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Abstract The hippocampus is a major brain centre for information process-
ing, where subcortical neuromodulatory circuits interface with intrinsic learning
circuits to assign salience to sensory information relevant to behavioural state.
Glutamatergic principal cells (PCs) of the dentate gyrus (DG), CA3 and CA1
regions comprise the classic trisynaptic circuit, which compare patterns of incoming
sensory stimuli with internal representations, enabling the detection of novelty.
Within the trisynaptic circuitry, distinct feedforward and feedback inhibitory circuits
spatiotemporally constrain the timing of PC excitability, which, together with
disinhibitory circuits, synchronize PC ensembles to generate network rhythms.
Neuromodulation alters network rhythms and synaptic plasticity by releasing
neurotransmitters and neuropeptides onto diverse receptor subtypes, often expressed
in a cell type- and circuit-specific manner. Moreover, extrinsic neuromodulation can
induce the secondary release of intrinsic neuromodulators. For each neurotransmit-
ter system, we review the structural organization and target specificity of afferent
innervation, receptor subtype distribution and, where known, their functional effects
on hippocampal cells and circuits. Despite the complexity involved and evident
gaps in scientific knowledge, general principles of neuromodulation are emerging.
With the development of next-generation technologies, the vision of understanding
how neuromodulatory mechanisms engage circuit elements to regulate hippocampal
memory encoding and recall is coming into sharper focus.
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Overview

Neuromodulation is the processes by which the properties of neurons and synapses
are altered by neuroactive substances termed neuromodulators. The distinction
between neuromodulation and classical neurotransmission can be fuzzy, but, in
general, neuromodulation is more diffuse and less targeted and acts over a longer
time course than classical fast neurotransmission. Often the same neurochemical
may have rapid neurotransmitter-like effects followed by more sustained modulator-
like actions. What makes neuromodulation an important consideration is that it
appears to be a fundamental process in modifying all aspects of neural network
functioning and information processing. Neural networks are not hard-wired, but
plastic, and the neuromodulation of its components yields distinct activity patterns
that are associated with behavioural state, allowing the same neural circuit to
have added computational power. These components include the modification of
neuronal excitability, integrative properties of neurons, synaptic transmission and
synaptic plasticity. Neuromodulators often have more than one cellular or synaptic
consequence. Moreover, not all cellular or synaptic targets of neuromodulation
produce the same effects. Due the omnipotent control of the user over parameter
space, computational modelling is a powerful tool for gaining insight into how
cellular and synaptic targets of neuromodulation alter the functional output of
neuronal populations and the processing of synaptic signals within networks.
Beyond the acute effects of neuromodulation on cellular and synaptic excitability
are longer-term changes in gene expression and neuronal architecture that are essen-
tial in regulating developmental processes and structural plasticity. This chapter
circumscribes the acute cellular and synaptic effects of neuromodulation on cellular
targets within the hippocampal formation. Whilst necessary to constrain the scope
of this chapter, the multi-faceted parameter space involved in neuromodulation is so
complex that it invites, if not demands, computational modelling to validate specific
neuromodulatory mechanisms at work.

The Data

Introduction

The hippocampus receives input from a multitude of neuromodulatory substances,
the release of which is often associated with external factors or dependent upon
particular behavioural states. This chapter summarizes some of the primary neu-
romodulators including those that arise from sources extrinsic to the hippocampus
(mainly subcortical nuclei) as well as those originating from cells intrinsic to the
hippocampal formation. There may be important functional distinctions between
intrinsic and extrinsic forms of neuromodulation (Katz and Frost 1996; Marder
2012) with the most obvious being that extrinsic neuromodulation is usually inde-
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pendent of ongoing activity within the circuits being modulated, whereas cells or
synapses undergoing intrinsic modulation often do so as a result of ongoing activity
within those same circuits. However, the extensive reciprocal interconnectivity from
the hippocampus to cortex (Melzer et al. 2012), hypothalamus (Jimenez et al. 2018)
and subcortical neuromodulatory nuclei (Mattis et al. 2014; Yuan et al. 2017) makes
this distinction somewhat superficial (Caputi et al. 2013). As discussed in earlier
chapters, glutamate and GABA have multiple modes of action, which still provide
important foundational principles upon which to understand other neurotransmitter
systems. In addition to ligand-gated ion channels for rapid transmission, slower,
often intrinsic neuromodulatory actions are also produced through metabotropic
signalling. Many of the ‘classical’ neuromodulators presented here act in a similar
manner and generally provide extrinsic neuromodulation as their sources of input
are derived predominantly from subcortical nuclei. Although some modulators, such
as acetylcholine and serotonin, appear to possess machinery for fast, point-to-point
transmission, ‘volume transmission’, in which neurotransmitters are released at non-
synaptic varicosities, diffuses to high-affinity metabotropic receptors and appears to
be a major mode of transmission. It is possible, due to differences in the proximity
of neuromodulatory release sites and postsynaptic composition of receptors, that
specific cellular targets may employ point-to-point, volume or both modes of
transmission. Along the lines of how views of GABAergic transmission have
evolved (Farrant and Nusser 2005), one may view these modes of synaptic trans-
mission along a continuum, in that any given hippocampal postsynaptic neuronal
cell type may possess a different ratio of point-to-point and volume transmission.
Furthermore, this ratio may change dynamically depending on firing frequency
of the presynaptic neuromodulatory neurons, magnitude of the neurotransmitter
concentration transient, short-term plasticity dynamics of neurotransmitter release,
state of occupancy of postsynaptic receptors and neurotransmitter transporters and
pooling in the extracellular space. Optogenetic strategies that allow for stimulation
of specific neurochemically restricted synapse types are leading to a better under-
standing of the spatiotemporal dynamics of synaptic neurotransmission (Lorincz
and Adamantidis 2017). As with GABAA receptors, it may soon be possible to cate-
gorize neuromodulatory receptors as synaptic (‘phasic’), perisynaptic (‘spillover’ or
‘augmented transmission’) and tonically active, high-affinity receptors (Farrant and
Nusser 2005). Therefore, it is important to recognize that classic pharmacological
manipulations, such as bath application of a fixed agonist concentration, may
not necessarily mimic volume transmission. Indeed, it is increasingly likely that
populations of ‘extrasynaptic’ receptors can be stimulated by bath application of
exogenous agonists but are simply too far away from release sites to be activated by
the spatiotemporal concentration transient of endogenous neurotransmitter release.
Artificial, pathological or therapeutic interventions may dynamically alter spa-
tiotemporal concentration transients, effectively redefining which neurotransmitter
receptors can be classified as synaptic receptors. Whilst extrasynaptic receptors that
are not normally activated under physiological circumstances may be considered
irrelevant, or even confounding, in understanding synaptic transmission from a
‘purist’ biophysical perspective, their existence becomes important in understanding
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Fig. 1 Different types of neuromodulatory receptors. (a) Synaptic receptors (yellow) localized
in the immediate vicinity of neurotransmitter release sites are activated. (b) Both perisynaptic
(blue) and synaptic receptors are activated when multiple simultaneously active synaptic terminals
induce ‘spillover’ from delayed neurotransmitter clearance or when neurotransmitter transport is
compromised. (c) Exogenous application of neurotransmitter or a non-specific receptor agonist
will activate synaptic, perisynaptic and extrasynaptic (red) receptors. In addition, if extrasynaptic
receptors are tonically active, application of an antagonist will block these receptors. (Modified
from Farrant et al. 2005, with permission)

roles that some neurotransmitters play in setting the ‘tone’ of transmission. More-
over, pharmacological and therapeutic interventions, such as the use of specific
neurotransmitter receptor agonists, allosteric modulators and antagonists, may
ultimately change cellular excitability by altering these extrasynaptic receptors. It is
therefore important not only to understand how specific neuromodulatory afferents
interact with their associated postsynaptic receptors but also to understand the
receptor distribution on postsynaptic neurons independent of its relationship to the
endogenous neurotransmitter (Fig. 1).

In addition to classical neuromodulatory transmitters, many neuropeptides exert
effects in the hippocampus that originate from extrinsic sources, but also from
local hippocampal circuits, to provide additional layers of intrinsic modulation.
Other modulators including endocannabinoids and nitric oxide have an even more
localized autocrine/paracrine modulatory action and are thought to mediate exclu-
sively intrinsic modulation. In some cases, extrinsic neuromodulation by classical
neurotransmitters induces secondary effects mediated by intrinsic modulation,
as demonstrated by the capacity of metabotropic receptor activation or elevated
intracellular calcium to induce release of endocannabinoids. However, whether the
modulation is driven by extrinsic or intrinsic sources, the loci of action is an essential
factor and can include modification of (1) the properties of presynaptic neuro-
transmitter release, (2) the modification of postsynaptic responsiveness/receptor
signalling and/or (3) the modulation of the postsynaptic intrinsic electrical and
biochemical properties or gene regulation. Understanding the overall actions of a
neuromodulator that occur on multiple timescales is thus especially challenging.
The challenge is even greater if one considers that receptors, intracellular signalling
pathways and effectors all could be independently expressed in a cell type-specific
manner. The most significant obstacle is that neuromodulators do not simply
excite or inhibit neurons in the classical sense. Rather, they usually signal through
intracellular messenger cascades to modulate not one but a range of effectors.



Neuromodulation of Hippocampal Cells and Circuits 231

This may include the gating of ion channels that orchestrate the response to
classical neurotransmitters. That is, they change the way neurons respond to signals
arising from other neurons whether that be due to altered intrinsic properties of
the receptive neuron or to altered postsynaptic responsiveness or as a result of
altered properties of the presynaptic neuron such as action potential patterns and/or
neurotransmitter release probability. As a consequence, what an experimenter sees
following manipulation of neurotransmitter/modulator mechanisms depends upon
how the cell or system is investigated. As pointed out by Surmeier (Surmeier 2007),
different questions produce different answers!

Modulation of Intrinsic Properties

Neuromodulators can regulate a diverse range of ion channels and other effec-
tors that modify the active and passive properties of hippocampal neurons. The
excitability of cells can be altered in three different ways. (1) Neuromodulation
can alter the resting membrane potential, in the form of depolarization or hyper-
polarization. This action has several consequences. First, it will bring the cell
closer or farther away from the threshold for action potential initiation. This makes
a given excitatory synaptic input more or less effective. Secondly, alteration in
the resting membrane potential may be associated with a different set of cellular
conductances, which themselves could influence the intrinsic membrane properties
of the neuron. (2) Neuromodulation also can directly alter the passive properties of
the cell, including the cell input resistance and membrane time constant. This is done
through neuromodulation of the conductances involved at a given resting potential,
such as leak conductances or steady-state conductance. This effect changes the
computational properties of the neuron. For example, an increase in the membrane
time constant will broaden the excitatory postsynaptic potential (EPSP) so that fewer
EPSPs are required to summate to action potential threshold. Another consequence
of increasing the input resistance and membrane time constant is to alter the
RC filtering characteristics of the cell, thereby impacting the ability of the cell
to follow frequency-specific input. (3) Active conductances may also undergo
neuromodulation. Depending on the kinetics of activation of the conductances
modulated, the action potential waveform, various afterhyperpolarizing potentials
and/or action potential discharge patterns are altered by neuromodulation. Some
of these effects are summarized in Table 1 and described under the individual
neuromodulator headings.

Different neuromodulatory substances often converge onto common effectors to
produce similar actions. For example, activation of metabotropic GABAB receptors,
adenosine A1 receptors and serotonin 5-HT1A receptors in CA1 pyramidal cells
all increase a common potassium conductance (Nicoll et al. 1990; Sodickson
and Bean 1998), thereby providing several redundant and/or synergistic cellular
mechanisms for reducing cellular excitability. However, whilst some generalizations
may be made, the situation often is far more complex. As seen in the earlier
chapters, different hippocampal neurons are endowed with different channels and
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Table 1 Summary of key neuromodulator actions

Arrows indicate direction of change. White and grey boxes represent postsynaptic and presynaptic
actions, respectively (for more detail and other actions, see text below). Parentheses show receptor
subtypes where known
Abbreviations: ND not determined, IAHP afterhyperpolarization current, ICAT cation current, Ih
hyperpolarization-activated current, IM M current
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neurotransmitter receptor subtypes. For any given modulatory substance in any
given cell, the exact channels modulated will depend upon the presence and
spatial localization of particular subtype(s) of receptors, together with the presence
and spatial localization of coupled ion channels and other effectors. Intracellular
signalling is another major determinant of the response, and despite its ubiquity,
studies suggest that signalling can be very specific and targeted to specific loci
or subcellular compartments within a cell (Kulik et al. 2006; Shigemoto et al.
1996). Moreover, if release of calcium from internal stores is involved, the response
will also depend on the history of action potential activity, since intracellular
calcium stores can be depleted unless replenished through activation of voltage-
gated calcium channels (Gulledge and Kawaguchi 2007; Gulledge et al. 2009). It is
through calcium imaging (Grienberger and Konnerth 2012), voltage-sensitive dye
imaging (Acker et al. 2011) and the introduction of molecular biosensors and other
transduction processes (Sanford and Palmer 2017) that we are beginning to learn
how modulation can be restricted to localized microdomains or compartments yet
have profound effects on output.

Modulation of Excitatory Synaptic Transmission

The laminar structure of the hippocampal formation lends itself to the study of exci-
tatory pathways. It has long been observed that a wide range of neuromodulatory
substances can affect glutamatergic neurotransmission. Whilst many modulators
have general actions across very many synapses, such as the suppressant actions
of adenosine, others appear to have very precise synapse-specific actions. One of
the best examples of synapse-specific effects is the suppression of transmission
by activation of group II mGluRs at the mossy fibre (MF)-to-CA3 pyramidal cell
synapse but not at Schaeffer collateral (SC) synapses onto the same neuron (Toth
and McBain 1998, 2000) (see Chapter 3). Conversely, the same glutamatergic axon
can generate different responses depending on the postsynaptic neuron subtype
(Maccaferri et al. 1998; Toth and McBain 2000). These examples, amongst others,
have made the concept of a generic glutamatergic synapse essentially obsolete.
Several other examples of synapse-specific neuromodulation at different hippocam-
pal glutamatergic synapses are illustrated in this chapter. Finally, neuromodulators
are known to modulate synaptic plasticity, including activity-dependent changes in
the efficacy of glutamatergic transmission, called long-term potentiation (LTP) and
long-term depression (LTD).

Modulation of Inhibitory Synaptic Transmission

As described in earlier chapters, GABAergic cells and circuits show great diversity
in terms of their neurochemistry, morphology, connectivity and expression of
neurotransmitter receptors. Similarly, the neuromodulation of GABAergic circuits
appears to be complex, yet general principles are emerging even as the number
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of interneuron subtypes is growing. This stems in part from issues that arise
from attempting to classify GABAergic interneurons into defined subtypes (Mac-
caferri and Lacaille 2003; Klausberger and Somogyi 2008; Petilla Interneuron
Nomenclature Group et al. 2008). However, it is also complicated by the findings
that application of the same neuromodulator to what are considered anatomically
discrete cell types can often give rise to variable and unpredictable responses even
when considering a simple question such as whether a modulator is excitatory or
inhibitory (Parra et al. 1998; Widmer et al. 2006). From this muddle, some patterns
are starting to emerge, and we are beginning to understand principles by which
neurochemically and functionally distinct interneuron subtypes are differentially
recruited, suppressed or modified in a coordinated manner to orchestrate the flow
of information in hippocampal circuits (Lawrence 2008; Madison and McQuiston
2006). As has been shown in the neocortex (Bacci et al. 2005; Kawaguchi 1997;
Porter et al. 1999; Xiang et al. 1998), one important factor is the neurochemical
identity of the hippocampal interneuron subtype (Cea-del Rio et al. 2010; Freund
and Katona 2007; Glickfeld et al. 2008; Glickfeld and Scanziani 2006; Lawrence
2008; Lawrence et al. 2006c; McQuiston 2014a). Synaptic plasticity, including LTP
and LTD, can also occur in inhibitory circuits, which is dependent on neurochemical
identity (Monday and Castillo 2017; Monday et al. 2018). Important clues to
interneuron diversity have been revealed by investigating the lineage of interneuron
subtypes (Kepecs and Fishell 2014; Rudy et al. 2011). Understanding exactly how
the neuromodulatory specializations of each neurochemically distinct interneuron
subtype contribute to the modulation of the frequency and magnitude of network
oscillations continues to remain a major challenge.

‘Classical’ Modulators

Many of the classical modulators have an established role in mediating synaptic
transmission/neuromodulation, and indeed their discovery as such significantly
predates the discovery of glutamate and GABA as neurotransmitter substances.
Despite this however, our knowledge of the precise action of classical modulators on
hippocampal cells and circuits remains rather disjointed and incomplete. It is with
acetylcholine that most progress towards a systematic understanding of its multitude
of actions has been achieved and we therefore start with a detailed account of the
current state of knowledge with this system. Thereafter, we provide an overview
of other classical neuromodulators, highlighting their key features as well as the
significant gaps in our current knowledge.
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Acetylcholine

Acetylcholine (ACh) is a key neuromodulator that plays a key role in arousal
(Jones 2004; Lee et al. 2005), attention (Sarter et al. 2005), assigning salience
(Hangya et al. 2015; Raza et al. 2017), spatial navigation (Dannenberg et al. 2016)
and learning (Dannenberg et al. 2017; Haam and Yakel 2017; Hasselmo 2006).
Cholinergically induced oscillatory activity in the hippocampus (Dannenberg et al.
2015; Vandecasteele et al. 2014) correlates with these behavioural states (Lee et al.
1994). Despite major advances in understanding the cell type-specific (Cobb and
Davies 2005; Lawrence 2008; McQuiston 2014a) and subcellular (Lawrence et al.
2015; Szabo et al. 2010) targets of cholinergic modulation, large knowledge gaps
remain at cellular and synaptic levels. Although some insights have been gained
through computational modelling (Hummos and Nair 2017), knowledge gaps still
exist in understanding how cholinergic neuromodulation coordinates the activation
of diverse hippocampal circuit elements to give rise to large-scale cholinergically
induced population-level oscillatory dynamics (Vijayaraghavan and Sharma 2015).
However, the recent discovery of the role of astrocytes in the cholinergic modulation
of hippocampal dentate granule cells (Pabst et al. 2016) suggests that the inventory
of circuit elements capable of undergoing cholinergic modulation is not even
complete.

Origin and Structural Organization of Cholinergic Afferents

The medial septum/diagonal band of Broca (MS-DBB) provides the major source
of cholinergic innervation to the hippocampus (Dutar et al. 1995; Gielow and
Zaborszky 2017; Lucas-Meunier et al. 2003; Swanson et al. 1987; Woolf 1991)
and presents a direct synaptic input to both principal neurones and interneurons
(Deller et al. 1999; Frotscher and Leranth 1985; Leranth and Frotscher 1987).
The MS-DBB also contains septohippocampal GABAergic (Freund 1989; Freund
and Antal 1988; Toth et al. 1997) and glutamatergic (Huh et al. 2010) projection
neurons, which serve distinct but complementary roles in cognition (Dannenberg et
al. 2015; Muller and Remy 2017). MS-DBB cholinergic neurons are rhythmically
active during waking and quiescent during sleep (Lee et al. 2005). Cholinergic axons
ramify extensively throughout all regions of the hippocampal formation and in all
layers (Aznavour et al. 2002; Aznavour et al. 2005; Leranth and Frotscher 1987).
At the ultrastructural level, a significant proportion of cholinergic boutons are not
associated with distinct postsynaptic specializations (Vizi and Kiss 1998; Vizi et al.
2004). These observations support two forms of cholinergic transmission: precise
synaptic transmission, involving highly localized ACh transients onto low-affinity
nAChRs, and volume-mediated cholinergic transmission, where ACh is released
into the extracellular space, diffusing to high-affinity receptors at some distance
from the synaptic terminal (Vizi and Kiss 1998; Vizi et al. 2004).
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A recent study has shown that GABA is co-released with ACh (Takacs et al.
2018), as has been shown at cortical neurons receiving input (Granger et al. 2016;
Saunders et al. 2015). Whilst co-transmission of acetylcholine with other classical
neurotransmitters, such as glutamate (Allen et al. 2006), also has not been shown
directly, MS-DBB cholinergic neurons appear to possess the appropriate cellular
machinery for co-release of glutamate or GABA with acetylcholine (Sotty et al.
2003; Takacs et al. 2018).

Laminar and Target Specificity of Cholinergic Afferents

The effects of ACh on hippocampal function first commence with where ACh is
released, which relates to the specific pattern of cholinergic afferent innervation
in the hippocampus. There are differences in the pattern of innervation across
DG, CA3 and CA1, as well as within specific layers (termed lamina). Stratum
oriens and stratum pyramidale receive a higher density of cholinergic terminals
than in other layers (Aznavour et al. 2002). In addition to this laminar specificity,
there are several lines of evidence that suggest that cholinergic septohippocampal
fibres preferentially target specific hippocampal cell types. Given that nAChRs
cluster under cholinergic terminals (Zago et al. 2006), it is possible that a high
expression level of postsynaptic nAChRs may indicate a higher level of cholinergic
terminal contacts relative to interneuron subtypes associated with lower nAChR
expression. Consistent with this idea, we recently used a statistical approach to
demonstrate that the density of cholinergic terminals onto hippocampal GAD65-
GFP inhibitory neurons is non-random, implying synaptic targeting mechanisms at
work (Smith et al. 2015). In the dentate gyrus, cholinergic afferents appear to exhibit
some target selectivity, preferentially innervating NPY- over PV-containing neurons
(Dougherty and Milner 1999). Moreover, using vesicular acetylcholine transporter
(vAChT) labelling in combination with anterograde labelling of basal forebrain
afferents, Jones and colleagues found that cholinergic terminals more closely appose
calbindin-positive than PV-positive interneurons (Henny and Jones 2008). These
observations are consistent with the demonstration of fast α7 nAChR-mediated
synaptic responses in stratum radiatum (SR) interneurons (Alkondon et al. 1998;
Chang and Fischbach 2006; Frazier et al. 1998a, b), which likely correspond to
CCK-/CB-positive interneurons. Several studies have confirmed that electrical stim-
ulation can evoke α7 nAChR-mediated synaptic responses (Alkondon et al. 1998;
Chang and Fischbach 2006; Frazier et al. 1998a, b). Recent optogenetic experiments
also have shown that α7 nAChR-mediated synaptic responses can be evoked, but
it is more rarely observed than through electrical stimulation (McQuiston 2014b),
raising the question as to whether α7 nAChRs are truly synaptically localized (Bell
et al. 2011; Bell et al. 2015a; McQuiston 2014a). Finally, cholinergic afferents may
target precise spatial locations relative to other afferents. The overlap of cholinergic
and GABAergic terminal specializations (Henny and Jones 2008; Zago et al. 2006),
combined with the demonstrated crosstalk between nAChRs and GABAA receptors
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(Wanaverbecq et al. 2007; Zhang and Berg 2007), suggests that cholinergic afferents
target GABAergic synapses.

Intrinsic Cholinergic Interneurons of the Hippocampus

In addition to the extrinsic cholinergic input, the hippocampus possesses a numer-
ically sparse population of cholinergic interneurons (Frotscher et al. 1986, 2000).
Recent studies have used transgenic mouse technology to visualize cholinergic
circuit elements by driving expression of fluorescent proteins under the control
of the choline acetyltransferase (ChAT) promoter, encountering populations of
fluorescently labelled hippocampal neurons (Blusztajn and Rinnofner 2016; Grybko
et al. 2011; von Engelhardt et al. 2007; Yi et al. 2015). Monyer and colleagues
recorded from ChAT-GFP cells in the neocortex (von Engelhardt et al. 2007).
Although evoked nicotinic EPSPs onto postsynaptic targets were not observed,
a modest enhancement in spontaneous glutamatergic transmission was detected,
suggesting that ACh release from these neurons may spill over to presynaptic
nAChRs located on glutamatergic terminals (von Engelhardt et al. 2007). In the
cortex, ChAT-GFP cells co-express VIP (von Engelhardt et al. 2007) and possess a
high density of nAChRs (Porter et al. 1999), raising the possibility that ACh itself
may promote cortical ACh release through a feedforward excitatory cholinergic
circuit (Tricoire and Cea-Del Rio 2007). In a recent study in the hippocampus,
only a minority of ChAT-GFP or ChAT-CRE/YFP cells expressed VIP but were
excited by ACh (Yi et al. 2015). Optogenetic stimulation of ChAT-CRE cells in
the hippocampus surprisingly evoked a glutamatergic synaptic current, which may
be attributable to a special class of CA3 pyramidal cells that either ectopically or
developmentally express ChAT (Yi et al. 2015). ChAT-GFP and ChAT-CRE/YFP
cells also were encountered in CA1 (Yi et al. 2015), consistent with earlier
studies (Frotscher et al. 2000). However, the unambiguous determination of the
neurotransmitter phenotype of ChAT-GFP cells in CA1 awaits future studies.

Acetylcholine Receptors

To complement their rich cholinergic input, hippocampal neurons express a broad
range of acetylcholine receptors (Buckley et al. 1988; Lebois et al. 2017; Levey
1996; Levey et al. 1995; Rouse et al. 1999). Cholinergic neuromodulation has
complex effects on both glutamatergic and GABAergic neurons in the hippocampus,
which occur by the binding of ACh to ionotropic nicotinic receptors (nAChR) and
metabotropic muscarinic receptors (mAChRs) at pre- and postsynaptic locations
(Cobb and Davies 2005; Dannenberg et al. 2017; Giocomo and Hasselmo 2007).
Many of the effects are mediated through metabotropic muscarinic acetylcholine
receptors (mAChRs, M1-5). Early studies suggested M1 and M3 receptor proteins
being mainly expressed in principal neurones and M2 and M4 receptors predomi-
nantly expressed on interneurons (Levey et al. 1995). Within glutamatergic circuits
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of the hippocampal formation, there is extreme variability in mAChR immunoreac-
tivity between subfields and laminae (Rouse et al. 1999). The termination zones of
the perforant path differentially express presynaptic M2, M3 and M4 receptors.

The septohippocampal pathway is also thought to activate nicotinic acetylcholine
receptors (nAChRs). The exact expression of nAChR subunits with respect to the
afferent cholinergic input is not fully established, but binding studies suggest that
populations of interneurons that are suspected to receive direct septohippocampal
innervation bind the nAChR ligand α-bungarotoxin (Freedman et al. 1993), imply-
ing the expression of α7 nAChRs. Immunocytochemical studies have demonstrated
the α7 AChR subunit to be highly expressed across multiple cell types and multiple
cellular and synaptic compartments, including somata, dendrites, spines, axon
fibres, glutamatergic axon terminals and GABAergic axon terminals (Fabian-Fine
et al. 2001).

Action of Acetylcholine on Intrinsic Properties of Hippocampal Neurones

Pyramidal Cells

ACh has been known for many years to excite hippocampal pyramidal cells (Cobb
and Davies 2005; Cole and Nicoll 1983, 1984a, b; Dodd et al. 1981), and the ionic
basis of such effects has now been elucidated in some detail. Through mAChRs,
ACh is known to modulate a large number of conductances and second messenger
cascades in pyramidal neurones. These include IM, the Kv7/KCNQ-mediated K+
current; IAHP, the slow Ca2+-activated K+ current responsible for the slowing of
action potential discharges; Ileak, the ohmic leak current responsible in large part for
the resting membrane potential (Halliwell and Adams 1982; Madison et al. 1987;
Halliwell 1990); and IKir, an inwardly rectifying potassium conductance (Seeger and
Alzheimer 2001). mAChR activation also potentiates two mixed cation currents (Ih,
the hyperpolarization-activated non-specific cation current; Icat, Ca2+-dependent
non-specific cation current) (Brown and Adams 1980; Colino and Halliwell 1993;
Fisahn et al. 2002; Halliwell and Adams 1982) as well as modulates a voltage-
dependent Ca2+ current (Toselli et al. 1989). The action of exogenously applied
ACh on hippocampal pyramidal cells is that of a pronounced membrane potential
depolarization and increase in cell membrane resistance (Cole and Nicoll 1984a, b;
Fraser and MacVicar 1996). Through mAChR knockout mice (Dasari and Gulledge
2011; Fisahn et al. 2002) and pharmacological manipulation (Thorn et al. 2017),
M1 mAChRs are largely responsible for ACh effects on the intrinsic excitability
of hippocampal pyramidal cells (Dennis et al. 2016). Puff application of mAChR
agonists to soma/proximal dendritic regions of principal cells induces a transient
hyperpolarization caused by mAChR-induced release of calcium from internal
stores, which then activates Ca2+-dependent SK channels (a component of IAHP)
(Dasari and Gulledge 2011; Dasari et al. 2017; Gulledge and Kawaguchi 2007).
Using electrical stimulation of cholinergic afferents, Power and Sah demonstrated
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that synaptic activation of mAChRs leads to propagating calcium signals within the
somatodendritic axis of pyramidal cells (Power and Sah 2002).

Despite difficulties in interpreting nAChR pharmacology from early studies using
cultured hippocampal neurones, in acute native tissues, pharmacological activation
of nAChRs is generally reported to produce either no a or barely detectable
response in principal cells (Frazier et al. 1998a, b; McQuiston and Madison 1999c;
Reece and Schwartzkroin 1991). There are some reports that nAChRs are detected
postsynaptically in principal cells (Hefft et al. 1999) where they facilitate the
induction of LTP (Ge and Dani 2005; Gu and Yakel 2011) through enhanced cellular
excitability (Szabo et al. 2008). However, with the hippocampal circuit intact, the
effect may be minor, since bath application of nicotine reduces the excitability
of pyramidal cells through activation of non-desensitizing α2-containing nAChR-
containing O-LM interneurons (Jia et al. 2009).

Inhibitory Neurons

In the majority of GABAergic interneurons, pharmacological activation of mAChRs
results in a similar membrane depolarization to that seen in pyramidal cells but with
a less prominent change in cell input resistance (Lawrence et al. 2006c; McQuiston
and Madison 1999a, b; Parra et al. 1998), confirming earlier studies (Benardo
and Prince 1982a; Benardo and Prince 1982b, e; Reece and Schwartzkroin 1991).
GABAergic interneurons represent a highly heterogeneous population of neurone
with respect to their connectivity and neurochemistry (Freund and Buzsaki 1996;
Klausberger and Somogyi 2008), and there is wide variation in their response
to activation of mAChRs compared to that seen in the relatively homogeneous
population of principal neurones (McQuiston and Madison 1999a; Parra et al. 1998;
Widmer et al. 2006). In contrast to the slow sustained mAChR-mediated modulation
of both pyramidal cells and interneurons, activation of nAChRs produces a more
transient response. Similar to neocortical interneurons (Couey et al. 2007; Gulledge
and Kawaguchi 2007; Porter et al. 1999; Xiang et al. 1998), there is evidence for cell
type specificity in postsynaptic expression of nAChRs in hippocampal interneurons
(Bell et al. 2015a).

Oriens-Lacunosum Moleculare (O-LM) Cells

O-LM cells exhibit a highly reproducible response to bath application of acetyl-
choline, mAChR agonist or nAChR agonist activation (Jia et al. 2009; Lawrence
et al. 2006c), similar to neocortical Martinotti cells, another somatostatin-positive
interneuron subtype (Fanselow et al. 2008; Kawaguchi 1997). When induced to
fire in the presence of mAChR agonists, O-LM cells exhibit an acceleration in
firing frequency that is accompanied by a prominent suprathreshold afterdepo-
larization (ADP) (Lawrence et al. 2006c; McQuiston and Madison 1999b). The
ADP, mediated by M1/M3 mAChR activation, is associated with the activation
of a non-selective cationic current (ICAT) and the inhibition of both M- (IM) and
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slow afterhyperpolarization K+ currents (IAHP) (Lawrence et al. 2006c). mAChR
modulation of O-LM cells enhances their intrinsic oscillatory properties to theta-
specific input (Lawrence et al. 2006a), which is mimicked by inhibition of IM
(Lawrence et al. 2006b) and a shift in the voltage dependence of HCN channels in
O-LM multicompartmental models (Lawrence 2008; Lawrence et al. 2006b; Sekulic
and Skinner 2017). In vivo, pirenzepine-sensitive activation of calcium signalling in
O-LM cells by MS-DBB cholinergic afferents occurs during fear learning (Lovett-
Barron et al. 2014) via a mechanism consistent with M1/M3 mAChR activation
(Lawrence et al. 2006c).

In stratum oriens (SO), a mixed fast α7-mediated and slow non-α7 nAChR-
mediated response is consistently observed in oriens-lacunosum moleculare (O-
LM) cells (Alkondon et al. 1998; Buhler and Dunwiddie 2001; McQuiston and
Madison 1999c). O-LM cells exist as two distinct subpopulations, a PV-positive,
5-HT3 receptor-lacking population derived from the medial ganglionic eminence
(MGE) and a PV-lacking, 5-HT3R-expressing population derived from the caudal
ganglionic eminence (CGE) (Chittajallu et al. 2013). Both populations express α7
nAChRs. O-LM cells that express α2 nAChRs (Jia et al. 2009; Leao et al. 2012;
Mikulovic et al. 2015) lack PV and are therefore most likely derived from CGE.
Cholinergic inputs onto α2 nAChR-expressing O-LM cells have been shown to
evoke a nicotinic EPSC, which is blocked by α7-and non-α7 nAChR antagonists
(Leao et al. 2012). Due to their non-desensitizing response upon activation with
nicotine, α2 nAChRs may play a role in the activation of O-LM cells by exogenous
nicotine (Jia et al. 2009).

M2 mAChR-Positive Trilaminar Cells

There are populations of GABAergic interneuron in stratum oriens that are hyper-
polarized in response to mAChR activation (Lawrence et al. 2006c; McQuiston and
Madison 1999a; Parra et al. 1998). The neurochemical identity of ADP-lacking SO
interneurons is less clear, but likely comprises M2 mAChR-expressing trilaminar
cells (Ferraguti et al. 2005; Hajos et al. 1998; Klausberger 2009) and horizontally
oriented PV+ BCs (Lawrence et al. 2006c; Maccaferri 2005; Widmer et al. 2006).
Immunocytochemical studies showing that mGluR1a-positive and M2-positive SO
interneurons are distinct cell types (Ferraguti et al. 2005), which likely correspond
to O-LM and trilaminar cells (Gloveli et al. 2005), strengthen the evidence that
SO interneuron subtypes possess a different complement of postsynaptic mAChRs.
Trilaminar cells are CGE-derived (Craig and McBain 2015) and therefore are
likely to possess both nAChR and 5-HT3 receptors (Chittajallu et al. 2013).
The most likely consequence of cholinergic activation in these cells is an initial
hyperpolarization and reduction in cellular excitability (Lawrence et al. 2006c),
possibly mediated through Gi/o-coupled M2 and/or M4 mAChRs (McQuiston and
Madison 1999a; Seeger and Alzheimer 2001). It is also possible that a biphasic
response could be generated, but it is not clear whether trilaminar cells possess Gq-
coupled M1/M3 receptors that could mediate a late depolarizing response.
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Parvalbumin-Positive (PV) Basket Cells

Fast-spiking basket cells, corresponding to PV BCs, do not express high levels
of nAChRs in the neocortex (Gulledge and Kawaguchi 2007; Kawaguchi 1997;
Xiang et al. 1998) or hippocampus (McQuiston and Madison 1999c; Buhler and
Dunwiddie 2001) but do express mAChRs (van der Zee et al. 1991). With the
use of transgenic mice that allows the visualization of PV interneuron circuits
(Hippenmeyer et al. 2005; Kaiser et al. 2016), CA1 PV BCs can be specifically
targeted (Cea-del Rio et al. 2010; Lawrence et al. 2015; Yi et al. 2014). In response
to bath application of 10 μM muscarine, PV BCs strongly depolarize, increase in
firing frequency and exhibit a loss of an afterhyperpolarization, all of which do not
occur in PV BCs lacking the M1 mAChR subtype (Cea-del Rio et al. 2010; Yi et al.
2014). This depolarizing response profile is consistent with that observed previously
in a subset of morphologically defined BCs (McQuiston and Madison 1999a;
Widmer et al. 2006). Fast-spiking interneurons in the dentate gyrus, corresponding
to PV BCs, also depolarize strongly to bath application of ACh or muscarine
and are most likely mediated by M1 mAChRs (Chiang et al. 2010). Interneurons
that are insensitive to nAChR activation are encountered predominantly in stratum
pyramidale (SP) (McQuiston and Madison 1999a) and tend to be fast spiking, a
hallmark of PV BCs (Buhler and Dunwiddie 2001).

Consistent with earlier experiments using electrical stimulation to evoke ACh
release (Widmer et al. 2006), recent experiments using optogenetic stimulation
of ACh release induce a range of atropine-sensitive response profiles in PV BCs,
including depolarizing only, hyperpolarizing only and biphasic hyperpolarizing-
depolarizing responses (Bell et al. 2013, 2015b; McQuiston 2014a). The hyperpo-
larizing response is likely mediated by activation of inward-rectifying potassium
channels (McQuiston and Madison 1999a; Seeger and Alzheimer 2001) through
Gi/o-coupled M2 (Hajos et al. 1998) and/or M4 mAChRs (Bell et al. 2013), whereas
depolarization most likely occurs through Gq-coupled M1 mAChRs (Cea-del Rio
et al. 2010; Yi et al. 2014). The capability of synaptically released ACh to activate
different mAChR subtypes on PV BCs likely reflects differences in spatiotemporal
dynamics of ACh release from cell to cell or possibly differences in synaptic
localization of mAChR subtypes. PV BCs in CA1 (Lawrence et al. 2015) and CA3
(Szabo et al. 2010) also undergo presynaptic cholinergic modulation, which reduces
synaptic depression. In a mathematical model of short-term synaptic depression,
presynaptic cholinergic modulation can be explained by inhibition of presynaptic
calcium channels (Lawrence et al. 2015; Stone et al. 2014) through presynaptic M2
and/or M4 mAChRs (Bell et al. 2013; Cea-del Rio et al. 2010; Hajos et al. 1998).

CCK-Positive Basket Cells

Cholinergic neuromodulation of CCK BCs was investigated with the use of a
GAD65 GFP transgenic mouse line in which GFP is expressed in non-PV-positive
cells (Cea-del Rio et al. 2010; Cea-del Rio et al. 2012; Daw et al. 2009; Lopez-
Bendito et al. 2004). CCK BCs show characteristics of cholinergic neuromodulation
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differently than PV BCs (Cea-del Rio et al. 2010; Cea-del Rio et al. 2012).
First, a prominent mAChR-induced ADP is observed in these cells, with a time
course slower than seen in O-LM cells, and is sometimes briefly interrupted by a
mAChR-insensitive fast afterhyperpolarization (AHP) that occurs after the offset of
a suprathreshold current step (Cea-del Rio et al. 2010). Hyperpolarization followed
by depolarization is often observed, consistent with biphasic response profiles of a
subset of basket cells reported previously (McQuiston and Madison 1999a; Widmer
et al. 2006). This biphasic response is also seen upon optogenetic stimulation (Bell
et al. 2013; McQuiston 2014a). One interesting feature of CCK BCs is that M3
mAChRs appear to control mAChR-induced changes in firing but both M1 and M3
mAChRs control the emergence of the mAChR-induced ADP (Cea-del Rio et al.
2010, 2012). Therefore, the expression of M3 mAChRs and its differential coupling
to mAChR-sensitive conductances distinguishes CCK BCs from PV BCs (Cea-del
Rio et al. 2010, 2012).

There are two types of CCK BCs, identified based on their expression of
vasoactive intestinal peptide (VIP) or vesicular glutamate transporter 3 (vGluT3)
(Klausberger and Somogyi 2008). VIP-containing CCK BCs are consistently depo-
larized upon optogenetic stimulation of ACh release (Bell et al. 2015b), consistent
with the relative absence of M2/M4 mAChRs on CCK BCs (Freund and Katona
2007). This observation reinforces the existence of principles governing cell type-
specific cholinergic neuromodulation in the hippocampus (Lawrence 2008; Madison
and McQuiston 2006; McQuiston 2014a). Consistent with a higher sensitivity of
CCK BCs than PV BCs to mAChR stimulation (Cea-del Rio et al. 2010, 2012),
inhibitory postsynaptic currents evoked by optogenetic ACh release are sensitive
to depolarization-induced suppression of inhibition (DSI), a mechanism mediated
by endocannabinoids acting at presynaptic CB1 receptors on CCK interneurons
(Nagode et al. 2011; Alger et al. 2014).

CCK is highly co-localized with α7 nAChR mRNA transcripts (Morales et
al. 2008) and protein (Freedman et al. 1993). In this context, SR interneurons,
which likely comprise CCK interneuron subtypes, exhibit only fast, presumably α7-
mediated responses upon puff application of ACh (McQuiston and Madison 1999c),
suggesting cell type specificity of nAChR receptor subtypes compared relatively to
additional nAChR subtypes found in O-LM interneurons. However, optogenetically
evoked ACh responses mediated solely by α7 nAChRs are rare (McQuiston 2014b).

CCK-Positive Schaeffer Collateral-Associated (SCA) Interneurons

CCK SCA interneurons are similar to CCK BCs in that they exhibit a similar
mAChR-induced ADP (Cea-del Rio et al. 2010; Cea-del Rio et al. 2011; Cea-del
Rio et al. 2012). The presence of M4 mAChR mRNA transcripts in a subset of CCK
SCA and CCK BCs (Cea-del Rio et al. 2010, 2011, 2012) may explain the often
biphasic hyperpolarizing-depolarizing phenotype of the mAChR-mediated response
in CCK SCA cells, observed with bath application of mAChR agonists (Parra et al.
1998; Cea-del Rio et al. 2011, 2012), electrical stimulation (Widmer et al. 2006)
and optogenetic stimulation (Bell et al. 2013). The M4-positive allosteric modulator
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potentiates the hyperpolarizing component of the biphasic response, consistent with
expression of M4 mAChRs on these cells (Bell et al. 2013), in contrast to the
absence of a hyperpolarizing component onto VIP CCK BC subtypes (Bell et al.
2015b). mAChR activation boosted its response to oscillatory input in CCK SCAs
(Cea-del Rio et al. 2011, 2012). Like CCK BCs, this cell type is likely to be
modulated by endocannabinoids through presynaptic CB1 receptors (Nagode et
al. 2011; Alger et al. 2014) and therefore unlikely to possess presynaptic M2/M4
receptors, as presynaptic CB1 and M2/M4 receptors are thought to be from mutually
exclusive presynaptic terminal populations (Freund and Katona 2007; Armstrong
and Soltesz 2012).

CCK-Positive Perforant Path-Associated (PPA) Interneurons

Although likely comprising more than one neurochemically distinct interneuron
population (Freund and Buzsaki 1996; Bowser and Khakh 2004; Klausberger
2009), interneurons located at the stratum radiatum/stratum lacunosum moleculare
(SR/SLM) border are depolarized by mAChR activation and exhibit intrinsic
subthreshold membrane potential oscillations (Chapman and Lacaille 1999a, b).
Approximately half of these interneurons exhibit a mAChR-induced transient hyper-
polarization that precedes mAChR-induced depolarization (Chapman and Lacaille
1999a), similar to responses observed in CCK BCs and CCK SCAs (Cea-del Rio
et al. 2010, 2011, 2012). There are likely common cellular mechanisms across
CCK interneuron subtypes; M2/M4 mAChRs mediate the transient hyperpolarizing
response, whilst M1/M3 mAChRs mediate the late depolarizing response (Cea-del
Rio et al. 2010, 2011, 2012; Bell et al. 2013, 2015b).

SR/SLM interneuron populations also express functional nAChRs (Reece and
Schwartzkroin 1991; Jones and Yakel 1997; McQuiston and Madison 1999c).
Activation typically induces brief depolarization or inward current which tends
to desensitize rapidly. The kinetics and pharmacology of the response vary, but
fast depolarization by α7 subunit-containing nAChRs is the predominant response
seen in interneurons. The nAChRs expressed on SR/SLM interneurons can also be
synaptically activated (Frazier et al. 1998a). Unlike agonist-activated responses,
optogenetically activated nAChRs are rarely mediated by α7 subunit-containing
nAChRs (Bell et al. 2011; McQuiston 2014b). The reason for this discrepancy is
unclear.

VIP/Calretinin-Expressing Interneuron-Selective Interneurons

VIP- and calretinin-expressing neurons form local ‘disinhibition circuits’, interneu-
ron subtypes that are specialized to inhibit other inhibitory neurons (Acsady et al.
1996a; Francavilla et al. 2015; Tyan et al. 2014). These cells are negative for M2
mAChRs (Tyan et al. 2014). A recent study by McQuiston and colleagues found that
VIP-positive interneurons are synaptically activated by α4/β2-containing nAChRs
(Bell et al. 2015a), consistent with the enrichment of nAChRs on VIP interneuron
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subtypes in cortex (Porter et al. 1999). A subset of these VIP/calretinin interneurons
co-express ChAT, which are excited by bath application of ACh (Yi et al. 2015).

Other Hippocampal Interneuron Subtypes

Since publication of the previous edition of this chapter, much knowledge has
been gained, greatly increasing our understanding of cholinergic modulation of
specific circuit elements and demonstrating general principles in cell type-specific
cholinergic neuromodulation in the hippocampus (Lawrence 2008; Madison and
McQuiston 2006; McQuiston 2014a). Despite these advances, of the 21 specific
interneuron subtypes in the hippocampus (Klausberger and Somogyi 2008), cholin-
ergic modulation has been systematically explored in only a third (8/21). Of the
remaining subtypes to be explored, long-range GABAergic projection neurons, such
as the hippocamposeptal (HS) neurons (Caputi et al. 2013; Mattis et al. 2014; Melzer
et al. 2012) are a major class. Finally, the neurochemical identity of inhibitory
interneurons that are totally nonresponsive to cholinergic neuromodulation, which
apparently lack both mAChRs and nAChRs, is not clear (McQuiston and Madison
1999a; Parra et al. 1998).

Clearly, the activity of the cholinergic septohippocampal afferents excites the
hippocampal network generally and differentially gates inhibitory circuits through
both nAChR- and mAChR-mediated mechanisms. This has been proposed to
result in switches in inhibition between perisomatic and pathway-specific dendritic
domains (Gulyas et al. 1999). A major challenge for the future is to understand
how different patterns of cholinergic afferent input can differentially recruit different
receptor populations and cell types. McQuiston and colleagues have shown that a
single stimulation of cholinergic fibres can be effective at evoking nAChR-mediated
postsynaptic potentials in interneurons and that additional stimuli will evoke both
mAChR-mediated hyperpolarizing and depolarizing responses. In contrast, trains
of stimuli delivered at 10–20 Hz, within the range at which most putative septal
cholinergic cells discharge (Brazhnik and Fox 1999; Lee et al. 2005), result in
a robust mAChR-mediated synaptic response whilst at the same time depressing
nAChR-mediated responses (Morton and Davies 1997). During more sustained ACh
release, it is also possible that mAChR activation induces postsynaptic depression
of nAChR responses (Shen et al. 2009).

Action of Acetylcholine on Defined Excitatory Synapses

Presynaptic Muscarinic Receptors Located on Defined Excitatory Synapses

ACh depresses Schaffer collateral (SC) afferents onto CA1 pyramidal cells through
a presynaptic mechanism involving mAChR activation (Valentino and Dingledine
1981) and presynaptic N-type calcium channels (Qian and Saggau 1997). The
nAChR antagonist hexamethonium does not block the action of ACh, suggesting
that nAChRs are absent from presynaptic SC afferents (Valentino and Dingledine
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1981). mAChR activation also inhibits glutamatergic transmission of CA3 collateral
glutamatergic transmission (Vogt and Regehr 2001; Kremin and Hasselmo 2007).
The mAChRs involved in presynaptic inhibition of SCs are most likely M2 mAChRs
(Seeger and Alzheimer 2001) but possibly include M4 mAChRs (Sanchez et al.
2009). Whilst ACh generally suppresses glutamatergic neurotransmission at most
excitatory synapses tested (Valentino and Dingledine 1981), mAChR modulation
has a greater effect at SC synapses than on perforant path (PP) synapses in both CA1
(Hasselmo and Schnell 1994) and CA3 (Kremin and Hasselmo 2007). Similarly,
in the dentate gyrus, cholinergic suppression of transmitter release differs between
medial and lateral pathway (Kahle and Cotman 1989). mAChRs are not present
at MF glutamatergic synapses, but bath application of muscarine enhances GABA
release from local interneurons, which then inhibits MF transmission indirectly
through activation of GABAB receptors (Vogt and Regehr 2001). This same indirect
effect on presynaptic GABAB receptors, however, is not present at SC synapses
(Kremin et al. 2006). This differential effect of cholinergic neuromodulation on
specific glutamatergic circuits has been suggested to amplify the impact of sensory
input arriving to hippocampus, whereby mAChR activation shifts the weight of
glutamatergic input in favour of external (entorhinal cortical) influences over
internal (intrahippocampal pathways) activity such as recall from internal CA3
recurrent collaterals upon cholinergic modulation (Giocomo and Hasselmo 2007).
This synaptic ‘heightening’ of sensory awareness has interesting implications for
the behavioural manifestation of attention (Giocomo and Hasselmo 2007; Sarter et
al. 2005).

Concomitant with acute mAChR-induced presynaptic inhibition of glutamate
release discussed above, the action of ACh can induce synaptic plasticity at SC
synapses, including long-term potentiation (Auerbach and Segal 1994, 1996; Dennis
et al. 2016; Fernandez de Sevilla et al. 2008; Shinoe et al. 2005) and, usually
at higher concentrations of cholinergic agonist, long-term depression (Auerbach
and Segal 1996; Scheiderer et al. 2006, 2008). Release of ACh by stimulation
of the medial septum reproduces this effect on synaptic plasticity (Fernandez de
Sevilla et al. 2008; Habib and Dringenberg 2009). The underlying mechanisms
appear to be an enhancement in the NMDA receptor component of the excitatory
postsynaptic event (Markram and Segal 1990a, b). More recently, Fernandez de
Sevilla and colleagues have discovered a postsynaptic mechanism that involves
enhanced surface trafficking of AMPA receptors (Fernandez de Sevilla et al. 2008).
Presumably through a convergence underlying synaptic, intrinsic and network
mechanisms, LTP is preferentially induced at synapses firing on the positive phase
of the θ rhythm during cholinergically induced theta oscillations in the hippocampus
in vitro and in vivo (Pavlides et al. 1988; Huerta and Lisman 1993; Holscher et al.
1997; Hyman et al. 2003).
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Presynaptic Nicotinic Receptors Located on Hippocampal Glutamatergic
Terminals

Nicotine application increases the frequency of miniature glutamatergic EPSCs in
tissue culture from hippocampus (Radcliffe and Dani 1998), strongly suggesting
that presynaptic nAChRs exist. Several lines of evidence support the presence
of nAChRs on CA3 MF terminals, where calcium influx through α7 nAChRs
induces concerted release of multiple quanta (Gray et al. 1996; Sharma and
Vijayaraghavan 2003; Sharma et al. 2008). Nicotine selectively depresses PP but
not SC glutamatergic transmission in CA3 (Giocomo and Hasselmo 2005), but this
effect is accounted for by an indirect effect on inhibitory interneurons (Giocomo
and Hasselmo 2005), possibly related to tonic activation of O-LM interneurons by
nicotine (Jia et al. 2009). Similar indirect effects of ACh at MF synapses are also
likely (Vogt and Regehr 2001).

Action of Acetylcholine on Defined Inhibitory Synapses

As demonstrated by the early work of Pitler and Alger (Pitler and Alger 1992a), as
well as other laboratories (Behrends and ten Bruggencate 1993), the actions of ACh
on GABAergic interneurons not only include direct excitation but also presynaptic
inhibition. Pharmacological activation of mAChRs directly increases the frequency
and amplitude of spontaneous IPSCs whilst at the same time depressing monosy-
naptically evoked IPSCs and reducing the frequency of miniature IPSCs (Pitler and
Alger 1992a; Behrends and ten Bruggencate 1993). In a landmark study demon-
strating the differential expression of mAChRs on hippocampal interneurons, Hajos
and colleagues found that M2 receptors (M2Rs) were expressed on the presynaptic
axon terminals of PV+ basket cells (Hajos et al. 1998). Consistent with M2-
mediated inhibition of GABAergic transmission evoked in the pyramidal cell layer
(Seeger et al. 2004), mAChR activation reduces GABA release from PV-positive BC
terminals (Lawrence et al. 2015). Whether presynaptic mAChRs are present on other
hippocampal interneuron subtypes still remains an open question. Interestingly,
Soltesz and colleagues demonstrated that mAChR activation inhibits GABA release
from identified CCK BCs (Neu et al. 2007). Here, mAChR modulation was indirect
(Fukudome et al. 2004), occurring via postsynaptic release of endocannabinoids
from pyramidal cells and subsequent activation of presynaptic CB1 receptors
(Lawrence 2007; Neu et al. 2007) (Fig. 2). Therefore, mAChR-induced modulation
of GABA transmission from PV BCs likely involves direct activation of presynaptic
M2 receptors, whilst mAChR-induced modulation of GABA transmission from
CCK BCs is indirect, involving endocannabinoid signalling (Freund and Katona
2007). Finally, in addition to mAChR-mediated presynaptic inhibition of GABA
release, calcium-permeable nAChRs also regulate GABAergic inhibition through
postsynaptic intracellular signalling pathways (Wanaverbecq et al. 2007; Zhang
and Berg 2007). Therefore, cholinergic neuromodulation can alter the efficacy of
GABAergic transmission through both pre- and postsynaptic mechanisms (Fig. 3).
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Fig. 2 The medial septal-diagonal band of Broca (MS-DBB) projection to defined cellular and
synaptic targets of the CA1 hippocampus. (a) The MS-DBB is composed of cholinergic (red)
and GABAergic (green) neurons that project via the fimbria to hippocampal regions. Cholinergic
projection fibres (red) pass through stratum oriens (SO), where the somatostatin (SOM)-positive
oriens-lacunosum moleculare (O-LM) neurons (yellow) and trilaminar (blue) interneurons are
located, and arborize in a dense network within stratum pyramidale (SP) with CA1 pyramidal
cells (black), CCK BCs and PV BCs (cholinergic terminals in stratum oriens and stratum radiatum
(SR) omitted for clarity). MS-DBB GABAergic neurons (A, green cells) are thought to innervate
exclusively hippocampal interneurons. Areas of interest, denoted by circled numbers in A, are
expanded in B. Known cellular and synaptic targets, denoted by circled numbers, are shown. These
are (A) the dendrites of pyramidal cells, acting at M1, M2 and M3 mAChRs and presynaptic
terminals of Schaffer collaterals (orange) acting at M2 mAChRs (B) somatodendritic regions of
O-LM cells acting at M1 and M3 mAChRs, α7 nAChRs and non-α7 nAChRs, (C) somatodendritic
regions of trilaminar interneurons acting at M2 mAChRs, (D) somatodendritic regions of PV
BCs acting at M1 mAChRs, (E) presynaptic terminals of PV BCs acting on M2 mAChRs, (F)
somatodendritic regions of CCK BCs acting on M1 and M3 mAChRs and α7 nAChRs and (G)
presynaptic terminals of CCK BCs acting indirectly through presynaptic CB1 mAChRs

Presynaptic Modulation of ACh Release

M2 mAChRs additionally occur at septohippocampal cholinergic terminals where
they are thought to have an autoregulatory role (Rouse et al. 1999). Other studies
have shown more directly that whilst ACh auto-feedback can regulate, the activation
of a range of other transmitters can suppress evoked cholinergic responses including
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Fig. 3 Cholinergic modulation of GABA release from PV and CCK BC terminals through direct
and indirect mechanisms. There is evidence that mAChRs can regulate GABA release through
both direct and indirect mechanisms (Freund and Katona 2007). The direct mechanism involves
binding of ACh to presynaptic M2 mAChRs (Lawrence et al. 2015; Szabo et al. 2010). The indirect
mechanism involves postsynaptic M1/M3 mAChR activation and release of endocannabinoids onto
CB1 R-expressing terminals of CCK+ BCs (Neu et al. 2007). (Reproduced from Lawrence 2007,
with permission)

A1 adenosine receptors (Morton and Davies 1997), opiate receptors (Kearns et al.
2001) and GABAB receptors (Morton et al. 2001). The inhibition of ACh release
occurs through a common mechanism, where presynaptic Gi/o receptor activation
converges to reduce calcium influx through presynaptic calcium channels. This
mechanism has recently been supported by the observation that optogenetically
induced nAChR-mediated EPSCs are potentiated by atropine, consistent with block
of presynaptic Gi/o-coupled mAChRs on cholinergic terminals (Bell et al. 2011).

Dopamine

Dopamine (DA) is considered to play an important role in hippocampal-dependent
learning by enhancing the saliency of relevant stimuli and is released into the
hippocampus when animals are exposed to a novel environment (Ihalainen et al.
1999; Lisman and Grace 2005; Muzzio et al. 2009). Lesions of the dopaminergic
system impair learning and memory (El-Ghundi et al. 1999; Gasbarri et al. 1996)
and dysfunction of the DA system have been implicated in neurological disease
(Seeman and Van Tol 1994). At the cellular and network levels, the action of DA
is complex, involving neuromodulation of intrinsic membrane properties, synaptic
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receptors and feedforward inhibition, which collectively act to lower the threshold
for spike timing-dependent plasticity, thereby facilitating synaptic plasticity and
memory storage.

Origin and Structural Organization of Dopaminergic Afferents

Early histological microdialysis studies have reported that the hippocampal forma-
tion receives dopaminergic projections from A9 (substantia nigra) and A10 (ventral
tegmental area or VTA) cell groups (Scatton et al. 1980; Swanson et al. 1987).
The VTA projects heavily to the subiculum and CA1 and to a lesser extent to the
CA3 and dentate gyrus (Gasbarri et al. 1994, 1997). However, through retrograde
tracing study, only a small percentage (10–18%) of these fibres are positive for
tyrosine hydroxylase (TH) (Gasbarri et al. 1994). Interestingly, there has been a
growing appreciation that the VTA is not the only source of DA to the hippocampus
(McNamara and Dupret 2017; Smith and Greene 2012). Recent tract tracing in
transgenic mice has confirmed that the VTA projection to dorsal hippocampus
is sparse, whereas there is a high density of TH-positive fibres originating from
locus coeruleus (LC) (Takeuchi et al. 2016). A sophisticated set of optogenetic
experiments revealed that novelty-induced memory enhancement is primarily due
to the activation of D1/D5 receptors from LC, which is largely independent of VTA
(Kempadoo et al. 2016; Takeuchi et al. 2016). Moreover, DA transporter (DAT)
expression, an indicator of DA terminals, is relatively absent from the hippocampus
(Ermine et al. 2016; Smith and Greene 2012). Finally, retrograde labelling of fibres
innervating the dentate gyrus revealed that the origin of TH-positive fibres is in LC,
not midbrain DA neurons in SN or VTA (Ermine et al. 2016). Despite the very strong
evidence that LC, not VTA, is the primary source of DA, loss of VTA neurons in
Alzheimer’s disease mice is associated with reduced DA outflow to hippocampus,
whereas norepinephrine levels stay the same (Nobili et al. 2017).

Dopamine Receptors

All five DA receptors (DARs) are expressed in the hippocampus with Gs-coupled
D1/5 and Gi-coupled D2-4 receptors being positively and negatively coupled to
adenylyl cyclase, respectively. The expression pattern of DARs at the level of single
cells remains relatively poorly defined, but DARs have been shown to display both
presynaptic and postsynaptic localization (Bergson et al. 1995) and to be expressed
both in principal cells and interneuronal populations (Mrzljak et al. 1996). There
is often a mismatch between the expression patterns of particular DARs and the
innervation pattern (Goldsmith and Joyce 1994). This has led some authors to
hypothesize that it is the distribution of the DARs and not of dopaminergic fibres
that determines the neuronal systems influencing dopaminergic afferent activation.

Through immunocytochemical analysis in D1-GFP mice, D1 receptors have
recently been shown to be exclusively expressed on inhibitory interneurons and are
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particularly enriched on SR interneurons (Puighermanal et al. 2017). The Drd1a-
EGFP-positive neurons were not positive for PV and enriched in stratum oriens
and radiatum, suggesting that D1 Rs are present on 5-HT3 R- and SST-containing
interneurons (Gangarossa et al. 2012). With the development of improved transgenic
mouse technology, D2 R expression has similarly evolved from initially what
was thought to be widespread hippocampal expression to, recently, very limited
expression primarily in inhibitory interneurons and hilar neurons (Puighermanal et
al. 2015, 2017). D3 R level is lower than any other dopamine receptor subtype in
the hippocampus (Andersson et al. 2012a) but has been detected immunocytochem-
ically in the neuropil of stratum oriens and radiatum (Khan et al. 1998). D4 Rs are
expressed in GABAergic neurons (Mrzljak et al. 1996), specifically PV interneurons
(Andersson et al. 2012a). D4 R activation reduces an outward potassium current in
fast-spiking hippocampal interneurons (Andersson et al. 2012b). This observation
is counterintuitive given that the D4 R is a Gi/o-coupled receptor and expected to
increase potassium conductance.

Because DA, serotonin and norepinephrine all have similar structures (are
monoamines), DA can activate some receptors that are not the classic D1-D5
receptors. DA has low affinity for 5-HT3 Rs (Solt et al. 2007) and α1 adrenergic
receptors (Cilz et al. 2014).

Action of Dopamine on Intrinsic Properties

Principal Cells

DA has been reported to produce a range of actions, which are largely attributed to
the activation of D1-like (D1/5) and D2-like (D2-4) Rs, respectively (Table 2). The
effects of DA on intrinsic properties have historically been examined through bath
application of DA and/or DAR agonists. In CA1 pyramidal neurons, bath application
of DA produces a pronounced hyperpolarization and elevation of action potential
threshold (Benardo and Prince 1982c) coupled with a suppression of the IAHP and
inhibition of spike frequency adaptation (Malenka and Nicoll 1986; Pedarzani and
Storm 1995). This is mainly attributed to suppression of the activation of Ca2+-
sensitive potassium channels (Benardo and Prince 1982c, d; Bernardi et al. 1984;
Stanzione et al. 1984). Activation of the selective D2 R agonist quinpirole was
shown to increase the cellular excitability of hilar mossy cells (Etter and Krezel
2014). However, it is important to keep in mind that bath application of DAR
agonists may not be comparable to the actions of synaptically released DA. Indeed,
optogenetically stimulated synaptic release of DA fails to substantially alter passive
membrane properties (Rosen et al. 2015).
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Inhibitory Neurons

Much of what is known about the effects of DA on inhibitory neurons has been
studied in cortex (Gorelova et al. 2002; Towers and Hestrin 2008; Zhou and Hablitz
1999) (see (Tritsch and Sabatini 2012) for review). In cortical GABAergic interneu-
rons, D1 R activation induces a depolarization, accompanied by an increase in
input resistance (Zhou and Hablitz 1999; Towers and Hestrin 2008), consistent with
the expected actions of Gs-coupled receptors (Nicoll 1988). In the hippocampus,
PV-positive interneurons possess D4 Rs (Andersson et al. 2012a; Mrzljak et al.
1996), which control feedforward excitation of Shaffer collateral inputs onto CA1
pyramidal cells (Rosen et al. 2015). However, effects of DA on intrinsic membrane
properties of other neurochemically defined hippocampal interneuron subtypes have
not been systematically investigated.

Action of Dopamine on Defined Excitatory Synapses

The actions of DA on excitatory synaptic transmission are generally suppressant in
nature (Hsu 1996). However, in parallel with other modulators, certain excitatory
pathways are more profoundly affected than others. For instance, DA together with
noradrenaline and serotonin produces a strong (30–50%) acute suppression of the
PP input to CA1 pyramidal cells in comparison to no or very minimal change in
SC input to the same cells (Otmakhova and Lisman 2000). This is consistent with
the SLM having an especially high concentration of DARs. The action of DA is
thought to involve both D1 (Noriyama et al. 2006)- and possibly D2 (Otmakhova
and Lisman 1999)-type Rs and induce presynaptic suppression of glutamate release.
A similar acute suppressant action is reported in the subiculum (Behr et al. 2000).
Conversely, in area CA3, DA produces a pronounced synaptic potentiation of the
MF inputs but no effect on associational/commissural synapses onto CA3 pyramidal
cells (Kobayashi and Suzuki 2007).

Another important aspect is the temporal aspect of dopaminergic modulation.
Many reports describe a biphasic action whereby an initial acute action (e.g.
suppression) of synaptic transmission is followed by a long-lasting enhancement
of the evoked synaptic response (Gribkoff and Ashe 1984). In this context, DA is
considered an important modulator of synaptic plasticity whereby it enhances long-
term potentiation (LTP) (Frey et al. 1993; Huang and Kandel 1995; Otmakhova and
Lisman 1996; Thompson et al. 2005) and inhibits depotentiation (Otmakhova and
Lisman 1998). During exposure to a novel environment, the threshold for LTP is
reduced transiently (absent in animals exploring a familiar environment), and this
facilitation is suggested to be dependent upon DA acting via D1/5 receptors (Li et
al. 2003). In agreement with this observation, D1 R knockout mice display deficits
in hippocampal-dependent spatial learning (El-Ghundi et al. 1999). Moreover,
amphetamine, which induces release of endogenous DA, enhances hippocampal-
dependent memory tasks (Packard et al. 1994).
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There appear to be several mechanisms by which DA may induce synaptic
plasticity. These include increased surface expression of AMPA receptors through
both direct phosphorylation of AMPA receptors and through the stimulation of
local dendritic protein synthesis (Gao and Goldman-Rakic 2003; Smith et al. 2005;
Wolf et al. 2003; Yang 2000). Also, DA may enhance NMDA receptor expression
(Yang 2000). Interestingly, depending on the GluN2A/GluN2B subunit compo-
sition, synaptic NMDA receptor-mediated currents are differentially modulated
by D1/D5 R agonists (Varela et al. 2009). SC synapses, which contain abundant
GluN2B NMDA receptor subunits, are potentiated by D1/D5 R activation, whereas
GluN2A-rich PP synapses are depressed (Varela et al. 2009). DA may gate synaptic
transmission and plasticity in a frequency and synapse-specific manner, which
includes modulation of excitatory synapses onto hippocampal interneurons (Ito and
Schuman 2007).

Recently, optogenetic release of dopamine has been shown to enhance feed-
forward inhibition by increasing the magnitude of the SC EPSP onto PV-positive
neurons (Rosen et al. 2015). D4 Rs have been demonstrated on PV interneurons in
the CA1 hippocampus (Rosen et al. 2015; Andersson et al. 2012a, b). In response
to SC stimulation, activation of D4 Rs on PV interneurons increases the AMPA
receptor-mediated EPSP, likely due to increased expression and stabilization of
AMPA receptors (Rosen et al. 2015). The enhancement of gamma oscillations
by D4 R stimulation is consistent with this mechanism (Andersson et al. 2012a).
This mechanism at least partly accounts for DA-induced suppression of SC EPSPs
in CA1 pyramidal cells (Rosen et al. 2015). The action of haloperidol, a D2
R antagonist, on inhibitory transmission, reinforces the idea that DA modulates
GABAergic inhibition in the hippocampus (Brady et al. 2016).

Action of Dopamine on Inhibitory Synapses

As optogenetically released DA does not change the amplitude of directly stimulated
IPSCs across all hippocampal layers (Rosen et al. 2015), it is unlikely that
presynaptic DA heteroreceptors, if present, are modulated by synaptically released
DA on any of the major classes of inhibitory neurons in the hippocampus. A
detailed understanding of DA effects on hippocampal interneurons and modulation
of GABAergic synaptic transmission is extremely sparse, though some analogous
systematic studies have been conducted in cortex (Gao and Goldman-Rakic 2003;
Gao et al. 2003; Gonzalez-Burgos et al. 2005; Gorelova et al. 2002; Kroner et
al. 2007; Towers and Hestrin 2008). In the hippocampus, activation of D3 Rs can
modulate GABAergic transmission in area CA1, suppressing evoked IPSCs in SR
but not in SO (Hammad and Wagner 2006). This laminar-specific action has been
reported to be due to dopamine (via D3 Rs) modulating postsynaptic GABAA
receptor endocytosis in apical dendrites of CA1 pyramidal cells and has been
postulated to be a significant postsynaptic means of modulating inhibitory synaptic
transmission (Swant et al. 2008). Because D3 R agonists did not alter paired-pulse
ratio of GABAergic IPSCs, presynaptic D3 Rs on GABAergic neurons are unlikely
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(Swant et al. 2008). Such a mechanism of D3 R-mediated inhibition of IPSCs may
contribute to a reduction in gamma oscillations by D3 R agonists (Lemercier et al.
2015).

Additional indirect evidence suggests that DA may also modulate feedforward
inhibition of the PP input to the DG and hippocampal area CA1 through D4 R
signalling (Romo-Parra et al. 2005).

Further indirect evidence for DA regulation of hippocampal inhibitory networks
comes from the finding that DA depresses cholinergically generated gamma band
oscillatory activity in the hippocampus (Weiss et al. 2003; Wojtowicz et al.
2009). Gamma oscillations are increasingly appreciated to involve fast-spiking
PV-positive interneurons (Bartos et al. 2007; Sohal et al. 2009). However, DA
enhances stimulus-evoked gamma oscillations (Wojtowicz et al. 2009), which may
be consistent with the notion that DA increases neuronal synchrony (Muzzio et
al. 2009) mediated by its depolarizing action on fast-spiking, PV-positive basket
cells (Bartos et al. 2007; Sohal et al. 2009; Towers and Hestrin 2008). Finally, the
connectivity and GABAergic levels of PV interneurons, termed PV plasticity, are
regulated by D1/D5 Rs and are important for memory consolidation (Karunakaran
et al. 2016).

Norepinephrine

Norepinephrine (NE) is a major monoamine neuromodulator, and its actions in the
hippocampus appear complex and sometimes paradoxical. Through multiple actions
on intrinsic excitability and synaptic transmission, NE is considered to be important
in learning and memory processes (Gibbs and Summers 2002; Murchison et al.
2004). More recent studies have found a role of astrocytes in mediating effects of
NE (Bazargani and Attwell 2017; Paukert et al. 2014).

Origin and Laminar Specificity of Central Adrenergic Afferents

The hippocampus receives dense input from the locus coeruleus (LC), terminating
heavily in the polymorph layer of the DG, stratum lucidum (SL) of area CA3 and
SLM in area CA1 (Loy et al. 1980; Oleskevich et al. 1989; Swanson et al. 1987).
The total NE bouton density varies across hippocampal regions but is estimated
to be about twice as high as in cortex (Oleskevich et al. 1989). In the DG, it has
been estimated that two-thirds of NA boutons form synaptic specializations with
the remainder forming no specialized synaptic profiles and presumably mediating
volume transmission (Milner and Bacon 1989a). GABAergic interneurons are often
the targets of NA boutons forming synaptic specializations (Milner and Bacon
1989b). More recently, several studies have shown that the LC is a major source
of DA to the hippocampus, particularly in dorsal hippocampus (Kempadoo et al.
2016; McNamara and Dupret 2017; Smith and Greene 2012).
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Cell Type-Specific Expression of Adrenoceptors

NE acts on a range of adrenoceptors with both alpha and beta classes being
widely expressed on both dendritic and axonal elements (Harley 2007; Nicholas
et al. 1996). The α1d receptor appears to be the predominant α-receptor in all
areas, with the exception of the hilus where α1a R appears to be the dominant
subtype (Day et al. 1997). The α2a R appears to be located mainly presynaptically
(Milner et al. 1998) but, like many other adrenoceptor subtypes, show dramatic
changes in expression level during development. β-Adrenoceptors show laminar-
specific differences and are mainly expressed postsynaptically on both principal
cells and interneurons (Cox et al. 2008; Milner et al. 2000). Studies that utilize
neurochemically defined interneuron subtypes indicate that the expression of both
α (Hillman et al. 2005)- and β (Cox et al. 2008)-adrenoceptor subunits is cell
type-specific. However, they can also be found on presynaptic profiles. In terms of
signalling, all adrenoceptors are G-protein-coupled receptors with α1 being coupled
to Gq, β2 being coupled to Gi/o and the β-family receptors being coupled to Gs
(Harley 2007; Nicholas et al. 1996).

Action of Norepinephrine on Intrinsic Properties

Principal Cells

NE is reported to produce a wide and sometimes contradictory range of effects in
principal cells. These include hyperpolarization and reduced excitability in some
cells to a depolarization, increased input resistance (Lacaille and Schwartzkroin
1988; Madison and Nicoll 1986; Ul Haq et al. 2012), reduction of afterhyperpolar-
izing potentials and loss of action potential accommodation (Madison and Nicoll
1982) in cells of the same class (see Table 3). Pharmacological studies suggest
that these inhibitory versus excitatory actions may, in part, be due to a differential
recruitment of α- versus β-subclasses of adrenoceptors (Bijak 1989; Harley 2007;
Lacaille and Schwartzkroin 1988). Activation of β-adrenoceptors reduces resting
K+ conductances (Lacaille and Schwartzkroin 1988), whereas α2 receptor activa-
tion strongly suppresses cellular excitability in CA1 pyramidal cells (Otmakhova
et al. 2005), most likely through postsynaptic activation of Kir potassium channels
(Luscher et al. 1997; Sodickson and Bean 1998). Studies investigating hilar neurons
suggest that the dominant response in putative GABAergic cells is depolarization
and loss of a slow AHP. In contrast, the dominant response in putative mossy cells
was a loss of spike frequency adaptation (Bijak and Misgeld 1995).

The underlying ion mechanisms for the change in intrinsic properties are thought
to be a reduction in a Ca2+-activated K conductance leading to an inhibition of
the slow AHP and a reduction in spike frequency adaptation (Haas and Rose 1987;
Lacaille and Schwartzkroin 1988; Madison and Nicoll 1982; Pedarzani and Storm
1996). In DG granule cells, β1 receptors are also reported to enhance the voltage-
dependent Ca2+ currents (Gray and Johnston 1987).
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Table 3 Primary actions of norepinephrine on hippocampal neurons

Cell Type Cellular effects Ion channels effects

Pyramidal Hyperpolarization, ↓ A-type current (α receptors)
↑ increased input resistance
or
Depolarization, ↓ Ca++ activated K+/IAHP (β1 receptors)
↓ input resistance,
↓ AHP,
↓ spike frequency adaptation
or
Hyperpolarization followed by
depolarization

Both above (α and β1)

Granule As above As above
Activation of L type current (via β receptor)
leading to ↓gK+

Inhibitory Neurons

In addition to its action on principal neurons, NE is also known to depolarize
specific subsets of hippocampal interneurons (Bergles et al. 1996; Hillman et al.
2009; Papay et al. 2006). The effect is primarily due to an α1 receptor-mediated
decrease in potassium conductance, though a modest β-receptor component is
also sometimes apparent, especially in interneurons displaying a pronounced time-
dependent inward rectification (see chapter ‘Physiological Properties of Hippocam-
pal Neurons’). Though not tested systematically, NE appears to produce these potent
depolarizing actions across multiple classes of interneurons including BCs located
outside of the pyramidal cell layer (Bergles et al. 1996) and interneurons located in
SO (Bergles et al. 1996; Papay et al. 2006). Depolarizing actions of NE are blocked
by the α1AR antagonist (Bergles et al. 1996) and resemble responses to other
Gq-mediated GPCRs (Parra et al. 1998). The β AR agonist isoprenaline increases
spontaneous firing in O-LM cells through a mechanism consistent with a shift in the
activation curve for the hyperpolarization-activated cationic current Ih (Maccaferri
and McBain 1996). Consistent with these observations, SO interneurons that contain
somatostatin (SOM) mRNA transcripts also possess mRNA transcripts for both α1a
and α1b receptors, in striking contrast to the complete absence of α1a and α1b
receptors in SR interneurons that contain CCK mRNA transcript (Hillman et al.
2005). A smaller subpopulation of hippocampal interneurons located in SR or SLM
exhibit hyperpolarization or reduced excitability to NE application (Bergles et al.
1996; Parra et al. 1998), although the neurochemical identity of these cells is not
clear.

http://dx.doi.org/10.1007/978-3-319-99103-0_3
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Action of Norepinephrine on Excitatory Synapses

NE has a general suppressant action on hippocampal excitatory pathways. The PP
input to CA1 is profoundly suppressed by NE (∼55%) (Otmakhova et al. 2005),
whereas the SC pathway is more weakly (10–15%) suppressed (Otmakhova and
Lisman 2000). Studies in acute brain slices provide evidence for α2 receptor-
mediated postsynaptic mechanisms (Otmakhova et al. 2005). However, detailed
studies in culture systems provide evidence for a presynaptic mode of inhibition
of excitatory transmission via α1 (Scanziani et al. 1993) and α2 receptors (Boehm
1999).

In terms of synaptic plasticity, β adrenoceptors enhance both early and late
phases of LTP in area CA1 as well as the DG (Hopkins and Johnston 1984,
1988; Huang and Kandel 1996; Gelinas and Nguyen 2005). NE has been shown
to regulate AMPA-receptor trafficking (Hu et al. 2007), whilst early studies show
that NE modulated glutamate release in the DG (Lynch and Bliss 1986). PKA
activation following β-adrenoceptor activation is essential for both MF-mediated
and SC-mediated LTP (Huang and Kandel 1996; Gelinas and Nguyen 2005; Gelinas
et al. 2008). It is possible that these processes involve the phosphorylation of
vesicular proteins including synapsin 1 and 2 (Parfitt et al. 1991, 1992). More recent
studies suggest that NE may also trigger long-lasting synaptic potentiation through
transcriptional regulation (Maity et al. 2015, 2016).

Action of Norepinephrine on Inhibitory Synapses

Information on the regulation of inhibitory synaptic transmission by NE is rela-
tively sparse. Intracellular studies have shown NE to produce a marked (∼50%)
suppression of evoked inhibitory synaptic potentials recorded in CA1 pyramidal
cells (Madison and Nicoll 1988b). Subsequent studies have suggested this effect to
be independent of a direct action of NE on interneuron soma or axon terminals and
instead be due to decreased excitatory input to the interneurons (Doze et al. 1991).
However, more recent whole-cell recording has demonstrated a subpopulation of
CA1 interneurons that are excited by α1a R activation (Hillman et al. 2009). NE, like
other transmitters, is also reported to facilitate depolarization-induced suppression
of inhibition (DSI) (Martin et al. 2001) (see cannabinoids below). Finally, NE may
also influence hippocampal network behaviour through the modulation of electrical
coupling of GABAergic circuits in SLM (Zsiros and Maccaferri 2008). Overall,
there remains a paucity of data on the selective modulation of discrete inhibitory
hippocampal cells and circuits by this modulator.

Serotonin

Serotonin (5-hydroxytryptamine or 5-HT) is an important modulator of
hippocampal-dependent behaviours and cognitive performance (Richter-Levin and
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Segal 1996). In general terms, 5-HT plays a role in the regulation of mood, anger
and aggression. By its association with other limbic structures, more recent studies
implicate roles of 5-HT and the hippocampus in fear learning (Balazsfi et al.
2017; Bauer 2015), assigning emotional salience (Mlinar and Corradetti 2017),
encoding of reward signals (Li et al. 2016) and memory consolidation (Wang et
al. 2015). Transgenic mice have revealed important insights into the function of 5-
HT and its receptors in behaviour (Gardier 2009). Cells providing serotonergic
input show an interesting dichotomy with one population of cells displaying
state-dependent fluctuations in activity across the sleep-wake cycle whilst another
population is tightly regulated to the hippocampal theta rhythm (Kocsis et al. 2006).
These findings suggest that ascending serotonergic projections regulate both fast,
dynamical information processing and slow, state-dependent transitions.

Origin and Structural Organization of Serotonergic Afferents

The serotonergic projection of the hippocampus originates in the dorsal raphe
nucleus (DRN) and ramifies extensively throughout the hippocampal formation
(Miettinen and Freund 1992; Varga et al. 2009; Vertes et al. 1999). A subset of DRN
neurons project only to the medial septum, implying that serotonin transmission can
impact hippocampal function both directly and indirectly through the medial septum
(Acsady et al. 1996b). The DRN is neurochemically heterogeneous, containing
neurons that express 5-HT, glutamate, 5-HT/glutamate and GABA (Domonkos et al.
2016; Gras et al. 2002; Hioki et al. 2010; Sos et al. 2017). DRN fibres innervating
the hippocampus co-localize with the vesicular monoamine transporter VMAT2
and the vesicular glutamate transporter vGluT3 (Amilhon et al. 2010; Varga et al.
2009). Consistent with the co-release of both 5-HT and glutamate from DRN fibres,
optogenetic activation of DRN afferents evokes synaptic currents onto hippocampal
neurons that are mediated by both glutamate receptors and 5-HT3 receptors (Varga
et al. 2009). Similar co-transmission has been observed in the amygdala (Sengupta
et al. 2017).

Within the rodent hippocampus, serotonergic afferents exhibit exquisite laminar
specificity, with dense innervation at the SR/SLM border in areas CA3 and CA1, and
a secondary, lower density in SO (Ihara et al. 1988; Lidov et al. 1980; Miettinen and
Freund 1992; Varga et al. 2009; Vertes et al. 1999). This laminar specificity has been
confirmed with quantitative autoradiography (Moore and Halaris 1975; Oleskevich
and Descarries 1990). The majority of DRN axon varicosities do not make direct
synaptic contacts with target neurons, implying that volume transmission is a
primary mode of serotonergic transmission (Oleskevich et al. 1991). As a result
of the differential laminar localization of 5-HT afferents, interneurons located
in SR/SLM, such as calbindin-positive and NPY-positive interneurons, are major
cellular targets (Freund et al. 1990; Gulyas et al. 1999; Miettinen and Freund
1992; Varga et al. 2009). The exact anatomical identity of these interneurons is
not explicitly known but likely includes dendritically projecting neurons such as
CCK/5HT3-positive SCA and PP-associated interneurons (Klausberger 2009; Varga
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et al. 2009) and neurogliaform cells (Overstreet-Wadiche and McBain 2015). The
density of 5-HT innervation in principal cell layers is much lower; therefore, PV-
positive interneurons embedded in the principal cell layers receive less innervation.

Cell Type-Specific Expression of 5-HT Receptors

There are many different 5-HT R subtypes expressed in the hippocampus, and
these have been linked to an array of neurophysiological responses (reviewed by
Andrade (1998); Barnes and Sharp (1999); Dale et al. (2016); Fig. 4). There are
diverse expression patterns across the dorsoventral axis (Mlinar and Corradetti
2017; Tanaka et al. 2012), between hippocampal cell types (Dale et al. 2016) and
even between subcellular neuronal compartments (Fink and Gothert 2007) (Table 4).
For instance, in CA1 pyramidal cells, 5-HT1A and 5-HT4 receptors mediate the

Fig. 4 Schematic illustration of the hippocampal circuit with 5-HT receptor localization. The
main areas of the hippocampus together with primary synaptic connections are indicated. Principal
(granule and pyramidal) cells are shown in blue, and interneurons are shown in green. Expression
of 5-HT receptor subtypes on hippocampal CA1 and CA3 pyramidal cells, granule cells and
interneurons is shown. Note that the 5-HT1A heteroreceptor is expressed at high levels throughout
the hippocampus. The 5-HT1B receptor is found at highest levels in the subiculum. Based on
histology data, the 5-HT3 receptor is only expressed on the interneurons, and the 5-HT4 receptor is
only expressed on pyramidal cells. Other 5-HT receptor subtypes are found on both principal cells
and interneurons (Reproduced from Dale et al. 2016, with permission)
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main postsynaptic actions, whereas 5HT1B receptors, considered to be expressed at
presynaptic terminals, regulate neurotransmitter release (Dale et al. 2016).

In CA1 hippocampus and DG principal cells, 5-HT1A receptor mRNA is highly
expressed, correlating with dense autoradiographic binding of 5-HT1A in these areas
(Chalmers and Watson 1991; Pompeiano et al. 1992). The CA3 region exhibits
less 5-HT1A mRNA and binding (Pompeiano et al. 1992). The mismatch between
mRNA localization and autoradiographic binding in the CA1 region led to the
conclusion that 5-HT1B Rs are mainly presynaptic (Boschert et al. 1994). However,
functional studies support that 5-HT1B receptors are dendritically localized (Cai et
al. 2013). The localization of 5-HT Rs has improved with the generation of GFP
mice driven by 5-HT R-specific promoters. Although dense immunocytochemical
staining of 5-HT2A receptors in principal cells of CA1, CA3 and DG has been
previously reported (i.e. Cornea-Hebert et al. (1999); Li et al. (2004)), the recent
use of a 5-HT2A-GFP mouse, combined with a 5-HT2A antibody validated against
a 5-HT2A knockout mouse, has demonstrated a total absence of 5-HT2A expression
in CA1 pyramidal cells (Weber and Andrade 2010). A recent in situ hybridization
study corroborates that 5-HT2A R mRNA expression is not detectable in CA1
pyramidal cells (Tanaka et al. 2012). However, 5-HT2A R mRNA is present in CA3
(Tanaka et al. 2012). 5HT3 Rs are preferentially expressed on a specific subclass
of hippocampal interneurons (Chameau and van Hooft 2006; Morales et al. 1996;
Morales and Bloom 1997; Tecott et al. 1993). 5-HT4 R mRNA and binding is
present in the principal neurons of the hippocampus (Vilaro et al. 2005; Waeber
et al. 1996), which has been validated in a 5-HT4 R knockout mouse (Compan et al.
2004).

Action of Serotonin on Intrinsic Properties

Principal Cells

The release of serotonin can activate several different types of receptors on
hippocampal neurons. In hippocampal CA1 principal cells, activation of somato-
dendritic 5HT1A Rs leads to the activation of Kir3.2 inward-rectifying potassium
channels through a membrane-delimited Gi/o-coupled pathway (Andrade 1998;
Luscher et al. 1997). The consequence is membrane hyperpolarization and a
decrease in cellular input resistance (Andrade et al. 1986; Andrade and Nicoll 1987;
Andrade and Chaput 1991; Jahnsen 1980; Segal 1980; Behr et al. 1997; Luscher
et al. 1997). The same Kir3.2 channel conductance mediates both GABAB and 5-
HT1A receptor activation (Andrade et al. 1986; Andrade and Nicoll 1987; Booker
et al. 2018; Colino and Halliwell 1987; Degro et al. 2015). A similar 5-HT1A-
mediated mechanism exists in CA3 pyramidal cells (Beck and Choi 1991; Beck
et al. 1992; Corradetti et al. 1998; Johnston et al. 2014; Okuhara and Beck 1994;
Sodickson and Bean 1998) and DG granule cells (Baskys et al. 1989; Ghadimi et
al. 1994; Nozaki et al. 2016; Piguet and Galvan 1994). Although this mechanism
has not yet been demonstrated to occur in response to DRN afferent stimulation, the
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abundant expression of 5-HT1A Rs in DG cells (Samuels et al. 2015; Tanaka et al.
2012) and Kir responses to synaptic GABAB R activation (Otis et al. 1993) suggests
that 5-HT1A R-mediated Kir3.2 responses can be evoked in DG cells. Interestingly,
deletion of 5-HT1A Rs from adult DG cells eliminates the antidepressant effect of
the selective serotonin reuptake inhibitor fluoxetine, implying a critical role of 5-
HT1A receptors on mature DG cells in the regulation of mood and anxiety (Samuels
et al. 2015).

Consistent with the virtual absence of mRNA transcripts and protein expression
for Gq-coupled 5-HT2A, 5-HT2B and 5-HT2C Rs (Tanaka et al. 2012), there are no
published studies that attribute activation of these receptors to alterations in CA1
pyramidal cell excitability. However, in subicular neurons, 5-HT2C R activation
inhibits T-type calcium channels, which reduces burst firing (Petersen et al. 2017).

Expression and activation of 5-HT3 Rs are thought to occur exclusively in
hippocampal interneurons (Kepecs and Fishell 2014; Rudy et al. 2011; Tremblay
et al. 2016). However, the absence of 5-HT3 R expression has not been confirmed
functionally in all hippocampal principal cell types (Kawa 1994).

Activation of Gs-coupled 5-HT4 Rs increases cellular excitability by modulating
at least three different channel conductances in CA1 pyramidal cells. First, 5-
HT4 R activation reduces afterhyperpolarization (AHP) potentials by increasing
cAMP, leading to the activation of PKA, inhibition of Ca2+-induced Ca2+ release
and reduction in a Ca2+-activated potassium channel current (IK(Ca)) (Andrade
and Chaput 1991; Torres et al. 1995; Torres et al. 1996). The likely underlying
molecular mechanism is the inhibition of KCa3.1, a Ca2+-activated potassium
channel modulated by Gs-coupled receptors (Andrade et al. 2012) and expressed
in hippocampal CA1 pyramidal cells (King et al. 2015). Secondly, activation of 5-
HT4 Rs induces a long-lasting inhibition of a barium-sensitive Kir current (IKir),
which is likely the same Kir3.2 that is activated by Gi/o-coupled 5-HT1A Rs (Mlinar
et al. 2006). Activation of 5-HT4 Rs increases hyperpolarization-activated cyclic
nucleotide-gated channel-mediated currents (Ih), whereas activation of 5-HT1A Rs
decreases them (Bickmeyer et al. 2002). These findings are consistent with opposing
roles of Gi/o-coupled 5-HT1A Rs and Gs-coupled 5-HT4 Rs in modulating IK(Ca), IKir
and Ih.

CA3 pyramidal cells also express 5-HT4 Rs (Tanaka et al. 2012). AHP potentials
are reduced by Gs-coupled 5-HT7 Rs, probably via similar mechanisms (Bacon and
Beck 2000).

Inhibitory Neurons

Early studies found that bath application of 5-HT increases the frequency of
spontaneous GABAergic potentials in the hippocampus in the presence of glutamate
receptor blockers (Ropert and Guy 1991). This depolarizing action was blocked
by a 5-HT3 R antagonist, largely accounting for the 5-HT-induced increase in
depolarizing drive onto GABAergic interneurons (Ropert and Guy 1991).
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Cortical interneurons expressing 5-HT3Rs are now recognized as a major class
of interneurons, which have led to a reorganization in the way that interneurons
are classified (Kepecs and Fishell 2014; Rudy et al. 2011; Tremblay et al. 2016).
Interneurons expressing 5-HT3Rs are derived from the caudal ganglionic emi-
nence (CGE) that co-express calretinin, VIP, CCK, NPY and reelin. In contrast,
the 5-HT3R-expressing interneurons exhibit minimal overlap with PV- and SST-
containing populations that are derived from the medial ganglionic eminence
(MGE). Consistent with this governing principle, cortical VIP interneurons, which
are a subtype of CCK interneurons, exhibit enriched expression of 5-HT3 Rs
in cortex (Ferezou et al. 2002). On the basis of this reasoning, this governing
principle likely applies to the hippocampus as well (Chittajallu et al. 2013). These
observations align reasonably well with previous studies of 5-HT3 R-positive
responses in SR/SLM interneurons (McMahon and Kauer 1997; Sudweeks et al.
2002), in DG BCs (Kawa 1994) and in CA1 BCs, which are most likely to comprise
CCK+ interneuron subtypes co-expressing presynaptic CB1 receptors (Ferezou et
al. 2002; Freund and Katona 2007; Kepecs and Fishell 2014; Morales and Backman
2002; Rudy et al. 2011; Tremblay et al. 2016).

Synaptic activation mediated by 5-HT3 Rs has been demonstrated in amygdala
(Sugita et al. 1992) and cortex (Ferezou et al. 2002; Roerig et al. 1997). Optogenetic
activation of DRN elicits a strong fast excitation of hippocampal interneurons
mediated by co-release of 5-HT and glutamate onto 5-HT3 and glutamatergic
receptors, respectively (Varga et al. 2009).

In addition to 5-HT3 R expression in hippocampal interneurons derived from
the CGE, there is evidence that several other types of 5-HT Rs are expressed
in distinct hippocampal interneuron subpopulations. In the presence of a 5-HT3R
antagonist, 5-HT2 R agonists enhance the frequency and amplitude of spontaneous
inhibitory postsynaptic currents in CA1 pyramidal cells, indicating that 5-HT2
receptors are expressed on a population of inhibitory neuron populations (Shen
and Andrade 1998). Consistent with this mechanism, 5-HT-mediated enhancement
of GABAergic signalling requires 5-HT2A receptors and involves the inhibition of
TASK-3 type potassium channels (Deng and Lei 2008).

5-HT responses that resemble 5-HT2 responses have been anecdotally reported
previously in hippocampal interneurons (McMahon and Kauer 1997; Parra et
al. 1998). More recently, the use of 5-HT2A-GFP mice have revealed that this
interneuron population is located at the SR/SLM border (Wyskiel and Andrade
2016), overlapping strongly with the 5-HT3A-GFP population (Chittajallu et al.
2013). SR/SLM interneurons expressing 5-HT2A Rs strongly depolarize in response
to bath application of 5-HT, which is almost completely blocked by the specific
5-HT2A R antagonist MDL 100,907 (Wyskiel and Andrade 2016). In a subset of
SR interneurons, the 5-HT response includes a hyperpolarization that precedes
the depolarization, suggesting co-expression of 5-HT1a Rs, 5-HT3 Rs and 5-
HT2A Rs (Aznar et al. 2003; Dale et al. 2017). The anatomical and physiological
characteristics of 5-HT2A-expressing interneurons are consistent with CCK/5-HT3
R-containing SCA and PPA interneuron subtypes (Wyskiel and Andrade 2016).
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Within the CA1 SO layer, several subpopulations of SOM-positive interneurons
are present that express 5-HT Rs. These include 5-HT3 R-expressing O-LM cells
derived from CGE (Chittajallu et al. 2013). In addition, a subset of SO interneurons
express 5-HT2A Rs (Wyskiel and Andrade 2016), though it is currently not clear
whether this is the same O-LM cell population that co-expresses 5-HT3 Rs. The
majority of SO interneurons are depolarized by 5-HT2 agonists (Lee et al. 1999b).
A subset of SO interneurons hyperpolarize in response to 5-HT, which have axon
arborizations that suggest O-LM or basket cells (Parra et al. 1998), and may
therefore represent 5-HT3 R-lacking cells derived from MGE (Chittajallu et al.
2013). The activation of GABAB Rs was shown to induce substantial Kir3.2 channel-
mediated currents in CA1 PV interneurons (Booker et al. 2013) but not O-LM cells
(Booker et al. 2018). Because 5-HT1a and GABAB receptors share common Gi/o
signalling mechanisms (Andrade et al. 1986; Andrade and Nicoll 1987; Colino
and Halliwell 1987; Degro et al. 2015), it is possible that 5HT1A R activation
is more likely to induce a Kir3-mediated hyperpolarization in perisomatically
targeted interneurons than dendritically targeted interneurons. However, visually
identified PV interneurons in CA3 do not consistently hyperpolarize, on average,
in response to bath application of 5-HT (Johnston et al. 2014). In the basolateral
amygdala, 5-HT1A Rs are expressed in fast-spiking, presumably PV, interneurons
and activated in response to optogenetic stimulation of DRN afferents (Sengupta et
al. 2017). Although theoretically plausible, the question of whether 5-HT afferents
are localized close enough to hippocampal PV interneurons to sufficiently activate
synaptic 5-HT1A Rs remains to be determined.

Action of Serotonin on Excitatory Synapses

Serotonin is known to regulate neurotransmission at a wide range of synapses
in the brain (Fink and Gothert 2007). Because diverse 5-HT R subtypes in the
hippocampus are expressed in a cell type- and pathway-specific manner, synaptic
release of 5-HT has complex pre- and postsynaptic actions that occur on multiple
time scales. The diverse ways that 5-HT can modulate glutamatergic transmission
could lead to plausible treatment strategies for disorders involving dysfunction
of glutamatergic transmission, such as depression (Dale et al. 2016; Pehrson and
Sanchez 2014).

Some of the effects of 5-HT at excitatory synapses can be explained by a purely
postsynaptic action via alteration of intrinsic membrane properties. For example, the
5-HT1A R-mediated reduction of EPSP amplitude by SC input onto CA1 pyramidal
cells can be explained by the postsynaptic dendritic activation of Kir3.2 channels,
leading to reduced input resistance, effectively shunting glutamatergic EPSPs
(Pugliese et al. 1998). A similar mechanism is likely present in DG granule cells
(Nozaki et al. 2016). Conversely, dendritic 5-HT4 R activation increases cellular
input resistance by inhibiting Kir3.2 channels, which increases cellular excitability,
enhancing the ability of EPSPs to generate action potentials (Mlinar et al. 2006).
Consistent with this postsynaptic mechanism, SC-stimulated population spikes are
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enhanced in vivo by 5-HT4 R agonists (Matsumoto et al. 2002). Conversely, with 5-
HT1A Rs inhibited, fluvoxamine-induced enhancement of SC-stimulated population
spikes is blocked by a 5-HT4 R antagonist (Matsumoto et al. 2002).

In addition to modulating postsynaptic EPSPs by altering the intrinsic membrane
properties of postsynaptic neurons, there is strong evidence that 5-HT R activation
can alter presynaptic release and postsynaptic neurotransmitter receptor function
within the CA1 hippocampus. At SC synapses, 5-HT1A R activation reduces EPSC
amplitude, increases paired-pulse ratio and reduces mEPSC frequency, consistent
with the presynaptic expression of 5-HT1A and/or 5-HT1B Rs on glutamatergic SC
terminals (Costa et al. 2012). Postsynaptically, activation of 5-HT1A Rs reduces
the amplitude of AMPA R-mediated EPSCs, whereas activation of 5-HT7 Rs
potentiates AMPA R-mediated EPSCs (Costa et al. 2012). Thus, postsynaptic Gi/o
and Gs signalling bidirectionally modulates cAMP levels, enabling bidirectional
modulation of the phosphorylation state of synaptic AMPA receptors (Andreetta
et al. 2016; Costa et al. 2012). Endogenous 5-HT release, induced by administration
of the selective 5-HT reuptake inhibitor fluvoxamine, depresses SC evoked CA1
population spikes in vivo through a 5-HT1A-dependent mechanism (Matsumoto et
al. 2002).

The CA1 region is proposed to compute novelty signals by comparing PP
input encoding ongoing sensory input with SC input encoding stored predictive
information (Lisman and Grace 2005). DRN neurons are active during novelty and
reward (Kobayashi et al. 2008; Li et al. 2016), and their axons densely innervate
the CA1 SLM layer where PP synapses are localized (Ihara et al. 1988; Lidov et
al. 1980; Miettinen and Freund 1992; Varga et al. 2009; Vertes et al. 1999). Early
studies found that 5-HT more effectively suppressed field EPSPs arising from PP
than SC synapses (Otmakhova and Lisman 2000; Otmakhova et al. 2005; Schmitz
et al. 1995; Segal 1980). In these studies, paired-pulse ratio was unaffected by 5-
HT R activation at PP synapses, implying a postsynaptic mechanism of 5-HT R
action (Otmakhova et al. 2005). The underlying mechanism involves the differential
postsynaptic expression of 5-HT1B Rs at PP but not SC synapses (Cai et al. 2013;
Peddie et al. 2008). In these studies, activation of 5-HT1B Rs potentiates AMPA R-
mediated EPSCs at CA1 PP synapses but not at SC synapses (Cai et al. 2013). In this
case, postsynaptic 5-HT1B R activation causes the activation of Ca2+/calmodulin-
dependent protein kinase (CaMK), which then phosphorylates AMPA Rs, thereby
accounting for the pathway-specific potentiation of AMPA R-mediated EPSCs (Cai
et al. 2013).

Serotonin also appears to have synapse-specific effects at SC synapses innervat-
ing different hippocampal interneuron subtypes. Activation of presynaptic 5-HT1B
Rs on SC terminals inhibits feedback excitation onto CCK-expressing interneurons
but not PV-expressing interneurons (Winterer et al. 2011). The underlying presy-
naptic mechanism of presynaptic 5-HT1B R modulation presumably occurs through
Gi/o-induced inhibition of presynaptic Ca2+ channels (Winterer et al. 2011). A
similar presynaptic mechanism occurs at glutamatergic synapses onto O-LM cells,
but in this case 5-HT1A receptors mediate the presynaptic effect (Bohm et al. 2015).
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Dense binding sites for 5-HT4 are found in the CA3 SL layer within MF
termination zones (Vilaro et al. 2005). Bath application of serotonin potentiates
MF transmission, reduces paired-pulse facilitation and is partially occluded by the
adenylate cyclase activator forskolin, consistent with the presynaptic localization
of 5-HT4 receptors on MF terminals (Kobayashi et al. 2008). In DG, 5-HT has
differential effects between EPSPs arising from medial and lateral PP synapses in
DG granule cells, which may be due to differences in the shunting of these EPSPs by
5-HT1A Rs (Nozaki et al. 2016). However, in anesthetized animals, the 5-HT uptake
inhibitor fenfluramine causes enhanced population spikes in the DG, implying the
existence of additional indirect mechanisms (Levkovitz and Segal 1997).

Serotonin is also an important modulator of synaptic plasticity at glutamatergic
synapses. Postsynaptic activation of 5-HT1A Rs inhibits induction of LTP (Cor-
radetti et al. 1992; Kojima et al. 2003; Shakesby et al. 2002), which could occur
by either hyperpolarization and/or shunting of EPSPs (Pugliese et al. 1998) and/or
cAMP-dependent dephosphorylation of AMPA receptors (Andreetta et al. 2016;
Costa et al. 2012). Serotonin also inhibits LTP at SC synapses in CA3 probably
via a similar mechanism (Villani and Johnston 1993). However, 5HT2 antagonism
enhances NMDA receptor-mediated currents, facilitating LTP induction (Wang and
Arvanov 1998).

As revealed by a 5HT3 R antagonist, activation of 5-HT3 Rs suppresses LTP
(Staubli and Xu 1995), presumably through an indirection action involving activa-
tion of inhibitory interneurons. Similarly, the 5HT3 receptor-mediated suppression
of MF-CA3 LTP by 5-HT may be due to indirect actions through enhanced
activation of 5-HT3 R-containing GABAergic interneurons (Maeda et al. 1994).
Unlike other receptors, 5HT4 R activation is reported to enhance glutamatergic
transmission (Matsumoto et al. 2002).

Action of Serotonin on Inhibitory Synapses

In addition to the capability of 5-HT to alter cellular excitability through somato-
dendritic 5-HT R activation and effects on glutamatergic drive onto GABAergic
neurons, there is also evidence that 5-HT R activation can alter GABAergic
transmission by the activation of presynaptic 5-HT Rs. Consistent with a presynaptic
5-HT3 Rs, an increase in the frequency of miniature IPSCs is observed upon
application of 5-HT or a 5-HT3 agonist (Choi et al. 2007; Dorostkar and Boehm
2007; Turner et al. 2004). Additional evidence for the activation of presynaptic 5-
HT Rs has been shown in a preparation that allows a single GABAergic presynaptic
terminal to be stimulated (Katsurabayashi et al. 2003). Two separate populations of
GABAergic terminals were discovered. One population expressed only presynaptic
5-HT1A Rs, which reduced release probability, most likely through inhibition of
presynaptic calcium channels (Katsurabayashi et al. 2003). A second population
co-expressed presynaptic 5-HT3 and 5-HT1A Rs. Presynaptic 5-HT3 Rs increases
release probability by causing calcium influx directly through the presynaptic 5-HT3
channels and does not appear to require the activation of presynaptic voltage-
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gated calcium channels (Turner et al. 2004). These distinct presynaptic GABAergic
populations of 5-HT3 R-containing and 5-HT3 R-lacking GABAergic terminals
likely arise from two different populations of inhibitory interneuron subtypes.
However, presynaptic 5-HT R activation was not detected at CCK basket cell to
pyramidal cell synapses (Neu et al. 2007). Therefore, it remains to be determined
which hippocampal interneuron subtypes possess presynaptic 5-HT3 Rs.

Histamine

Histaminergic neurons comprise a small cluster of cells in the tuberomammillary
nucleus (TMN) that project to most brain areas, including the hippocampus. As
with other neuromodulatory systems associated with the reticular activating system,
the activity of histaminergic neurons innervating the hippocampus is strongly
modulated across the sleep-wake cycle (Haas et al. 2008). The histamine (HA)
system is considered to be important in a number of central nervous system
functions, including wakefulness and sleep, cognition, learning, feeding and stress-
related behaviours (Alvarez 2009; Brown et al. 2001; Panula and Nuutinen 2013).
The histaminergic system operates synergistically with the cholinergic system to
modulate hippocampal function (Blandina et al. 2004; Mochizuki et al. 1994; Pas-
sani et al. 2007). Histamine receptor (HAR) activation can excite septohippocampal
cholinergic and GABAergic neurons (Xu et al. 2004), increasing ACh release in
the hippocampus (Bacciottini et al. 2002). In basal forebrain cholinergic neurons
(Zant et al. 2012), the mechanism occurs through H1R-mediated inhibition of a leak
potassium channel (Vu et al. 2015). However, because TMN afferents also project
to the hippocampus, HA can play a direct role in hippocampal learning and retrieval
(Fabbri et al. 2016).

Origin and Structural Organization of Histaminergic Afferents

All histaminergic neurons originate in the TMN of the hypothalamus (Haas and
Panula 2003; Haas et al. 2008; Panula et al. 1984). TMN neurons send projections
to most parts of the brain, including the hippocampus (Watanabe et al. 1984). Within
the hippocampus, TMN inputs terminate in all areas but are particularly pronounced
in the subiculum and DG, with sparser innervation of hippocampal areas CA1 and
CA3 (Barbin et al. 1976; Brown et al. 2001; Inagaki et al. 1988; Panula et al.
1989). Principal neurons of the hippocampus are the major postsynaptic targets of
TMN afferents and do not exhibit preference for postsynaptic inhibitory neurons
(Magloczky et al. 1994). Like other aminergic modulators, histaminergic axons
form varicosities with very few synaptic specializations consistent with a volume
transmission mode of action (Takagi et al. 1986). Recently, TMN neurons were
shown to optogenetically co-release GABA in cortex and striatum (Yu et al. 2015).
Therefore, TMN neurons innervating the hippocampus likely also co-release both



268 J. Josh Lawrence and S. Cobb

HA and GABA. Whether histaminergic afferents exhibit laminar and/or cell type
specificity has not been systematically examined in the hippocampus.

Histamine Receptors

The HAR family is comprised of G-protein-coupled H1-H4 Rs (H1-H4Rs) (Panula
et al. 2015). H1Rs have been detected throughout the hippocampus in both in situ
hybridization (Andersson et al. 2017) and autoradiographic binding (Bouthenet et al.
1988; Martinez-Mir et al. 1990; Palacios et al. 1981) studies (Haas and Panula 2003;
Panula et al. 2015). H1R mRNA is expressed at the highest densities in the CA3
pyramidal cell layer (Andersson et al. 2017). H2R mRNA and autoradiographic
ligand binding has also been detected in the hippocampus (Vizuete et al. 1997).
H3Rs are most prominent in the subiculum and DG (Pillot et al. 2002; Pollard et
al. 1993) and are thought to be autoreceptors at presynaptic terminals (Arrang et
al. 1983; Nieto-Alamilla et al. 2016). H4Rs do not appear to be expressed in the
hippocampus (Andersson et al. 2017; Schneider and Seifert 2016).

In terms of signalling mechanisms leading to cellular changes in excitability, HA
can cause myriad cellular effects due to divergent G-protein-mediated signalling
pathways involved (reviewed by (Brown et al. 2001; Haas and Panula 2003)).
H1Rs are Gq-coupled receptors, which can reduce a Kleak conductance. Recently,
in cholinergic neurons, the HA-sensitive leak conductance has been determined
to be mediated by the TWIK-like acid-sensitive K+ channel (Vu et al. 2015). Gq
signalling activates phospholipase C, generating IP3 and DAG, PKC activation,
Ca2+ release from intracellular stores and downstream modulation of numerous
conductances, such as a cationic conductance (Haas and Panula 2003). TRP
channels remain the leading molecular candidates in underlying H1R-activated
cationic conductances, yet no study has yet definitively linked H1Rs to TRP channel
activation. Through PKC signalling, H1R activation can lead to phosphorylation
of ligand-gated ion channels, including NMDA receptors. However, HA is also
reported to directly potentiate NMDA receptor-mediated currents in a process
distinct from classical HA receptors (Bekkers 1993; Vorobjev et al. 1993). This
action is due to binding of HA to a site distinct from the polyamine site of the
NMDA receptor (Burban et al. 2010). Other downstream signalling cascades likely
activated by H1Rs include generation of nitric oxide and the modulation of expres-
sion of various proteins including gap junctions (Brown et al. 2001). Given the
effectiveness of multiple types of Gq-coupled receptors in causing endocannabinoid
release (Alger et al. 2014), it is possible that H1Rs also can cause endocannabinoid
release. In contrast, H2Rs are Gs-coupled, causing increasing cAMP production
and PKA activation. Like other Gs-coupled receptors, H2R activation is associated
with the reduction a Ca2+-activated potassium conductance (Greene and Haas 1990;
Haas and Konnerth 1983) and shifting the activation threshold of HCN-mediated
conductances (McCormick and Williamson 1991; Zhang et al. 2016). H3Rs are
Gi/o-coupled, and their presynaptic activation leads to inhibition of high-threshold
voltage-gated Ca2+ channels (Takeshita et al. 1998), a mechanism most likely to
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underlie histaminergic suppression of neurotransmitter release (Nieto-Alamilla et
al. 2016).

H1 and H2 knockout mice exhibit cognitive and/or learning impairment (Ambree
et al. 2014; Dai et al. 2007), implicating hippocampal localization of H1Rs and
H2Rs. As expected by their function as autoreceptors in regulating histaminer-
gic release, H3 knockout mice exhibit increased histaminergic transmission and
increased wakefulness (Gondard et al. 2013). H4 knockout mice appear normal in
hippocampal-dependent tasks (Sanna et al. 2017), consistent with a relative absence
of H4Rs from the hippocampus (Andersson et al. 2017).

Action of Histamine on Intrinsic Properties

Pyramidal Cells

HA is a powerful modulator of cellular excitability in the hippocampus. In principal
cells (Haas and Konnerth 1983; Haas and Greene 1986; Pedarzani and Storm 1993;
Selbach et al. 1997; Yanovsky and Haas 1998) and DG granule cells (Greene and
Haas 1990), HA decreases a Ca2+-activated potassium conductance, through Gs-
coupled H2Rs. Selective activation of H1Rs can however result in a reduction
in firing frequency (Selbach et al. 1997). The dominant depolarizing action is
caused by enhancing HCN conductance and reducing the Ca2+-activated potassium
conductance responsible for the slow AHP and action potential accommodation
(Brown et al. 2001; Haas and Konnerth 1983; Pedarzani and Storm 1993, 1995).
Intracellular studies show HA to promote burst discharge patterns in CA3 pyramidal
cells (Yanovsky and Haas 1998).

Interneurons

HA is reported to regulate interneuronal excitability, as indicated by an increase
in spontaneous inhibitory synaptic potentials in the DG (Greene and Haas 1990),
CA1 hippocampus (Haas and Greene 1986) and entorhinal cortex (Cilz and Lei
2017). Although effects of HA on neurochemically identified interneuron types
have not been systematically investigated, several interneuron populations have been
examined in various hippocampal regions. In CA3, bath application of HA enhances
the cellular excitability of fast-spiking interneurons (most likely PV interneurons)
primarily through H1R-mediated inhibition of Kv7 potassium channels (Andersson
et al. 2017). Such a mechanism implies a convergence with postsynaptic M1/M3
mAChR-mediated signalling mechanisms (Lawrence et al. 2006b; Lawrence et al.
2006c). In the layer 3 medial entorhinal cortex (MEC), HA depolarizes Type I
and Type II inhibitory neurons through both H1R- and H2R-mediated mechanisms
(Cilz and Lei 2017). The conductances modulated involve the activation of a
TRP-like cationic conductance and reduction in a Kir conductance (Cilz and Lei
2017). Histaminergic modulation of interneurons in the DG molecular layer occurs
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via H2R-mediated inhibition of Kv3.2 channels involved in rapid action potential
repolarization (Atzori et al. 2000). HARs are in putative O-LM interneurons confirm
an enhanced firing activity in response to HA (Brown et al. 2001).

Action of Histamine on Excitatory Synapses

HA depresses EPSPs from PP stimulation of the DG through H3R-mediated
reduction in glutamate release in vitro (Brown and Haas 1999) and in vivo (Chang
et al. 1998). The action of HA on evoked synaptic responses at the SC to CA1
pyramidal cell synapse is an enhanced population spike (Segal 1981; Yanovsky
and Haas 1998) but modest reduction (∼10%) in the excitatory synaptic potential
(Brown et al. 1995). These data are consistent with HA suppressing transmitter
release but with the enhanced postsynaptic excitability dominating the response.
HA is also known to potentiate NMDA-mediated synaptic transmission and enhance
LTP through a direct action on the NMDA receptor (Bekkers 1993; Brown et al.
1995) (Fig. 5).

Action of Histamine on Inhibitory Synapses

Early studies using paired-pulse stimulation provided early evidence that HA may
modulate inhibitory synaptic transmission in the hippocampus (Springfield and

Fig. 5 Primary actions of histamine in the hippocampal formation. (From Brown et al. 2001, with
permission)
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Geller 1988). HA may modulate inhibitory synaptic transmission indirectly by
modulating the action potential frequency and short-term plasticity of GABAergic
transmission (Atzori et al. 2000). However, a detailed understanding of how HA
modulates GABAergic transmission and the specific interneuron subtypes that
express HARs remains to be systematically investigated.

Purines

Production and Release of Purine Transmitters

Adenosine, adenosine triphosphase (ATP) and other purine nucleotides (UTP,
UDP etc.) are important cellular metabolites but also are released as modulatory
substances in the central nervous system where they display a range of actions.
ATP is often stored with other transmitters including GABA and glutamate but can
also be released independently. It has been suggested that in the hippocampus, ATP
is stored and released from distinct pools of vesicles independent of GABA and
glutamate (Pankratov et al. 2006). ATP may be transmitted through gap junctions
and other channels. It may also be the source of adenosine, especially when
released from astrocytes (Pascual et al. 2005). A component of adenosine release
in the hippocampus arises from the extracellular metabolism of ATP released from
astrocytes (Wall and Dale 2013). In contrast to ATP, the release of adenosine is more
enigmatic. It is not stored in vesicles, and in general the level of adenosine rises
with increasing neuronal activity as well as in disease conditions such as epileptic
seizures and hypoxia. Recent evidence suggests that adenosine release can be
stimulated by glutamate receptor activation via equilibrative nucleoside transporters
(Wall and Dale 2013). Despite not being released by exocytosis, adenosine is
nevertheless a powerful homeostatic modulator of neuronal excitability and synaptic
transmission (Dunwiddie and Masino 2001; Fredholm and Dunwiddie 1988; Rombo
et al. 2016b).

Purine Receptors

Separate receptors exist for adenosine (P1 receptors) and ATP (P2 receptors). The
latter is broadly divided into ion channel receptors (P2X) and metabotropic receptors
(P2Y). Overall, the purine receptors are widely expressed and mediate a number of
actions as summarized in Table 5.

Action on Intrinsic Properties

Adenosine causes a hyperpolarization of all hippocampal neurons (Thompson et
al. 1992) that has been attributed to the activation of inwardly rectifying K+
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(GIRK) channels (Dunwiddie and Masino 2001). The postsynaptic actions of ATP
are mediated through both P2X and P2Y receptors as well as indirectly via P1
receptors when metabolized to adenosine. P2X receptors mediate a fast inward
current that is reported to contribute to the EPSC recorded upon afferent fibre (e.g.
SC) stimulation (Pankratov et al. 1998). It is proposed that ATP is co-released
with glutamate at associational fibres but not MF synapses (Mori et al. 2001).
The cationic current associated with P2X-mediated signalling is generally modest
(typically 50–100 pA). However, it has often a significant Ca2+ component which
can in turn give rise to activation of Ca2+-dependent potassium conductances
(Illes et al. 1996). Little is known about the action of P2Y receptors in regulating
hippocampal primary neurons. Studies in cultured hippocampal neurons report the
activation of an outwardly rectifying K+ current (Ikeuchi et al. 1996) or inhibition of
the IM (Filippov et al. 2006). In contrast to principal cells, hippocampal interneurons
in stratum radiatum, identified as calbindin- and calretinin-positive interneurons,
are excited by ATP (Bowser and Khakh 2004). This depolarization is associated
with a reduction of potassium conductances and activation of non-selective cationic
conductances mediated by P2Y1 receptor activation (Bowser and Khakh 2004;
Kawamura et al. 2004).

Action of Purines on Excitatory Synapses

The primary action of adenosine is to profoundly (up to ∼75–100%) suppress
glutamatergic transmission at all hippocampal synapses tested (Dunwiddie and
Hoffer 1980; Thompson et al. 1992). This may be mediated by multiple mecha-
nisms, but principal amongst these is a profound suppression of terminal calcium
currents by A1 Rs (Fredholm and Dunwiddie 1988; Wu and Saggau 1994, 1997).
The exact role of A2A receptors in regulating transmission is complex, but it may
counteract the suppression of glutamatergic transmission by A1 Rs (Lopes et al.
2002) and involve the enhancement of glutamate receptor expression and AMPA
R-mediated currents (Dias et al. 2012). A2A receptors also facilitate the release of
other transmitters in the hippocampus, notably ACh (Cunha et al. 1994). In line
with this modulatory action, adenosine is also reported to depress the induction
of LTP at a range of synapses (Alzheimer et al. 1991). However, the situation is
complex in that low-frequency plasticity induction paradigms are more sensitive to
adenosine than higher-frequency patterns which appear to overcome the effect of
adenosine (Mitchell et al. 1993). A number of more recent studies point to the fact
that adenosine may serve a pivotal role in modulating plasticity (reviewed by (Dias
et al. 2013).

As mentioned above, ATP appears to act as a classical neurotransmitter by
mediating fast excitatory synaptic reposes through P2X receptors. However, it
may also modulate excitatory synaptic transmission and plasticity although the
precise mechanistic detail remains unclear (Inoue et al. 1999; Pankratov et al.
2009). Despite this, it has been shown that ATP can induce LTP and LTD in
its own right depending on the level of Ca++ influx associated with the ATP
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current (Yamazaki et al. 2003). ATP can also regulate plasticity induced by classical
induction methods (Pankratov et al. 2002). P2X channel-mediated modulation may
show some selectivity between different synapses in the hippocampus. For instance,
presynaptic P2X2 channels are reported to facilitate excitatory synapses onto SR
interneurons in area CA1 but not CA1 pyramidal neurons (Khakh et al. 2003; Khakh
2009). Relatively little is known concerning the possible role of P2Y receptors in
regulating synaptic transmission and plasticity in the hippocampus (Guzman and
Gerevich 2016). However, a recent report suggests a requirement of P2Y receptor
activation in a form of heterosynaptic LTD (Chen et al. 2013).

Action of Purines on Inhibitory Synapses

The actions of adenosine on GABAergic signalling are poorly defined. Early studies
suggested that adenosine could suppress GABA release in cortical tissues (Hollins
and Stone 1980). However, similar experiments in hippocampal slices failed to find
an effect of adenosine on GABA release (Burke and Nadler 1988). Electrophysio-
logical studies using cultured neurons (Yoon and Rothman 1991) and in slices have
failed to show a direct suppressant action of adenosine A1 Rs on action potential-
dependent GABA release (Rombo et al. 2016b). However, adenosine A1 Rs appear
to modulate tonic GABA current (resulting from extrasynaptic GABAA receptors)
(Rombo et al. 2016a) and are known to strongly modulate disynaptic inhibition
in the hippocampus through actions on glutamatergic transmission (Lambert and
Teyler 1991). A detailed overview of the actions on adenosine A1 and A2A Rs
on select GABAergic circuits has recently been described (Rombo et al. 2016b).
The actions of ATP via P2X and P2Y classes of receptor on GABAergic signalling
remain to be defined.

Paracrine/Autocrine Modulators

Endocannabinoids

Production and Release of Endocannabinoids

Cannabinoids are a group of related lipid-derived modulators that regulate hip-
pocampal circuits through activation of specific cannabinoid receptors (Kano et al.
2009; Castillo et al. 2012). Some endocannabinoids (eCBs) such as anandamide can
also signal through TRPV1 receptors and thus also mediate endovanilloid actions
(Castillo et al. 2012). Anandamide and other major cannabinoids including 2-AG
(2-arachidonyl glycerol) are not stored but synthesized and released tonically on
demand in response to neuronal and synaptic activity (Stella et al. 1997; Castillo
et al. 2012). The primary action of eCBs is to mediate retrograde signalling and
in particular induce various forms of presynaptic inhibition. Common forms of
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eCB-mediated STD are driven by postsynaptic depolarization, Ca2+ influx through
NMDA receptors or via mAChR-mediated activation (Kano et al. 2009). However,
the most significant trigger for eCB release and subsequent suppression of synaptic
transmission is activation of metabotropic glutamate receptors (Varma et al. 2001).

Endocannabinoid Receptors

The two major forms of cannabinoid receptors (CB1 and CB2 Rs) are both
metabotropic receptors with the CB1 being the archetypal ‘brain’ form. CB2 Rs,
once thought to be mainly restricted to immune cells including microglia, recently
have been shown to be expressed in the hippocampus (Stempel et al. 2016).
The orphan receptor GPR55 is activated by anandamide (Ryberg et al. 2007)
and L-α-lyso-phosphatidylinositol (LPI) (Oka et al. 2007) and widely expressed
in the hippocampus (Henstridge et al. 2009; Hurst et al. 2017). CB1 Rs are
highly abundant but most strongly expressed in CCK interneurons (Freund and
Katona 2007). Hippocampal pyramidal cells and DG granule cells are lightly
immunopositive for CB1 receptors but are surrounded by a dense plexus of CB1
R-positive GABAergic terminals (Tsou et al. 1998). However, low but significant
levels of CB1 mRNA are expressed in principal cells suggesting low levels of
CB1 R-mediated signalling in these cells (Marsicano and Lutz 1999). Within
the GABAergic cell population, it appears that CB1 receptors are preferentially
expressed in the terminals of perisomatically terminating BCs. The two main classes
of BCs are PV- and CCK-expressing cells, and it is striking that over 95% of CCK-
positive cells express CB1 Rs, which contrasts with PV cells for which only ∼5%
of cells are CB1 immunoreactive (Katona et al. 1999). However, CB1 Rs are also
expressed at glutamatergic terminals (Katona et al. 2006) (Table 6).

Action of Endocannabinoids on Intrinsic Properties

Most of the actions of eCBs are attributed to their influence on synaptic transmis-
sion. Studies addressing the actions of eCBs on hippocampal neuronal excitability
are very limited (Kirby et al. 2000), but the primary postsynaptic action of eCB
appears to be a modest increased excitability that is mediated through a reduction
(∼45%) in IM (Schweitzer 2000). More detailed studies in somatosensory cortex
suggest that low-threshold spiking-type interneurons can exhibit a long-lasting
form of action potential suppression whereby activity-dependent release of endo-
cannabinoids causes an autocrine-like enhancement of potassium conductances,
consistent with Gi/o-mediated activation of a Kir conductance (Bacci et al. 2004).
Whilst a similar postsynaptic mechanism is yet to be described in the hippocampus,
an activity-dependent, autocrine-like, endocannabinoid-mediated hyperpolarization
was recently described in CA3 pyramidal cells (Stempel et al. 2016). This hyperpo-
larization is mediated by endogenous release of 2-AG and postsynaptic activation
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Table 6 Summary of cannabinoid signalling in the hippocampus

Receptor CB1 CB2 GPR55

Expression in the
hippocampus

Strongly expressed in
interneurons (esp.
CCK basket cells)

Highly expressed in
non-neuronal cell
types (e.g.
microglia), weak
neuronal expression

Widely expressed

Signalling Gi and others,
↑A-type K+, ↓N &
P/Q Ca2+, ↓M and D
type K+; ↑ Ih

Gi and others Gq, Gα13 and others

Gross effect Decrease GABA
release (main effect)
and other
transmitters, decrease
in dendritic
excitability

Hyperpolarization
of CA3 pyramidal
cells

Increases release
probability at
glutamatergic
synapses, enhances
LTP

References Kano et al. (2009),
Pagotto et al. (2006)
and Maroso et al.
(2016)

Onaivi et al. (2006)
and Stempel et al.
(2016)

Henstridge et al.
(2009), Lauckner et
al. (2008), Ryberg et
al. (2007) and Hurst
et al. (2017)

of CB2 Rs (Stempel et al. 2016). Surprisingly, the effect was not mediated by Kir,
but by a sodium-dependent bicarbonate transporter (Stempel et al. 2016). GPR55
activation, through Gq-mediated release of calcium from internal stores, has been
shown to inhibit IM in expression systems (Lauckner et al. 2008), but it is not clear
whether this is a common postsynaptic mechanism shared with CB1 Rs (Schweitzer
2000). Finally, CB1 receptors have recently been shown to enhance tonic Ih in a
subset of CA1 pyramidal cells, which impairs dendritic integration of EPSCs and
reduces LTP (Maroso et al. 2016; Vargish and McBain 2016).

Action of Endocannabinoids on Excitatory Synapses

Pharmacological activation of CB1 receptors has been shown to cause a profound
(∼86%) suppression of EPSCs in cultured neurons (Shen et al. 1996), and this effect
is consistent with a presynaptic reduction in glutamate release. In terms of functional
control of synaptic transmission, endocannabinoids have been shown to act as a
retrograde messenger at glutamatergic synapses to produce a suppression glutamate
release (Ohno-Shosaku et al. 2002). This is an activity-dependent depolarization-
induced suppression of excitatory transmission (DSE) and is analogous to the more
rigorously characterized suppression seen at inhibitory synapses (below). However,
the CB1-mediated suppression of excitatory and inhibitory transmission differs in
certain respects. Firstly, a more pronounced depolarization (∼10 sec) is necessary
to induce DSE than to cause suppression at inhibitory synapses (Ohno-Shosaku
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et al. 2002). Secondly, the excitatory terminals themselves are less sensitive to
cannabinoid receptor activation (Ohno-Shosaku et al. 2002). Activation of GPR55
has recently been shown to increase release probability at SC synapses through
the mobilization of internal presynaptic calcium stores (Sylantyev et al. 2013) and
enhance LTP (Hurst et al. 2017).

Action of Endocannabinoids on Inhibitory Synapses

Early reports by Pitler and Alger first described a phenomenon known as
depolarization-induced suppression of inhibition (DSI) in CA1 pyramidal cells
(Pitler and Alger 1992b). This phenomenon has subsequently been demonstrated in
CA3 pyramidal cells, DG cells, mossy cells, CCK-positive interneurons (Kano et
al. 2009) as well as other brain areas, notably the cerebellum. DSI is a transient but
profound suppression of inhibition (spontaneous or evoked inhibitory postsynaptic
events) that follows activity (e.g. depolarization and action potentials) in the
postsynaptic cell. Studies in brain slices and cultured hippocampal neurons later
confirmed that postsynaptic depolarization and resultant increase in intracellular
free Ca2+ to cause a transient suppression of IPSCs and that this suppression was
due to retrograde cannabinoid signalling-mediated reduction of GABA release
(Ohno-Shosaku et al. 2002; Wilson and Nicoll 2001). It is now widely accepted
that retrograde signalling by CB1 receptors is an important process in the dynamic
regulation of GABAergic transmission (Castillo et al. 2012) (Fig. 6a). However,
there is considerable evidence that cannabinoid signalling is not ubiquitous but
preferentially regulates specific interneuronal connections (Younts and Castillo
2014). For instance, the output of major classes of basket cell is proposed to be
differentially sensitive to cannabinoid regulation with the PV-containing basket
cells being insensitive to CB1R activation, whereas GABA released from CCK-
containing population are exquisitely sensitive (Freund and Katona 2007; Glickfeld
and Scanziani 2006). However, the nature of the suppression of release is complex
with evidence for both presynaptic and postsynaptic loci of action (Foldy et al.
2006; Neu et al. 2007).

The actions of eCBs at inhibitory synapses highlight the need to view neuro-
modulation as complex network phenomena. In addition to classical DSI, cannabi-
noids are known to mediate activity-dependent long-lasting heterosynaptic LTD at
GABAergic synapses (Castillo et al. 2012) (Fig. 6b). This mechanism is initially
triggered by the synaptic release of glutamate and activation of group 1 mGluRs on
CA1 pyramidal cells. In turn, release of endocannabinoids is triggered which then
initiates LTD of GABA release (Chevaleyre and Castillo 2003; Castillo et al. 2012)
with the ultimate effect being a long-lasting increase in pyramidal cell excitability.
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Fig. 6 Molecular mechanisms underlying endocannabinoid-mediated short- and long-term synap-
tic plasticity. (a) In endocannabinoid-mediated short-term plasticity, voltage-gated calcium
channels (VGCC) or Gq-coupled receptors (i.e. Type 1 mGluRs) increase postsynaptic intracellular
activities of diacylglycerol lipase (DGLα), causing the retrograde diffusion of eCBs to presynaptic
CB1Rs. Activation of presynaptic CB1Rs inhibits VGCCs, which reduces neurotransmitter release.
(b) Presynaptic activity activates postsynaptic mGluRs, inducing release of eCBs and presynaptic
activation of CB1Rs at glutamatergic or GABAergic presynaptic terminals. At glutamatergic
synapses, CB1-mediated Gi/o signalling reduces cAMP levels and PKA activity, causing a LTD of
glutamate release. At inhibitory synapses, a similar presynaptic mechanism activates calcineurin
(CaN), which induces LTD of GABA release. (From Castillo et al. 2012, with permission)

Nitric Oxide

Production and Release of Nitric Oxide

Nitric oxide (NO) is synthesized de novo by a series of enzymes known as NO
synthases (NOS) (Zhou and Zhu 2009). All three forms of NO synthase are
expressed in the hippocampus. Original studies suggested pyramidal cells to express
high levels of the endothelial form of NOS, whereas the neuronal form of the
protein was restricted to diffuse populations of interneurons (Dinerman et al. 1994).
However, more recent evidence has shown principal cells and selected interneurons
to express the neuronal form with the endothelial form being restricted to vascular
endothelium (Blackshaw et al. 2003). As NO is not stored and is a highly membrane-
permeable molecule, the wide distribution of the enzymes in dendrites, soma and
axon is likely to reflect the nature of its dispersal and suggested primary role as a
retrograde transmitter. The prototypical activator of NOS is postsynaptic Ca2+ entry
via the NMDA receptor leading Ca2+/calmodulin interaction and NO production
(Garthwaite 2008). NO may be released from presynaptic nerves by action potential-
dependent activation of voltage-gated Ca2+ channels. Reports also suggest that
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calcium-permeable AMPA receptors are an important regulator of NO production
(Frade et al. 2008). Once produced, NO gas is itself is highly soluble, rapidly
diffusible, highly membrane permeant but also highly labile (Garthwaite 2016).

Nitric Oxide Effectors

Nitric oxide acts through the regulation of soluble guanylyl cyclase. Within the
context of neurons, guanylyl cyclase (the nitric oxide ‘receptor’) occurs in various
isoforms and is often associated with the postsynaptic density in both principal
cells and interneurons (Szabadits et al. 2007, 2011). However, other forms of the
receptor may be transported to the membrane by signals including cannabinoids
(Jones et al. 2008). The resultant production of cGMP regulates a range of cyclic
nucleotide-gated channels as well as regulating multiple effectors (Maroso et al.
2016; Garthwaite 2016).

Action of Nitric Oxide on Intrinsic Properties

Despite abundant literature on the role of nitric oxide in regulating synaptic
transmission, the action of NO on intrinsic postsynaptic properties of hippocampal
neurons is sparse. However, a recent study provided evidence that CB1 R activation
generated NO, which increased tonic dendritic Ih in CA1 pyramidal cells (Maroso
et al. 2016; Vargish and McBain 2016).

Action of Nitric Oxide on Excitatory Synapses

There exists a significant body of evidence suggesting that certain forms of
hippocampal LTP are dependent upon the action of NO as a diffusible retrograde
messenger (Feil and Kleppisch 2008; Garthwaite and Boulton 1995; Schuman and
Madison 1991, 1994). Blockade of NO signalling prevents LTP, whereas application
of NO donors promotes the development of LTP (Schuman and Madison 1991;
Arancio et al. 1996). However, the significance of NO in regulating synaptic plas-
ticity seems to vary between species and between synapses. For instance, in areas
CA1, NO-mediated/NO-regulated LTP is more prominent at apical dendrites than
at synapses targeting basal dendrites (Haley et al. 1996; Son et al. 1996). In terms
of the action of NO on basal synaptic transmission, there is evidence to suggest
that NO may also produce an enhancement of glutamatergic transmission distinct
from the enduring forms of potentiation such as LTP (Bon and Garthwaite 2001).
However, studies have shown that NO may also transiently suppress glutamatergic
transmission (Boulton et al. 1994). This may in part be mediated through triggering
the release of adenosine (Arrigoni and Rosenberg 2006). A recently described
mechanism is that CB1 activation on CA1 pyramidal cell dendrites generates NO,
which activates Ih, reduces dendritic integration and impairs LTP (Maroso et al.
2016; Vargish and McBain 2016).
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Action of Nitric Oxide on Inhibitory Synapses

Whilst morphological studies suggest that hippocampal GABAergic synapses are
endowed with the molecular machinery for NO signalling, functional studies to
assess the significance of nitric oxide in regulating inhibitory transmission are rather
limited (Szabadits et al. 2007; Szabadits et al. 2011). However, recent evidence
suggests that NO signalling may be an important mediator in depolarization-
induced suppression of inhibition (Makara et al. 2007). The CCK BCs in CA1
and CA3, but not in DG, appear to be the major interneuron subtypes that increase
cGMP signalling in response to NO donors (Szabadits et al. 2011). Hippocampal
neurogliaform and ivy cells express NOS, but the function of NO within these
interneuron circuits is not yet clear (Armstrong et al. 2012; Overstreet-Wadiche and
McBain 2015).

Neuropeptides

Production and Release of Neuropeptides

The hippocampal formation is modulated by a diverse array of neuroactive peptides.
Some of these are released from neurons intrinsic to the hippocampus (mainly
interneurons but also principal cells), whereas others are supplied by inputs
from diverse brain regions (Baraban and Tallent 2004). In general, neuropeptides
are synthesized and stored for action potential-dependent release. The levels of
neuropeptides and their receptors are often dynamically regulated, especially in
association with plasticity processes and disease states. The neuropeptides represent
a major category of modulator, and a detailed description of their expression,
signalling and actions at different hippocampal cells and circuits is beyond the scope
of this chapter. Whilst some actions of peptide modulators are rather ubiquitous,
other effects can be highly cell type- or synapse-specific. Although much knowledge
has been gained on neuropeptide expression and function in the hippocampus, for
brevity, the table below summarizes some of the major peptide systems and their
primary mechanisms of modulation in the hippocampus.

Action of Neuropeptides on Intrinsic Properties (Table 7)

Miscellaneous Neuromodulators

This chapter has aimed to provide a primer to the concept of neuromodulation by
reviewing some of the major neuromodulator systems. However, it should be noted
that there are likely to be very many other systems that may be significant regulators
of hippocampal cells and circuits. Most of these are activators of metabotropic
receptors. Examples here would include sphingolipids (Kajimoto et al. 2007),
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neurosteroids (Belelli and Lambert 2005), and various orphan and recently deorpha-
nized receptors. Moreover, it is possible that other forms of neuromodulation may be
brought about by less orthodox forms of signalling such as the proteolytic cleavage
of protease activated receptors (Bushell et al. 2006; Gingrich et al. 2000). In
addition to metabotropic receptor signalling, there are many additional modulators
that act through direct orthosteric modulation of channels and receptors. One of
the best characterized forms of such modulation is neurosteroids which are widely
distributed and which produce an orthosteric modulation of the GABAA receptor.
Whilst they do not overtly affect postsynaptic excitability, they exert a powerful
potentiation of GABAergic transmission within hippocampal circuits (Belelli and
Lambert 2005; Fester and Rune 2015).

Experimental Techniques

Most of the functional data concerning the action of neuromodulators on cellular and
synaptic properties is obtained from electrophysiological experiments conducted in
vitro either in brain slices experiments or using hippocampal neuronal cultures as
described in earlier chapters. Classically this has been extracellular, intracellular
(sharp) and more recently patch-clamp recordings. Clearly in vitro hippocampal
preparations enable detailed scrutiny of the action of neuromodulators on active
and passive intrinsic properties as well as synaptic transmission. They also permit
detailed pharmacological investigation as drugs can be applied directly to the cells
at a precise concentration. However, as mentioned earlier, optogenetic strategies
are filling a niche as a more physiological means of activating specific synaptic
neuromodulatory receptors with spatiotemporal precision (Lorincz and Adamantidis
2017; Spangler and Bruchas 2017), though this strategy still has some caveats and
limitations, particularly at the synaptic level (Jackman et al. 2014). In contrast,
the majority of in vivo recordings (multiunit recording or evoked field potentials)
provide less mechanistic cellular/synaptic information, and pharmacological studies
are limited by the difficulty in directing drugs to the site of action at a known concen-
tration. Studies in vivo are typically limited to detecting changes in action potential
discharge rate to when specific drugs/modulators are applied. However, in vivo
studies are often valuable in determining the endogenous action of neuromodulators
within the context of behavioural states. Moreover, in vivo recording can be used to
relate the activity of neuromodulator sources (e.g. specific subcortical nuclei) with
activity within hippocampal circuits. The introduction of the juxtacellular recording
technique (Pinault 1996) has permitted the labelling of recorded neurons so that it
is possible to relate the activity and modulation of recorded cells with their morpho-
logical characteristics and connectivity (Klausberger et al. 2003; Klausberger and
Somogyi 2008). Moreover, patch-clamp recording from neurons in vivo (Ferster and
Jagadeesh 1992; Jagadeesh et al. 1992) has undergone recent technical advances so
that it is now not only possible to record from fine structures such as presynaptic
boutons (Rancz et al. 2007; Geiger and Jonas 2000) but also to visualize and target
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individual neurons in vivo (Kitamura et al. 2008; Pernia-Andrade and Jonas 2014).
Finally, the introduction of optical (Deisseroth et al. 2006; Zhang et al. 2007) and
genetic (Gong et al. 2007; Miyoshi and Fishell 2006) techniques to selectively
excite or silence specific cells and circuits has already begun to address precise
roles of specific cell types in behaviourally relevant network activity (Sohal et al.
2009; Lorincz and Adamantidis 2017). Finally, voltage-sensitive dyes are coming of
age, which provide greater access to fine neuronal structures (Rowan and Christie
2017), and their use in conjunction with calcium indicators would prove particularly
powerful. Aided by computational modelling, such correlated physiological, phar-
macological, transgenic and morphological studies will be essential for the future
understanding of how hippocampal cells and circuits are modulated at the whole
organism level.

The Future

As has been apparent from the content this chapter, compared with previous
chapters, the field of hippocampal neuromodulation is still at a nascent stage,
with many unresolved questions remaining for the years ahead. Even for the most
well-characterized classical modulators, there are still many unresolved questions,
particularly in the context of how neuromodulators couple to specific channels
across discrete neuronal subtypes. Questions also remain regarding the magnitude
and time course of concentration transients reached by neuromodulatory receptors.
The development of low-affinity antagonists for neuromodulatory receptors, in
combination with optogenetic stimulation, would be particularly useful in this
regard. The cellular and synaptic specificity of many neuromodulators demands
molecular tools for systematic targeting of discrete afferents and cell types. Whilst
one could argue that the increasing availability of these resources as one of the
major technological developments over the last decade, research at the frontier in
neuronal classification has shown that next-generation molecular tools are needed
to differentiate between an increasing number of distinct cell types. Combining
electrophysiological, genetic, molecular, pharmacological and anatomical tech-
niques have revealed striking differences in cell type specificity of cholinergic
neuromodulation (Cea-del Rio et al. 2010), which is likely to reveal cell type-
specific differences with additional neuromodulators. The availability for genetic
manipulation in transgenic animals is already proving very useful, especially in
defining the importance of receptor subtypes in specific circuits where specific
pharmacological tools may not be useful or available. The increasing use of
Cre-loxP systems whereby specific modulator systems can be modified in a cell
type-specific manner shows great potential over conventional pharmacological or
global knockout strategies in resolving the precise functions of neuromodulators
in specific cell types (i.e. Yi et al. 2014). At the level of neurochemically and
anatomically defined hippocampal cell types, we are still far from gaining detailed
knowledge of the repertoire of neuromodulator receptors expressed and localized.
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Some progress is being made in this direction using techniques such as single-cell
RT-PCR (Monyer and Markram 2004; Toledo-Rodriguez and Markram 2007) in
which it is possible to fully characterize the expression profile of specific receptor
classes in neurochemically defined cell types (Hillman et al. 2005; Cea-del Rio et
al. 2010). With the availability of large-scale single-cell RNA sequencing, however,
the goal of knowing all possible neuromodulatory receptor subtypes within a single-
cell type may soon be achievable (Cadwell et al. 2017; Foldy et al. 2016; Zeisel
et al. 2015). However, a single-cell transcriptomics approach does not allow the
visualization and precise spatial localization of neuromodulatory receptors and their
effectors with respect to cellular and synaptic domains (Triller and Choquet 2008).
The widespread use of genetically encoded epitope-tagged receptors and channels
would facilitate subcellular localization studies even if classic immunocytochemical
approaches are not practical or possible.

Whilst the current chapter has focused on individual neuromodulator systems
and receptors essentially in isolation, it is important to be mindful that a single
neuromodulator can often induce secondary effects that are mediated through differ-
ent neuromodulators. For example, mAChR activation can induce endocannabinoid
release, resulting in CB1-dependent presynaptic depression of GABAergic trans-
mission (Fukudome et al. 2004; Kim et al. 2002; Neu et al. 2007; Alger et al. 2014;
Nagode et al. 2011). An additional complication is that multiple neuromodulators
may be present in the in vivo milieu in any given point in time; substantial crosstalk
across multiple neuromodulatory systems is probably a common occurrence, with
both synergistic and antagonistic interactions possible. Behavioural states, rather
than discrete neuromodulatory systems turning on and off, are probably comprised
of alterations of many different neuromodulatory systems that occur across a broad
range of activity levels. At the level of the postsynaptic cell, the dimerization
and oligomerization of different G-protein-coupled receptors (Milligan 2007) and
neuromodulatory channels (van Hooft et al. 1998) might create novel interactions
between different neuromodulators. These interactions and their modulation in
hippocampal cells and circuits remain to be fully explored.

Finally, the synaptic and cellular architecture places important spatial constraints
on the physiological functions of neuromodulators. Experiments in which receptors
are activated exogenously will yield very different results from studies in which
endogenous transmitter is released in a naturalistic fashion from endogenous
sources within spatially restricted microdomains. The physiological significance
of neuromodulation will be greatly assisted by understanding the in vivo activity
of neuromodulatory neurons during learning behaviours, short-term plasticity of
neurotransmitter release, neurotransmitter receptor kinetics, brain slice preparations
that preserve neuromodulatory pathways (Manseau et al. 2008; Widmer et al. 2006)
and new molecular or transgenic strategies to optically target neuromodulatory
centres or afferents (Deisseroth et al. 2006; Zhang et al. 2007; Lorincz and
Adamantidis 2017). It is only by adopting a range of these approaches that it
will be possible to fully understand the action of neuromodulators on hippocampal
circuitry.
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