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Abstract The measurement of local field potentials (LFP), the low-frequency part
of extracellularly recorded potentials, is one of the most commonly used methods
for probing hippocampal and cortical activity in vivo. It offers the possibility to
monitor the activity of many neurons close to the recording electrode simultaneously
but has the limitation that it may be difficult to interpret and relate to the underlying
neuronal activity. The recording electrode picks up activity from proximal neurons,
but what about more distant neurons? An important piece of information for a
correct interpretation of the LFP is to decide the size of the tissue that substantially
contributes to the LFP, i.e., the reach of the LFP signal. In this chapter we present
a simple model that describes how population geometry, spatial decay of single-
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cell LFP contributions, and correlation between LFP sources determine the relation
between LFP amplitude and population size and use it to study the spatial reach of
the LFP. The model can also be used to study different frequency bands of the LFP
separately as well as the spatial decay outside the active neuronal population.

Overview

What is the Model

The recording of electrical potentials with extracellular electrodes has for many
decades been the work horse in in vivo studies of cortical and hippocampal
function (Buzsáki et al., 2012). The high-frequency part (�500 Hz), the multiunit
activity (MUA), mainly reflects spiking in neurons surrounding the electrode con-
tact. In contrast, the low-frequency part, the local field potential (LFP), is thought to
mainly reflect synaptic inputs and their subthreshold dendritic processing (Einevoll
et al., 2013b) (at least for LFP frequencies below, say, 100 Hz Schomburg et al.
2012).

In the context of hippocampal studies, the LFP has commonly been used to inves-
tigate characteristic oscillations at a wide range of frequencies: low-frequency theta
oscillations (∼5–10 Hz) (Buzsáki, 2002), gamma oscillations (∼30–100 Hz) (Bra-
gin et al., 1995), and very high-frequency “ripples” (∼100–200 Hz) (Ylinen et al.,
1995; Siapas and Wilson, 1998; Maier et al., 2011). When recorded across the
hippocampal lamina, the LFP has also been used to extract current source densities
(CSDs) (Brankack et al., 1993; Sirota et al., 2003; Buzsáki et al., 2012) and to
estimate synaptic pathways into the hippocampus (Herreras et al., 2015). Further,
the hippocampal LFP has been shown to encode spatial position, in analogy with
the spiking of hippocampal place cells (Agarwal et al., 2014; Taxidis et al., 2015).

The LFP is, despite its name, a much less local measure of neural activity
than spikes as the signal in general stems from populations of thousands or more
neurons surrounding the electrode (Einevoll et al., 2013a). Thus while offering
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an attractive opportunity for monitoring population activity, the LFP also has a
strong limitation: it can be difficult to interpret where the signal comes from and
what it represents. Proper mathematical modeling and analysis is thus needed to
properly infer the underlying neural activity from the signal (Einevoll et al., 2013b).
A key aspect for a correct interpretation of the LFP is knowing the size of the
region that generates it, i.e., knowing the spatial reach of the LFP. A number of
experimental studies have addressed this issue (Liu and Newsome, 2006; Kreiman
et al., 2006; Berens et al., 2008; Katzner et al., 2009; Xing et al., 2009; Kajikawa and
Schroeder, 2011) but have come with contradictory evidence regarding the spatial
reach, ranging from a few hundred micrometers (Katzner et al., 2009; Xing et al.,
2009) to several millimeters (Kreiman et al., 2006). One possible explanation for
this discrepancy is that the reach of the LFP is not a fixed quantity, but rather
changes with experimental conditions as the neuronal network state changes due
to behavioral context, stimulation, or level of anesthesia.

For spikes, i.e., the extracellular signatures of action potentials extracted from
the MUA, the definition of spatial reach is rather straightforward. Since (1)
the spike amplitude decays sharply with distance between the neuron and the
recording electrode and (2) spikes of relevant neighboring neurons typically are
nonoverlapping in time, it is natural to ask at which distance a spike becomes
indiscernible from the background noise (Buzsáki, 2004; Pettersen and Einevoll,
2008). For LFPs the situation is quite different. Since the LFP is primarily generated
by slower synaptic events, the contributions from different sources are overlapping
in time resulting in a signal that is a sum over many contributions.

So what determines the reach of the LFP? Intuitively, the reach of the LFP is
the result of two opposing scaling effects: as in the case of extracellular action
potentials, the contribution from a single neuron to the LFP still decays with
distance from the recording electrode (Lindén et al., 2010), but the number of
potentially contributing neurons increases with distance. There is, however, also a
third important factor that influences the LFP: whether the LFP contributions from
separate neurons are correlated or not. Just like water waves from several sources
may interfere constructively if they are synchronized, both the amplitude as well as
the spatial reach of the LFP may be drastically changed depending on the level of
correlation in the generating neuronal population (Lindén et al., 2011).

Questions Addressed

In this chapter we describe a compact model of LFP generation that encapsulates
how population geometry, single-cell features, and population-level correlations
determine the size of the region generating the LFP measured in the center of a
neuronal population (Einevoll et al., 2013b). The model can also be used to model
the spatial decay outside the active neuronal population which, in turn, may help
to understand the relative LFP contributions from simultaneously active neuronal
populations.
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The present model assumes passive dendrites and considers LFPs due to synaptic
currents and the associated return currents but could straightforwardly be extended
to model, e.g., active subthreshold conductances (Ness et al., 2015).

Levels of Detail/Rationale

The spatial reach of the LFP is difficult to measure experimentally because it is in
general difficult to precisely control or measure the neuronal activity that generates
the signal. To complicate matters further, the LFP can in principle be composed
of contributions from several local and distant populations that spread via volume
conduction. Here we take an analytical approach to address the question of LFP
reach for a situation where a single population dominates the signal and derive a
model that relies on numerical simulations of synaptically activated neurons for
certain components of the model. This approach has the advantage that we can fully
control both the size and activity of the neuronal population. Specifically, in contrast
to experiments, we can vary the size of the population to study the effects on the LFP.

The Model

Model Components

Let us consider an LFP measured in the center of a disclike neuronal population
(Fig. 1). The size of the population is defined by the radius R. Each cell i in the
population gives a contribution φi(t) to the population LFP φ(t) = ∑

i φi(t). How
does the amplitude of the LFP fluctuations (that we here quantify by the standard
deviation σ ) increase with the population radius R? As we will explain below, the
answer to this question depends on three factors:

A B

Fig. 1 Illustration of model setup. We study a model of the population LFP based on the spatial
summation of single-neuron LFP contributions from many neurons. (a) An electrode is placed
in the center of a disclike population, and by varying the radius R, we can investigate how
the amplitude of the LFP increases with population radius. (b) Each neuron (ordered by their
distance ri from the recording electrode) gives a contribution φi(t) to the population LFP φ(t).
The amplitude of the LFP is measured by the standard deviation σ of the LFP fluctuations over
time. (Adapted with permission from Lindén et al. 2011)
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1. The distance dependence of the amplitude of the single-neuron contributions
φi(t) characterized by the shape function F(r),

2. the number of neurons as a function of distance from the recording electrode,
given by the population geometry,

3. the level of correlation between the LFP contributions from different neurons.

We will first turn to numerical simulations of single-cell LFP contributions gen-
erated by multi-compartment neuron models to find the shape functions F(r) (point
1) and then derive an analytical expression for the LFP amplitude encapsulating all
three factors above. Based on this we will give a precise definition of the reach of
the LFP that we will test against full numerical population simulations and briefly
describe how the model can be extended to study separate individual frequency
components of the LFP (section “Results”).

Single-Cell Shape Function

How does the amplitude of the LFP contribution from a cell depend on the distance
to the recording electrode? To answer this question, we performed simulations
of synaptically activated multi-compartment neuron models and computed the
resulting LFP at the soma level for different radial distances to the electrode (Lindén
et al., 2011). The LFP was calculated using the line-source formalism (Holt and
Koch, 1999) as implemented in the software LFPy (http://lfpy.github.io) (Lindén
et al., 2014), and the neurons were activated using uncorrelated spike trains. Results
of these simulations are shown in Fig. 2.

We see that the amplitude typically decays as ∼1/r2 with distance r for
distances further away than 200–300µm from electrode (Fig. 2a, dashed line). This
is consistent with the spatial decay of the electric potential generated by a current
dipole. Closer to the electrode, the decay is less steep, roughly ∼1/r1/2. This is
likely due to the dendritic extent of the neurons that typically is on the order of a
few hundred micrometers.

This picture is very similar for neurons with different morphologies (Fig. 2a),
but we see that the spatial decay changes somewhat for different synaptic input
scenarios (Fig. 2b). The distance at which the decay changes slope from low to high
is further away from the cell in the case of only apical input onto a pyramidal L5
neuron compared to when inputs are distributed basally or homogeneously over
the whole cell. Because of the vertical extent of the pyramidal neuron (which is
approximately 1200µm), the synapses in this scenario are further away from the
recording positions which also causes a lower amplitude of the LFP compared to
basal input.

Based on these examples, we can formulate simplified expressions for the spatial
decay F(r) of the amplitude from a single-neuron LFP contribution (Einevoll et al.,
2013a):

http://lfpy.github.io
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Fig. 2 Spatial decay of the LFP contribution from a single neuron. Multi-compartment neuron
models were placed at different radial distances r away from a virtual recording electrode, and the
LFP amplitude was computed at each distance. The distance dependence of the LFP amplitude is
captured by the shape function F(r) (see text). For further details of the simulation, we refer to
Lindén et al. (2011). (a) Shape function for three types of cortical V1 neurons (layer 3 and layer 5
pyramidal neurons as well as a layer 4 stellate neuron). (b) Dependence of the shape function on the
synaptic input region for the layer 5 pyramidal neuron. (c) Illustration of simplified shape function
F(r) given by Eq. 1 with rε = 10µm and F0 = 1 for three different values of the cutoff distance
rx = [100,200,500]µm (indicated by line style). ((a) and (b) adapted with permission from Lindén
et al. 2011)

F(r) =
⎧
⎨

⎩

F0 r < rε,

F0(rε/r)1/2 rε < r ≤ rx,

F0(rε/rx)
1/2(rx/r)2 r ≥ rx,

(1)

where rx is the cutoff distance where the decay changes slope and rε is a minimal
radial distance introduced to avoid an unphysical divergence as r goes to zero. (This
could represent, e.g., the distance to the cell closest to the electrode, but we leave
this unspecified here.) For an illustration of this simplified shape function F(r), see
Fig. 2c.
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Derivation of the Simplified Model

Let us now consider a population of neurons distributed in a disclike volume with
radius R. How does the amplitude of compound LFP φ(t) measured in the center of
the population depend on the population radius? In the following we will describe
a simple analytical model that gives the answer to this question (Einevoll et al.,
2013a).

First, let us assume that the contribution φi(t) from a neuron i can be decomposed
into a temporal and spatial part:

φi(t) = ξi(t)F (ri) (2)

where ξi(t) is a time-dependent variable with zero mean and unit variance which
describes the temporal fluctuations of the LFP contribution and f (ri) is the shape
function described above.

For the disclike population considered here, the number of neurons at a specific
distance r from the electrode is determined by:

N(r) = 2πrρ (3)

where ρ is the area density of neuronal LFP sources. If all LFP sources were
uncorrelated, that is, Et [φi(t)φj (t)] = 0 for i �= j where Et [ · ] represents
expectation value over time, the variance σ 2 of the LFP from cells at a particular
distance would increase linearly with the number of LFP sources at that distance.
In the continuum limit, the total LFP amplitude can be formulated as an integral
(Lindén et al., 2011):

σ 2(R) = G0(R) =
∫ R

0
dr N(r)F (r)2 = ρ

∫ R

0
dr 2πrF(r)2 (4)

where we have made use of Eq. (3) above.
It is clear from this expression that the shape function F(r) is the key factor

determining the way the amplitude of the compound LFP increases with distance. In
Fig. 3a, we show how the LFP amplitude σ(R) = √

G0(R) increases with distance
in the case of uncorrelated neuronal sources using the shape function defined in
Eq. 1. We see from the plot that the LFP amplitude in this case quickly appears
to saturate to a maximum value. It can be shown analytically (Lindén et al., 2011;
Einevoll et al., 2013a) that when the spatial decay of neuronal sources decreases as
∼1/r2 or more steeply, the LFP amplitude indeed converges to a fixed values as
R → ∞. This convergence suggest an intuitive definition of the reach of the LFP
as the population radius R∗ at which the LFP amplitude σ(R) has obtained a certain
fraction α of the amplitude at infinite population size σ(R → ∞).

If, on the other hand, the LFP sources are completely correlated, i.e.,
Et [φi(t)φj (t)] = Et [ξi(t)ξj (t)]FiFj = FiFj , the variance of the amplitude of
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the compound LFP from cells at a particular distance increases as the square of the
number of LFP sources at that distance, and we get (Lindén et al., 2011):

σ 2(R) = G1(R) =
(∫ R

0
dr N(r)F (r)

)2

= ρ2
(∫ R

0
dr 2πrF(r)

)2

(5)

A more general expression valid for any level of correlation cφ = Et [φi(t)φj (t)]
between LFP sources is given by Lindén et al. (2011):

σ(R) = √
(1 − cφ)G0(R) + cφG1(R) . (6)

Here the terms for uncorrelated (Eq. 4) and correlated sources (Eq. 5) have been
combined and are scaled by the correlation coefficient cφ . Equation 6 can be
computed by numerical integration of G0(R) and G1(R) for any shape function
F(r) and also for a numerically derived one as in Fig. 2. For the simplified shape
function F(r) given by Eq. 1, we may, however, even find analytical expressions for
the results of the integrals in Eqs. 4 and 5 (Einevoll et al., 2013a):

G0(R) =
⎧
⎨

⎩

F 2
0 ρπR2 R ≤ rε,

F 2
0 ρπrε(2R − rε) rε ≤ R ≤ rx,

F 2
0 ρπrε(3rx − rε − r3

x /R2) R ≥ rx,

(7)

G1(R) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F 2
0 ρ2π2R4 R ≤ rε,

F 2
0 ρ2 1

9π2
(
r2
ε − 4r

1/2
ε R3/2

)2
rε ≤ R ≤ rx,

F 2
0 ρ2 1

9π2rε

(
r

3/2
ε − (4 + 6ln(R/rx))r

3/2
x

)2
R ≥ rx.

(8)

Frequency-Dependent Formulation of the Simplified Model

The simplified model outlined so far predicts the variance σ 2 ∼
∫

df P (f )

of the compound LFP, i.e., the integral of the LFP power spectrum P(f ). All
frequency components are hence collapsed into a single measure. The model can
however easily be reformulated to obtain a frequency-resolved version, resulting in
the following expression for the power spectrum P(f,R) of the compound LFP of
a cell population of radius R, analogous to Eq. 6 (for details of the derivation, see
Łęski et al. 2013):

P(f,R) = (1 − cφ(f ))G0(f, R) + cφ(f )G1(f, R). (9)
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Here, cφ(f ) denotes the population-averaged coherence between single-cell LFP
contributions. Analogous to Eqs. 4 and 5, the functions

G0(f, R) =
R∫

0

dr N(r)F (f, r)2 (10)

and

G1(f, R) =
⎛

⎝

R∫

0

dr N(r)F (f, r)

⎞

⎠

2

(11)

are determined by the shape function F(f, r) describing the dependence of the
single-cell LFP amplitude at frequency f at the cell-electrode distance r and
N(r) giving the number of LFP sources at distance r (cf. Eq. 3 for a disclike
population geometry). For the results shown in section “Frequency Dependence
of LFP Power and Reach,” we will use the phenomenological model of the shape
function defined in Eq. 1. The frequency dependence of the shape function F(f, r)

results from introducing a frequency-dependent cutoff distance rx = rx(f ). This
frequency dependence of the cutoff distance (Fig. 5a) is obtained by fitting F(f, r)

to the results of simulations of multi-compartment neurons stimulated by white-
noise synaptic input, i.e., synaptic input with a flat power spectrum (same setup as
explained in section “Single-Cell Shape Function”). The second source of frequency
dependence in Eq. 9 is the LFP coherence cφ(f ). Again, the shape of cφ(f ) (Fig. 5b)
is obtained from simulations of multi-compartment neurons fed by white, partially
shared synaptic input (see section “Simulations with Multi-compartment Neuron
Models”).

Spatial Decay Outside the Neuronal Population

All the equations above apply to a scenario where the LFP electrode is placed in the
center of the disclike population. The expressions for G0 and G1 can, however, also
be extended to account for a situation where the electrode is placed at a distance X

away from the center (Einevoll et al., 2013a):

G0(R,X) = ρ

∫

{|r|≤R}
d2r F (|r − X|)2

= ρ

∫ 2π

0
dθ

∫ R

0
dr r F

(√
(X − r cos θ)2 + (r sin θ)2

)2
,

(12)
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G1(R,X) =
(

ρ

∫

{|r|≤R}
d2r F (|r − X|)

)2

= ρ2
( ∫ 2π

0
dθ

∫ R

0
dr r F

(√
(X − r cos θ)2 + (r sin θ)2

) )2

.

(13)

Here, r denotes the position vectors of the LFP sources and X the vector Xex with
ex being a unit vector in the x-direction.

Results

We will first go through some of the predictions of the simplified model derived
above and then in the next section compare these predictions against numerical
population simulations. Finally, we will briefly illustrate the spatial decay of the
LFP outside the active population.

Analytical Predictions for Amplitude and Reach

The model equations above (Eqs. 4, 5 and 6) predict two qualitatively different
scaling behaviors for uncorrelated and correlated neuronal activity, respectively.
This is illustrated in Fig. 3a, b where the two components

√
G0 and

√
G1 are plotted

separately for a population of radius 1 mm. In the case of uncorrelated activity, the
amplitude σ(R) of the compound LFP converges to a fixed value that would not
increase even if the neuron population were infinitely sized (Fig. 3a, see also Lindén
et al. 2011; Einevoll et al. 2013a). With the definition of spatial reach introduced
above, as the population radius R∗ where the LFP amplitude has obtained a fraction
α of the infinite-size population, the LFP sources that are positioned within a radius
R∗ contributes a proportion α of the total LFP amplitude even if they are embedded
in population with infinite size. In Lindén et al. (2011), and Einevoll et al. (2013a)
we have used α = 0.95 which is illustrated with a dashed line in Fig. 3a. In this case
the spatial reach is small, roughly ∼200µm.

In contrast, if the neuronal LFP sources were fully correlated, the amplitude
increase with population radius is markedly different (Fig. 3b). In this case the LFP
amplitude no longer converges to a fixed value. With the same definition of the
spatial reach as in the uncorrelated case, the LFP now contains contributions from
most of the neuronal population (>800µm). Furthermore, the amplitude of the LFP
is markedly higher.

For intermediate values of the correlation cφ , the contributions from the two
terms G0 and G1 are weighted according to Eq. 6 to give intermediate scaling behav-
ior of the LFP amplitude compared to the uncorrelated or fully uncorrelated case
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Fig. 3 Components of and results from the simplified model. Results of Eq. (6) using expres-
sions for G0 and G1 given by Eqs.7 and 8 with area density ρ = 10,000 neurons/mm2 derived using
single-cell shape function F(r) as defined in Eq. (1) with rε = 10µm, rx = 100µm and F0 = 1.
(a) When the LFP sources are uncorrelated, the amplitude σ(R) of the compound signal is given
by Eq. 4. In this case the amplitude converges to a fixed value for large R, and we here define
the spatial reach of the LFP as the population radius R∗ (dotted line) where the amplitude has
obtained 95% of the maximum value (dashed line), here compared against the largest population
radius considered in the study (R = 1000µm). (b) The amplitude σ(R) in the case of fully
correlated neuronal LFP sources, given by Eq. (5). (c) The LFP amplitude σ(R) for intermediate
levels of correlation cφ (see legend in (d)). (d) Same as in (c), but normalized against the value at
R = 1000µm. (e) LFP amplitude for population size R = 1000µm as a function of correlation
level cφ . (f) LFP reach R∗ as a function of correlation level cφ . Dots in (e) and (f) illustrate the
examples shown in (c) and (d)

illustrated by three examples in Fig. 3c, d. As consequence, the LFP amplitude for
large population radiuses becomes markedly higher as the correlation is increased
(Fig. 3c). By normalizing the amplitude by that obtained for R = 1000µm, we show
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in Fig. 3d how this affects the LFP reach: due to the larger increase in LFP amplitude
with population radius, the spatial reach becomes larger with higher correlations.

In Fig. 3c, we plot the maximum LFP amplitude σ(R = 1000µm) for a wide
range of correlations cφ , and in Fig. 3d, the corresponding values for the LFP reach
are shown. Already at low levels (cφ =∼ 10−4), the correlations start to play a
role in determining the LFP reach, and in the range between ∼10−4 and ∼10−2,
there is a dramatic effect on the reach due to increasing correlation. Above this
range ( ∼ 10−2), the LFP is already getting substantial contributions from most of
the population, and the reach does not increase further if the correlation level is
increased. The amplitude σ(R = 1000µm), however, continues to increase up to the
maximum correlation cφ = 1.

Simulations with Multi-compartment Neuron Models

The simplified LFP model described above neatly encapsulates the dependence
of the LFP amplitude on the level of correlation between LFP contributions from
different neurons in the population. In the above examples, we treated the level of
correlation (cφ) as a free parameter. In an experimental setting, however, the correla-
tion between LFP sources depends on several factors, including (1) the correlation in
synaptic input and (2) the spatial arrangement of dendrites and synaptic distributions
on to the cells. As an example, one would expect larger LFP amplitude to be
generated by synchronized input to spatially aligned cells with extended dendrites
(in a so-called “open-field” arrangement) than asynchronous input on to spherically
symmetric stellate cell (in so-called closed-field arrangements) (Mitzdorf, 1985;
Lindén et al., 2010).

To test the predictions of the simplified model and to examine how the results
depend on morphological features of the cells, we performed numerical simulations
of populations of multi-compartment neuron models (Lindén et al., 2011) using
digital reconstructions of V1 neurons from (Mainen and Sejnowski (1996)). We
set up populations of 10,000 neurons in disclike populations of radius 1 mm (i.e.,
same scenario as in the model example above in Fig. 4) where correlations in the
synaptic input could be systematically varied. This was done using a common
pool of uncorrelated presynaptic spike trains with size N from which each neuron
received nsyn spike trains. This generated a mean pair-wise correlation between the
synaptic input to different cells of cξ = nsyn/N (for details see Lindén et al. 2011).
The resulting LFP was calculated using the line-source formalism (Holt and Koch,
1999; Lindén et al., 2014) for each cell separately, and the population LFP was then
computed as a sum over contributions from cells within a specific radius R.

In Fig. 4a, b the results of such a simulation is shown for a population of
pyramidal neurons activated by synapses distributed over the basal dendrites, for
different levels of input correlation (indicated by line type). As predicted by the
simplified model (Eq. 6), we see that the amplitude σ(R) and the resulting LFP
reach R∗ are drastically changed by the correlation level. For this example, a change
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Fig. 4 Simulations of populations of multi-compartment neuron models. Results from the
simplified model in Eq. 6 are compared with detailed numerical simulations of the LFP. Populations
of 10,000 neurons were distributed in a disclike population with radius 1 mm2 (layer 3 pyramidal
neurons [red], layer 5 pyramidal neurons [blue], and layer 4 stellate neurons [green]). Neurons
were synaptically activated using presynaptic spike trains from a common pool, and the degree of
input correlation was varied by varying the pool size. The resulting LFP was computed using the
line-source formalism (Holt and Koch, 1999). For details of the simulations we refer to Lindén
et al. (2011). (a) LFP amplitude σ(R) as a function of population radius R for a population
of basally activated layer 5 pyramidal neurons. Line styles indicate the level of correlation
between the incoming spike trains to different neurons (see inset in (b)). (b) Same as in (a), but
normalized against the maximum value σ(R = 1000µm). (c) Resulting correlation cφ between
LFP contributions from different neurons in the population as a function of correlation cξ in
incoming spike trains. Cell type and synaptic input region indicated by color and symbol (see inset).
Lines show linear interpolation between numerical values (d) LFP amplitude σ(R = 1000µm) as
a function of LFP correlation cφ . (e) LFP reach R∗ as a function of LFP correlation cφ . In (d)
and (e) lines show predictions from the simplified model (Eq. 6) using a numerically derived shape
function F(r) (as in Fig. 2) and symbols show numerical results for the LFP from population
simulations. (Adapted with permission from Lindén et al. 2011)

between uncorrelation synaptic input cξ = 0 and fully correlated synaptic input
cξ = 1 results in a change in spatial reach R∗ of the LFP from small (∼150µm) to
large (∼800µm) (Fig. 4b) accompanied by a tenfold increase in amplitude (Fig. 4a).
For this example a correlation in synaptic input cξ in the range of [0,1] translates into
a correlation between LFP contributions from different cells cφ in the approximate
range of [10−6,10−1] (Fig. 4c). According to the simplified model (Fig. 3f), this
range covers the whole range of values in which the LFP reach is markedly affected
by the correlations. For asymmetric input onto large extended dendrites like in this
example, the simplified model thus correctly predicts that a change in correlation
due to changing network state as a result of, e.g., external activation would increase
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the spatial reach of the LFP from very local (for uncorrelated activity) to very large,
essentially capturing the whole neuronal population (for correlated synaptic input to
all neurons).

To test how general the above findings are, we also performed population
simulations of other synaptic input regions (homogeneously distributed or only
onto apical dendrites) and other cell types (smaller layer 3 pyramidal neurons and
more symmetrical layer 4 stellate neurons) (Lindén et al., 2011). We found that
the same range of synaptic correlations cξ resulted in very different ranges of LFP
contribution correlations cφ (Fig. 4c). For homogeneously distributed synaptic input
onto asymmetric dendrites, the induced LFP correlations cφ were smaller than for
asymmetric input (to either basal or apical dendrites, see symbols in Fig. 4c), and
for symmetric neurons, a change in the synaptic correlations did not substantially
change the resulting LFP correlation (Fig. 4c, green). As a consequence, the
same level of synaptic correlation will result in very different LFP amplitude
σ(R = 1000µm) (Fig. 4d) and LFP reach (Fig. 4e) for different cell types and spatial
distribution of synapses. The simplified model can notably capture this effect when
the resulting LFP correlation is extracted from the numerical simulation and used
with Eq. 6 (see lines in Fig. 4d, e). Note, however, that the model predictions differ
slightly between simulations since we here used a shape function extracted from
numerical simulations (as in Fig. 2) rather than a common simplified shape function
given by Eq. 1.

Frequency Dependence of LFP Power and Reach

The investigation of LFPs is often focused on specific frequency bands. Research
on hippocampal LFP, for example, often focuses on extracellular potentials in the
theta band (∼5–10 Hz; for a review, see Buzsáki 2002), gamma band (∼30–100 Hz;
e.g., Bragin et al. 1995), or even higher frequencies characteristic of “ripples”
(∼100–200 Hz; see Maier et al. 2011 and references therein), as well as interactions
between these components (cross-frequency coupling; see, e.g., Belluscio et al.
2012). In the neocortex, the tuning properties (Liu and Newsome, 2006; Berens
et al., 2008) and information contents (Belitski et al., 2008; Mazzoni et al., 2011)
of the LFP are frequency-dependent. To understand the biophysical origin of
LFP components at different frequencies and to correctly interpret experimental
findings, it is essential to know which neuron populations contribute to the different
frequency modes picked up at the recording electrode or, in other words, what
the spatial reach of these different LFP components is. In Łęski et al. (2013),
we approached this problem by means of a simplified mathematical model (see
section “Frequency-Dependent Formulation of the Simplified Model”) combined
with simulations of multi-compartment neurons with realistic morphologies. Here,
we will briefly summarize the main results of this study.

The simplified model outlined in section “Derivation of the Simplified Model”
highlights three key factors dominating the power and reach of the compound LFP:
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(1) the single-cell shape function F(r), (2) the population geometry captured by the
number of cells (LFP sources) N(r) at distance r from the recording electrode, and
(3) the coherence (correlation) cφ between the LFP contributions of different cells.
In general, the factors (1) and (3) depend on the frequency f , i.e., F(r) = F(f, r)

and cφ = cφ(f ).
We have previously observed (Pettersen and Einevoll, 2008; Lindén et al.,

2010) that intrinsic dendritic filtering leads to low-pass filtering of the LFP. In
effect, the single-cell shape functions are different for different frequency bands
of the LFP. As shown in Łęski et al. (2013), this can be modeled by replacing
the frequency-independent function F(r) in Eq. (1) with its frequency-resolved
counterpart F(f, r), where the dependence on the frequency is fully captured by
a frequency-dependent cutoff distance rx(f ) (see Fig. 2c and section “Frequen-
cy-Dependent Formulation of the Simplified Model”). The decrease of rx(f ) with
frequency f (Fig. 5a) is observed across a range of different cell morphologies and
synaptic input distributions (see Fig. 4 in Łęski et al. 2013). It can be understood as
a reduction of the dendritic electrotonic length constant with increasing frequency:
For higher frequencies, the transition to the dipole (far-field) decay ∼r−2 occurs at
smaller distances than for the low frequencies (Pettersen et al., 2012).

The frequency dependence of the shape function F(f, r) alone is not sufficient
to correctly predict the compound LFP power spectrum. The additional required
ingredient is the frequency dependence of the coherence cφ(f ) between individual
single-cell LFP contributions. The ultimate source of correlations between single-
cell LFPs (i.e., nonvanishing cφ(f )) is correlated synaptic input which may result
from the dynamics of the presynaptic networks and/or overlap in presynaptic cell
populations (shared-input correlations). Input correlations arising from the network
dynamics are typically frequency-dependent, i.e., cξ = cξ (f ). Network dynamics
leading to oscillations, for example, often results in an increased synaptic input
coherence at the oscillation frequency (Tetzlaff et al., 2008). Shared synaptic input,
on the other hand, gives rise to frequency-independent input correlations cξ (Tetzlaff
et al., 2008).

A priori, it is not obvious how correlations cξ (f ) between synaptic inputs
are transferred to correlations cφ(f ) between single-cell LFP contributions at
a particular frequency f . In general, this correlation transfer is modulated by
dendritic filtering and by the variability in synapse positions and cell morphologies.
Even if the synaptic input currents at all synapses of two different cells are
identical (cξ = 1), differences in synapse positions and cell morphologies lead
to nonidentical transmembrane current distributions and, hence, different LFP
contributions (cφ < 1). Similar to the procedure described in section “Simulations
with Multi-compartment Neuron Models,” we measured the frequency dependence
of the correlation transfer cξ 
→ cφ(f ) in simulations of multi-compartment neurons
receiving partially shared, white synaptic input (i.e., frequency-independent cξ ).

For pyramidal neurons, we observe that the LFP coherence cφ(f ) is largest at
low frequencies and decays monotonously with increasing frequency (see example
in Fig. 5b). This observation can be explained by the fact that at higher frequencies,
the return currents are closer to the synapse positions, so that the effective
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Fig. 5 Components and results of the frequency-resolved simplified model. (a) Frequency
dependence of the cut-off distance rx . (b) Frequency dependence of the population-averaged LFP
coherence c
 for different input correlation levels cξ . (c) Power spectra of the total LFP in the
center of a population of radius R = 1000µm. (d) Frequency dependence of the spatial reach. All
panels show results for soma-level LFPs generated by cortical layer-5 pyramidal cells with white
(frequency-independent) synaptic input to basal dendrites. Symbols in (a) and (b) depict results
of multi-compartment-neuron simulations. Lines serve to guide the eye. Symbols not connected
by lines indicate that the absolute value is plotted in place of spurious negative values. Lines and
symbols in (c) and (d) show results of the simplified model (see section “Frequency-Dependent
Formulation of the Simplified Model”) and simulations for populations of multi-compartment
neurons, respectively. (Adapted from Łęski et al. 2013)

current dipoles become shorter. For pyramidal neurons, the variability in dendrite
orientation is largest at small spatial scales (e.g., within the basal bush). Hence,
the high-frequency LFP components of individual neurons are decorrelated. At
low frequencies, in contrast, the effective dipoles generated by synaptic input to
pyramidal cells become larger and more aligned (parallel to the main cell axis).
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For pyramidal cells, synaptic input correlations cξ are therefore more robustly
transferred to LFP correlations cφ at low frequencies than at high frequencies. For
more symmetric stellate cells, the LFP correlations are typically much smaller (see
Fig. 4c, green curve) and frequency-independent (Łęski et al., 2013).

Combining the frequency-dependent shape functions F(f, r) and the LFP
coherence cφ(f ) in the simplified model, Eq. (9) yields predictions for the power
spectrum of the compound LFP (Fig. 5c) and the frequency dependence of the
spatial reach (Fig. 5d). A comparison of the simplified-model predictions with the
results of simulations of multi-compartment-neuron populations shows qualitative
agreement for all investigated cell types and synapse distributions. In many cases,
the predictions of the simplified model match the results of the simulations
with multi-compartment models even quantitatively (compare dots and curves in
Fig. 5c, d).

For pyramidal neurons, non-zero (frequency-independent) synaptic input corre-
lations cξ > 0 can lead to a substantial amplification of the compound LFP power, in
particular at low frequencies (Fig. 5c). The amplification of power at low frequencies
results in a faster decay of the power spectrum. Note that this observation is
compatible with findings showing larger EEG decay exponents during sleep as
compared to awake states (Bédard et al., 2006). For vanishing input correlation
cξ = 0, the frequency dependence of the reach is solely due to the frequency
dependence of the cutoff distance rx(f ). As a result, the frequency dependence of
the reach is weak (Fig. 5d).

For nonvanishing input correlations cξ > 0, the compound LFP power and,
hence, the LFP reach are more and more dominated by the frequency dependence
of the LFP coherence cφ(f ). In the presence of intermediate input correlations
0 < cξ < 1, the reach can exhibit a strong frequency dependence. For the example
shown in Fig. 5d with cξ = 0.01, the reach can be as large as 800µm at ∼0 Hz
and drop to about 200µm for frequencies above 100 Hz. For sufficiently large input
correlations cξ , even the high-frequency LFP correlations cφ become substantial
(Fig. 5b). In consequence, the reach is close to the maximum population radius for
all frequencies (cf. cξ = 1 in Fig. 5d).

Note that the results shown here were obtained for white synaptic input and
frequency-independent (shared) input correlations cξ . In addition to the effects
described here, the power and reach of the LFP at a particular frequency f are
determined by the spectral properties of the synaptic input (e.g., resulting from the
dynamics of presynaptic networks), in particular by the frequency dependence of
cξ (f ). In general, our results suggest that the LFP power and reach are dominated
by coherent frequency components. Due to the low-pass characteristics of the
correlation transfer depicted in Fig. 5b, however, input components with non-zero
coherence cξ (f1) = c∗ > 0 at some frequency f1 will dominate components with
the same level of coherence cξ (f2) = c∗ at a higher frequency f2 > f1. Theta
oscillations in the synaptic input, for example, would give rise to a larger LFP reach
than gamma oscillations, even if the gamma coherence is as large as the coherence
in the theta band.
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Spatial Decay Outside the Neuronal Population

All the results shown so far have been for the situation where the LFP electrode
is placed in the center of the neuronal population generating the LFP. Our simpli-
fied analytical formulas can, however, be extended to cover scenarios where the
electrode is not in the center but some distance X away from the center position
(see Eqs. 12 and 13). While we now return to the frequency-independent case and
describe the total LFP amplitude σ as a sum over all frequencies, it should be noted
that the spatial decay outside the population can in a similar manner as in Fig. 5 also
be studied for different frequency components separately (for details and numerical
results on this, we refer to Łęski et al. 2013).

In Fig. 6a we show how the LFP amplitude decays as a function of distance X

for three different population sizes. For the case of uncorrelated LFP contributions,
Eq. 6 gives that σ(R,X) = √

G0(R,X) (solid lines), while the LFP from
completely correlated LFP sources is given by σ(R,X) = √

G1(R,X) (dotted
lines).

For uncorrelated LFP sources, we see that there is a steep decay in LFP amplitude
around the edge of the population. For all three population sizes plotted, the
amplitude starts to decay around 200µm from the edge of the population and has
decreased to a fraction of ∼0.7 of the amplitude in the center of the population
(Fig. 6a, solid lines) at the population boundary. When the electrode is moved away
beyond the population boundary, the LFP amplitude decays quickly and has for all
three population sizes decreased by a factor ten compared to the center amplitude
within 250µm from the population edge. Relative to the population radius, the
spatial decay is however more steep for larger populations than for smaller ones,
as seen in Fig. 6b.

For correlated LFP sources (Fig. 6a, b, dotted lines), the spatial falloff is less
abrupt than for uncorrelated sources. In this case the LFP amplitude starts to
decay considerably already for off-center positions close to the population center.
Outside the population, the LFP extends further beyond the population edge than
for uncorrelated activity (compared dotted and solid lines in Fig. 6a). This effect is
more pronounced for larger populations than for smaller ones: while the amplitude
decay for uncorrelated compared to correlated sources is very similar for a small
population (R = 250µm, Fig. 6a, black lines) outside the population, we see that the
distance at which the amplitude has dropped to a fraction 0.1 of the center amplitude
is increased for a population with radius R =1000µm to about 500µm from the
population boundary (Fig. 6a, green lines).

The simplified model formulated for off-center electrode positions (Eqs. 12
and 13) also allows us to examine how much crosstalk one would expect between
neighboring populations, i.e., to which extent the LFP recorded in the center of
one population would also contain contributions (or noise) from other neighboring
neuronal populations. In Fig. 6c we show an example of such a situation with two
neighboring populations with radius R = 250µm that are positioned right next to
each other. We assume that the two populations are uncorrelated with each other and
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Fig. 6 Predictions for spatial decay outside the neuronal population. LFP amplitude σ(R,X)

at a distance X from the center of a population with radius R calculated from Eq. 6 using numerical
integration of Eqs.12 and 13 with single-cell shape function F(r) as defined in Eq. 1 for parameters
ρ = 10,000 neurons/mm2, rε = 10µm, rx = 100µm and F0 = 1. (a) LFP amplitude σ(R,X)

for three different population sizes R = [250,500,1000]µm (indicated by color) for uncorrelated
(solid lines) and correlated (dotted lines) LFP contributions. Curves have been normalized to the
amplitude at the center of the population σ(R,X = 0). (b) Same as in A with x-axis normalized
by the population size R. (c) LFP amplitudes for two neighboring populations with radius R =
250µm centered at X = 0 and X = 500µm, respectively, for different levels of correlation cφ

(indicated by line style). Curves have been normalized to the LFP amplitude in the center of the
population for uncorrelated LFP sources (cφ = 0). In all plots thin vertical lines represent the edge
of the population

plot the LFP from each population separately. We see that the level of correlation
between LFP sources in one population has a large effect on the overall amplitude
of the LFP from that population as we would expect from our previous results on
the LFP in the center of the population (see, e.g., Eq. 6 and Fig. 3e). This, however,
also means that if the LFP sources within one population have a high degree of
correlation, there is a large “spillover” to the neighboring population. In the example
in Fig. 6c, we note that if we have one LFP electrode in the center of each population,
the LFP generated by the other population may actually be larger than that from
the local population, if the neighboring population is correlated, while the local
population is uncorrelated. This, however, assumes that the overall activity in both
populations is the same and that nothing else differs than the level of correlation
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between LFP contributions within the populations. Since the overall LFP amplitude
depends on several factors, such as synaptic strengths and activation rates, as well
as synaptic placement (Lindén et al., 2011), a proper assessment of crosstalk would
require a more detailed analysis. This is beyond the scope of this chapter, however.

Model Justification

Data for Model Components and Parameter Values

The simplified LFP model presented in this chapter is valid for a range of parameter
values which are explicitly stated in the model formulation and does therefore not
rely on specific choices of parameters. The model formulation was, however, made
using a number of assumptions which we will list and discuss below.

Population geometry The presented formulation of the simplified model assumes
a cylinder-like population geometry which seems like a good first approximation
for several brain regions with a prominent layer structure as found both in the
hippocampus and cortex. If the spatial reach is large enough, as the model predicts
for a large area with correlated LFP sources, this assumed population geometry
may be oversimplified. In the dentate gyrus, for example, the macroscopic curvature
of the brain tissue creates large LFPs that are even larger outside the synaptically
activated region that generates it (Fernandez-Ruiz et al., 2013). To model such brain
regions, one would have to extend the model using a more realistic geometry (see
below).

Spatially homogeneous LFP correlations When deriving the simplified model,
we assumed that the LFP contribution from each cell can be decomposed into a
temporal and spatial part (Eq. 2). As a consequence, the correlation between the
LFP contributions from cells will be independent of the distance to the recording
electrode, and we could therefore use a single parameter cφ to represent the
correlation for the entire population. Due to spatially distributed synapses and
dendritic filtering (Lindén et al., 2011), we expect this assumption to not be
valid under all circumstances. Indeed, when comparing with detailed population
simulations, we saw some deviations that may be due to this assumption (see
red markers in Fig. 4e). In the frequency-dependent model formulation (Eqs. 9, 10
and 11), we correspondingly assume the coherence to be spatially homogenous.
While the model could be extended to include distant-dependent measures of
correlation/coherence (see below), the simplified model performs quite well in
comparison with the detailed numerical simulations also in the present form.

Definition of cells as individual LFP sources The model presented in this
chapter views each cell as an individual LFP source, and the shape function F(r)

consequently describes the spatial decay of single-cell LFP contributions (Fig. 2). It
would, however, be equally possible to formulate the model at the level of synapses,
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so that the total LFP would be a sum over synaptic contributions, where different
classes of synapses (based on, e.g., their spatial positioning on the dendrites) could
be assigned different shape functions.

LFP calculations The LFP calculations in the detailed simulations were made
assuming a linear, isotropic, homogenous, and ohmic extracellular medium which
seems to be well-fulfilled for the frequencies studied here (Nunez and Srinivasan,
2006; Logothetis et al., 2007) (for further discussion, see Pettersen et al. 2012.)
If warranted, however, other assumption about the extracellular medium could be
accounted for in the biophysical forward-modeling scheme (Lindén et al., 2014)
used to compute the shape function F(r) and the LFP population correlation
coefficient cφ .

Passive dendritic conductances The present model assumes passive (RC) den-
drites, but it can be extended to include active dendritic conductances. In particular,
a recent study showed that the effect of subthreshold active conductances on the
single-neuron LFP contribution, and thus the shape function F(r), can be well
described by means of so-called “quasi-active” linearization (Ness et al., 2015).
Thus these active conductances can be included in the model without introducing
any nonlinearity in the LFP generation, thus still allowing each frequency compo-
nent to be treated independently in the model.

Successes and Limitations

The simplified model presented in this chapter encapsulates how the amplitude and
reach of the LFP depends on three crucial factors: (1) the population geometry,
(2) the spatial decay of single-neuron LFP contributions, and (3) the correlation
between the LFP contributions from different cells. As the level of correlation
between LFP sources depends on the state of the underlying network dynamic, our
model demonstrates that the reach of the LFP is not a fixed quantity, but changes
with the network state. Our model, thus, offers a putative explanation to the disparity
between different experimental studies investigating the LFP reach, with estimates
ranging from a few hundred micrometers (Katzner et al., 2009; Xing et al., 2009) to
several millimeters (Kreiman et al., 2006).

The simplified model can straightforwardly be formulated in a frequency-specific
manner that allows the investigation of different frequency bands of the LFP
separately. The limited results shown here illustrate how frequency-specific spatial
decay of single-cell contributions combined with frequency-specific coherence
between LFP sources may lead to substantially larger spatial reach for low-
frequency components of the LFP compared to higher frequencies. This directly
influences the power spectrum of the LFP to have higher power at low compared to
high frequencies.
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The above results have focused on situations with the electrode placed in the
center of the population at the depth of the somata, but the simplified model has
proven equally applicable for other electrode positions; for example, see Lindén
et al. (2011), and Łęski et al. (2013).

The Future

Model Extensions

The model presented in this chapter could be extended in several ways. As
mentioned above a natural extension would be to adapt it for more realistic
population geometries. This would be of particular interest for brain regions that
have a clear macroscopic structure as, for instance, in the dentate gyrus. It has been
shown by combined experimental and modeling work that for this particular system
the curved shape of the cellular layers creates large amplitude LFPs that are due
to the spatial summation of LFP contributions from different sites at the curved
structure (Fernandez-Ruiz et al., 2013). To extend the model presented here to study
such effects, one would have to replace Eq. 3 with a more appropriate expression and
perform the analytical model derivation based on that. Alternatively, a numerical
integration of Eqs. 4 and 5 using appropriate summation boundaries can also be
done.

For some experimental setups, it may also be relevant to relax the assumption
of homogeneous LFP correlations (see above) to include finer spatial structure
of correlations. This could be important for capturing LFP correlations induced
by spatially specific external inputs or for specific connectivity structures of the
underlying neuronal circuits. This would make the integral expressions in Eqs. 4
and 5 more complicated; one can always use numerical summation of LFP sources
to compute estimates of the spatial reach of the LFP.

New Uses of Model

The model presented in this chapter does not make any assumptions about the
underlying neuronal network activity. In the multi-compartment simulations, we
used random (Poissonian) spike trains to activate synapses and a simple common-
input model to generate correlations between the input to different cells. Since
LFP computed from the multi-compartment models with current-based synapses are
linear with respect to the input level (see Lindén et al. 2011; Łęski et al. 2013), only
the mean input correlation will affect the resulting LFP reach, while the synaptic
rate will only affect the resulting LFP amplitude (through the constant F0 in Eq. 1).
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To use our model for a specific experimental setup, it would be possible to adapt
our model to more closely match the hippocampal (or cortical) region of study. This
could be done through the following steps:

1. By extracting the single-cell shape function F(r) using reconstructed morpholo-
gies from the specific hippocampal (or cortical) area under study using a similar
approach as in Fig. 2.

2. To use a more realistic model of spiking dynamics that would give a correlation
structure in the synaptic inputs with, e.g., realistic oscillatory dynamics in
frequency bands of interest. If these inputs then were used to activate multi-
compartment neuron models (similar to the setup illustrated in Fig. 4), the
transfer from correlation between input spikes to correlation between LFP
contributions could be estimated (as in Fig. 4c).

3. By setting the upper limit of population radius R according to known geometrical
constraints in the region of study.

This could allow a detailed investigation of the LFP amplitude and the LFP reach
for, e.g., theta compared to gamma oscillations.
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