastructures. In fact, several researchers
have demonstrated the minimal impact and significant benefits of introducing light-
weight cryptographic controls into resource constrained and critical environments such
as the smart grid, e-health systems, smart-vehicles and other IoT infrastructures
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[20–22]. The results of these publications demonstrate that the integration of light-
weight cryptography satisfied desirable security requirements of the environments,
whilst also preserving the performance requirements of the same. This provides
additional motivation for a similar integration of cryptographic controls in AFDX to
guarantee trustworthy data exchange, that is, to preserve network integrity. With this
intent, Message Authentication Codes (MACs) are considered as the prime option to
preserve data integrity. Like digital signatures, MACs provide oversight for authenti-
cation and integrity. However, as MACs are typically generated using hash-functions
or block cipher and use a symmetric key, this makes them faster than digital
signatures [23].

To develop an integrity scheme for a time-sensitive switched Ethernet network, it is
necessary to assess the available MACs in terms of their speed and security (robust-
ness). Viable MACs are described in ISO/IEC 9797 Information technology – Security
techniques – Message Authentication Codes (MACs) and the aforementioned ISO/IEC
29192. In this scheme, it is intended that the End Systems submit data across the
network along with a corresponding checksum, whilst key management services (key
generation, distribution and other processes in the lifecycle of a key) are provided at the
AFDX switch. Further research is necessary to test and demonstrate this scheme for
AFDX. As a guide to inform the performance of this new security scheme, results from
works that analyze conventional AFDX implementations should be used as a baseline.
For instance, Fig. 9 indicates suitable AFDX configuration data based on the results of
worst-case end-to-end delay analysis [24]. These should serve as baselines to ascertain
the impact of the data integrity scheme on an AFDX network. In that, following this
implementation, the resultant changes must have minimal impact on a conventional
AFDX implementation.

Further, concerning the maintenance of trustworthy configuration data, additional
monitoring services can be implemented at the switch, where a MIB is already present.
This can be expanded to consider existing integrity solutions such as whitelisting. In
that, in typical AFDX implementations the switch hosts configuration tables for each
End System – this can be expanded to include two copies, where one is used as a
baseline to detect changes. This baseline configuration can be whitelisted to protect its
integrity and should be further stored in a separate partition. Through SNMP, incon-
sistencies can be detected, and signaled in a similar fashion to typical errors described

Fig. 9. AFDX configuration as an indicator of its performance
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in the AFDX specification. Again, comprehensive modelling and testing is required to
ensure that AFDX dependability and security attributes are sufficiently protected, with
the integration of these solutions.

6 Conclusion

The design of the Avionics Full Duplex Switched Ethernet (AFDX) realizes mecha-
nisms to prevent, tolerate, remove and forecast faults, to preserve its deterministic and
fault-tolerant properties. However, as with IT and OT environments, insider threats can
weaken these intrinsic protection mechanisms, and allow the proliferation of attacks.
To detect and deter insider attacks, proposed solutions include an integrity monitoring
solution integrated as a part of the AFDX switch MIB, the use of light-weight cryp-
tography and of a whitelisting solution. However, consideration must be given to the
AFDX specifications that should be met to realize a compliant and viable configuration.
Furthermore, consideration must be given to safety and security requirements of the
critical environments where AFDX will be deployed. The AREVA SMARTEST
project aims to also contribute to the on-going effort of ‘smart’ testing and ‘smart’
security, to ensure reliable and resilient systems.

Acknowledgements. Some of the addressed topics are being elaborated as part of AREVA
GmbH’s participation in the “SMARTEST” R&D (2015–2018) with German University part-
ners, partially funded by German Ministry BMWi.

References

1. Aeronautical Radio Inc. (ARINC). Specification 664: aircraft data network, part 7 –

deterministic networks, 23 September 2009
2. Thirumeni, P., Ghoshhajra, M., Ananda C.M.: Lessons learned in software implementation

of ARINC 664 protocol stack in Linux. In: Proceedings of International Conference on
Circuits, Communication, Control and Computing (I4C) (2014)

3. AIM GmbH. AFDX training: AFDX workshop, October 2010. http://www.afdx.com/pdf/
AFDX_Training_October_2010_Full.pdf. Accessed 25 Feb 2018

4. GE Fanuc. Embedded systems AFDX/ARINC 664 protocol tutorial, January 2011. http://
www.cems.uwe.ac.uk/*a2-lenz/n-gunton/worksheets/AFDX_Tutorial_WP.pdf. Accessed
25 Feb 2018

5. IEEE. IEEE Std 1722-2016: (revision of IEEE Std 1722-2011) - IEEE standard for a
transport protocol for time-sensitive applications in bridged local area networks, 16
December 2016

6. TTTech. TTEthernet theory and concepts, 27 August 2015. http://etr2015.irisa.fr/images/
presentations/TTEthernet_ETR_2015_Rennes.pdf. Accessed 22 Feb 2018

7. Avizienis, A., Laprie, J., Randell, B., Landwehr, C.: Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Dependable Comput. 1(1), 11–33 (2004).
http://ieeexplore.ieee.org/document/1335465/. Accessed 01 Mar 2018

8. Anand, M., Dajani-Brown, S., Vestal, S., Lee, I.: Formal modeling and analysis of the
AFDX frame management design. In: Proceedings of 9th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC 2006),
pp. 393–399 (2006)

Dependability Analysis of the AFDX Frame Management Design 201

http://www.afdx.com/pdf/AFDX_Training_October_2010_Full.pdf
http://www.afdx.com/pdf/AFDX_Training_October_2010_Full.pdf
http://www.cems.uwe.ac.uk/%7ea2-lenz/n-gunton/worksheets/AFDX_Tutorial_WP.pdf
http://www.cems.uwe.ac.uk/%7ea2-lenz/n-gunton/worksheets/AFDX_Tutorial_WP.pdf
http://etr2015.irisa.fr/images/presentations/TTEthernet_ETR_2015_Rennes.pdf
http://etr2015.irisa.fr/images/presentations/TTEthernet_ETR_2015_Rennes.pdf
http://ieeexplore.ieee.org/document/1335465/


9. Saha, I., Roy, S.: A finite state modeling of AFDX frame management using spin. In: Brim,
L., Haverkort, B., Leucker, M., van de Pol, J. (eds.) FMICS 2006. LNCS, vol. 4346,
pp. 227–243. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70952-7_15

10. Song, D., Zeng, X., Ding, L., Hu, Q.: The design and implementation of the AFDX network
simulation system. In: Proceedings of International Conference on Multimedia Technology
(ICMT) (2010)

11. Tripwire: Insider threats as the main security threat in 2017. https://www.tripwire.com/state-
of-security/security-data-protection/insider-threats-main-security-threat-2017/. Accessed 22
Feb 2018

12. Dury, S: Employees still the biggest threat to enterprise security. https://www.digicert.com/
blog/employees-still-the-biggest-threat-to-enterprise-security/. Accessed 22 Feb 2018

13. van Zadelhoff, M.: The biggest cybersecurity threats are inside your company. https://hbr.
org/2016/09/the-biggest-cybersecurity-threats-are-inside-your-company. Accessed 22 Feb
2018

14. Saglietti, F., Meitner, M., von Wardenburg, L., Richthammer, V.: Analysis of informed
attacks and appropriate countermeasures for cyber-physical systems. In: Skavhaug, A.,
Guiochet, J., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9923, pp. 222–
233. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45480-1_18

15. Rejeb, N., Ben Salem, A.K., Ben Saoud, B.: AFDX simulation based on TTEthernet model
under OMNeT++. In: Proceedings of 2017 International Conference on Advanced Systems
and Electric Technologies (IC ASET), pp. 423–429 (2017)

16. Varga, A., Hornig, R.: Avionics full-duplex switched Ethernet model for OMNeT++, 20
February 2012. https://github.com/omnetpp/afdx. Accessed 05 Mar 2018

17. Simulcraft, Inc.: OMNEST - OMNeT++ comparison. https://omnest.com/comparison.php.
Accessed 05 Mar 2018

18. Simulcraft, Inc. Performance modeling library. https://omnest.com/queueinglib.php.
Accessed 05 Mar 2018

19. Parekh, M., Gao, Y., Gupta, D., Luschmann, C.: OPANSec – security integrity monitoring
for controllers. In: Proceedings of 46, Jahrestagung der Gesellschaft für Informatik, pp. 547–
557 (2016)

20. Khemissa, H., Tandjaouiy, D.: A lightweight authentication scheme for e-health applications
in the context of Internet of Things. In: Proceedings of 9th International Conference on Next
Generation Mobile Applications, Services and Technologies, pp. 90–95 (2015)

21. Fouda, M.M, Fadlullah, Z.M., Kao, N., Lu, R., Shen, X.: Towards a light-weight message
authentication mechanism tailored for smart grid communications. In: Proceedings of IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 1018–
1023 (2011)

22. Mundhenk, P., Steinhorst, S., Lukasiewycz, M., Fahmy, S., Suhaib, A., Chakraborty, S.:
Lightweight authentication for secure automotive networks. In: Proceedings of the
Conference on Design, Automation and Test in Europe, pp. 1–4 (2015)

23. Paar, C., Pelzl, J.: Understanding Cryptography: A Textbook for Students and Practitioners,
pp. 319–330. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-04101-3

24. Charara, H., Scharbarg, J.-L., Ermont, J., Fraboul, C.: Methods for bounding end-to-end
delays on an AFDX network. In: Proceedings of the 18th Euromicro Conference on Real-
Time Systems, Washington, D.C., USA, pp. 193–202 (2006)

202 V. Watson and M. Bejiga

http://dx.doi.org/10.1007/978-3-540-70952-7_15
https://www.tripwire.com/state-of-security/security-data-protection/insider-threats-main-security-threat-2017/
https://www.tripwire.com/state-of-security/security-data-protection/insider-threats-main-security-threat-2017/
https://www.digicert.com/blog/employees-still-the-biggest-threat-to-enterprise-security/
https://www.digicert.com/blog/employees-still-the-biggest-threat-to-enterprise-security/
https://hbr.org/2016/09/the-biggest-cybersecurity-threats-are-inside-your-company
https://hbr.org/2016/09/the-biggest-cybersecurity-threats-are-inside-your-company
http://dx.doi.org/10.1007/978-3-319-45480-1_18
https://github.com/omnetpp/afdx
https://omnest.com/comparison.php
https://omnest.com/queueinglib.php
http://dx.doi.org/10.1007/978-3-642-04101-3


Fault Tolerance



Efficient On-Line Error Detection
and Mitigation for Deep Neural

Network Accelerators

Christoph Schorn1,2(B), Andre Guntoro1, and Gerd Ascheid2

1 Corporate Research, Robert Bosch GmbH, Renningen, Germany
{christoph.schorn,andre.guntoro}@de.bosch.com

2 Institute for Communication Technologies and Embedded Systems,
RWTH Aachen University, Aachen, Germany

gerd.ascheid@ice.rwth-aachen.de

Abstract. The use of deep neural network accelerators in safety-critical
systems, for example autonomous vehicles, requires measures to ensure
functional safety of the embedded hardware. However, due to the vast
computational requirements that deep neural networks exhibit, the use
of traditional redundancy-based approaches for the detection and mitiga-
tion of random hardware errors leads to very inefficient systems. In this
paper we present an efficient and effective method to detect critical bit-
flip errors in neural network accelerators and mitigate their effect at run
time. Our method is based on an anomaly detection in the intermediate
outputs of the neural network. We evaluate our method by performing
fault injection simulations with two deep neural networks and data sets.
In these experiments our error detector achieves a recall of up to 99.03%
and a precision of up to 97.29%, while requiring a computation overhead
of only 2.67% or less.

1 Introduction

Deep neural networks (DNNs) have surpassed human-level performance in
some very challenging decision tasks (e.g. [13,24,27]). In the field of machine
vision, DNNs are outperforming traditional approaches with hand-crafted fea-
ture extractors [20]. This makes them a key component for autonomously oper-
ating systems. The computational complexity of DNNs for perception tasks calls
for the development of dedicated accelerators which meet the energy efficiency
and speed requirements of these applications [5]. At the same time, since environ-
mental perception is at the heart of autonomous systems, its associated hardware
components are regarded as highly safety-critical. For example, an environmen-
tal perception system for highly automated driving in complex traffic scenarios
will presumably have to fulfill the requirements of the highest automotive safety
integrity level (ASIL) D, as defined in the ISO 26262 standard for functional
safety of road vehicles [17]. This corresponds to an overall random failure rate of
less than 10 FIT1 for the responsible hardware. Yet the ongoing trend towards
1 1 failure-in-time (FIT) = one failure in one billion device operating hours.
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shrinking structure widths and lower operating voltages increases the susceptibil-
ity of modern integrated circuits to random hardware errors [1,14]. Furthermore,
the growing memory size of electronic systems increases the per device FIT rate
due to radiation induced soft errors [16]. Since DNN accelerators require large
amounts of buffer memories and are extensively employing data reuse, efficient
and effective soft error mitigation techniques are needed to avoid silent data
corruption (SDC) [22].

The contribution of our research is a novel error detection and mitigation
method for DNN accelerators. This method has three major advantages com-
pared to the state-of-the-art. Firstly, it achieves very high detection recall rates
for random bit-flip errors, and thus it can effectively lower the risk of SDC in
DNN accelerators. Secondly, it requires only a small fraction of additional multi-
ply accumulate (MAC) operations, while redundancy-based methods often have
a computation overhead of more than 100%. And thirdly, it not only detects
critical bit-flip errors, but also is able to recover the correct output of the DNN
accelerator in most cases.

The remainder of this paper is structured as follows. The next section gives
an overview about DNNs, especially those for image classification and the basics
of DNN accelerators. Then we introduce our framework for the error detection
and mitigation. In the experiments section, we evaluate our method with two
image classification DNNs and discuss our findings. Finally, we compare our
method with existing approaches from the related literature and round off our
paper with a summary and conclusions.

2 Preliminaries

2.1 Deep Neural Networks

A DNN can be described as a directed graph that is mainly constituted of a set
of interconnected neurons. Neurons are the fundamental computational units
in DNNs. Each neuron calculates a weighted sum of its inputs and applies a
nonlinear activation function on this sum. Neurons are grouped in layers, which
share a common set of inputs and outputs. Although our methods are in principle
not limited to a specific kind of network architecture, we focus on (convolutional)
feed-forward networks here, since these are widespread in the computer vision
domain [9]. In a feed-forward network with N layers, the ith layer output yi is
a function of the layer weights θi and the preceding layer output

yi = fi(θi,yi−1). (1)

The first layer input y0 equals the input data to the network (e.g. an image)
and the last layer output yN represents the task result (e.g. predicted class-
probabilities for the input image). The weights of the network are determined
in an initial training phase, by minimizing a loss function of the network over
a given set of training data and back-propagating the respective error terms
through the network. After the weights have been determined, the DNN is used
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in the inference phase to perform predictions on new data samples, e.g. to classify
sensor data in an autonomous vehicle.

Our goal in this paper is to detect errors in the computation of a DNN
on-line, during the inference phase, and to mitigate their effect on the network
output. We do not consider errors during the training phase, since training usu-
ally takes place off-line, on different hardware and before the network is applied
in a safety-critical context. Furthermore, SDC in the network weights caused by
errors during training can be detected with existing validation methods, e.g. by
measuring the network accuracy on a test data set.

2.2 Convolutional Neural Networks

Vision-based environmental perception is a key application of DNNs in
autonomous vehicles, which is why we focus on image processing neural networks
in the following. In this area, convolutional neural networks (CNNs) [21] have,
since their first success on large-scale visual recognition challenges [19], become
the gold standard approach [9]. CNNs are a specific type of DNN. The main
ideas behind them are the use of learned filters with local connectivity, weight
sharing, and a deep network architecture with intermediate pooling stages [20].

Fig. 1. Schematic depiction of the individual steps taking place in the convolutional
and pooling stages of a CNN.

Each convolutional layer of a common CNN performs two-dimensional con-
volutions of multiple filter kernels over the layer input (see Fig. 1). Layer input
and output are three-dimensional, with two spatial image dimensions and one
feature dimension. In the first layer input, the features correspond to the color
channels (e.g. RGB) of the image. The convolutions are performed along the two
spatial axes. In this way, for each filter kernel a two-dimensional feature map is
generated. The pixels in the feature maps can be regarded as neuron outputs,
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since they represent the weighted sum of an input subset, followed by a nonlin-
ear activation function. State-of-the-art CNNs typically use rectified linear units
(ReLUs) [32] as activation function. The filter kernel coefficients are learned in
a training phase, just like the weights of any other neural network architecture.
As shown in Fig. 1, a maximum-pooling stage is appended to some of the con-
volutional layers in order to reduce the spatial dimensions. The last few layers
of a CNN are often realized as fully connected layers instead of convolutional
layers. In a fully connected layer each neuron has weighted connections to all
the outputs of the preceding layer. These layers usually also use ReLU activa-
tions, except for the final output layer. For classification tasks the output layer
typically has a softmax activation function that transforms the output into class
probabilities.

2.3 Deep Neural Network Accelerators

Architecture. DNNs are often computed on graphics processing units (GPUs),
which are well suited for the highly parallel structure of the underlying opera-
tions of a neural network. However, when embedded applications are regarded,
commercial off-the-shelf GPUs often do not fulfill the energy-efficiency, through-
put and reliability requirements. Energy-efficiency and throughput have been
addressed by some recent publications of dedicated DNN accelerator architec-
tures (e.g. [6,8,10,25]). The common ideas behind these accelerators are to
exploit parallelism and to optimize dataflow and local data reuse, since external
memory access is costly, both in terms of power consumption and latency [7].
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Fig. 2. Generic architecture of a dataflow-based DNN accelerator.

Figure 2 shows the high-level view of a generic DNN accelerator. Parallelism
is achieved by using an array of interconnected processing elements (PEs), which
perform the mathematical operations of the neural network. These are mainly
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MAC operations. PEs usually have local memories, in which they accumulate
partial results. A shared on-chip static random-access memory (SRAM) buffer is
used to distribute data to the PEs and store intermediate results. For the DNN
input and output, as well as larger intermediate results, a transfer to an external
dynamic random-access memory (DRAM) is required.

Quantization. Because GPUs have been historically optimized for precise
graphical computations, DNNs on GPUs typically use the 32-bit IEEE 745
floating-point (FLOAT) arithmetic. However, the bit-width of the data repre-
sentation has a large effect on the required design area and power consumption,
which is why dedicated DNN accelerators tend to use a lower precision quanti-
zation for the weight and neuron activation representation of the network [12].
In fact, it has been shown that by adapting the training procedure, classification
networks can be quantized even down to a 1-bit data representation for weights
and activations in the inference phase without a significant degradation of the
DNN output accuracy [15,31].

The internal data representation has a strong influence on the propagation of
bit-flip errors through the DNN accelerator [22]. This is why we test our meth-
ods with a realistic data representation for dedicated DNN accelerators. Since
very low bit-width quantization requires a careful adjustment of the training
procedure, we instead employ an approach similar to [11], which lets us quantize
pre-trained DNNs from FLOAT to a variable fixed-point format with little to
no output accuracy degradation. Throughout our experiments, we use an 8-bit
variable fixed-point representation.

3 Error Detection and Mitigation Framework

3.1 Fault Model

We focus on transient faults in the form of random bit-flips in the buffer memories
and data path of a DNN accelerator. These faults can result in errors in the values
computed by the DNN and consequently lead to SDC. We define critical errors as
those errors, which change the originally correct classification output of the CNN
for a given input image. Our goal is to detect these critical errors. Furthermore,
we want to mitigate their effect, i.e. recover the correct classification output.
We limit our analysis to a single bit-flip hardware fault per inference of the
accelerator, since the inference time of a DNN accelerator typically amounts
to only a few milliseconds or less [5]. Thus, we neglect the probability of two
independent bit-flips during one inference.

The efficient detection of random memory and data path bit-flips in DNN
accelerators is an important concern for several reasons:

– DNN accelerators possess a high vulnerability to these errors, since they typ-
ically transfer considerable amounts of data between memory buffers and
PEs for each single classification. This can lead to FIT rates which violate
international safety-standards, such as ISO 26262 [22].
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– The fact that these errors occur at any random point in time, while the
accelerator is operating, makes them difficult to detect by self-test methods.
Moreover, an immediate detection and mitigation is required for autonomous
vehicles, since their action planning relies on the correct output of the DNN.
The misclassification of a stop sign can for example lead to an accident with
another vehicle.

– Existing error detection and correction schemes for DNN accelerators either
result in large area and computation overheads, or are unsuited for DNN
accelerators with low bit-width quantization [22].

3.2 Anomaly Detection in Intermediate Feature Activations

A CNN produces in each layer a set of feature activations for a given input image.
The level of activation (i.e. the respective neuron output value) indicates how
present a certain feature is in the image. In the convolutional layers, the feature
activations for each filter kernel are two-dimensional maps, i.e. the presence
of features is indicated for different locations in the input image. In the fully
connected layers, each neuron represents a certain feature. Which features the
CNN extracts is determined by the network itself during the training phase.

Fig. 3. Anomaly detection in intermediate feature activations.

A single bit-flip fault in the memory or data path of a DNN accelerator can
result in a change of one feature activation in the layer which is currently being
processed by the accelerator. Furthermore, all feature activations of the following
layers are potentially affected as well, since the error can propagate through the
network. This property is the motivation for our error detection concept, as
visualized in Fig. 3. We generate a feature activation trace for a given input
image of the CNN by concatenating the feature activations of all layers of the
network. In the convolutional layers, we summarize the activation values of the
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feature maps along the spatial axes to generate a single value for each feature.
The central idea behind our method is, that a critical bit-flip error results in
an anomaly in the feature activation trace that can be detected by an anomaly
detector. Moreover, the hypothesis is that even under the influence of a bit-flip
error, enough information about the input image features remains present in the
feature activation trace to allow for a recovery of the desired task result (i.e. the
correct image classification).

> τ

Feature 
Activation 

Trace

Corrected 
Task 

Result

Critical 
Error 

Detected?

Error Detection and Mitigation Network

Fig. 4. Architecture of the error detection and mitigation network.

Neural networks are well-suited for detecting anomalies in high-dimensional
data. This is why we choose to employ a small feed-forward neural network for
detecting critical errors in the feature activation traces of the CNN that per-
forms the actual classification task. As shown in Fig. 4, the network is designed
to predict both, if a critical error is present or not, as well as a corrected task
result for the image classifier. It would also be possible to use two separate neural
networks for error detection and error correction respectively, but the combined
network can solve the two tasks more efficiently. The error detection and mit-
igation network (EDMN) has two common fully connected layers with ReLU
activation functions. The number of input neurons of the network corresponds
to the length of a feature activation trace of the supervised CNN. The output of
the second fully connected layer is connected to two different output layers, one
for the error detection and the other one for the correction prediction. The detec-
tion part has only a single output neuron with a sigmoid activation function.
This outputs a value between 0 and 1, indicating the probability for a critical
error being present. Based on the comparison with a threshold τ , it is decided
if a critical error is present or not. Throughout our experiments we set τ = 0.5.
The correction prediction output layer has as many output neurons as the image
classifier CNN, with a softmax activation function to assign probabilities to each
of the possible image classes. An argmax function is used to select the predicted
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class based on the output neuron that gives the highest probability score. The
correction output is only taken, if the detector indicates that a critical error was
detected.

3.3 Training the Error Detection and Mitigation Network

Training the EDMN requires a set of labeled training data, consisting of fea-
ture activation traces and the appropriate target outputs for the error detection
and error correction. For generating a training data set, random bit-flips are
simulated in different neuron outputs of the quantized CNN for different input
images. These bit-flips mimic random hardware faults that can occur when the
neuron output values are stored in buffer memories or transmitted over a data
bus. The corresponding feature activation traces are recorded and taken as input
data to the EDMN. Since we consider only single bit-flips, not more than one
fault is injected for each inference of the CNN. Our method is not limited to
single bit-flips though, and can be adapted to a different fault model for a given
DNN accelerator, if necessary.

To speed up training data generation, faults are preferably injected in the
least fault tolerant neurons of each layer, based on a neuron resilience prediction
[26]. The input images are randomly drawn from the training data set of the
CNN. Additionally, random data augmentations [28] are applied to the input
images to further increase the variability of the input data. This helps the EDMN
to better distinguish between benign variations in the feature activation traces,
caused by input data variation, and a malicious feature activation variation,
caused by a random hardware fault.

In order to successfully predict faults and corrected task results, the EDMN
has to learn to distinguish between three types of feature activation traces:

1. Feature activation traces, where no hardware fault is present.
2. Feature activation traces, where a hardware fault is present, but uncritical

(i.e. the CNN output stays the same).
3. Feature activation traces, where a hardware fault is present and results in a

critical error (i.e. the CNN output changes from correct to wrong).

We generate equal shares of training samples for each of the three cases. For
each training sample, we also generate target labels for the error detection and
correction outputs. The error detection target label is 0 for the first two cases
and 1 for the third case. The error correction target labels correspond to the
labels of the input images of the CNN.

The EDMN performs both, an error detection, as well as the prediction of
an error corrected output, using a single neural network. This means that the
network parameters have to be jointly optimized for the two tasks during the
training phase. Each task represents a classification problem, for which a cross-
entropy cost function can be used.2 For the training, we add both cost functions
together and minimize the combined cost function on the generated training
data using stochastic gradient descent.
2 A basic introduction to neural network training concepts can be found e.g. in [3].
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3.4 Safeguarding the Error Detection and Mitigation Network

In order to achieve a reliable error detection and mitigation for a DNN accel-
erator with the proposed second neural network, the EDMN itself has to be
safeguarded against random hardware faults. However, since the additional net-
work is much smaller and requires far fewer operations than the image classifier
CNN, it can be computed on a separate hardware module that is protected with
classical measures, such as triple modular redundancy (TMR). Though the cost
for computing the EDMN is considerably increased this way, the overall over-
head is much smaller compared to a fully redundant computation of the large
CNN.

Besides safeguarding against hardware faults, it also has to be ensured that
the error detection and correction performance of the EDMN measured at test
time is a good estimator for the performance in the field. Two main aspects are
important in this regard. Firstly, the fault model used for generating the train-
ing data of the EDMN should as accurately as possible describe the types and
distribution of faults in the real hardware. And secondly, the training data of the
underlying monitored DNN, which is also the basis for the EDMN training data
generation, should be sufficient in terms of scenario coverage and distribution.
The second requirement is closely related to ensuring the safety of the intended
functionality (SOTIF) of the monitored DNN [4].

4 Experiments

We evaluate our methods on two different classification networks. The first one
is an All-CNN [28], which only uses convolutional and no fully connected lay-
ers. This network is trained on the popular CIFAR-10 classification benchmark,
which consists of 32 × 32 pixel RGB images divided into ten different classes
[18]. The second DNN is a Road Sign Recognition (RSR) network trained on the
German Traffic Sign Recognition Benchmark (GTSRB), which contains RGB
images of 43 different types of traffic signs [29]. The images are preprocessed
to have a resolution of 48 × 48 pixels, before they are fed into the classifier.
Additionally, we perform a fixed-point quantization for both networks with lay-
erwise variable fixed-point scaling factors, similar as in [11]. A summary of the
properties of the two DNNs is given in Table 1.

For both networks we use an EDMN with 256 neurons in each of the first
two fully connected layers. The correction output layer of the EDMN has 10
neurons for the CIFAR-10 All-CNN and 43 neurons for the RSR network. In
each experiment the EDMN is optimized using stochastic gradient descent with
a mini-batch size of 256 samples, 20 epochs, Nesterov momentum of 0.9, initial
learning rate of 0.01 and a learning rate decay of 10−6 per batch. All experiments
are conducted with our own fault injection simulation environment for deep
neural networks, which makes use of GPU acceleration for the simulations.
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Table 1. Networks used for the evaluation.

Network Dataset Layers Features per layer Accuracy (8-bit)

All-CNN CIFAR-10 9 conv. 96, 96, 96, 192, 192,
192, 192, 192, 10

88.43%

RSR GTSRB 6 conv., 2 fully conn. 32, 32, 64, 64, 128,
128, 512, 43

98.57%

4.1 CIFAR-10

The CIFAR-10 training data set consists of 50 000 images. With these training
images and the All-CNN, we create training set of 711 999 feature activation
traces, by randomly choosing several bit-flip error positions in the intermediate
feature activations for each image. For each fault position, a random data aug-
mentation, consisting of an image shift, zoom, rotation, color channel shift and
random horizontal flip, is applied to the input image, to increase the feature
activation trace variety. The training set has equal amounts of samples for the
three cases described in Sect. 3.3. Each trace sample has a length of 1258, which
corresponds to the sum of all layer features of the All-CNN.

In order to evaluate the performance of our EDMN after the training, we
create a separate test set. This is created similarly to the training set, with the
difference that it is based on the separate 10 000 test images of the CIFAR-10
dataset and no data augmentations are applied. We create a total number of
70 368 test samples.

4.2 Single Image Road Sign Recognition

For the RSR network we consider two different cases. The first one is the classi-
fication of single, independent road sign images by the DNN accelerator (RSR-
single). In this case, the feature activation trace training and test sets are gen-
erated similarly to the CIFAR-10 data, with the only difference that horizontal
flips are removed from the random data augmentations, since these would change
the meaning of some traffic signs. Out of the 39 210 training images and 12 630
test images of the GTSRB data set, we generate 135 648 training and 47 013 test
feature activation traces with the RSR network.

4.3 Sequential Road Sign Recognition

The second case, which we consider for the RSR network, is the processing of
sequential input data (RSR-sequence). This is a realistic scenario for real-world
applications, since a driving car typically captures several sequential images,
while approaching a road sign. We expect, that if the EDMN sees a sequence of
two feature activation traces from similar input images, it can more easily detect
an error in one of them and recover the correct classification result.
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Fig. 5. Example of two consecutive road sign image captures from the GTSRB dataset.

The GTSRB training dataset contains more than 1700 traffic sign instances
and for each instance a sequence of 30 consecutive images that were recorded
while approaching the traffic sign [29]. Figure 5 shows an example of two sequen-
tial images. The small differences between the two images will lead to slightly
different feature activation traces. However, we expect that the EDMN can dis-
tinguish between the changes resulting from slight modifications of the input
image and the changes resulting from a random bit-flip.

For our experiment, we randomly sample multiple sequences out of this
dataset, each containing two consecutive images, and feed them into the RSR
network. The resulting two feature activation traces per sequence are then con-
catenated before they are given to the EDMN. The input layer of the EDMN
consequently has twice as many input neurons as before. The number of neu-
rons in the other layers is kept constant. Bit-flips are only injected during the
inference of the second image of the sequence, which represents the most current
video frame captured by the camera. As before, equal shares of traces without
hardware faults, traces with a bit-flip in the second sequence image that do not
lead to a misclassification and traces with a bit-flip that lead to a misclassifica-
tion of the originally correctly classified image are generated.

4.4 Results

The results of our experiments are summarized in Table 2. To evaluate the detec-
tion performance of the EDMN, we compute three different metrics:

1. Recall: The number of correctly detected critical errors divided by the total
number of samples with critical error present in the test data set.

2. Precision: The number of correctly detected critical errors divided by the
total number of detected critical errors (including false positives).

3. False positive rate (FPR): The number of samples incorrectly classified as
critical errors divided by the total number of samples without critical error.

All three experiments result in a high detection recall rate. A similar behavior
can be seen for the detection precision. In general, the results are better for the
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Table 2. Experimental results.

All-CNN RSR-single RSR-sequence

Detection recall 96.16% 97.64% 99.03%

Detection precision 90.29% 96.32% 97.29%

Detection FPR 5.17% 1.86% 2.75%

Resulting classification accuracy on
test data without critical error

89.00% 98.75% 98.79%

Resulting classification accuracy on
test data with critical error

62.01% 71.90% 85.43%

Computation overhead for EDMN
with TMR (MAC operations)

0.41% 1.49% 2.67%

RSR experiments. This can be attributed to the fact that the RSR network
itself shows a better classification performance than the All-CNN on CIFAR-10.
Moreover, as expected, the EDMN performs better, if it gets the information
from two sequential feature activation traces. Considering the FPRs, one might
be concerned that too many of the valid outputs of the monitored network are
rejected. However, samples classified as erroneous are in fact not rejected in
our approach, but instead the EDMN tries to mitigate the error by providing a
corrected task output for the monitored network.

To evaluate the error correction performance, we compute the resulting accu-
racies on the image classification tasks with the EDMN in place. As shown in
Table 2 we consider two different cases. In the first case, we take only test sam-
ples that do not have a critical error. In this case, the EDMN incorrectly predicts
critical errors for some of the samples (false positives) and assigns a corrected
task output to these samples. Nevertheless, it can be observed that in all three
experiments the overall resulting classification accuracies on test data without
critical errors lies slightly above the original classification accuracies of the quan-
tized CNNs. This indicates that despite the false positives in the error detection,
the image classification accuracy is not degraded by the error correction. In the
second case, we take only test samples that have a critical error. Without the
EDMN in place, these samples would all lead to a wrong image classification
and consequently the classification accuracy would be zero. Our results show,
that the EDMN can recover the correct classification for at least 62% of the test
samples in this case.

The computation overheads for the EDMNs in Table 2 are computed in terms
of additional MAC operations in relation to the MAC operations of the CNN.
Complete TMR is assumed for the computations of the EDMN, which offers a
high protection of the EDMN itself. Still, the computation overheads are only a
small fraction of the computations needed for the CNNs.
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5 Related Work

Neural networks have already been used for on-line error detection and diagnosis
in complex systems for a while (e.g. [2]). However, to the best of our knowledge,
there is no previous work that considers the use of a neural network to detect
hardware faults in another neural network.

A slightly related concept can be found in [23]. The authors connect a second
neural network to a DNN, to detect whether there were adversarial perturbations
[30] in the input image. Nevertheless, this context is different from ours in two
ways. Firstly, adversarial perturbations only occur in the input data of the DNN,
while random hardware errors can occur at any position in the network. Secondly,
adversarial perturbations are not random, but in fact result from an optimization
procedure that aims at fooling the DNN.

The closest related work to our research is the paper by Li et al. [22]. They
study the error propagation in a modern DNN accelerator architecture by per-
forming bit-flip fault injections in the memory and data path. Furthermore,
they also propose an error detection as well as an error mitigation method.
However, their approaches have some significant drawbacks compared to our
method. Their detection method is based on the simple detection of activations
that are below or above a certain value range that is considered to be normal
for the activation values. As they have shown, this method works well, if the
activation values utilize only a minor fraction of the dynamic range that the
data type provides. However, it is unlikely for a dedicated DNN accelerator to
not fully utilize the dynamic range of its data types. On the contrary, only a full
utilization of the data type range allows for a maximum quantization and thus an
energy efficient design of the accelerator. But in this case, their error detection
method fails, since erroneous values are not distinguishable from regular val-
ues through a simple threshold comparison anymore. In contrast, our detection
method also works for neural networks with low bit-width quantization. Their
error mitigation method is based on hardening the data path against random
hardware faults. This is orthogonal to our method and can be additionally used.
However, the significant overheads resulting from the hardening might not be
necessary, since our detector already offers a high detection recall and is able to
recover from errors.

6 Conclusion

We have proposed a novel method for an efficient and effective on-line error
detection and mitigation in DNN accelerators. To the best of our knowledge,
other existing methods either require larger computational overheads or do not
achieve the same level of error detection and mitigation performance. We tested
our method with random bit-flip injections in the activations of two neural net-
works, since memory bit-flip errors are critical for DNN accelerators. Neverthe-
less, we expect that our method can be extended to other types of hardware
errors. Moreover, we have seen that the usage of sequential information from a
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time series of images can boost the performance of our method. We think that
temporal information can be further exploited, both from a safety and efficiency
perspective, and regard this as an interesting topic for future research.
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Abstract. Today, embedded systems are being used in many (safety-
critical) applications. However, due to their decreasing feature size and
supply voltage, such systems are more susceptible to external distur-
bances such as electromagnetic interference. These external disturbances
are able to introduce bit-flips inside the microcontroller’s hardware. In
turn, these bit-flips may also corrupt the software. A possible software
corruption is a control flow error. This paper proposes a new software-
implemented control flow error detection technique. The advantage of
our technique, called Random Additive Control Flow Error Detection, is
a high detection ratio with a low execution time overhead. Most control
flow errors are detected, while having a lower execution time overhead
than the considered existing techniques.

Keywords: Fault tolerance · Resilient software
Software-implemented control flow error detection · Erroneous bit-flips

1 Introduction

Embedded systems are being used more and more in our everyday life. There-
fore, their reliability in ever harsher working environments is becoming more
important. Today, these systems are, however, more vulnerable to external dis-
turbances. These external disturbances range from electromagnetic interference
and temperature fluctuations to high energy particles. Sierawski et al. show that
particles such as neutrons and muons now have the energy to strike micropro-
cessor components, such as memory cells, and change their state [4,12]. Baffreau
et al. present how electromagnetic interference (EMI) accumulates charges on
PCB traces, on transistors, etc., and changes their state [3]. Jagannathan et al.
demonstrate that the sensitivity of such components increases with tempera-
ture. They show that a higher temperature increases the charge generated by
a striking particle or EMI and decreases the drive strength of the transistors
used in the components [7]. Recent research shows that external attackers can
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also introduce bit-flips in order to extract critical data. De Keulenaer discusses
how attackers use lasers to introduce bit-flips in smart cards which lead to the
leakage of critical data such as PIN codes [5]. Tang et al. show it is possible for
external attackers to extract cryptographic keys and other data by influencing
the energy management systems of microprocessors [13]. To conclude, exter-
nal disturbances or attackers can affect a processor’s internal state, introducing
bit-flips into its hardware. These bit-flips can, in turn, cause invalid behaviour
such as erroneously controlling an actuator, corrupting data or corrupting the
execution order of instructions.

The corruption of the execution order of instructions is better known as a
control flow error (CFE). A CFE is a violation against the control flow graph
(CFG) of the program. The CFG is a representation of the program, in which
the program is divided into basic blocks and edges. A basic block is a sequence
of consecutive instructions with exactly one entry and one exit point. An edge
is an intentional path between basic blocks. CFEs are typically partitioned into
two categories: inter-block CFEs and intra-block CFEs. An inter-block CFE is
an invalid jump through the program between two different basic blocks, while
an intra-block CFE is an invalid jump within one basic block. Both types of
CFE can cause the affected program or system to halt, to crash or to provide
erroneous output, potentially leading to hazardous situations.

To protect embedded systems against CFEs, software-implemented fault
tolerance measures have been proposed [8–10]. Inter-block CFEs are typically
detected through signature monitoring, while intra-block CFEs are typically
detected via instruction monitoring. In both cases, extra control variables are
inserted at compile time. At run time, these control variables are calculated and
compared to the expected compile-time value. A mismatch between both values
indicates that an error has occurred. The main difference between inter-block
and intra-block CFE detection is the frequency of updating the control variables.

In reality, CFEs can also jump into unused code space. These out-of-program
jumps are detected by filling the unused code space with branches to an error
handler. This paper, however, focuses on intra- and inter-block CFEs and their
software-implemented counter measures.

To have full CFE detection, both signature monitoring and instruction mon-
itoring have to be implemented. Combining two existing techniques, one of each
category, leads to extra execution time overhead. This paper aims to resolve this
issue by proposing a new CFE detection technique with reduced execution time
overhead. Our new technique is developed to detect both inter-block and intra-
block CFEs and builds on our previously developed Random Additive Signa-
ture Monitoring (RASM) technique [14]. In a previous study, we concluded that
RASM outperformed other signature monitoring techniques. However, RASM
aims at detecting inter-block errors, while some of the investigated techniques,
such as RSCFC and SIED, are also used to detect intra-block CFEs.

The structure of this paper is as follows. First, some background is given with
respect to combined signature and instruction monitoring techniques. Here, we
will discuss commonly used techniques, RSCFC [8] and SIED [9], which will serve
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as a reference for our new proposed algorithm. Next, a new algorithm RACFED,
based on RASM, is proposed and is compared with RSCFC and SIED.

2 Background

This section discusses the principles behind the two considered techniques. For
each of the techniques, we discuss their needed variables and the run-time
updates they perform to detect CFEs. Figure 1 shows both techniques applied
to an example CFG and indicates the added instructions in bold.

2.1 Relationship Signatures for Control Flow Checking

RSCFC relies on three compile-time variables per basic block: the compile-time
signature si, the CFG locator Li and the cumulative signature mi [8]. The
compile-time signature is a bit sequence that indicates the successor basic blocks
of the current basic block. The CFG locator shows where the current basic block
is located in the CFG. Finally, the cumulative signature is a bit sequence that
indicates how much instructions must be executed for each basic block.

At the beginning of each basic block, the run-time signature S is updated
and verified. In case of an error-free run, S contains the si of a valid predecessor.
Considering basic block 0 of Fig. 1a, S contains a bit pattern in which the bit
indicated by L0 is set. The update thus updates S to L0 in an error-free run. In
case of an error, the update results in 0 and the CFE is detected.

Next, the intra-block updates are executed. First, the run-time cumulative
signature N is updated with the mi of the current basic block. Next, N is
updated after each instruction. N is updated using an exclusive or operation
with a bit pattern indicating which instruction has executed. In an error-free
run, N is updated to 0 once all instructions have executed.

Finally, at the end of each basic block, S is updated using Eq. (1).

S = si & (S
⊕

Li) & (−!N) (1)

Breaking it down for an error-free run:

– −!N = −!0 = −1 or an all 1 bit pattern;
– S

⊕
Li = Li

⊕
Li = −1 or an all 1 bit pattern;

– S = si & − 1& − 1 = si. Thus, in an error-free run, S is updated to si. In
other words, S is updated to show the valid successors of the current basic
block.

2.2 Software-Implemented Error Detection

SIED uses several variables to detect CFEs [9]. At compile time, each basic
block gets assigned a unique identifier IDB, a list containing the compile-time
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Fig. 1. RSCFC and SIED applied to an example CFG.

signatures of all successor blocks {Yj , . . . , Yk} and a variable ni that shows how
many instructions must be executed in the basic block.

At run time, the signature X is calculated by performing an addition between
the unique identifier of the current block, IDBi, and the Status Condition
Branch, SCB, which is updated each time a conditional instruction is executed.
This addition is the first instruction the basic block executes.

Next, the run-time signature X is compared to the compile-time signature
of the current block, Yi, which is held in the run-time variable Y . A mismatch
between X and Y indicates a CFE has occurred.

The intra-block detection uses a run-time variable, called checkpass. Once
the run-time signature has been verified, the checkpass variable is updated with
the ni variable of the current basic block. After each instruction, checkpass is
decremented. At the end of the basic block, a verification instruction is inserted
that validates the run-time value of checkpass is now zero. If is not the case,
a CFE has occurred. SIED thus uses two verification instructions, one for each
type of CFE.

Finally, the run-time variables SCB and Y are assigned their new values
after the intra-block verification.

3 RACFED

This section presents our new RACFED method. First, we describe the general
CFE detection principle of the method. Next, we discuss the compile-time pro-
cess to implement the technique and show an example of protected code. The
section concludes with the theoretical fault detection capability of RACFED.

3.1 Principle

RACFED is an extension of RASM. As mentioned, RASM is a signature mon-
itoring technique that uses two gradual signature updates and one signature
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verification per basic block. Using gradual updates means that all updates on a
specific intentional path are linked together, acting as one update. Skipping one
gradual update implies that the run-time signature can never hold the correct
value again.

Fig. 2. Principle of the RACFED technique.

RACFED extends this functionality by inserting gradual signature updates
after each instruction, as shown in Fig. 2. As can be seen, all updates now update
the run-time signature S. This implementation of instruction monitoring assures
a high CFE detection ratio. By updating the run-time signature as part of the
intra-block CFE detection method, we can use the signature verification instruc-
tion already in place. This is the same verification method used by RSCFC and
helps to lower the execution time overhead of the technique.

3.2 Compile-Time Process

The compile-time process to implement RACFED is shown in Algorithm 1. It
consists of four steps. The first step is a global step that assigns the needed
variables to all basic blocks. The second step assures the implementation of
the instruction monitoring. The third and fourth step implement the signature
monitoring part of RACFED and are executed for each basic block in the CFG.

Step 1: Assign the needed variables for all basic blocks. The process
starts by assigning two random values to each basic block. The first random
value is the compile-time signature and is unique for each basic block. The
second value, called subRanPrevVal, will be used in a later step of this process
to update the run-time signature. To uniquely identify each basic block, the sum
of the compile-time signature and the subRanPrevVal has to be unique. A new
subRanPrevVal is assigned until this is the case.

Step 2: Implement the instruction monitoring. Next, the instruction mon-
itoring part of RACFED is implemented. The instruction monitoring consists of
run-time signature updates with random values. After each original instruction,
an extra run-time signature update is inserted.

Not all basic blocks have this countermeasure implemented. Only basic blocks
with more than two original instructions are processed in this step. In a basic
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block with only one original instruction, an intra-block CFE cannot occur. All
CFEs that occur in this type of basic block are inter-block jumps, which are
detected via the signature monitoring instructions of RACFED. In a basic block
with two instructions, an intra-block CFE can occur, by prematurely stopping
the execution of the first instruction and starting the execution of the second
instruction. Such an intra-block CFE, however, cannot be detected via instruc-
tion monitoring, because no update would be skipped. Therefore, the intra-block
CFE detection countermeasure is only implemented in basic blocks with more
than two instructions.

Step 3: Insert the first signature update in each basic block. The third
and fourth step of RACFED are the same as in the process to implement our
RASM technique. The third step inserts the first update of the run-time sig-
nature and the only verification instruction per basic block. The update is a
subtraction between the signature and the subRanPrevVal of the current basic
block. The update should result in the signature having the value of the compile-
time signature. If not, a CFE has occurred and is detected.

Step 4: Insert the last signature update in each basic block. The last
signature update that is inserted into each basic block, is the update that assures
all intentional paths in the CFG can still be taken in error-free runs, without
causing a false positive CFE detection. In order to keep intentional paths valid,
the signature is updated with an adjustment value. This value is calculated as the
difference between the signature updates of this block and the first update of the
next basic block, as shown by lines 23–27 of Algorithm1. First, the current value
of the signature is calculated by computing the total impact of the inserted intra-
block updates. Next, the expected value per successor is calculated by summing
up the subRanPrevVal and the compile-time signature of each successor. The
adjustment value is the difference between the current run-time value and the
expected value. The inserted update adds the adjustment value to the run-time
signature. If the basic block ends with a conditional branch, this last update is
executed conditionally, so the run-time signature has the correct value for the
corresponding successor.

This last step changes if the basic block ends with a return instruction.
A return instruction is an instruction that exits the current function and returns
to its caller. Depending on the number of instructions in such a basic block,
either an extra verification is inserted or no instructions are inserted. If the
basic block has more than one instruction, an extra verification is added in front
of the return instructions. This instruction verifies whether or not the run-time
signature matches a number chosen at random, called returnVal. To avoid false
positives, the last signature update is inserted in front of the exit verification. The
adjustment value is the difference between the signature updates of the current
basic block and the returnVal, as described by lines 15–21 of Algorithm 1. This
extra verification allows to detect CFEs that would cause a premature exit out
of the program.
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Algorithm 1. Pseudo-code describing the compile-time process to implement
RACFED.
1: for all Basic Block (BB) in CFG do
2: repeat compileT imeSig ← randomnumber
3: until compileT imeSig is unique
4: repeat subRanPrevV al ← randomnumber
5: until (compileT imeSig + subRanPrevV al) is unique

6: for all BB in CFG do
7: if NrInstrBB > 2 then
8: for all original instructions insert after
9: signature ← signature + randomnumber

10: for all BB in CFG insert at beginning
11: signature ← signature − subRanPrevV al
12: if signature �= compileT imeSig error()

13: for all BB in CFG do
14: if Last Instr. is return instr. and NrIntrBB > 1 then
15: Calculate needed variables
16: returnV al ← randomnumber
17: adjustV alue ← (compileT imeSigBB +

∑
instMonUpdatesBB) −

18: returnV al
19: Insert signature update before return instr.
20: signature ← signature + adjustV alue
21: if signature �= returnV al error()
22: else
23: for all Successor of BB do
24: adjustV alue ← (compileT imeSigBB +

∑
instrMonUpdatesBB) −

25: (compileT imeSigsuccs + subRanPrevV alsuccs)
26: Insert signature update at BB end
27: signature ← signature + adjustV alue

If the basic block only has a return instruction and no other instruction, this
step inserts no extra instructions. This kind of basic block only has the extra
instructions inserted by step 3 of this process. Otherwise, such a basic block
would have two signature verifications following each other. Not inserting this
second run-time verification reduces the execution time overhead of RACFED.

3.3 RACFED Applied

An example of code protected by RACFED is shown in Fig. 3, where the run-
time signature value is held in register r11. The example uses the ARMV7-M
instruction set and indicates the instructions added by RACFED in bold. As
with RASM, the first three instructions each basic block executes are a signature
update and a verification of the run-time value against the compile-time value.
If the two values do not match, control is transferred to the error handler. In the
example, our error handler is located at address 0x234, thus when a mismatch
occurs, control is transferred to that location.
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Next, this example shows that only a basic block with more than two instruc-
tions updates the run-time signature after each original instruction executed. As
mentioned in the previous subsection, the intra-block updates are either an addi-
tion or a subtraction with a random value.

Each basic block has a signature update inserted that uses the needed adjust-
ment value to ensure intentional paths in the CFG can still be taken. The adjust-
ment value of 480 for the instruction at address 0x1dc is calculated as follows.
First, the current value of the run-time signature is computed. At the instruction
located at 0x1da, the run-time value is 130(= 129+1). Next, the expected value
of the successor is calculated. The instruction at address 0x1dc is executed in
the true case, thus the expected value of the true successor is computed. In this
case, the value is 610(= 421 + 189). Finally, the adjustment value is the differ-
ence between the two previously calculated values, resulting in 480(= 610−130).
As shown in the upper-left and upper-right basic blocks, this last update is exe-
cuted conditionally if the basic block ends with a conditional branch. This allows
RACFED to detect whether the correct branch is taken or not.

Finally, the two bottom basic blocks indicate how basic blocks with a return
instruction are treated. The return instruction is represented by the BX lr
instruction. Because these two basic blocks only contain the exit statement,
no extra exit verification is inserted. This is the special case discussed in the
fourth step of the implementation process.

Fig. 3. RACFED implemented in an example program, with the run-time sig-
nature value held in register r11.

3.4 Theoretical CFE Detection

RACFED uses gradual updates along intentional paths. This means that all
CFEs that skip at least one update are detected. Skipping an update results in
an unintended run-time signature value and results in the detection of the CFE.

The exceptions are CFEs that jump to a return instruction. Although these
jumps skip at least one run-time update, they do not have a successor basic
block with verification instructions. Such jumps can only be detected at the
place where the exit statements jumps to. An example of a return instruction is
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given in Fig. 3 at the address 0x232. The BX lr statement instructs the processor
to leave this program and branch to the address contained in the lr register.
To detect erroneous jumps to this instruction, verification instructions must be
inserted at all locations the lr register can point to.

Another category of undetected CFEs are intra-block jumps that skip an
original instruction but no update instruction. Considering the example of Fig. 3,
an erroneous jump from address 0x202 to 0x208 is not detected by RACFED,
because no signature update is skipped. A possible solution to detect this kind
of jump, is to insert a duplicate instruction of the original instruction. When
this duplicate is inserted after the intra-block update, this assures that at least
one version of the original instruction is executed [9].

The final category of CFEs that cannot be detected are shared-signature
jumps. Because random values are used as intra-block updates, one run-time
signature value can be valid at different points in the protected program. If a
CFE jumps between two such points, it will not be detected. Since the landing
point gets the expected value, the following updates will calculate the expected
run-time signature value, thus masking the CFE.

4 Experimental Setup

Next to a theoretical analysis, we validated our RACFED technique through
fault injection experiments. This section discusses which case studies and fault
injection process were used.

4.1 Case Studies

The selected case studies are the same as used in the comparative study. They
are an implementation of the following algorithms: bubble sort (BS), quick sort
(QS), matrix multiplication (MM), bit count (BC), Dijkstra (DIJ), fast fourier
transform (FFT) and cyclic redundancy check (CRC). The first three case studies
use our own implementation, the last four were selected from MiBench version
1.0 [6].

These case studies were not only selected because they are highly used in the
domain of embedded systems, but also because they have different CFGs. These
differences assure a thorough and broad evaluation of RACFED.

4.2 Hardware

The case studies were executed on an ARM Cortex-M3-driven microcontroller
running at 96 MHz, including 512 kB FLASH and 32 kB RAM. We selected the
ARM architecture because ARM is the global leader with an 85% market share
for mobile devices and a 25% market share for embedded intelligence applications
such as Internet of Things [2]. The ARM Cortex-M3 was selected because it is an
industry-leading 32-bit processor used in many different embedded application
domains [1].
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4.3 Fault Injection

To make a valid comparison between RACFED, RSCFC and SIED, and to inject
CFEs deterministically, we use our own software-implemented fault injection
(SWIFI) tool. SWIFI is a well-known method to validate software-implemented
fault tolerance measures. This methodology was also used to validate the con-
sidered techniques in their respective publications.

Our SWIFI tool injects both inter-block and intra-block CFEs in a determin-
istic way at run time. As shown in Fig. 4a, this is possible by using the on-chip
debugger of the target. The Python-controllable USB-hub allows to issue a hard
reset when the on-chip debugger fails.

Fig. 4. Fault injection setup

The used fault injection process is our own control-flow-aware injection pro-
cess [15]. It uses the CFG of the program to inject the desired intra- or inter-
block CFE. The following is an example of an inter-block CFE injection for the
program shown in Fig. 4b.

1. The program counter (PC) is read out: its value is 0x1d2;
2. Create a list of all possible single-bit bit-flip possibilities: {0x1d3, 0x1d0 . . .

0x9d2}. We use the single-bit bit-flip fault model because research shows
it is an accurate fault model and only few programs benefit from multi-bit
bit-flips [11];

3. Discard all non-existing values: {0x1d0, 0x1d6, 0x1da};
4. Discard all intra-block values: {0x1da};
5. Write the new value to the PC: it now has the value 0x1da.

While injecting faults in other registers or memory words could also result
in a CFE, we chose to only inject in the PC because that is the easiest way to
assure a CFE would occur. This research and its fault injection experiment serve
to find out whether CFEs are detected. We are less concerned with the origin of
the CFE. We want to know, if a CFE occurs due to whatever reason, whether
the implemented technique detects it or not.

4.4 Criteria

To validate our RACFED technique, we determined the effect of the faults and
grouped them into categories and we measured the execution time overhead.
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Result Categories. We subjected each combination of case study and tech-
nique to 4000 CFEs, divided as 2000 inter-block and 2000 intra-block CFEs.
Each cycle of 2000 CFEs was injected in 10 batches of 200 single-bit bit-flips
to be able to average out the results of the 10 batches. Per batch of faults, we
determined the effect of each and every fault. We grouped the effects in four
categories:

– Detected (Det.): This percentage of faults was detected by the implemented
countermeasure. In other words, this category is the desired result.

– Hardware Detection (HD): The Cortex-M3 already has several inter-
nal fault handlers that are able to detect specific hardware faults, such as
improper bus usage or memory access violations. This category represents
the faults detected by such fault handler.

– Silent Data Corruption (SDC): These are the faults that were not
detected by the implemented technique and caused the algorithm to pro-
duce a wrong result. These faults can be faults as described in Sect. 3.4, but
could also be faults that we anticipated to detect. In this case, these faults
expose a flaw in the implemented detection technique.

– No Effect (NE): Finally, this is the percentage of the faults that were not
detected and did not affect the outcome of the target algorithm.

Execution Time Overhead. Erroneous bit-flip detection does not come cheap,
as each technique inserts extra instructions and thus an execution time overhead.
Execution time overhead expresses the extra time it takes for the algorithm
to execute. The introduced overhead, for an error-free run, is calculated using
Eq. (2). In this paper, the shown overhead is the extra amount of execution time
in an error-free run introduced by the technique.

overhead =
exec. time protected− exec. timeunprotected

exec. timeunprotected
(2)

5 Results

First, we discuss the fault injection results of our RACFED technique. Secondly,
we present the execution time overhead, the unavoidable cost of any error detec-
tion countermeasure. The results presented in this paper are averaged over the
10 executed batches per technique.

5.1 Fault Injection Results

Figure 5 shows the fault injection results of RACFED compared to the results
of RSCFC and SIED. To be complete, we also compare the results against the
results obtained with our RASM technique implemented. Each bar represents
a case study and can be broken down in two pieces, a green piece and a red
piece. The green piece indicates the amount of detected CFEs while the red
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Fig. 5. Results of the fault injection campaign. (Color figure online)

piece indicates the number of undetected CFEs. The following is a more detailed
discussion of the results.

When only considering the faults detected by the three implemented tech-
niques, thus the Det. category, it can be seen that RACFED has the highest
ratio for six of the seven case studies. Only for the FFT case study SIED has
a higher Det. ratio. However, when considering all detected faults, the sum of
the Det. and HD categories, RACFED has the highest ratio for all seven case
studies.

Regarding the undetected faults, it’s important to know what percentage are
malicious, in other words the SDC category (indicated in dark red) must be
taken into account. For this category, RACFED also has the lowest ratio for six
of the seven case studies. Only for the BS case study applying SIED results in a
smaller SDC ratio. The difference with RACFED is, however, only 0.4%. These
results show that RACFED better protects embedded systems against CFEs.

When comparing the results of RACFED with RASM, Fig. 5 shows that
RACFED detects more CFEs. On average, RACFED has an increase of 11% for
the Det. category compared to RASM. Secondly, the results show that RASM has
a higher SDC ratio than RACFED. On average, RACFED has a decreased SDC
ratio of 3%. These results show that the intra-block updates are indeed necessary
to decrease the number of SDC errors. RACFED is thus an improvement of
RASM when considering fault detection.

The remaining CFEs, indicated in light red, represent the NE category. These
are undetected CFEs that did not affect the outcome of the target program.
These show that not all CFEs necessarily affect the targeted program. In other
words, this category shows that every algorithm is resilient against certain CFEs,
even without having any protection applied. This is better known as the inherent
masking capability of the targeted program.

5.2 Execution Time Overhead

Since extra instructions have to be executed, an execution time overhead is
introduced. Figure 6 shows the imposed execution time overhead of RACFED
compared to the one imposed by RSCFC, SIED and RASM.

On average, RACFED imposes an execution time overhead of 108.4%. This
is 60% lower than the average execution time overhead of RSCFC and SIED.
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RACFED has a lower overhead due to two factors. A first factor is the usage of
the signature for the intra-block updates instead of an additional control vari-
able. This eliminates the need to insert an instruction to set up a second variable
and eliminates the need to insert extra verification instructions. Using the signa-
ture as control variable for the intra-block detection allows to use the signature
verification instruction to validate the inter-block and intra-block updates. The
second factor is that the intra-block updates are only inserted in basic blocks
with more than two instructions.

Because RSCFC inserts intra-block updates in all basic blocks, it has a higher
average execution time overhead of 166.0%. SIED uses a second control vari-
able to detect intra-block CFEs and thus inserts more instructions. Those extra
instructions result in an average execution time overhead of 184.7%.

RASM does impose a lower overhead than RACFED. RASM is designed to
detect inter-block CFEs only and has no intra-block updates, which results in
a lower overhead. On average, RACFED has an increase of 30% in execution
time overhead due to its intra-block updates. The increase in fault detection
capabilities does come at a price of extra execution time overhead.

Fig. 6. Execution time overhead of the three considered techniques.

6 Future Work

Although RACFED has an average Det. ratio of 82.35% there is room for
improvement. As mentioned in Sect. 3, one type of undetectable CFE is the
shared-signature jump. This is an erroneous jump between two program points
that expect the same run-time value of the signature to produce a correct signa-
ture update. Such jumps exist within RACFED because random values are used
as intra-block signature updates. These undetectable CFEs can be eliminated
by improving the implementation algorithm provided in Algorithm1. An extra
compiler check could be inserted each time an intra-block signature update has
been inserted that verifies whether the updated run-time signature is unique
throughout the entire program. When this is not the case, a new random value
could be chosen until the verification holds.

Due to the one-register implementation, the allowed random values and basic
block identifiers are limited. Most instruction set architectures allow limited
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values to be added immediately to or be compared with a register. These limited
values could mean that for certain algorithms RACFED is not implementable.
To solve this issue, a two-register implementation should be developed. Using two
registers allows to reserve one to hold the run-time signature value and another
one to hold larger random values that can be added to the run-time signature.
The downside of needing two registers is that the target program will need more
memory accesses since it has two less registers. The increase in memory accesses
could increase the execution time overhead.

While analyzing the data generated during the fault injection campaign, we
noticed that most of the CFEs were injected in the inner loops of the case
studies and only a small percentage of the CFEs were injected in the remainder
of the target code. To improve the code coverage of the SWIFI tool, we are
currently developing a CFE injection process that would allow to step through
the target program and inject all possible CFEs for each program point. Another
improvement of the fault injection experiments would be to use different input
vectors and ease the use of different input vectors. Currently, each fault injection
experiment has to be set up with a fixed input vector, meaning that the entire
experiment needs to be reset and re-executed for a different input vector. This
could be improved to make it easier to used different input vectors while only
having to set up the experiment once.

7 Conclusions

This paper presented our new CFE countermeasure RACFED. Our technique is
developed to detect almost all inter-block and intra-block CFEs, while having a
lower overhead compared to RSCFC and SIED. To detect inter-block CFEs, an
implementation of signature monitoring is used. Per basic block, two signature
updates and one signature verification is added. The intra-block CFE detection
is realized via an implementation of instruction monitoring for selected basic
blocks. After each original instruction, a signature update is added. This inter-
twined inter-block and intra-block CFE detection results in an average detection
ratio of 82.35 %, with an execution time overhead of 108.4%.

We compared RACFED to two established techniques: RSCFC and SIED.
Considering RSCFC, our technique has an increase in detection ratio of 45% with
a decrease in execution time overhead of 58%. Compared to SIED, RACFED has
an increase of 12% in detection ratio and a decrease in execution time overhead of
76%. This shows that our RACFED technique is the better of the three, proving
that a higher detection ratio with a lower execution time overhead compared to
RSCFC and SIED is possible.
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Abstract. Many safety-relevant real-time systems require a reliable time
source, which leads to the requirement of fault-tolerant clock synchronization.
This paper proposes a fault-tolerant synchronization protocol for networks
where the bridges are connected via point-to-point links (like Ethernet or Time-
Sensitive Network) and the number of redundant point-to-point links is kept
small for cost reasons, like in ring topologies. This new protocol “single initiator
forward and collected answer” (SFC), can tolerate all failures of one faulty
bridge though it needs only two disjoint paths between any pair of bridges.

Keywords: Distributed real-time systems
Fault-tolerant clock synchronization � Ring topology � Byzantine failure

1 Introduction

Many safety-critical real-time applications require accurate and precise clock syn-
chronization to keep the local clocks in a distributed system synchronized. Some of the
methods are based on a master-slave hierarchy, where a master broadcasts its current
time at a predefined period, used in protocols like Network Time Protocol (NTP) [1]
and Precision Time Protocol (PTP) [3] which is described in the standard IEEE-1588
[4]. PTP is appropriate for Ethernet-networks, where NTP is mostly used to syn-
chronize the clocks of hosts connected via internet. PTP uses master-slave hierarchy
and its accuracy and precision can get worse if a link or node fails. Providing a
secondary master clock as a spare does not solve the fault-tolerance problem. If the
primary master fails by distributing wrong time values rather than failing silently,
changing to the secondary master clock cannot ensure a consistent time in the presence
of arbitrary failure types [5, 6]. Therefore fault-tolerant behavior becomes a key
requirement. The relative synchronization of clocks must be achieved by a fault-
tolerant algorithm. Internal clock synchronization algorithms guarantee a bounded
maximum deviation among the clocks, which may differ from the external global time.

The fault-tolerant mid-point algorithm (FTMA) [7] is one example of a distributed
convergence algorithm, which tolerates up to f faulty clocks with Byzantine behavior
by at least n = 3f + 1 nodes with 2f + 1 disjoint paths between any pair of nodes.
In FTMA each node maintains an offset vector with the differences of its clock to all
other clocks. Then the f lowest and the f highest offset values are discarded and the
arithmetic mean of the minimum and the maximum of the remaining offset values are
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calculated as correction term of the local clock. The provision of three disjoint paths
between any pair of nodes for f = 1 leads to a costly topological demand requiring a
considerable number of links.

Some researchers propose an improvement of the robustness by integration of
IEEE-1588 with network redundancy protocols like RSTP [8] or high-availability
seamless redundancy (HSR) [9]. RSTP is not suitable for real-time applications. On
occurrence of a link failure or a node failure, the network must be reconfigured to
rebuild the logical path (this recovery time can be in the range of a millisecond to a
second depending on the network topology). HSR is a redundancy protocol used in
ring topologies, which utilizes the idea of Parallel Redundancy Protocol (PRP). HSR
and PRP both need zero-recovery time in the faulty case. In the absence of faults HSR
causes half of the worst-case delay over the ring compared to RSTP, whereas the worst-
case delays are equal in the presence of faults. HSR does not require the duplication of
any node or link but provides duplicated frames to transmit them via separate paths.
HSR tolerates a single message loss due to a link failure by sending data via both
directions in the ring. Arbitrary malfunctions of a faulty node are not tolerated [10].
Other approaches use a more redundant topology like a braided ring with additional
guardian functionality [11] to tolerate a Byzantine failure. However, when the cost
imports, the redundancy of the links should be kept low. The absolute minimum is
n − 1 links to connect n nodes by a tree structure. A ring requires just one additional
link (a total of only n links for n nodes) and guarantees two disjoint paths between any
pair of nodes. Unfortunately, two disjoint paths are not sufficient for the tolerance of
Byzantine behavior according to the theory in [7]. Since three disjoint paths increase
the cost by far, we aim at a protocol that is based on a ring and tolerates as many
malfunctions as possible. As we will see later, our solution as “single initiator forward
and collected answer” (SFC) protocol presented in this paper is resilient to one faulty
bridge which may exhibit any type of failure such as fail-omission, delay and cor-
ruption, – with only a slight restriction: A very special type of Byzantine behavior may
somewhat reduce the precision.

The remainder of this paper is structured as follows: After this introduction the
principles of the protocol (Sect. 2) are described. Then the SFC protocol development
is presented in Sect. 3, followed by its analysis (Sect. 4) and a summary.

1.1 System Model

In this paper we consider a network consisting of a ring of bridges, where each bridge
is connected to a node. Every bridge owns a clock that is either located within the
bridge or in an adjacent node.

1.2 Timing

The clocks are synchronized periodically, where each synchronization interval (from
one synchronization to the next) has equal duration Tnextsync Within a synchronization
interval the time is subdivided as shown in Fig. 1. During Tprotocol synchronization
messages are exchanged (the sub-protocols FP and SP and their durations TFP and TSP

are explained later). When too frequent synchronization should be avoided to limit the

236 Z. Moztarzadeh



overhead, Tprotocol can be preceded by some period Tsep to achieve a greater temporal
separation of the synchronizations. After execution of the synchronization protocol the
bridges execute FTMA on their local data and adjust their clocks according to the
calculated correction term. Since clock adjustment must neither overlap with the
message exchange nor with the subsequent synchronization interval, small pauses
TwaitA and TwaitP have been inserted. Their minimum duration is β, which is the
maximum deviation among fault-free clocks. After adjustment, fault-free clocks differ
only by α ˂ β, which means the synchronization becomes effective. Then they drift
apart again due their oscillator’s drifts until they reach their maximum distance of at
most β, which will be reduced to a by the next clock adjustment. The relation between
a and b expresses the quality of the synchronization, also called precision which refers
to the relative difference between fault-free clocks.

1.3 Forwarding Delay Compensation

Nearly all synchronization protocols apply delay compensation. Whenever a bridge Bi

receives a message containing time t and forwards it after some delay, it measures the
duration di of the message’s stay in the bridge, and adds di to the content of the
message. A later receiver will then interpret time t as t + di to compensate the delay.
Due to unavoidable deficiencies in delay measurement we have to consider an inac-
curacy with an assumed upper bound s. Formally: For a true delay θi the indicated
delay is di with a small Δi = |di − θi| ˂ τ.

Detection of Wrong Compensation. Appending the forwarding delay information to
the message also leads to detection of wrong behavior of a faulty bridge that indicates
its delay wrongly. A bridge is able to check if the absolute difference between the time
point of sending a message (tsend) and the time point of receiving the message back
(treceive) is approximately equal to the sum of the indicated delays in the message. Only
a small unavoidable difference of τ per hop must be accepted. Naturally the acceptable
difference linearly increases with the number of hops the message has passed until it is
received back (see Eqs. (1) and (2) in Sect. 2.2).

2 Principle of the Protocol

The developed protocol is composed of two sub-protocols “Forward Protocol”
(FP) (see Fig. 2(a)) and “Secondary Forward Protocol” (SP) (see Fig. 2(b)), though the
SP is executed only if a failure is detected. Both sub-protocols are launched by the

Real time

Tprotocol TwaitA≥ β TwaitP≥ β Tsep≥0

Adjust the clocks
TnextSync

Tadjust

TFP TSP

Fig. 1. Timing of synchronization interval
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initiator, the bridge that starts the synchronization. The initiator sends its time infor-
mation in both directions along the ring and receives it back later. Then it can check if
its time information has been correctly forwarded by all bridges. Moreover, the other
bridges piggyback their time information to the initiator’s message. If an error is
detected SP is launched. Finally, the time information has been exchanged correctly
between all fault-free bridges under the assumption of a single faulty bridge.

2.1 Sub-protocols

Forward Protocol (FP). By starting the FP sub-protocol, the initiator sends its time
information in a so-called “time-message” in both clockwise and counterclockwise
along the ring, which is forwarded by other bridges in the network (called forwarders).
The forwarders that get the time-message take the received time information to cal-
culate the offset to their local clock, and store it in their offset-vector. Then they add
their forwarding delay information to the time-message and forward it in the same
direction. Some forwarders (not necessarily all) add also their time information to the
message. These forwarders are called sources. The bridge opposite to the initiator is
called merger. After it has received the time messages from both sides it unites them
and sends it as an “answer-message” both clockwise and counterclockwise back to the
initiator. Again, the sources among the forwarders add their time information.

Secondary Forward Protocol (SP). If one bridge has added wrong delay information
to the time-message or corrupted the time-message or applied some other malfunction,
the initiator can tolerate these failures by sending the time information again as a so-
called replacement-message. Details on fault detection will be discussed in Sect. 3.2.
The initiator determines the direction and the bridge up to which the replacement
message is forwarded. The selection of this so-called destination-bridge depends on the
fault location the initiator has identified, see Fig. 2b.

B B

BB

B

B

N

N

N N N

N

N
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N

N

N

B B

BB
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B

N

N

N N N

N

N

N

N

N

N

(a) (b)

Fig. 2. (a) Forward Protocol (FP), (b) Secondary Forward Protocol (SP), blue solid arrows are
time-messages, blue dashed-arrows are answer-messages, green solid arrows are replacement-
message, B denotes bridges (Bridge in red circle is faulty), N denotes nodes. (Color figure online)
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The two sub-protocols guarantee that the bridges’ time information are received cor-
rectly at least via one path. If a bridge obtains some time information twice (both via FP
and SP) the time information of SP is preferred. With the time information of all
bridges each bridge can build its offset vector as the basis its clock adjustment.

2.2 Self-compensating Error

Whenever an answer-message is received by a bridge it is checked whether the mes-
sage is syntactically correct and also if the sum of the indicated forwarding delays in
the message fits to the difference between the point in time when a bridge forwards a
time-message (tsend) and the point in time when it receives the time information back in
the answer-message (treceive), see Eqs. (1) and (2).

tsend � treceivej j\dþ
i ¼ di þ . . .þ dhFPð Þþ dhFP þ . . .þ dið Þþ 2 hFPð Þs 1þ 2qð Þ ð1Þ

tsend � treceivej j[ d�i ¼ di þ . . .þ dhFPð Þþ dhFP þ . . .þ dið Þ � 2 hFPð Þs 1þ 2qð Þ ð2Þ

The values of dþ
i and d�i are calculated according to Eqs. (1) and (2) such that not

more than the maximum inaccuracy of the local forwarding delay measurements s are
accepted. Thus the bounds d�i and dþ

i are dependent on the indicated forwarding
delays di of the bridges in the time- and answer-message, the number of hops between
the respective bridges, multiplied with the maximum inaccuracy τ of the local for-
warding delay measurements (factor 2 because the inaccuracy can be either positive or
negative) and the drift q (which can also be either positive or negative).

If any faulty bridge adds wrong forwarding delay information, the failure can be
detected by checking (1) and (2). In case of violation the initiator initiates SP to
transmit the time information via a replacement-message up to the destination-bridge.
However, if the faulty bridge has added a wrong forwarding delay to the time-message
in FP and compensates this error in the answer-message by an opposite wrong for-
warding delay, this failure cannot be detected. Such undesired self-compensation can
occur when a faulty bridge Bi delays the time-message by hi but indicates di ¼ hi þ u,
where u is the error, and later delays the answer message by h0i but indicates
d0i � h0i � u. The two errors of +u and −u prevent fault detection. Therefore we define
the NSC-assumption (no self-compensation) that a faulty bridge does not compensate
its own error by a complementary error.

Fortunately, the self-compensating error is not unlimited, because the indicated
delay information in the message cannot be negative, of course. Consequently the
worst-case self-compensated error occurs, if the true delay hi is the maximum hi ¼
Tforw and the indicated delay di is 0, or vice versa. In any case the absolute difference
between the two values is the maximum forwarding delay Tforw, which limits the effect
of an undetectable self-compensating error: uj j\Tforw.

When a time-message is forwarded along hFP hops, where one of the bridges is
faulty and commits a self-compensating error u, then this error is detectable if:
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uj j[ 2hFPsþ Tforw
� �

1þ 2qð Þ ð3Þ

It should be noticed that the proposed protocol SFC works correctly both with and
without the NSC-assumption, but without the NSC-assumption the worst-case inac-
curacy between the clocks is higher (limited by Tforw).Thus, the faster the network the
smaller the effect of undetected self-compensating errors.

2.3 Protection by Signatures

SFC uses signatures for message authentication. This allows each bridge to conclude the
path of information flow in time-, answer- and replacement-messages. Protection of
messages by signatures allows detecting corruption of message content, format, etc. (to
the extent of the coverage of the signature test). The signatures used for clock synchro-
nization should be different from other signatures to prevent confusion. The signatures
must withstand technical faults, not human attacks. Hence, they can be rather short to
limit the computational overhead. 16, 32 or 64 bits are sufficient in most cases [12, 13].

3 Protocol Development

The first solution to efficient fault-tolerant clock synchronization in a ring was the
“Ring forward and Answer Protocol (RFA)” [14] in which all bridges act as initiators
by executing their protocol individually. The time-message is sent completely along the
ring up to the last bridge of the network, and each bridge that gets the time-message
sends an answer-message back to the initiator. This leads to a higher over-head and
precision (because the messages are sent via more hops), but based on the contents of
answer-messages, the faulty bridge can be localized. An optimization of the RFA
protocol led to a reduced overhead and increased precision by sending the time-
message not completely along the ring, but half of the ring in both directions. More-
over, only the merger bridge at the half of the ring issues an answer message, which
finally obtains the collected time information from all bridges. Collecting information
in a message instead of utilizing separate messages leads to a lower number of
exchanged messages. The increased message length is not significant as each node only
adds a few bytes.

3.1 Algorithm of SFC

In SFC there is only a single initiator (initiator is a source). The merger bridge opposite
to the initiator (the n

2

� �
th bridge) unites the information from both half-rings. The

initiator sends its time-message addressed to the merger both clockwise and counter-
clockwise. All other bridges are forwarders some of which are also sources (we need
s sources according to s ≥ 3f + 1). They add their forwarding delay di (and their time
information ti in the case of sources) whenever they forward a message (Fig. 3).

The way how they extend the message content when forwarding it as pure for-
warder (not being a source) is expressed by the extension function fi(Msg), see (4),
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whereas sources use the extension function gi(Msg), see (5). ti denotes the current
clock-time, di the delay. The digital signature is expressed by “: Bi”.

fi Msgð Þ :¼ Msg, dið Þ : Bi ð4Þ

gi Msgð Þ :¼ Msg; ti; dið Þ : Bi ð5Þ

As soon as both messages have been received by the merger, it unites the time-
messages received from both half-rings, and extends the united content by the exten-
sion function gi(Msg). This new, extended message is sent as an answer-message back
to the initiator both clockwise and counterclockwise. On the way back, the messages
are again extended by fi(Msg) or gi(Msg) in each bridge it passes.

Now we describe the temporal protocol behavior in detail with respect to the
timeouts utilized by bridges in different roles. The durations of the timeouts will be
calculated later in Sect. 4. The intention behind the timeouts is the triggering of
bridges’ actions in case of fail-silence or omission of a faulty bridge. Even then the flow
of message forwarding along the ring must be continued (although the information
gathered so far is lost).
The initiator uses the timeouts: TnextSync, TFP and Tadjust

The forwarders use the timeouts: TtimeMsg, TanswerMsg and Tadjust

The merger uses the timeouts: TtimeMsg and Tadjust

After entering the synchronization interval (duration TnextSync) the initiator waits the
durations TwaitP and TSep. These durations specify the duration after clock adjustment up
to the next execution of the FP sub-protocol. Then the initiator starts FP by sending the
time-message containing its local time and signature clockwise and counterclockwise.
The time-message should be received by each bridge before its respective timeout
TtimeMsg has expired (to detect any missing time-message). The bridges take the time

Initiator-bridge

B5 B1

B2B4

B0

B3

(a) (b)
Merger

Initiator-bridge

B6 B1

B2B5

B0

B3

Merger

B4

Fig. 3. Protocol execution in the fault-free case (a) for the network with even and (b) with odd
number of bridges. In both cases B0 is the initiator and B3 is the merger. Blue solid arrows depict
the time-messages (sent by the initiator) and blue dashed arrows depict answer messages (sent by
the merger). (Color figure online)
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information they need to calculate the offset value required by FTMA later. They also
extend the time-message either by fi(Msg), (if pure forwarder, see Eq. (4) or gi(Msg) (if
source, see Eq. (5)). If TtimeMsg of any bridge expires and the time-message is missing
then the respective bridge creates a new time-message with its own time information and
sends it to the merger.

The merger waits for the time-messages coming from both directions via the ring.
These messages should have been received before its timeout TtimeMsg. If TtimeMsg

expires and the merger has not yet received the time-message either from one or both
directions, then it creates an answer-message containing its local time as well as all
time information the merger has received so far. The answer message is then sent to the
initiator in both directions of the ring. The bridges should receive the answer-message
from the merger before their timeout TanswerMsg to detect a missing answer-message. If
TanswerMsg expires in any bridge before the answer-message has been received, then the
respective bridge creates a new answer-message containing its local delay information
(and local time if it is a source) and sends it to the initiator. Finally, the initiator should
have received an answer-message from the merger from both half-rings before timeout
TFP.

Besides timeouts the generation of error indications also triggers some protocol
actions. The conditions that lead to an error-flag added to a message forwarded along
the ring are as follows.

Each bridge checks an incoming message with respect to syntax, plausibility (non-
negative delays, for example) and signatures. If this check fails, the message is dis-
carded. Furthermore the conformance of the sum of indicated delays with the bounds
dþ
i and d�i according to Eqs. (1) and (2) is also checked. If this check fails, it can be

concluded that one bridge on the message path is faulty although it cannot always be
identified exactly. The bridge which detects a violation, flags an error in the answer-
message. The flagging bridge is called “reporter”. In the error-flag the reporter indi-
cates its neighbor bridge from which the answer-message has been received as the
suspicious faulty bridge (called “reported bridge”).

If any failure is reported, the initiator starts SP by creating a replacement-message
and sending it to the destination-bridge, which is determined according to the following
localization function (explained for a faulty bridge located in the right half-ring, the
explanation for a faulty bridge in the left half-ring is symmetric):

• The case where the initiator misses the time information from bridges Bi+1 to Bj in
the answer-message received from the right half-ring can be interpreted by the
following alternatives the initiator cannot distinguish:
– Bridge Bi is faulty and has not forwarded the answer-message correctly. Note

that the hierarchical signature scheme (every bridge signs the complete message
it forwards) makes it impossible for a faulty bridge to delete only a subset of the
time information in the message content.

– Bridge Bi is faulty, has forwarded the time-message correctly but omitted to
forward the received answer-message and has sent its newly created answer-
message containing its time information ti.

– Bridge Bi+1 is faulty and has not forwarded the time-message and answer-
message correctly (the bridges fails in both directions).
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Then both Bi and Bi+1 are suspicious and chosen as destination bridges, to which
the replacement is sent, clockwise to Bi and counterclockwise to Bi+1. This is sufficient
in either case: If Bi is faulty in fact, then Bi+1 will be informed by the replacement-
message counterclockwise during SP. If Bi+1 is faulty, then Bi has already obtained
some time information during FP and will get the remaining time information during
SP clockwise.

• The case where bridges have reported an error has to be dealt with as follows: The
initiator must identify which bridge has flagged the error first (the first reporter that
signed an error in the signature sequence, where the signature sequence is con-
sidered separately in the left and the right half-ring). Let Bi be the first reporter of
wrong delay compensation by bridge Bi+1 (reported-bridge). This can be interpreted
by the following alternatives the initiator cannot distinguish:
– Bridge Bi is faulty and has erroneously acted as reporter.
– Bridge Bi+1 is faulty and has wrongly compensated its forwarding delay.

Again, there are two suspicious bridges, Bi and Bi+1, and both are chosen as
destination bridges, to which the replacement message is sent clockwise to the reporter
(Bi), and counterclockwise to the reported-bridge (Bi+1). This is sufficient in either case
for the same reason mentioned before.

A special case arises if both neighbor-bridges of the merger flag an error (both are
reporters), or if the merger does not send an answer-message at all. Then the merger
can be localized as the faulty bridge. In this case the replacement-message is sent
clockwise to the right neighbor, and counterclockwise to the left neighbor of the
merger. Finally, when Tadjust expires at the end of SP, the bridges, the merger and the
initiator execute FTMA on their local offset vector and adjust their clocks.

3.2 Fault Tolerance

Fail-Omission and Corruption of Content. If any bridge does not forward the time-
message, its neighbor in direction towards the merger detects the failure after its
timeout TtimeMsg has expired. It then creates a time-message, which is forwarded to the
merger. Once the answer-messages of the merger have been received by the initiator, it
will notice that they don’t contain the time information of all bridges. Thus it starts SP
to send the replacement-message containing all available time information up to the
destination-bridge.

If any faulty bridge corrupts the message (format, signature, etc.) or writes a wrong
forwarding delay in a time- or answer-message (more than the maximum forwarding
delay di > Tforw) the next bridge in the same direction detects this failure and the
message will be discarded. The tolerance is then similar to the tolerance of the fail-
omission because the corrupted message is rejected and not forwarded further.

Figure 4(a) shows an example where B5 has failed and doesn’t forward the time-
message in counterclockwise direction to B4. After the timeout TtimeMsg in B4 has
expired, it creates a time-message with B4’s clock time and sends it to the merger B3.
After both time-messages from the right and the left half-ring have been received by B3,
it unites them and sends the united message in both directions as the answer-message.
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Now the faulty bridge B5 may fail again and skip the forwarding of the answer-message.
The initiator notices that the answer-message from the left half-ring and also B5’s time
information in the answer-message received from the right half-ring are missing. From
its view there are different interpretations of this case: B5 could be faulty as described
before, or B4 is faulty and hasn’t forwarded the time-message. The initiator sends the
replacement-message containing all available time information (The time information of
B5 is not included, but this will be tolerated by FTMA) clockwise to B4 and counter-
clockwise to B5. All non-faulty bridges take the time information from the replacement-
message (bridges in green circles).

Figure 4(b) shows an example where the merger B3 is faulty and doesn’t send the
answer-message to the right half-ring. After timeout TanswerMsg of B2 has expired, the
merger creates an answer-message (containing its time information) and sends it to the
initiator. The merger (B3) has sent its answer-message to the left half-ring before. Thus
the initiator receives an answer-message from both half-rings, but in the answer-
message from the right half-ring the time information of the merger (B3) is missing.
From the view of the initiator, bridges B2 and B3 could be faulty:

– B2 may have not forwarded the answer-message of B3, but have sent its own
answer-message.

– B3 may have missed to send the answer-message in the left half-ring.

Therefore, the initiator sends the replacement-message containing the available
time information clockwise to B2 and counterclockwise to B3. All the bridges take the
time information from the replacement-message (bridges in green circles).

Fail-omission or fail-silence of the initiator is tolerated by its neighbor bridges.
After timeout occurrence they send time-messages along the ring. The sub-protocol SP
is not need, because the merger exchanges all time information between the two half-
rings.

Wrong Delay Measurement. When the true forwarding delay and the indicated
forwarding delay differ, every bridge can detect the failure after having received the
answer-message, provided the error was not self-compensating, see Sect. 2.2.

Figure 5(a) shows an example where B4 adds wrong delay information to the
answer-message and also flags an error. The wrong delay measurement is detected by
B5 and also confirmed by B0. However, the initiator can’t localize the failure precisely.
Both B4 and B3 are suspicious. B4 is the reporter, because it has first flagged an error
(B3 is the reported-bridge). The initiator sends a replacement-message clockwise to B3

and counterclockwise to B4.
Figure 5(b) addresses a fault of the merger B3, which writes wrong delay infor-

mation to both answer-messages it sends in the half-rings. This is first detected by its
neighbors B2 and B4, and also confirmed by B1, B5 and B0. In this case the initiator can
localize the failure exactly, because the two neighbor bridges of the merger noticed that
(and both are reporters). Consequently the merger is identified as the faulty bridge. The
replacement-message is sent clockwise up to the right neighbor B2 and counter-
clockwise up to the left neighbor B4.

The wrong delay measurement (in the time-message) of the initiator is tolerated
locally in each bridge by FTMA. If the initiator adds wrong delay information to the
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replacement-message this can be detected by its neighbor-bridge or bridges and the
message is discarded.

4 Analysis of the Protocol

4.1 Quantification of Temporal Behavior

Figure 6 shows the behavior of two external clocks. Their clock times deviate at most
by β before and at most by α after adjustment of their clocks. The complete
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Denotes detection 
of wrong delay 
measurement

(a) (b)

Fig. 5. (a) Bridge B4 is faulty and commits wrong delay measurement of the answer-message
(red-dashed arrows) (b) The merger B3 is faulty and commits wrong delay measurement of the
answer-message (red-dashed arrows) in both half-rings. (Color figure online)
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Fig. 4. Tolerance of fail-omission of (a) B5 and (b) B3 (the merger). Blue solid arrows are time-
messages, blue-dashed arrows are answer-messages, and green arrows are replacement-messages.
(Color figure online)
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synchronization interval TnextSync from one adjustment to the next is composed of the
duration Tprotocol for the execution of the synchronization protocol and the temporal
separation Tsep for controlling the frequency of clock synchronization, to achieve a
desired compromise between the maximum clock deviation β and the overhead of the
periodic synchronization protocol. Moreover, bridges must wait TwaitA = β before
clock adjustment to guarantee that all bridges have finished their synchronization
protocol. After adjustment the waiting time TwaitP = β guarantees that no bridge starts
the next protocol execution before all bridges have adjusted their clocks. When sub-
dividing Tprotocol into TFP and TSP for the sub-protocols FP and SP, we get

TnextSync ¼ TwaitP þTsep þTprotocol þTwaitA ¼ Tsep þTFP þTSP þ 2b ð6Þ

The durations of the sub-protocols FP and SP depend on the number of hops, hFP
and hSP, respectively, the maximum delay Tforw for forwarding a message by a fault-
free bridge, the inaccuracy τ of measuring the actual forwarding delay, and the max-
imum clock drift ρ which may temporally extend the protocol execution by a factor of
(1 + ρ). The inaccuracy of delay compensation is 2τ because the wrong delay mea-
surement can be both positive or negative. This leads to:

TFP ¼ ðhFP � ðTforw þ bÞþ 2sÞ � ð1þ qÞ ¼ ðn � ðTforw þ bÞþ 2sÞ � ð1þ qÞ ð7Þ

TSP ¼ ðhSP � ðTforw þ bÞþ 2sÞ � ð1þ qÞ ¼ ððn� 1Þ � ðTforw þ bÞþ 2sÞ � ð1þ qÞ ð8Þ
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where n is the number of bridges in the ring. When FP starts, the timeout Tadjust for
clock adjustment is set to:

Tadjust ¼ TFP þTSP þTwaitA ¼ ðð2n� 1Þ � ðTforw þ bÞþ 4sÞ � ð1þ qÞþ b ð9Þ

In SFC a timeout TtimeMsg(i) is used by each bridge I for checking the timeliness of
an incoming time-message. Its value depends on the number hinitiator,i of hops from the
initiator to bridge i. Accordingly the timeout TanswerMsg(i) for an answer message
depends on the number hmerger,i of hops from the merger to bridge i:

TtimeMsg ið Þ ¼ ðhinitiator;i � ðTforw þ bÞþ 2sÞ � ð1þ qÞ ð10Þ

TanswerMsg ið Þ ¼ ðhmerger;i � ðTforw þ bÞþ 2sÞ � ð1þ qÞ ð11Þ

After successful adjustment of the clocks to a difference of at most α the clocks drift
apart and reach a difference of up to β at the end of a synchronization interval. The
effect is caused by the oscillator drift ρ that can be both positive or negative, thus

b ¼ aþ 2qTnextSync ð12Þ

Clock adjustment corrects the clocks according to FTMA which guarantees a
convergence of ½ plus the difference e in time by which two fault-free bridges observe
other clocks (6) where e = n � (1 + 2ρ) � 2τ. Consequently

a ¼ 1=2 � bþ n� ð1þ 2qÞ � 2s ð13Þ

By substituting α from (13) and TnextSync from (6) with TFP and TSP from (7) and
(8) in Eq. (12) we resolve the maximum deviation β between fault-free clocks, which is
the main achievement of clock synchronization:

b ¼ ns � ð1þ 2qÞþ qTsep þðð2n� 1Þ � Tforw þ 4t) � q � ð1þ qÞ
1=4� ð2n� 1Þ � q � ð1þ qÞ � 2q

ð14Þ

As can be easily seen, this expression is linear in all four, the maximum message
forwarding delay Tforw, the temporal separation Tsep, the inaccuracy of local delay
measurement τ and the number n of bridges. The linear dependency of the inaccuracy
from the distance between the nodes is a general property of synchronization protocols.

4.2 Overhead

The number of messages transmitted in the absence of faults is n/2 time-messages and
n/2 answer messages in each half-ring leading to a total of Nmessage-fault-free = 2 � 2 �
n/2 = 2n messages in FP. In the case of error detection the initiator launches SP and
sends a replacement-message which passes up to n − 1 bridges. Therefore, the worst-
case number of messages is Nmessage-max = Nmessage-fault-free + n – 1 = 3n − 1.
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This formula shows that overhead of the protocol used in a ring-network is linear in
number of bridges, which is more than the overhead in a tree-network, but compared to
other protocols used in redundant topologies with requirement of more disjoint paths
between bridges, the overhead is only linear rather than square.

4.3 Simulation

SFC has been implemented on a microcontroller network for validation and demon-
stration purposes.

Furthermore the protocol has been simulated to evaluate the quality of the syn-
chronization. The maximum clock deviation β among the bridges and the average
message number Nmessage-average have been quantified for different failure types (and
combinations thereof) in different scenarios with variation of the following parameters:
ρ the clock drift, randomly chosen from [10−5, 10−3]. This corresponds to good and

medium quartz oscillators.
Δ the inaccuracy of the local delay measurements, randomly chosen from the range

[−τ, +τ], where τ = 0.5 (time unit).
θ the forwarding delay, randomly chosen from [0, Tforw], where Tforw = 1 (time

unit).

The simulation has been conducted with 1.000.000 samples for each parameter
combination for n = 6 bridges, where all forwarders are sources (n = s). Six bridges
may correspond to small and medium size networks. Larger networks are likely to be
built by a collection of connected rings. The simulations have shown that the worst-
case occurs rarely, even in the presence of a fault. This holds for all investigated
malfunctions of the faulty bridge, see Table 1.

5 Conclusion

The new fault-tolerant clock synchronization protocol SFC is appropriate for ring
networks where the number of disjoint paths between bridges is kept low, which leads
to a low-cost solution in contrast to fault-tolerant protocols using either a fully-meshed
network or a special redundant topology. Furthermore the protocol guarantees the
tolerance of all type of failures of one bridge. If self-compensating errors can be
excluded, the precision of the synchronization compares to those of other protocols
when an equal number of hops between the bridges is presupposed. Otherwise the
precision depends also on the forwarding speed along the ring.

Table 1. Max deviation and Overhead.

Fault-
free

Fail-
omission

Delay Delay and fail-
omission

Corruption Corruption and
delay

β 0,4079 0,4259 4,0271 2,6654 2,4 2,56
Nmessage-

average

12 13,250085 14,20654 13,882075 13,99931 14,338153
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Currently, extensions of SFC are studied, in particular with respect to large
topologies. Networks of connected rings, for example, can be synchronized by exe-
cuting SFC in just one ring and adding a protocol similar to SFC in every other ring to
distribute the synchronized time network-wide.
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Abstract. Fault tolerance plays a significant role in the safety-critical
system design that enables a system to continue performing its intended
functions in presence of faults. Redundancy is the key underlying method
to achieve fault tolerance. Hardware redundancy and software redun-
dancy are well-known redundancy techniques. In case of model-based
development, redundancy mechanisms can be applied directly at the
model level, e.g. to a Simulink model. This paper introduces a new,
model-based redundancy technique to tolerate hardware faults, called
model-based redundancy (MORE). Applications of fault-tolerant design
patterns, such as comparison, voting, and sparing, to Simulink models are
introduced. A Simulink PID controller model is demonstrated as a case
study to show the effectiveness and feasibility of the introduced app-
roach. The paper also addresses the mutual optimization of reliability
properties and system performance. We apply the MORE separately to
the P, I, D terms and analyze system performance and achieved reliabil-
ity properties, evaluated using a stochastic dual-graph error propagation
model.

Keywords: Fault tolerance · Redundancy · Model-based design
Dependability · Reliability · Design patterns · Stochastic method
Soft errors · Silent data corruption · Simulink

1 Introduction

Model-based development is an efficient, reliable, and cost-effective paradigm
for the design and implementation of complex embedded systems, e.g. in
safety-related applications. The commonly used modeling methods include
UML/SysML, AADL, MATLAB R© and Simulink R©. MATLAB/Simulink is one of
the most well-known model-based system development paradigm, which is very
popular among control engineers. Model-based design with MATLAB/Simulink
helps to improve the product quality and reduce the development time. Simulink
Coder

TM
provides automated generation of executable code and deployment on

a target hardware platform that help to avoid manual coding errors.
Embedded systems are prone to hardware faults, such as bit-flips. The like-

lihood of the occurrence of these faults is increasing due to the continuously
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decreasing feature sizes of integrated circuits. A Single event upset (SEU), as a
result of interfering electromagnetic fields or radiation, is a state change caused
by a single ionizing particle. An SEU can cause a bit-flip, which is an uninten-
tional change of a bit state from 0 to 1, or vice versa in memory of microelectronic
devices [5,21]. Bit-flips may occur in safety-critical systems, e.g. in space [27] or
automotive [6] applications. Electronic devices might exhibit abnormal behavior
due to the occurrence of bit-flips. During the flight of the spacecraft Cassini, the
NASA reports a rate of 280 soft errors per day [26]. Bit-flips can be manifested in
a microprocessor as e.g. timing errors, control-flow errors and data errors [3,24].
Data errors occur when a bit-flip alters the content of a memory cell or a CPU
register and are more common than timing or control-flow errors [3].

The concept of model-based redundancy is inspired by the model-implemented
fault injection [3,25]. Well-known approaches are hardware-implemented fault
injection and software-implemented fault injection. For safety analyses during
model-based development, fault injection mechanisms can be applied directly
to models. Tools, like MODIFI (MODel-Implemented Fault Injection) [25] and
ErrorSim [19], can inject faults in behavior models developed using MATLAB
Simulink in order to evaluate model robustness against several types of hardware
faults. The injection of bit-flips into Simulink models for robustness assessment
is addressed in [23,24].

The remainder of the paper is organized as follows. Section 2 briefly discusses
the related work in the domains of fault tolerance and redundancy, soft errors
protections at various levels of abstraction. Section 3 is dedicated to the descrip-
tion of the model-based redundancy using the applications of the design patterns,
e.g. voting pattern, comparison pattern, to an illustrative Simulink PID controller
model. The analytical evaluation method is introduced in Sect. 4. Finally, the
conclusions are given in Sect. 5.

2 State of the Art

2.1 Fault Tolerance and Redundancy

Traditionally, fault-tolerant designs are classified into hardware, software, time,
and information redundancy. Hardware redundancy is used to tolerate hardware
systematic and/or random faults, whereas software redundancy is used to deal
with software systematic faults, e.g. bugs, or hardware faults. Hardware redun-
dancy techniques are classified into three types [4]: passive can mask faults, while
active is used for faults detection and recovery, hybrid redundancy is a combi-
nation of active and passive redundancy. Software redundancy techniques can
be divided into two groups [10]: single version techniques achieve fault tolerance
of a software component by the mechanisms for fault detection, containment,
and recovery, while multi-version techniques employ design diversity to tolerate
software design faults.

We have proposed a new classification of implementation-independent fault-
tolerant designs that organizes existing fault tolerance techniques into a struc-
tured pattern system [1]. Most of the well-known fault-tolerant designs follow
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these patterns. Comparison, voting, and sparing are three basic design patterns.
Comparison pattern is used to detect faults, voting pattern is applied to mask
faults, and sparing pattern can detect a fault with a built-in error detection
unit and switch to a spare component. These three basic design patterns can
be combined in different ways to improve the dependability even further. Four
combined design patterns are also introduced in [1].

The difference between the software redundancy and the proposed model-
based redundancy is that software redundancy techniques are mainly used to deal
with software systematic faults (design faults), whereas model-based redundancy
is applied in the design phase to tolerate soft errors, caused by hardware faults.

2.2 Soft Errors Protection at Hardware, Software, and Model
Levels

A soft error is a type of error where a signal or datum is wrong that can be
caused by hardware faults, e.g. bit-flips, and can be remedied by a reboot of the
system. Various approaches have been proposed to protect the system from soft
errors in memory and processor using both hardware and software techniques.
Soft error detection and recovery using special hardware to replicate an applica-
tion execution and detect errors in the output are addressed in [14,16]. Reliable
systems typically exploit hardware fault-tolerant techniques, such as triple mod-
ular redundancy, to mask soft errors. Several approaches have been developed
to deal with unexpected bit-flips, including RAM parity checking, and error
correcting codes (ECC). However, hardware redundancy increases design com-
plexity and cost. It is demonstrated that detection of most transient faults can be
accomplished without the need for specialized hardware [17]. Many authors have
proposed compiler-level instruction replication and result checking for software-
based soft error tolerance, such as error detection by duplicating instructions
(EDDI) [15] or by AN Encoding [18,20], software implemented fault tolerance
(SWIFT) [17], and replication of data inside AVX registers with ELZAR [8]. Soft
errors protection at software is lower-cost and flexible, however, the methods are
dependent on a hardware platform.

2.3 Contributions of the Paper

Redundancy is traditionally developed and applied at hardware or software
levels. For fault-tolerant designs during model-based development, which are
increasingly being used during system development, redundancy mechanisms can
be applied directly at the model level, e.g. to a Simulink model, to tolerate soft
errors. Thus, we define this approach as model-based redundancy that is achieved
in the Simulink model by providing two or more copies of a block. MORE can
achieve soft errors tolerance because program instructions are replicated and
values are compared automatically, instead of manually replication of instruc-
tions. MORE brings also the inevitable drawback of the system performance
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degradation in terms of additional used resources, e.g. memory, computation
time. However, the application of MORE has several attractive features:

1. First and foremost, the technique is independent of any development tool-
chain (code generators, compilers) and target hardware platform.

2. Second, redundancy can be applied in the design phase and will be included
in the generated software, compiled and deployed into the target platform
automatically.

3. Third, for model-based design engineers, it is more transparent to protect
vulnerable parts directly with fault tolerance mechanisms at the model level.

These are the main driving forces behind the concept of the model-based
redundancy. We apply the MORE to Simulink, since it is widely used and pro-
vides automated code generation for the proof of concept. The MORE approach
can be extended equally to other model types or tools, such as TASTE (ESA),
Embedded Software Designer (Siemens), or SCADE (Esterel Technologies).

Another contribution is the optimization method of reliability properties
and system performance based on stochastic error propagation analysis [11,12].
We apply the MORE as a case study to the P, I, D terms of the PID con-
troller, respectively, and compare achieved reliability properties and system per-
formance, in order to show the most suitable design solution to apply the MORE
approach.

3 Model-Based Redundancy

3.1 Application of the Voting Pattern in Simulink

In the voting pattern [1], the components are replicated to perform the same
operation in parallel. The N produced results are compared by a majority-voting
system (a voter) in order to determine the correct result. N is selected to be odd
and in the basic case, N equals three. The system functions correctly as long as
the majority of components are fault-free. This pattern masks (N − 1)/2 faults.

For illustrative purposes, we use a Simulink PID controller model as a demon-
strative example. In Simulink, the Gain, Discrete-Time Integrator, and Discrete
Derivative block can be used to model the P, I, D terms of a PID controller,
respectively. The particular implementation of the voting pattern to the P term
of a PID controller is shown in Fig. 1, where the Gain block is triplicated, one
Relational Operator block and one Switch block are used. The Relational Oper-
ator block applies the selected relational operator, here “==”, to the inputs. If
two inputs agree, it generates a Boolean signal TRUE, i.e. 1. For a control input
of 1, the Switch block passes through the first input, otherwise the third input.
In the voting pattern, a fault in one Gain block can be masked. Note that the
value e in the PID control system is assumed to be always correct, even in case
of an erroneous y.
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Implementation of
the voting pattern

Fig. 1. Application of the voting pattern to the P term of a PID controller.

3.2 Application of the Comparison Pattern in Simulink

Figure 2 shows the application of the comparison pattern to the P term of a
Simulink PID controller, where two components (Gain blocks) perform the same
computation in parallel and their results are compared by a comparator (Rela-
tional Operator block) in order to detect an error. If an error is detected, an
error signal is generated either to shut down the entire system or to switch the
system into a fail-safe state. If the two inputs data are not equal, the Relational
Operator block outputs a Boolean signal TRUE, then the Stop Simulation block
stops the simulation. In [28], the authors introduced a robust duplex integrator
with a recovery buffer which can detect and recover (roll-back to the previous
integrator state) from errors caused by bit-flips.

Implementation of
the comparison pattern

Fig. 2. Application of the comparison pattern to the P term of a PID controller.

3.3 Application of the Sparing Pattern in Simulink

In the sparing pattern, only one component is operational and the remaining
N−1 components serve as spares. If an error is detected by a built-in error detec-
tion unit in an active component, a spare component takes over. This enables a
system to continue its correct operation. An error detection technique is required
in this pattern. An error detection unit identifies faults, e.g. by range check or
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Implementation of
the sparing pattern

Fig. 3. Application of the sparing pattern to the P term of a PID controller.

state check. If an error is detected in the active component, the switch will turn
the operation to a spare component. Ideally, this pattern can tolerate N − 1
faults. However, not all the faults can be detected by the error detection unit.
Koren [7] has defined the coverage factor c as the probability of successful detec-
tion that the faulty active component will be correctly diagnosed, identified and
disconnected. Figure 3 shows the application of the sparing pattern to the P
term of a Simulink PID controller using range check. Other detection mecha-
nisms, e.g. state or derivative checks, can also be implemented. The Compare
To Constant block checks the range of the output of P term. The Memory block
applies one integration step delay and its output is the previous input value. The
initial condition is specified as 1. If the output of the P term is bigger than the
user-defined maximum value, then the Switch block receives a FALSE control
signal and turns the operation to a spare one. The faulty component will never
be switched back. The application of the sparing pattern to the P term of a PID
controller helps to tolerate soft errors that occur in the gain values.

3.4 Application of the Comparison Then Sparing Pattern in
Simulink

Figure 4 shows the application of the comparison then sparing pattern to the P
term of a Simulink PID controller. All the components are grouped in pairs. The
first pair is on-line and its outputs are compared to detect a mismatch. If the
results disagree, another pair takes over. The system is operational until the last
pair fails.
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Implementation of the 
comparison then sparing pattern

Fig. 4. Application of the comparison then sparing pattern to the P term of a PID
controller.

4 Evaluation

In order to show the effectiveness and feasibility of the model-based redundancy
approach for Simulink models, we analytically evaluate the reliability properties
of the application of the voting pattern to P, I, D terms of a Simulink PID
controller, respectively (see Fig. 1). The analytical method numerically evalu-
ates the system reliability using underlying discrete-time Markov chain models
that are parametrized with data errors probabilities. Therefore, the method can
support, in particular, realistic low probabilities of the error occurrence, in con-
trast to the experimental approaches, e.g. by MODIFI or ErrorSim, that require
a huge number of simulations in order to obtain confident results. The PID
controller is tuned for a plant model with the following parameters: propor-
tional gain Kp = 49.63, integral gain Ki = 118.9, derivative gain Kd = 5.178,
sample time Ts = 0.05 s, and end time Tend = 5 s. The output u of the PID
controller is considered to be critical since it is a control variable that is sent
to the plant. Figure 5 shows an overview of the analytical evaluation process.
The redundancy mechanism is added at the model level, then Simulink Coder
generates the C code automatically. The next step is the compilation of the gen-
erated high-level code into the low-level assembly code. Then, the assembly code
is transformed into the dual-graph error propagation model (DEPM) [2,11,12]
for the error propagation analysis. After that, probabilistic modeling of data
errors is performed in the DEPM. Finally, the reliability properties, computed
from the DEPM applying stochastic error propagation analysis, and the sys-
tem performance, evaluated from the assembly code, are analyzed in terms of a
reliability-performance Pareto frontier.

Generated C Code: Redundancy at Simulink model level will be automatically
generated inside the executable source code, then compiled and deployed on a
target hardware platform. In Fig. 6a, seven user-specified variables of the model
are declared and initialized. The variable type real T is used as the generalization
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Fig. 5. Overview of the analytical evaluation process.

of the float and double data types. The initialize function in Fig. 6b is invoked
only once at the start of the execution to initialize the state variables.

/* Block parameters (auto storage) */
real_T P_1_Gain = 49.63;       /*by 'P_1'*/
real_T P_2_Gain = 49.63;       /*by 'P_2'*/
real_T P_3_Gain = 49.63;       /*by 'P_3'*/
real_T I_gainval = 5.945;        /*by 'I'*/
real_T TSamp_WtEt = 103.56;  /*'pmaST'yb*/
real_T I_IC = 0.0;                    /*by 'I'*/      
real_T UD_IC = 0.0;                /*by 'UD'*/ 

(a) The model parameters.

/* Model initialize function */
void initialize(void)
{
  /* InitializeConditions for Integrator: 'I' */
  I_DSTATE = I_IC;
  /* InitializeConditions for UnitDelay: 'UD' */
  UD_DSTATE = UD_IC;
}                

(b) The initialize function.

Fig. 6. The generated model parameters and the initialize function.

Figure 7a shows the main functional fragment of the automatically generated
C code, the step function, which is invoked in each iteration to calculate the
output u of the PID controller and update the state variables. The Gain block
is triplicated, and P 1 Gain, P 2 Gain, and P 3 Gain are the specified gain
values that are stored in different addresses (memory). In our experiments, we
explicitly check that the compiler applies no optimization and stores the values
in three different addresses. The multiplication of P 1 Gain and e is compared to
the multiplication of P 2 Gain and e. If they disagree, P 3 Gain continues with
the rest of the execution. MORE efficiently manages redundancy by reclaiming
values and inserts comparison function at specific points at the code-level during
automated code generation. During execution, values are effectively computed
and compared to determine the correct value.

Compiled Assembly Code: The step function in Fig. 7a is compiled into
the assembly code with Clang (Apple LLVM version 8.1.0 (clang-802.0.42)).
The resulting assembly code has 31 instructions, presented in AT&T syntax in
Fig. 7b. In general, each instruction consists of an operation and two operands.
The first operand is the source operand and the second operand is the destina-
tion operand. Register names are prefixed by %. Instruction 1 loads the value of
P 1 Gain. The multiplication of P 1 Gain and e is stored in −8(%rbp). Notice
that Instruction 2 loads the value of P 2 Gain. The multiplication of P 2 Gain
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and e is stored into a different register %xmm0. Instruction 3 compares the
value stored in −8(%rbp) with the value stored in %xmm0. If the results
disagree, Instruction 4 loads the value of P 3 Gain from a different memory
and continue with the rest execution.

/* Model step function */
void step(void)
{

/* temporary variables */
  real_T rtb_Switch;
  real_T rtb_TSamp;
  real_T I;
 /* Output of Switch: 'Switch' */
  rtb_Switch = P_1_Gain * e;
  if (!(P_2_Gain * e == rtb_Switch)) {

rtb_Switch = P_3_Gain * e;
  }

/* Output of DiscreteIntegrator: 'I' */
  I = I_gainval * e + I_DSTATE;
 /* SampleTimeMath: 'TSamp'
  *  y = u * K where K = Kd / Ts  */
  rtb_TSamp = e * TSamp_WtEt;
 /* Output: 'u' */
  u = (rtb_Switch + I) + (rtb_TSamp - UD_DSTATE);

/* Update for DiscreteIntegrator: 'I' */
  I_DSTATE = I;
 /* Update for UnitDelay: 'UD' */
  UD_DSTATE = rtb_TSamp;
}

(a) The generated model step function. (b) The compiled assembly code.

Fig. 7. The generated model step function and the compiled assembly code.

Generated DEPM: Recently, we have introduced a stochastic dual-graph error
propagation model (DEPM) for the error propagation analysis of safety-critical
systems [2,11,12]. This model is a formal mathematical abstraction that captures
control and data flow aspects of a system and allows the computation of several
reliability metrics, such as (i) mean number of errors (Nerr) and (ii) probability
of errors (Perr), in critical system outputs for specified faults probabilities, using
underlying discrete-time Markov chain models. The former metric, Nerr, is the
average number of occurred errors during the given system execution time in
a data storage and the latter metric, Perr, is the occurrence probability of an
error during the given system execution time in a data storage. Discrete-time
Markov chain models are computed using an interface with the PRISM model
checker [9].
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The probabilistic modeling of data errors caused by bit-flips in RAM is con-
ducted at the assembly code level. Thus, the compiled assembly code in Fig. 7b
is transformed into a DEPM, shown in Fig. 8, based on the following mapping
rules: (i) The operations, such as movsd, mulsd, addsd, are mapped into DEPM
elements, e.g. mov1 or mul1. Each element may receive input data and pro-
vide output data. (ii) The operands, such as P 1 Gain, xmm0, are mapped into
DEPM data storages that can be read or written by an Element. (iii) The exe-
cution sequences of instructions are mapped into the DEPM control-flow arcs
(black lines in Fig. 8), weighted with transition probabilities. (iv) The relations
between the operation and its operands are mapped into the DEPM data-flow
arcs (blue lines in Fig. 8) that describe data transfer between the elements.

mul1

mov2

xmm0

mov3

rbp8

mul5

mov10

add3

add2

mul2

mov4

mov13

mov17

mov15

mov8

mul3

mov6
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vote
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rbp16

mov12
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mov7rtb_Switch
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xmm1
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I_gainval P_3_GainP_1_GainTSamp_WtEt P_2_Gain

start

e

Fig. 8. The DEPM that is generated from the compiled assembly code (Fig. 7b). (Color
figure online)
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The data errors occurrence probabilities (fault activation), as well as the
error propagation through the DEPM elements, are modeled using probabilistic
conditions of the DEPM elements. It is assumed that the data errors probability
in each variable during the sample time, i.e. each iteration, is independent and
defined as pRAM = 1.0e−6. The assumed fixed data errors probabilities are
selected for the simplicity and transparency of the method explanation. The
discussion on varying probabilities and real-world applications will follow later.

Instead of fault injection simulation, we focus on the probabilistic modeling
of data errors caused by bit-flips in RAM and the error propagation analysis. An
additional DEPM element FI is generated (see Fig. 8), and connected with all
seven user-specified variables of the step function. The element FI is executed
at the beginning of each control loop iteration to model data errors occurrence
with probability pRAM . Each data storage in the generated DEPM has two
states: correct or erroneous. The conditions of the element FI are specified as an
independent combination of each variable. For instance, the conditions for the
variable P 1 Gain in FI are specified, as follows: (i) if P 1 Gain is correct: a)
then P 1 Gain is correct with probability 1−pRAM , b) or P 1 Gain is erroneous
with probability pRAM , (ii) if P 1 Gain is erroneous: a) then P 1 Gain is erro-
neous with probability 1. The computed values, P 1 Gain×e, P 2 Gain×e, and
P 3 Gain× e, are stored in different registers rbp8, rbp32, and rbp40 (see Fig. 8)
that are compared in order to determine the correct value. The element vote has
23 conditions. For instance, one condition of the element vote is specified: (i) if
rbp8 is correct and rbp32 is correct and rbp40 is erroneous: (a) then rtb Switch
is correct with probability 1. In order to evaluate the reliability metrics, (i) Nerr

and (ii) Perr in the output u, discrete-time Markov chain models that describe
instructions execution and error propagation processes are automatically gener-
ated from the DEPM and computed using the PRISM model checker [9].

Numerical Results: The application of the model-based redundancy can
improve the system tolerance to soft errors, however, it also entails the generation
of extra source code, resulting in a considerable computational overhead and, as
a consequence, leads to the performance degradations. In our previous work [13],
we proposed the approach to minimize the negative performance impact while
maintaining the required system reliability level. Figure 9 shows the relationship
between the system performance (number of instructions, used as representative
metrics) and the evaluated reliability properties for the Simulink PID controller
model with applications of the voting pattern to P, I, D terms with the assumed
pRAM = 1.0e−6. In Fig. 9a, for the achieved Nerr, the application of the voting
pattern to the D term of a PID controller is not practical, since compared to
the P term, the performance changes from 31 to 40, but Nerr stays almost the
same. In Fig. 9b, for the evaluated Perr, the applications of the voting pattern
to the D term and to the I term show almost the same reliability property and
system performance, although voting for I term is above the Pareto frontier.
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(a) Performance vs Nerr (b) Performance vs Perr

Fig. 9. The relationship between the system performance and the achieved reliability
properties for pRAM = 1.0e−6.

In reality, the data errors probabilities are strongly dependent on many envi-
ronmental and technology parameters [22]. Therefore, we evaluate the reliability
properties of the Simulink models with a broad range of data errors probabilities
in order to give more practical values, shown in Fig. 10. The plots are created
using a base 10 logarithmic scale for the x-axis (data errors probabilities from
10−8 to 1) and for the y-axis (reliability properties).

In Fig. 10a, the evaluated Nerr reaches almost its maximum 101 when the
data errors probability in RAM is about 10−2 for all plots, since we model
altogether 101 iterations from 0 s to 5 s with Ts = 0.05 s, and in the worst case,
an error propagates to the critical output in each iteration. For this case study,
the reliability analysis has shown that the application of the voting pattern to
the I term of a PID controller (yellow plot) is the most tolerant to data errors
caused by bit-flips. The application of the voting pattern to the P term (red
plot) and to the D term (dashed purple plot) show almost the same reliability.
The evaluated Nerr with voting pattern for the I term of a PID controller model
is half of that of the PID controller model without any protection.

In Fig. 10b, the application of the voting pattern to the I term (yellow plot)
and to the D term (dashed purple plot) almost coincide, showing the lowest Perr.
Followed by is the application of the voting pattern to the P term (red plot) of
a PID controller. The evaluated Perr for the PID controller model with voting
pattern to the I or D term is about 60% of that for the PID controller model
without any voting pattern.

From the system performance comparison in Fig. 9 and the evaluated reli-
ability property in Fig. 10, we can conclude that the application of the voting
pattern to the I term of a PID controller is the most suitable design solution.
The analytical method, introduced in this paper, can also be applied to the other
dependability design patterns [1], such as comparison or sparing patterns.
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(a) The evaluated mean number of errors (Nerr) in the output of the PID controller
with the modeling of data errors with varying data errors probabilities pRAM .

(b) The evaluated probability of errors (Perr) in the output of the PID controller with
the modeling of data errors with varying data errors probabilities pRAM .

Fig. 10. The evaluated reliability properties. (Color figure online)

5 Conclusion

In this paper, we have proposed MORE, a model-based redundancy approach to
achieve fault tolerance. MORE can be applied in the model-based design phase,



MORE: MOdel-based REdundancy for Simulink 263

e.g. to a Simulink model, to tolerate soft errors caused by hardware-related
faults. Redundancy at the Simulink model level is included inside the auto-
matically generated C code, then compiled and deployed on a target hardware
platform. Values and instructions are replicated automatically, then a compar-
ison function is executed to detect soft errors or determine the correct values.
Thus, model-based redundancy is independent of any development tool-chain or
target hardware platform. We have shown the application of fault-tolerant design
patterns, such as comparison, voting patterns, to an illustrative Simulink PID
controller model. Assembly code, compiled from the automatically generated C
code, was transformed into the DEPM for the stochastic evaluation of reliability
properties. Finally, we have addressed the reliability-performance optimization
problem building a Pareto frontier for different protection strategies. Future work
includes the comparison of the proposed model-based redundancy technique with
other existing techniques, e.g. SWIFT.

Acknowledgements. This work is supported by the German Research Foundation
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Abstract. We present an analysis of the diversity that exists in the rules and
blacklisted IP addresses of the Snort and Suricata Intrusion Detection Systems
(IDSs). We analysed the evolution of the rulesets and blacklisted IP addresses of
these two IDSs over a 5-month period between May and October 2017. We used
three different off-the-shelf default configurations of the Snort IDS and the
Emerging Threats (ET) configuration of the Suricata IDS. Analysing the dif-
ferences in these systems allows us to get insights on where the diversity in the
behaviour of these systems comes from and how does it evolve over time. This
gives insight to Security architects on how they can combine and layer these
systems in a defence-in-depth deployment. To the best of our knowledge a
similar experiment has not been performed before. We will also show results on
the observed diversity in behaviour of these systems, when they analysed the
network data of the DMZ network of City, University of London.

Keywords: Security assessment � Security tools � Intrusion detection systems
Design diversity

1 Introduction

An important part of design for security is defence-in-depth, consisting of “layers” of
defence that reduce the probability of successful attacks. Guidance documents now
advocate defence in depth as an obvious need1 but their qualitative guidance ignores
the decision problems. Crucially, these questions concern diversity: defences should be
diverse in their weaknesses. Any attack that happens to defeat one defence should with
high probability be stopped or detected by another one. Ultimately, diversity and
defence in depth are two facets of the same defensive design approach. The important
questions are not about defence in depth being “a good idea”, but about whether a set of
specific defences would improve security more than another set; and about – if possible
– quantifying the security gains.

Network Intrusion Detection Systems (IDSs) are some of the most widely used
security defence tools. Some of these IDSs are available open-source, and the most
widely used open-source IDSs are Snort and Suricata. Both of these tools are signature-
based and rely on rules to identify malicious activity. The rules identify malicious
activity based on content, protocols, ports etc., as well as on the origin of the

1 www.nsa.gov/ia/_files/support/defenseindepth.pdf.

© Springer Nature Switzerland AG 2018
B. Gallina et al. (Eds.): SAFECOMP 2018, LNCS 11093, pp. 267–281, 2018.
https://doi.org/10.1007/978-3-319-99130-6_18

http://orcid.org/0000-0002-8017-3184
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99130-6_18&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99130-6_18&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99130-6_18&amp;domain=pdf
http://www.nsa.gov/ia/_files/support/defenseindepth.pdf


activity/traffic - in this latter case, the suspicious IP addresses are “blacklisted” and
traffic originating from these IPs are alerted. Depending on the configuration of the IDS
the traffic can be alerted but allowed, or alerted and dropped – the latter happens when
the IDS is running in Intrusion Prevention System (IPS) mode.

In this paper, we present an analysis of the diversity that exists between the Snort
and Suricata rules and blacklisted IP addresses. We analysed the evolution of the
rulesets and blacklisted IP addresses of these two IDSs over a 5-month period between
May and October 2017. We used three different off-the-shelf default configurations of
the Snort IDS and the Emerging Threats configuration of the Suricata IDS. Analysing
the differences in these systems and how they evolve over time, allows us to get
insights on where the diversity in the behaviour of these systems comes from. To the
best of our knowledge a similar experiment has not been performed before. We will
also show results on the observed diversity in behaviour of these systems, when they
analysed the network data of the DMZ network of City, University of London.

The rest of the paper is organised as follows: Sect. 2 describes the experimental
architecture. The next three sections present results of diversity analysis of the fol-
lowing aspects of Snort and Suricata: blacklists (Sect. 3); rulesets (Sect. 4); behaviour
on real network traffic (Sect. 5). Section 6 presents a discussion of the results and
limitations. Section 7 presents related work and finally Sect. 8 presents conclusions
and further work.

2 Description of the Experiment and the Architecture

We ran an experiment for 5 months from 20th May 2017 to 31st October 2017. During
these dates we did the following. We downloaded and saved snapshots of the black-
listed IP addresses of Snort and Suricata as they were on each day of the experiment.
To retrieve the rules we used the pulledpork tool2. For Snort, the blacklisted files3 were
downloaded every 15 min for the duration of the experiment. We therefore have a total
of 15,812 blacklist files for Snort. Note that the total duration of the experiment is 165
days for which there should have been 15,840 files, but in some cases there were no
updates for blacklisted IPs in every 15-min slot of our collection period. The black-
listed IP addresses for Suricata are located inside the rules files4, so we extracted the
blacklisted IP addresses from these rule files. We also ran pulledpork every 15 min for
Suricata, but contrary to Snort, the rate of updates of the Suricata ET blacklists appear
to be on daily basis rather than every 15 min.

We downloaded and saved the rules of Snort for three different default rule con-
figurations available from the Snort webpages (Community rules, Registered rules, and
Subscribed rules). The difference between these rules are explained in the Snort
website5. In summary, the website states the following for these different rules: the

2 https://github.com/shirkdog/pulledpork.
3 http://labs.snort.org/feeds/ip-filter.blf.
4 https://rules.emergingthreats.net/open/suricata/emerging.rules.tar.gz.
5 https://snort.org/documents/registered-vs-subscriber.
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Subscribed (paid) rules are the ones that are available to users in real-time as they are
released; the Registered rules are available to registered users 30 days after the Sub-
scribed users; the Community rules are a small subset of the subscribed/registered rule
sets and are freely available to all users. For Suricata we used the Emerging Threats
(ET) ruleset. We ran the pulledpork to update the rules every 15 min, but we observed
that rules were updated on average every 24 h. Similar to blacklisted files, we saved
snapshots of these rules files on each day of the experiment.

The University’s IT team saved copies of the network traffic (in packet capture
(pcap) format) for retrospective analysis of attacks and incidents. We replayed the pcap
traffic collected over a one week From 2 May to 8 May 2017, to the three different
versions of Snort outlined above and to Suricata ET.

The data collection and analysis infrastructure runs on a virtualized environment
based on VMware VSphere data center. This data collection setup has five data hosts
each having, 150 TB storage capacity, 200 GB RAM, and 32 � 2.3 GHz of CPU
processing speed. At the start of the experiment, we installed the latest versions of these
IDSs on the FreeBSD operating system: Snort 2.9.9.0 and Suricata 3.2.1.

3 Diversity in the IP Blacklists of Snort and Suricata

3.1 Analysis of Each Individual IDS

In this section, we present the analysis of our research on how blacklisted IP addresses
evolve over time in Snort and Suricata. As we mentioned previously, we obtained these
blacklisted IPs from May 20 2017 to October 31 2017, at a sampling rate of every
15 min. We kept the same sampling frequency for Suricata to make the analysis as
comparable as possible, though we observed that the rate of change of the blacklisted
files was, in some cases, less frequent than every fifteen minutes for Snort and further
less frequent for Suricata (which tended to be every 24 h). Figure 1 shows the evo-
lution of the blacklisted IP addresses as obtained from Snort (left plot) and Suricata
(right plot). The y-axis shows the total count of the blacklisted IPs and x-axis shows the
data collection points. From Fig. 1 we observe a large fluctuation in the number of
blacklisted IP addresses over time. For example around 21 June 2017 a large number of
IP addresses were removed from the blacklists. However, afterwards, the number of
blacklisted IP addresses increased again. In Suricata we also saw a large drop in the
number of blacklisted IP addresses around this time, but the total number of blacklisted
IPs did not increase again as it did for Snort.

We note that some IP addresses remained blacklisted for the entire duration of our
experiment (or change their states only once, e.g., they are removed from the black-
lists), whereas we observed other IP addresses that changed state twice or more (e.g.
blacklisted, removed, blacklisted etc.) We therefore divide the IP addresses into those
that remained “continuously” blacklisted IP addresses (or change their states only
once) and “discrete” blacklisted IP addresses (those that changed state more than
once). General statistics are given in Table 1: the second column shows counts of the
total number of files containing blacklisted IP addresses for the whole experiment
period; the third column shows the total number of distinct IP addresses; the fourth and
fifth columns show the counts of the “continuous” and “discrete” IP addresses.
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Figure 2 gives the distribution of total time blacklisted for all the IP addresses over
the entire period of our experiment. We plotted the proportion of IP addresses (x-axis)
against the total time a particular IP remained blacklisted (y-axis). We observe that IP
addresses stayed blacklisted longer in Snort than in Suricata.

Fig. 1. Count of Blacklisted IPs in Snort and Suricata in our collection period

Table 1. General statistics of Blacklisted IP addresses

Blacklisted IP 
Source

Count of 
Files

Count of IP 
Addresses

Count of IPs that do not 
change state 

(“continuous”)

Count of IPs that 
change state
(“discrete”)

Snort 15,812 46,701 5,383 41,318
Suricata 129 135,791 28,883 106,908 

Fig. 2. Total time (hours) an IP remained Blacklisted
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3.2 Diversity Analysis of the Blacklisted IP Addresses

We then analysed the similarity and diversity in the Snort and Suricata blacklisted IP
addresses. We compared blacklisted IP addresses from the Snort and Suricata sources
at exact time/date points (to the nearest second). In total, out of 15,812 Snort files, and
129 of Suricata, 128 files had a common date/time overlap. The analysis on this section
is based on this overlap. Figure 3 shows the date/time slots for which the analysis was
carried out (in the x-axis) and the counts of different categories of blacklisted IP
addresses (y-axis). We have three main categories of interest: IP addresses which were
blacklisted in Snort only (depicted as “_snort” in the graph), IP addresses which were
blacklisted in Suricata only (“_suricata”), and IP addresses which were blacklisted in
both Snort and Suricata (“_snort_suricata”). We observe that the overlap between the
two blacklisted IP addresses sets is relatively small and the total number of IPs that
appear in blacklists of both Snort and Suricata is relatively constant for the duration of
our experiment.

Table 2 shows the general statistics for all IPs and the data points in the dataset of
128 files of blacklisted IP addresses in Snort and Suricata. We have a total of 177,504
distinct IP addresses observed in either Snort or Suricata in these 128 files. Of these,
3,991 have been observed in both Snort and Suricata. We can think of each data point
in our dataset consisting of an IP/date pair, and for each of these data points the value is
either “observed in Snort-only” (abbreviated 01), “observed in Suricata only” (abbre-
viated 10), or “observed in both Snort and Suricata” (abbreviated 11). The statistics for
these data points are given in the last three rows of Table 2. Table 3 then shows a more
detailed breakdown for each of the 177,504 IP addresses. The first two columns show
the totals count of IP addresses which in the observation period were observed in Snort
only, Suricata only, or both in Snort and Suricata at the same time (these are depicted as
“single state” IP addresses). The third and fourth columns show the total number of IP
addresses in which we observed multiple states over the experiment period. For
example, the first row shows that there are 79 IP addresses that were observed in both

Fig. 3. Diversity in Blacklisted IPs as collected from Snort and Suricata sources
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Table 2. Statistics of the datapoints observed in Snort and Suricata overlapping periods

Total number of IPs in the 128 files of Snort 46,187
Total number of IPs in the 128 files of Suricata 135,308
Total number of IPs observed in either Snort or Suricata 177,504
Total number of IPs observed in both Snort and Suricata 3,991
Total number of data points (IP/date pairs) observed in Snort 
and Suricata overlapping periods.

Snort only (01) 1,129,180
Suricata only (10) 2,219,330

Snort and Suricata (11) 113,152

Table 3. Statistics of blacklisted IPs observed in Snort and Suricata overlapping periods

Single states Count of 
IPs

Multiple 
states

Count of
IPs

Observed first 
in:

Count of 
IPs

Snort only (01) 42,196(01,10) only 79 Snort (01) 35
Suricata (10) 44

Suricata only (10) 131,317(01,11) only 2,834 Snort (01) 1,257
Both (11) 1,577

Both Snort and Suricata only 
(11) 

588(10,11) only 250 Snort (01) 84
Both (11) 166

(01,10,11) 
only 

240 Snort (01) 102
Snort (01) 82

Both (11 56

Fig. 4. Distribution of blacklisted IPs on which we observed multiple states: top-left (01, 10);
top-right (01, 11); bottom-left (10, 11); bottom-right (01, 10, 11). Note: 0 (white) = no data.
(Color figure online)
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Snort and Suricata blacklisted files, but never at the same time. Columns 5 and 6 then
show a further breakdown of these IP addresses depending on where they were
observed first: for these 79 IP addresses, 35 were observed in Snort blacklists first, and
44 in Suricata.

Figure 4 shows the IP addresses for which we observed multiple states (i.e. those of
columns three and four from Table 3). The x-axis shows the number of date/time points
and the y-axis shows the enumeration of those blacklisted IP addresses. We kept the
same ordering of the plots as the corresponding rows in column 3 of Table 3: the top-
left plot shows the 79 IP addresses that were either observed in both Snort and Suricata
but not at the same time, the top right the 2,834 observed in Snort only, or both Snort
and Suricata at the same time etc.) The bottom-left plot shows an interesting behavior
for IPs that are either in Suricata or in both. From time to time it appears many IP
addresses are being removed from Snort, before being reinstated again (we can see
blocks of red (Snort and Suricata) becoming green (Suricata only), and then red again).

4 Diversity in Rules Used by Snort and Suricata

4.1 Overall Analysis

In this section, we present results of the quantitative analysis of the diversity in Snort
and Suricata rulesets. For this analysis, we collected rulesets of Snort and Suricata from
20 May 2017 to 31 October 2017. We considered the following Snort rulesets available
from the Snort website: Community, Registered and Subscribed. For Suricata we used
the Emerging Threats (ET) rulesets. Similar to blacklisted IP addresses, our sampling
rate was every 15 min. However, the rate at which the rules were updated was much
lower compared with blacklisted IP addresses: mainly every 24 h, but sometimes with
lags of 5 days with no updates. Snort Community rules are an exception where we
noticed an update of 4 rules multiple times a day. We present the analysis from
comparing the rulesets across all versions once every 24 h.

Table 4 shows the details of the data that we used for this analysis. The total
number of rules for Suricata is double that for Snort Registered and Snort Subscribed
(which are very similar), while the total number of rules in Snort Community is much
smaller. Additionally, we looked at how the rules change. We noticed that for some
rules the SID (Signature ID) remains the same, but the version number of that rule may
change: columns four and five of Table 3 give these counts. More than 80% of the
Snort Registered and Subscribed rulesets, and 97% of Suricata ET rulesets reported
version changes during the experiment.

Table 4. General statistics of different rule sets

Rule Set Number of 
Files

Number of 
Rules

Rules with no version changes
during the experiment

Rules with versions changes
during the experiment

Snort Reg 52 10,675 2,259 8,416
Snort Sub 51 10,736 2,399 8,337
Snort Com 166 903 472 431
SuricataET 106 19,584 523 19,061
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Figure 5 shows the count of rules of each of these rulesets as they evolve over the
duration of the experiment. We notice that the total number of rules in each set remains
relatively constant for the duration of the experiment.

4.2 Snort Diversity Analysis

Next, we look at a comparison of the rulesets of Snort. The SID along with the version
number is a unique identifier for each rule, and they are used consistently across the
different rulesets (i.e. the same SID and same version number in Registered and
Subscribed means that the rule is also the same). Figure 6 shows the diversity in time
among the Snort rulesets. The y-axis shows, in a log scale, the counts of rules in
different categories for each day of the experiment (x-axis). “_reg” is the count of rules
which are only in the Snort Registered set, “_reg_com” shows only those rules that in
the Registered and Community rulesets etc. We notice that the majority of the rules are
those that exist in both Registered and Subscribed rulesets (brown dots), followed by
those that are common amongst all three rulesets (pink dots), and those that exist in the
Subscribed ruleset only (orange dots).

Fig. 5. Snort and Suricata rule counts over the duration of the experiment

Fig. 6. Time progression of diversity in Snort rules (Color figure online)
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Tables 5 and 6 show a similar analysis to what we described for Blacklisting in
Tables 2 and 3, but now applied to the different rulesets of Snort. For the cases where
we have multiple states per SID (e.g. changing from “Subscribed” to “Subscribed and
Registered” etc.) we are showing all the combinations that have at least one SID (the
total number of combinations is 27 but most of those combinations have not been
observed in our experiment – i.e. there is no data for them). As expected, in cases
where there are multiple states we tend to observe them first in the Subscribed ruleset.
Figure 7 shows the time it takes for the Snort Subscribed ruleset to become available
on the other rulesets (i.e. the SIDs in the sets: (10, 100), (10, 110), (10, 110, 111) and
(10, 11, 110, 11) from Table 6). The figure confirms what is stated in the Snort website
for these Subscribed rules: most of these become available to Registered users on
average 30 days after they are available in the Subscribed ruleset.

Table 5. Statistics of the datapoints observed in the Snort rulesets overlapping periods

Total number of SIDs in the Snort Registered ruleset 12,161
Total number of SIDs in the Snort Subscribed ruleset 12,257
Total number of SIDs in the Snort Community ruleset 959
Total number of distinct SIDs in any of three rulesets. 12,267
Total number of data points (SID/date pairs) observed 
in Snort rulesets. 

01 (Snort Reg. only) 4
10 (Snort Sub. only) 4,255

11 (Snort Com. only) 100
100 (Snort Reg. and Sub. only)469,390

101 (Snort Reg. and Com. only) 0
110 (Snort Sub. and Com. only) 210

111 (In all three only) 41,913

Table 6. Statistics of SIDs observed in the different Snort rulesets

Single 
states

Count of 
SIDs 

Two states Count 
of SIDs

Observed 
first in:

Count 
of SIDs

Three states Count 
of SIDs

Observed 
first in:

Count 
of SIDs

(01) 0 (01,100) 4 01 0 (10,110,111) 17 10 17
100 4 110 0

111 0
(10) 91 (10,100) 480 10 480

(11,100,111) 1 
11 0 

100 0 100 1
111 0

(11) 10 (10,110) 3 10 3 (11,110,111) 2 11 0 
110 0 110 2

111 0
(100) 10,733 (11,111) 76 11 0 (100,110,111) 2 100 0

110 2
111 76 111 0

(101) 0 (100,111) 24 100 17 Four states Count 
of SIDs

Observed 
first in: 

Count 
of SIDs 111 7 

(110) 2 (110,111) 7 110 7 (10,11,110,111)1 10 1
111 0 11 0

(111) 814 110 0 
111 0
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4.3 Diversity Analysis of Snort and Suricata Rules

Suricata ET rules use different SIDs to Snort, so the comparison of Snort and Suricata
rules was done using the “content” field in the rules. This field contains the “signature”
of the malicious payload of a packet that is inspected by the IDS. Hence, the ‘content’
field represents the important signatures information for a malicious traffic that these
IDSs are intended to detect/capture. Not all Snort and Suricata rules have the ‘content’
field so the analysis in this section is based on only those rules that have it (73.4% of
the rules of Snort Registered and Subscribed have this field, 77.8% of Suricata ET and
97.7% of Snort Community rules have the “content” field).

Figure 8 shows the diversity of Snort and Suricata rulesets based on the content
field. Here, the x-axis shows the days and the y-axis the number of SIDs with content
fields, in log scale. The shortcut notation is the same as previous (e.g., “_ET” represents
the SIDs observed only in the Suricata ET ruleset etc.) The largest overlap between
Suricata and Snort is in the rules that exist in ET, Registered and Subscribed rulesets
(the magenta dotted line that hovers around the 100 mark in the y-axis).

Fig. 7. The time lag for Subscribed rules to appear in the other Snort rulesets

Fig. 8. Diversity in time of the Snort and Suricata rulesets
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Tables 7 and 8 show a similar analysis to what we described in Tables 5 and 6, but
constrained to just the rules with the “content” field, and also including Suricata ET. In
addition to the binary shorthands we used in Table 5, we also use “1000”, “1001” etc.,
to represent Suricata ET and their overlaps with the different rulesets of Snort. These
tables confirm that there is relatively little overlap between Suricata ET and Snort rules.

Table 7. Datapoints observed in Snort and Suricata for rules with the contents field

Total number of SIDs in Snort Reg. ruleset with content field 7,840
Total number of SIDs in Snort Sub. ruleset with content field 7,901
Total number of SIDs in Snort Com. ruleset with content field 883
Total number of SIDs in Sur. ET ruleset with the contents field 15,239
Total of distinct SIDs with content field in any of the rulesets above 23,014
Total number of data points (SID/date pairs) observed in Snort and 
Suricata rulesets for SIDs with content field. Abbreviations (not seen 
in previous tables): 
“1000” – Suricata ET only 
“1001” – ET and Reg. only 
“1010” – ET and Sub. only 
“1011” – ET and Com. only 
“1100” – ET and Reg. and Sub. only  
“1101” – ET and Reg. and Com. only 
“1110” – ET and Sub and Com. only 
“1111” – ET and Reg. and Sub. And Com. only

Data point 
count 

Data point
count 

1000 644,159
01 11001 0
10 2,4431010 8
11 741011 0

100 278,9111100 4,236
101 01101 0
110 1771110 0
111 34,4091111 748

Table 8. Statistics of SIDs with content field in the different Snort and Suricata rulesets

Single 
states

Count of 
SIDs

Two states No. 
SIDs

Observed 
first in:

Count 
of SIDs

Three states Count 
of SIDs

Observed 
first in:

Count 
of SIDs

10 57 (01,100) 1 01 0 (10,110,111) 18 10 18
100 1 110 0 

111 0
100 6,548 (10,100) 315 10 314 (11,110,111)

2 
11 0

100 1 110 2
111 0

110 2 (10,110) 2 10 2 (1000,1010,1100) 1 1000 1
110 0 1010 0

1100 0 
111 760 (11,111) 72 11 0

111 72
1000 15,113 (100,111) 3 100 3

111 0
1100 96 (110,111) 7 110 7

111 0 
1111 17
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5 Diversity in the Behavior of Snort and Suricata

So far, we looked at the diversity that exists in the internals of these products and the
way in which they evolve. In this section, we will analyse how this diversity in design
manifests itself in the alerting behavior of these products when analyzing network
traffic. We analysed 7 days of pcap data from 2 May to 8 May 2017. The data was
captured in the DMZ network of the City, University of London. In those 7 days, we
had 326 GB, 330 GB, 280 GB, 252 GB, 186 GB, 204 GB and 316 GB of network
data respectively. The breakdown of the traffic based on different types of protocols is
listed in Fig. 9.

We analysed this data using Snort and Suricata with the rulesets discussed so far
(we used one snapshot of the ruleset for the analysis). Figure 10 presents the results.
We used the same notations as in Sects. 3 and 4 (e.g. “_et” means alerted by Suri-
cata ET only). We notice that Snort Registered and Subscribed rules generated alerts of
an order of magnitude more than Suricata ET. As observed in the ruleset and black-
listed IP addresses analysis from Sects. 3 and 4, there is little overlap in the alerts of
Suricata ET and Snort, which means these systems exhibit very diverse alerting
behavior when analysing this traffic.

Fig. 9. Count of sessions per protocol for each day of experiment

Fig. 10. Number of alerts generated by different combinations of rulesets of Snort and Suricata
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6 Discussion and Limitations

The results are intriguing, and they show that there is a large amount of diversity in the
rules and blacklists of Snort and Suricata. Whether this diversity is helpful or harmful
for a given deployment depends on the context. The rules and blacklists alert for
potentially harmful behavior that has been observed somewhere in the world by users
of these products. In a different deployment, the alerts from some of these rules may not
cause harm. For example, a service or port for which a rule alerts may not exist in that
environment. Hence even if the alerts are for malicious traffic it is likely that this attack
will not cause any harm in the systems of that deployment. The dataset we used in
Sect. 5, real traffic that the University’s IT team gave us access to, is unfortunately not
labelled, so we cannot do a conventional analysis of sensitivity and specificity of these
IDSs and their diverse combinations. We did share the findings with the University’s IT
team and they found the results interesting. Currently they use a smaller subset of
Suricata ruleset for analysis. Interestingly, they mentioned that even if the alerts are for
services that they do not run (hence would be harmless in their environment) they
would like to know about them as it gives them insight on security exposure for
services that users may request in the future, and also because they can use the alerts to
check if they are precursors for attacks on other services that they value.

How can individual user organizations decide whether diversity is a suitable option
for them, with their specific requirements and usage profiles? The cost is reasonably
easy to assess: costs of the software products, the required middleware (if any), added
complexity of management, hardware costs, run-time costs and possibly more complex
diagnosis and more laborious alert sifting. The gains in improved security (from pro-
tection to attacks and exploits) are difficult to predict except empirically. This uncer-
tainty will be compounded, for many user organizations, by the lack of trustworthy
estimates of their baseline security. We note that, for some users, the evidence we have
presented would already indicate that diversity to be a reasonable and relatively cheap
precautionary choice, even without predictions of its effects. These are users who have
serious concerns about security (e.g., high costs for interruptions of service or unde-
tected exploits), and sufficient extra personnel to deal with a larger number of alerts.

7 Related Work

The security community is well aware of diversity as potentially valuable [1–3].
Discussion papers argue the general desirability of diversity among network elements,
like communication media, network protocols, operating systems etc. Research projects
studied distributed systems using diverse off-the-shelf products for intrusion tolerance
(e.g. the U.S. projects Cactus [4], HACQIT [5] and SITAR6; the EU MAFTIA pro-
ject7), but only sparse research exists on how to choose diverse defenses (some
examples in [3, 6–8]).

6 http://people.ee.duke.edu/*kst/sitar.html.
7 http://research.cs.ncl.ac.uk/cabernet/www.laas.research.ec.org/maftia/.
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A very extensive survey on evaluation of intrusion detection systems is presented in
[9]. This survey analyses and systematizes a vast number of research works on the
field. The main features analyzed in the survey are the workloads used to test the IDSs,
the metrics utilised for the evaluation of the collected experimental data, and the used
measurement methodology. The survey demonstrates that IDS evaluation is a key
research topic and that one of the main benefits that IDSs evaluation can bring are
related with guidelines on how to improve IDS technologies.

8 Conclusions

In this paper, we presented an analysis of the diversity that exists between the Snort and
Suricata rules and blacklisted IP addresses. We analysed the evolution of the rulesets
and blacklisted IP addresses of these two IDSs over a 5-month period between May and
October 2017. We used three different off-the-shelf default configurations of the
Snort IDS and the Emerging Threats configuration of the Suricata IDS. We performed
the analysis to provide insight to Security architects on how they can combine and layer
these systems in a defence-in-depth deployment. We also showed results on the
observed diversity in behaviour of these systems, when they analysed the network data
of the DMZ network of City, University of London.

The main conclusions from our analysis are:

– There is a significant amount of diversity in the blacklists of Snort and Suricata, and
this is maintained throughout our observation period. The amount of overlap
between these IPs is relatively small. Depending on the adjudication mechanism
that a system architect wishes to deploy, having access to a larger pool of black-
listed IP addresses may be beneficial to increase protection against a larger pool of
malicious sources. However, if a user observes a large number of false positives
from these blacklists at a given period of time, then diversity can be help to keep the
false positive rate low (for example by only raising alarms only if an IP appears in
multiple blacklist) until the vendors “clean up” the blacklists;

– We observe a significant amount of diversity in the rules of Snort and Suricata.
When analyzing the rules based on the “content” field, only 1% of the rules of Snort
and Suricata return a match. This indicates that these systems would alert on
potentially very diverse traffic. This is indeed confirmed from a small experiment
that we ran with real traffic from City, University of London. There was very little
overlap in the alerting behavior of these products.

We have underscored that these results are only prima facie evidence for the
usefulness of diversity. What is important is to assess these products in real deployment
on their capability to improve the security of a given system. The results presented here
will, we hope, provide the security architects with the evidence on the diversity that
exists in the design of these products and whether this diversity remains as these
products evolve.

As further work, we plan to investigate the diversity with IDSs and other defence-
in-depth tools in real deployments, with labelled datasets, to assess the benefits as well
as potential harm that diversity may bring due to the interplay between the risks from
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false negatives and false positives. Currently we are investigating the adjudication
mechanisms that can help balance the risks associated with these failures.

Acknowledgment. This work was supported by the UK EPSRC project D3S and in part by the
EU H2020 framework DiSIEM project.
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Abstract. Usage of mobile robots in industry increased significantly in
recent years. However, mobile robots introduce additional safety issues
for human workforce and pose a higher risk of failures in production
due to possible abnormal robot behavior. Such abnormal behavior could,
among other things, be caused by security weaknesses that entail attacks.
These problems lead to a need for action authorization mechanisms to
protect humans and mitigate possible costly failures. In this paper, we
propose an authorization mechanism for critical actuator actions on
industrial mobile robots. The mechanism relies on security principles
that prevent adversaries from unauthorized action execution. To the best
knowledge of the authors, no similar concept for secured action autho-
rization for industrial mobile robots is currently known in research. Our
evaluation shows more than 80% of additional safety hazard causes intro-
duced by the lack of security can be mitigated with the proposed autho-
rization mechanism.

1 Introduction

The increased automation in production facilities entails a rapid rise of mobile
robots in industrial applications. The number of mobile robots in industrial
automation will be even higher in future Smart Factories [27] and Industry4.0
environments. Mobile robots in future production facilities will typically interact
with machines, humans, or other robots to fulfill any given task such as fetching
material or delivering material. A research testbed for smart factory related tech-
nologies is the RoboCup Logistics League [21]. A mobile robot in this testbed
basically consists of actuators, sensors, a central computing unit, and a commu-
nication unit. The actuators are used to interact with the physical world. The
sensors are used to gain information about the environment. The central com-
puting unit processes incoming and outgoing data, coordinates the components,
and instructs them. The communication unit acts as router that connects all
components on a mobile robot, and provides technologies to communicate to
other devices via, e.g. Industrial WiFi.
c© Springer Nature Switzerland AG 2018
B. Gallina et al. (Eds.): SAFECOMP 2018, LNCS 11093, pp. 282–296, 2018.
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The advantage of using a router in a robotic system also entails the advantage
of modularity and easy connection of components. However, a disadvantage is
that it would be easy for an adversary to access sensors and actuators by simply
sending commands via the router, or even hijack a robot. It is generally easier to
attack devices that communicate wirelessly. Especially Industry4.0 environments
will deal with larger attack surface due to the increased connectivity, usage of
wireless communication, increased data exchange, and many more [11]. Besides
that, the safety of human workforce cannot be ensured anymore if an adver-
sary is able to hack a robot. To support the safety of human workforce, security
needs to be introduced [4,8,15]. Since the interaction between mobile robots and
machines is a typical use case, and will occur in close proximity to human work-
force, secured authorization of actuator actions needs to be performed. Actuator
actions might include manipulations of production material with a robotic arm,
or movement of production material between machine and mobile robot. If such
actions can be initiated or manipulated by an adversary, human workforce will
be exposed to serious safety hazards.

To prevent such malicious manipulations, we propose a secured authorization
mechanism for critical actions on industrial mobile robots when interacting with
other entities. The authorization approach uses available sensors to gain infor-
mation about the current environmental states such as the distance between a
mobile robot and a machine. This information is combined with security mech-
anisms to prevents adversaries from injecting or manipulating false action com-
mands, and also prevent the mobile robot from executing harmful actions caused
by software bugs or other errors.

To the best knowledge of the authors, no concept similar to the proposed
one is currently known in research. The related work shows several applications
for multi-sensor fusion and authorization concepts. However, none have com-
bined these concepts before. Furthermore, none of the concepts take security
into account even though the safety could easily be compromised by security
weaknesses in many of these scenarios.

To summarize, the contributions of this paper are:

– The first action authorization approach for industrial mobile robots that
relies on inter-device sensor-fusion and cryptographic principles to support
the safety of human workforce.

– A combined safety and security analysis showing that more than 80% of the
additional safety hazard causes can be mitigated by introducing the proposed
authorization approach.

2 Related Work and Background

Secure Element
A secure element (SE) stores confidential data such as key material and is able to
perform cryptographic operations such as signature computation or hash com-
putation. General purpose microcontrollers or CPUs are typically prone to side
channel attacks that spy on calculation times depending on the input or try to
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physically manipulate the CPU to compromise calculations that might reveal
confidential data. SEs, in contrast, are tamper-resistant which means that they
are built to withstand such attacks and are, therefore, used for security critical
applications such as bank cards or trusted computing in, e.g. Trusted Platform
Modules [1].

One-Time Passwords
One-Time Passwords (OTPs) are password schemes where a password becomes
invalid after its first use and were introduced by Lamport [14]. Lamport intended
to overcome issues with plain text passwords such as interception of plain text
passwords by adversaries and later, as a countermeasure against replay attacks.
Such attacks capture a user’s login credentials and use them to access a sys-
tem [10]. OTPs use non-invertible cryptographic hash functions such as SHA-256
to create passwords. It is necessary that the same non-invertible cryptographic
hash function is available on the client and the host for OTP generation and
verification.

In 2005, M’Raihi et al. [19] proposed OTPs based Hashed Message Authen-
tication Codes (HMAC) called HOTP. The authors introduced a counter that is
combined with the secret key and forwarded to the hash function. The counter
is synchronized with a trusted entity such as a server to enable the verifica-
tion of the OTP. The counter is incremented by a specific amount known by
the client and server every time an OTP is generated or validated. The counter
enables individual passwords for unchanged data, and the secret key enables the
authenticity of the client and server.

The tickets used for the authorization approach are based on HOTPs that
provide integrity and authenticity. HOTPs use a secret key and moving factors
such as a counter value to prevent the possibility of replay attacks. The secret
key is used to protect the hashes from brute-force attacks on the counter value,
and enables authenticity. The counter is necessary since the data exchanged
between robot and machine might be identical. The same data would always
result in the same valid hash value. If an adversary would capture a valid ticket
sent by the robot, he could send it to the machine over and over again, and the
machine would authorize the actions. To generate different tickets for identical
data, the counter values are used to generate passwords that are only valid
once. One might also use signatures instead of HOTPs, however, the problem of
the exact same signature for equal input data would remain the same, and the
operation would also require some kind of moving value for individual signature
values. Furthermore, asymmetric cryptographic calculations such as signatures
are much slower than symmetric cryptographic calculations such as HMACs.

Multi-sensor Fusion
Multi-sensor fusion is used to combine the data provided by several different
sensors or other data sources to improve accuracies and robustness [9]. The
concept of multi-sensor fusion has been used for years in a wide range of areas
including artificial intelligence, medical diagnostics, environmental monitoring,
robotics, and much more. Especially mobile robots strongly rely on multi-sensor
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fusion since they deal with localization problems, odometry inaccuracies, and
other many other problems [13,22].

Kam et al. [12] reviewed existing sensor fusion techniques for robot navigation
back in 1997, especially addressing self-localization in maps constructed by the
robot. Recent research by Lynen et al. [16] also addressed multi-sensor fusion for
navigation and self-localization purposes in a framework that is able to process
any absolute, relative, or delayed data from an almost unlimited amount of
sensors. Even though, sensor fusion is widely used in robotic applications, it
was, as far as we know, never used for authorization mechanisms before.

Authorization for Mobile Robots
Authorization was defined as granting privileges to processes or users by Fraser
in 1997 [6] and is used widely in any operating system, company network or
production system. Current research focuses on topics such as authorization and
access rights in cloud environments [25] or Internet of Things (IoT) systems [5].
In the mobile robotics domain, authorization is not a key topic. A very simple
authorization mechanism was shown by Gonçalves et al. [7]. The authors pro-
posed a realistic sensor and actuator model for wheeled mobile robot simulations
that included a boolean register whose value was checked before executing an
action on a robotic arm. As far as we know, the only approach that includes
authorization related to robotics and other mobile devices was proposed by
Popovici et al. in 2003 [23]. The authors proposed a middleware platform for
mobile devices that uses an authorization mechanism to prevent unauthorized
entities from executing actions on, e.g., a robotic arm. This middleware checks
an entities’ rights to execute actions in a physical system but does not include
any current environmental information.

To the best knowledge of the authors, none of the existing approaches use
sensor-fusion or security measures in their authorization approaches, or would
even combine these topics.

3 Proposed Authorization Mechanism

The interaction between robots and machines is a typical scenario that will occur
in smart factories. If interactions between these entities is unauthorized, serious
safety hazards for humans can occur, and production material could be damaged.
Therefore, the approach proposed in this paper assures that only authorized
actions are executed by actuators to support safety. The proposed mechanism
uses the sensor data of both, robot and machine, to make sure that the robot is
authorized to, for example, drop off production material on a machine. Using the
combined sensor data instead of just the sensor data from the robot can prevent
critical actions from being performed in case of errors on the robot or malicious
manipulations, to protect human workforce and production material. The sensor
data of the robot and a machine are combined and checked. If for example, the
laser scanner values of the robot lie within a certain range while approaching
a machine, the machine is notified. The machine would then check the light
barrier on its input. If the light barrier is interrupted, the machine notifies the
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robot. The robot could then generate an authorization ticket and send it to
the actuator. The actuator executes the command if the authorization ticket is
valid. Each authorization ticket expires after it was used to overcome issues with
replay attacks. The sensors in this paper are assumed to be trustworthy since this
topic would exceed the scope of this paper, and other researchers already focus
on sensor trustworthiness [18,24,26]. The required components to successfully
execute an action are the central computing units (CCU) of both robot and
machine, the robot’s SE, the actuator’s microcontroller, the actuator’s SE, and
the machine’s SE. To perform action authorization, the following preconditions
need to be fulfilled. (1) Robot, actuators and machine, are equipped with a SEs
to store key material and securely compute and verify HOTPs. (2) Robot’s and
actuator’s SEs share a secret key KA and a counter cntA. (3) Machine’s and
robot’s SE share a secret key KM and a counter cntM . (4) Robot’s SE and the
sensors share secret keys KS and counters cntS . (5) All secret keys and counter
values are already stored in the corresponding SEs or sensors.

3.1 Authorization Approach

The authorization approach is divided into 15 steps that can be seen in Table 1.
The following section describes the authorization process in detail. In the text,
the numbers in brackets refer to the line numbers in Table 1. Each instruction
colored in red means that the calculation is done in an SE. The function HOTPG

refers to the generation of an HOTP on a SE and also increments the counter
values cntM , cntR or cntS . The HOTPG function requires a secret key, a counter
and some data as inputs. The function HOTPV refers to a validation of an
HOTP in an SE and also increments the counter values cntM , cntR or cntS . The
validation of an HOTP can be done if the secret key, counter and data, as well as
the HOTP to validate against, are provided as input. The secret key, counter and
data must match the values used to generate the initial HOTP. Otherwise, the
HOTP will not be valid. The inRange function checks whether the sensor data
fulfills pre-defined conditions on the robot. The fuse function fuses the sensor
readings of the robot and machine, and checks if the pre-defined conditions for
the robot’s and machine’s sensor readings are fulfilled. The function ReqSenData
requests the sensor data from one or more sensors.

The authorization is initiated by the robot’s CCU. The robot’s CCU requests
data from any sensor, e.g. the laser scanner to compute the distance from the
next obstacle or the distance to equipment on the production floor. The sensor
generates an HOTP over the data using a counter value and secret key, and
provides the HOTP and data sdR to the robot’s CCU (1). The sensor’s HOTP
is validated by the robot’s SE (2). The robot’s CCU checks if the sensor data
satisfies certain pre-defined conditions (3). A possible condition would be the
distance measured by a laser scanner. If the distance is within a specific range,
the condition is satisfied. If the sensor data’s HOTP was valid, and the sensor
data was in a certain range, the command cmd and sensor data sdR are sent
to the robot’s SE. The received data is combined with the secret key KM and
counter cntM , and the request ticket hotp is generated (4). The command cmd,
sensor data sdR and hash hotp are sent to the machine (5). The machine’s CCU



Inter-device Sensor-Fusion for Action Authorization 287

Table 1. Sequence diagram of a complete authorization process.

requests the sensor data sdM (6), and instructs the SE to validate both, the
request ticket hotp and the sensor data’s hash (7, 8). The sensor data of both
robot and machine are passed to the fuse function to perform the sensor fusion,
and necessary checks on the sensor readings. The fuse function simply returns
true if the data is valid or false if the was invalid (8). If both hashes hotp and
sdM are valid, and the requested sensor data fulfilled the preconditions (9), the
response ticket auth is generated by the SE (10). The response ticket is sent to
the robot (11) and the robot’s SE validates the received response ticket (12).
If the ticket was valid, the robot’s SE generates an authorization ticket act for
the actuator (13). The authorization ticket act and command cmd are sent to
the actuator (14) and if the actuator’s SE confirms the validity of the received
authorization ticket act, the command cmd is executed (15).
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4 Implementation Remarks

This section discusses a proof-of-concept implementation of our proposed autho-
rization approach, and includes explanations regarding the sensors and SEs.

4.1 Proof-of-Concept Implementation

As a proof-of-concept, our proposed authorization approach was implemented
using several Raspberry Pi 3 and SEs by Infineon Technologies. Figure 1 shows
the setup of the implementation. The sensors are simple simulations but calcu-
late HOTPs for their measurements. The Raspberry representing the machine
and the Raspberry representing the CCU are both equipped with SEs, and com-
municate via a router with WiFi. The Raspberry representing the actuator is
also equipped with an SE, and is connected via a router with Ethernet to the
Raspberry representing the CCU.

Fig. 1. Setup for the proof-of-concept with several Raspberry Pi 3 and SEs.

The proof-of-concept shows that the introduction of SEs in this scenario
causes a significant increase of the overall runtime of one authorization. The
mechanisms that provide tamper-resistance to such devices cause the overhead.
However, in industrial use cases, the protection of key material and other confi-
dential information, and the introduction of security is of utmost importance to
support safety of human workforce and prevent damage on production material.
Since mobile robots might perform real-time operations, the increased latency
caused by the introduced security measures need to be taken into account
when defining any real-time condition. However, since our proposed authoriza-
tion mechanism is deterministic, the additional overhead can be calculated in
advance. The overhead highly depends on the used hard- and software which
makes it very hard to give a generally accepted assumption about the overhead.
The overhead analysis would exceed the scope of this paper since the focus of
this paper is to support the safety of human workforce by introducing security
measures. The overhead analysis as well as possible optimizations to reduce the
overhead are postponed to future work. One possibility for latency reduction
would be to already start the authorization process while the robot approaches
the machine, meaning that the steps taken on the robot before communicating
to the machine can be done in parallel to the actual task of the robot. Another
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possibility would be the direct forwarding of the authorization ticket from the
machine to the actuator. Furthermore, the machine could receive sensor readings
periodically, meaning it does not need to actively request them. These optimiza-
tions would already reduce the latency significantly.

4.2 Application of SEs in the Authorization Approach

The SEs in this scenario are, in principle, optional since each HOTP computation
could also be done by a general purpose CPUs in plain software. However, if an
attacker is able to have physical access to a general purpose CPU, he could per-
form side-channel attacks that reveal the secret key used for HOTP generation.
The SEs are used to increase security by protecting the key material, counter and
also the password generation process from such side-channel attacks. Physical
attacks tend to reveal confidential information by analyzing the devices interface
using, e.g. power or time analysis attacks, or try to physically attack the device
by bombarding them with a laser to generate an error. Remote attacks tend to
reveal data stored in software such as files or folders, or try to hijack a device.
SEs cannot protect a device from remote attacks but can protect the secret keys
used to perform crpytographic operations since the secret key cannot be read
from the device. The question whether an SE is necessary highly depends on the
actual use case and desired security level. Furthermore, SEs introduce a trade-
off between latency and security level since SEs tend to be much slower than
general purpose CPUs due to the implemented protection mechanisms against
side-channel attacks.

5 Combined Safety and Security Analysis

To highlight the safety enhancing security features of our proposed approach, a
combined safety and security analysis is conducted. The analysis uses the basic
idea of a combined safety and security as suggested by Macher et al. [17] for the
automotive domain. However, the functional safety analysis is adopted to match
the ANSI/RIA R15.06 norm [2] for industrial robot safety. For the security anal-
ysis, a threat analysis [20] including countermeasures enabled by the proposed
authorization approach is executed. The threats are then categorized similar to
the risk level determination in the ANSI/RIA R15.06. The combination of the
safety and security analysis show that additional causes for the existing safety
threats arise from a lack of security. However, the analysis also shows that the
proposed authorization mechanism reduces the additional safety hazard causes
significantly. Before the analysis is performed, assumptions on the attacker and
attack possibilities are made. (1) Taking over a robot is assumed to be possible
since the equipped wireless communication technology opens a wider attack sur-
face, and the attacker can directly attack the robot without the need to infiltrate
the company network. (2) Taking over a machine remotely is assumed to be not
attractive for an attacker since machines are connected by wire to the factory
network, meaning that an attacker would have to gain access to the network,
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and then would need to make it to the machine. It is assumed to be too much
of an effort since an attacker would attack a more attractive target such as a
central server rather than one specific machine. (3) An attacker trying to locally
extract the secret keys from machine or robot is assumed to be possible since an
attacker would then be able to read and send commands to devices and into the
network using valid secret keys. Extracting the keys would not require to take
over a machine or robot since it can be done with different side-channel attacks.

5.1 Methodology

This section shows how identified threats are categorized similar to the
ANSI/RIA R15.06 risk assessment [2] to show the severity of the identified
threats.

Table 2. Classification of required resources RR to execute a threat.

Table 3. Classification of required know-how RK to execute a threat.

Table 4. Classification of required accessability RA to execute a threat.

The threat level determination based on the risk assessment determination
described in the ANSI/RIA 15.06 [2] utilizes the categories required resource RR,
required know-how RK and required accessibility RA. The RR gives examples
of the required tools to successfully deploy the security threat (see Table 2).



Inter-device Sensor-Fusion for Action Authorization 291

The RK defines the necessary know-how an attacker has to have to successfully
execute the attack (see Table 3). The RA defines if an attack can be launched
remotely, or if an attacker needs to be physically present to execute an attack
(see Table 4). These categories are used to identify the severity of a threat and
determine its threat level as shown in Table 5. The higher the threat level, the
more severe a threat is when exploited in a system.

Table 5. Threat level determination matrix depending on the required resource, know-
how and access based on the ANSI/RIA R15.06 risk level determination matrix.

5.2 Threat Analysis and Threat Level Determination

To apply the defined methodology on our proposed authorization approach, we
perform a threat analysis according to Myagmar et al. [20], and determine the
threat level of each threat. Table 7 lists the identified threats T , countermeasures
C and remaining residual risks R. Table 6 shows the determination of the threat
level for each identified threat.

5.3 Results

For a mobile robot with a robotic arm, the safety analysis identified a total
of 27 hazards with 38 safety hazard causes. The safety hazards are inspired by
Bartos [3] and the ANSI/RIA 15.06 norm [2]. The safety hazards for the machine
are not listed separately since they are a subset of the safety hazards identified
for the mobile robot. Since security threats can also cause safety hazards, each
threat was applied to the safety hazard scenarios to check whether the security
threat could cause a safety hazard.
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Table 6. Threat level determination for the identified security threats.

For the proposed authorization approach, the combined analysis shows that
10 of the 27 identified hazards could also be caused by the identified security
threats from Table 7. The left hand side of Table 8 shows the safety analysis
according to the ANSI/RIA R15.06 risk level assessment for all safety hazards
that can also be caused by security threats. The right hand side of Table 8 shows
the corresponding security threats that can cause the safety hazard. To identify
which safety hazard can be caused by malicious actions of an attacker, each secu-
rity threat listed in Table 7 was applied to each safety hazard. As the analysis
shows, 10 safety hazards can also be caused when security threats are exploited.
As an example, safety hazard #13 where the laser scanner is blinded, can inten-
tionally be caused by the two security threats T7 where an attacker would phys-
ically manipulate the sensor using e.g. tape, and T11 where the attacker would
perform a DoS attack to prevent the laser scanner from sensor readings by flood-
ing it with messages. The other listed security threats cannot cause this safety
hazard.

The combined safety and security analysis shows that for 10 safety hazards
a total of 43 additional causes due to the lack of security can be identified for
an insecure authorization scenario. The bar chart in Fig. 2 shows the number of
total additional safety causes and the number of mitigated causes when applying
the proposed secured action authorization for each risk level. The bar on the left
hand side in blue shows the number of total additional safety hazard causes for
each risk level, and the bar on the right hand side in green shows the mitigated
causes.

The threat analysis lists countermeasures enabled by our proposed security-
enhanced action authorization approach. The introduced security measures
reduce the number of additional safety hazard causes from 43 to 7 for the pro-
posed authorization approach. 36 additional safety hazard causes can be miti-
gated by our proposed authorization mechanism according to the countermea-
sures identified in Table 7. The 7 remaining additional causes are all related to
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Table 7. Threat analysis of the proposed authorization mechanism. The most impor-
tant threats, possible countermeasures and remaining residual risks are listed.

DoS attacks caused by the threats T7 and T11. These attacks would shut down
the authorization process since the communication interface or CPU cannot exe-
cute tasks anymore due to a huge amount of incoming data. Both causing threats
T7 and T11 were categorized with a low threat level, meaning that the damage
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Table 8. Risk level determination of safety hazards with additional causes due to
security threats. Threats marked red remain as additional hazards after application of
the security measures.

to a system when the threat is executed is low since shutting down the autho-
rization process means that no action execution is performed on the robot or
machine.
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Fig. 2. Numbers of total additional safety hazard causes introduced by a lack of secu-
rity, and number of additional safety hazard causes mitigated by the proposed autho-
rization approach for each risk level.

6 Conclusion

In this paper, a sensor-fusion based authorization mechanism for industrial
mobile robots and equipment on a production floor is shown. The mechanism
fuses the sensor data of multiple devices to validate the physical presence of
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the robot at the corresponding machine, and that only authorized actions are
performed to protect human workforce and in further consequence production
material from damage or harm. The mechanism is supported by SEs to increase
the security and protect the key material from being revealed by an adversary.

The combined safety and security analysis shows that a significant number of
additional safety hazard causes is introduced by a lack of security. The analysis
shows that around 83% of the additional safety hazard causes due to a lack of
security can be mitigated with the proposed secured authorization mechanism.
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Abstract. In the railway domain, different methods are applied for esti-
mating safety targets (like SIL) in the subdomains of railway rolling stock
(e.g., SIRF) and railway control, command and signaling (e.g., BP-Risk),
respectively, which are referred to as railway vehicles and railway signal-
ing for the rest of this paper. Such methods are also based on different
terminology underlying different concepts used, e.g., as parameters. Even
worse, similar terms often mean different concepts. This may lead to dif-
ferent risk estimates for these subdomains of the railway domain.

Our approach for addressing these problems has been to create a com-
mon safety ontology covering the important concepts of both subdomains.
Hence, we analyzed the methods SIRF and BP-Risk with regard to the
terms and parameters used. Based on this analysis and a previous safety
ontology for railway vehicles, we created a new common ontology for
railway vehicles and signaling. It is also consistent with the related ter-
minology of EN 50126 (for railway systems) and ISO 26262 (for auto-
mobiles). Such an ontology should facilitate the reuse of hazard and risk
analyses from one subdomain to the other, and it should have important
application areas such as estimating safety targets consistently.

1 Introduction

In safety-critical domains like railway, estimating safety targets is of great
importance. From the safety-criticality of hazards and from the safety-
criticality/relevance of functions that lead to or facilitate the hazard, a safety
target can be allocated to the function. This safety target can be expressed, e.g.,
in TFFR (tolerable function failure rate), THR (tolerable hazard rate) or SIL
(safety integrity level), and is a risk acceptance criterion for the explicit risk
estimation.

Bernhard Hulin did major part of this work when he was with the Transportation
division at Assystem, Munich.
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For the calculation of such a safety target, TR 50126-2 [2] suggests the Risk
Graph method. SIRF (Sicherheitsrichtlinie Fahrzeug, see [8]) is a German tai-
loring of EN 50126 for safety assessment of functions of railway vehicles. It was
first released in 2011 by the German national safety authority and has been
applied successfully in many projects in Germany and Austria for main-line rail-
way vehicles as well as for railway vehicles for urban transport (e.g., metro lines
and people movers).

For risk assessment of railway signaling systems, BP-Risk (Best Practice Risk,
see [7]) is another tailoring of EN 50126 [1]. Although it is not standardized, it
is widely used around the world, e.g., in Germany, Austria, Switzerland (see [5])
and Korea (see [13]).

As it stands, these methods focus on their specific subdomains, and for
some functions they cannot reasonably be applied in the other subdomain. For
instance, the parameters for risk assessment of the railway vehicle subdomain
defined by SIRF only vaguely comply with the specifics of railway signaling, e.g.,
for some functions of railway level crossing SIRF assigns a SIL that is too low
for the design (i.e., the safety target is too weak). Vice versa, the risk assessment
method for railway signaling (BP-Risk) is not detailed enough for the applica-
tion to some functions of railway vehicles and, hence, would lead to erroneous
results. For example, calculating the safety targets for air conditioning functions
in railway vehicles would lead for high speed lines to SIL 4 with BP-Risk and to
a more realistic SIL 1 with SIRF. This is not surprising since BP-Risk considers
the speed of the train for the calculation of safety targets, but the speed does
not matter for air conditioning functions.

For some other functions like hot axle box detection1 both methods, SIRF and
BP-Risk can reasonably be applied. However, both methods result in different
safety targets for the same function in the same operational situation and the
same accident scenario. This usually leads to heated discussions between experts
of both railway subdomains.

Such contradicting safety targets are quite usual at intersections between
these two subsystems. These intersections occur at railway functions

– that are facilitated by using components of both railway subdomains, or
– that are integrated on a component that fulfils functions of the other subdo-

main (e.g., electro-pneumatic modules of the breaking system), or
– that can be executed in both railway subdomains independently (e.g., wayside

and on-board hot axle box detection), or
– that are currently operated by the components of the railway vehicle including

the driver and shall be operated in the future by railway signaling components
(e.g., functions for automated train operation (ATO)), or

– whose potential failures can be caused by components of railway vehicles or
signaling components.

1 Hot axle box detection can be monitored with both wayside and on-board devices.
It depends on the definition to which subdomain these devices are assigned to.
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To simplify the discussions on such interfaces by giving a common under-
standing of the safety risk concepts of both subdomains, we created a new ontol-
ogy that integrates the relevant concepts of SIRF and BP-Risk. It facilitates
a better understanding of the underlying concepts (and relations), in spite of
the different terminology used in the different methods/standards, and this is
supposed to lead to improved risk assessment.

For addressing similar compatibility problems with risk-related terminology
between railway vehicles and automobiles, we previously created a small common
ontology of safety concepts (see [12]). The objective of this former common
ontology has been to make safety analyses transferable between both domains
such that the safety artefacts of the development life-cycle can be reused more
easily in the other domain. Since this previously developed ontology is just for
vehicles (railway vehicles and automobiles) it does not cover important concepts
for risk assessment of railway signaling.

The remainder of this paper is organized in the following manner. First,
we briefly review related work. Then we present an analysis of the terminology
used in the investigated methods for railway risk assessment. After that, we
present our common ontology and the rationale for some ontological decisions
we made in the course of its creation. We also describe use cases for illustrating
the potential usefulness of this new ontology for avoiding errors. Finally, we
conclude and sketch future work.

2 Related Work

The objectives of the European Project DESTination RAIL2 include achieving
a safer rail infrastructure. To this end, it compared different risk assessment
methods including BP-Risk but not, for instance, SIRF. Hence, its results (so
far) did not help us to resolve the problem addressed in this paper.

SafetyMet presented by Vara et al. [18] deals with transferring safety compli-
ance information from one domain to another. This approach, developed in the
OPENCOSS Project (see http://www.opencoss-project.eu/), tries to facilitate
that using model transformation. A common metamodel is defined and trans-
formation rules are used to convert compliance information from one model to
another.

Gallina and Szatmári [9] addressed the problem of inconsistencies between
different safety processes and is complementary to our work on resolving incon-
sistencies between safety concepts. The effort of the Object Management Group
(OMG) to create a Dependability Assurance Methodology (DAF) [10] as an
umbrella methodology for all dependability attributes such as safety, security,
integrity, etc. is also complementary. This effort includes the Dependability Con-
ceptual Model (DCMs) to unify the terminology and the vocabulary from differ-
ent dependability standards. However, this metamodel does not go into details
of safety concepts and their relationships as our ontology-based approach.

2 See http://www.destinationrail.eu.

http://www.opencoss-project.eu/
http://www.destinationrail.eu
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A few ontologies for safety and risk concepts exist already, for example, the
safety ontologies of Haavik [11]. They are more dedicated to system development
than to risk estimation, however.

�Lawrynowicz and �Lawniczak [16] presented a core ontology for the occupa-
tional safety and health domain. Most of the concepts defined there have the
same or similar names as in our ontology. However, some of the concepts seem
to be defined quite differently. For example, Hazardous Event is defined there
as an event with at least one participating worker exposed to an Occupational
Hazard. This definition is quite different from the one in the current version of
IEC 61508-4 [3].

Luo et al. [17] defined an ontology for certification of components for different
domains. Among others, the railway and the automotive domains are taken into
account. Luo et al. modeled all the assessment parameters for the allocation
of ASIL mentioned in ISO 26262 as properties of a concept that they named
“hazardevent”, which is, in our opinion, Hazardous Event.

Kostov et al. [15] classified the concept Safety Event into subclasses Devi-
ation, Collision, Warning System Alarm, Regulation Violation Event, Loss of
Function, and Near Collision. Loss of Function corresponds to the definition of
Failure in ISO26262-1: “termination of the ability of an element, to perform a
function as required”. Our ontology is closer to related standards by including
the concepts Accident and Hazardous Event instead, and by keeping the termi-
nology of the standards.

The closest work to ours is the one by Zhou et al. [19], who presented an
ontology of basic safety risk concepts for the railway domain based on the stan-
dard EN 50126-1 [1]. That is why some of the core concepts including their
intermediate relations could be used for our ontology. The scope of our ontology
is, however, different. We focus on the concepts (such as “possibility of avoid-
ance”) that are necessary for the determination of a SIL. Most of the concepts
for that purpose are not mentioned in [19], however.

In our own previous work (see [14]), we also created a small ontology of con-
cepts such as Risk, Harm, Hazard, etc., which we consider as the core concepts.
As a result, this core ontology of safety risk concepts reconciled the scientific
literature with standards. Since it matches the terminology of the related stan-
dards, it may serve as a reference model. In fact, we already used it ourselves for
systematically studying where human error may compromise safety. While some
of these core concepts are also included in our new ontology presented in this
paper, this new ontology relates them to several important safety risk concepts
for railway vehicles and signaling as newly conceptualized here.

3 An Analysis of Railway Risk Assessment Terminology

Before defining a conceptual model for an ontology, we had to analyze the ter-
minology behind the concepts of railway risk assessment. Let us sketch here our
related analyses of SIRF and BP-Risk terminology as well as other important
railway safety terminology of EN 50126.
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3.1 Terminology of SIRF

For the determination of safety targets, SIRF provides its own method. (Since
SIRF is a German directive without an official and agreed English translation,
we translated the definitions of terms for safety target determination on our
own.) It defines five parameters:

– SA – number of affected persons (SIRF: “Anzahl der betroffenen Personen”)
– SV – degree of injury (SIRF: “Verletzungsgrad”)
– W – probability that a function failure results in the expected severity of

harm (SIRF: “Eintrittswahrscheinlichkeit”)
– E – mean duration of exposure to a hazard (SIRF: “Expositionszeit”)
– V – possibility of avoidance of the severity of a harm by the person at risk,

after the occurrence of the primary hazard (SIRF: “Vermeidung”)

Parameters SA and SV shall be estimated for a realistic worst-case scenario.
Their combination is an estimate of the severity of harm.

Parameter W of SIRF is alternatively often referred to as inevitability of the
transition from a function failure to the related severity of harm. More specif-
ically, the transition is between one special function failure mode and a set of
events that belong to a special class of accident. Among others, a class of acci-
dents can be defined according to the energy type involved (e.g., kinetic, electric,
thermic), according to the direction of energy flow (e.g., side-swipe collision,
rear-front collision), according to the type of harm (e.g., accident with physical
injury, accident with material damage), or according to severity of harm (e.g.,
catastrophic accident, severe accident, accident without more than 1 fatality and
at most 9 fatalities). In SIRF, parameter W accidents are classified according to
their severity. Thus, parameter W is the probability p3 as illustrated in Fig. 1.

In addition, SIRF uses the terms function (SIRF: “Funktion”), failure (SIRF:
“Versagen”), accident (SIRF: “Unfall”), hazard (SIRF: “Gefährdung”), harm
(SIRF: “Schaden”), severity of harm (SIRF: “Schadensausmaß”) and operational
situation (SIRF: “Betriebsbedingungen”), but it does not use the term hazardous
event.

Fig. 1. Types of transitions and their probabilities

3.2 Terminology of BP-Risk

For the determination of the safety target, BP-Risk uses five parameters (see [5],
the latest version):
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– B – operating density (BP-Risk: “Betriebsdichte”)
– M – human prevention (BP-Risk: “Menschliche Gefahrenabwehr”)
– T – mass of train (BP-Risk: “Masse des Zuges”)
– V – velocity of train (BP-Risk: “Geschwindigkeit des Zuges”)
– A – number of affected persons (BP-Risk: “Anzahl betroffener Personen”)

Unfortunately, some of the parameters are defined slightly differently in dif-
ferent publications. Parameter M was alternatively defined as “human mitiga-
tion”, “human prevention of accidents and reduction of the resulting severity of
harm”, “human averting of danger”, “corrective action” (see [13]), and “poten-
tial mitigation of an accident or undesired event”. Even if the intentions of the
different definitions of parameter M were the same, the concepts behind the
different definitions of this parameter M are different.

From a railway signaling point of view, the different concepts behind param-
eter M can be assumed to be the same, since only accidents that release kinetic
energy (e.g., collision, derailment) are considered. Thus, for railway signaling, a
prevention of harm is often just possible with a prevention of an accident. Note,
that this holds just for railway signaling but not for the railway vehicle domain.

It seems as though the authors of BP-Risk intended to relate the concept
“human prevention” to harm. This is especially the case in operational situations
where an accident is inevitable but there may be different types of harm (e.g.,
material damage or physical injuries).

Only those possible actions shall be considered for parameter M that are
not defined as being part of the railway system. That is, a human prevention of
harm can be done by a road user, by a passenger, by the police, by workers, by
train drivers, etc.

Whereas parameter B is widely defined as operating density, in some publi-
cations it is defined as “probability of confrontation” (e.g., for the application for
hot box detection, see [6]), which is from an ontological point of view a different
concept. For our analysis, we take parameter B as “operating density”, since
this is the definition in the latest version of BP-Risk.

In addition, BP-Risk uses the terms function (BP-Risk: “Funktion”), fail-
ure (BP-Risk: “Versagen”), accident (BP-Risk: “Unfall”), hazard (BP-Risk:
“Gefährdung”), function failure (BP-Risk: “Funktionsversagen”) harm (BP-
Risk: “Schaden”), severity of harm (BP-Risk: “Schadensausmaß”) and opera-
tional situation (BP-Risk: “betriebliche Randbedingung”), but it does not use
the term hazardous event. The severity in BP-Risk refers to both material dam-
age and human harm, while severity in SIRF just refers to human harm.

3.3 Other Important Railway Safety Terminology of EN 50126

The term “hazardous event” is used in the railway standard EN 50126 [1] as
well as in the technical report TR 50126-2 [2]. We considered (and still consider)
this term as being important, since it is used in many safety analyses in several
domains, e.g., the railway domain and the automotive domain. That is why we
included it into our previous ontology, see [12].
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Fig. 2. Common ontology of safety risk concepts for railway vehicles and signaling

As we pointed out already in [12], the definitions of “hazardous event” are
different in TR 50126-2 [2], ISO 26262 [4] and IEC 61508 [3]. The most reasonable
definition in our opinion is the one of the ISO 26262 standard: “combination of
a hazard and an operational situation”.

In addition, the technical report TR 50126-2 defines the term “circumstance”.
The concept behind is in our view the same as the concept behind the term
operational situation of SIRF or BP-Risk.

Moreover, TR 50126-2 uses the term “possibility of avoiding the accident”,
which we include in our analyses since it is slightly different from both SIRF
and BP-Risk terminology.

The term “probability of occurrence of an accident” of TR 50126-2 is illus-
trated in Fig. 1 as p4. Note, that this is different from parameter W of SIRF.

4 Our Common Ontology

Figure 2 shows our new common ontology. This diagram uses notation of the
Unified Modeling Language (UML), see http://www.omg.org/spec/UML/ for

http://www.omg.org/spec/UML/
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the current version. Each arrow head points from a class representing a specific
concept to a more general one, which represents a generalization. The other lines
between classes show association relations, i.e., we use them for representing
relations between concepts. A specific association called aggregation is indicated
by a diamond at the end of the line with the composite class, which we use to
model a kind of composition of concepts. While we model most of the concepts
as classes, some are represented here as attributes of classes. This indicates that
these concepts serve as properties of other concepts.

Our new common ontology of risk concepts for railway vehicles and signaling
is based on our previous safety ontology of railway vehicles and automobiles (see
[12]). In order to keep this paper self-contained, we first summarize its essence
here. In more detail, we elaborate on specific concepts relevant for either railway
vehicles or signaling, or both.

4.1 Essence of Previous Ontology

Already our previous safety ontology of railway vehicles and automobiles repre-
sents, of course, a few concepts commonly used in all the standards discussed
in this paper: Hazard, Harm and Severity. They seem to be core concepts both
in the automotive and the railway domains, and they are shared with our new
ontology presented in this paper. Strictly speaking, there is also a merged concept
in common, Operational Situation ISO 26262/Circumstance EN 50126, since we
consider these concepts of the two standards very similar.

There is a generalization according to the generic standard IEC 61508. The
similar concepts Exposure ISO 26262 and Exposure Time EN 50126 & SIRF
have a pendant in the IEC 61508 risk parameter F . Conceptually, we consider the
latter as a generalization of the former concepts. Hence, this concept is included
here under the name Exposure IEC 61508, with generalization relations in the
model.

Also the similar concepts Controllability ISO 26262, Possibility of Avoid-
ance EN 50126 and Possibility of Avoidance SIRF have a pendant in the IEC
61508 risk parameter P . However, the latter is not a generalization of the former
concepts, since it refers to yet another concept, Hazardous Event ISO 26262.
Ontologically, these four concepts deserve a common generalization. Hence, for
integrating all these avoidance concepts, we created one with the name Avoid-
ance (also Controllability ISO 26262 is actually an avoidance concept).

For more details on our previous ontology, see [12].

4.2 Avoidance and Its Specializations

For railway vehicles, the concept Possibility of Avoidance (of SIRF) relates to
Severity, as given in our previous ontology already. In SIRF, the following exam-
ple is given (translation from German by these authors): “possibility of fleeing of
a passenger from a burning part of the train”. Hence, the Possibility of Avoidance
(of SIRF) does not directly relate to Harm, but indirectly through Severity.
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In contrast, as discussed above for railway signaling, Human Prevention of
Harm influences the whole train and, thus, all Affected Persons’ health. Accord-
ing to our analysis, this BP-Risk concept is reminiscent of the concept Control-
lability of the automotive domain [4]. Hence, we introduced the concept Human
Prevention BP into our new ontology by merging it with the previous concept
Controllability into one concept, which directly relates to Harm.

4.3 Severity of Harm After Function Failure

While our previous ontology already dealt with SIRF to a certain extent, it
did not include its parameter W, which reflects the probability of a function
failure resulting in the expected severity of harm. Introducing it into our new
ontology was deemed necessary, but this turned out to be difficult. While it
obviously relates to both Failure (of a function) and Severity (which relates to
Harm), being (ontologically) a probability does not allow its introduction directly
“between” the classes representing these concepts simply as yet another class.
In fact, as shown in Fig. 1, it is the probability of a transition denoted as p3.

In contrast, ontologies like ours represent static concepts and their relations.
Hence, we defined an association relation between Failure and Severity, but the
ontology had to reflect a particular property of this relation as well. Fortunately,
UML facilitates that through an association class, which is both an association
and a class. As being a class as well allows defining a property as its attribute.
Using this modeling construct, we introduced the concept Severity of Harm after
Function Failure (not explicitly defined in SIRF), which is also an association
relation between Failure and Severity. For the class representing this concept,
we defined the attribute “Probability W (SIRF)”.

4.4 Injured Persons

Parameter SA of SIRF, the number of affected persons, is in our new ontology
a property of Operational Situation/Circumstance. However, this parameter is
used for the estimation of Severity of Harm in case of an Accident. Hence, the
relationship of this parameter to the concepts involved is not precisely defined
in SIRF.

Of course, only those persons can be involved in an Accident that are affected
by the preceding Hazardous Event, and only those persons’ health can be affected
by an Accident that are directly involved in this Accident. Thus, for functional
safety in railway engineering, Eq. 1 holds, where pc is the number of persons
affected by a Hazardous Event in a certain Circumstance, pa the number of
persons affected by an Accident, and pi the number of injured persons:

pc ≥ pa ≥ pi (1)

In order to address this SIRF problem, we introduced Injured Persons as
a property of the concept Severity. These are all the persons whose health
is causally affected by an Accident. For worst-case estimation, the num-
ber of Injured Persons is the number of Affected Persons (by a Hazardous
Event/Circumstance), assuming that all these persons will actually be injured.
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4.5 Implicit Relation Between Energy and Severity

Usually, the amount of energy involved in a (railway) Accident has a strong
influence on the Severity of Harm. Hence, we intensively discussed the relations
of the BP-Risk parameters velocity and mass of a train with other concepts,
since they can be used for the estimation of the kinetic energy of a train.

As a result of these discussions, we made an ontological decision to not link
these two BP-Risk parameters directly with Severity. Instead, we introduced
them as properties of Operational Situation/Circumstance.

Assuming that train passengers are not directly protected by any system
(e.g., a seat belt or an airbag) in the train, it may be possible to associate the
velocity with the SIRF parameter SV (the degree of injury). The degree of injury
of passengers in a train is usually independent of the mass of the train.

4.6 Operating Density

As indicated above, we considered parameter B of BP-Risk as the concept Oper-
ating Density. According to the user manual of BP-Risk3, it could be defined
in terms of trains per hour. This does not take into account, e.g., situations
like boarding, of course. Assuming that each train has at least one person on
board, we can estimate the probability of such persons’ exposure with Operating
Density for collision and derailment accidents. Hence, we decided to integrate
Operating Density as a property of Operational Situation.

4.7 Summary

We showed that some of the concepts behind the parameters for determining the
safety target used in SIRF and BP-Risk are the same (e.g., Affected Persons),
some can be associated with each other (e.g., Degree of Injury with Velocity
of Train and Mass of Train), and some have a common generalization (e.g.,
Avoidance is a generalization of Possibility of Avoidance and Human Preven-
tion). Considering the specific circumstances of railway vehicles and signaling,
both SIRF and BP-Risk are reasonable and usable methods for their respective
subdomains. Their essential concepts are integrated in our common ontology.

5 Use Cases for the New Ontology

In our own experience, we observed cases of misinterpretation of BP-Risk param-
eters by safety experts used to SIRF. We conjecture that this may happen analo-
gously the other way round as well. The reason behind is transfer of the meaning
based on similar wording in natural language, which conceals the different con-
cepts behind. Let us illustrate such cases by assuming that a BP-Risk expert
has to use SIRF for the first time, in two use cases with two different parameters
each. We explain how our new ontology may help here to avoid errors through
its representation of concepts and their relations.
3 See http://archiv.ivt.ethz.ch/oev/risk safety rail/Benutzerhandbuch.pdf.

http://archiv.ivt.ethz.ch/oev/risk_safety_rail/Benutzerhandbuch.pdf
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5.1 Railway Level Crossing

In our first use case, a misinterpretation of the meaning of parameter V of SIRF
(possibility of avoidance) by transferring the meaning of the parameter M of
BP-Risk (human prevention) would lead to an error.

The context of this use case is a railway level crossing with full barriers and a
level-crossing obstacle detection device (implemented with radar) that monitors
the danger zone for metal road cars that are larger than 1m · 0.5m · 0.5m.
Assume that a detection of persons is impossible for this device. When the level
crossing shall be activated, approaching road users are signalled not to enter the
level crossing (e.g., by blinking red lights). Once the danger zone is free of cars,
the barriers will be activated and close the level crossing. After that, the train
receives the permission to pass the level crossing via the train control system.

A failure in the obstacle detection device could lead to closing the barriers
and passing permission to trains with (e.g., broken down or crashed) cars at the
level crossing, even though correctly behaving car drivers had have entered the
level crossing before the road side signals were activated. For this example, we
assume a train speed of 160 km/h, at which this level crossing is visible for the
train driver only after it is too late to brake for standstill before the train reaches
the level crossing.

According to BP-Risk, in a collision between a train and a road participant,
a few persons are affected (A = 2). Since the train cannot be stopped in time,
the only possibility of “human prevention” is by road participants. They could
try to move the car outside the danger zone (e.g., manually or by restarting
the car) or they could leave the car and the danger area by foot. Therefore,
the possibility of human prevention of harm resulting from a collision between
a train and a car can be estimated as somewhere between “sometimes possible”
(M = 3 for entering the level crossing in case of a traffic jam) and “nearly
impossible” (M = 5 in case of a heavy crash between two cars). Hence, for
this level crossing we estimate the possibility of human prevention with “seldom
possible” (M = 4).

For somebody who is used to BP-Risk but yet unfamiliar with SIRF, the
SIRF-parameter V looks very similar to the BP-Risk parameter M . Hence, he
may estimate parameter V as “not possible” (V = 1). However, this estimate is
not correct, and the error cannot be easily understood from the SIRF documen-
tation without studying it in-depth.

In contrast, from our ontology one can easily see that the concept Possibility
of Avoidance behind parameter V is related to Severity (of harm) but not directly
to the concept Harm itself. Even if harm cannot be prevented, its severity can
be reduced by the occupants of the car by leaving it. According to SIRF, the
assumed worst-case severity (i.e., “several fatalities”) can be avoided (V = 1.3)
by the car occupants. This avoidance can be considered as possible since the
barriers of the level crossing are closing, which is visible to the occupants of the
car or at least the car driver, who can alarm the other occupants.
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Fig. 3. Railway network for the overspeed example

5.2 Train Overspeed

In our second use case, a misinterpretation of the meaning of parameter E of
SIRF (mean duration of exposure) by transferring the meaning of the parameter
B of BP-Risk (operating density) would lead to an error. The context of this use
case is a network used only for cargo transport, there are no level crossings, and
a maximum of two locomotives are operating in this network (see Fig. 3). The
maximum possible speed of the locomotives is 60 km/h. The track is designed
and constructed in such a way that derailment is not a matter of this maximum
speed. However, overspeed of locomotives (or whole trains) may lead to collisions
with buffer stops or the other train.

According to BP-Risk, the “operational density” can be estimated as “low”
(B = 1), assuming that there is only light cargo traffic on the tracks of this
network, i.e., it happens just once a day that two cargo trains pass each other.

For somebody who is used to BP-Risk but yet unfamiliar with SIRF, the
SIRF-parameter E looks very similar to the BP-Risk parameter B. Hence, he
may estimate the exposure time of the train driver using parameter E as “low”
(E = 1), since the driver is exposed just for a short time to the operational situ-
ation of buffer stops or another train passing. In fact, the outcome of the hazard
“unrecognized overspeed” is highly dependent on the operational situation in
which this overspeed occurs and, hence, “unrecognized overspeed” is limited to
collisions with buffer stops or other railway vehicles in the given network. How-
ever, estimating E = 1 is not correct, and this cannot be easily understood from
the SIRF documentation without studying it in-depth.

In contrast, from our ontology one can see that parameter B of BP-Risk
is represented as an attribute (Operating Density) of (and hence, related to)
the Concept Operational Situation, while the concept Exposure Time behind
parameter E of SIRF is related to the concept Hazard. This means that the
exposure time shall not be estimated with regard to the hazardous event or
operational situation but to the hazard, as defined by SIRF. Hence, the exposure
time of the train driver must be estimated with “long” (E = 1.3) according to
SIRF, because the train driver is exposed to the hazard “unrecognized overspeed”
for the whole period of being in his locomotive.

6 Conclusion and Future Work

In this paper, we present a common ontology of safety risk concepts of two widely
used methods for safety target determination in the railway domain. SIRF is
suitable for railway vehicles only, and BP-Risk for railway signaling only. Our
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common ontology is especially useful for safety assessments of systems at the
border between these subdomains.

In particular, our two use cases indicate the usefulness of our new ontology for
avoiding errors. This may even work more generally, whenever the representation
of concepts and their relations helps to clarify their essence. In these use cases,
already the graphical representation of the ontology is supposed to be useful.
For future tool support, we envisage that a formal representation in an ontology
language may be useful as well.

Of course, also this common conceptual model is not anywhere near a fully-
fledged common ontology for the railway domain. For instance, the term “haz-
ardous zone” mentioned in the context of railway level crossings should be inves-
tigated for inclusion as a concept. Also the term “hazardous situation” should
be analyzed, as defined in IEC 61508-4, and mentioned in Section 1.120 of ISO
26262-1 and in Section C.4 of TR 50126-2 [2] without definition. There are obvi-
ously also common parts not included, such as the core concept Risk. Hence, our
new ontology presented in this paper should be merged with another ontology
of core concepts that includes the Risk concept, see [14]. Still, we think the com-
mon conceptual model resulting from this paper may serve as a basis on the way
towards a common safety ontology, e.g., for railway and automotive systems.

As indicated, future work will have to extend and to evolve the ontology,
and it should include an appropriate upper ontology. Also case studies in the
potential application areas will be important for the sake of validation of our
proposed approach.
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9. Gallina, B., Szatmári, Z.: Ontology-based identification of commonalities and vari-
abilities among safety processes. In: Abrahamsson, P., Corral, L., Oivo, M., Russo,
B. (eds.) PROFES 2015. LNCS, vol. 9459, pp. 182–189. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26844-6 13

10. Object Management Group: Dependability Assurance Framework For Safety-
Sensitive Consumer Devices (2016)

11. Haavik, T.K.: On the ontology of safety. Saf. Sci. 67(Suppl. C), 37–43 (2014).
https://doi.org/10.1016/j.ssci.2013.09.004. The Foundations of Safety Science

12. Hulin, B., Kaindl, H., Rathfux, T., Popp, R., Arnautovic, E., Beckert, R.: Towards a
common safety ontology for automobiles and railway vehicles. In: European Depend-
able Computing Conference (2016). https://doi.org/10.1109/EDCC.2016.15

13. Jo, H., Hwang, J.G., Kim, Y.K.: Risk assessment method for guaranteeing safety
in the train control system. In: URBAN TRANSPORT, pp. 567–576, August 2007

14. Kaindl, H., Rathfux, T., Hulin, B., Beckert, R., Arnautovic, E., Popp, R.: A core
ontology of safety risk concepts. In: Bogdan, C., et al. (eds.) HCSE/HESSD 2016.
LNCS, vol. 9856, pp. 165–180. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44902-9 11
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